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HOMOGENIZATION OF NONLINEAR INEXTENSIBLE
PANTOGRAPHIC STRUCTURES BY 0-CONVERGENCE

JEAN-JACQUES ALIBERT AND ALESSANDRO DELLA CORTE

We prove the 0-convergence of a pantographic microstructured sheet with inexten-
sible fibers to a 2D generalized continuum model. Large deformations considered
as geometrical nonlinearities are taken into account, and the 0-convergence argu-
ment is developed in terms of convergence of measure functionals. We also prove
a relative compactness property for the sequence of discrete energy functionals.

1. Introduction

Pantographic structures can be basically described as microstructured artifacts in
which two families of parallel fibers are mechanically connected in such a way
that changing the angle between two fibers, belonging to the two different families,
costs deformation energy. Here is an image of a possible physical realization of a
pantographic structure:

Figure 1. A 3D-printed pantographic sheet made of polyamide
(courtesy of Professor Tomasz Lekszycki, Warsaw University of
Technology).

Communicated by Pierre Seppecher.
MSC2010: 46G10, 74B20, 74Q05.
Keywords: 0-convergence, nonlinear elasticity, generalized continua, pantographic structures.
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The problem of the equilibrium of lattice structures has been studied for a long
time (see for instance [Rivlin 1964; Pipkin 1984; 1986; Steigmann and Pipkin
1991]), and pantographic structures in particular are currently of definite interest
both as a structural element, due to their interesting mechanical properties (see for
instance [dell’Isola et al. 2016b; Turco et al. 2016b; Battista et al. 2015; Barchiesi
et al. 2018b]), and as an experimental and theoretical model case for the onset
of behaviors that cannot be described by means of the theory of classical Cauchy
continua. In particular it has been shown that generalized continua, in which the
energy density depends explicitly on the second gradient of the placement function
(see [Mindlin 1964; 1965; Mindlin and Eshel 1968; Germain 1973] for historically
important references), are suitable for the description of the deformation of the
homogenized version of truss-like [Seppecher et al. 2011; Alibert and Della Corte
2015; Alibert et al. 2003; Turco et al. 2017a] and pantographic structures [Turco
et al. 2016a; Rahali et al. 2015].

Here we prove a rigorous homogenization result, namely that a discretized
model of pantographic structures (introduced in [dell’Isola et al. 2016a])0-converges
to a homogenized 2D continuum model described by an energy functional in which
second partial derivatives of the placement appear. The mathematical study of

Figure 2. A schematic representation of a pantographic structure
in an arbitrary deformed configuration. At every node x of the
square lattice there are rotational springs acting between adjacent
orthogonal segments (in this case the energy depends, using the
notation of Section 3, on the angle θn) and between adjacent paral-
lel segments (in this case the energy depends, using the notation of
Section 3, on the angle θn,k). The nodes are connected by means
of extensional springs that in the present paper are particularized
to be rigid bars.
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linear pantographic structures is already an active research field (see, e.g., [Boutin
et al. 2017; Eremeyev et al. 2018]). In the present paper, the main result will be
proven in the large-deformation regime, that is, taking into account geometrical
nonlinearities and in particular the actual curvature of the fibers and not only its
linearized form.

The microstructure considered herein consists of a square lattice, at each node of
which are positioned two types of rotational springs, one acting between adjacent
orthogonal segments and the other one acting between adjacent parallel segments
(a schematic representation of the structure, in an arbitrary deformed configuration,
is shown in Figure 2). In the general case, between the nodes are positioned exten-
sional springs allowing changes in the distances separating adjacent nodes. In the
present paper, however, we consider the inextensible case, i.e., we assume that the
nodes of the lattice are connected by rigid bars.

The 0-convergence argument is developed in terms of convergence of measure
functionals. This is, in our opinion, the most sensible approach, since in the real
object (at least in planar deformations) most of the deformation energy is actually
concentrated in the nodes, stored as torsional deformation energy of the cylindrical
pivots interconnecting the two layers of parallel fibers (see, e.g., [Giorgio 2016;
dell’Isola et al. 2015]). Therefore, it is quite natural to take this into account in
the mathematical modeling introducing a set of vector-valued measures concen-
trated in the nodes of the lattice. Then we circumscribe the admissible measures
by identifying them with functions belonging to suitable Sobolev spaces. This
approach allows us to avoid the use of (arbitrary, to some degree) interpolating
functions between the nodes. Along with the 0-convergence result, we prove a
relative compactness property, which ensures that controlling the total deformation
energy is enough to control the norm of the measure used for the description of the
current configuration of the discrete model.

The paper is organized as follows. In Section 2 the general concept of 0-
convergence of measure functionals is introduced; in Section 3 the admissible
measures are introduced and the energy of the discrete micromodel as well as
the boundary conditions are formally described; in Section 4 the same is done for
the continuous macromodel and the main result is stated; in Section 5 the main
result is proven, including the relative compactness property for the sequence of
discrete energy functionals; finally, in Section 6 some conclusions are stated and
some possible directions for future studies are indicated.

2. 0-convergence of measure functionals

We start by recalling the definition of 0-convergence for a sequence of measure
functionals.
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Let K := [0, 1]2 and (C(K ))2 be the space of vector-valued continuous functions
on K endowed with the uniform norm ‖ϕ‖∞ := sup{‖ϕ(x)‖ : x ∈ K } where ‖ · ‖
denotes the euclidean norm of R2. Let (M(K ))2 be the set of vector-valued bounded
measures on K endowed with the norm

‖µ‖M := sup{〈µ, ϕ〉 : ϕ ∈ (C(K ))2, ‖ϕ‖∞ = 1}

where 〈 · , · 〉 stands for the duality bracket between (M(K ))2 and (C(K )2). We
simply write µn ⇀µ to specify that the sequence (µn) of vector bounded measures
converges to µ with respect to the weak∗ topology, i.e., limn→∞〈µn, ϕ〉 = 〈µ, ϕ〉

for every ϕ ∈ (C(K ))2. Recall (see for instance [Evans and Gariepy 2015]) that, if
a sequence of vector-valued bounded measures (µn) satisfies

sup
n
‖µn‖M <+∞,

then there exists µ∈ (M(K ))2 and a subsequence (nk) such that µnk ⇀µ. Let (Fn)

be a sequence of functionals on (M(K ))2 with values in R∪{+∞}. We say that the
relative compactness property holds for the sequence (Fn) if for all sequences (µn)

in (M(K ))2

sup
n

Fn(µn) <+∞ =⇒ sup
n
‖µn‖M <+∞.

We say that the sequence (Fn) 0- converges to F if the following two properties
are satisfied.

Lower-bound inequality. For all µ∈ (M(K ))2 and all sequences (µn) in (M(K ))2

µn ⇀µ =⇒ lim inf
n→∞

Fn(µn)≥ F(µ).

Upper-bound inequality. For each µ ∈ (M(K ))2, there exists a sequence (µn) in
(M(K ))2 such that

µn ⇀µ and lim sup
n→∞

Fn(µn)≤ F(µ).

For a general introduction to 0-convergence the reader is referred to [Braides
2002].

3. Micromodel for nonlinear pantographic lattices

3.1. Reference configuration and basic operators. Let δt be the Dirac measure
concentrated at the point t ∈ [0, 1]. We define four Radon measures on [0, 1] by
setting

νn :=
1
n

n∑
i=0

δi/n, ν+n :=
1
n

n−1∑
i=0

δi/n, ν−n :=
1
n

n∑
i=1

δi/n, ν2
n :=

1
n

n−1∑
i=1

δi/n.
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The reference configuration of the microsystem is described by the measure σn :=

νn ⊗ νn on K := [0, 1]× [0, 1]. The support of the measure σn is the finite set

Support(σn)=

{(
i
n
,

j
n

)
: 0≤ i, j ≤ n

}
.

Each point of the support of σn is called a node. Two nodes x and y are called
adjacent when ‖y− x‖ = 1/n and diagonally adjacent when ‖y− x‖ =

√
2/n. We

define six measures on K and six discrete partial derivative operators by setting

σ+n,1 := ν
+

n ⊗ νn, ∂+n,1u(x) := n
(

u
(

x + 1
n

e1

)
− u(x)

)
,

σ−n,1 := ν
−

n ⊗ νn, ∂−n,1u(x) := n
(

u(x)− u
(

x − 1
n

e1

))
,

σ 2
n,1 := ν

2
n ⊗ νn, ∂2

n,1u(x) := n(∂+n,1u(x)− ∂−n,1u(x)),

σ+n,2 := νn ⊗ ν
+

n , ∂+n,2u(x) := n
(

u
(

x + 1
n

e2

)
− u(x)

)
,

σ−n,2 := νn ⊗ ν
−

n , ∂−n,2u(x) := n
(

u(x)− u
(

x − 1
n

e2

))
,

σ 2
n,2 := νn ⊗ ν

2
n , ∂2

n,2u(x) := n(∂+n,2u(x)− ∂−n,2u(x))

with e1 := (1, 0) and e2 := (0, 1). Note that, if u : K → R2 is defined at every
point in the support of σn , then for k ∈ {1, 2} and s ∈ {+,−, 2} the function ∂s

n,ku :
K → R2 is defined at every point in the support of σ s

n,k . For a = (a1, a2) ∈ R2 and
b = (b1, b2) ∈ R2, we set

a ∧ b := a1b2− a2b1.

We define four measures on K and four discrete Jacobian determinant operators
by setting, for s, s ′ ∈ {+,−}

σ (s,s
′)

n := νs
n ⊗ ν

s′
n , J (s,s

′)
n (u)(x) := ∂s

n,1u(x)∧ ∂s′
n,2u(x).

Note that, if u : K → R2 is defined at every point in the support of σn , then the
function J (s,s

′)
n (u) : K → R is defined at every point in the support of σ (s,s

′)
n .

3.2. Current configuration and deformation energy of the n-micromodel. The
current configuration of the object is described by a vector-valued bounded measure
of the special set Mn defined below.

Definition (admissible measures of the n-micromodel). The set of admissible mea-
sures of the n-micromodel is denoted by Mn and consists of those vector bounded
measures µ ∈ (M(K ))2 of the form

µ(dx)= u(x)σn(dx)
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where the function u : K → R2 is defined at any point x in the support of σn and
such that ‖∂s

n,ku(x)‖ > 0 for every (k, s) ∈ {1, 2} × {+,−}. For any admissible
measure µ of the n-micromodel, the following notation is used:

ρs
n,k(µ)(x) := ‖∂

s
n,ku(x)‖ and vs

n,k(µ)(x) :=
∂s

n,ku(x)

‖∂s
n,ku(x)‖

. (1)

Let µ(dx)= u(x)σn(dx) ∈Mn . The function u is called the placement function.
The point u(x) is the current position of the node x . The above definition of admis-
sible measures imposes the natural requirement that two adjacent nodes should not
be mapped by the deformation on the same point (of course this does not exclude
the possibility that two generic nodes are mapped on the same point).

At each node x are placed extensional springs which connect x to the adjacent
nodes. The deformation energy associated with these extensional springs depends
on the distance between the current positions of adjacent nodes and is equal to zero
when the distance is equal to 1/n. So we introduce the following definition.

Definition (extensional deformation energy of the n-micromodel). The extensional
deformation energy E (ext)

n is defined on (M(K ))2 by setting E (ext)
n (µ) = +∞ if

µ /∈Mn and

E (ext)
n (µ) :=

2∑
k=1

∫
fk(ρ

+

n,k(µ)) dσ+n,k otherwise,

where the functions fk : (0,+∞)→[0,+∞] are assumed to be such that fk(1)= 0
and fk(ρ) > 0 if ρ 6= 1.

Remark 1. Our main result is obtained in the particular case when the springs
between the nodes are just rigid bars, i.e., when f1 and f2 are the indicator function
of the set {1}:

fk(ρ) :=

{
0 if ρ = 1,
+∞ otherwise.

(2)

At each node x are placed four rotational springs (to provide shear stiffness)
which connect a pair of segments ([x, x + (s/n)e1], [x, x + (s ′/n)e2]) with s, s ′ ∈
{+1,−1}. Its energy at the node x depends on the angle θ (s,s

′)
n (µ)(x) formed by

the vectors ∂s
n,1u(x) and ∂s′

n,2u(x). This energy is equal to zero if and only if the
angle is equal to π/2. We also assume that angles with finite energy must be in
the interval (0, π), so as to ensure that nodes diagonally adjacent are not mapped
by the deformation on the same point (again, this does not exclude the possibility
that two generic nodes are mapped on the same point). One has

sin(θ (s,s
′)

n (µ)(x))= vs
n,1(µ)(x)∧ v

s′
n,2(µ)(x).

So we introduce the following definition.
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Definition (first rotational deformation energy of the n-micromodel). The first ro-
tational deformation energy E (shear)

n is defined on (M(K ))2 by setting E (shear)
n (µ)=

+∞ if µ /∈Mn and

E (shear)
n (µ) :=

∑
s,s′∈{+,−}

∫
g(s,s

′)(vs
n,1(µ)∧ v

s′
n,2(µ)) dσ (s,s

′)
n otherwise,

where the four functions g(s,s
′)
: [−1, 1] → [0,+∞] are assumed to be such that

g(s,s
′)(1)= 0.

Remark 2. Our main result is obtained in the particular case when the four func-
tions g(s,s

′) are assumed to be lower semicontinuous, convex, and such that {g(s,s
′)<

+∞} is compact and g(s,s
′)(δ)=+∞ if δ ≤ 0.

The second type of rotational springs (providing bending rigidity along each
coordinate line) is those which connect a pair of segments ([x, x + (1/n)ek],

[x, x − (1/n)ek]) with k ∈ {1, 2}. Their energy at the node x depends on the
angle θn,k(µ)(x) formed by the vectors v+n,k(µ)(x) and v−n,k(µ)(x). This energy is
equal to zero if and only if the angle is equal to 0 and one has

1− cos(θn,k(µ)(x))= 1
2‖v
+

n,k(µ)(x)− v
−

n,k(µ)(x)‖
2
=

1
2n2 ‖∂

−

n,kv
+

n,k(µ)(x)‖
2.

So, we introduce the following definition.

Definition (second rotational deformation energy of the n-micromodel). Second
rotational deformation energy E (bend)

n is defined on (M(K ))2 by setting E (bend)
n (µ)=

+∞ if µ /∈Mn and

E (bend)
n (µ) :=

∑
k∈{1,2}

∫
κk

2
‖∂−n,kv

+

n,k(µ)‖
2 dσ 2

n,k otherwise.

Remark 3. Our main result is obtained in the case when the two real numbers κk

are assumed to be positive (which is quite natural since they represent material
coefficients accounting for the bending stiffness of the fibers).

Definition (Dirichlet boundary condition for the n-micromodel). Let ∂K denote
the boundary of K . Let 6 be a subset of ∂K and M6

n be the set of those measures
µ(dx)= u(x)σn(dx) ∈Mn such that u(x)= x for every x ∈6 ∩Support(σn). We
denote by E (6)n the indicator functional of the set M6

n , i.e.,

E (6)n (µ) :=

{
0 if µ ∈M6

n ,

+∞ otherwise.

Remark 4. Our main result is obtained in the particular case when6 := (a, b)×{0}
or 6 := {0}× (a, b) with 0≤ a < b ≤ 1.
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4. Macromodel and main result

4.1. Deformation energy of the macromodel. Let � := (0, 1)× (0, 1). For each
p ∈ [1,+∞] we denote by L p(�) the usual Lebesgue space. Distributional partial
derivative operators are denoted by ∂k . Distributional second partial derivative
operators are denoted by ∂k∂k′ . If k = k ′, we also write ∂2

k in place of ∂k∂k .

Definition (admissible measures of the macromodel). The set of admissible mea-
sures is denoted by M∞ and consists of those measures µ ∈ (M(K ))2 of the form

µ(dx)= u(x) dx

where the function u : � → R2 is such that u ∈ (L1(�))2, ∂ku ∈ (L1(�))2,
∂2

k u ∈ (L2(�))2, and ‖∂ku‖> 0 a.e. in � for every k ∈ {1, 2}. For any admissible
measure µ, the following notation will be used:

ρk(µ) := ‖∂ku‖ and vk(µ) :=
∂ku
‖∂ku‖

. (3)

Definition (extensional deformation energy of the macromodel). The extensional
deformation energy E (ext) is defined on (M(K ))2 by setting E (ext)(µ) = +∞ if
µ /∈M∞ and

E (ext)(µ) :=

2∑
k=1

∫
�

fk(ρk(µ)(x)) dx otherwise,

where fk was defined in Remark 1.

