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Bone remodelling is a complex phenomenon during which old and damage bone
is removed and replaced with new one to ensure the physiological functions of
the skeletal system. It involves many biological, mechanical, chemical processes
at different scales. The objective of the present work is to predict the kinetics
of bone density evolution by taking into account both the mechanical and the
biological frameworks. In order to do so, we propose a new computational model
in which the global stimulus triggering bone remodelling is the result of the
contribution of a mechanical (i.e. external loads and consequent strain energy), a
cellular (i.e. osteoblasts and osteoclasts activities) and a molecular (i.e. oxygen
and glucose supply) stimulus. The evolution of the bone density depends on
the overall behaviour of the global stimulus. More specifically, when the global
stimulus is positive, bone synthesis occurs, whereas when the global stimulus
is negative, resorption takes place. Although the theoretical model has been
applied on a very simple two-dimensional geometry, the final results provide new
insights on the influence of each stimulus on the bone remodelling process. In
particular, we confirm that mechanics plays a critical role and affects the kinetics
of bone reconstruction, but it highly depends on the biological events and the
distribution of bone density.

1. Introduction

Bone is a continually renewed material [Frost 1987]. Trying to model its evolution
has been going on for a long time since the early works of Wolff [Cowin 1986].
Every year, 5% of trabecular bone and 20% of cortical bone is renewed under
applied external mechanical loads and the prediction of bone remodeling, or bone
density evolution, using numerical models requires the use of appropriate theories
accounting for the specific mechanophysiological phenomena occurring within the
bone microstructure. Many studies have followed since; see for example [Beaupré
et al. 1990; Turner 1998; Pivonka et al. 2008; Pivonka and Komarova 2010]. Re-
cently, a number of models have tried to combine multiphysics and multiscales
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theoretical numerical studies [Lekszycki 2002; Madeo et al. 2011; 2012; Lekszycki
and dell’Isola 2012; Andreaus et al. 2014b; Giorgio et al. 2016; 2017; Scala et al.
2016; George et al. 2017b] to represent bone density evolution. Still, many diffi-
culties remain in the precise understanding of the mechanotransduction processes
[Lemaire et al. 2011; Sansalone et al. 2015] driving this evolution, without even
accounting that in most cases, bone reconstruction also depends on initial healing
stages of vascular growth together with nutrient supply [Bednarczyk and Lekszycki
2016; Lu and Lekszycki 2016].

Bone remodeling, being the result of numerous mechanobiological mechanisms,
is often presented through a so-called mechanobiological stimulus, based on strain
energy density, describing a variation from a state of equilibrium [Lekszycki 2002;
Lekszycki and dell’Isola 2012; Scala et al. 2016]. However, for good prediction of
bone remodeling, it is necessary, not only to account for the mechanical aspects,
but also to account for other external sources such as biological, electrical, neuro-
logical,. . . involved in the process, that can be triggered by genetic or epigenetic
factors, and allowing to simultaneously control their impact on the overall response
of the system as well as their interactions. For these signals, the development of
a thermodynamically consistent model [Martin et al. 2017] is required together
with adequate homogenization procedures [Rémond et al. 2016]. The biology also
needs to be adequately quantified (for example, the kinetics of bone resorption be-
ing 4 times more important than the kinetics of bone reconstruction; see [Burr and
Allen 2013, pp. 85–86]) through specific multiscale theoretical models [Lemaire
et al. 2006; 2010; 2015].

For example, in orthodontic bone remodeling, the applied mechanical forces on
the teeth (ranging from 0.5 N to 2.5 N [Wagner et al. 2017]) lead to the alteration
of the cell differentiation and activation due to oxygen percentage variation by
the periodontal ligament being partially deformed. Hence, the variations in vascu-
larization blood flow in the periodontal ligament and thus in the supply chain of
nutrients and oxygen could be used to predict cell recruitment, proliferation and
migration leading to the bone remodelling process.

