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CONTINUUM THEORY
FOR MECHANICAL METAMATERIALS

WITH A CUBIC LATTICE SUBSTRUCTURE

SIMON R. EUGSTER, FRANCESCO DELL’ISOLA AND DAVID J. STEIGMANN

A three-dimensional continuum theory for fibrous mechanical metamaterials is
proposed, in which the fibers are assumed to be spatial Kirchhoff rods whose
mechanical response is controlled by a deformation field and a rotation field, the
former accounting for strain of the rod and the latter for flexure and twist of the
rod as it deforms. This leads naturally to a model based on Cosserat elasticity.
Rigidity constraints are introduced that effectively reduce the model to a variant
of second-gradient elasticity theory.

1. Introduction

The advent of 3D printing and associated microfabrication technologies has facil-
itated the design and realization of a range of mechanical metamaterials. These
lightweight artificial materials exhibit stiffness and energy-absorbing properties
far exceeding those of conventional bulk materials [Barchiesi et al. 2019; Mieszala
et al. 2017; Vangelatos et al. 2019]. A unit cell of such a material — typically
of microscopic dimensions — consists of a lattice of beam-like or rod-like fibers
interacting at internal connections. The intrinsic extensional, flexural, and torsional
stiffnesses of the fibers combine with the architecture of the lattice to confer high
stiffness on the material at the macroscale together with enhanced energy absorp-
tion via microscale buckling.

These technologies provide impetus for the development of a continuum theory
for the analysis of the macroscale response of metamaterials with lattice-like sub-
structures. Toward this end, we outline a Cosserat model in which the deformation
and rotation fields account respectively for the strains and orientations of the fibers,
regarded as spatial Kirchhoff rods. In this preliminary work we confine attention to
the simplest case of a cubic lattice architecture in which the constituent fibers are
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initially orthogonal. Further, in view of the solid nature of the internal connections
in typical metamaterials [Vangelatos et al. 2019], we assume the fibers to be rigid in
the sense that they remain mutually orthogonal in the course of deformation. They
are free to extend or contract and to bend and twist, however, and these modes of
deformation are modeled explicitly.

In Section 2 we review Kirchhoff’s one-dimensional theory of rods as a pre-
lude to the development, in Section 3, of an analogous three-dimensional Cosserat
continuum model. We show that the rigidity constraint imposed in the continuum
theory effectively determines the Cosserat rotation in terms of the gradient of the
deformation field. Because the gradient of the rotation field is involved in the
constitutive functions, this has the consequence that the Cosserat model reduces
to a particular second-gradient theory of elasticity [Spencer and Soldatos 2007].
Details of this reduction are given in Section 4. Finally, in Section 5 we apply the
theory to predict the response of a block to finite flexure. This solution serves to
illustrate certain unusual features of the proposed model.

2. Kirchoff rods

In Kirchhoff’s theory the rod is regarded as a spatial curve endowed with an elastic
strain-energy function that depends on curvature and twist [Landau and Lifshitz
1986; Dill 1992; Antman 2005]. In Dill’s derivation from conventional three-
dimensional nonlinear elasticity, this theory also accommodates small axial strain
along the rod, whereas this effect is suppressed in derivations based on asymptotic
analysis or the method of gamma convergence. We include it here. In the present
section we outline the basic elements of Kirchhoff’s theory, including the kine-
matics, the constitutive theory, and the variational derivation of the equilibrium
equations. Although this theory is well known, we review it here to facilitate the
interpretation of the ensuing continuum theory of metamaterials.

2.1. Kinematics. The basic kinematic variables in the theory are a deformation
field r(s), where s ∈ [0, l] and l is the length of the rod in a reference configuration,
and a right-handed, orthonormal triad {di (s)} in which d3 = d, where d is the unit
vector defined by [Dill 1992; Steigmann 1996; Antman 2005]

r ′(s)= λd,

λ= |r ′(s)|.
(1)

Here λ is the stretch of the rod. Thus, d is the unit tangent to the rod in a deformed
configuration and dα (α = 1, 2) span its cross-sectional plane at arclength station s.

A central aspect of Kirchhoff’s theory is that each cross section deforms as a
rigid disc. Accordingly, there is a rotation field R(s) such that di = R Di , where
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Di (s) are the values of di (s) in a reference configuration; thus,

R = di ⊗ Di . (2)

The curvature and twist of the rod are computed from the derivatives d ′i (s),
where

d ′i = R′Di + R D′i . (3)

Let {Ei } be a fixed right-handed background frame. Then Di (s) = A(s)Ei for
some rotation field A, yielding

d ′i =W di = w× di , (4)
where

W = R′Rt
+ R A′At Rt (5)

is a skew tensor and w is its axial vector. If the rod is straight and untwisted in the
reference configuration, i.e., if D′i = 0, then W = R′Rt .

2.2. Strain-energy function. We assume the strain energy E stored in a segment
[l1, l2] ⊂ [0, l] of a rod of length l to be expressible as

E =
∫ l2

l1

U ds, (6)

where U , the strain energy per unit length, is a function of the list {R, R′, r ′},
possibly depending explicitly on s. Explicit s-dependence may arise from the initial
curvature or twist of the rod, or from nonuniform material properties.

We require U to be Galilean invariant and hence that its values be unaffected by
the substitution {R, R′, r ′} → {Q R, Q R′, Qr ′}, where Q is an arbitrary uniform
rotation. Because U is defined pointwise, to derive a necessary condition we select
the rotation Q = Rt

|s and conclude that U is determined by the list {Rt R′, Rt r ′}.
This list is trivially Galilean invariant. It is equivalent to {Rt W R− A′At , λD},
where D = D3 and Rt W R− A′At is a Galilean-invariant measure of the relative
flexure and twist of the rod due to deformation. Here D and A′At are indepen-
dent of the deformation and serve to confer an explicit s-dependence on the strain-
energy function; accordingly, we write U =U (Rt W R, λ; s). If the rod is initially
straight and untwisted, as we assume hereafter, then D′i = 0 and any explicit s-
dependence of the energy is due solely to nonuniformity of the material properties.
Henceforth, we assume material properties to be uniform.

In the present circumstances we have

Rt W R =Wi j Di ⊗ D j , with Wi j = di ·W d j = di · d ′j . (7)
Thus,

U =W (λ, κ), (8)
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where κ(= κi Di ) is the axial vector of Rt W R; i.e.,

κi =
1
2 ei jk dk · d ′j . (9)

Here ei jk is the Levi-Civita permutation symbol (e123 =+1, etc.), κ3 is the twist
of the rod, and κα are the curvatures. Moreover, it follows easily from (4) and (9)
that

w = Rκ = κi di (10)

if the rod is initially straight and untwisted.
For example, in the classical theory [Dill 1992; Steigmann 1996; Antman 2005],

the strain-energy function is

W (λ, κ)= 1
2 E(λ− 1)2+ 1

2 Fκακα + 1
2 T τ 2, (11)

where τ(= κ3) is the twist, E is the extensional stiffness (Young’s modulus times
the cross-sectional area), F is the flexural stiffness (Young’s modulus times the
second moment of area of the cross section), and T is the torsional stiffness (the
shear modulus times the polar moment of the cross section).