Definition (first rotational deformation energy of the macromodel). The first rota-
tional deformation energy E (shear) is defined on (M(K ))2 by setting E (shear)(µ)=

+∞ if µ /∈M∞ and

E (shear)(µ) :=

∫
�

g(v1(µ)(x)∧ v2(µ)(x)) dx otherwise,

where g := g(+,+)+ g(−,+)+ g(−,−)+ g(+,−), gs,s′ was defined in Remark 2, and
vk(µ)(x) was defined in (3).

Definition (second rotational deformation energy of the macromodel). The second
rotational deformation energy E (bend) is defined on (M(K ))2 by setting E (bend)(µ)=

+∞ if µ /∈M∞ and

E (bend)(µ) :=

2∑
k=1

∫
�

κk

2
‖∂kvk(µ)(x)‖2 dx otherwise.

If µ(dx)= u(x) dx is admissible for the macromodel, the placement function u
admits a trace on the boundary of � because u ∈ (L1(�))2 and ∂ku ∈ (L1(�))2 for
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k = 1, 2. The trace function associated with u will be also denoted by u and belongs
to the Lebesgue space of integrable functions with respect to the 1D Hausdorff
measure supported on ∂�= ∂K . This last measure will be denoted by H1

∂�.

Definition (Dirichlet boundary condition for the macromodel). Let 6 be a subset
of the boundary of � and M6

∞
be the set of those measures µ(dx)= u(x) dx ∈M∞

such that u(x)= x for H1
∂�-a.e. x ∈6. We denote by E (6) the indicator functional

of the set M6
∞

, i.e.,

E (6)(µ) :=
{

0 if µ ∈M6
∞
,

+∞ otherwise.

4.2. Main result. Our main result states that the total deformation energy of the
n-micromodel, namely

En := E (ext)
n + E (shear)

n + E (bend)
n + E (6)n ,

0-converges to the total deformation energy of the macromodel

E := E (ext)
+ E (shear)

+ E (bend)
+ E (6).

This result is obtained under the assumption that two adjacent nodes are connected
by an inextensible bar. This is taken into account by assuming that f1 and f2 are
the indicator function of the set {1}. Moreover, we need that the angles θ (s,s

′)
n (µ)

remain in the interval (0, π). Such an assumption is taken into account by assuming
that the four functions g(s,s

′) are greater than the indicator function of the set (0, 1].
Finally, we need that the part of the boundary on which the displacement is zero
is not too small. More precisely, we have:

Theorem. If we assume that

(H1) the two functions fk : (0,+∞)→ [0,+∞] are the indicator function of the
set {1},

(H2) the four functions g(s,s
′)
: [−1, 1] → [0,+∞] are lower semicontinuous, con-

vex, and such that {g(s,s
′) <+∞} is compact, g(s,s

′)(1)= 0, and g(s,s
′)(δ)=

+∞ if δ ≤ 0,

(H3) the two real numbers κk are positive, and

(H4) 6 := (a, b)×{0} or 6 := {0}× (a, b) with 0≤ a < b ≤ 1,

then the sequence (En) 0-converges to the functional E and the relative compact-
ness property holds.
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5. Proof of the main theorem

5.1. Consequences of the assumptions (H1) and (H2) on placement functions.
For the sake of simplicity, in Section 5 we will write ρ+n,k and v+n,k instead of ρ+n,k(µ)
and v+n,k(µ).

When property (H1) is assumed, the extensional deformation energy of the n-
micromodel is just the indicator functional of the set of those admissible measures
µ ∈ Mn such that ρs

n,k(µ)(x) = 1 for every node x ∈ Support(σ s
n,k) and every

(k, s) ∈ {1, 2}× {+,−}. Moreover, if (H2) is assumed, then measures with finite
deformation energy have a very special form.

Lemma 5. If (H1)–(H2) are assumed and E (ext)
n (µ)+ E (shear)

n (µ) <+∞, then the
placement function u associated with µ is such that

‖∂+n,ku(x)‖ = 1 for every node x ∈ Support(σ+n,k),

u(x)+ u(0)=
2∑

k=1

u((x · ek)ek) for every node x ∈ Support(σn).

Proof. Since E (ext)
n (µ) < +∞ and (H1) is assumed, the first claim of Lemma 5

is clear and for any node x ∈ Support(σ (+,+)n ) one has v+n,k(x) = ∂
+

n,ku(x). As a
consequence,

v+n,1

(
x + 1

n
e2

)
− v+n,1(x)= v

+

n,2

(
x + 1

n
e1

)
− v+n,2(x).

Let us denote byw(x) any member of the previous identity. Observing that ‖w(x)+
v+n,1(x)‖

2 and ‖w(x)+ v+n,2(x)‖
2 are equal to 1 and v−n,2(x + (1/n)e2) = v

+

n,2(x),
we obtain

w(x) · (v+n,2(x)− v
+

n,1(x))= 0,

‖w(x)‖2+w(x) · (v+n,1(x)+ v
+

n,2(x))= 0,

(w(x)+ v+n,1(x))∧ v
+

n,2(x)= v
+

n,1

(
x + 1

n
e2

)
∧ v−n,2

(
x + 1

n
e2

)
.

As E (shear)
n (µ)<+∞ and (H2) is assumed, v+n,1(x+(1/n)e2)∧v

−

n,2(x+(1/n)e2)>0
and v+n,1(x)∧ v

+

n,2(x) > 0. As a consequence (v+n,1(x)+ v
+

n,2(x), v
+

n,2(x)− v
+

n,1(x))
is an orthogonal basis of R2, and for some real number λ, one has

w(x)= λ(v+n,1(x)+ v
+

n,2(x)),

λ2
+ λ= 0,

(λ+ 1)v+n,1(x)∧ v
+

n,2(x)= (w(x)+ v
+

n,1(x))∧ v
+

n,2(x) > 0.

We obtain w(x) = 0. Consequently v+n,k(x) = v+n,k((x · ek)ek) for every x ∈
Support(σ+n,k) and ∂+n,1∂

+

n,2u(y) = 0 for every node y ∈ Support(σ (+,+)n ). The last
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identity is obtained by observing that for all x = (i/n, j/n) ∈ Support(σn)

u(x)+ u(0)−
2∑

k=1

u((x · ek)ek)=
1
n2

i−1∑
q=0

j−1∑
p=0

∂+n,1∂
+

n,2u
(

q
n
,

p
n

)
. �

5.2. Relative compactness property. The fact that the relative compactness prop-
erty holds for the sequence (En) is a direct consequence of the following result.

Lemma 6. If (H1) and (H4) are assumed, then the relative compactness property
holds for the sequence (E (ext)

n + E (6)n ).

Proof. Without loss of generality, we may assume that there exist two real numbers
a and b such that 0≤ a< b≤ 1 and {0}×(a, b)⊂6. For all n such that b−a> 1/n
we set

ϕn(t) :=
δt(a, b)
νn(a, b)

.

Let µ ∈ (M(K ))2 such that E (ext)
n (µ)+ E (6)n (µ) < +∞. Then the measure µ is

such that µ(dx)= u(x)σn(dx) with ‖∂s
n,ku(x)‖= 1 for every node x ∈ Support(σn)

and v(x) := u(x)− x = 0 for every node x ∈ {0}× (a, b). One has

‖µ‖M =

∫
‖u(x)‖σn(dx)≤

∫
‖x‖σn(dx)+

∫
‖v(x)‖σn(dx)

and
∫
ϕn(t)νn(dt)= 1; then for any node x = (x1, x2),

v(x)=
∫
(v(x1, x2)− v(x1, t))ϕn(t)νn(dt)+

∫
(v(x1, t)− v(0, t))ϕn(t)νn(dt),

which implies∫
‖v(x)‖σn(dx)≤ 2

∫
‖∂+n,2v‖ dσ+n,2+

4
νn(a, b)

∫
[0,1]×(a,b)

‖∂+n,1v‖ dσ+n,1

≤ 2
∫
‖∂+n,2u−e2‖ dσ+n,2+

4
νn(a, b)

∫
[0,1]×(a,b)

‖∂+n,1u−e1‖ dσ+n,1

≤ 8+2
∫
‖∂+n,2u‖ dσ+n,2+

4
νn(a, b)

∫
‖∂+n,1u‖ dσ+n,1

≤ 12+
8

νn(a, b)
.

Since (νn(a, b)−1) and
(∫
‖x‖σn(dx)

)
are bounded sequences, the proof is com-

plete. �
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5.3. Lower-bound inequality. Throughout this subsection, (µn) is a sequence of
measures with bounded deformation energy, which implies µn(dx)= un(x)σn(dx)
is an admissible measure for the n-micromodel and

sup
n

En(µn) <+∞.

To gain some regularity properties for the placement functions, which will be ex-
ploited in the following, it is convenient to introduce a sequence µn(dx)= un(x) dx
of admissible measures for the macromodel which will be called the equivalent
sequence because of Lemma 9 below.

Lemma 7 (equivalent sequence). We define a sequence µn(dx) = un(x) dx in
(M(K ))2 by setting, for all t ∈ [0, 1] and all x ∈ K ,

wn,k(t): =
n−1∑
i=1

δt

(
i
n
−

1
2n
,

i
n
+

1
2n

)
∂−n,kv

+

n,k

(
i
n

ek

)
,

vn,k(t): = v+n,k(0)+
∫ t

0
wn,k(s) ds,

un(x): = un(0)+
2∑

k=1

∫ x ·ek

0
vn,k(t) dt.

We assume that (H1), (H2), and (H3) hold. Then un is C1(K ) regular with distri-
butional second partial derivatives in (L2(�))2. Moreover,

2∑
k=1

∫
�

κk

2
‖∂2

k un(x)‖2 dx = E (bend)
n (µn) and ∂1∂2un = 0 in �,

2∑
k=1

κk

2
‖∂kun(y)− ∂kun(x)‖2 ≤ ‖y− x‖E (bend)

n (µn) for every x, y ∈ K ,

∂kun

(
x +

1
2n

ek

)
= v+n,k(x) for every k ∈ {1, 2} and x ∈ Support(σ+n,k).

Proof. In the proof of Lemma 5 we proved that v+n,k(x)= v
+

n,k((x · ek)ek) for every
node x ∈ Support(σ+n,k). Then a direct computation gives us∫ 1

0
‖wn,k(t)‖2 dt =

n
n+ 1

∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n,k .

As a consequence vn,k : [0, 1] → R2 is continuous on [0, 1] with distributional
derivative in (L2(0, 1))2, which implies that un : K → R2 is C1(K ) regular with
distributional second partial derivatives in (L2(�))2 and such that ∂1∂2un = 0 in �
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and ∫
�

‖∂2
k un(x)‖2 dx =

∫
�

‖wn,k(x · ek)‖
2 dx =

∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n,k .

Let x, y ∈ K . One has

‖∂kun(y)−∂kun(x)‖2 = ‖vn,k(y ·ek)−vn,k(x ·ek)‖
2
=

∥∥∥∥∫ y·ek

x ·ek

wn,k(t) dt
∥∥∥∥2

≤ ‖y−x‖
∫ 1

0
‖wn,k(t)‖2 dt

≤ ‖y−x‖
∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n .

Let x ∈ Support(σ+n,k). There exists i ∈ {0, . . . , n− 1} such that i/n = x · ek ; then

∂kun

(
x +

1
2n

ek

)
= vn,k

(
x · ek +

1
2n

)
= v+n,k(0)+

i∑
q=1

∫ q/n+1/2n

q/n−1/2n
∂−n,kv

+

n,k

(
q
n

ek

)
dt

= v+n,k(0)+
i∑

q=1

(
v+n,k

(
q
n

ek

)
− v+n,k

(
q − 1

n
ek

))
= v+n,k((x · ek)ek)= v

+

n,k(x). �

Lemma 8 (admissibility for the equivalent sequence). We assume that (H1), (H2),
and (H3) hold. Then µn is admissible for the macromodel. More precisely, for all
k ∈ {1, 2},

∂1un(x)∧ ∂2un(x) > 0 and 1≥ ‖∂kun(x)‖> 0

for every x ∈ K .

Proof. When x = (i/n, j/n)∈Support(σ (+,+)n ), using Lemma 5 and the fact that µn

is admissible for the micromodel (we recall that µn is a sequence of measures with
bounded energy), we obtain v+n,1((i/n)e1)∧ v

+

n,2(( j/n)e2)= v
+

n,1(x)∧ v
+

n,2(x) > 0.
As a consequence, for all q1, q2 ∈ {1, . . . , n− 1} and all θ1, θ2 ∈ [0, 1],(
(1−θ1)v

−

n,1

(
q1

n
e1

)
+θ1v

+

n,1

(
q1

n
e1

))
∧

(
(1−θ2)v

−

n,2

(
q2

n
e2

)
+θ2v

+

n,2

(
q2

n
e2

))
>0.

Let x ∈ K . When x ∈ [1/(2n), 1− 1/(2n)]2 one has

qk

n
−

1
2n
≤ x · ek ≤

qk

n
+

1
2n
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for some q1, q2 ∈ {1, . . . , n− 1}. A direct computation gives

∂kun(x)= (1−θk)v
−

n,k

(
qk

n
ek

)
+θkv

+

n,k

(
qk

n
ek

)
with θk := n

(
x ·ek−

(
qk

n
−

1
2n

))
.

Since θk ∈ [0, 1], we obtain ∂1un(x)∧ ∂2un(x) > 0 and 1 ≥ ‖∂kun(x)‖ > 0. The
proof is easily completed when x ∈ K \ [1/(2n), 1− 1/(2n)]2. �

Lemma 9 (asymptotic equivalence). Assume that (H1), (H2), and (H3) hold and
set

‖un − un‖L∞(σn) := sup{‖un(x)− un(x)‖ : x ∈ Support(σn)}.

Then
lim

n
‖un − un‖L∞(σn) = 0.

Moreover, if supn‖µn‖M <+∞, then

sup
n
‖un‖L∞(σn) <+∞ and µn −µn ⇀ 0

where (µn) is the equivalent sequence defined in Lemma 7.

Proof. Step 1. Let x = (i1/n, i2/n) ∈ Support(σn). Using Lemmas 5 and 7 we
obtain

‖un(x)− un(x)‖ ≤
2∑

k=1

∥∥∥∥un((x · ek)ek)− un(0)−
∫ x ·ek

0
∂kun(tek) dt

∥∥∥∥
=

2∑
k=1

∥∥∥∥un

(
ik

n
ek

)
− un(0)−

∫ ik/n

0
∂kun(tek) dt

∥∥∥∥
≤

2∑
k=1

ik−1∑
q=0

∫ q/n+1/n

q/n

∥∥∥∥∂+n,kun

(
q
n

ek

)
− ∂kun(tek)

∥∥∥∥ dt

=

2∑
k=1

ik−1∑
q=0

∫ q/n+1/n

q/n

∥∥∥∥∂kun

((
q
n
+

1
2n

)
ek

)
− ∂kun(tek)

∥∥∥∥ dt

≤

2∑
k=1

ik−1∑
q=0

∫ q/n+1/n

q/n

∣∣∣∣(q
n
+

1
2n

)
+t
∣∣∣∣1/2(∫ ‖∂−n,kv+n,k‖2 dσ 2

n,k

)1/2

dt

≤

√
1

2n

2∑
k=1

(∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n,k

)1/2

;

then the first claim of Lemma 9 holds because the sequence (E (bend)
n (µn)) is bounded

and (H3) is assumed.
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Step 2. Let x be any node of Support(σn). Using Lemma 5 we obtain

‖un(x)‖ ≤
1

σn(K )

∫
‖un(y)‖σn(dy)+

1
σn(K )

∫
‖un(x)− un(y)‖σn(dy)

≤ ‖µn‖M+
2

σn(K )

∫
‖x − y‖σn(dy)

≤ ‖µn‖M+ 2
√

2.

It is assumed that the sequence (‖µn‖M) is bounded; then the second claim of
Lemma 9 holds.

Step 3. Let us set �x := {y ∈ K :maxk |(y− x) · ek |< 1/(2n)}, and let |�x | be the
area of �x . Observe that for any node x ∈ Support(σn)

|�x | =


1/(n2) if x is an interior point of K ,
1/(4n2) if x is an extreme point of K ,
1/(2n2) otherwise.

Let ϕ ∈ C(K )2 be a test function. Since ϕ · un is continuous on K one has

|�x |ϕ(yx) · un(yx)=

∫
�x

ϕ(y) · un(y) dy

for some yx ∈�x . As a consequence 〈un − un, ϕ〉 = An + Bn +Cn + Dn with

An =
∑

x∈Support(σn)

|�x |ϕ(yx) · (un(yx)− un(x)),

Bn =
∑

x∈Support(σn)

|�x |ϕ(yx) · (un(x)− un(x)),

Cn =
∑

x∈Support(σn)

|�x |(ϕ(yx)−ϕ(x)) · un(x),

Dn =
∑

x∈Support(σn)

(
|�x | −

1
n2

)
ϕ(x) · un(x).

