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A MODEL FOR INTERFACES AND ITS MESOSCOPIC LIMIT

MICHELE ALEANDRI AND VENANZIO DI GIULIO

We study a system of N layers with a Kac horizontal interaction of parameter
γ > 0 and a Kac vertical interaction of parameter γ 1/2. We shall prove that
the limit free energy functional is the rate function of the large deviations of the
Gibbs measure (of a canonical constrained magnetization). The limit free energy
functional is achieved as a 0-limit for γ → 0 for magnetizations with fixed aver-
age. Among all such magnetizations there exists a quasiconstant magnetization
that minimizes the energy.

1. Introduction

Equilibrium and dynamics of interfaces is a very well studied issue both in physics
and mathematics. In several instances to simplify the problem it is supposed that
the interface is a graph, an assumption which is not at all unrealistic if the interface
is studied locally. In the SOS models of statistical mechanics the interface is a
graph over a lattice Zd ; namely for each site i ∈ Zd we draw a vertical line and
the position of the interface on the line (its height) is represented by a real-valued
spin Si . One then introduces a Hamiltonian which describes the interactions among
the spins so that the equilibrium properties of the interface are derived from the
Gibbs properties of the Hamiltonian. The difficulty in this approach arises from the
fact that the Hamiltonian is massless, which corresponds to the fact that vertical
translations of the interface do not cost energy. The theory of DLR states is then
quite more involved than in the classical Ising model; a breakthrough was achieved
in [Funaki and Spohn 1997], followed by many other papers.

In this paper we take a step back towards microscopic scalar; namely we suppose
that on each horizontal line there is an Ising system so that instead of a real-valued
spin Si we have a configuration σ(x, i), x ∈ Z, of ±1-valued spins. We actually
consider a finite system with i = 1, . . . , N and x ∈ [0, L] ∩Z, L = γ−1`, γ > 0,
` > 0 (L an integer). To simulate a phase transition the spins on each horizontal
line interact via a Kac potential Jγ (x, y) (the same on each line), whose strength
is 1 and whose range is γ−1 (see Section 2 for a precise definition). The spins
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between nearest neighbor horizontal lines (say (x, i) and (y, i + 1)) interact via
the Kac potential λJγ 1/2(x, y), λ > 0; that is, the vertical interaction is much more
local than the horizontal one.

We study the mesoscopic limit γ → 0. The mesoscopic state of the system
is a collection m ≡ {m(r, i) : r ∈ [0, `], i = 1, . . . , N } of measurable functions
with values in [−1, 1]. Its statistical properties are then described by a free energy
functional F(m). According to the Gibbs theory such a functional is the limit as
γ → 0 of −1/β times the log of a constrained partition function where the spin
configurations are required to be “close” to the mesoscopic state m (this involves
a coarse grain procedure which is specified in Section 2). This is not as in the
classical Lebowitz–Penrose [1966; Penrose and Lebowitz 1971] procedure because
there are two scales, γ−1 for the horizontal interaction and γ−1/2 for the vertical
one. Thus, there could be oscillations on the scale γ−1/2 which do not appear in m
because the latter is defined by averages over ≈ γ−1 but which could affect the
free energy of m. These oscillations actually do not occur if λ is small; indeed by
Theorem 4.1 the optimal profile is quasiconstant on the scale γ−α with α ∈ (0, 1).
However, if λ is large enough we can provide an example where such a phenomena
occurs.

The paper is organized as follows. In Section 2 we introduce the microscopic
and mesoscopic models and enunciate the main results. In Section 3 we intro-
duce the coarse graining procedure used to prove the Lebowitz–Penrose limit. In
Section 4 we prove a key result, that is, Theorem 4.1, in which we provide a
technique to minimize the free energy. This theorem is needed to prove the main
results in Section 2. In Section 5 we prove the Lebowitz–Penrose limit for our
model. In Section 6 we prove the 0-limit result. The proofs of Theorem 2.4 and
Proposition 3.1 are deferred to Appendix A. In Appendix B, finally, we illustrate
the case in which Theorem 2.3 fails for the parameter λ large enough.

Similar model have been studied in [Cassandro et al. 2016; Fontes et al. 2014;
2015]. A numerical investigation of the mesoscopic limit for lattice gas model was
also recently tackled in [Colangeli et al. 2016; 2017].

This work is the first step of a research program pointed towards the charac-
terization of the surface tension associated to free energy in the thermodynamic
limit.

2. Model and main results

We consider an Ising spin system in a rectangle TL ,N = {(x, i)∈Z2
: x ∈ [0, L−1],

i ∈ [1, N ]}, L = γ−1`, with γ−1
∈ {2n

: n ∈ N} and ` ∈ {2k
: k ∈ Z}. We will

eventually take the limit γ → 0 keeping ` and N fixed. We denote by σ a spin
configuration σ ={σ(x, i)∈{−1, 1} : (x, i)∈TL ,N }∈ {−1, 1}TL ,N , and since we will
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consider periodic boundary conditions we extend periodically σ to a configuration
on Z2 (denoted by the same symbol) by setting σ(x, i)= σ(y, j) if (x, i)∼ (y, j)
where

(x, i)∼ (y, j) if y = x + kL and j = i + k ′N , k, k ′ ∈ Z. (2-1)

The interaction among spins is given by a highly anisotropic Kac potential which
will be defined in terms of a function J (r), r ∈ R: we suppose that J (r) is a
nonnegative C2 function with

∫
J (r) dr = 1 supported by |r | ≤ 1. We then define

for any x, y in R

Jγ 1/2(x, y) := γ 1/2 J (γ 1/2
|x − y|), Jγ (x, y) := γ J (γ |x − y|). (2-2)

The Hamiltonian of the system (with periodic boundary conditions) is then defined
as

Hγ,λ(σ )=
N∑

i=1

[
−

1
2

∑
x,y∈[0,L−1]∩Z

{
1{x 6=y} Jγ (x, y)σ (x, i)σ (y, i)

−λJγ 1/2(x, y)σ (x, i)(σ (y, i−1)+σ(y, i+1))
}

−

∑
x∈[0,L−1]∩Z
y /∈[0,L−1]∩Z

{
Jγ (x, y)σ (x, i)σ (y, i)

−λJγ 1/2(x, y)(σ (y, i−1)+σ(y, i+1))
}]
. (2-3)

Thus, the range of the vertical interaction is much shorter than the range of the
horizontal one.

We denote by µβ,γ,λ the Gibbs measure at inverse temperature β:

µβ,γ,λ(σ )=
e−βHγ,λ(σ )

Zβ,γ,λ
with

Zβ,γ,λ =
∑
σ

e−βHγ,λ(σ ),

being interested in the mesoscopic limit γ → 0. The aim is to compute the limiting
free energy and the probability of mesoscopic states.