The terms involving curvature and twist in this expression are appropriate for
rods of circular cross section composed of isotropic materials [Landau and Lifshitz
1986]. The homogeneous quadratic dependence of the energy on these terms may
be understood in terms of a local length scale such as the diameter of a fiber cross
section. The curvature-twist vector, when nondimensionalized by this local scale,
is typically small in applications. For example, the minimum radius of curvature
of a bent fiber is typically much larger than the fiber diameter. If the bending and
twisting moments vanish when the rod is straight and untwisted, then the leading-
order contribution of the curvature-twist vector to the strain energy is quadratic;
this is reflected in (11). In general the flexural and torsional stiffnesses in this
expression may depend on fiber stretch, but in the small-extensional-strain regime
contemplated here, they are approximated at leading order by constants in the case
of a uniform rod.

2.3. Variational theory. The equilibrium equations of the Kirchhoff theory are
well known and easily derived from elementary considerations, but it is instructive
to review their variational derivation here as a prelude to the considerations that
follow.

We assume that equilibria of the rod are such as to satisfy the virtual-power
statement

Ė = P, (12)

where P is the virtual power of the loads — the explicit form of which is deduced
below — and the superposed dot is used to identify a variational derivative. These
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are derivatives, with respect to ε, of the one-parameter deformation and rotation
fields r(s; ε) and R(s; ε), respectively, where r(s)= r(s; 0) and R(s)= R(s; 0)
are equilibrium fields, and (see (11))

U̇ = Ẇ =Wλλ̇+µi κ̇i , (13)

where

Wλ =
∂W
∂λ

and µi =
∂W
∂κi

(14)

are evaluated at equilibrium, corresponding to ε = 0.
From (1) we have

λ̇d+ω× r ′ = u′, (15)

where u(s)= ṙ is the virtual translational velocity and ω(s) is the axial vector of
the skew tensor ṘRt ; i.e.,

ḋi = ω× di . (16)

It follows from (9) and (16) that

κ̇i =
1
2 ei jk(ḋk · d ′j + dk · ḋ ′j )

=
1
2 ei jk[ω× dk · d ′j + dk · (ω

′
× d j +ω× d ′j )], (17)

in which the terms involving ω cancel; the e − δ identity 1
2 ei jkemjk = δim (the

Kronecker delta), combined with d j × dk = emjk dm , then yields

κ̇i = di ·ω
′. (18)

Thus,
Ė = I [u,ω], (19)

where

I [u,ω] =
∫ l2

l1

(Wλd · u′+µ ·ω′) ds, (20)

with
µ= µi di . (21)

Further, from (1) we have the orthogonality constraints

r ′ · dα = 0 (22)

for α = 1, 2. To accommodate these in the variational formulation, we introduce
the energy

E∗ = E +
∫ l2

l1

fα r ′ · dα ds, (23)
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where fα(s) are Lagrange multipliers. This is an extension to arbitrary deforma-
tions of the actual energy, the latter being defined only for the class of deformations
defined by the constraints. Moreover, (12) is replaced by

Ė∗ = P, (24)
where

Ė∗ =
∫ l2

l1

[(Wλd+ fαdα) · u′+µ ·ω′+ fαdα × r ′ ·ω] ds. (25)

We do not make variations with respect to the multipliers fα explicit as these merely
return the constraints (22).

We conclude that (24) reduces to

( f · u+µ ·ω)|l2
l1
−

∫ l2

l1

[u · f ′+ω · (µ′− f × r ′)] ds = P, (26)

where
f =Wλd+ fαdα. (27)

This implies that the virtual power is expressible in the form

P = (t · u+ c ·ω)|l2
l1
+

∫ l2

l1

(u · g+ω ·π) ds, (28)

in which t and c represent forces and couples acting at the ends of the segment and
g and π are force and couple distributions acting in the interior.

By the fundamental lemma, the Euler equations holding at points in the interior
of the rod are

f ′+ g = 0 and µ′+π = f × r ′, (29)

and the endpoint conditions are

f = t and µ= c, (30)

provided that neither position nor section orientation is assigned at the endpoints.
These are the equilibrium conditions of classical rod theory in which f and µ
respectively are the cross-sectional force and moment transmitted by the segment
(s, l] on the part [0, s]. Equations (27) and (30)1 justify the interpretation of the
Lagrange multipliers fα as transverse shear forces acting on a fiber cross section.

Other boundary conditions are, of course, feasible. For example, if the tangent
direction d is assigned at a boundary point, then its variation ω× d vanishes there,
leaving ω = ωd in which ω is arbitrary. In this case (26) and (28) furnish the
boundary condition

µ · d = c, (31)

in which c = c · d is the twisting moment applied at the boundary.
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For the strain-energy function (11), we have

Wλ = E(λ− 1), (32)

together with µ3d3 = T τ d and µαdα = Fκαdα. To reduce the second expression
we use (9), together with d ·d ′µ=−dµ ·d ′, to derive κα = eα3µdµ ·d ′. From d ·d ′= 0
we have d ′= (dα ·d ′)dα and d×d ′= (dα ·d ′)d×dα = (eβ3αdα ·d ′)dβ ; thus, κβdβ =
d× d ′ and (21) becomes

µ= T τ d+ F d× d ′. (33)

From (1) we have that (29)2 is equivalent to the system

d · (µ′+π)= 0 and d× (µ′+π)= λd× ( f × d). (34)

In the second of these we combine the identity d× ( f × d)= f − (d · f )d with
(27) to obtain

f =Wλd+ λ−1d× (µ′+π), (35)

which may be combined with (29)1 and (34)1 to provide an alternative set of equi-
librium equations. The latter form of Kirchhoff’s theory furnishes a more natural
analog to the system derived for a lattice of rods in Sections 3 and 4.

2.4. Three-dimensional lattice. We suppose the three-dimensional continuum to
be composed of a continuous distribution of orthogonal rods of the kind discussed
in the foregoing. Every point of the continuum is regarded as a point of intersec-
tion of three fibers. These are assumed to be aligned, prior to deformation, with
the uniform, right-handed orthonormal triad {L, M, N}. The lattice of fibers is
assumed to be rigid in the sense that it remains orthogonal, and similarly oriented,
in the course of the deformation. That is, the set {L, M, N} of material vectors
is stretched and rotated to the (generally nonuniform) set {λl l, λm m, λnn}, where
{l,m, n} is a right-handed orthonormal triad and {λl, λm, λn} are the fiber stretches.