By Lemma 8, the sequence (un) is uniformly equicontinuous on K ; therefore,
limn An = 0. By Lemma 9, limn‖un − un‖L∞(σn) = 0; thus, limn Bn = 0. The
test function ϕ is uniformly continuous on K , and it is assumed that the sequence(∫
‖un‖ dσn

)
is bounded; thus, limn Cn = 0. Observe that

|Dn| ≤
2n+ 1

n2 ‖ϕ‖L∞(σn)‖un‖L∞(σn);

then by Lemma 9, limn Dn = 0. �



16 JEAN-JACQUES ALIBERT AND ALESSANDRO DELLA CORTE

Lemma 10 (convergence of the equivalent sequence). We assume that (H1), (H2),
and (H3) hold and µn ⇀ µ. Then the limit measure µ is of the form µ(dx) =
u(x) dx where u is C1(K ) regular with distributional second partial derivatives
in (L2(�))2 and ∂1∂2u = 0 in �. Moreover, for all k ∈ {1, 2}

un→ u with respect to the uniform norm on K ,

∂kun→ ∂ku with respect to the uniform norm on K ,

∂2
k un ⇀∂2

k u with respect to the weak topology of (L2(�))2.

Proof. Since µn ⇀µ, the Banach–Steinhaus theorem implies supn‖µn‖M <+∞.
Using Lemma 9, we obtain

un(x)dx ⇀µ(dx).

Lemmas 7 and 8 imply that (un) and (∂kun) are uniformly equicontinuous on K .
By the Ascoli theorem, un → u and ∂kun → ∂ku with respect to the uniform
norm on K for some u ∈ (C1(K ))2. As a consequence ∂2

k un ⇀ ∂2
k u in the sense

of distributions on �. Since by Lemma 7 the sequence (∂2
k un) is bounded with

respect to the (L2(�))2 norm, the above convergence holds with respect to the
weak topology of (L2(�))2. �

Lemma 11 (lower-bound inequalities). We assume that (H1), (H2), (H3), and (H4)

hold and µn ⇀µ. Then the measure µ(dx)= u(x) dx is such that

E (ext)(µ)= 0,

E (shear)(µ)≤ lim inf
n

E (shear)
n (µn),

E (bend)(µ)≤ lim inf
n

E (bend)
n (µn).

If moreover supn E (6)n (µn) <+∞, then E (6)(µ)= 0.

Proof. Let (µn) be the equivalent sequence associated with (µn).

Step 1. Lemma 7 implies that ‖∂kun(x + (1/(2n))ek)‖ = 1 for every node x ∈
Support(σ+n,k), and Lemma 10 asserts that ∂kun→ ∂ku with respect to the uniform
norm on K . Hence, ‖∂ku(x)‖ = 1 for every x ∈ K , which implies E (ext)(µ) = 0.
As a consequence µ is admissible for the macromodel and

E (shear)(µ)=

∫
�

g(∂1u(x)∧∂2u(x)) dx, E (bend)(µ)=

2∑
k=1

∫
�

κk

2
‖∂2

k u(x)‖2 dx .

Step 2. Since the four functions g(s,s
′)
: [−1, 1] → [0,+∞] are lower semicontin-

uous, there exist four sequences of nonnegative functions (g(s,s
′)

p ) in C[0, 1] such



HOMOGENIZATION OF NONLINEAR INEXTENSIBLE PANTOGRAPHIC STRUCTURES 17

that
g(s,s

′)
p+1 ≥ gp and sup

p
g(s,s

′)
p = g(s,s

′).

Using Lemmas 7 and 10 again, the fact that σ (s,s
′)

n (dx) ⇀ dx , and the monotone
convergence theorem, we obtain

lim inf
n

E (shear)
n (µn) := lim inf

n

∑
s,s′

∫
g(s,s

′)(v+n,1(x)∧ v
+

n,2(x))σ
(s,s′)
n (dx)

≥

∑
s,s′

lim inf
n

∫
g(s,s

′)

(
∂1un

(
x +

s
2n

e1

)
∧ ∂2un

(
x +

s ′

2n
e2

))
σ (s,s

′)
n (dx)

≥ sup
p

∑
s,s′

lim inf
n

∫
g(s,s

′)
p

(
∂1un

(
x +

1
2n

e1

)
∧ ∂2un

(
x +

1
2n

e2

))
σ (s,s

′)
n (dx)

≥ sup
p

∑
s,s′

∫
�

g(s,s
′)

p (∂1u(x)∧ ∂2u(x)) dx

≥

∫
�

g(∂1u(x)∧ ∂2u(x)) dx = E (shear)(µ).

Step 3. Using Lemmas 7 and 10 and remembering that the (L2(�))2 norm is weak
lower semicontinuous we obtain

lim inf
n

E (bend)
n (µn)= lim inf

n

2∑
k=1

∫
�

κk

2
‖∂2

k un(x)‖2 dx ≥ E (bend)(µ).

Step 4. The condition supn E (6)n (µn) < +∞ says that un(x) = x for every x ∈
6 ∩Support(σn). Using Lemma 9 (i.e., limn‖un − un‖L∞(σn) = 0) we obtain

lim sup
n
{‖un(x)− x‖ : x ∈6 ∩Support(σn)} = 0.

Using Lemma 10 we obtain

lim sup
n
{‖u(x)− x‖ : x ∈6 ∩Support(σn)} = 0.

Since 6 = O ∩ ∂� where O is an open subset of R2 we deduce that u(x)= x at
any point of 6. Hence, E (6)(µ)= 0. �

5.4. Upper-bound inequality. We recall that the upper-bound inequality for the
sequence (En) means that for each µ ∈ (M(K ))2, there exists a sequence (µn)

in (M(K ))2 such that

µn ⇀µ and lim sup
n→∞

En(µn)≤ E(µ).

This is easily obtained by means of Lemma 13 below.
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Lemma 12. We assume that (H1), (H2), and (H3) hold and µ(dx)= u(x) dx is an
admissible measure for the macromodel such that E(µ) < +∞. Then the place-
ment function u is C1(K ) regular with distributional second partial derivatives
in (L2(�))2 and for all x ∈ K and all k ∈ {1, 2},

‖∂ku(x)‖ = 1 and u(x)+ u(0)=
2∑

k=1

u((x · ek)ek).

As a consequence

E (ext)(µ)= 0,

E (shear)(µ)=

∫
�

g(∂1u(x)∧ ∂2u(x)) dx,

E (bend)(µ)=

∫
�

2∑
k=1

κk

2
‖∂2

k u(x)‖2 dx .

Proof. Step 1 (H 2(�) regularity). Let H−1(�) denote the dual space of the usual
Sobolev space H 1

0 (�). Since E (ext)(µ) < +∞ and (H1) is assumed, one has
‖∂ku‖ = ρk(µ)= 1 a.e. in � and ∂k∂ku = ∂kvk(µ) ∈ (L2(�))2 for every k ∈ {1, 2}.
As a consequence

∂1∂2u ∈ (H−1(�))2,

∂1(∂1∂2u)= ∂2(∂
2
1 u)= ∂2(∂1v1(µ)) ∈ (H−1(�))2,

∂2(∂1∂2u)= ∂1(∂
2
2 u)= ∂1(∂2v2(µ)) ∈ (H−1(�))2.

A well known result by Necas [Carroll et al. 1966] asserts that, if a distribution
and its first distributional derivatives are H−1(�) regular and if � is bounded
with Lipschitz boundary, then the distribution is L2(�) regular. Hence, ∂1∂2u ∈
(L2(�))2.

Step 2 (∂1∂2u = 0 a.e. in �). Thanks to Step 1 one has

2(∂1∂2u) · (∂1u+ ∂2u)= ∂2‖∂1u‖2+ ∂1‖∂2u‖2 = ∂2ρ1(µ)
2
+ ∂1ρ2(µ)

2
= 0,

2(∂1∂2u) · (∂2u− ∂1u)= ∂1‖∂2u‖2− ∂2‖∂1u‖2 = ∂1ρ2(µ)
2
− ∂2ρ1(µ)

2
= 0.

Since E (shear)(µ) < +∞ and (H3) is assumed, one has ∂1u ∧ ∂2u > 0 a.e. in �,
which implies that (∂1u+∂2u, ∂2u−∂1u) is a direct orthogonal basis of R2 a.e. in�;
therefore, ∂1∂2u = 0 a.e. in �.

Step 3 (C1(K ) regularity). Let k ∈ {1, 2}. By Step 1, Step 2, and the usual Sobolev
embedding theorem one has

∂ku(x)= vk(x · ek) for a.e. x ∈�
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for some vk ∈ (C[0, 1])2 with distributional derivative in (L2(0, 1))2. As a conse-
quence u ∈ (C1(K ))2 and the proof is easily completed. �

Lemma 13 (approximating sequence). We assume that (H1), (H2), (H3), and (H4)

hold and µ(dx)= u(x) dx is an admissible measure for the macromodel such that
E(µ) <+∞. Then there exists a sequence µn(dx)= un(x)σn(dx) such that

E (6)n (µn)= E (σ )(µ)= 0 for every integer n,

E (ext)
n (µn)= E (ext)(µ)= 0 for every integer n,

µn ⇀µ,

lim
n

E (shear)
n (µn)= E (shear)(µ),

E (bend)
n (µn)≤ E (bend)(µ) for every integer n.

Proof. Step 1 (construction of the sequence (µn)). It is assumed that n is large
enough so that at least two nodes are contained in 6 := (a, b)×{0}. As a conse-
quence of Lemma 12, one has ∂1u(te1)= e1 for every t ∈ [a, b]. It is then possible
to define νn-a.e. two functions un,k : [0, 1] → R2 by setting

un,1

(
i
n

)
=

i
n

e1 if a <
i
n
< b,

n
(

un,1

(
i+1

n

)
−un,1

(
i
n

))
= ∂1u

((
i
n
+

1
2n

)
e1

)
for every i ∈ {0, . . . , n−1},

and

un,2(0)= un,1(0)

n
(

un,2

(
j+1

n

)
−un,2

(
j
n

))
= ∂2u

((
j
n
+

1
2n

)
e2

)
for every j ∈ {0, . . . , n−1}.

We finally define µn(dx) := un(x)σn(dx) by setting

un(x) := −un,1(0)+
2∑

k=1

un,k(x · ek)

for every x in the support of σn . It follows from the definition of µn that un(x)= x
for every node x ∈6, and then E (6)n (µn)= 0. We have also

∂+n,kun(x)= n(un,k

(
x · ek +

1
n

)
− un,k(x · ek))= ∂ku

(
x +

1
2n

ek

)
.

Using Lemma 12, we obtain ‖∂+n,kun(x)‖= 1 for every node x in the support of σ+n,k ;
then E (ext)

n (µn)= 0.
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Step 2 (weak convergence of the sequence (µn)). Let us denote

εn,k :=
1
n

n−1∑
q=0

∥∥∥∥∂ku
((

q
n
+

1
2n

)
e1

)
− n

∫ (q+1)/n

q/n
∂ku(te1) dt

∥∥∥∥.
By Lemma 12, the placement function u is C1(K ) regular and then the sequences
(εn,k) converge to 0 as n tends to∞. Since un,1(x · e1)− u(x)= 0 for some node
x ∈6 and un,1(0)= un,2(0), one has∥∥∥∥un,1

(
i
n

)
− u

(
i
n

e1

)∥∥∥∥≤ εn,1 for every i ∈ {0, . . . , n− 1},∥∥∥∥un,2

(
j
n

)
− u

(
j
n

e2

)∥∥∥∥≤ εn,1+ εn,2 for every j ∈ {0, . . . , n− 1}.

Let ϕ be a test function in C(K ). Using Lemma 12 and the definition of un , a
direct computation gives us

〈µn −µ, ϕ〉 =

(∫
ϕ(x)σn(dx)

)
(u(0)− un,1(0))

+

2∑
k=1

∫
ϕ(x)(un,k(x · ek)− u((x · ek)ek))σn(dx)

+

(∫
�

ϕ(x) dx −
∫
ϕ(x)σn(dx)

)
u(0)

+

2∑
k=1

(∫
ϕ(x)u((x · ek)ek)σn(dx)−

∫
�

ϕ(x)u((x · ek)ek) dx
)
;

then

|〈µn−µ, ϕ〉|≤

∣∣∣∣∫ ϕ(x)σn(dx)
∣∣∣∣(3εn,1+εn,2)+

∣∣∣∣∫
�

ϕ(x) dx−
∫
ϕ(x)σn(dx)

∣∣∣∣‖u(0)‖
+

2∑
k=1

∥∥∥∥∫ ϕ(x)u((x · ek)ek)σn(dx)−
∫
�

ϕ(x)u((x · ek)ek) dx
∥∥∥∥.

Since the measure σn weakly converges to the Lebesgue measure on K and the
function x→ ϕ(x)u((x · ek)ek) is continuous on K , we obtain

lim
n
|〈µn −µ, ϕ〉| = 0.

Step 3 (convergence of the sequence E (shear)
n (µn)). Let x be a node in the support

of σ s,s′
n . Using the definition of un we obtain

∂s
n,1un(x)∧ ∂s′

n,2un(x)= ∂1u
(

x +
s

2n
e1

)
∧ ∂2u

(
x +

s ′

2n
e2

)
.
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By Lemma 12, the function u is C1(K ) regular. Assumption (H2) and the fact that
E(µ) < +∞ imply that u(x) ∈ {g(s,s

′) < +∞} for every x ∈ K and the function
g(s,s

′) restricted to the closed set {g(s,s
′) <+∞} is continuous. As a consequence,

the function
x→ g(s,s

′)(∂1u(x)∧ ∂2u(x))

is uniformly continuous on K , which implies that

lim
n

∫
g(s,s

′)(∂s
n,1un(x)∧ ∂s′

n,2un(x))σ (s,s
′)

n (dx)=
∫
�

g(s,s
′)(∂1u(x)∧ ∂2u(x)) dx

so that limn E (shear)
n (µn)= E (shear)(µ).

Step 4 (upper-bound inequality of the sequence E (bend)
n (µn)). Let x be a node in

the support of σ 2
n,k . Using Lemma 12 and the definition of un we obtain

∂2
n,kun(x)= n

(
∂ku

((
x · ek +

1
2n

)
ek

)
− ∂ku

((
x · ek −

1
2n

)
ek

))
;

then Jensen inequality gives us

‖∂2
n,kun(x)‖2 ≤ n

∫ x ·ek+1/(2n)

x ·ek−1/(2n)
‖∂2

k u(tek)‖
2 dt.

Integrating with respect to the measure σ 2
n,k we obtain∫

‖∂2
n,kun(x)‖2σ 2

n,k(dx)≤
n− 1

n

∫
�

‖∂2
k u(x)‖2 dx,

and therefore, E (bend)
n (µn)≤ E (bend)(µ). �

6. Conclusions

In the present paper we proved the 0-convergence of a discrete lattice of rigid bars
and rotational springs to a 2D generalized continuum model, along with a relative
compactness property for the sequence of discrete energy functionals. The result
is proven taking into account geometrical nonlinearities.

The main result can be generalized in various ways, the most important of which
is probably the extension of the 0-convergence argument to less restrictive hypothe-
ses on the function fk , in particular allowing extensional deformation, i.e., changes
in the distances of adjacent nodes. The assumptions on the functions g(s,s

′) can also
be relaxed in future investigations.

Of course, future mathematical studies have to take into account also the nov-
elties of mechanical nature coming from experimental and numerical results. For
instance, worth mentioning are the recent results on the peculiar 3D (out-of-the-
plane) behavior of pantographic structures (see, e.g., [Steigmann and dell’Isola
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2015; Misra et al. 2018; Giorgio et al. 2017; Barchiesi et al. 2018a]) and the investi-
gation of generalized pantographic sheets with nonstraight or nonorthogonal fibers
[Turco et al. 2017b; Giorgio et al. 2016]. These findings will probably require
the development of new techniques in order to obtain rigorous homogenization
results. Finally, the possibility of oscillations at the lattice level would require
more complex homogenization formulas where the extensional, bending, and shear
deformation energies may not be uncoupled anymore.
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A NOTE ON COUETTE FLOW OF MICROPOLAR FLUIDS
ACCORDING TO ERINGEN’S THEORY

WILHELM RICKERT, ELENA N. VILCHEVSKAYA

AND WOLFGANG H. MÜLLER

In order to model the flow of liquids with internal rotational degrees of freedom
the theory of micropolar fluids according to Eringen is applied. The essentials
of the theory are outlined and then specialized to Couette flow. The profiles for
linear and angular velocities will be computed, and in particular, we shall also
study the rise in temperature due to viscous dissipation, which is frequently ig-
nored by mechanicians. Closed-form solutions for all three fields are derived for
different boundary conditions. The question as to how the boundary conditions
are realized physically will be discussed.

