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AN ARBITRARILY SHAPED ESHELBY INCLUSION INTERACTING
WITH A CIRCULAR PIEZOELECTRIC INHOMOGENEITY

PENETRATED BY
A SEMI-INFINITE CRACK

XU WANG AND PETER SCHIAVONE

We study the interaction between an Eshelby inclusion of arbitrary shape and
a circular piezoelectric inhomogeneity penetrated by a semi-infinite crack un-
der antiplane mechanical and in-plane electrical loading in a linear piezoelectric
solid. The Eshelby inclusion undergoes uniform antiplane eigenstrains and in-
plane eigenelectric fields. Through the use of a conformal mapping, the cracked
piezoelectric plane is first mapped onto the lower half of the image plane. The
corresponding boundary value problem is then studied in this image plane. The
interaction problem is solved through the construction of an auxiliary function
and the application of analytic continuation across straight and circular bound-
aries. We obtain concise expressions for the resultant stress and electric displace-
ment intensity factors at the crack tip.

1. Introduction

It is well-known that various kinds of defects, such as dislocations, cracks, Eshelby
inclusions, and inhomogeneities can significantly affect the performance and in-
tegrity of piezoelectric devices. Theoretical analysis of these defects has continued
to attract the attention of several researchers in the literature; see, for example,
[Deeg 1980; Pak 1990; Kuo and Barnett 1991; Suo et al. 1992; Chung and Ting
1996; Lee et al. 2000; Ru 2000; 2001; Wang and Fan 2015; Wang and Schiavone
2017]. Ru [2000; 2001] used the technique of analytic continuation together with
carefully constructed auxiliary functions in the physical plane to derive analytic so-
lutions for Eshelby’s problem of a two-dimensional Eshelby inclusion of arbitrary
shape in a piezoelectric plane or half-plane or in one of two perfectly bonded piezo-
electric half-planes. One example of the practical importance of Eshelby’s problem
lies in the study of residual stresses induced by lattice mismatch between buried ac-
tive components and surrounding materials in strained semiconductor devices. It is
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well-known that these residual stresses crucially affect the electronic performance
of these devices and may lead to failure and degradation [Ru 2000; 2001].

This work investigates the Eshelby inclusion problem in fibrous piezoelectric
composites containing cracks. In this paper, we endeavor to consider, simultane-
ously, within one single framework, the effects of a crack, an inhomogeneity, and
an Eshelby inclusion in piezoelectric materials. More specifically, we study the an-
tiplane shear deformations of an infinite hexagonal piezoelectric matrix containing

(i) a circular hexagonal piezoelectric inhomogeneity partially penetrated by a
semi-infinite crack, and

(ii) an Eshelby inclusion of arbitrary shape undergoing uniform antiplane eigen-
strains and in-plane eigenelectric fields; when the matrix is subjected to re-
mote antiplane mechanical and in-plane electrical loading.

The piezoelectric plane weakened by the semi-infinite crack is first mapped onto
the lower half of an image plane constructed via the use of a conformal mapping.
The corresponding problem is then studied in this image plane. The construction
of a specific auxiliary function and the application of analytic continuation across
straight and circular boundaries lead to the derivation of analytic vector functions in
each of the three phases of the fibrous piezoelectric composite. The resultant field
intensity factors at the crack tip are also obtained. Our analysis indicates that when
a condition on eigenstrains and eigenelectric fields is met, the Eshelby inclusion
will exert a neutral effect (neither shielding nor antishielding) on the electroelastic
field at the crack tip.

2. Basic formulation

In the case of antiplane shear deformations of a hexagonal piezoelectric material
with poling direction along the x3-axis, the general solution can be expressed in
terms of a two-dimensional analytic vector function f (z) of the complex variable
z = x1+ i x2 as [

ϕ1

ϕ2

]
+ iC

[
u3

φ

]
= C f (z), (1)

[
2ε32+ 2iε31

−E2− iE1

]
= f ′(z),

[
σ32+ iσ31

D2+ iD1

]
= C f ′(z), (2)

C = CT
=

[
C44 e15

e15 −ε11

]
, (3)

where ϕ1 and ϕ2 are the stress function and charge potential, respectively; u3 and
φ are the antiplane displacement and electric potential, respectively; σ31 and σ32

are the antiplane shear stresses; D1 and D2 are electric displacements; E1 and E2



ESHELBY INCLUSION WITH PIEZOELECTRIC INHOMOGENEITY AND A CRACK 127

are in-plane electric fields; ε31 and ε32 are mechanical strains; C44, e15, and ε11 are
the elastic, piezoelectric, and dielectric constants, respectively.