Accordingly, the orientation of the deformed lattice is specified by the rotation
field

R = l ⊗ L+m⊗M + n⊗ N. (36)

This furnishes the curvature-twist vectors κl, κm, κn of the constituent fibers in
accordance with (9); thus, for example, the curvature-twist vector of a fiber initially
aligned with L is κl = κ(l)i Li , where {Li } = {Lα, L} with {Lα} = {M, N}, and

κ(l)i =
1
2 ei jk lk · l ′j , (37)

where {li } = {lα, l} with {lα} = {m, n}. Here, l ′j = (∇ l j )L is the directional
derivative along the L-fiber. Because li = RLi it is evident that κl is determined
by the rotation field R and its gradient.
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In the same way, κm = κ(m)i Mi , where {Mi } = {Mα, M} with {Mα} = {N, L},
and

κ(m)i =
1
2 ei jk mk ·m′j , (38)

where {mi } = {RMi } = {mα,m}, with {mα} = {n, l}, and where m′j = (∇m j )M
is now the directional derivative along the M-fiber. Finally, κn = κ(n)i Ni , where
{Ni } = {Nα, N} with {Nα} = {L, M}, and

κ(n)i =
1
2 ei jknk · n′j , (39)

where {ni } = {RNi } = {nα, n}, with {nα} = {l,m} and n′j = (∇n j )N . Thus, all
three curvature-twist vectors are determined by the single rotation field R and its
gradient.

Because the fibers are convected as material curves, we have λl l = FL, etc.,
where F =∇χ is the gradient of the deformation χ(X) of the continuum. Here X
is the position of a material point in a reference configuration, κ say. The orthonor-
mality of {L, M, N} then furnishes

F = λl l ⊗ L+ λm m⊗M + λnn⊗ N, (40)

where λl = |FL|, etc. Evidently,

F = RU, (41)

where
U = λl L⊗ L+ λm M ⊗M + λn N ⊗ N (42)

is positive definite and symmetric. The Cosserat rotation (36) thus coincides with
the rotation in the polar factorization of the deformation gradient in which U is
the associated right-stretch tensor. Because R is uniquely determined by F in
this case, the curvature-twist vectors of the fibers are ultimately determined by the
first and second deformation gradients ∇χ and ∇∇χ . It is this fact which yields
the reduction, detailed in Section 4, of the Cosserat continuum model outlined in
Section 3 to a special second-gradient model of elasticity. Moreover, the present
model furnishes a rare example of a material for which the principal axes of strain
are fixed in the body.

It may be observed that the kinematical structure of the present three-dimensional
framework is not entirely analogous to that of rod theory. This is due to the partial
coupling between deformation and rotation implied by (1), whereas in the present
three-dimensional theory the relevant rotation field is controlled entirely by the
continuum deformation.

We note that if the fibers are inextensible, i.e., if λl = λm = λn = 1, then U = I ,
∇χ = R, and the deformation is necessarily rigid [Gurtin 1981]. Here I is the
three-dimensional identity. Thus, nontrivial deformations necessarily entail fiber
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extension or contraction. Accordingly, we expect a lattice material of the kind
envisaged to be extremely stiff — the raison d’être of mechanical metamaterials —
if the extensional stiffnesses of the fibers are large. In contrast, Kirchhoff’s theory
accommodates nonrigid inextensional deformations.

3. Cosserat elasticity

3.1. Kinematics. In the foregoing we have argued that the lattice material may
be regarded as a Cosserat continuum endowed with a rotation field R(X). This
rotation is determined by the deformation χ(X). However, in the present section
we regard these fields as being independent in the spirit of the conventional Cosserat
theory. The rotation and deformation are ultimately reconnected in Section 4. Ex-
istence theory for Cosserat elasticity is discussed in [Neff 2006].

Thus, we introduce a referential energy density U (F, R,∇R; X), where F is
the usual deformation gradient and ∇R is the rotation gradient; i.e.,

F = Fi Aei⊗ EA, R= Ri Aei⊗ EA, and ∇R= Ri A,B ei⊗ EA⊗ EB (43)

with
Fi A = χi,A, (44)

where ( · ),A= ∂( · )/∂X A and we use a Cartesian index notation that emphasizes
the two-point character of the deformation gradient and rotation fields. Here {ei }

and {EA} are fixed orthonormal bases associated with the Cartesian coordinates xi

and X A, where xi = χi (X A).

3.2. Strain-energy function. We suppose the strain energy to be Galilean invari-
ant and thus require that

U (F, R,∇R; X)=U (Q F, Q R, Q∇R; X), (45)

where Q is an arbitrary spatially uniform rotation and (Q∇R)i AB = (Qi j R j A),B =

Qi j R j A,B . The restriction

U (F, R,∇R; X)=W (E,0; X), (46)

where [Pietraszkiewicz and Eremeyev 2009; Eremeyev and Pietraszkiewicz 2012;
Steigmann 2012; 2015]

E = Rt F = E AB EA⊗ EB, E AB = Ri A Fi B, (47)

0 = 0DC ED ⊗ EC , 0DC =
1
2 eB AD Ri A Ri B,C , (48)

with W a suitable function and eABC the permutation symbol, furnishes the nec-
essary and sufficient condition for Galilean invariance. Sufficiency is obvious;
necessity follows by choosing Q = Rt

|X , where X is the material point in question,
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and making use of the fact that, for each fixed C ∈ {1, 2, 3}, the matrix Ri A Ri B,C

is skew. This follows by differentiating Ri A Ri B = δAB (the Kronecker delta). The
associated axial vectors γC have components

γD(C) =
1
2 eB AD Ri A Ri B,C , (49)

yielding [Pietraszkiewicz and Eremeyev 2009]

0 = γC ⊗ EC , (50)

and so 0— the wryness tensor — stands in one-to-one relation to the Cosserat
strain measure Rt

∇R.

3.3. Virtual power and equilibrium. We define equilibria to be states that satisfy
the virtual-power statement

Ėπ = Pπ , (51)

where π is an arbitrary subvolume of κ , Pπ is the virtual power of the loads acting
thereon,

Eπ =
∫
π

U dv (52)

is the strain energy contained in π , and superposed dots identify variational deriva-
tives, as in Section 2. Thus,

U̇ = Ẇ = σ · Ė+µ · 0̇, (53)

where
σ =WE and µ=W0 (54)

are evaluated at equilibrium and the variational derivatives are evaluated at an equi-
librium state. The dots interposed between the terms in (53) represent the standard
Euclidean inner product on the linear space of tensors. The explicit form of Pπ is
deduced below.