1. Introduction

This paper is devoted to a description of the flow of fluids with internal rotational
degrees of freedom, for example a blood plasma carrying red blood cells or nematic
liquid crystals. The flow behavior of such materials can be described by the theory
of Eringen (see [Cowin 1974] or [Eringen 2001]). In a nutshell, Eringen’s approach,
also known as the micropolar theory of fluids, relies on a consistent use of the
complete spin balance and the concept of the conservation of microinertia.

Our aim is to study the Couette flow of such fluids not only from the mechanical
point of view, i.e., by calculating the linear and angular velocity fields, but also
from a thermodynamic one, namely by studying the generation of a temperature
field during the flow due to internal dissipation. This will require us to look at the
balances of momentum, spin, and internal energy in combination. The fact that,
due to the internal dissipation, Couette flow is not isothermal is frequently ignored
by the mechanics community. For example, in [Eringen 2001, §9.7], the analysis
is explicitly referred to as related to a “steady, isothermal fluid”. There are a few
papers that address this issue, namely [Kazakia and Ariman 1971; Řiha 1975]
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(pressure-driven flow through a plane-parallel channel) and [Singh 1982] (Couette
flow). However, in the last reference extremely general boundary conditions are
used, which leads to a wealth of constants that make the final solution most difficult
to interpret. For such reasons we will be as general as possible but always attempt to
give an intuitive interpretation of the results. We will also investigate the boundary
conditions, in particular their physical realization, which will hopefully lead to a
broader acceptance of micropolar theory in the engineering community. Finally
note that for brevity’s sake the theoretical part of our presentation will be limited
to the absolute essentials.

2. The relevant balance equations

Mathematically speaking, our objective is to determine the fields of (a) linear ve-
locity v(x, t), (b) the angular velocity field (also known as microgyration vector
[Eringen 2001, p. 8]) ω(x, t), and (c) the temperature field T (x, t), in all points x
and at all times t , within a region of space B through which incompressible matter
of constant mass density ρ0 and constant (isotropic) microinertia J0 is flowing.

The determination of these fields relies on field equations for the primary fields.
The field equations are based on balance laws and need to be complemented by
suitable constitutive relations later. In spatial description, putting the substantial
time derivatives d

dt of the balanceable quantities exclusively on the left-hand side,
the relevant balances read as

• balance of mass (incompressibility condition)

0=∇ · v, (1)
• balance of linear momentum

ρ0
dv
dt
=∇ · σ , (2)

• balance of spin

ρ0 J0
dω
dt
=∇ ·µ+ σ×, (3)

• and the balance of internal energy

ρ0
du
dt
=−∇ · q+ σ : (∇ ⊗ v+ I×ω)+µ : (∇ ⊗ω), (4)

where body forces, body couples, and volumetric heat supply have been neglected.
The symbol “:” denotes the outer double scalar product C : D = Ci j Di j . Moreover,
σ denotes the (nonsymmetric, second-order) Cauchy stress tensor, and µ is the
(second-order) couple stress tensor. In σ× the Gibbsian cross, defined by (a⊗b)×=
a× b, is applied to the (nonsymmetric) stress tensor so that its antisymmetric parts
are extracted, u is the specific internal energy, and q is the heat flux. For the
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convenience of the reader all tensorial equations are presented in index notation in
Appendix A.

3. Eringen’s continuum theory of micropolar fluids

Eringen’s theory of micropolar solids and fluids is summarized comprehensively
in [Eringen 1999; 2001], where all of the original literature can also be found.
However, for the purpose of this article it is most beneficial to use the condensed
version in [Cowin 1974].

The corresponding balance equations of Eringen’s micropolar fluid theory are
the ones shown in (1)–(4). In [Cowin 1974] a particular focus is on one-dimensional
Taylor–Couette and Poiseuille flow problems of an isotropic incompressible mi-
cropolar fluid. Hence, the following constitutive equation for the stress tensor is
proposed (also see [Zhilin 2012, p. 258]):

σ =−pI+ 2µD+ 2τh× I, (5)

where p is the pressure which in the incompressible case is an arbitrary scalar that
guarantees the incompressibility, µ is the shear viscosity known from classical
Navier–Stokes theory, and D = 1

2 [(∇ ⊗ v)
>
+∇ ⊗ v] is the symmetric part of the

velocity gradient. The additional antisymmetric part of the stress tensor consists
of the (objective) quantity h = ω−w, which is the difference between the angular
velocity ω and the vorticity vector w = 1

2∇ × v, which are both nonobjective. The
factor τ is another viscosity coefficient characteristic of the Cosserat (or antisym-
metric) part in the stress tensor. Note that this form of the stress tensor is different
from the one in [Cowin 1974]: the terms proportional to ∇ · v are missing due to
the incompressibility condition (1). For the couple stress tensor we write

µ= α∇ ·ωI+β[(∇ ⊗ω)>+∇ ⊗ω] − γ [(∇ ⊗ω)>−∇ ⊗ω]. (6)

In principle all viscosities µ, τ , α, β, and γ can depend upon temperature, but we
will ignore this during our analysis. The similarity between the representations of
the two stress measures is evident: we are confronted with a linear theory in gradi-
ents of velocity and angular velocity1 and a linear dependence on the total angular
velocity field ω. If these constitutive equations are inserted into the momentum
and into the spin balances, (2) and (3), we obtain the coupled system of PDEs

ρ0
dv
dt
=−∇ p+ (µ+ τ)1v+ 2τ(∇ ⊗ω)×,

ρ0 J0
dω
dt
= (α+β − γ )∇∇ ·ω+ (β + γ )1ω− 4τω+ 2τ∇ × v,

(7)

1Recall that 2w× I= (∇ ⊗ v)>−∇ ⊗ v.
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where 1 is the Laplace operator. For a derivation as well as for a comparison with
the equations in [Cowin 1974], see Appendix A. In order to evaluate the balance
of internal energy (4) for the stationary state we need an expression for the heat
flux. Following [Eringen 2001, p. 14] we write

q =−κ∇T + λ(∇ ⊗ω)×. (8)

Here κ and λ are two heat conduction coefficients, the first one being positive and
well known from classical Fourier theory. We now proceed to study the solution to
the resulting field equations for the case of one-dimensional stationary Couette flow
(hence, we do not have to specify a caloric equation of state) between two infinite-
plane parallel plates. Observe already now that in this case the non-Fourier part of
(8) will play no role.

4. Specialization to Couette flow

We shall now concentrate on the solution of a stationary one-dimensional Taylor–
Couette flow between two parallel infinite plates separated by a distance h in ey-
direction [Pennington and Cowin 2000]: possibilities to initiate the motion of the
fluid are the following ones. The top plate is subjected to a constant velocity vx(y=
h) = v0 and provides a constant angular velocity ωz(y = h) = ωt, whereas the
bottom plate does not move translationally, vx(y= 0)= 0, while an angular velocity
ωz(y = 0)= ωb is induced. We will refer to such boundary conditions as “velocity-
controlled” or Dirichlet conditions. They are frequently used in the literature, either
in this general form [Łukaszewicz 1999] or in a specialized version (e.g., ωt =

ωb = 0 [Eringen 2001, p. 17] or ωt = −ω0, ωb = ω0 [Řiha 1975; Singh 1982]).
Alternatively we may refer to “force-controlled” boundary conditions if a constant
shear stress and moment is applied and then transmitted to the fluid, e.g., on the
top plate σyx(y = h)= tx and µzy(y = h)= µz,t (see [Condiff and Dahler 1964] or
[Łukaszewicz 1999, p. 31]). In both cases the fluid will move in the ex -direction.
We neglect the influence of the specific body force and of the specific body couples
and propose the semi-inverse ansatz for the linear and the angular velocities

v = v(y)ex , ω = ω(y)ez. (9)

Insertion into the field equations (7) yields the coupled system of ordinary differ-
ential equations

0= (µ+ τ)
d2v

dy2 + 2τ
dω
dy
, 0= (β + γ )

d2ω

dy2 − 4τ
(
ω+

1
2

dv
dy

)
. (10)

Note that there is no contribution from the pressure term in (7)2 because we do not
apply a pressure gradient in ex -direction. We first consider the case of “prescribed
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velocities”; i.e., we impose boundary conditions

v(y = 0)= 0, v(y = h)= v0, ω(y = 0)=ωb, ω(y = h)=ωt. (11)

In view of our interest in the physical realization of boundary conditions, it
should be pointed out that the quantities on the right-hand side, i.e., 0, v0, ωb,
and ωt, are kinematic characteristics of the two plates, which must be “transmitted”
somehow to the fluid. How this becomes possible is not a question to be asked
in context with the mathematical statement. We will get back to it later in the
discussion section of the paper.

This system can be solved by rewriting it as a first-order system (see Appendix B).
Then the solutions for the linear and angular velocity read

v = c1+ c2hy− c3
Nh
L

exp(2N L y)+ c4
Nh
L

exp(−2N L y),

ω =− 1
2 c2+ c3 exp(2N L y)+ c4 exp(−2N L y)

(12)

with the dimensionless height y = y/h and dimensionless constants N and L
defined by

N =
√

τ

µ+ τ
, L =

h
l
, l =

√
β + γ

µ
.

By using the boundary conditions (11) the constants ci can be determined:

c1 =−P(v0+ hω∗)
µeff

2µ
+

hωd

2
N 2

P L2 , c2 =

(v0

h
+ω∗P

)µeff

µ
,

c3/4 =

(
N
L
∓ P

)
µeff

µ

[
±

(
1
P
− 1

)
ωd
+

L
Nh

(v0+ hω∗)
]
,

ω∗ = ωt+ωb, ωd
= ωt−ωb, P =

N
L

tanh(N L),
µeff

µ
=

1
1− P

,

(13)

where µeff is an effective shear viscosity. With the relations

sinh(N L[2y− 1])
sinh(N L)

=
N

P L
sinh(2N L y)− cosh(2N L y),

cosh(N L[2y− 1])
cosh(N L)

= cosh(2N L y)−
P L
N

sinh(2N L y),
(14)
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and after some rearrangements the following closed-form solution to the boundary
value problem results:

v(y)
v0
=−

P
2
µeff

µ

(
sinh(N L[2y− 1])

sinh(N L)
+ 1−

2y
P

)
−

Pµeff

2µ
hω∗

v0

(
sinh(N L[2y− 1])

sinh(N L)
+ 1− 2y

)
+

N 2

2P L2

hωd

v0

(
1−

cosh(N L[2y− 1])
cosh(N L)

)
,

ω(y)
v0/h

=
1
2

hωd

v0

sinh(N L[2y− 1])
sinh(N L)

+
1
2
µeff

µ

(
cosh(N L[2y− 1])

cosh(N L)
− 1

)
+

hω∗

v0

µeff

2µ

(
cosh(N L[2y− 1])

cosh(N L)
− P

)
.

(15)

In the special case of antagonistic spin boundary conditions, ωt=−ω0 and ωb=ω0,
i.e., ω∗ = 0 and ωd

= −2ω0, the solution can be simplified [Cowin 1974; Singh
1982]:

v(y)
v0
=

1
2
µeff

µ

[
2y− P

(
1+

sinh(N L[2y− 1])
sinh(N L)

)]
−

hω0

v0

1
P

(
N
L

)2[
1−

cosh(N L[2y− 1])
cosh(N L)

]
,

ω(y)
v0/h

=
1
2
µeff

µ

[
cosh(N L[2y− 1])

cosh(N L)
− 1

]
−

hω0

v0

sinh(N L[2y− 1])
sinh(N L)

.

(16)

It seems natural to interpret the number l, which is given by a ratio of the vis-
cosities occurring in the constitutive equations for the Cauchy and for the couple
stress tensors, as a length scale characteristic of the particles on the mesoscale. It
is therefore also known as the micropolar length scale parameter in the literature;
see for micropolar liquids, e.g., [Cowin 1974], and in an analogous manner also
for micropolar solids, see [Zueger and Lakes 2016] as a recent example or [Gau-
thier and Jahsman 1975], where similar parameters were defined. Similarly, the
dimensionless number N , the so-called coupling coefficient, is customary and, in
our opinion, should preferably be used.

Obviously, we have 0≤ N ≤ 1, where the zero characterizes traditional Navier–
Stokes flow and values that are close to one stand for a strong influence of the anti-
symmetric part of the stress tensor. Alternatively we may say that if N approaches
zero, the impact of the Cosserat term in the Cauchy stress tensor vanishes and the
coupling between linear and angular velocity becomes obsolete.

On the other hand, 0≤ L ≤∞, where L is (through l) defined by a ratio of new
viscosity coefficients and the standard shear viscosity. Also recall that the kinetic
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Figure 1. Free body diagram of a section of the Couette flow.

theory of gases allows us to relate the ordinary shear viscosity to the mean free path
of molecules [Chapman and Cowling 1952, p. 100]. Therefore, it seems fair to say
that L-values close to zero indicate a strong influence of characteristic lengths on
the mesoscopic scale. In the limiting case where L tends to zero one has

lim
L→0

v(y)= v0 y+ y(1− y)N 2hωd, lim
L→0

ω(y)= 1
2(ω
∗
+ωd
[2y− 1]). (17)

Most interestingly, the linear velocity strongly depends on the boundary conditions
of ω, but the angular velocity does not depend on the plate velocity, v0. In summary
we may say that the Navier–Stokes fluid is obtained if N→ 0, L→∞, and P→ 0.
Obviously in this specialized form Eringen’s theory has a huge benefit from the
viewpoint of the experimentalist: the various new coefficients can be included in
only two dimensionless quantities, N and L .

It should be noted that Singh [1982] does not define the helpful numbers L
and N separately. Rather he combines them in a less intuitive coefficient instead,
λ= N L .2 His solution agrees with ours shown in (15), but it is harder to interpret,
in particular, if the intention is not to focus on a special micropolar medium (as
Singh does) but to study the impact of the new parameters in general.

We now proceed to discuss the force-controlled experiment. To this end it is
useful to consider the free body diagram of the Couette flow shown in Figure 1.
Note that the cuts at the upper and lower plates were moved slightly into the fluid
region, which enables us to depict the various forces and moments clearly. Of
course these cuts are supposed to be flush to the plate surfaces: it is assumed that
prescribed forces and moments are transmitted in full from the plate surfaces onto
the fluid flanks.

2Besides that he uses a second coefficient ξ = 2N 2.
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flank normal force traction moment traction
n n · σ n ·µ

top +ey tx = µeff(v0/h+ Pω∗)ex µz,t = (µeff P[v0+ hω∗]
+ (µN 2/(P L2))hωd)ez

bottom −ey tx =−µeff(v0/h+ Pω∗)ex µz,b = (µeff P[v0+ hω∗]
− (µN 2/(P L2))hωd)ez

right +ex ty = µeff([1− 2P]v0/h− Pω∗)ey 0
left −ex ty =−µeff([1− 2P]v0/h− Pω∗)ey 0

front +ez 0 µy = (β − γ )(ωd/h)ey

back −ez 0 µy =−(β − γ )(ω
d/h)ey

Table 1. Force and moment tractions on the flanks of the free body
without the (constant) pressure contribution.

We now calculate all forces and moments acting on the free body. From (5),
(6), and (15) the force and moment tractions, n · σ and n · µ, respectively, on
the six flanks of the free body rectangular parallelepiped can be obtained. They
are indicated in Figure 1 by means of arrows and double arrows pointing in the
corresponding directions. Note that the balance of linear momentum implies p =
p(x) for the pressure. In the pure Couette flow no pressure gradient in ex -direction
is applied and hence we conclude that the pressure is a constant. Therefore, we do
not mention the pressure in our considerations of the free body diagram since it
cancels out in the equilibrium of forces and moments.