In addition, the stress function and the charge potential are defined in terms of
the stresses and the electric displacements, respectively, by

σ31 =−ϕ1,2, σ32 = ϕ1,1, D1 =−ϕ2,2, D2 = ϕ2,1. (4)

3. An Eshelby inclusion near a cracked circular piezoelectric inhomogeneity

As shown in Figure 1, we consider an infinite hexagonal piezoelectric matrix con-
taining an Eshelby inclusion of arbitrary shape undergoing uniform antiplane eigen-
strains (ε∗31, ε

∗

32) and in-plane eigenelectric fields (E∗1 , E∗2) as well as a circular
hexagonal piezoelectric inhomogeneity. The poling directions of all three phases
lie along the x3-axis. A semi-infinite traction-free and charge-free crack partially
penetrating the inhomogeneity lies on the negative real axis. The electroelastic
constants of the matrix are identical to those of the inclusion but are different from
those of the inhomogeneity. We represent the matrix by the domain S2 and assume
that the inhomogeneity occupies a circular region S1 of radius R with its center at
the origin. The inclusion is assumed to occupy the region denoted by S3. Both the
inhomogeneity-matrix interface |z| = R and the inclusion-matrix interface denoted
here by 0 are assumed to be perfectly bonded. Throughout the paper, the quantities
in S1, S2, and S3 will be identified by the subscripts 1, 2, and 3, respectively.

semi-infinite crack

R

circular
inhomogeneity S1

matrix S2

x2

0

Eshelby inclusion S3
(ε∗31, ε

∗
32, E∗1 , E∗2 )

x1

Figure 1. Interaction of an Eshelby inclusion of arbitrary shape
with a circular piezoelectric inhomogeneity partially penetrated by
a semi-infinite crack.
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In the physical z-plane, the boundary value problem has the form

f1(z)+ f1(z)= 0, −R < x1 < 0, x2 = 0±;

f2(z)+ f2(z)= 0, −∞< x1 <−R, x2 = 0±;
(5a)

C1 f1(z)+C1 f1(z)= C2 f2(z)+C2 f2(z),

f1(z)− f1(z)= f2(z)− f2(z), |z| = R;
(5b)

f2(z)+ f2(z)= f3(z)+ f3(z),

f2(z)− f2(z)= f3(z)− f3(z)+
[

2(ε∗32+iε∗31)z−2(ε∗32−iε∗31)z̄
−(E∗2+iE∗1)z+(E

∗

2−iE∗1)z̄

]
, z ∈ 0;

(5c)

f2(z)∼=
√

2/πC−1
2 K
√

z+ O(1), |z| →∞, (5d)

where
K = [K σ K D

]
T , (6)

in which K σ and K D denote the stress and electric displacement intensity factors,
respectively. These intensity factors represent the far-field electromechanical loads.

Consider the following conformal mapping function:

z = ω(ξ)=−ξ 2, ξ = ω−1(z)=−i
√

z, Im{ξ} ≤ 0. (7)

The physical z-plane with the semi-infinite crack is mapped onto the lower half-
ξ -plane and the crack faces are mapped onto the real axis in the ξ -plane. More-
over, the inhomogeneity z ∈ S1 is mapped onto ξ ∈ �1; the matrix z ∈ S2 is
mapped onto ξ ∈ �2; the Eshelby inclusion z ∈ S3 is mapped onto ξ ∈ �3; the
inhomogeneity-matrix interface |z| = R is mapped onto the semicircle |ξ | = R1/2,
−π ≤ arg{ξ} ≤ 0; and, finally, the inclusion-matrix interface z ∈ 0 is mapped onto
ξ ∈ L (see Figure 2).

v

u

R1/2
�1

�2L

�3

Figure 2. The problem in the ξ -plane.
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Without loss of generality, we write fi (ξ)= fi (ω(ξ)), i = 1, 2, 3 and denote by
u and v the real and imaginary parts of ξ (i.e., ξ = u+ iv). In the image ξ -plane,
the boundary value problem takes the form

f1(ξ)+ f1(ξ)= 0, |u|< R1/2, v = 0−;

f2(ξ)+ f2(ξ)= 0, R1/2 < |u|<∞, v = 0−;
(8a)