From (47) we have

Ė = Rt(∇u−�F), where u = χ̇ and �= ṘRt . (55)

Then,
σ · Ė = Rσ · ∇u−� ·Skw(Rσ Ft). (56)

Here, of course, � is skew. Let ω= ax� be its axial vector, defined, for arbitrary v,
by ω × v = �v. If α is a skew tensor and a = axα, then, as is well known,
� ·α = 2ω · a. Further, Rσ Ft

= Rσ Et Rt and Skw(Rσ Et Rt)= R(Skw σ Et)Rt

so that, finally,

σ · Ė = Rσ · ∇u− 2ax[R(Skw σ Et)Rt
] ·ω. (57)
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To reduce µ · 0̇ we make use of the formula [Steigmann 2012]

µ · 0̇ = ωE(µEC,C + eE DBµBC0DC)− (ωEµEC),C , (58)

where ω =−Rtω is the axial vector of Ṙt R. This may be recast in the form

µ · 0̇ = Div(µt Rtω)−ω ·Div(Rµ)+ωiµEC(Ri E,C − eB DE Ri B0DC). (59)

The inverse of (48)2 is

eB DE0DC = R j B R j E,C ; thus, eB DE Ri B0DC = δi j R j E,C , (60)

implying that the last term of (59) vanishes and hence that

µ · 0̇ = Rµ · ∇ω. (61)

Substitution of (57) and (61) into (51) furnishes

Pπ =
∫
∂π

Rµν ·ω da−
∫
π

{Rσ · ∇u+ω · [Div(Rµ)+ 2ax(R(Skw σ Et)Rt)]} dv,
(62)

where ν is the exterior unit normal to the piecewise smooth surface ∂π . The virtual
power is thus of the form

Pπ =
∫
∂π

(t · u+ c ·ω) da+
∫
π

(g · u+π ·ω) dv, (63)

where t and c are densities of force and couple acting on ∂π , and g and π are
densities of force and couple acting in π .

If u and ω are independent and if there are no kinematical constraints, then by
the fundamental lemma,

t = Rσν and c= Rµν on ∂π, (64)

and

g =−Div(Rσ ) and π =−Div(Rµ)− 2ax[R(Skw σ Et)Rt
] in π. (65)

These are the equilibrium conditions for a standard Cosserat continuum in which
the deformation χ and rotation R are independent kinematical fields. The use of
the axial vector ω in their derivation yields a simpler set of equations than that
derived in [Reissner 1975; 1987; Steigmann 2012; 2015] on the basis of the axial
vector ω.

3.4. Specialization to an orthogonal lattice. The curvature-twist vector κl of a
fiber initially aligned with L may be described in the present framework by using
(36) and (37) to write

κ(l)i =
1
2 ei jk Lk · Rt R′L j , (66)
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where ( · )′ is the directional derivative along L and we have assumed that the fibers
are initially straight and untwisted, i.e., that L′j = 0. Here we use R′i A = Ri A,B L B

to derive (see (60)1)

Rt R′ = RiC Ri A,B L B EC ⊗ EA = eAC D0DB L B EC ⊗ EA, (67)

which implies that κl = κ(l)i Li is determined by 0 via 0L. In the same way, κm

and κn are determined by 0 via 0M and 0N , respectively.
Moreover, from (41) and (47) we find that E = U in the case of an orthogonal

lattice. The fiber stretches are thus given by

λl = L⊗ L · E, λm = M ⊗M · E, λm = N ⊗ N · E. (68)

In a discrete lattice consisting of spatial rods interacting at interior nodes as
in [Steigmann 1996], the strain energy is the sum of the strain energies of the
individual rods. This motivates the assumption of an additive decomposition of
the strain energy in the continuum lattice model; i.e.,

W (E,0)=Wl(λl, κl)+Wm(λm, κm)+Wn(λn, κn), (69)

in which Wl,m,n are the strain energies, per unit initial volume, of the three fiber
families.

Using (54)1 and (68) we then derive

σ = σl ⊗ L+ σm ⊗M + σn ⊗ N, (70)

with

σl =
∂Wl

∂λl
L, σm =

∂Wm

∂λm
M, σn =

∂Wn

∂λn
N, (71)

yielding

σ Et
= λl

∂Wl

∂λl
L⊗ L+ λm

∂Wm

∂λm
M ⊗M + λn

∂Wn

∂λn
N ⊗ N. (72)

We thus have Skw(σ Et) = 0 and conclude that the associated interaction term
vanishes in (65)2. In general the latter may be interpreted as a distributed moment
transmitted to the fibers by a matrix material in which the fibers are embedded
[Steigmann 2012]. However, the relatively simple model discussed here does not
take account of an underlying matrix.

To derive the relevant expression for the couple stress µ we use (18), for the
fiber family initially aligned with L, in the form

κ̇(l)i = li · (∇ω)L = RLi ⊗ L · ∇ω. (73)

Thus,
∂Wl

∂κ(l)i
κ̇(l)i = Rµl ⊗ L · ∇ω, with µl =

∂Wl

∂κ(l)i
Li . (74)
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Proceeding from (54)2 and (61) in the same way, we find that

W0 · 0̇ = R(µl ⊗ L+µm ⊗M +µn ⊗ N) · ∇ω, (75)

with

µm =
∂Wm

∂κ(m)i
Mi and µn =

∂Wn

∂κ(n)i
Ni , (76)

and comparison with (61) furnishes

µ= µl ⊗ L+µm ⊗M +µn ⊗ N. (77)

In the virtual-power statement (51) we then have

Ėπ =
∫
∂π

Rµν ·ω da+
∫
π

[Rσ · ∇u−ω ·Div(Rµ)] dv, (78)

where
Div(Rσ )= [∇(Rσl)]L+ [∇(Rσm)]M + [∇(Rσn)]N (79)

and
Div(Rµ)= [∇(Rµl)]L+ [∇(Rµm)]M + [∇(Rµn)]N. (80)

The equilibrium equations are not obtained by substituting into (64) and (65), how-
ever, because the virtual translational velocity u and rotational velocity ω are not
independent.

Suppose, for example, that all three fiber families have identical uniform proper-
ties, each with a strain-energy function of the form (11). Then (see (71)1 and (74)2),

Rσl = E(λl − 1)l and Rµl = T τl l + F l × (∇ l)L, etc., (81)

where τl = κ(l)3, etc., in which E , T , and F respectively are the constant extensional,
torsional, and flexural stiffnesses of the fibers. Again we note that the torsional and
flexural stiffnesses could conceivably depend on fiber stretch. However, for small
extensional strains they are approximated at leading order by constants.