A few remarks are in order. Whilst the force tractions on the top and bottom
plates are constant, the force tractions of the right and left sides are not. They
depend on height y and are given by

n · σ (y)=±
[
(µ− τ)

dv
dy
− 2τω

]
ey . (18)

As customary in technical mechanics we replace them by statically equivalent
averages located at the center of mass, i.e., at height y = h/2, given by

ty =
1
h

∫ h

0
n · σ (y) dy, (19)

and this result is shown in Table 1 and in the figure. A similar remark holds for
the moment tractions acting on the front and back surfaces:

n ·µ(y)=±(β − γ )
dω
dy

ey, µy =
1
h

∫ h

0
n ·µ(y) dy. (20)



TEMPERATURE RISE DURING COUETTE FLOW 33

Furthermore, note that by looking at the free body diagram the equilibrium of
forces is immediately obvious, whereas equilibrium of moments is evident only for
the momentum balance in ey- but not in ez-direction. Here we must write (d being
the depth of the channel)

∑
M (O)

z = (µz,t+µz,b)`d + 2tyhd
`

2
− 2tx`d

h
2

= 2µeff P(v0+ hω∗)`d +µeff

(
[1− 2P]

v0

h
− Pω∗

)
hd`

−µeff

(v0

h
+ Pω∗

)
`dh ≡ 0. (21)

Moreover, from Table 1 we conclude that in order to keep the lower and upper
plates at constant translational velocities 0 and v0, and to ensure constant angular
velocities ωt and ωb, we must apply constant horizontal shear-like force tractions tx

and two constant out-of-plane moment tractions µz,t and µz,b as

tx = µeff
v0

h
+µeff Pω∗, µz,t = µeff P[v0+ hω∗] +

µN 2

P L2 hωd,

µz,b = µeff P[v0+ hω∗] −
µN 2

P L2 hωd,

(22)

which can be inverted to represent the boundary conditions from (11)

v0 =
2htx − (µz,t+µz,b)

2µ
,

ωt =
(L2 P2/N 2)(µz,b−µz,t)− (µz,b+µz,t)+ 2h Ptx

4h Pµ
,

ωb =
(L2 P2/N 2)(µz,b−µz,t)+ (µz,b+µz,t)− 2h Ptx

4h Pµ
.

(23)

This gives us the possibility to employ “force-controlled” boundary conditions,
tx , µz,t, and µz,b, instead of “velocity-controlled” ones, namely v0, ωt, and ωb. The
“forces” as well as “moments” depend on both the prescribed velocity and the pre-
scribed spin. All of this is compatible with the conviction of Eulerian mechanists
according to which the balances of momentum and of total moment of momentum
are fully independent and so are the boundary conditions, may they be translational
and angular velocities or forces and moments per unit area. The two latter pairs
are dual to each other so to speak and, with a grain of salt, we may want to refer to
them also as Dirichlet and Neumann conditions, respectively [Łukaszewicz 1999,
p. 25 and p. 31].
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Equation (23) also allows us to adapt the solutions shown in (15) to the force-
controlled situation easily as

v(y)
htx/µ

= y−
(µz,t+µz,b)

4htx

(
1+

sinh(N L[2y− 1])
sinh(N L)

)
+
(µz,t−µz,b)

4htx

(
1−

cosh(N L[2y− 1])
cosh(N L)

)
,

ω(y)
tx/µ

=−
1
2
+

P L2

4N 2

(µz,t−µz,b)

htx

sinh(N L[2y− 1])
sinh(N L)

+
1

4P
(µz,t+µz,b)

htx

cosh(N L[2y− 1])
cosh(N L)

,

(24)

and in the special case of antagonistic spin boundary conditions, i.e., ω∗ = 0, as

v(y)
htx/µ

= y− P
[

1+
sinh(2N L[y− 1])

sinh(2N L)

]
+
ξ

2

[
1−

cosh(N L[2y− 1])
cosh(N L)

]
,

ω(y)
tx/µ

=−
1
2

[
1−

cosh(2N L[y− 1])

cosh2(N L)

]
+
ξ

2
L
N

sinh(N L[2y− 1])
cosh(N L)

, ξ =
µz,t

htx
.

(25)

They allow us to study what happens if we keep the force or moment tractions,
tx , µz,t, and µz,b, at a constant level: we expect that the velocities of the upper
plate go down if the effective viscosity increases, i.e., if we depart from the case
of classical Navier–Stokes. This we shall discuss in the next section.

In the special case ωt =−ωb =−ω0, and subsequently ω∗ = 0, it is curious that
the “force”, tx in (22), depends only on v0 whereas the “moment”, µz,t, depends on
both v0 and ω0. In order to achieve a certain top plate velocity whilst the spin on the
boundaries is of the same magnitude but of different sign, a traction tx that is similar
to the ordinary Navier–Stokes fluid case needs to be applied. The difference from
the classical solution lies in the effective shear viscosity which contains many of
the new viscosities. For simplicity we will discuss in what follows only the special
case of “opposite” spin boundary conditions (as in [Řiha 1975] or [Singh 1982])
so that ω∗ vanishes in all further considerations.

A singular case arises if we require “no-slip” boundary conditions for the angular
velocity. Then ω0 = 0 and obviously µz,t = h Ptx , so that the force seems to dictate
the behavior of the moment, which is an unpleasant thought from the viewpoint
of Eulerian mechanists. We will get back to this issue in the discussion section of
this paper.

We now turn to the task of computing the temperature increase due to stationary
viscous flow. The following stationary heat conduction equation results from the
energy balance (4) and attains the following form if the ansatz (9), together with
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T = T (y), is used:

0= κ
d2T
dy2 + (µ+ τ)

(
dv
dy

)2

+ 4τω2
+ 4τω

dv
dy
+ (β + γ )

(
dω
dy

)2

. (26)

The integration can be performed in closed form. For the boundary conditions we
assume that two reservoirs of constant temperature Tres are attached to the upper
and lower plates:

T (y)− Tres

Tref
=

a
2

{
y(1− y)−

1
L2

(
1−

cosh(N L[2y− 1])
cosh(N L)

)
−

1
8L2

cosh(2N L[2y− 1])− cosh(2N L)

cosh2(N L)

}
−

b
4L2

(
2y− 1−

sinh(N L[2y− 1])
sinh(N L)

)
−

c
4L2

cosh(2N L[2y− 1])− cosh(2N L)

sinh2(N L)
(27)

with the “dimensionless” temperatures

a =
µv2

0

κTref

(
µeff

µ

)2

, b =
µv0hω0

κTref

µeff

µ
, c =

µ(hω0)
2

κTref
. (28)

The first term in the curly brackets is the classic parabolic departure from a
constant temperature, symmetrically centered about the middle of the channel. Ob-
viously the viscosities incorporated in the coupling number N and in the length
scale parameter L have an effect on the temperature variation. The expressions
in the a-term are related to pure translational velocity control of the top plate,
the c-term includes the influence of pure angular velocity control, and the b-term
represents the interaction between both.

With the relations shown in (23) it is straightforward to rewrite the temperature
in terms of force boundary conditions:

T (y)− Tres

Trefa/2
= y(1− y)−

1
L2

(
1−

cosh(N L[2y− 1])
cosh(N L)

)
−

L2 P2

8N 2 (P
2
− 2Pξ + ξ 2)

cosh(2N L[2y− 1])− cosh(2N L)

sinh2(N L)

−
P

4N 2 (P − ξ)
(

2y− 1−
sinh(N L[2y− 1])

sinh(N L)

)
−

1
8L2

cosh(2N L[2y− 1])− cosh(2N L)

cosh2(N L)
. (29)
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5. Exploitation of the analytical results

Consider first the velocity-controlled profiles described by (15). Let us initially
assume that ω0 = 0 and that N 2

= 0.9, i.e., strong coupling. Then an S-shaped
form of the velocity profile becomes apparent: Figure 2, left. Note that for small
values of L as well as for large values the velocity profiles almost coincide with
the classical Navier–Stokes while for intermediate values of L the S-shape is more
pronounced.

In [Ivanova and Vilchevskaya 2016] the particle aspect on a mesoscopic scale
was connected to the continuum point of view of a micropolar medium. If we
follow the authors’ line of reasoning we may argue intuitively and say that for
the case when L is very small, i.e., the length of the particles on the mesoscale
becomes comparable or greater than the (macroscopic) plate distance, there is no
“space for rotation”, and the angular velocity vanishes (blue line). From (17) it is
clear that the angular velocity can only arise from applied angular velocities at the
boundary and is not influenced by the linear velocity boundary conditions in the
limit case L→ 0. Furthermore note that in this case the linear velocity is given by
the classical Navier–Stokes solution if no-spin boundary conditions are employed;
see (17) and Figure 2, left. After normalization with the plate velocity the effect of
intermediate length scales on the angular velocity, Figure 2, right, becomes visible:
with increasing L = h/ l, the length of the particles on the mesoscale l compared
to the plate distance h allows for more rotation and thus greater magnitudes of the
angular velocity occur until the size effect disappears for very large L . Observe that
for L = 2 the velocity gradient in the middle of the channel is greater than for an
ordinary Navier–Stokes fluid. Furthermore, note that in this case the characteristic
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Figure 2. Linear and angular velocity profiles for Couette flow
according to the Eringen theory for the velocity-controlled case
with no-spin boundary conditions, ω0 = 0.
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Figure 3. Linear and angular velocity profiles for Couette flow
according to the Eringen theory for the velocity-controlled case.

length scale is half of the plate distance. Due to the higher shear rate and the length
scale that fits twice into the channel, the fluid particles can rotate more easily and
subsequently a greater magnitude of the angular velocity occurs, as can be seen in
Figure 2, right. The dashed lines corresponds to a Navier–Stokes fluid, where in
Figure 2, right, the vorticity was used because no angular velocity is available for
ordinary fluids.3

In summary we may say that the plots for the linear velocity have been shown
before in the literature [Cowin 1974, p. 323]. However, to the best knowledge of
the authors this is surprisingly not so for the angular velocity plot.

In the previous figure we presented solutions for the no-spin boundary condition,
i.e., ω0 = 0. From this case the solutions for L = 2 are of particular interest and
we shall now proceed to employ spin boundary conditions different from zero and
keep L = 2 fixed. In Figure 3 the linear and angular velocity profiles are depicted
for different values of the factor hω0/v0. For sufficiently large values of this factor
a significant backflow behavior is observable and the S-shaped velocity profiles
turn into more and more wavy curves (Figure 3, left). The angular velocity is no
longer an even but an odd function since the boundary conditions at the upper and
lower plate only coincide in magnitude but have different signs. As we shall see
immediately this behavior changes when we switch to the force-controlled case.

For the case of force control the velocity, normalized by htx/µ, is illustrated in
Figure 4, left. A purely force-controlled case was assumed, i.e., there is no moment
per unit area acting on the upper plate, µz,t = 0, and N 2

= 0.9, as before. As to
be expected we obtain the bisectrix of ordinary Navier–Stokes flow if the internal
length scale is negligible (large values of L). Intermediate length scales lead to

3The same mode of presentation will be used in the following plots.
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Figure 4. Linear and angular velocity profiles for Couette flow
according to the Eringen theory for the force-controlled case with
µz,t = 0.

S-shaped curves showing, most interestingly, backflow behavior. This has been
reported recently for nonstationary Couette flow [Magyari et al. 2010], as well
as in molecular dynamics simulations of micropolar fluid flow [Haghighi and Asl
2015]. Very small values of L lead again to a straight line but with a much smaller
velocity at the top plate which, for equal tx , results because of the effectively higher
shear viscosity. Also note that for a prescribed force the velocity of the upper plate
goes down if the effective viscosity increases, i.e., if we depart from the case of
classical Navier–Stokes. This is also intuitively plausible.

It should be mentioned that a similar case of normalization of the velocity is also
reported in [Cowin 1974, p. 326], where the case of vanishing angular velocities at
the plate boundaries (no slip of the ω-field) was exclusively considered. However,
there is a subtle difference from our case if we specialize to ω0 = 0. According
to (23)2 a vanishing angular velocity on the top plate corresponds to a nonvanishing
moment per unit area, µz,t = htx P . Moment and force are not independent in this
case, and one ends up with the relations

v(y)
htx/µ

= y−
P
2

(
1+

sinh(N L[2y− 1])
sinh(N L)

)
,

ω(y)
tx/µ

=−
1
2
+

cosh(N L[2y− 1])
2 cosh(N L)

.

(30)

Thus, we cannot say that Cowin [1974] considers a proper force-controlled case,
and in fact he never says he does. Be this as it may, (30)1 does not show any
backflow behavior.

The angular velocity also depends considerably on height, at least for values of
L in between the upper and lower bounds: Figure 4, right. If the length scale of
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Figure 5. Linear and angular velocity profiles for Couette flow
according to the Eringen theory for the force-controlled case.

the micropolar fluid is small compared to the distance of the plates (large values
of L), the angular velocity is completely represented by the vorticity, which is
constant: ω/(tx/h) = −1

2 (magenta curve), as in the case of Navier–Stokes flow
(black dashed curve).

The analogue to Figure 3 is shown in Figure 5 (for L = 2). In Figure 5, left, the
velocity profiles normalized by the horizontal traction at the upper plate show back-
flow behavior as well but tend to be more pronounced in the positive ex -direction
for higher values of the ratio of applied tractions µz,t/(htx). In addition, the angular
velocity profiles are essentially the same as in the velocity-controlled case but with
a different sign so that the angular velocity at the upper plate is now positive.

As far as the temperature profiles of (27) are concerned we first focus on the
case where Tref = µv

2
0/κ (in accordance with the normalization used in the clas-

sical Navier–Stokes case; see, e.g., [Müller 2014, p. 327]) and a = (µeff/µ)
2
=

(1− P)−2, b = c = 0, i.e., the case of pure translational velocity control. This is
shown in Figure 6, left, by using the same parameters as for the plots of Figure 4.
Obviously the temperature change in micropolar fluid flow is more pronounced
than for a classical Navier–Stokes fluid (dashed line). This is to be expected be-
cause of the additional viscosity terms, in particular because of the factor (1− P)−2.

Figure 6, right, concentrates on the case a = b = 0, i.e., the case of pure angular
velocity control. It is now tempting to analyze the situation for c = 1. However,
note that in the limit case L→ 0 (while keeping β + γ = const.) one has to take
into account that the parameter c will not remain constant because

c =
µ(hω0)

2

κTref
=

L2(β + γ )ω2
0

κTref
(31)
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Figure 6. Temperature profiles for Couette flow according to Eringen’s
micropolar theory.

strongly depends on L . Choosing the reference temperature conveniently as Tref =

(β+γ )ω2
0/κ we must put c= L2, which balances the otherwise singular term in (27)

for very small values of L , leading to parabolic profiles. On the other hand, very
large values of L imply that the internal length scale is negligible when compared
to the plate distance so that the temperature becomes independent from the position
between the plates. This leads to a homogeneous temperature profile. Note that
this situation does not correspond to an ordinary fluid because there is no angular
velocity available in the classical Navier–Stokes case, ω ≡ 0; see Figure 6, right.

6. Literature review and discussion

Since the advent of Eringen’s theory of micropolar fluids simple flow problems
allowing for analytical solutions have continuously been in the focus of interest.
Poiseuille flow is most predominantly discussed. In fact, Eringen [1966] gives
corresponding solutions for translational and angular velocity in circular pipes,
which are later repeated in his textbooks, e.g., [Eringen 2001, §9.7]. The tempera-
ture rise due to viscous friction for Poiseuille flow between plates is discussed in
[Kazakia and Ariman 1971; Řiha 1975]. A first discussion of the velocity profiles
of plane-parallel micropolar Couette flow can be found in [Ariman and Cakmak
1968; Pennington and Cowin 2000; Cowin 1974]. However, these authors constrain
themselves to the case of vanishing angular velocity at the plates, ω0 = 0. Couette
flow between rotating cylinders was studied in [Verma and Sehgal 1968], where it
was also assumed that the rotational velocities vanish at the cylinder walls.

A discussion of the temperature rise in plane-parallel Couette flow is presented in
[Singh 1982]. Although Singh applies his solution to the concrete example of blood
flow the general presentation is essentially a mathematical exercise allowing for
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the greatest freedom in the choice of boundary conditions. For example, the effect
of microtemperatures is included just like different choices of the top and bottom
reservoir temperatures. In a nutshell the final result contains so many abbreviations
that it becomes impossible to discern the impact of the various physical parameters.
It is for this reason that we have constrained ourselves in this presentation to the
most essential ones.

Due to the advent of micro- and nanotechnology the solution to elementary
flow problems based on micropolar theory complemented by molecular dynamics
simulations is more recently in the focus of research again. Examples are given by
[Kucaba-Pietal 2004; Kucaba-Pietal et al. 2009].

Chen et al. [2012] and Ashmawy [2012] present an analysis of transient Couette
flow, based on a numerical and a Laplace transform solution, respectively. The
angular velocity at the boundaries was once more assumed to be zero.