A mesoscopic state is a measurable function m on T`,N =[0, `]×{1, . . . , N }with
values in [−1, 1]. We extend m periodically by setting m(r, i)=m(r ′, j) if (r, i)∼
(r ′, j), which means r ′ = r + k` and j = i + k ′N , k, k ′ ∈ Z. The correspondence
between spin configurations σ and mesoscopic states m is via coarse graining,
namely by comparing averages. The “microscopic length” used for averaging is
γ−α, α ∈ (0, 1), and to avoid taking integer parts we suppose α a rational number.
We tacitly suppose that γ is small enough so that γ−1 and therefore also L are
integer multiples of γ−α.
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Definition 2.1 (partition and empirical averages). Let α and γ as above. We define
for any k ∈ Z

C (α)
k,i := {(x, i) ∈ R×Z : kγ−α ≤ x < (k+ 1)γ−α}.

The collection C(α) of all C (α)
k,i defines a partition of R×Z. Moreover, C(α) ∩Z2

paves exactly TL ,N : namely any C (α)
k,i ∩ Z2 is either contained in TL ,N or in its

complement.
Given a spin configuration σ we then define

σ (α)(x, i) := γ α
∑

y∈C (α)
k,i ∩Z2

σ(y, i), where k is such that (x, i) ∈ C (α)
k,i (2-4)

and σ (α) is a function with values in M (α) where

M (α)
:=

{
−1,−1+

2
γ−α

, . . . , 1−
2
γ−α

, 1
}
. (2-5)

Analogously, given a mesoscopic state m ∈ L∞(T`,N ; [−1, 1]) we set

m(α)(x, i) := γ α
∫ (k+1)γ−α

kγ−α
m(γ r, i) dr (2-6)

where k is such that (x, i) ∈ C (α)
k,i and m(α) is a function with values in [−1, 1].

We next specify in which sense a spin configuration σ “recognizes” a meso-
scopic state m and use this notion to define the free energy and the probability
associated to a mesoscopic state.

Definition 2.2. σ “recognizes” m, and we write σ ≈α m if

|σ (α)(x, i)−m(α)(x, i)| ≤ 2γ α for all (x, i) ∈ TL ,N (2-7)

(recall that, by flipping a spin, σ (α)(x, i) changes by 2γ α). We then define the
finite volume free energy of the mesoscopic state m as

F (α)β,γ,λ(m) := −
1

βγ−1 log Z (α)β,γ,λ(m), (2-8)

where
Z (α)β,γ,λ(m) := Zβ,γ,λ({σ ≈α m})=

∑
σ :σ≈αm

e−βHγ,λ(σ ).

Analogously we define the Gibbs probability of the mesoscopic state m as

µβ,λ,γ [σ ≈
α m] =

Z (α)β,γ,λ(m)

Zβ,γ,λ
.

The main result in this paper is this:
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Theorem 2.3. For any α ∈ (0, 1), any λ ∈ (0, 1/(8β)), and any mesoscopic state
m ∈ L∞(T`,N , [−1, 1]),

lim
γ→0

F (α)β,γ,λ(m)= Fβ,λ(m) (2-9)

where

Fβ,λ(m)=−
1
2

N∑
i=1

∫ `

0

∫ `

0
J (r, r ′)m(r, i)m(r ′, i) dr dr ′

−
λ

2

N∑
i=1

∫ `

0
m(r, i)(m(r, i + 1)+m(r, i − 1)) dr

−
1
β

N∑
i=1

∫ `

0
I (m(r, i)) dr (2-10)

and

I (m)=−
1+m

2
log

1+m
2
−

1−m
2

log
1−m

2
. (2-11)

The following two theorems are essentially a corollary of Theorem 2.3. The
first one is about free energy.

Theorem 2.4. Let 0< λ < 1/(8β) and α ∈ (0, 1). Then

− lim
γ→0

1
βγ−1 log Zβ,γ,λ = inf

m∈L∞(T`,N ;[−1,1])
Fβ,λ(m). (2-12)

Moreover, if β(1+ 2λ) > 1, then (recalling (2-11) for notation)

inf
m

Fβ,λ(m)= N`
(
−

b
2

m2
bβ −

I (mbβ)

β

)
, b = 1+ 2λ, (2-13)

where mbβ is the positive solution of the equation

mbβ = tanh{βλmbβ}. (2-14)

If instead β(1+ 2λ)≤ 1, then

inf
m

Fβ,λ(m)=
N`
β

log(1
2). (2-15)

The next theorem is about large deviations; on the general issue see for instance
[Ellis 2006].

Theorem 2.5. Let 0 < λ < 1/(8β), α ∈ (0, 1), and m ∈ L∞(T`,N ; [−1, 1]) be a
mesoscopic state; then

lim
γ→0

γ logµβ,λ,γ [σ ≈(α) m] = −(Fβ,λ(m)− inf
m′

Fβ,λ(m′)). (2-16)
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The theorems are proved in the next sections; here we make some remarks on
Theorem 2.3. We note in particular that the limit free energy of a mesoscopic state
is independent of the coarse graining parameter α, a fact to some extent unexpected.

The point is that the partition function Z (α)β,γ,λ(m) is clearly an increasing function
of α because the constraint σ ≈α m is weakened when increasing α. In particular
the result contained in Theorem 2.3 shows that this effect is negligible in the limit
γ → 0. The basic idea in the proofs goes back to Lebowitz and Penrose, and it is
based on a coarse graining with grain lengths which must be large with respect to
the lattice spacing but small with respect to the range of the interaction. Following
Lebowitz and Penrose we use a coarse graining with grain length γ−α

′

with α′ < 1
2

and γ−α
′

≤ γ−α. We then obtain an estimate for the logarithm of the partition
function characterized to the leading orders (as γ → 0) by a nonrescaled functional

Fβ,γ,λ(m)

=−
1
2

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ (r, r ′)m(r, i)m(r ′, i) dr dr ′

−
λ

2

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ 1/2(r, r ′)m(r, i)(m(r ′, i − 1)+m(r ′, i + 1)) dr dr ′

−
1
β

N∑
i=1

∫ γ−1`

0
I (m(r, i)) dr, (2-17)

where m is constant on the scale γ−α
′

used in the coarse graining.
To simplify the argument, let us assume that the mesoscopic profile m(r, i)= 0

for all r and i . If the constraint σ ≈(α) m with α < 1
2 , then by letting α′ = α (so

that m ≡ 0) the functional F becomes F after rescaling.
If instead α > 1

2 , we cannot take α′ = α and there may be vertical energy gains
via suitable oscillations of the magnetization within the constraint σ ≈(α) m. This
is not just a theoretical possibility as it may indeed occur when λ is large. Let
βλ > 1; then

Fβ,γ,λ(m ≡ 0)=−N`
I (0)
β
.

Fix m =+mβλ (the positive solution of (2-14)) in the left half of each interval of
length γ−α and equal to −mβλ in the right half. Note that m satisfies the constraint
{σ ≈α m}. In Appendix B we prove that the rescaled free energy of m in the limit
of γ → 0 is equal to

N`
(
−λm2

βλ−
I (mβλ)

β

)
,

which is smaller than Fβ,γ,λ(0).
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Instead when λ is small as in Theorem 2.3, then the optimal m is constant on the
scale γ−α (when γ → 0). The proof of Theorem 2.3 is then reduced to prove that
the functional in (2-17) 0-converges [Braides 2002] to the functional in (2-10).