4. Reduction to second-gradient elasticity

4.1. Reducing a linear form in the rotational virtual velocity to a linear form in
the gradient of the translational virtual velocity. To effect the reduction of the
Cosserat model to a second-gradient elasticity model [Toupin 1964; Mindlin and
Tiersten 1962; Koiter 1964], we proceed from (36) to write the virtual spin tensor
�= ṘRt in the form

�= l̇ ⊗ l + ṁ⊗m+ ṅ⊗ n, (82)

where, from (40),
λl l̇ = (∇u)L− λ̇l l, etc. (83)
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Its axial vector ω is such that

ω× v = (v · l)l̇ + (v ·m)ṁ+ (v · n)ṅ (84)

for every vector v. Using the well known identity

a× (b× c)= (a · c)b− (a · b)c, (85)

we derive

(v · l)l̇ = (l × l̇)× v+ (v · l̇)l, etc., (86)

yielding

ω× v = (l × l̇ +m× ṁ+ n× ṅ)× v+�tv, (87)

and thus conclude that

ω = 1
2(l × l̇ +m× ṁ+ n× ṅ). (88)

In the virtual-power statement (78) we have two linear expressions of the form
a ·ω. We write these as

a ·ω = 1
2(a× l · l̇ + a×m · ṁ+ a× n · ṅ), (89)

where

a× l · l̇ = λ−1
l a× l · (∇u)L = λ−1

l (a× l)⊗ L · ∇u, etc. (90)

Altogether,

a ·ω = 1
2 [λ
−1
l (a× l)⊗ L+ λ−1

m (a×m)⊗M + λ−1
n (a× n)⊗ N] · ∇u. (91)

Every linear scalar-valued function of ω may thus be expressed as a linear function
of ∇u. We thereby reduce (78) to

Ėπ =
∫
π

P · ∇u dv+
∫
∂π

Q · ∇u da, (92)

where

P = Rσ − 1
2 [λ
−1
l (a× l)⊗ L+ λ−1

m (a×m)⊗M + λ−1
n (a× n)⊗ N],

with a = Div(Rµ), (93)

and

Q= 1
2 [λ
−1
l (b×l)⊗L+λ−1

m (b×m)⊗M+λ−1
n (b×n)⊗N], with b= Rµν. (94)
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4.2. Constraints on the virtual velocity gradient and the extended variational
problem. The translational virtual velocity gradient is subject to further constraints
associated with the rigid connectivity of the lattice. This implies that (see (36)
and (40))

FL · F M = 0, FL · FN = 0, and F M · FN = 0. (95)

To accommodate these we replace the virtual-power statement (51) by

Ė∗π = Pπ , (96)

where

E∗π = Eπ +
∫
π

1
23 ·C dv+

∫
∂π

1
24 ·C da, (97)

is the extended energy, C = Ft F is the right Cauchy–Green deformation tensor,
and

3=3L M(L⊗M+M⊗L)+3L N (L⊗N+N⊗L)+3M N (M⊗N+N⊗M),

4=4L M(L⊗M+M⊗L)+4L N (L⊗N+N⊗L)+4M N (M⊗N+N⊗M),
(98)

in which 3L M , 4L M , etc., are Lagrange multipliers. We require multipliers on ∂π
because the gradient of u thereon, which figures in the virtual-work statement
(see (92)), is restricted by (95). Their role in the theory is illustrated in Section 5.

Equation (96) is treated as an unconstrained variational problem in which the
additional terms have the variational derivatives

1
23 · Ċ = F3 · ∇u and 1

24 · Ċ = F4 · ∇u (99)

at fixed values of the multipliers, whereas variations with respect to the latter merely
return the constraints and, as before, are not made explicit. Finally, in (96) we have

Ėπ =
∫
π

T · ∇u dv+
∫
∂π

S · ∇u da, (100)

where
T = P + F3 and S= Q+ F4 (101)

and it is understood that these are evaluated with the constraints (95) in force.
It is useful to observe, from (101), (93), and (70), that

T = Tl ⊗ L+ Tm ⊗M + Tn ⊗ N, (102)

where
Tl = Rσl + λm3L M m+ λn3L N n + 1

2λ
−1
l l × a,

Tm = Rσm + λl3L M l + λn3M N n + 1
2λ
−1
m m× a,

Tn = Rσn + λl3L N l + λm3M N m+ 1
2λ
−1
n n× a, (103)
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and a is given by (93)2. Similarly,

S= Sl ⊗ L+ Sm ⊗M + Sn ⊗ N, (104)

where
Sl = λm4L M m+ λn4L N n+ 1

2λ
−1
l b× l,

Sm = λl4L M l + λn4M N n+ 1
2λ
−1
m b×m,

Sn = λl4L N l + λm4M N m+ 1
2λ
−1
n b× n, (105)

and b is given by (94)2.

4.3. Equilibrium conditions. Equation (100) involves the restriction to the bound-
ary of the gradient of the translational virtual velocity. To treat this we introduce the
surface parametrization X(θα) of ∂π , where θα (α = 1, 2) is a system of convected
curvilinear coordinates. This induces the tangent basis Aα = X,α and dual tangent
basis Aα, which we use to decompose ∇u|∂π as

∇u = u,α ⊗ Aα + uν ⊗ ν, (106)

where u,α = ∂u(X(θβ))/∂θα = (∇u)Aα are the tangential derivatives of u and
uν = (∇u)ν is the normal derivative. Thus,

S · ∇u = Sν · uν + Sα · u,α, (107)

where Sα = SAα.
Because ∂π is piecewise smooth it is the union of a finite number of smooth

subsurfaces ωi that intersect at edges ei . Applying Stokes’ theorem to each of these
subsurfaces, we find that∫

∂π

Sα · u,α da =
∑ ∫

∂ωi

Sαξ(i)α · u ds−
∫
∂π

Sα
|α · u da, (108)

where ξi = ξ(i)αAα is the unit normal to the curve ∂ωi such that {νiξiτi } forms a
right-handed orthonormal triad, where τi is the unit tangent to ∂ωi and s is arc-
length measured in the direction of τi , and where Sα

|α is the covariant divergence
on ∂π , defined by

Sα
|α = A−1/2(A1/2 Sα),α, (109)

with A = det(Aα · Aβ). It is understood that each curve ∂ωi in (108) is traversed
counterclockwise as the smooth subsurface ωi is viewed from the side of ωi into
which its surface normal νi is directed. We elaborate further below.

Accordingly (100) is reduced to

Ė∗=
∫
∂π

[(Tν−Sα
|α)·u+Sν ·uν] da+

∑ ∫
∂ωi

Sξi ·u ds−
∫
π

u ·Div T dv, (110)
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and (96) implies that the virtual power has the form

Pπ =
∫
∂π

(t · u+ s · uν) da+
∑ ∫

ei

fi · u ds+
∫
π

g · u dv, (111)

where ei is the i-th edge of ∂π .
If no further kinematic constraints are operative, then because u and uν may

be specified independently on ∂π , the fundamental lemma yields the traction and
double force

t = Tν− Sα
|α and s = Sν, (112)

respectively, on ∂π , and the body force

g =−Div T (113)

in the interior of π . By choosing ν = L, M, N in succession, we may conclude,
from (112)1, (102), and (103), that the Lagrange multipliers 3L M , etc., are pro-
portional to transverse shear stresses acting on the fiber “cross sections” (see (27)).
Similarly, 4L M , etc., are proportional to transverse double forces.

Concerning the edge forces fi , we observe that an edge e is the intersection of
two subsurfaces ω+ and ω−, say. Accordingly, in (111) e is traversed twice: once
in the sense of τ+ and once in the sense of τ− = −τ+. With (112) and (113) in
force the fundamental lemma then furnishes the edge force density

f = [Sξ ] on e, (114)

where [ · ] is the difference of the limits of the enclosed quantity on e when ap-
proached from ω+ and ω−, i.e, [ · ] = ( · )+− ( · )−.