Hence, it is now high time to talk about how boundary conditions for micropolar
media are usually introduced in the literature and, what is even more important, if
and how they can be realized experimentally.

It is obvious from the citations we presented so far that it is very popular to
postulate so-called “no-slip” conditions or, in other words, that the tangential (trans-
lational) velocity of the micropolar fluid is equal to that of the wall and its angular
velocity vanishes. However, recall that even in the simpler case of a Navier–Stokes
fluid a no-slip condition is by no means as straightforward to realize as we may
want to believe at first glance. We simply got so used to it that we rarely question
it. However, the scientists who initiated this notion thought differently. From the
citations in the nicely written overview on the history of the no-slip condition [Day
1990], we learn that Stokes based his conviction of the applicability of the no-
slip conditions on certain experiments, in particular one performed by Coulomb,
according to which the resistance of water flow against a wall is independent of
the surface characteristics (also see [Müller 2007, p. 241]). Hence, it is due to
internal friction of the fluid alone, which is consistent with the assumption that
the water simply sticks to the wall. This statement was questioned by Maxwell
[Brenner 2011] and replaced by the possibility of slip in the case of dilute gases,
a phenomenon which becomes ever more important to be taken into account in to-
day’s microfluidic systems [Lauga et al. 2007]. Practically speaking, the amount of
slip encountered in a particular experimental setup may be controlled (to a certain
degree) by polymer or surfactant absorption or other chemical modification of the
walls.

Moving now closer to the boundary conditions relevant for micropolar fluids,
it should be mentioned that slip of the tangential velocity at a wall was recently
considered in order to study the Couette flow of couple stress fluids in [Silber et al.
2007; Alizadeh et al. 2011; Devakar et al. 2014]. The model of a couple stress
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fluid becomes relevant if surface effects occur [Mindlin 1965]. For example, when
we add additives to a fluid, the forces present in the fluid oppose the forces of the
additives. This opposition leads to a couple force, and hence, a couple stress is
induced in the fluid. We may say that this is also an example of materials that
require a generalized continuum theory beyond the ordinary Boltzmann–Cauchy
approach.

General properties of a couple stress theory for solids were analyzed in [Had-
jesfandiari and Dargush 2011]. On the basis of the principle of virtual work and
without the use of special constitutive relations the authors showed, e.g., that the
moment traction vector is tangent to the surface. However, they restrict their presen-
tation to the equilibrium case, i.e., their results lack generality. Although a couple
stress theory for solids has little to do with the theory presented in this work, note
that in the case of Couette flow the moment tractions are indeed tangential to the
surfaces as can be seen in Table 1.

Another generalized continuum which, in contrast to couple stress fluids, neces-
sitates us to take the aspect of internal rotational degrees of freedom into account,
are nematic liquid crystals. In order to describe their flow behavior the theory
proposed by Ericksen and Leslie is frequently applied [Steward 2004]. There are
certain differences when compared to the Eringen approach, which is favored in
this paper. The microinertia tensor is replaced by the so-called director, often repre-
sented by an inextensible one-dimensional digit. It is the continuum representation
of the macromolecules liquid crystals are made of. Note that the macromolecules
are usually polarized, which is important for realizing the boundary conditions, as
we shall discuss shortly. Other “new” quantities in the Ericksen–Leslie theory are
the director stress tensor, which replaces the couple stress tensor, and the director
production density, which occurs, most importantly, because the spin balance is
replaced by what is known as the balance of director force.

In the Ericksen–Leslie theory boundary conditions for the angle of orientation
of the director at a wall are required. Two main types of this so-called “strong
anchoring” are distinguished [Steward 2004, p. 47], namely homeotropic and ho-
mogeneous alignment, where the digits are oriented perpendicular and parallel to
the wall, respectively. Note that such conditions are the equivalent of prescribing
a vanishing angular velocity at the wall in the case of Eringen’s theory of microp-
olar fluids. But how is this mathematical requirement realized in practice? An
answer can be found in [de Gennes and Prost 1995, p. 109]: the surfaces of the
walls must be prepared accordingly by “rubbing” thus inducing a certain electric
“polarization”.

Finally, let us review the situation in the case of micropolar fluids. An excellent
summary of the situation, at least from a mathematical point of view, can be found
in [Łukaszewicz 1999, p. 30]. First, the author discusses velocity-type boundary
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conditions of the type shown in (11). Specifically he writes

v = vb, ω = ωb, (32)

where it is explicitly mentioned that vb is the (translational) velocity and ωb is the
microrotation of points of the solid boundary b. The author also refers to (32)1 as
“physically clear (the viscous fluid sticks to the solid boundary)” and then states
that “there is no general agreement as to the type of boundary condition one should
set for the field of microrotation” (32)2. Indeed, it was mentioned before, and the
proper references have been given, that frequently such no-slip boundary condi-
tions are prescribed in micropolar flow problems, i.e., the tangential translational
velocity is that of the wall and the angular velocity is either zero or of a fixed value,
also characteristic of the wall particles. However, it is usually not discussed how
these can be realized physically. In this context recall our remarks and references
from above on the no-slip condition for the translational velocity.

However, there are some alternative opinions to the no-slip condition as well.
For example, in the early paper by Ahmadi [1976] it is suggested that

ω =−
1
2

dv
dy

at y = 0, h. (33)

In other words, the angular velocity equals the vorticity, where both are related to
fluid and not to wall characteristics. In fact the author says, “In the neighborhood of
a rigid boundary the effect of microstructure must be negligible since the suspended
particle cannot get closer than their radius to boundary. In the case of blood flow it
is observed that the red cells tend not to get very close to the boundary. . . Therefore,
in the neighborhood of the boundary the only rotation is due to fluid shear and
therefore, gyration vector must be equal to angular velocity.” Clearly, this also
means that angular velocity and translational velocity are coupled and no longer
independent, which is in disagreement with the beliefs of Eulerian mechanics.

However, this condition was generalized in [Kirwan 1986;4 Kolpashchikov et al.
1983] by modifying it to

ωb = αwb, (34)

where through the index “b” reference is made to fluid properties at the boundary.
In fact the latter authors say, “The quantity ν [i.e., ω] in the fluid volume decreases
with an increase of the effect of moment stresses between particles upon microro-
tation, tending to zero, at the absence of external fields. With a decrease of this
influence the magnitude ν increases and tends to the limit w = (1/2) rot v. Thus, a
change of ν is restricted to limits from 0 to w. . . In the case of complete adhesion,

4Kirwan addressed the question of boundary conditions even earlier in a less general manner
[Kirwan and Newman 1969a; 1969b].
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νb = 0, from where the lower limit of the parameter of boundary conditions α = 0
follows. With deterioration of the above interaction νb increases up to the value,
also determined by moment stresses between the MPF [micropolar fluid] particles.
When the moment stresses between the MPF particles and the boundary are suf-
ficiently small, the magnitude νb is determined mainly by the moment stresses
between the fluid particles themselves. In the problem under consideration this
case is described by the condition”

dω
dy

∣∣∣∣
y = 0 or 1

= 0. (35)

Continuing, “Equality α = 1 corresponds to the physical situation, where there are
moment stresses and no difference between the angular velocity of particle proper
rotation and that of the fluid volume microelement containing it, w. Thus, the
range of variation of the parameter of boundary conditions is 0≤ α ≤ 1.”

In short, (34) is an attempt to relate angular velocity and the rotation of the
translational velocity. We may want to refer to α = 1 as the fully coupled case and
vice versa. In a certain way this equation circumvents the assumption of the prin-
ciple of independence of both types of velocities and, indeed, quoting Hogan and
Henriksen [1989], “No compelling theoretical argument or experimental evidence
suggesting a correct value for S [i.e., α] has been found in the literature.”

Nevertheless, if we make use of this boundary condition for ω the constants ci

in (12) can be determined to read

c1 =−
v0 P(1−α)

2[(1− P)−α(N 2− P)]
, c2 =

(v0/h)(1−αN 2)

(1− P)−α(N 2− P)
,

c3/4 =
(v0/h)(1−α)[1∓ tanh(N L)]

4[(1− P)−α(N 2− P)]
,

(36)

and the following solutions are obtained:

v

v0
=

y(1−αN 2)− 1
2 P(1−α)(1+ sinh(N L[2y− 1])/sinh(N L))

(1− P)−α(N 2− P)
,

ω

v0/h
=

1
2
(1−αN 2)− (1−α) cosh(N L[2y− 1])/cosh(N L)

P(1−α)+ (αN 2− 1)
.

(37)

In [Kolpashchikov et al. 1983] the question was asked which value for α leads
to the condition (35). The answer depends on the boundary value problem under
study. In that reference an answer was given for the case of plane-parallel plate
flow due to a pressure gradient. Then α can assume arbitrary values between 0
and 1, depending on the choice of micropolar fluid constants N and L . If we wish
to obtain (35) for our boundary value problem (36)–(37) we must obviously choose
α = 1, i.e., only the case of total coupling prevails.
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More recently an alternative to (33) has been proposed in [Chakraborty and
Chakraborty 2008]:

ω(y = 1 or 0)= β
dω
dy

∣∣∣∣
y = 1 or 0

. (38)

The coefficient β, which has the dimension [m], is interpreted as the microrota-
tional slip length and dω

dy

∣∣
y = 1 or 0 as (proportional to) the couple stress µyz at the

walls. This idea has been quantified by molecular dynamics simulations in that
reference and continues to be very popular in the most recent literature. The fol-
lowing quote from [Sheikholeslami et al. 2014], where the parameter s is identical
to −β, provides some physical insight into this ansatz: “The case s = 0 represents
concentrated particle flows in which microelements close to the wall are unable to
rotate. Other interesting particular cases that have been considered in the literature
include s = 0.5 which represents weak concentrations and the vanishing of the
antisymmetric part of the stress tensor and s = 1 which represents turbulent flow.”

Finally, note that molecular dynamics simulations indicate that choosing the no-
slip condition ω0 = 0 or a vanishing gradient of the angular velocity (38) seems to
be linked to the surface roughness, or to quote Lopez et al. [2016], “The boundary
conditions for microrotations. . . were chosen to be ω = 0 at the wall and inlet, and
∂ω
∂η
= 0 at the outlet and the far field boundary, where η is the normal coordinate.

The reason to prescribe ω = 0 at the inlet and at the wall is to avoid the effects
of the wall roughness or perturbations from the free stream entering the boundary
layer.”

Indeed, such possibilities were anticipated by Łukaszewicz [1999, p. 31], when
he talks about the possibility to prescribe forces and moments, as we did in Table 1.
Referring to [Aero et al. 1965] he proposes in a very general manner that at the
wall we have

n ·µ= A · (ω−w), (39)

where “A is a matrix with numeric components”. We may wish to refer to it as a
coupling matrix instead according to the Eulerian credo that angular and transla-
tional velocities are independent.

The limit cases A→∞ and A→ 0 are treated by putting ω=w, which expresses
“a very strong interaction between the fluid particles and the solid boundary —
the microrotation reduces to the vorticity of points at the boundary caused by its
movement”. We decided to depict this situation by the cartoon shown in Figure 7.
In particular, if the boundary does not move this condition reduces to ω= 0. Despite
the nice cartoon shown in the figure, the question as to how to induce an ω 6= 0 at a
wall experimentally is unanswered until today and the same holds for the question
of the transmission of a prescribed moment density.
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ω0

−ω0

v0

Figure 7. Model concept of imposing the angular velocity field
via small paddlewheels.

More generally speaking we may also claim that the question of which boundary
conditions to use in the case of theories beyond the Cauchy–Boltzmann continuum
is still in need of finding a rational basis for their definition. Eventually the kinetic
theory of gases might provide a clue: for the case of ideal gases it was demonstrated
in [Barbera et al. 2004] that the missing boundary conditions for the heat flux in an
extended thermodynamic theory can be found by minimization of the entropy of
the system in question. Clearly, such an approach is much more difficult to realize
if fluid matter is concerned.

7. Conclusions and outlook

In this paper we provided closed-form solutions of Couette velocity profiles based
on Eringen’s theory for micropolar fluids. In addition to that the temperature in-
crease due to internal viscous friction was calculated analytically. We analyzed
the effects of different boundary conditions and commented on suggestions for
these from the literature. Possible corresponding experimental realizations were
presented.

Appendix A: Remarks on notation

For convenience of the reader we present the relevant equations in Cartesian rep-
resentation. The balances introduced in (1)–(4) read

0=
∂vi

∂xi
, ρ0

dvi

dt
=
∂σ j i

∂x j
, ρ0 J0

dωi

dt
=
∂µ j i

∂x j
+ εi jkσ jk,

ρ0
du
dt
=−

∂qi

∂xi
+ σi j

(
∂v j

∂xi
− εi jkωk

)
+µi j

∂ω j

∂xi
,

(40)
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where εi jk is the Levi-Civita symbol. For the constitutive relations given in (5), (6),
and (8) we have

σi j =−pδi j +µ

(
∂vi

∂x j
+
∂v j

∂xi

)
+ 2τωkεk ji − τ

(
∂vi

∂x j
−
∂v j

∂xi

)
,

µi j = α
∂ωk

∂xk
δi j +β

(
∂ωi

∂x j
+
∂ω j

∂xi

)
− γ

(
∂ωi

∂x j
−
∂ω j

∂xi

)
,

qi =−κ
∂T
∂xi
+ λ

∂ωk

∂x j
εi jk,

(41)

where δi j is the Kronecker symbol and hi = ωi −
1
2εi jk

∂vk
∂x j

was used. Finally, with
the aid of the relations

∇ · (h× I)=
∂

∂xi
ei · (h j e j × ek ⊗ ek)=

∂h j

∂xi
ε jki ek =∇ × h,

σ× = 2τ(h× I)× = 2τhi (ei × e j )× e j = 2τhiεi jkεk jm em =−4τh,

2w× I= (∇ ⊗ v)>−∇ ⊗ v,

∇ × (∇ × v)=∇(∇ · v)−1v,

ei · e j = δi j , ei × e j = εi jk ek, εi jkε jkm = 2δim,

(42)

where ei are the base vectors, the balances of linear momentum and spin in (7) are
obtained taking into account the incompressibility condition:

ρ0
dvi

dt
=−

∂p
∂xi
+ (µ+ τ)

∂2vi

∂xk∂xk
+ 2τ

∂ωk

∂x j
εi jk,

ρ0 J0
dωi

dt
= (α+β − γ )

∂2ω j

∂xi∂x j
+ (β + γ )

∂2ωi

∂xk∂xk
− 4τωi + 2τ

∂vk

∂x j
εi jk .

(43)

Appendix B: Solution of the coupled system of partial differential equations

In order to solve the boundary value problem shown in (10) the equations are recast
into a system of first-order differential equations:

du
dy
= C ·u with u=


v

v′

ω

ω′

 and C =


0 1 0 0

0 0 0 −
2τ
µ+ τ

0 0 0 1

0
2τ
β + γ

4τ
β + γ

0

 . (44)

By employing the standard exponential ansatz for u we obtain an eigenvalue prob-
lem

u = exp(λy)r =⇒ λr = C · r. (45)
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If C has four linear independent eigenvectors ri , then the general solution to the
system (44) is given by

u =
4∑

i=1

ci ui =

4∑
i=1

ci exp(λi y)ri , (46)

where λi are the eigenvalues of C and ci are arbitrary constants. However, in our
case C does not have four independent eigenvectors:

λ1/2 = 0, λ3/4 =±
2N L

h
, r1 =


1
0
0
0

 , r3/4 =


∓Nh/L
−2N 2

1
±2N L/h

 , (47)

with N =
√

τ

µ+ τ
, L =

h
l
, and l =

√
β + γ

µ
. (48)

The (double) eigenvalue λ1/2 is incomplete which means that only one linear inde-
pendent eigenvector r1 can be found. Hence, an independent solution u2 needs to
be constructed by setting [Walter 1998, p. 183]

u2 = exp(λ1 y)(yr1+ r2), (C − λ11) · r2 = r1 =⇒ r2 =
[
0 1 −1

2 0
]>
,

(49)
where 1 is the unit matrix. Then, the first and third components of the linear
combination of ui are the wanted solutions.
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ANALYTICAL SOLUTIONS
FOR THE NATURAL FREQUENCIES OF RECTANGULAR

SYMMETRIC ANGLE-PLY LAMINATED PLATES

FLORENCE BROWNING AND HARM ASKES

Analytical solutions, based on the Ritz method, are derived for the lowest natural
frequency of rectangular symmetric angle-ply laminated plates. Since symmetric
angle-ply plates have nonzero cross-elasticity constants, the solutions are approx-
imate. The accuracy of these solutions is tested with a convergence study using
the Rayleigh quotient iteration method. With the solutions available in symbolic
form, parameter studies are presented that establish the effect of plate aspect
ratio and ply orientation angle for a number of stacking geometries. The results
are also verified through a comparison with numerical Ritz solutions, showing a
maximum error of 5% in our approximate solution.