3. Coarse graining procedure

In this section we prove some estimates for the logarithm of the partition function
log Z (α)β,λ,γ (m) in terms of Fβ,λ,γ defined in (2-17). These estimates will be used in
the Lebowitz–Penrose limit discussed in the Section 5. A different coarse graining
procedure from the classical Lebowitz–Penrose result will be used. This is needed
due to the presence of two different scales of interaction along the horizontal and
vertical directions.

The partition function Zβ,λ,γ ( · ) is defined on the space of the configurations
while Fβ,λ,γ ( · ) is defined on the space of measurable functions. Recalling Defini-
tion 2.2, we consider M(α) the space of all functions which are constant on {C (α)

i,k }i,k∈Z

with values in M (α). For each empirical average m(α)( · ) there exists a function
m ∈M(α) such that |m(α)(x, i)−m(x, i)| ≤ 2γ−α for all (x, i)∈ T`,N . Furthermore,
given a function m ∈M(α) we define the set

{σ (α) := m} = {σ ∈ {−1, 1}TL ,N : σ (α)(x, i)= m(x, i) for all (x, i) ∈ TL ,N }.

The next results are the basic steps in establishing the Lebowitz–Penrose limit.

Proposition 3.1. For any α ∈ (0, 1
2), there is a constant c > 0 such that for any

m ∈M(α)

log Zβ,γ,λ({σ (α) = m})≤−βFβ,γ,λ(m)+βcε(γ, λ)|TL ,N |, (3-1)

log Zβ,γ,λ({σ (α) = m})≥−βFβ,γ,λ(m)−βcε(γ, λ)|TL ,N |, (3-2)

where Fβ,γ,λ is defined in (2-17) and

ε(γ, λ) := λγ 1/2−α
+ γ α log γ−α. (3-3)

The proof, which follows the standard techniques, we postpone to Appendix A.
For such choice of m the set {σ ≈α m}= {σ (α)=m}, and for any A⊆M(α) we define

Z (α)β,γ,λ(A)=
∑
m∈A

Zβ,γ,λ({σ (α) = m}).

Proposition 3.2. For any α ∈ (0, 1
2), there is a constant c > 0 such that for any

A⊆M(α)

log Z (α)β,γ,λ(A)≤−β inf
m∈A

Fβ,γ,λ(m)+βcε(γ, λ)|TL ,N |, (3-4)

log Z (α)β,γ,λ(A)≥−β inf
m∈A

Fβ,γ,λ(m)−βcε(γ, λ)|TL ,N |. (3-5)
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Proof. The proof is the same as that of Theorem 4.2.2.2 in [Presutti 2009]. �

Now we consider the case α > 1
2 . We cannot directly apply Proposition 3.1 since

the length of the vertical interaction is less than the length of the coarse graining.
The idea is to write the fixed average of m on the scale of γ−α as an average after
the coarse graining of scale γ−α

′

, α′ ∈ (0, 1
2).

For mα ∈M(α) we define the set

Amα
=

{
mα′∈M(α′)

:
1
γ−α

∫
C (α)

k,i

mα′(r ′, i) dr ′=mα(r, i) for all (r, i)∈T`,N

}
. (3-6)

Using the above definition we prove a same result as in Proposition 3.1:

Proposition 3.3. For any α ∈ ( 1
2 , 1), there is a constant c> 0 such that for any

mα ∈M(α)

log Zβ,γ,λ({σ (α)=mα})≤−β inf
mα′∈Amα

Fβ,γ,λ(mα′)+βcε(γ, λ)|TL ,N |, (3-7)

log Zβ,γ,λ({σ (α)=mα})≥−β inf
mα′∈Amα

Fβ,γ,λ(mα′)−βcε(γ, λ)|TL ,N |, (3-8)

where Fβ,γ,λ is defined in (2-17) and ε(γ, λ) in (3-3).

Proof. The proof follows by Propositions 3.1 and 3.2 �

4. Minimizer of the free energy functional

In this section we prove a technical result needed to prove Theorem 2.3. This key
theorem tells us that a minimizer of the free energy functional under the constraint∫

\

3
m3
= s is a “quasiconstant” function in a subset of 3⊂ T`,N (see (4-1)). So

there are not oscillations that can affect the minimum of the free energy.
Fix k ∈ηZ∩ [0, `], with η=γ dγ−αe. We define the set 3k=[kη, (k + 1)η] ×
{1, . . . , N }, its complement 3c

k=T`,N \3k , and the set 3k,i as the restriction of 3k

to the i-th column.
Let m3k ∈L∞(3k, [−1, 1]); we define the free energy functional restricted to 3k

F3k
β,γ,λ(m

3k )=−
1
2

N∑
i=1

∫
3k,i

m3k (r, i)
[∫

3k,i

J (r, r ′)m3k (r ′, i) dr ′

+ λ

∫
3k,i

Jγ−1/2(r, r ′)(m3k (r ′, i − 1)+m3k (r ′, i + 1)) dr ′
]

dr

−
1
β

N∑
i=1

∫
3k,i

I (m3k (r, i)) dr.

Let m3c
k ∈ L∞(3c

k, [−1, 1]); we define the conditioned free energy functional
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F3k
β,γ,λ(m

3k |m3c
k )

= F3k
β,γ,λ(m

3k )−

N∑
i=1

∫
3k,i

m3k (r, i)
∫
3c

k,i

J (r, r ′)m3c
k (r ′, i) dr ′ dr

− λ

N∑
i=1

∫
3k,i

m3k (r, i)
[∫

3c
k,i−1

Jγ−1/2(r, r ′)m3c
k (r ′, i−1) dr ′

+

∫
3c

k,i+1

Jγ−1/2(r, r ′)m3c
k (r ′, i+1) dr ′

]
dr,

where the set 3c
k,i is the set 3c

k restricted to the i-th column.
The following theorem is the most relevant contribution of this work.

Theorem 4.1. Take γ > 0, and define η := γ [γ−α] = γ 1/2(1+ γ−εγ−δζ ) where
ε∈ (0, 1

2), δ∈ (0,
1
2 − ε], and ζ >0 is small enough.

If β(η‖J‖∞ + 2λ)≤ 1
4 , then for all k ∈ ηZ ∩ [0, `], s ∈ [−1, 1]N , and m3c

k ∈

L∞(3c
k, [−1,1]) there exists a unique φ3k∈L∞(3k, [−1,1]) such that

∫

\

3k,i
φ3k =si

for all i , and

F3k
β,γ,λ(m

3k |m3c
k )≥ F3k

β,γ,λ(φ
3k |m3c

k ),

for any m3k ∈ L∞(3k, [−1, 1]) such that
∫

\

3k,i
m3k =si for all i .