Fuller discussions of edge forces, and of the wedge forces operating at vertices
in continua of grade higher than two, may be found in [Mindlin 1965; dell’Isola
and Seppecher 1995; 1997; dell’Isola et al. 2012; Fosdick 2016].

4.4. Rigid-body variations. In classical rigid-body mechanics the relevant actions
are the net force and couple acting on the body. To deduce their forms in the present
model, we specialize the virtual-power statement to rigid-body virtual translations
and rotations. In view of the invariance of the strain energy under such variations
(see (45)), this statement reduces to Pπ = 0 for all deformations of the form

χ(X; ε)= Q(ε)x+ d(ε), (115)

where x = χ(X) is an equilibrium deformation field, Q(ε) is a one-parameter
family of rotations with Q(0)= I , and d(ε) is a family of vectors with d(0)= 0.
Again using superposed dots to denote derivatives with respect to ε, evaluated at
ε = 0, we compute the virtual translational velocity u(X)= ω× x+ ḋ, where ω is
the axial vector of Q̇.
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Because ω and ḋ are arbitrary, the virtual-work statement (see (111)) is satisfied
if and only if ∫

∂π

t da+
∫
π

g dv+
∑ ∫

ei

fi ds = 0 (116)

and ∫
∂π

(x× t + c) da+
∫
π

x× g dv+
∑ ∫

ei

x× fi ds = 0, (117)

where
c= xν × s (118)

and
xν = Fν (119)

is the normal derivative of the equilibrium deformation on ∂π .
These are respectively the force and moment balances for the arbitrary part

π ⊂ κ of the body, the latter implying that c is a distribution of couples acting
on ∂π . Because these conditions were derived using a special form of u, they are
necessary for equilibrium. Indeed, it may be shown that they follow from (112)
and (113). However, they are not sufficient — the arbitrariness of π notwithstand-
ing — because (112)2 involves the entire double force on ∂π , whereas (118) is
insensitive to that part of the double force which is parallel to xν . This situation
stands in contrast to first-gradient elasticity, in which (116) and (117) (with c and
fi equal to zero) are both necessary and sufficient for equilibrium. The utility of
the variational approach to our subject can thus hardly be overestimated [Germain
1973]. This perspective is amplified and extended in a recent revival [Eugster and
dell’Isola 2017; 2018a; 2018b; Eugster and Glocker 2017] of Hellinger’s approach
to continuum mechanics.

5. Example: bending a block to a cylinder

To illustrate the model we use it to solve the classical problem of bending a block
to a cylindrical annulus [Ogden 1984]. The conventional treatment of this prob-
lem relies on the use of first-gradient elasticity. Here we highlight the additional
flexibility in its solution afforded by the present model.

We choose the fibers to be aligned initially with a Cartesian coordinate system
(X, Y, Z), so that

X = X L+ Y M + Z N. (120)

The block occupies the volume defined by A < X < A+W , −H/2< Y < H/2,
and −D/2< Z < D/2, where A is a positive constant, W is the width of the block,
H is the height, and D is the depth. The deformed position is

x = χ(X)= r(X)er (θ(Y ))+ Z N, (121)



CONTINUUM THEORY FOR MECHANICAL METAMATERIALS 93

where
er (θ)= cos θL+ sin θM. (122)

Thus, the deformation maps vertical planes X = const. to cylinders r = const., and
horizontal planes Y = const. to radial planes θ = const.. There is no displacement
along the Z -axis.

The deformation gradient is

F = r ′er ⊗ L+ rθ ′eθ ⊗M + N ⊗ N, (123)

where eθ = N × er , and we assume, as in the classical treatment, that θ(Y )= αY ,
with α a positive constant. Accordingly, det F = αrr ′, and the usual restriction
det F > 0 implies that r(X) is an increasing function, i.e., r ′ > 0. It follows
immediately that

R= er⊗L+eθ⊗M+N⊗N and E=U=r ′L⊗L+αr M⊗M+N⊗N, (124)

and hence, from (36) and (42), that

l = er (θ), m = eθ (θ), n= N,

λl = r ′(X), λm = αr(X), λn = 1.
(125)

Clearly the rigidity constraints (95) are satisfied.
Using (37)–(39) we find that all fiber twists τl,m,n(= κ(l,m,n)3) vanish. Assuming

the fiber constitutive relations (81)2, we deduce that

Rµl = Rµn = 0,

Rµm = αF N,
(126)

so that a = 0 in (93) and (103), whereas

b= αF(M · ν)N (127)

in (94). Guided by the structure of solutions to rod theory for uniformly curved
rods, we seek a solution in which the various 3— the transverse shear stresses
acting on the fiber cross sections — vanish. In this case (81) and (103) imply that

Tl = f (λl)er ,

Tm = f (λm)eθ ,

Tn = 0,

(128)

where (see (81)) f (λ)= E(λ− 1). We use (79)–(81) to compute

Div T = E[r ′′−α(αr − 1)]er , (129)
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and conclude, from (113) (with vanishing body force), that r(X) satisfies the simple
linear differential equation

r ′′−α2r =−α, (130)

the general solution to which is

r(X)= α−1
+C1 exp(αX)+C2 exp(−αX), (131)

where C1,2 are constants.
To complete the solution we proceed as in the classical case and impose zero

traction (and double-force) conditions at X = A and X = A+W . With ν =±L we
find that b vanishes. We also assume that the various 4 vanish on these surfaces,
and hence that S also vanishes. The double force then vanishes, as required, and
the tractions are ±Tl . The condition of zero traction thus requires that f (λl) vanish,
and hence that r ′ = 1 at X = A and at X = A+W . We thus obtain

C1 = α
−1 exp(−αB)[1+ exp(−αW )]−1,

C2 =−α
−1 exp(αB)[1+ exp(αW )]−1,

(132)

where B = A+W , and verify that the admissibility condition r ′(X) > 0 is satisfied.
On the planes Z =±D/2 we again assume that the various 4 vanish, finding

that the tractions and double forces also vanish on these surfaces. From (114) we
also find that the edge forces vanish on the edges defined by (X, Z)= (A,±D/2)
and (X, Z)= (A+W , ±D/2).