C1 f1(ξ)+C1 f1(ξ)= C2 f2(ξ)+C2 f2(ξ),

f1(ξ)− f1(ξ)= f2(ξ)− f2(ξ), |ξ | = R1/2, −π ≤ arg{ξ} ≤ 0;
(8b)

f2(ξ)+ f2(ξ)= f3(ξ)+ f3(ξ),

f2(ξ)− f2(ξ)= f3(ξ)− f3(ξ)+

[
−2(ε∗32+ iε∗31)ξ

2
+ 2(ε∗32− iε∗31)ξ̄

2

(E∗2 + iE∗1)ξ
2
− (E∗2 − iE∗1)ξ̄

2

]
, ξ ∈ L;

(8c)

f2(ξ)∼= i
√

2/π C−1
2 Kξ + O(1), |ξ | →∞. (8d)

An analytic solution to the above boundary value problem appears to be ex-
tremely difficult to obtain since we have to handle the boundary conditions on
Im{ξ} = 0, the interface conditions on |ξ | = R1/2, −π ≤ arg{ξ} ≤ 0, and those on
ξ ∈ L .

Adding the two interface conditions in (8c), we arrive at

f2(ξ)= f3(ξ)− ξ
2
[

ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
+ ξ̄ 2

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
, ξ ∈ L . (9)

The region ξ ∈ �3 is simply connected if z ∈ S3 is simply connected. Con-
sequently, there exists a conformal mapping ξ = w(η) that maps the exterior of
the simply connected region �3 in the ξ -plane onto the exterior of the unit circle
|η| ≥ 1 in the η-plane [Kantorovich and Krylov 1958; Savin 1961; England 1971].
As a result, an auxiliary function D(ξ) can be constructed as follows:

ξ̄ 2
=

[
w̄

(
1

w−1(ξ)

)]2

= D(ξ), ξ ∈ L , (10)

where w−1(ξ) is the inverse mapping of ξ = w(η).
Moreover, D(ξ) is analytic in the exterior of �3 except at the point at infinity,

where it has a pole of finite degree, namely

D(ξ)∼= P(ξ)+ O(ξ−1), |ξ | →∞, (11)

where P(ξ) is a polynomial of order 2N in ξ if ξ = w(η) is a polynomial of order
N in 1/η.
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Using (10) and (11), Equation (9) can be written as

f2(ξ)− [D(ξ)− P(ξ)]
[

ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
= f3(ξ)− ξ

2
[

ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
+ P(ξ)

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
, ξ ∈ L . (12)

In view of (12), we introduce a new analytic vector function h(ξ) defined by

h(ξ)=


f2(ξ)−[D(ξ)− P(ξ)]

[
ε∗32− iε∗31
−

1
2(E

∗

2− iE∗1)

]
, ξ ∈�2;

f3(ξ)−ξ
2
[

ε∗32+ iε∗31
−

1
2(E

∗

2+ iE∗1)

]
+ P(ξ)

[
ε∗32− iε∗31
−

1
2(E

∗

2− iE∗1)

]
, ξ ∈�3.

(13)

We can see from the above definition and (12) that h(ξ) is continuous across
ξ ∈ L and is then analytic in ξ ∈�2 ∪�3 except at the point at infinity, where its
asymptotic behavior is the same as that of f2(ξ) given by (8d).

By satisfying the boundary conditions on Im{ξ} = 0 and the interface conditions
on |ξ | = R1/2, −π ≤ arg{ξ} ≤ 0, using analytic continuation across straight and
circular boundaries, we finally arrive at the following expressions for f1(ξ), f2(ξ),
and f3(ξ):

f1(ξ)= 2(C1+C2)
−1C2

×

{
[D(ξ)−P(ξ)]

[
ε∗32−iε∗31

−
1
2(E

∗

2−iE∗1)

]
−[D(ξ)−P(x)]

[
ε∗32+iε∗31

−
1
2(E

∗

2+iE∗1)

]
+i

√
2
π

C−1
2 Kξ

}
, ξ ∈�1; (14)

f2(ξ)= (C1+C2)
−1(C1−C2)

×

{
[D(R/ξ)− P(R/ξ)]

[
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
− [D(R/ξ)− P(R/ξ)

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
− i

√
2
π

C−1
2 K Rξ−1

}
+ [D(ξ)− P(ξ)]