Moreover, there exists a constant C>0 such that, for any r ∈3k,i ,

|φ3k (r, i)− si |≤C‖∇rφ‖∞,3k,i
η (4-1)

where 3k,i=[kη+ γ 1/2(1+ γ−ε), (k+ 1)η− γ 1/2(1+ γ−ε)].

Proof. If si=±1 for all i , we have m3k =±1 almost everywhere and the theorem
follows easily. Now we take |si |<1 for all i and we use Lagrange multipliers. In
the following we omit the dependence on k and we keep only the dependence on
the column i ; then we take 3=3k and 3i=3k,i .

For all h∈RN we define

F3,hβ,γ,λ(m
3,m3c

)= F3β,γ,λ(m
3
|m3c

)−

N∑
i=1

hi

∫
3i

m3(r, i) dr.

For all r ∈[kη, (k+ 1)η) we define the vectors

m3(r)= (m3
i (r))

N
i=1= (m

3(r, 1), . . . ,m3(r, N ))

and

(J ∗m3)(r)= ((J ∗m3
i )(r))

N
i=1=

(∫
3i

J (r, r ′)m3(r, i) dr
)N

i=1
.
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In this notation the free energy becomes

F3,hβ,γ,λ(m
3
|m3c

)

=−
1
2

N∑
i=1

∫
3i

m3
i (r)((J ∗m3

i )(r)+ λ(Jγ−1/2 ∗ (m3
i−1+m3

i+1))(r)) dr

−

N∑
i=1

∫
3i

m3
i (r)[(J ∗m3c

i )(r)− λ((Jγ−1/2 ∗m3c

i+1)(r)+ (Jγ−1/2 ∗m3c

i−1)(r))] dr

−

N∑
i=1

hi

∫
3i

m3
i (r) dr −

1
β

N∑
i=1

∫
3i

I (m3
i (r)) dr.

Let Ah(m3)= (Ai (m3))N
i=1, where

Ai (m3)= tanh(β[J ∗(m3
i +m3c

i )+λJγ−1/2 ∗(m3
i−1+m3c

i−1+m3
i+1+m3c

i+1)+hi ])

= Ai (mi ,mi+1,mi−1).

From general results1 the infimum of F3,hβ,γ,λ( · |m
3c
) is a minimum attained on

functions such that Ah(ψ
3)=ψ3. Thus, the set

Gh,m3c ={ψ3∈ L∞(3, [−1, 1]N ) :ψ3= Ah(ψ
3)}

is nonempty. We want to show that G is actually a singleton.

Step 1. Ah is a contraction.

Proof. We define the norm ‖Ah(m3)‖∞,N = max{i=1,...,N }‖Ai (m3)‖∞. Given
m3,m′3 we have, by the triangle inequality, the Lagrange theorem, and properties
of J ,

‖Ai (m3)− Ai (m′3)‖∞≤β(η‖J‖∞+ 2λ)‖m3
−m′3‖∞,N .

We observe that in this framework we can identify the set 3i+1 with the set 3i ,
and with an abuse of notation we call it 3. Then A is a contraction and there exists
a unique fixed point φ3,h such that

φ3,h= lim
n→∞

Ah(un) with un= Ah(un−1) and u0=s13.

The convergence is in the sup norm, and then it is uniform in h. �

Step 2. φ3,h is differentiable in h.

Proof. We prove by induction on n that un is differentiable in h with derivative

∂

∂h j
un,3

i = pi,n
[

J∗
∂

∂h j
un−1,3

i +λJγ−1/2∗

(
∂

∂h j
un−1,3

i−1 +
∂

∂h j
un−1,3

i+1

)
+δi, j

]
(4-2)

1See [Presutti 2009, Theorem 6.2.6.2].
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where

pi,n
=β cosh−2[β(J ∗ (u3,n−1

i +m3c

i )

+ λJγ−1/2 ∗ (u3,n−1
i−1 + u3,n−1

i+1 +m3c

i−1+m3c

i+1)+ hi
)]
.

Indeed Du0=0 and if un−1 is differentiable, Dun exists and it is given by (4-2).
Suppose ‖ ∂

∂h j
un−1,3

i ‖∞≤2β; then∥∥∥∥ ∂

∂h j
un,3

i

∥∥∥∥
∞

≤β(‖J‖∞η2β + 4λβ + 1)

by hypothesis 2β(‖J‖∞η+ 2λ)+ 1≤2.
Then φ3,h is differentiable on h and

∇hφ
3,h
= lim

n→∞
∇hun. �

Step 3. For all λ small enough, there exists exactly one function h(λ) such that

• φ3,h is the minimum of F3,hβ,γ,λ and

• H(λ, h(λ))=
∫

\

3
φ3,h dr − s=0.

Proof. If λ=0, every column is independent of the other columns; then for each
column we can find h0

i such that
∫

\

3
φλ,h

0
i dr=si .2 This implies that H(0, h0)=0. In

order to apply the implicit function theorem, we prove the invertibility of ∂H(λ,h(λ))
∂h .

We start by explicitly writing the derivative

∂H
∂h
=

∫

\

3

∂

∂h
Ah(φ

3,h) dr

=

∫

\

3

∂

∂h

(
tanh

{
β
[
J ∗ (φ3i +m3c

i )

+ λJγ−1/2 ∗ (φ3i−1+m3c

i−1+φ
3
i+1+m3c

i+1)+ hi
]})N

i=1 dr.

We define the square matrices P, K ∈MN (R):

Pi, j=

{
0 if i 6= j,
pi if i= j,

Ki, j= pi [J ∗ bi, j + λJγ−1/2 ∗ (bi+1, j + bi−1, j )]

where bi, j=
∂φ

3,h
i
∂h j

and

pi=β cosh−2
[β(J ∗ (φ3,hi +m3c

i )+λJγ−1/2 ∗ (φ
3,h
i−1 +φ

3,h
i+1 +m3c

i−1+m3c

i+1)+hi )].

We write the derivative with respect to h of H in terms of P and K :

∂

∂h
H=

∫

\

3

(K + P) dr=K + P= P(P−1K + I ).

2This follows from [Presutti 2009, Theorem 6.4.1.1].
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We observe that

|(P−1K )i, j |≤
1∫

\

3
pi dr

∫

\

3

|Ki, j | dr

≤
1∫

\

3
pi dr

∫

\

3

pi‖(P−1K )i, j‖∞ dr≤‖(P−1K )i, j‖∞.

To prove the existence of the matrix (P−1K+I )−1 we show that
∑
∞

n=0(−P−1K )n<
∞, proving that supi

∑N
j=0(P

−1K )i, j ≤c<1.
We give an estimate for ‖bi, j‖∞. We recall that

bi, j= pi (J ∗ bi, j + λJγ−1/2 ∗ (bi−1, j + bi+1, j )+ δi, j ).

Then

‖bi, j‖∞≤
‖pi‖∞

1−‖pi‖∞η‖J‖∞
(λ(‖bi−1, j‖∞+‖bi+1, j‖∞)+ δi, j ). (4-3)

We define for all i ∈{1, . . . , N } and a∈N

qi=
‖pi‖∞

1−‖pi‖∞η‖J‖∞
,

�i
a={σ ∈Za

:σ(0)= i, σ (k)≡σ(k− 1)± 1 mod N }.