The situation is different on the planes Y =±H/2. For example, at Y = H/2
we have ν = M, yielding

Tν = E(αr − 1)eθ
s = Sm = (r ′4+L M − F/2r)er +4

+

M N N,
(133)

where the 4+ are the values of the 4 at Y =+H/2. Further,

Sα
|α = Sl,X + Sn,Z , (134)

where
Sl = α(r4+L M + F/2r ′)eθ +4+L N N,

Sn = r ′4+L N er +αr4+M N eθ .
(135)

Then (112) and (128) deliver the traction

t = [E(αr − 1)−α(r4+L M + F/2r ′),X ]eθ
−4+L N ,X N − r ′4+L N ,Z er −αr4+M N ,Z eθ . (136)
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Accordingly, and in contrast to the classical treatment [Ogden 1984], we may im-
pose a zero-traction condition on this surface, provided that

E(r −α−1)− (r4+L M + F/2r ′),X − r4+M N ,Z = 0, (137)

together with
4+L N ,X = 0 and 4+L N ,Z = 0. (138)

We assume that 4+M N ,Z = 0 and use (130) to reduce (137) to

Eα−2r ′′(X)− (r4+L M + F/2r ′),X = 0, (139)

concluding that
Eα−2r ′− (r4+L M + F/2r ′)= G+(Z), (140)

for some function G+.
The couple distribution c+ on Y = H/2 is given by (118), with xν = F M =αr eθ .

Thus,
c+ = αr eθ × Sm = αr ′(F/2r ′− r4+L M)N +αr4+M N er . (141)

A solution with c+ parallel to the cylinder axis N and independent of Z is ob-
tained by taking 4+M N = 0 and G+ to be constant. From (133)2 this is seen to be
tantamount to the assignment of the double-force distribution on Y = H/2. The
edge forces operating at the edges defined by (X, Y ) = (A, H/2) and (X, Y ) =
(A+W, H/2) are found, using (114), to be

f =∓[α(r4+L M + F/2)eθ +4+L N N], (142)

respectively, where 4+L M and 4+L N are evaluated at X = A, A+W , respectively,
and we have used the condition r ′ = 1 at both edges. These edge forces vanish if
and only if 4+L N and r4+L M + F/2 vanish at X = A, A+W . Combing the latter
with (140), we find that

G+ = Eα−2, (143)

and (140) then delivers

4+L M(X)= r−1
[Eα−2(r ′− 1)− F/2r ′] (144)

with r(X) given by (131) and (132). The couple distribution on Y = H/2 is

c+ = [αF + Eα−1r ′(r ′− 1)]N. (145)

Moreover, because 4+L N is independent of X (see (138)1), it vanishes everywhere
on this surface.

Finally, the edge forces acting on the edges defined by (Y, Z)= (H/2,±D/2)
are found to be

f =±αr4+M N eθ , (146)
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respectively. These vanish provided that 4+M N vanishes at Z = ±D/2. Because
this function was assumed to be independent of Z in the course of constructing the
solution, it then vanishes everywhere on the plane Y = H/2. We conclude that Sn

vanishes there, and that Sl and the double force are given respectively by

Sl = Eα−1(r ′− 1)eθ and Sm = r−1
[Eα−2r ′(r ′− 1)− F]er . (147)

The situation on the surface Y =−H/2 is similar and so we leave the remaining
details to the interested reader. A novel feature of the present model is the predic-
tion that the tractions transmitted by the initially vertical fibers to the surfaces
Y = ±H/2 can be nullified by the rigid joints of the intersecting fibers via the
associated Lagrange multipliers.

We have said nothing about the stability of this solution. In particular, the
vertical fibers near X = A may become susceptible to buckling as the flexure
angle α increases. However, we defer the analysis of buckling — of considerable
importance in the mechanics of metamaterials — to a future investigation.

References

[Antman 2005] S. S. Antman, Nonlinear problems of elasticity, 2nd ed., Applied Mathematical
Sciences 107, Springer, 2005.

[Barchiesi et al. 2019] E. Barchiesi, M. Spagnuolo, and L. Placidi, “Mechanical metamaterials: a
state of the art”, Math. Mech. Solids 24:1 (2019), 212–234.

[dell’Isola and Seppecher 1995] F. dell’Isola and P. Seppecher, “The relationship between edge con-
tact forces, double forces and interstitial working allowed by the principle of virtual power”, C. R.
Acad. Sci. II B 321:8 (1995), 303–308.

[dell’Isola and Seppecher 1997] F. dell’Isola and P. Seppecher, “Edge contact forces and quasi-
balanced power”, Meccanica 32:1 (1997), 33–52.

[dell’Isola et al. 2012] F. dell’Isola, P. Seppecher, and A. Madeo, “How contact interactions may
depend on the shape of Cauchy cuts in N th gradient continua: approach “à la D’Alembert””, Z.
Angew. Math. Phys. 63:6 (2012), 1119–1141.

[Dill 1992] E. H. Dill, “Kirchhoff’s theory of rods”, Arch. Hist. Exact Sci. 44:1 (1992), 1–23.

[Eremeyev and Pietraszkiewicz 2012] V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry
group of the non-linear polar-elastic continuum”, Int. J. Solids Struct. 49:14 (2012), 1993–2005.

[Eugster and dell’Isola 2017] S. R. Eugster and F. dell’Isola, “Exegesis of the introduction and sect.
I from “Fundamentals of the mechanics of continua” by E. Hellinger”, Z. Angew. Math. Mech. 97:4
(2017), 477–506.

[Eugster and dell’Isola 2018a] S. R. Eugster and F. dell’Isola, “Exegesis of Sect. II and III.A from
“Fundamentals of the mechanics of continua” by E. Hellinger”, Z. Angew. Math. Mech. 98:1 (2018),
31–68.

[Eugster and dell’Isola 2018b] S. R. Eugster and F. dell’Isola, “Exegesis of Sect. III.B from “Fun-
damentals of the mechanics of continua” by E. Hellinger”, Z. Angew. Math. Mech. 98:1 (2018),
69–105.

http://dx.doi.org/10.1177/1081286517735695
http://dx.doi.org/10.1177/1081286517735695
https://gallica.bnf.fr/ark:/12148/bpt6k62021279/f11.item
https://gallica.bnf.fr/ark:/12148/bpt6k62021279/f11.item
http://dx.doi.org/10.1023/A:1004214032721
http://dx.doi.org/10.1023/A:1004214032721
http://dx.doi.org/10.1007/s00033-012-0197-9
http://dx.doi.org/10.1007/s00033-012-0197-9
http://dx.doi.org/10.1007/BF00379680
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.007
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.007
http://dx.doi.org/10.1002/zamm.201600108
http://dx.doi.org/10.1002/zamm.201600108
http://dx.doi.org/10.1002/zamm.201600293
http://dx.doi.org/10.1002/zamm.201600293
http://dx.doi.org/10.1002/zamm.201700112
http://dx.doi.org/10.1002/zamm.201700112


CONTINUUM THEORY FOR MECHANICAL METAMATERIALS 97

[Eugster and Glocker 2017] S. R. Eugster and C. Glocker, “On the notion of stress in classical
continuum mechanics”, Math. Mech. Complex Syst. 5:3–4 (2017), 299–338.

[Fosdick 2016] R. Fosdick, “A generalized continuum theory with internal corner and surface con-
tact interactions”, Contin. Mech. Thermodyn. 28:1–2 (2016), 275–292.