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
− [D(ξ)− P(ξ)]

[
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
+ i

√
2
π

C−1
2 Kξ, ξ ∈�2; (15)
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f3(ξ)= (C1+C2)
−1(C1−C2)

×

{
[D(R/ξ)− P(R/ξ)]

[
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
− [D(R/ξ)− P(R/ξ)]

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
− i

√
2
π

C−1
2 K Rξ−1

}
+ ξ 2

[
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
− P(ξ)

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
− [D(ξ)− P(ξ)]

[
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
+ i

√
2
π

C−1
2 Kξ, ξ ∈�3. (16)

It is not difficult to verify that the analytic vector functions obtained satisfy all
the existing boundary and interface conditions as well as the required asymptotic
behavior at infinity.

4. Stress and electric displacement intensity factors

The resultant stress and electric displacement intensity factors K σ
R and K D

R at the
crack tip are defined by [Lee et al. 2000]

K σ
R = lim

x1→0+
[

√
2πx1σ32(x1, 0)], K D

R = lim
x1→0+

[

√
2πx1 D2(x1, 0)], (17)

or equivalently

KR =

[
K σ

R
K D

R

]
= lim

z→0
[
√

2π zC1 f ′1(z)]. (18)

Using these definitions and (14), we ultimately obtain a concise and elegant
expression of the resultant field intensity factors as

KR = 2(C−1
1 +C−1

2 )−1C−1
2 K

+ 2
√

2π(C−1
1 +C−2

2 )−1Im
{
[D′(0)− P ′(0)]

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]}
. (19)

We can see from the above expression that the intensity factors are independent
of the radius of the circular inhomogeneity. Moreover, we can deduce that when
the eigenstrains and eigenelectric fields satisfy the condition

ε∗31

ε∗32
=

E∗1
E∗2
=

Im{D′(0)− P ′(0)}
Re{D′(0)− P ′(0)}

, (20)

Equation (19) gives us that

KR = 2(C−1
1 +C−1

2 )−1C−1
2 K , (21)
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semi-infinite
crack

Eshelby inclusion S3

S2

S1

x2

0

x1

Figure 3. A noncircular interface 0 when ξ ∈ L is circular.

which implies that the Eshelby inclusion exerts no influence on the resultant field
intensity factors at the crack tip, or equivalently exerts a neutral effect on the elec-
troelastic field at the crack tip. Note that the condition in (20) is independent of
the electroelastic constants of the fibrous piezoelectric composite.

5. An illustrative example

In this example, ξ ∈ L is a circle described by

|ξ − ξ0| = d, ξ ∈ L . (22)

Although ξ ∈ L is a circle, z ∈ 0 is noncircular. Such a noncircular interface 0
is shown in Figure 3. The auxiliary function D(ξ) and the polynomial P(ξ ) are
found to be

D(ξ)=
d4

(ξ − ξ0)2
+

2ξ̄0d2

ξ − ξ0
+ ξ̄ 2, P(ξ)= ξ̄ 2. (23)

Substituting these into (14)–(16), we obtain specific expressions for the three
analytic vector functions as follows:

f1(ξ)= 2(C1+C2)
−1C2

×

{[
d4

(ξ − ξ0)2
+

2ξ̄0d2

ξ − ξ0

] [
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
−

[
d4

(ξ − ξ̄0)2
+

2ξ0d2

ξ − ξ̄0

] [
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
+ i

√
2
π

C−1
2 Kξ

}
, ξ ∈�1; (24)
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f2(ξ)= (C1+C2)
−1(C1−C2)

×

{[
d4

(Rξ−1−ξ̄0)2
+

2ξ0d2

Rξ−1−ξ̄0

] [
ε∗32+iε∗31

−
1
2(E

∗

2+iE∗1)

]
−

[
d4

(Rξ−1−ξ0)2
+

2ξ̄0d2

Rξ−1−ξ0

] [
ε∗32−iε∗31

−
1
2(E

∗

2−iE∗1)

]
−i

√
2
π

C−1
2 K Rξ−1

}
+

[
d4

(ξ−ξ0)2
+

2ξ̄0d2

ξ−ξ0

] [
ε∗32−iε∗31

−
1
2(E

∗

2−iE∗1)

]
−

[
d4

(ξ−ξ̄0)2
+

2ξ0d2

ξ−ξ̄0

] [
ε∗32+iε∗31

−
1
2(E

∗

2+iE∗1)