We observe that
qi ≤

β

1−βη‖J‖∞
, |�i

a|=2a.

Iterating the inequality (4-3) a times we obtain

‖bi, j‖∞≤
∑
σ∈�i

a

qσ(0) · · · qσ(a)‖bσ(a), j‖∞λ
a
+

a−1∑
n=0

∑
σ∈�i

n

qσ(0) · · · qσ(n)λnδσ(n), j

≤

(
2βλ

1− η‖J‖∞β

)a

‖bσ(a), j‖∞+ qσ(0)
a−1∑
n=0

(
2βλ

1− η‖J‖∞β

)n

δσ(n), j .

If the number of iterations is big enough, then the Dirac delta is 1. We define
n :=n(i − j) where

n(i − j)=
{
|i − j | if |i − j |≤dN/2e,
N − |i − j | otherwise.

(4-4)

Then δσ(n), j = 1 if the number of iterations is at least n(i − j). Taking the limit
a→∞,

‖bi, j‖∞≤qσ(0)
∞∑

n=[i− j]

(
2βλ

1− η‖J‖∞β

)n

δσ(n), j ≤qi
θn(i− j)

1− θ
, (4-5)

with θ=2βλ/(1− η‖J‖∞β)<1.
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Let r ∈3, and consider

(P−1K )i, j (r)= (J ∗ bi, j )(r)+ λ(Jγ−1/2 ∗ (bi+1, j + bi−1, j ))(r).

Using (4-5) we have

N∑
j=1

‖(P−1K )i, j‖∞≤
α

1− θ

N∑
j=1

θ (minr=i−1,i,i+1 n(r− j))

1− θ
≤

2α
(1− θ)2

where α= (η‖J‖∞+ 2λ)β/(1− η‖J‖∞β).
Now keeping in mind that β(η‖J‖∞+ 2λ)≤ 1

4 we obtain

2α
(1− θ)2

≤
8
9(1− η‖J‖∞β).

For η small enough the matrix (P−1K + I ) can be inverted and we find the function
h(λ)= h such that H(λ, h(λ))= 0. For m3 such that

∫
\

3
m3
= s the conditioned

free energy

F3,hβ,γ,λ(m
3
|m3c

)= F3,hβ,γ,λ(m
3
|m3c

)+ h
N∑

i=1

|3i |si

≥ F3,hβ,γ,λ(φ
3,h
|m3c

)+ h
N∑

i=1

|3i |si

= F3,hβ,γ,λ(φ
3,h
|m3c

). �

We now prove the last part of the theorem. Let 3i = (kη + γ 1/2(1 + γ−ε),
(k+ 1)η− γ 1/2(1+ γ−ε)), and define

si=

∫

\

3i

φ
3,h
i (r) dr.

We observe that, for such a constant c>0,

|si − si |≤

(
|3i |

|3|
− 1

) ∫

\

3i

|φ
3,h
i (r)| dr +

|3 \3i |

|3|

∫

\

3\3i

|φ
3,h
i (r)| dr

≤cγ δ≤cη (4-6)

because of the choice of η. Fix r ′∈3i :

|si −φ
3,h
i (r ′)|≤C

∥∥∥∥ ∂∂r
φ
3,h
i

∥∥∥∥
∞

η,

where
∥∥∥ ∂
∂r
φ
3,h
i

∥∥∥
∞

=supr∈3i

∣∣∣ ∂
∂r
φ
3,h
i (r)

∣∣∣.
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It remains to prove that ‖ ∂
∂r φ

3,h
i ‖∞<∞. We shall use the recursive formula

∂

∂r
φ
3,h
i (r)

= pi

[
∂

∂r
J ∗ (φ3,hi +m3c

i )+ λ
∂

∂r
Jγ−1/2 ∗ (φ

3,h
i−1 +φ

3,h
i+1 +m3c

i−1+m3c

i+1)

]
. (4-7)

If we iterate (4-7) a times we obtain

∂

∂r
φ
3,h
i (r)=

∑
σ∈�i

a

pσ(0) · · · pσ(a)λa Jγ−1/2 ∗
(a−1)
· · · ∗

∂ J
∂r
∗ (φ

3,h
σ(a)+m3c

σ(a))

+

a−1∑
n=0

∑
σ∈�i

n

pσ(0) · · · pσ(n)λn+1 Jγ−1/2 ∗
(n)
· · · ∗

∂

∂r
φ
3,h
σ(n).

Observing that, at each iteration n, if n<γ−ε, then (Jγ−1/2 ∗
(n)
· · · ∗m3c

σ(n))(r)=0
by the choice of the set 3. Taking the norm,∥∥∥∥ ∂∂r

φ
3,h
i

∥∥∥∥
∞

≤η‖∇ J‖∞β
a∑

n=0

(2βλ)n + (2βλ)a‖∇ J‖∞2γ−1/2

where we took the derivative of Jγ−1/2 in the last term indexed by a. If a=dγ−εe,
then

lim
γ→0

(2βλ)a‖∇ J‖∞2γ−1/2
=0

and ∥∥∥∥ ∂∂r
φ
3,h
i

∥∥∥∥
∞

≤c′η‖∇ J‖∞β<∞,

for some constant c′>0. Equation (4-6) gives

|φ3i (r)− si |≤Cη for all r ∈3i ,

and the theorem is proved. �

5. The Lebowitz–Penrose limit

Proof of Theorem 2.3. The proof is divided into two parts: α< 1
2 and α> 1

2 . We will
use the results of the previous sections in both cases. While for α< 1

2 we can use
them straightforwardly in the Lebowitz–Penrose procedure, for α> 1

2 the technical
Theorem 4.1 is needed in order to control the fluctuations.

Case 1 (α∈ (0, 1
2)). Let m∈ L∞(T`,N ; [−1, 1]); we prove that

lim
γ→0

F (α)β,γ,λ(m)= Fβ,λ(m). (5-1)
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Proof. Given a mesoscopic state m we choose a function mα ∈M(α) that “recog-
nizes” m (see Definition 2.2):

lim
γ→0

F (α)β,γ,λ(m)= lim
γ→0
−

1
βγ−1 log Zβ,γ,λ({σ (α)=mα}).

We apply Proposition 3.1 and the change of coordinates mα(r, i) :=mα(γ
−1r, i).