[Germain 1973] P. Germain, “The method of virtual power in continuum mechanics, 2: Microstruc-
ture”, SIAM J. Appl. Math. 25:3 (1973), 556–575.

[Gurtin 1981] M. E. Gurtin, An introduction to continuum mechanics, Mathematics in Science and
Engineering 158, Academic, New York, 1981.

[Koiter 1964] W. T. Koiter, “Couple-stresses in the theory of elasticity, I and II”, Nederl. Akad.
Wetensch. Proc. B 67 (1964), 17–44.

[Landau and Lifshitz 1986] L. D. Landau and E. M. Lifshitz, Theory of elasticity, 3rd ed., Course of
Theoretical Physics 7, Elsevier, Oxford, 1986.

[Mieszala et al. 2017] M. Mieszala, M. Hasegawa, G. Guillonneau, J. Bauer, R. Raghavan, C. Frantz,
O. Kraft, S. Mischler, J. Michler, and L. Philippe, “Micromechanics of amorphous metal/polymer
hybrid structures with 3D cellular architectures: size effects, buckling behavior, and energy absorp-
tion capability”, Small 13:8 (2017), art. id. 1602514.

[Mindlin 1965] R. D. Mindlin, “Second gradient of strain and surface-tension in linear elasticity”,
Int. J. Solids Struct. 1:4 (1965), 417–438.

[Mindlin and Tiersten 1962] R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear
elasticity”, Arch. Rational Mech. Anal. 11 (1962), 415–448.

[Neff 2006] P. Neff, “Existence of minimizers for a finite-strain micromorphic elastic solid”, Proc.
Roy. Soc. Edinburgh Sect. A 136:5 (2006), 997–1012.

[Ogden 1984] R. W. Ogden, Nonlinear elastic deformations, Wiley, New York, 1984.

[Pietraszkiewicz and Eremeyev 2009] W. Pietraszkiewicz and V. A. Eremeyev, “On natural strain
measures of the non-linear micropolar continuum”, Int. J. Solids Struct. 46:3–4 (2009), 774–787.

[Reissner 1975] E. Reissner, “Note on the equations of finite-strain force and moment stress elastic-
ity”, Studies in Appl. Math. 54:1 (1975), 1–8.

[Reissner 1987] E. Reissner, “A further note on finite-strain force and moment stress elasticity”, Z.
Angew. Math. Phys. 38:5 (1987), 665–673.

[Spencer and Soldatos 2007] A. J. M. Spencer and K. P. Soldatos, “Finite deformations of fibre-
reinforced elastic solids with fibre bending stiffness”, Int. J. Non-Linear Mech. 42:2 (2007), 355–
368.

[Steigmann 1996] D. J. Steigmann, “The variational structure of a nonlinear theory for spatial lat-
tices”, Meccanica 31:4 (1996), 441–455.

[Steigmann 2012] D. J. Steigmann, “Theory of elastic solids reinforced with fibers resistant to ex-
tension, flexure and twist”, Int. J. Non-Linear Mech. 47:7 (2012), 737–742.

[Steigmann 2015] D. J. Steigmann, “Effects of fiber bending and twisting resistance on the mechan-
ics of fiber-reinforced elastomers”, pp. 269–305 in Nonlinear mechanics of soft fibrous materials,
edited by L. Dorfmann and O. R. W., CISM Courses and Lect. 559, Springer, 2015.

[Toupin 1964] R. A. Toupin, “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal.
17 (1964), 85–112.

[Vangelatos et al. 2019] Z. Vangelatos, K. Komvopoulos, and C. P. Grigoropoulos, “Vacancies for
controlling the behavior of microstructured three-dimensional mechanical metamaterials”, Math.
Mech. Solids 24:2 (2019), 511–524.

http://dx.doi.org/10.2140/memocs.2017.5.299
http://dx.doi.org/10.2140/memocs.2017.5.299
http://dx.doi.org/10.1007/s00161-015-0423-8
http://dx.doi.org/10.1007/s00161-015-0423-8
http://dx.doi.org/10.1137/0125053
http://dx.doi.org/10.1137/0125053
http://dx.doi.org/10.1016/C2009-0-25521-8
http://dx.doi.org/10.1002/smll.201602514
http://dx.doi.org/10.1002/smll.201602514
http://dx.doi.org/10.1002/smll.201602514
http://dx.doi.org/10.1016/0020-7683(65)90006-5Get
http://dx.doi.org/10.1007/BF00253946
http://dx.doi.org/10.1007/BF00253946
http://dx.doi.org/10.1017/S0308210500004844
http://dx.doi.org/10.1016/j.ijsolstr.2008.09.027
http://dx.doi.org/10.1016/j.ijsolstr.2008.09.027
http://dx.doi.org/10.1002/sapm19755411
http://dx.doi.org/10.1002/sapm19755411
http://dx.doi.org/10.1007/BF00948288
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.02.015
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.02.015
http://dx.doi.org/10.1007/BF00429932
http://dx.doi.org/10.1007/BF00429932
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.04.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.04.007
http://dx.doi.org/10.1007/978-3-7091-1838-2_6
http://dx.doi.org/10.1007/978-3-7091-1838-2_6
http://dx.doi.org/10.1007/BF00253050
http://dx.doi.org/10.1177/1081286518810739
http://dx.doi.org/10.1177/1081286518810739


98 SIMON R. EUGSTER, FRANCESCO DELL’ISOLA AND DAVID J. STEIGMANN

Received 5 Feb 2019. Revised 13 Feb 2019. Accepted 2 Mar 2019.

SIMON R. EUGSTER: eugster@inm.uni-stuttgart.de
Institute for Nonlinear Mechanics, Universität Stuttgart, Stuttgart, Germany

and

International Centre for Mathematics and Mechanics of Complex Systems, Università dell’Aquila,
L’Aquila, Italy

FRANCESCO DELL’ISOLA: francesco.dellisola.me@gmail.com
Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza”, Roma,
Italy

and

International Centre for Mathematics and Mechanics of Complex Systems, Università dell’Aquila,
L’Aquila, Italy

DAVID J. STEIGMANN: dsteigmann@berkeley.edu
Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA,
United States

and

International Centre for Mathematics and Mechanics of Complex Systems, Università dell’Aquila,
L’Aquila, Italy

MM ∩
msp

mailto:eugster@inm.uni-stuttgart.de
mailto:francesco.dellisola.me@gmail.com
mailto:dsteigmann@berkeley.edu
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERRA Università di Roma “La Sapienza”, Italia

ERIC A. CARLEN Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italia

RAFFAELE ESPOSITO (TREASURER) Università dell’Aquila, Italia
ALBERT FANNJIANG University of California at Davis, USA

GILLES A. FRANCFORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy

JEAN-JACQUES MARIGO École Polytechnique, France
PETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France

DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany

PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICOL AMAR Università di Roma “La Sapienza”, Italia

ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France
MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey

HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICOL AMAR Università di Roma “La Sapienza”, Italia
HARM ASKES University of Sheffield, UK
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