In this work, a continuous theoretical numerical model is presented and used
to predict bone kinetics reconstruction as a function of coupled mechanical and
biological sources, of the corresponding constitutive laws, of their mutual inter-
actions as well as of the kinetics of each process. The external sources used
here to calculate the mechanobiological stimulus are: (i) the mechanical energy
accounting for the mechanical loads sustained by the bone cells and triggering
bone density evolution, (ii) the concentration of nutriments (oxygen and glucose)
expressed as a function of the developed hydrostatic pressure, and (iii) the cells
activity triggered by specific levels of oxygen and glucose concentration due to the
applied mechanical load. The cells recruiting and migration is described via two
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diffusion equations [Allena and Maini 2014; Schmitt et al. 2015; Frame et al. 2017]
and the bone density variation in time is calculated by the rates of bone synthesis
and resorption respectively, depending on the positiveness of the defined coupled
mechanobiological stimulus [George et al. 2017a].

2. Model development

2.1. Theory. Without specific external loading conditions, the bone is in a state of
mechanobiological equilibrium (under gravity) in the so-called “lazy zone” where
little remodeling occurs. When external mechanical load is applied, the system is
perturbed and goes out of the “lazy zone”. The modified load conditions are at
the origin of the creation of a coupled mechanobiological signal that will activate
bone remodelling. We define this signal [George et al. 2017a] by introducing a
Lagrangian configuration BL ⊂ R3 [Madeo et al. 2011; 2012; Scala et al. 2016],
and a suitably regular kinematical field χ(X, t) that associates to any material point
X ∈ BL its current position x at time t . The image of the function χ gives at any
time t , the current shape of the body also called Eulerian configuration. We also
introduce the displacement u(X, t) = χ(X, t)− X , the transformation gradient
F =∇χ(X, t), and the Green–Lagrange deformation tensor E = (FT

· F− I )/2.
In the present work, only the linearized part ε of E is considered.

Then the global stimulus variation 1S is expressed on the Lagrangian configu-
ration BL in the form

1S(X, t)=
n∏

i=1

αi Si (X, t), (1)

where t is the time, n is the total number of external sources Si (i.e. mechanical,
biological (cellular, nutrients, . . . ), electrical, . . . ) involved in the process and αi

are their weighting coefficients, triggered by genetic or epigenetic factors, allowing
to simultaneously control their impact on the overall response of the system as well
as their interactions.

In this work, we consider the following external sources: Smech, which includes
the applied mechanical load through the mechanical energy developed within the
system to trigger the biological actions; Smol, which coincides with glucose and
oxygen supply necessary for cell survival and work contribution; Scell, which cor-
responds to the osteoblasts and osteoclasts recruiting and migration.

(i) The mechanical stimulus Smech is expressed through the “standard” definition
of the mechanical strain energy and accounts for the applied forces and loads sus-
tained by bone cells. It is defined with
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αmech Smech(X, t)

= αmech

∫
�

U (X0, t) d(X0, t) exp(−Dmech‖χ(X)−χ(X0)‖) d X0, (2)

with � the domain of interest, αmech a weighting coefficient, Dmech the inverse of
a characteristic distance accounting for the independent effect of the source, U the
strain energy density dependent on the Green–Lagrange deformation tensor ε, and
d being a function of the bone mass density expressed as d(X0, t)= η(ρb)/ρb,max

with η ∈ [0, 1], where ρb is the bone density and ρb,max its maximum allowed value,
being the density of compact bone (corresponding to minimum porosity).