We shall show that |Fβ,γ,λ(m(α))− Fβ,λ(m)|→0 as γ→0 where

Fβ,γ,λ(m)=−
1
2

N∑
i=1

∫ `

0
m(r, i)

(∫ `

0
J (r, r ′)m(r ′, i) dr ′

+ λ

∫ `

0
Jγ−1/2(r, r ′)(m(r ′, i − 1)+m(r ′, i + 1)) dr ′

)
dr

−
1
β

N∑
i=1

∫ `

0
I (m(r, i)) dr. (5-2)

By the Lebesgue differentiation theorem [Rudin 1987] we know that m(α) L1

−→m
(see (2-6)); thus, by the triangle inequality the limit can be divided into three parts.
The first term is∣∣∣∣∫ `

0

∫ `

0
Jγ−1/2(r, r ′)m(α)(r, i)m(α)(r ′, i − 1) dr dr ′−

∫ `

0
m(r, i)m(r, i − 1) dr

∣∣∣∣
≤

∣∣∣∣∫ `

0
m(α)(r, i)

[∫ `

0
Jγ−1/2(r, r ′)m(α)(r ′, i − 1) dr ′−m(r, i − 1)

]
dr
∣∣∣∣

+

∣∣∣∣∫ `

0
m(r, i − 1)[m(α)(r, i)−m(r, i)] dr

∣∣∣∣.
We observe that

Jγ−1/2 ∗m(r)=
∫ `

0
Jγ−1/2(r, r ′)m(r ′) dr ′

converges to the Dirac delta as γ→0; then by the dominated convergence theorem∣∣∣∣∫ `

0

∫ `

0
Jγ−1/2(r, r ′)m(α)(r, i)m(α)(r ′, i−1) dr dr ′−

∫ `

0
m(r, i)m(r, i−1) dr

∣∣∣∣→0.

The other two terms converge to 0 by the dominated convergence theorem. And
(5-1) is proved. �

Case 2 (α∈ ( 1
2 , 1)). By Proposition 3.3 and using the same notations introduced in

the case α∈ (0, 1
2), we have

lim
γ→0

F (α)β,γ,λ(m)= lim
γ→0

γ inf
mα′∈Amα

Fβ,γ,λ(mα′)= lim
γ→0

inf
mα′ ( · )=mα′ (γ

−1
· )

mα′∈Amα

Fβ,γ,λ(mα′).
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In order to pass the limit through the infimum, we need to prove a result of
0-convergence. Let us start defining a notion of convergence:

Definition 5.1 (?-convergence). Set η :=γ [γ−α]; then for all sequences {mγ } and
m in L∞(T`,N , [−1, 1]) we say that mγ

?
−→m if

lim
γ→0

N∑
i=1

d`/ηe∑
k=1

∣∣∣∣ ∫ \
D(α)

k,i

mγ (r ′, i) dr ′−
∫

\

D(α)
k,i

m(r, i) dr
∣∣∣∣=0 (5-3)

where D(α)
k,i ={(x, i)∈R×Z :kη≤ x≤ (k+ 1)η}.

We can write (5-3) as limγ d(mγ ,m)=0, since d is actually a distance.

Remark. Following the same notation of the case α < 1
2 , we observe that the

sequence {mα}γ
?
−→m as γ→0.

The following 0-convergence result will be proved in the next section.

Proposition 5.2. Let Fβ,γ,λ be as in (5-2) and Fβ,λ as in (2-10). Then

Fβ,λ=0 lim
γ→0

Fβ,γ,λ

according to the ?-convergence.

We move to the last part of proof of Theorem 2.3.
We start by proving the lower bound. For each δ>0 we can take γ small enough

such that there exists a function mα( · )=mα(γ
−1
· ) such that d(mα,m)<δ; then

inf
mα′ ( · )=mα′ (γ

−1
· )

mα′∈Amα

Fβ,γ,λ(mα′)≥ inf
m′∈L∞(T`,N ,[−1,+1])

d(m′,m)<δ

Fβ,γ,λ(m′).

Taking the infimum limit with respect to γ and the supremum with respect to δ,

lim inf
γ→0

F (α)β,γ,λ(m)≥ sup
δ>0

lim inf
γ→0

inf
m′∈L∞(T`,N ,[−1,+1])

d(m′,m)<δ

Fβ,γ,λ(m′)

≥ Fβ,λ(m).

The last inequality follows by definition of the 0-limit3 and Proposition 5.2.
Now we consider the upper bound. Let m̃α′ be the closest element in Amα

to
mα, namely

|mα(r, i)− m̃α′(r, i)|≤
2

γ−α
′

for all (r, i)∈TL ,N . (5-4)

3See [Braides 2002].
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Such a magnetization exists by the definition of the sets M (α′) and M (α). We define
m̃α′(r, i)= m̃α′(γ

−1r, i), for all (r, i); then

lim sup
γ→0

F (α)β,γ,λ(m)= lim sup
γ→0

inf
mα′ ( · )=mα′ (γ

−1
· )

mα′∈Amα

Fβ,γ,λ(mα′)

≤ lim sup
γ→0

Fβ,γ,λ(m̃α′)

≤ Fβ,λ(m).

The last inequality follows from Proposition 5.2 and (5-4). �

6. 0-limit

In this section we shall prove the existence of the 0-limit of Fβ,γ,λ. Definition 5.1
of ?-convergence involves the average of m on sets of length γ [γ−α] = η. This
implies a constraint on the minimizer of the free energy functional, and at this
level we use the Theorem 4.1.

Proof of Proposition 5.2. We start with the lower bound: for all {mγ } such that
mγ

?
−→m,

lim inf
γ→0

Fβ,γ,λ(mγ )≥ Fβ,λ(m).

Fix η,3k as in Theorem 4.1; we set n= `/η and observe that T`,N =
⋃n

k=13k .
We define m3k

γ := mγ |3k , the restriction of mγ to the set 3k . Fix 31; then by
Theorem 4.1 there exists φ31

γ such that

Fβ,γ,λ(mγ )= F31
β,γ,λ(m

31
γ |m

3c
1

γ )+ F
3c

1
β,γ,λ(m

3c
1

γ )

≥ F31
β,γ,λ(φ

31
γ |m

3c
1

γ )+ F
3c

1
β,γ,λ(m

3c
1

γ )

= F31
β,γ,λ(m

1
γ )

where m1
γ =mγ I3c

1
+φ31

γ I31 and IA is the indicator function of the set A.
We iterate this procedure for each k, and we define m1,...,n

γ ; then

Fγ (mγ )≥ Fγ (m1,...,n
γ ).

Lemma 6.1. Let m1,...,n
γ be as above. We have

lim
γ→0

N∑
i=1

∫ `

0
|m1,...,n

γ (r, i)−m(r, i)| dr=0.
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Proof. For any i ∈{1, . . . , N } we split the integral following the partition given by
3k,i , and we consider

n∑
k=1

∫
3k,i

∣∣∣∣m1,...,n
γ (r, i)±

∫

\

3k,i

m1,...,n
γ (r ′, i) dr ′−m(r, i)

∣∣∣∣ dr.

Applying the triangle inequality, the fist term converges by definition of m1,...,n
γ

and the Lebesgue differentiation theorem. The second term can be estimated as

n∑
k=1

∫
3k,i

∣∣∣∣m1,...,n
γ (r, i)−

∫
\

3k,i

m1,...,n
γ (r ′, i) dr ′

∣∣∣∣ dr

≤

n∑
k=1

∫
3k,i

|m1,...,n
γ (r, i)− s| dr +

∫
Ek

∣∣∣∣m1,...,n
γ (r, i)−

∫

\

3k,i

m1,...,n
γ (r ′, i) dr ′

∣∣∣∣ dr

≤

n∑
k=1

|3k,i |ηc+ |Ek |c′

where

3k,i= (kη+ γ 1/2(1+ γ−ε), (k+ 1)η− γ 1/2(1+ γ−ε))

and Ek=3k,i \3k,i . To finish the proof we just observe that the size of Ek is of
the order of γ 1/2(1+ γ−ε). �

To prove the lower bound we separately consider the convergence of the three
terms of Fβ,γ,λ.

