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GENERATION OF SH-TYPE WAVES DUE TO SHEARING STRESS
DISCONTINUITY IN AN ANISOTROPIC LAYER OVERLYING AN

INITIALLY STRESSED
ELASTIC HALF-SPACE

SANTOSH KUMAR AND DINBANDHU MANDAL

The paper investigates the generation of SH-type waves due to a sudden applica-
tion of a stress discontinuity which moves after creation at the anisotropic layer
of finite thickness overlying an initially stressed isotropic half-space. The dis-
placements are obtained in exact form by the method due to Cagniard modified
by de Hoop. Two cases of shearing stress discontinuities are considered. The
numerical results are obtained for a particular model and discussed by plotting
graphs for displacement component with the elapsed time of the disturbance for
different values of initial stress and also for different values of initial time at
which pulses arrive.

1. Introduction

The notion of initial stress is essential to the study of seismic wave propagation.
Biot [1940] is largely responsible for the notion’s introduction and initial applica-
tions to elastic wave propagation; in [Biot 1965] he further developed the notion
of initial stress. Many authors have used that book as fundamental to the study of
wave propagation in an initially stressed medium. Abd-Alla and Ahmed [1999]
analyzed Love waves propagation in a non-homogeneous orthotropic elastic layer
under initial stress overlying semi-infinite medium. Khurana [2001] considered
the effect of initial stress on the propagation of Love wave. Further significant
steps were taken in [Das and Dey 1968; 1970, Dey 1971; Dey and Addy 1978;
Chattopadhyay and De 1981; Chattopadhyay and Kar 1978; Majhi et al. 2016;
2017] to cite but a few works.

In addition to initial stress, shearing stress discontinuity also plays a vital role
in the study of seismic wave propagation. Pal [1983] considered the problem of
generation and propagation of SH-type waves due to non-uniformly moving stress
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discontinuity in layered anisotropic elastic half-space using Garvin’s [1956] tech-
niques, which are a modification of Cagniard’s [1939] technique. Pal and Kumar
[2000] considered the generation of SH waves by a moving stress discontinuity in
an anisotropic soil layer over an elastic half-space using the Cagniard–de Hoop
special reduction technique [de Hoop 1960]. Next de Hoop [2002] considered
the reflection and transmission properties of an elastic interfacial bonding of two
semi-infinite solids, investigated for the simplest possible case of a line-source
excited two-dimensional SH-wave. Pal and Mandal [2014] studied the generation
of SH-type waves due to sudden application of a stress discontinuity which moves
after creation at the sandy layer of finite thickness overlying an isotropic and in-
homogeneous elastic half-space. Mandal et al. [2014] considered the disturbance
and propagation of SH-type waves in an anisotropic soil layer overlying an inho-
mogeneous elastic half-space by a moving stress discontinuity. All authors have
considered the effect of initial stress and shearing stress discontinuity separately
but haven’t considered the initial stress and shearing stress discontinuity together.

In the present problem our intention is to investigate the two dimensional prob-
lem of generation of SH-type waves at the free surface of an anisotropic layer due to
an impulsive stress discontinuity moving with uniform velocity along the interface
of initially stressed isotropic medium. The displacement is calculated numerically
for two particular distances on the surface for two different types of the discontinu-
ity in the shearing stress for different value of initial stress. It involves Laplace and
Fourier transform and the inversion is based on Garvin’s [1956] method. The prob-
lem discussed may be of importance in connection with the propagation of cracks
in the layer. Two cases of stress discontinuity are considered and the numerical
results are shown graphically.

2. Formulation of problem

We consider an anisotropic elastic layer of thickness h with elastic constants L1, N1

and density ρ1 over an initially stressed isotropic half-space with elastic constant
µ2 and density ρ2. The interface of these two media is considered at z = 0 whereas
free surface is at z =−h. Here, z axis is directed vertically downward and x axis is
assumed in the direction of the propagation of wave with velocity c. For SH-type of
waves the displacement does not depend on y and if (u, v, w) be the displacement
at any point P(x, y, z) into the medium then u = w = 0 and v are function of x ,
z and t . The two equations of motion are identically satisfied. The geometrical
configuration is depicted in Figure 1.