1. Introduction

The focus of this paper is on the natural frequencies of rectangular anisotropic
plates. Such plates often consist of layers the principal directions of which are
aligned with the edges of the plates, but this restriction is not necessary — indeed,
here we will focus on alternative arrangements. The stacking geometry affects the
elastic properties of laminated plates, of which the lowest natural frequency is of
particular relevance for serviceability criteria [Gsell et al. 2007].

To make qualitative and quantitative predictions of the mechanical behaviour of
laminated plates, appropriate plate theory needs to be formulated. Starting from
Kirchhoff–Love or Reissner–Mindlin theory, the heterogeneous effects of multi-
ple layers of anisotropic material can be homogenised to arrive at an equivalent
anisotropic plate theory; see for instance [Yang et al. 1966; Whitney and Leissa
1969; Leissa and Whitney 1970; Whitney 1972; Pagano 1969; 1970; Kulkarni and
Pagano 1972]. These anisotropic plate models were discussed and compared to
other modelling strategies for plates (and shells) by Noor et al. [1996]. Further re-
finements have also been developed; see for instance the 1980s work [Reddy 1984;
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Murakami 1986; Ren 1986] and the comparative studies [Carrera 2000; Stürzen-
becher et al. 2010] of more recent years. The natural frequencies of laminated
plates have been studied by Ohta and Ikuno [2002], who restricted their study
to so-called cross-laminated plates (whereby the principal directions of each ply
are parallel to the plate edges), and by Chaudhuri [2002] and Huang et al. [2006],
who developed series-based analytical solutions that can be used for arbitrary layer
geometries.

An aspect that has received relatively little attention in the literature (but for
exceptions see [Hohe 2013]) is the effect of layer orientation on the natural fre-
quencies of laminated plates, and in that context this paper will focus on so-called
angle-ply plates, whereby every layer with a particular fibre orientation has a coun-
terpart layer with the opposite fibre orientation. First, the relevant equations will
be summarised briefly. The case of symmetric angle-ply plates is of interest, as
the coupling of normal stresses to shear strains and vice versa leads to additional
complexity that has, as far as the authors are aware, prohibited the establishment
of a closed-form exact solution to date. Additional assumptions are required to for-
mulate a simple approximate analytical solution; the validity of these assumptions
is checked in a convergence study carried out in symbolic form with the Rayleigh
quotient iteration method, which resulted in a novel set of Padé approximations.
The results are also compared to numerical solutions obtained with the Ritz method,
and a good agreement between the simple analytical solution and the two series so-
lutions was observed. The usefulness and novelty of these solutions relies on their
transparency — whilst the series-based solutions presented in [Chaudhuri 2002;
Huang et al. 2006] can be expanded to arbitrary accuracy, they comprise lengthy
expressions. For practical considerations and straightforward parameter studies a
simpler solution with an upper limit to the error is often preferred.

2. Anisotropic plate theory

The anisotropic plate theory used in this paper builds on the seminal works of
Whitney, Pagano, and their coworkers from the late 1960s and early 1970s. Mem-
brane action and distributed loads will be ignored. Rectangular plates of length A,
width B, and thickness H will be considered using the global Cartesian coordinate
system shown in Figure 1. We will also define the aspect ratio α as α = A/B.

For every individual ply, a local 1-2 coordinate system can be introduced whereby
the 1-axis is aligned with the fibres, rotated along an angle θ from the x-axis. The
stress-strain relation in local coordinates readsσ1

σ2

τ12

=
Q11 Q12 0

Q12 Q22 0
0 0 Q66

 ε1

ε2

γ12

 . (1)
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Figure 1. Global coordinate system and plate dimensions.

The constitutive coefficients Qi j are written in terms of elastic constants as

Q11 =
E1

1− ν12ν21
, (2a)

Q12 =
ν12 E2

1− ν12ν21
=

ν21 E1

1− ν12ν21
, (2b)

Q22 =
E2

1− ν12ν21
, (2c)

Q66 = G12, (2d)

where E1 and E2 are the Young’s moduli parallel and perpendicular to the fibre
direction, G12 is the shear modulus, and ν12 and ν21 are the Poisson’s ratios asso-
ciated with a stretch in the 1-direction and 2-direction, respectively.

The local stress-strain relations are translated to the global coordinate system,
leading to σxx

σyy

τxy

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

εxx

εyy

γxy

 , (3)

where

Q11 = Q11 cos4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 sin4 θ, (4a)

Q22 = Q11 sin4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 cos4 θ, (4b)

Q12 = (Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q12, (4c)

Q66 = (Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q66, (4d)

Q16 = (Q11−Q12−2Q66) cos3 θ sin θ+(Q12−Q22+2Q66) cos θ sin3 θ, (4e)

Q26 = (Q11− Q12− 2Q66) cos θ sin3 θ + (Q12− Q22+ 2Q66) cos3 θ sin θ. (4f)

Note that the above transformation is expressed in terms of the engineering shear
strain, not the tensorial shear strain, meaning that additional factors 2 and 1

2 have
been used compared to the usual transformation rules of second-order tensors.

The constitutive coefficients (4) are assumed to be piecewise constant for each
ply. The heterogeneous response in the z-direction is homogenised by integrating
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the stresses over the thickness of the plate, leading to the equation of transverse
motion

D11
∂4w

∂x4 + (2D12+ 4D66)
∂4w

∂x2∂y2 + D22
∂4w

∂y4

+ 4D16
∂4w

∂x3∂y
+ 4D26

∂4w

∂x∂y3 + ρH
∂2w

∂t2 = 0, (5)

where w is the transverse displacement, ρ is the mass density, and H is the total
thickness of the plate. Furthermore, the various plate bending coefficients Di j are
defined by

Di j =

∫ H/2

−H/2
Qi j z2 dz. (6)

In case D16 6= 0 and D26 6= 0, an additional level of anisotropy is obtained in going
from (1) to (3). These two coefficients are called the “cross-elasticity bending
stiffness terms” [Whitney 1972]. In (5) this manifests itself in odd-order derivatives
in terms of x and y, which has some implications for subsequent derivations, as
will be explained below.

The boundary conditions for simply supported rectangular plates read

w = 0, My =−D11
∂2w

∂x2 − 2D16
∂2w

∂x∂y
− D12

∂2w

∂y2 = 0 at x = 0, A, (7a)

w = 0, Mx =−D12
∂2w

∂x2 − 2D26
∂2w

∂x∂y
− D22

∂2w

∂y2 = 0 at y = 0, B, (7b)

where Mx and My are the distributed moments (per unit of length) about the x-axis
and y-axis, respectively.

3. Plate bending coefficients of symmetric angle-ply plates

In so-called angle-ply plates, each layer with orientation angle θ has a counterpart
layer with orientation angle −θ . Typical stacking sequences are symmetric or
antisymmetric around the midplane z = 0. We will assume symmetric angle-ply
plates with multiples of four layers in total, the same thickness for each layer, and
alternating orientations of +θ and −θ for consecutive layers in each of the top half
and bottom half of the plate. The standard plate bending coefficients can then be
written as

D11 =
H 3

12
(Q11 cos4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 sin4 θ), (8a)

D22 =
H 3

12
(Q11 sin4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 cos4 θ), (8b)
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D12 =
H 3

12
((Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q12), (8c)

D66 =
H 3

12
((Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q66) (8d)

irrespective of the actual number of layers, while the cross-elasticity plate bending
coefficients read

D16 =
H 3 sin 2θ
8·nlayer

((Q11−2Q12+Q22−4Q66) cos2 θ−Q22+Q12+2Q66), (8e)

D26 =−
H 3 sin 2θ
8·nlayer

((Q11−2Q12+Q22−4Q66) cos2 θ−Q11+Q12+2Q66) (8f)

where nlayer is the total number of layers. It can be seen that the cross-elasticity
coefficients vanish when the fibre orientations coincide with the Cartesian axes.
Furthermore, the magnitude of the cross-elasticity coefficients reduces with an in-
creased number of layers. Thus, the maximum effect of cross-elasticity is obtained
for four layers, which will be assumed in the remainder of the paper.

4. Symmetric square angle-ply plate — a convergence study

In the presence of cross-elasticity, i.e., D16 6= 0 and D26 6= 0, it has been mentioned
that an exact solution is not available [Jones 1999, p. 318]. Analytical solutions
have been developed in [Chaudhuri 2002] and [Huang et al. 2006], but they are
expressed in an extended series format, and a symbolic representation does not
seem to be sufficiently transparent to be practicable. Instead, we have opted to
use the Ritz method in symbolic form to generate an approximate solution to the
cross-elasticity case.

The general solution for the Ritz method in the case of simply supported plates
reads

w(x, y, t)= sin(ωt)
M∑

m=1

N∑
n=1

Cm,n sin mπx
A

sin nπy
B
. (9)

Adopting a square geometry, i.e., A = B, and using the same number of terms in
both the x and y direction, i.e., M = N , the exact solutions of the Ritz problem for
the lowest two values of M and N are denoted by ω2

(M,N ) and read

ω2
(1,1) =

π4 H 2 Qaa

12ρB4 , (10a)

ω2
(2,2) =

π4 H 2 Qaa

12ρB4 ·

(
17
2
−

15
2

√
1+

1024
81

Q2
bb

Q2
aa

)
(10b)
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where

Qaa = Q11+ 2Q12+ Q22+ 4Q66+ (Q11− 2Q12+ Q22− 4Q66) sin2 2θ, (11a)

Qbb = (Q11− Q22)
sin 2θ
π2 (11b)

have been defined for a more compact notation.
For larger values of M and N , the size of the stiffness matrix becomes prohibitive

to finding an exact solution in transparent symbolic form; thus, we have made two
further approximations. Firstly, we have discarded any terms whereby m 6= n —
this can be justified by inspecting the eigenvector associated with (10b). Secondly,
we have applied two iterations of the Rayleigh quotient iteration method to arrive
at a relatively simple closed-form approximation of the lowest natural frequency.

(1) With trial eigenvector v1 = [1, 0, 0, . . .]T we have computed the Rayleigh
quotient RQ according to

RQ=
vT Kv
vT Mv

(12)

where K and M are the stiffness matrix and mass matrix, respectively. Not
surprisingly, the value of the Rayleigh quotient in this first iteration equals the
expression for ω2 given in (10a).

(2) These values for v and RQ are used to compute an update on v according to

v2 = [K −RQ ·M]−1v1 (13)

after which this new estimate of the eigenvector is used to recompute the
Rayleigh quotient, and the resulting value of RQ is taken as an approximation
for ω2. Carrying out further iterations in symbolic form is possible in principle,
but leads to expressions that are too unwieldy to be of practical use.

The above procedure has been executed for M = N = 2 up to M = N = 5,
which gives the results in Table 1 on the next page. The first of these expres-
sions, (15a), has been included to provide a comparison with the Ritz solution
of (10b); the former is also a [1, 1]-Padé approximation of the latter, following
√

1+ x ≈ (4+ 3x)/(4+ x).
To estimate the differences between the various solutions, it is first established

that the ratio Qbb/Qaa adopts its maximum value for θ = 1
4π ; in particular

Qbb

Qaa
=

1
2π2 ·

E1− E2

E1+ E2
at θ = 1

4π, (14)

which in turn adopts its maximum value for vanishing E2. With the estimate
Qbb/Qaa < 1/2π2, the relative difference between (15a) and (10b) is less than
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ω2
(2,2) ≈

π4 H 2 Qaa

12ρB4 ·
81− 3584 Q2

bb /Q2
aa

81+ 256 Q2
bb /Q2

aa
, (15a)

ω2
(3,3) ≈

π4 H 2 Qaa

12ρB4 ·
1− 128 Q2

bb /Q2
aa + 3787 Q4

bb /Q4
aa

1− 81 Q2
bb /Q2

aa + 1793 Q4
bb /Q4

aa
, (15b)

ω2
(4,4) ≈

π4 H 2 Qaa

12ρB4 ·
1− 205 Q2

bb /Q2
aa + 11457 Q4

bb /Q4
aa − 103802 Q6

bb /Q6
aa

1− 157 Q2
bb /Q2

aa + 6251 Q4
bb /Q4

aa + 3625 Q6
bb /Q6

aa
, (15c)

ω2
(5,5) ≈

π4 H 2 Qaa

12ρB4 · (15d)

1−281 Q2
bb /Q2

aa+24601 Q4
bb /Q4

aa−681845 Q6
bb /Q6

aa+5045965 Q8
bb /Q8

aa

1−233 Q2
bb /Q2

aa+15876 Q4
bb /Q4

aa−266394 Q6
bb /Q6

aa+1438407 Q8
bb /Q8

aa
.

Table 1. Approximate natural frequencies for the Ritz problem in
the cross-elasticity case: symmetric square, modes with M = N
ranging from 2 through 5.

10−5, which indicates that the Rayleigh quotient iteration method provides an ex-
cellent approximation of the Ritz solution. Comparing (15b), (15c), and (15d) to
(10b) leads to maximum relative errors of 1.5%, 2.4%, and 2.7%, respectively.

These results are obviously encouraging, but they must be interpreted with some
caution. Whilst it is well-known that the Rayleigh quotient iteration method con-
verges very rapidly (also confirmed by the comparison above for M = N = 2),
it must be kept in mind that these results are obtained using two iterations only.
Furthermore, the Ritz method itself is known to converge much slower than other
methods such as direct Fourier series [Whitney 1972], although convergence is
better for plates that are simply supported on all sides. Applying the Rayleigh
quotient iteration method in symbolic form could be used to increase the accuracy
of the analytical solution, but instead of seeking a solution in series format we
will next use the Ritz method with M = N = 2 below to extend the analysis to
rectangular plates.

5. Rectangular angle-ply plates

Using (9) with M = N = 2 leads to a stiffness matrix K and mass matrix M as

K =


K11 0 0 K14

0 K22 K23 0
0 K23 K33 0

K14 0 0 K44

 and M =
ρH B2α

4
I (16)

where I is the identity matrix. Noting that K44 = 16K11, the lowest natural
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E1 [GPa] E2 [GPa] ν12 ν21 G12 [GPa] ρ [kg/m3]

GFR composite 46.2 16.6 0.26 0.093 6.9 2027
spruce 11.0 0.37 0.44 0.015 0.69 500

Table 2. Material properties for a glass-fibre reinforced composite
and spruce.

frequency is found from

ω =

√
34K11− 2

√

225K 2
11+ 4K 2

14
ρH B2α

(17)

where the relevant stiffness matrix components are given in terms of the plate
bending coefficients as

K11 =
π4

4B2α3 (D11+ (2D12+ 4D66)α
2
+ D22α

4), (18a)

K14 =−
160π2

9B2α2 (D16+ D26α
2). (18b)

For quantitative comparisons, we will use the two sets of material parameters listed
in Table 2, associated respectively with a glass-fibre reinforced (GFR) composite
[Fällström et al. 1996] and spruce [Stürzenbecher et al. 2010].

The natural frequencies according to (17) have been plotted in Figure 2 for a

1

30

0.5

1 B
2
 /
 H

10
4

1.5

90

2

67.5

2.5

545 22.5 0

1

30

2

4

re
la

ti
v
e
 e

rr
o
r

10
-3

90

6

67.5

8

545 22.5 0

1

30

0.5

1 B
2
 /
 H

10
4

1.5

90

2

67.5

2.5

545 22.5 0

1

30

0.01

0.02

re
la

ti
v
e
 e

rr
o
r

0.03

90

0.04

67.5

0.05

545 22.5 0

Figure 2. Normalised natural frequency ω (top) and relative error
of the analytical solution (bottom) against plate aspect ratio α and
fibre orientation angle θ . Left: GFR composite; right: spruce.



NATURAL FREQUENCIES OF ANGLE-PLY PLATES 59

range of plate aspect ratios and fibre orientation angles, and for the two sets of mate-
rial parameters given in Table 2 — note that the fibre orientation angle is plotted in
degrees, not radians. The approximate solutions of (17) have also been compared
to solutions obtained numerically with the Ritz method using M = N = 50.