The first term is

N∑
i=1

1
2

∣∣∣∣∫ `

0

∫ `

0
J (r, r ′)(m1,...,n

γ (r, i)m1,...,n
γ (r ′, i)−m(r, i)m(r ′, i)) dr dr ′

∣∣∣∣.
Using the triangle inequality with m1,...,n

γ (r, i)m(r, i), the convergence follows from
Lemma 6.1.

The second term is

N∑
i=1

λ

2

∣∣∣∣∫ `

0

∫ `

0
m1,...,n
γ (r, i)Jγ−1/2(r, r ′)[m1,...,n

γ (r ′, i+1)+m1,...,n
γ (r ′, i−1)] dr dr ′

−

∫ `

0
m(r, i)[m(r, i + 1)+m(r, i − 1)] dr

∣∣∣∣.
We only discuss the term m( · , i)m( · , i + 1) because for the other term the proof
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is analogous. We sum and subtract for each i the term m1,...,n
γ (r, i + 1); then∣∣∣∣∫ `

0
m1,...,n
γ (r, i)

[∫ `

0
Jγ−1/2(r, r ′)m1,...,n

γ (r ′, i + 1) dr ′±m1,...,n
γ (r, i + 1)

]
dr

−

∫ `

0
m(r, i)m(r, i + 1) dr

∣∣∣∣.
We split the first integral in the sum of integrals

n∑
k=1

∫
3k,i
+
∫

Ek
where

3k,i= (kη+ 2γ 1/2(1+ γ−ε), (k+ 1)η− 2γ 1/2(1+ γ−ε))

and Ek=3k,i \3k,i . If r ∈3k,i , we have that
∫
3k,i

Jγ−1/2(r, r ′) dr ′=1; then

n∑
k=1

∣∣∣∣∫
3k,i

m1,...,n
γ (r, i)

∫
3k,i

Jγ−1/2(r, r ′)(m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)) dr ′ dr
∣∣∣∣

≤

n∑
k=1

∫
3k,i

∫
3k,i

Jγ−1/2(r, r ′)|m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)| dr ′ dr

≤

n∑
k=1

|3k,i |ηc

because m1,...,n
γ is almost constant in 3k,i . While integrating over Ek ,

n∑
k=1

∣∣∣∣∫
Ek

m1,...,n
γ (r, i)

∫
3k,i

Jγ−1/2(r, r ′)(m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)) dr ′ dr
∣∣∣∣

≤

n∑
k=1

∫
Ek

∫
E?k

Jγ−1/2(r, r ′)|m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)| dr ′ dr

≤c
n∑

k=1

|Ek ||E?k |γ
−1/2
‖J‖∞

with c>0 a constant. The size of |E?k | is of the same order as |Ek | + 2γ 1/2. In
the end the term

N∑
i=1

λ

2

∣∣∣∣∫ `

0
(m1,...,n

γ (r, i)m1,...,n
γ (r, i + 1)−m(r, i)m(r, i + 1)) dr

∣∣∣∣
can be estimated using Lemma 6.1. All the other terms that we did not consider
can be estimated in the same way.
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For the third term, we consider lim infγ Fβ,γ,λ(m1,...,n
γ ). Then

lim inf
γ→0

N∑
i=1

−
1
β

∫ `

0
I (m1,...,n

γ )(r, i) dr

= lim inf
γ→0

N∑
i=1

−
1
β

n∑
k=1

∫
3k,i

I (m1,...,n
γ (r, i)) dr

≥ lim inf
γ→0

N∑
i=1

−
1
β

n∑
k=1

|3k,i |I
( ∫

\

3k,i

m1,...,n
γ (r, i) dr

)

= lim inf
γ→0

N∑
i=1

−
1
β

∫ `

0
I
( ∫

\

3k(r),i

m1,...,n
γ (r ′, i) dr ′

)
dr

by Jensen’s inequality. We write the sum over k as an integral over r observing
that the function I is constant for all r in the set 3k,i . Moreover, there exists a
subsequence {m1,...,n

γ j
} that achieves the infimum limit:

lim inf
γ→0

N∑
i=1

−
1
β

∫ `

0
I
( ∫

\

3k(r),i

m1,...,n
γ (r ′, i) dr ′

)
dr

= lim
γ j→0

N∑
i=1

−
1
β

∫ `

0
I
( ∫

\

3k j (r),i

m1,...,n
γ j

(r ′, i) dr ′
)

dr.

Let m̃γ (r, i)=
∫

\

3k j (r),i
m1,...,n
γ j

(r ′, i) dr ′; then by Lemma 6.1 m̃γ
L1

−→ m and there
exists a subsubsequence, which we denote again {m1,...,n

γ j
}, that converges to m

almost everywhere. Then by the dominated convergence theorem

lim
γ→0
−

1
β

∫ `

0
I
( ∫

\

3k j (r),i

m1,...,n
γ j

(r ′, i) dr ′
)

dr=−
1
β

∫ `

0
I (m(r, i)) dr

and

lim inf
γ→0

Fβ,γ,λ(mγ )≥ lim inf
γ→0

Fβ,γ,λ(m1,...,n
γ )

= lim
γ j→0

Fβ,γ,λ(m1,...,n
γ j

)

= Fβ,λ(m).

Now we prove the upper bound. There exists a sequence {mγ } such that mγ
?
−→m

and

lim
γ→0

Fβ,γ,λ(mγ )= Fβ,λ(m).
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We take mγ =s=
∫

\

3k,i
m(r, i) dr on 3k,i⊂[0, `] for all k. Then from the dominated

convergence theorem

lim
γ→0
|Fβ,γ,λ(mγ )− Fβ,λ(m)|=0.

And Fβ,λ(m) is the 0-limit of Fβ,γ,λ(mγ ). �

Appendix A: Proofs of Proposition 3.1 and Theorem 2.4

Proof of Proposition 3.1. The proof follows the guidelines of Section 4.2.2 of
[Presutti 2009] taking care of the two different scales of interaction γ−1 and γ−1/2.

We define

Uγ,λ(m)= Fβ,γ,λ(m)+
N∑

i=1

1
β

∫ γ−1`

0
I (m(r, i)) dr

where Fβ,γ,λ is defined as in (2-17). We want to estimate |Hγ,λ(σ )−Uγ,λ(σ
(α))|,

and we start taking (x, i), (y, j)∈TL ,N and defining

Ĵγ ((x, i), (y, j))= Jγ (x, y)1i= j + Jγ 1/2(x, y)1i 6= j .