The equation of motion for the anisotropic layer (Medium I) without body forces
is given by

N1
∂2v1

∂x2 + L1
∂2v1

∂z2 = ρ1
∂2v1

∂t2 . (1)
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Figure 1. Geometry of problem.

The stress strain relation is given by (τxy)I = N1
∂v1
∂x and (τyz)I = L1

∂v1
∂x .

The equation of motion for initially stressed isotropic half-space (Medium II)
without body forces is given by

∂(τxy)II

∂x
+
∂(τyz)II

∂z
−

P
2
∂v2

∂x2 =
∂2

∂t2 (ρ2v2). (2)

The stress strain relation is given by (τxy)II = µ2
∂v2
∂x and (τyz)II = µ2

∂v2
∂z .

The boundary conditions are

(τyz)I = 0 at z =−h, (3)

v1 = v2 at z = 0, (4)

(τyz)I− (τyz)II = S(x, t)H(t) at z = 0, (5)

where S(x, t) is a function of x and t ; H(t) is the Heaviside unit function of time t .

3. Method of solution

The above problem can readily be solved by using the Laplace and Fourier trans-
forms combined with the modified Cagniard–de Hoop [1960] method. The Laplace
transform with respect to t and the Fourier transform with respect to x are defined
by

'
v =

∫
∞

−∞

e−iξ x dx
∫
∞

0
e−ptv(x, z; t) dt. (6)

We can easily get the upper and lower layer with v2→ 0 as z→∞ in the form

v̄1(x, z; p)=
∫
∞

−∞

(A cosh s1z+ B sinh s1z) eiξ x dξ, (7)

v̄2 =

∫
∞

−∞

Ce(iξ x−s2z)dξ, (8)

where the constants A, B and C are to be determined from the boundary conditions
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(3)–(5):

s1 =

(
φ2

1ξ
2
+

p2

β2
1

)1
2

, s2 =

(
φ2

2ξ
2
+

p2

β2
2

)1
2

, (9)

where β2
1 =

L1
ρ1

, β2
2 =

µ2
ρ2

, φ2
1 =

N1
L1

and φ2
2 = 1− P

2µ2
.

It follows from the boundary conditions (3) and (4) that

A = C, A cosh s1h = B sinh s1h. (10)

Case I. Let

S(x, t)=
{

Q, a ≤ x ≤ b+ V t,
0, elsewhere,

(11)

where Q is constant.
This definition of stress discontinuity shows that it is created in the region x = a

to x = b and then expands with the uniform velocity V in the x direction. In
particular, when a = b = 0, the discontinuity is created at the origin and expands
with uniform velocity V in the x direction.

From the boundary condition (5) one gets, with the help of (11),

BL1s1+Cµ2s2 =
Q

2πp

[
e−iξa

− e−iξb

iξ
+

e−iξb

iξ + p
V

]
. (12)

Solving for A, B and C from (10) and (12), we get the displacement function
at the free surface at z =−h in the form

v̄1(x,−h; p)

=
Q

2πp

∫
∞

−∞

eiξ x

(L1s1 sinh s1h+µ2s2 cosh s1h)

[
e−iξa

− e−iξb

iξ
+

e−iξb

iξ + p
V

]
dξ

=
Q
πp

∫
∞

−∞

e(iξ x−hs1)

(L1s1+µ2s2)

[
e−iξa

− e−iξb

iξ
+

e−iξb

iξ + p
V

](
1− K e−2hs1

)−1dξ,

(13)
where

K =
L1s1−µ2s2

L1s1+µ2s2
< 1, (14)

represents the reflection coefficient of SH-waves incident from the sandy medium
at the interface between two half-spaces. The coefficients of different power of
K in series of (13) are associated with the pulses undergoing repeated reflection
in the upper layer. Using the inverse Laplace transform, we can rewrite (13) in a
convenient form:

v1(x,−h; p)= L−1(I1+ I2+ I3)= L−1(I1)+ L−1(I2)+ L−1(I3), (15)
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where I1, I2 and I3 are defined in the Appendix. The inverse Laplace transforms of
I1, I2 and I3 are obtained by following [Garvin 1956]; details are in the Appendix.