]
+i

√
2
π

C−1
2 Kξ, ξ ∈�2; (25)

f3(ξ)= (C1+C2)
−1(C1−C2)

×

{[
d4

(Rξ−1− ξ̄0)2
+

2ξ0d2

Rξ−1− ξ̄0

] [
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
−

[
d4

(Rξ−1− ξ0)2
+

2ξ̄0d2

Rξ−1− ξ0

] [
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
− i
√
π

2
C−1

2 K Rξ−1
}

+ ξ 2
[

ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
− ξ̄ 2

0

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]
−

[
d4

(ξ−ξ̄0)2
+

2ξ0d2

ξ−ξ̄0

] [
ε∗32+ iε∗31

−
1
2(E

∗

2+iE∗1)

]
+ i

√
2
π

C−1
2 Kξ, ξ ∈�3. (26)

Substituting (23) into (19) yields

KR = 2(C−1
1 +C−1

2 )−1C−1
2 K

+
2
√

2πd2(|ξ0|
2
− d2)

|ξ0|6
(C−1

1 +C−1
2 )−1

×

[
2[ε∗31u0(u2

0− 3v2
0)+ ε

∗

32v0(3u2
0− v

2
0)]

−E∗1 u0(u2
0− 3v2

0)− E∗2v0(3u2
0− v

2
0)

]
, (27)

where

u0 = Re{ξ0},

v0 = Im{ξ0}.
(28)
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ε
∗ 31
/
ε
∗ 32
=

E
∗ 1
/

E
∗ 2

v0/u0

Figure 4. Variation of ε∗31/ε
∗

32 = E∗1/E∗2 as a function of v0/u0 in (29).

When the eigenstrains and eigenelectric fields satisfy

ε∗31

ε∗32
=

E∗1
E∗2
=
v0(v

2
0 − 3u2

0)

u0(u2
0− 3v2

0)
, (29)

the inclusion will have no influence on the resultant field intensity factors at the
crack tip. Condition (29) can be deduced from (20) or indeed from (27). The
variation of ε∗31/ε

∗

32= E∗1/E∗2 as a function of v0/u0 in (29) is illustrated in Figure 4.
It is seen in Figure 4 that ε∗31 = E∗1 = 0 when v0/u0 =±

√
3=±1.7321 and that

ε∗32 = E∗2 = 0 when v0/u0 =±1/
√

3=±0.5774.
Due to the fact that ξ ∈�3 is circular, the average stresses and electric displace-

ments within the Eshelby inclusion can be determined as[
〈σ32+ iσ31〉

〈D2+ iD1〉

]
=−i

√
1

2π
Kξ−1

0 −C2

[
1+

d2(d2
− |ξ0|

2
+ ξ 2

0 )

ξ0(ξ0− ξ̄0)3

] [
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
+C2(C1+C2)

−1(C2−C1)

×

{
d2 R(d2

+ R− |ξ0|
2)

(R− |ξ0|2)3

[
ε∗32+ iε∗31

−
1
2(E

∗

2 + iE∗1)

]
−

d2 R[ξ0(d2
− |ξ0|

2)+ ξ̄0 R]
ξ0(R− ξ 2

0 )
3

[
ε∗32− iε∗31

−
1
2(E

∗

2 − iE∗1)

]

+i

√
1

2π
C−1

2 K Rξ−3
0

}
, (30)

where 〈 · 〉 denotes the average over ξ ∈�3.
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6. Conclusions

We present a general method leading to an analytic solution of the interaction
problem of an Eshelby inclusion of arbitrary shape undergoing uniform antiplane
eigenstrains and in-plane eigenelectric fields near a circular piezoelectric inhomo-
geneity partially penetrated by a semi-infinite crack. The cracked piezoelectric
plane in the physical z-plane is mapped onto the lower half of the image plane via
the conformal mapping in (7). An auxiliary function D(ξ) is constructed in (10).
With the aid of D(ξ), we apply analytic continuations across the straight boundary
Im{ξ} = 0 and across the circular boundary |ξ | = R1/2 to arrive at the three analytic
vector functions f1(ξ), f2(ξ), and f3(ξ). A concise and elegant expression of
the resultant stress and electric displacement intensity factors at the crack tip is
obtained in (19). As an illustrative example, we present explicit expressions of
the three analytic vector functions and the resultant intensity factors for the special
case when ξ ∈ L is a circle.
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