(ii) The molecular stimulus Smol is defined with

αmol Smol(X, t)

= αmol

∫
�

(αO2
cO2
+αCHO cCHO) exp(−Dmol‖χ(X)−χ(X0)‖) d X0, (3)

with Dmol the inverse of a characteristic distance, αO2
and αCHO the weighting

coefficients for cO2
and cCHO, the concentrations of oxygen and glucose, satisfying

two partial differential equations (PDEs) as a function of the hydrostatic pressure
as follows:

DO2

∂cO2

∂t
= 0, (4)

and

DCHO
∂cCHO

∂t
= 0, (5)

where
DO2
= DCHO = Tr(ε)+φ(εI θI ⊗ θI + εII θII ⊗ θII ), (6)

with Tr the trace of a tensor, φ a scalar, εI and εII and θI and θII the principal
strains and directions and ⊗ the tensor product. In (4) and (5), it is assumed that
no external sources are present, only diffusion of the concentration through the
geometry is present via a heterogeneous initial distribution.

(iii) The cellular stimulus Scell defined by the osteoblasts and osteoclasts activity
and triggered by specific levels of oxygen and glucose concentration together with
the intensity of the mechanical force applied is given by

αcellScell(X, t)

= αcell

∫
�

(αob cob−αoc coc) exp(−Dcell‖χ(X)−χ(X0)‖) d X0, (7)

where Dcell is the inverse of a characteristic distance, αob and αoc are the weighting
coefficients for the concentrations cob and coc of the osteoblasts and osteoclasts
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respectively evolving with respect to time via two diffusion-reaction equations
[Allena and Maini 2014; Schmitt et al. 2015] as

∂cob

∂t
= (1− ρb)(div Dob∇cob+βoc Tr(ε)coc), (8)

∂coc

∂t
= (1− ρb)[div Doc∇coc+ (koc−βoc Tr(ε))coc], (9)

where div and ∇ are the divergence and gradient operators, the diffusion tensors
Dob and Doc are defined as in (6), kob and koc are the osteoblasts and osteoclasts
proliferation rates, respectively with kob equal to βoc, the osteoclasts differentiation
rate. In (8) and (9), as osteoblast proliferation showed to be dependent on the
applied mechanical strain [Ignatius et al. 2005; Ehrlich and Lanyon 2002], we
assume on a first approximation that it is directly dependent on the volume variation
the structure through the trace of epsilon. Complementarily, as the resorption of
osteoclasts immediately triggers the proliferation of osteoblasts, a similar kinetic
was defined for osteoclasts.

For the above PDEs (equations (4), (5), (8), (9)), a zero flux boundary condition
is applied on the external free surfaces as it is supposed that there is no exchange
with the outer system.

The variation of bone density ρb is described by a first order ordinary differential
equation with respect to time given by

∂ρb

∂t
=Ab(ρb)[sb(1S+)+ rb(1S−)], (10)

where rb and sb are the rates for bone resorption and synthesis respectively, depend-
ing on the positive (1S+) and the negative (1S−) value of the global stimulus 1S.
Ab is a function of the bone porosity controlling the intensity of the bone remod-
eling process that needs to be defined experimentally.

Here, we consider the bone as an isotropic linear elastic material whose Young
modulus Eb is given by Eb = Eb0ρ

3
b [Currey 1988; Rho et al. 1995] where Eb0 is

the initial Young modulus of the bone. The global static equilibrium of the system
is expressed with the usual equation div σ+ fν = 0, with σ and fν the Cauchy stress
and the body forces, respectively. Finally, most of the model parameters defined
in the current framework should be experimentally quantified. Some theoretical
works have been carried out [Placidi et al. 2015; Misra and Poorsolhjouy 2015]
trying to identify these parameters, but appropriately designed experiments should
be developed in order to provide confident numerical predictions.

The proposed theoretical model was implemented using the Multiphysics Finite
Element (FE) code COMSOL Multiphysics® to predict bone kinetics reconstruc-
tion when applied to different mechanobiological stimuli.
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Figure 1. Definition of the model geometry, boundary conditions
and associated FE mesh.

2.2. Application. Following [Andreaus et al. 2014b; Giorgio et al. 2016], where
the bone reconstruction kinetics was studied on a simple two-dimensional (2D)
geometry, to compare the obtained results and assess the coupling between the
defined variables of the model, the analytical framework described in Section 2.1
is applied similarly on a 2D cantilever beam. The beam of length L and height h is
submitted to a tension F at the right side and clamped on the left side (see Figure 1).