Equation (15) gives the exact value of the surface displacement field v1(x,−h, t)
surface.

Case II. Let

S(x, t)= Qhδ(x − V t), (16)

where Q is a constant and δ(x−V t) is Dirac’s delta function of argument (x−V t).
A term h is included on the right-hand side of (16) so as to give S as the dimension
of a stress.

The boundary condition (5) gives

BL1s1+Cµ2s2 =
Qh

2πV
(
iξ + p

V

) . (17)

Solving for A, B and C from (10) and (17) one gets

v̄1(x,−h; p)=
Qh
πV

∫
∞

−∞

e(iξ x−hs1)(1+ K e−2hs1 + K 2e−4hs1 + · · · )(
iξ + p

V

)
(L1s1+µ2s2)

dξ (18)

Proceeding similarly as in Case I we obtain

v1(x,−h, t)=
2Qβ1h
πL1

∑
n=1,3,5,...

∫ t

0
Gn[ζn(λ)] dλ, (19)

where

Gn[ζn(t)] = Re
[{

1+φ2
1ζ

2
n (t)

}1
2 +µ

(
ε2
+φ2

2ζ
2
n (t)

)1
2
]−1
×

[β1

V
+ iζn(t)

]−1

×K
n−1

2 [ζn(t)]
dζn(t)

dt
H
[
t − (x2

+ n2h2)
1
2 β−1

1

]
(20)

and

ζn(t)=
β1

x2+ n2h2φ
2
1

[
i t x + nh

{
t2
−
(
x2
+ n2h2φ2

1
)
β−2

1

}1
2
]
, n = 1, 3, 5, . . . .

(21)
If the stress discontinuity is taken as H(x)− H(x − V t) in place of δ(x − V t)
the corresponding expression on the right-hand side of (18) will differ only by a
constant factor from I3 (with a = b = 0).
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4. Numerical results and discussion

For numerical results, we have taken data for anisotropic layer and initially stressed
half-space from [Babuska and Cara 1991]:

N1 = 175 GPa, L1 = 202 GPa, ρ1 = 4408 kg/m3

µ2 = 91.6 GPa, ρ2 = 3582 kg/m3.

The values of K1v1(x,−h, t) for x = 7h and x = 14h have been plotted against
τ1 = τ − τ0, where τ0 denotes the time at which the disturbance arrives at the point
of observation with K1=

πL1
2Qβ1h , τ = tβ1

h is the time of the disturbance to arrive from
source to initial point. The value of τ at x = 7h is (72

+n2φ2
1)

1/2, n= 1, 3, 5, . . . and
τ0 = 7.06 at n = 1 and the value of τ at x = 14h is (142

+n2φ2
1)

1/2, n = 1, 3, 5, . . .
and τ0 = 14.03 at n = 1.

When x = 7h, for six initial values, we have

K1v1(x,−h, t)=
∑

n=1,3,5,7,9,11

A0(θn) cosh−1
(
τ
/√

72+n2φ2
1

)
H
(
τ−

√
72+n2φ2

1

)
,

where

A0(θn)= Re

[
(1−φ2

1 cos2 θn)
1
2 −µ(ε2

−φ2
2 cos2 θn)

1
2
] n−1

2 sin θn[
(1−φ2

1 cos2 θn)
1
2 +µ(ε2−φ2

2 cos2 θn)
1
2
] n−3

2
(
β1
V − cos θn

) ;
represents the reflection coefficient of SH-type waves incident from the anisotropic
medium to initially stressed isotropic half-space. When x = 14h, for six initial
values, we have the same expression for K1v1(x,−h, t), with 72 replaced by 142.