Recall that for each point (x, i) there is an integer k such that (x, i)∈C (α)
k,i . Let

Ĵ (α)γ ((x, i), (y, j))=
∫

C (α)
k,i ×C (α)

h, j

Ĵγ ((r, i), (r ′, j)) dr dr ′.

We want to give a bound of | Ĵγ ((x, i), (y, j))− Ĵ (α)γ ((x, i), (y, j))|. We consider
only the worst case, namely the vertical interaction, i 6= j . In this case

|Jγ 1/2(x, y)− Ĵ (α)γ ((x, i), (y, j))|≤
∫

\

C (α)
k,i ×C (α)

h, j

|Jγ 1/2(x, y)− Jγ 1/2(r, r ′)| dr dr ′

≤cγ 1−α1|x−y|≤2γ−1/2 .

Let C and C ′ be two elements in the partition C(α), and consider two points
(r, i)∈C and (r ′, i ′)∈C ′. As in the previous estimate, we consider the worst case.
If i 6= j , by the estimate above∣∣∣∣ ∑
(x,i)∈C

∑
(y, j)∈C ′

1|(x,i) 6=(y, j)| Ĵγ ((x, i), (y, j))σ (x, i)σ (y, j)

−

∑
(x,i)∈C

∑
(y, j)∈C ′

1|(x,i) 6=(y, j)| Ĵ (α)γ ((x, i), (y, j))σ (x, i)σ (y, j)
∣∣∣∣

≤c′|C |2γ 1−α1|r−r ′|≤3γ−1/2 . (A-1)
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Then
|Hγ,λ(σ )−Uγ,λ(σ

(α))|≤c′|TL ,N |λγ
1/2−α. (A-2)

We prove (3-1) writing the definition of the partition function

log(Zβ,γ,λ({σ (α)=m}))≤βλγ 1/2−α
|TL ,N |c−βUγ,λ(m)+ log(card{σ (α)=m}).

We can observe that

log(card{σ (α)=m})

= log
(∏

Ci,k

card
{
σ ∈{−1, 1}Ck,i :

∑
(x,i)∈Ck,i

σ(x, i)=m(r, i)γ−α for all (r, i)
})

= log
(∏

Ck,i

e|Ck,i |ICk,i (m(r,i))
)

and4

|ICk,i (m(r, i))− I (m(r, i))|≤cγ α log γ−α. (A-3)

At the end collecting the previous inequalities we have

log(Zβ,γ,λ({σ (α)=m}))≤−βFβ,γ,λ(m)+βc|TL ,N |(λγ
1/2−α

+ γ α log(γ−α)).

The inequality (3-2) is proved in a similar way, so the proposition is proved. �

Proof of Theorem 2.4. We start by introducing the following proposition.

Proposition A.1 (Lebowitz–Penrose limit). Let Zβ,γ,λ := Zβ,γ,λ(M(α′)) with α′ ∈
(0, 1

2); then

lim
γ→0

1
β|TL ,N |

log Zβ,γ,λ= pβ,λ

where pβ,λ=supm∈[−1,+1]{−φβ,λ(m)} and

φβ,λ(m)=−
1+ 2λ

2
m2
−

1
β

I (m). (A-4)

Proof. For the proof see Theorem 4.2.1.1 in [Presutti 2009]. �

We consider

γ logµβ,γ,λ[σ ≈α m]=γ log
( Z (α)β,γ,λ(m)∑

m′∈M(α) Z (α)β,γ,λ(m′)

)
=γ log(Z (α)β,γ,λ(m))− γ log

( ∑
m′∈M(α)

Z (α)β,γ,λ(m
′)

)
.

4The definition of ICk,i and the inequality (A-3) can be found in Appendix A of [Presutti 2009]
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By Theorem 2.3 for α∈ (0, 1)

lim
γ→0

γ log(Z (α)β,γ,λ(m))=−Fβ,λ(m).

If α< 1
2 by Propositions 3.1 and A.1, we have that

lim
γ→0
−
γ

β
log Zβ,γ,λ= inf

m′∈M(α)
Fβ,λ(m′).

For α> 1
2 , instead,

−γ log
∑

m′∈M(α)

Z (α)β,γ,λ(m
′)=−γ log

∑
m′∈M(α)

∑
σ :σ≈αm′

e−βHγ,λ(σ )

=−γ log
∑

m′∈M(α)

∑
mα′∈Am′α

∑
σ :σ≈α

′mα′

e−βHγ,λ(σ )

=−γ log(Zβ,γ,λ)

observing that

inf
m′

Fβ,λ(m′)= sup
h∈[−1,+1]

{−φβ,λ(h)} · `N= pβ,λ`N .

Then

lim
γ→0

γ logµβ,λ,γ [σ ≈(α)m]=−(Fβ,λ(m)− inf
m′

Fβ,λ(m′)). �

Appendix B: A counterexample

In this appendix we shall show that Theorem 2.3 cannot be extended to the case
βλ>1; indeed for the mesoscopic state m≡0

lim inf
γ→ 0

F (α)β,γ,λ(0)< Fβ,λ(0).

If α > 1
2 we can take a sequence mα where mα is equal, in the first half of

each interval D(α)
r , to mβλ and in the second half to −mβλ; we obtain m(α)

α ≡ 0.
Recalling Definition 5.1, we have that mα

?
−→m≡0. By the definition of F (α)β,γ,λ and

Proposition 3.2,

F (α)β,γ,λ(0)≤
1
γ−1 Fβ,γ,λ(mα)+ ε(γ, λ).
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Now we observe that

Fβ,γ,λ(mα)=
1
4

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ (r, r ′)[mα(r, i)−mα(r ′, i)]2 dr ′ dr

+
λ

4

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ 1/2(r, r ′)

(
[mα(r, i)−mα(r ′, i − 1)]2

+ [mα(r, i)−mα(r ′, i + 1)]2
)

dr ′ dr +
N∑

i=1

∫ γ−1`

0
φβ,λ(mα(r, i)) dr

where φβ,λ as in (A-4). Since mα is the same on each line, we have

Fβ,γ,λ(mα)=
N
4

∫ γ−1`

0

∫ r+γ−1

r−γ−1
Jγ (r, r ′)[mα(r, 1)−mα(r ′, 1)]2 dr ′ dr

+
λN
2

∫ γ−1`

0

∫ r+γ−1/2

r−γ−1/2
Jγ 1/2(r, r ′)[mα(r, 1)−mα(r ′, 1)]2 dr ′ dr

+ N
∫ γ−1`

0
φβ,λ(mα(r, 1)) dr.

By the symmetry of J and the definition of mα we have

1
γ−1 Fβ,γ,λ(mα)≤

N
2
`m2

βλ+ N8λγ α−1/2m2
βλ− N`

1+ 2λ
2

m2
βλ−

N`
β

I (mβλ).

Then

lim inf
γ→0

1
γ−1 Fβ,γ,λ(0)≤N`

(
−λm2

βλ−
I (mβλ)

β

)
<−N`

I (0)
β
= Fβ,λ(0).
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