As for the initial conditions of the problem, the left half side of the beam is
filled with dense bone (ρb= 0.6), whereas the right half side of the beam, where the
external load F is applied, is constituted by light bone (ρb = 0.1) and is assumed to
represent a bone substitute or graft. Thus, when mechanical load is applied, migra-
tion of cells and nutriments occurs from left to right with bone density increasing
in both regions. The input data of the model are listed in Table 1.

These parameters were defined without a priori knowledge of the biological
quantifications of the in vivo conditions and could therefore require to be tuned for
a better approximation of real life conditions. Also, the global stimulus 1S was
artificially amplified by a multiplication factor to reduce the computation time and
accelerate the bone density kinetics evolution (which is of the order of 3 months
for real bone) while ensuring consistent results.

3. Results and discussion

The concentrations evolutions for osteoclasts, osteoblasts, oxygen and glucose are
presented in Figure 2. From the start of the analysis, the concentrations evolve
with non-linear distributions and show a clear diffusion from the left to the right
of the beam leading to an increase of them on the right side of the beam.

The oxygen and glucose concentration are diffusing quicker than osteoblasts
and osteoclasts as their final distribution through the length of the beam is constant
at the end of the analysis (cO2

= 0.1 at cCHO = 0.05), which is not the case for
osteoblasts (0.08 < cob < 0.1). The osteoclasts completely disappear over time
since they differentiate into osteoblasts (initial concentration of 0.05 versus final
concentration of 6× 10−7).

The calculated individual and global stimuli, together with bone density evolu-
tion over time are presented in Figure 3.
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Symbol Description Value

L Total length of the beam 50 mm
h Width of the beam 2 mm
Eb0 Initial Young modulus of the bone 20 GPa
vb Poisson ratio of the bone 0.3
Dmech Characteristic distance for the mechanical stimulus 3 mm
Dmol Characteristic distance for the molecular stimulus 3 mm
Dcell Characteristic distance for the cellular stimulus 3 mm
αmech Weighting coefficient for the mechanical stimulus 1
αO2

Weighting coefficient for the oxygen molecular stimulus 5
αCHO Weighting coefficient for the glucose molecular stimulus 5
αob Weighting coefficient for the osteoblast cellular stimulus 5
αoc Weighting coefficient for the osteoclast cellular stimulus 5
φ Diffusion tensor scalar 10
kocl Osteoclasts proliferation rate 3
βob Osteoclasts differentiation rate 15
sb Bone synthesis rate 1
rb Bone resorption rate 4
cob Initial concentration of osteoblasts on the left of the beam 10% vol
coc Initial concentration of osteoclasts on the left of the beam 5% vol
cO2

Initial concentration of oxygen on the left of the beam 20% vol
cCHO Initial concentration of glucose on the left of the beam 10% vol

Table 1. Main parameters of the model.

The mechanical stimulus shows a peak of about 2.8 · 10−3 J/m3 at the beginning
of the analysis which increases up to 5.7 · 10−3 J/m3, propagates towards the right
end side due to the external load imposed as the bone reconstruction occurs, and
finally decreases to about 5.7 · 10−5 J/m3 at the end of the analysis as the bone
density reaches its maximum value through the whole beam. Such distribution
and kinetics are directly dependent on the kinetics of bone remodelling as the bone
density increases on the right side of the beam from left to right following this peak
where the maximum of the strain energy density is located. In parallel, the cellular
stimulus displays a parabolic profile over the left-hand side of the beam, where
cells are initially located, with a maximal value of 2.8 ·10−6 at the beginning of the
analysis since a higher bone density is defined on this domain, while it is equal to 0
on the right side as no cells are present. During the analysis, cells migrate from left
to right with a decrease of osteoclasts concentration and an increase of osteoblasts
one. Cell stimulus increases on the left side up to a value of 6.96 · 10−6, decreases
again at the end of the analysis on the left at 4.5 · 10−3, and increases continuously
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Figure 2. Evolution of the osteoclasts, osteoblasts, oxygen and
glucose concentration over time.