Figures 2 and 3 show graphs of the variation of displacement with elapsed time
τ1 for different values of initial stress and for different values of initial time at
which pulses arrive.

In Figure 2, top, the graph is plotted for the disturbance effect for x = 7h and
x = 14h and fixed value of P = 1 GPa. From the figure it can be observed that all
the curves start from the origin with sharp changes in their slope and after sometime
the curves get smooth. Also, it reflects that the disturbance is more prominent for
early arrival of pulses i.e. for x = 7h has more jumping effect than for x = 14h. If
the place of observation has more distance from the source the impact of pluses is
less. In Figure 2, bottom, the graph is plotted for the disturbance effect for x = 7h
and x = 14h and fixed value of P = 10 GPa. The nature of the curves remains the
same, but the magnitude of disturbance increases to a large extent as initial stress
increases.

In Figure 3, top, the graph is plotted for the disturbance for x = 7h and different
values of P (1 GPa, 10 GPa and 100 GPa). The nature of the curves is oscillating
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Figure 2. Variation of K1v1(x,−h, t) with τ1 for x = 7h and
x = 14h, for P = 1 GPa (top) and P = 10 GPa.

and after some time the curves become smooth and steady. As we increase the
values of initial stress, the jumping effect increases. In Figure 3, bottom, the graph
is plotted for the disturbance for x = 14h and the same values of P . The nature
of the curves remains the same, but the effect of disturbance is reduced to a large
extent due to the late arrival of the pulses.

5. Conclusions

The generation of SH-type waves at the free surface of an anisotropic layer due to
an impulsive stress discontinuity moving with uniform velocity along the interface
of initially stressed isotropic medium has been considered. The displacement is
calculated numerically for two particular distances on the surface for two different
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Figure 3. Variation of K1v1(x,−h, t) with τ1 for x = 7h (top)
and x = 14h (bottom) for different values of P .

types of the discontinuity in the shearing stress for different value of initial stress.
It involves Laplace and Fourier transform and the inversion is based on Garvin’s
[1956] method. The numerical results are obtained for a particular model. From the
figures it can be observed that initial stress and initial time at which pulses arrive
has a significant effect. From the graph it is visible that that the displacement factor
starts oscillating and after sometime it gets stable. The results are more comprising
with the real scenario as we see that the disturbance arrives at the surface, it shakes
the surface for a while and slowly gets stable. Also, from the figures it is visible
that if the observer is nearer to the source then pulses arrive early and produce
more disturbance and if the medium is highly pre-stressed then it produces more
disturbance.
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Appendix

We have

I1 =
Q
πp

∫
∞

−∞

(1− K e−2hs1)−1

iξ(L1s1+µ2s2)
e(iξ x1−hs1) dξ,

I2 =
Q
πp

∫
∞

−∞

(1− K e−2hs1)−1

iξ(L1s1+µ2s2)
e(iξ x2−hs1)dξ,

I3 =
Q
πp

∫
∞

−∞

(1− K e−2hs1)−1(
iξ + p

V

)
(L1s1+µ2s2)

e(iξ x2−hs1) dξ,

with x1 = x − a and x2 = x − b. In order to evaluate the Laplace inversion integral,
we have used Garvin’s method; see [Garvin 1956] for discussion of the contour
integration and mapping.

Next for non-dimensionalisation, we substitute ξ = ζ p
β1

, µ = µ2
L1

, β1
β2
= ε in the

integral above so that s1 =
p
β1
(1+φ2

1ζ
2)

1
2 , s2 =

p
β2
(ε2
+φ2

2ζ
2)

1
2 and

K =
(1+φ2

1ζ
2)

1
2 −µ(ε2

+φ2
2ζ

2)
1
2

(1+φ2
1ζ

2)
1
2 +µ(ε2+φ2

2ζ
2)

1
2

.

Thus we obtain

I1 =
2Q
πp

Im
∫
∞

0

e(iξ x1−hs1)(1+ K e−2hs1 + K 2e−4hs1 + · · · )

ξ(L1s1+µ2s2)
dξ. (A.1)

The first term in I1 is

I1,1 =
2Qβ1

πpL1
Im
∫
∞

0

exp
[
−p

{
−iζ x1+ h

(
1+φ2

1ζ
2
)1

2
}/
β1

]
pζ
[(

1+φ2
1ζ

2
)1

2 +µ
(
ε2+φ2

2ζ
2
)1

2
] dζ. (A.2)

The integrand (A.2) has singularities at ζ = 0,± i
φ1
,± iε

φ2
. Let t =

{
−iζ x1+ h(1+

φ2
1ζ

2)
1
2
}
/β1. Then by inversion ζ(t)= β1

x2
1+φ

2
1 h2

[
i t x1+ h

{
t2
− (x2

1 +φ
2
1h2)β−2

1

}1
2
]
.

The mapping of the ζ -plane into the t-plane is shown in Figure 4.
Making the reference to the Figure 4 and the paper of [Pal 1983], we find

L−1 I1,1 =
2Qβ1

πL1

∫ t

0
(t − λ1)G1,1[ζ1,1(λ1)] dλ1, (A.3)

where L[t H(t)] = 1
p2 and

G1,1[ζ1,1(t)] = Im
[(

1+φ2
1ζ

2
1,1
)1

2 +µ
(
ε2
+φ2

2ζ
2
1,1
)1

2
]−1

ζ−1
1,1 (t)

×
dζ1,1(t)

dt
H
[
t −

{
η
(
x2

1 + h2φ2
1
)}1

2β−1
1

]
.
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xi
β1

φ1h
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β1

√
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β1

tan−1 xi
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tan−1 xi
φ1h

C1

C2

Figure 4. The t-plane showing the mapping and the contour of integration.

Since for φ1h
β1
< t < (x2

1+h2φ2
1 )

1
2

β1
,
[(

1+φ2
1ζ

2
1,1

)1
2 +µ

(
ε2
+φ2

2ζ
2
1,1

)1
2
]
ζ−1

1,1 (t)×
dζ1,1(t)

dt
is real. In general,

L−1 I1,n =
2Qβ1

πL1

∫ t

0
(t − λ1)G1,n[ζ1,n(λ1)] dλ1, (A.4)

where

G1,n[ζ1,n(t)] = Im
[{

1+φ2
1ζ

2
1,n(t)

}1
2 +µ

(
ε2
+φ2

2ζ
2
1,n(t)

)1
2
]−1

ζ−1
1,n (t)

× K
n−1

2 [ζ1,n(t)]
dζ1,n(t)

dt
H
[
t −

{(
x2

1 + h2φ2
1
)}1

2β−1
1

]
,

and

ζ1,n(t)=
β1

x2
1 + n2h2φ2

1

[
i t x1+ nh

{
t2
−
(
x2

1 + n2h2φ2
1
)
β−2

1

}1
2
]
, n = 1, 3, 5, . . . .

So that

L−1 I1 =
∑

n=1,3,5,...

L−1 I1,n. (A.5)

Similarly

L−1 I2 =
∑

n=1,3,5,...

L−1 I2,n, (A.6)

where x1 is replaced by x2.
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Proceeding in the same way, we get

L−1 I3 =
∑

n=1,3,5,...

L−1 I3,n, (A.7)

where

L−1 I3,n =
2Qβ1

πL1

∫ t

0
(t − λ1)G3,n[ζ2,n(λ1)] dλ1 (A.8)

G3,n[ζ2,n(t)] = Re
[{

1+φ2
1ζ

2
2,n(t)

}1
2 +µ

(
ε2
+φ2

2ζ
2
2,n(t)

)1
2
]−1
×

[β1

V
+ iζ2,n(t)

]−1

× K
n−1

2 [ζ2,n(t)]
dζ2,n(t)

dt
H
[
t −

(
x2

2 + n2h2φ2
1
)1

2β−1
1

]
,

and ζ2,n(t) is given by Appendix with x2 in place of x1.
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