on the right up to 3.5 · 10−3 with a non-linear distribution. Correspondingly, the
molecular stimulus follows a similar trend as the cellular one but with different
kinetics. The initial maximal value is 5.6 · 10−6, and it decreases over time on the
left side down to 3.14 · 10−6. Identically, it becomes more uniform over the whole
beam at the end of analysis, with minimal values at the two extremities (1 · 10−6).

For the total stimulus, being the result of the multiplication effects of each stim-
ulus, we still observe the peak value of the mechanical stimulus as it is much larger
than the biological ones. However, it is also non-zero everywhere else due to the
molecular and cellular contributions. The maximal mechanical stimulus seems
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Figure 3. Time evolution of each stimulus (mechanical, cellular
and molecular), the total stimulus and the bone density.

to be the main driving factor on the effect of the kinetics reconstruction on the
right side of the beam. As the initial bone densities are set to 0.6 on the left side
and 0.1 on the right side, at the beginning of the analysis we observe a bone density
evolution on both sides being triggered by the biological contribution mainly on the
left side (due to weak mechanical stimulus, but higher bone density and biological
stimulus), and by the mechanical stimulus mainly on the right side (due to its high
value and weak bone density with no biology contribution). Once bone density
has reached a certain level (mostly reconstructed bone everywhere corresponding
to an approximate value of 0.7), the influence of the mechanical stimulus decreases
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since the structure undergoes a smaller strain and therefore a smaller mechanical
energy is developed. Then, the biological effects become thereafter much more
important and play a key role in the evolution of bone density. This impact seems
to occur over longer periods of time (relative to the mechanical time kinetics) and is
clearly visible on the global stimulus at the end of the analysis and on the two bone
density distributions during the analysis. The mechanical stimulus moves from the
mid-length to the right hand side of the beam without inhibiting the increase of the
bone density on the left side where it tends towards zero. Also, the bone density is
recovered on the left side due to the biological impact of the stimulus and continues
to increase to reach an almost maximum density even after the mechanical effect
has dropped at the end of the analysis. The above proposed model being continuous,
it is assumed that cell distribution is also continuously distributed through the entire
geometry, even with heterogeneous distribution. Accounting for the spatial range
of cell influence requires integrating the microstructure distribution [Andreaus et al.
2014a]. This contribution needs to be integrated in future works. Finally, although
the mechanical stimulus seems to play a critical role in the bone reconstruction
kinetics, it also shows to be highly dependent on the biological contributions and
certainly coupled with the bone density impact. In fact, high bone density leads
to small strains and therefore to small mechanical stimulus for a given applied
mechanical load. This has a direct impact on the cellular response within the struc-
ture as higher density (lower porosity) leads to lower cell density (and distribution)
and lower density (higher porosity) leads to higher cell density (and distribution)
with trabecular bone structure. These effects should also be integrated since the
trabecular bone kinetics requires a more specifically adapted thermodynamically
consistent model as described for example in [Ganghoffer 2012; 2016; Goda et al.
2016; Louna et al. 2017], and be homogenized in order to obtain a better macro-
scopic prediction. Nonetheless, the above presented mechanobiological couplings
would also need to be integrated within these local frameworks in order to identify
precisely the influence of the biology in the bone reconstruction kinetics.

4. Conclusion

In the present paper, a new coupled multiphysics model is proposed to compute
the mechanobiological stimulus for continuum mechanics bone reconstruction, by
taking into account specific mechanical (i.e. external loads) and biological (i.e.
cellular migration and differentiation and nutriments supply) phenomena. The final
results highlight the respective contributions of each process on the kinetics of
bone density evolution. Each effect shows to have an important impact although
the model parameters still require adequate quantification for better representation
of specific medical applications.
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