The natural frequencies for the two sets of material data are qualitatively very
similar. The maximum frequency is found for θ = 1

4π in case of aspect ratios
close to unity, and for θ = 1

2π in case of larger aspect ratios. The dependence
on the aspect ratio is strongest for θ = 0, i.e., when the fibres are spanning the
larger dimension — particularly for spruce, which has a larger E1/E2 ratio. The
quantitative differences between the GFR composite and spruce are due to the
much stronger degree of anisotropy encountered in spruce. This also impacts the
accuracy of the approximate solution given in (17). The relative error of the an-
alytical solution with respect to the benchmark numerical solution is seen to be
less than 1% for the GFR composite, but more than five times as high for spruce.
Nevertheless, a 5% error only occurs for aspect ratio α = 1 and fibre orientations
θ = 1

4π (which is also the geometry for which maximum errors were studied in
Section 4), whereas other combinations of α and θ lead to (much) lower errors.
This level of accuracy is deemed to be proportionate and acceptable, given the
simplicity and transparency of (17) and (18).

6. Conclusions

Simple and transparent expressions for the lowest natural frequency have been
derived for rectangular anisotropic plates. Since the plate behaviour includes a
coupling between normal stresses and shear strains (and vice versa), a phenomenon
known as “cross-elasticity”, the solutions are approximate. A rudimentary conver-
gence study in symbolic form based on the Rayleigh quotient iteration method has
confirmed that a relatively low order of the Ritz method can be used for cases that
are simply supported on all sides. This has been employed for more general plate
configurations with cross-elasticity; because the solutions are obtained in symbolic
form, parameter studies are straightforward. The accuracy of the method has been
further confirmed by comparison with numerically obtained Ritz solutions.

Due to the chosen approach of seeking closed-form solutions, certain simplifi-
cations and assumptions had to be made. Thus, we have studied only one set of
boundary conditions, namely simply supported on all sides, we have ignored mem-
brane action, and cross-sectional warping has not been included. These effects, and
others, can be studied using a numerical solution approach in combination with a
more sophisticated plate theory, whereby the analytical solutions provided in this
paper may serve as reference solutions.
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ON THE BLOCKING LIMIT OF STEADY-STATE FLOW
OF HERSCHEL–BULKLEY FLUID

FARID MESSELMI

This paper is devoted to the study of the blocking limit of Herschel–Bulkley fluid
in the case of steady-state flow. To this aim, we consider a mathematical model
which describes the steady-state flow of a Herschel–Bulkley fluid in a bounded
domain. We give the mathematical formulation of the blockage phenomenon,
and we establish the existence of the blocking limit. We also focus on behaviour
of the flow with respect to the blocking limit.

1. Introduction

The rigid viscoplastic and incompressible fluid of Herschel and Bulkley has been
investigated by mathematicians, physicists, and engineers as intensively as the
Navier–Stokes equations though this model adequately describes a large class of
flows. It has been used to model the flow of metals, plastic solids, and a variety
of polymers. Physical experiments and numerical studies of the flow of Herschel–
Bulkley fluids prove that when the yield stress increases, the rigid zones become
larger and may completely block the flow. This property is called the blocking
phenomenon. Due to existence of the yield limit, the model can capture phe-
nomena connected with the development of discontinuous stresses. The literature
concerning this topic is extensive; see, e.g., [Málek 2008; Málek et al. 2006; 2005;
Messelmi 2017; Messelmi and Merouani 2013; 2010; Messelmi et al. 2010].

Our paper deals with the steady-state flow of Herschel and Bulkley. The main
objective is the study of the behaviour of the flow. We provide a generalisation of a
result obtained by Hild et al. [2002] for Bingham fluid to the steady-state flow of the
Herschel–Bulkley model, ensuring the existence of the blocking limit. Moreover,
we establish a result concerning the behaviour of the flow when the yield limit is
near a minimal blocking limit.

The paper is organised as follows. In Section 2 we present the mechanical
problem of the steady-state flow of Herschel–Bulkley fluid in a bounded domain
� ⊂ Rn . We introduce some notation and preliminaries. In addition, we derive

Communicated by Carlo Marchioro.
MSC2010: 35J85, 76A05, 76E30.
Keywords: blocking limit, Herschel–Bulkley fluid, variational inequality.
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the variational formulation of the problem. In Section 3, we show the mathemat-
ical formulation of the blockage phenomenon and we prove the existence of the
blocking limit. Section 4 is devoted to the study of the behaviour of the flow with
respect to the blocking limit.

2. Problem statement

We consider a mathematical problem modelling the steady-state flow of the rigid
viscoplastic and incompressible Herschel–Bulkley fluid in a bounded domain �⊂
Rn (n = 2, 3), with the boundary 0 of class C1. The fluid is acted upon by given
volume forces of density f . On 0 we suppose that the velocity is equal to zero.

We denote by Sn the space of symmetric tensors on Rn . We define the inner
product and the Euclidean norm on Rn and Sn , respectively, by

u · v = uivi for all u, v ∈ Rn, σ · τ = σi jτi j for all σ , τ ∈ Sn,

|u| = (u · u)1/2 for all u ∈ Rn, |σ | = (σ · σ )1/2 for all σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the summation con-
vention over repeated indices is used. We denote by σ D the deviator of σ = (σi j )

given by
σ D
= (σ D

i j ), σ D
i j = σi j −

σkk

n
δi j ,

where δ = (δi j ) denotes the identity tensor.
Let 1< p ≤ 2. We consider the rate-of-deformation operator defined for every

u ∈W 1,p(�)n by

D(u)= (Di j (u)), Di j (u)= 1
2(ui, j + u j,i ).

The steady-state flow of Herschel–Bulkley fluid can be described by the follow-
ing mechanical problem.

Problem P1. Find the velocity field u = (ui ) : �→ Rn and the stress field σ =
(σi j ) :�→ Sn such that

u · ∇u= div σ + f in �. (2-1)

σ D
=µ|D(u)|p−2 D(u)+g(D(u)/|D(u)|) if |D(u)| 6= 0,

|σ D
| ≤ g if |D(u)| = 0

}
in �, (2-2)

div u= 0 in �, (2-3)

u= 0 on 0. (2-4)

Here div σ = (σi j, j ) and div u= ui,i . The flow is given by (2-1) where the density
is assumed equal to one. Equation (2-2) represents the constitutive law of Herschel–
Bulkley fluid where µ> 0 and g≥ 0 represent the consistency and yield limit of the
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fluid, respectively, and 1< p ≤ 2 is the power law index. Equation (2-3) represents
the incompressibility condition. Equation (2-4) gives the adherence condition on
the boundary 0.

Existence of weak solutions for this problem was proved in 1969 for p ≥
3n/(n+ 2), for which the energy equality holds and higher differentiability tech-
niques can be applied, in 1997 for p ≥ 2n/(n+1), and recently for p> 2n/(n+2)
using the Lipschitz truncation method. Moreover, in 2010 some existence results
regarding the thermal flow were established for the case p ≥ 3n/(n+ 2) [Frehse
et al. 2003; Lions 1969; Málek 2008; Málek et al. 2006; Messelmi et al. 2010]. Up
to now, there are only a few results concerning the regularity of weak solutions,
especially in three-dimensional domains. Further, the asymptotic behaviour of the
unsteady flow was the subject of [Messelmi 2017].

Remark. (1) The Bingham fluid represents a particular case of Herschel–Bulkley
fluid corresponding to p = 2.

(2) In the constitutive law of Herschel–Bulkley fluid (2-2), the viscosity and hy-
drostatic pressure are given, respectively, by

η = µ|D(u)|p−2, π =−
1
n
σkk . (2-5)

Let us introduce the function spaces

Wp,div = {v ∈W 1,p
0 (�)n : div(v)= 0 in �}, (2-6)

LD(�)= {v ∈ L1(�)n : D(v) ∈ L1(�)n×n
}, (2-7)

VD(�)= {v ∈ LD(�) : v = 0 on 0}, (2-8)

W = {v ∈ VD(�) : div v = 0 in �}. (2-9)

Wp,div is a Banach space equipped with the norm

‖v‖Wp,div = ‖v‖W 1,p(�)n . (2-10)

Moreover, Korn’s inequality holds in the space Wp,div [Messelmi et al. 2010],
which means that there exists a positive constant C0 depending only on � and 0
such that

C0‖D(v)‖L p(�)n×n ≥ ‖v‖Wp,div for all v ∈Wp,div. (2-11)

The space LD(�) was introduced by Temam [1985]. It is a Banach space
equipped with the norm

‖v‖LD(�) = ‖v‖L1(�)n +‖D(v)‖L1(�)n×n , (2-12)

which is not reflexive, and W 1,1(�)n ⊂ LD(�). Since Korn’s inequality does not
hold on LD(�) (see the remarks in [Temam 1985]), the space W 1,1(�)n is a proper
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subspace of LD(�). VD(�) is a closed subspace of LD(�). W is also a Banach
space equipped with the norm given by (2-12). Furthermore, Korn’s inequality
holds in W [Temam 1985], and thus, there exists a positive constant CW depending
only on � and 0 such that

CW‖D(v)‖L1(�)n×n ≥ ‖v‖LD(�) for all v ∈W . (2-13)

Denoting by p′ the conjugate of p, we introduce the convective operator

B :Wp,div×Wp,div×Wp,div→ R, B(u, v,w)=
∫
�

u · ∇v ·w dx . (2-14)

We begin by recalling the following lemma [Messelmi et al. 2010], which gives
some properties of the convective operator B.

Lemma. Suppose that
3n

n+ 2
≤ p ≤ 2. (2-15)

Then B is trilinear and continuous on Wp,div×Wp,div×Wp,div. Moreover, for all
(u, v,w) ∈Wp,div×Wp,div×Wp,div we have B(u, v,w)=−B(u,w, v).

For the rest of this paper, we choose 3n/(n+2)≤ p ≤ 2. The use of Green’s for-
mula permits us to derive the following variational formulation of the mechanical
problem P1 [Messelmi et al. 2010].

Problem Pg. For prescribed data f ∈W ′p,div, find u ∈Wp,div satisfying the varia-
tional inequality

B(u, u, v− u)+µ
∫
�

|D(u)|p−2 D(u) · D(v− u) dx

+g
∫
�

|D(v)| dx−g
∫
�

|D(u)| dx ≥
∫
�

f ·(v−u) dx for all v ∈Wp,div. (2-16)

By taking v = 0 and v = 2u in (2-16), respectively,

µ

∫
�

|D(u)|p dx + g
∫
�

|D(u)| dx =
∫
�

f · u dx . (2-17)

This implies using again (2-16)

B(u, u, v)+µ
∫
�

|D(u)|p−2 D(u) · D(v) dx + g
∫
�

|D(v)| dx

≥

∫
�

f · v dx for all v ∈Wp,div. (2-18)

Consequently, the steady-state flow of Herschel–Bulkley fluid can be also described
by the system (2-17)–(2-18).
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3. Blockage property

This section is dedicated to the study of the blockage property of Herschel–Bulkley
fluid. To do this, let us recall the following standard definition [Hild et al. 2002].

Definition. We will say that the fluid is blocked in the domain � if u= 0 a.e. in �
is a solution to the variational problem Pg.

We prove the following proposition, which gives the variational interpretation
of the blockage property.

Proposition. The fluid is blocked in the domain � if and only if

g
∫
�

|D(v)| dx ≥
∫
�

f · v dx for all v ∈Wp,div. (3-1)

Proof. The first implication is an immediate consequence of the definition of block-
age property. For the second one, we proceed as follows. Suppose that (3-1) holds.
In particular, we have

g
∫
�

|D(u)| dx ≥
∫
�

f · u dx . (3-2)

Subtracting the inequalities (2-17) and (3-1), we find

µ

∫
�

|D(u)|p dx ≤ B(u, u, v)+µ
∫
�

|D(u)|p−2 D(u) · D(v) dx

+ g
∫
�

|D(v)| dx −
∫
�

f · v dx for all v ∈Wp,div. (3-3)

Thus, the result can be obtained by setting v = 0 as a test function in (3-3) and
using Korn’s inequality. �

Hence, the mathematical study of the blockage property consists of finding the
relationship between the yield limit g and the density of volume forces f such that
the inequality (3-1) holds.

We say that g is a blocking limit if the inequality (3-1) is satisfied.
We suppose from now on that

f ∈ L∞(�)n. (3-4)

The statement below ensures the existence of a blocking phase for large-enough
yield limit.

Proposition. If (3-4) holds, then

g∗ = sup
v∈Wp,div−{0}

∫
�

f · v dx∫
�
|D(v)| dx

<+∞. (3-5)

In addition, if g ≥ g∗, then the blocking occurs; it means that (3-1) holds.
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Proof. Let us define the form l ∈W ′p,div by

〈l, v〉W ′p,div×Wp,div =

∫
�

f · v dx for all v ∈Wp,div. (3-6)

The fact that f ∈ L∞(�)n implies that l ∈W ′. Then, there exists C1 > 0 such that

|〈l, v〉W ′p,div×Wp,div | ≤ C1‖v‖LD(�) for all v ∈ LD(�). (3-7)

This yields, thanks to the Korn inequality (2-13)

|〈l, v〉W ′p,div×Wp,div | ≤ C1CW‖D(v)‖L1(�)n×n for all v ∈ LD(�). (3-8)

Consequently, via (3-7) and (3-8) we obtain g∗ ≤ C1CW .
Now, if g ≥ g∗, then (3-5) gives

g
∫
�

|D(v)| dx ≥ g∗
∫
�

|D(v)| dx ≥
∫
�

f · v dx for all v ∈Wp,div−{0},

which completes the proof, by observing that if v = 0, the inequality above also
remains satisfied. �

Here g∗ is said to be the minimal blocking limit.
Let g be a blocking limit. We denote by C the set

C =
{
v ∈Wp,div

∣∣∣∣ g
∫
�

|D(v)| dx =
∫
�

f · v dx
}
. (3-9)

It is straightforward to verify that the set C is a convex cone in Wp,div.

4. Behaviour of the flow

Let us introduce for ε > 0 the perturbed yield limit

gε = (1− ε p−1)g, (4-1)

and denote by uε the solution of the corresponding problem, i.e.,

B(uε, uε, v−uε)+µ
∫
�

|D(uε)|p−2 D(uε)·D(v−uε) dx+gε

∫
�

|D(v)| dx

− gε

∫
�

|D(uε)| dx ≥
∫
�

f · (v− uε) dx for all v ∈Wp,div. (4-2)
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The above inequality can be written in equivalent form

µ

∫
�

|D(uε)|p dx + gε

∫
�

|D(uε)| dx =
∫
�

f · uε dx, (4-3)

B(uε, uε, v)+µ
∫
�

|D(uε)|p−2 D(uε) · D(v) dx + gε

∫
�

|D(v)| dx

≥

∫
�

f · v dx for all v ∈Wp,div. (4-4)

Setting now

wε =
uε
ε

for all ε > 0, (4-5)

in the following we establish a convergence result for (wε)ε>0 when ε tends to 0.

Theorem. Suppose that g is a blocking limit. Then (wε)ε>0 convergences strongly,
when ε tends to 0 in Wp,div, to the solution w of the variational inequality

w∈C :µ
∫
�

|D(w)|p−2 D(w)·D(v−w) dx≥
∫
�

f ·(v−w) dx for all v ∈ C . (4-6)

Proof. The system becomes, taking into account (4-5),

µε p−1
∫
�

|D(wε)|p dx + (1− ε p−1)g
∫
�

|D(wε)| dx =
∫
�

f ·wε dx, (4-7)

ε2 B(wε,wε, v)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(v) dx

+ (1− ε p−1)g
∫
�

|D(v)| dx ≥
∫
�

f · v dx for all v ∈Wp,div. (4-8)

Equation (4-7) gives

µε p−1
∫
�

|D(wε)|p dx + (1− ε p−1)

(
g
∫
�

|D(wε)| dx −
∫
�

f ·wε dx
)

= ε p−1g
∫
�

|D(wε)| dx . (4-9)

Suppose that g is a blocking limit; then (4-9) gives

µ

∫
�

|D(wε)|p dx ≤ g
∫
�

|D(wε)| dx . (4-10)

We deduce making use of Korn’s inequality and some algebraic manipulations that

‖wε‖Wp,div ≤ c. (4-11)

Hence, we can extract a subsequence still denoted by (wε)ε>0 such that

wε→ w in Wp,div weakly. (4-12)
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The Rellich–Kondrachov compactness theorem allows us to get after a new ex-
traction

wε→ w in L p(�)n strongly and a.e. in �. (4-13)

Therefore, (4-9) gives again

(1− ε p−1)g
∫
�

|D(wε)| dx ≤
∫
�

f ·wε dx,

thereby allowing us to find

g lim inf
∫
�

|D(wε)| dx ≤ lim
∫
�

f ·wε dx . (4-14)

This yields

g
∫
�

|D(w)| dx ≤
∫
�

f ·w dx . (4-15)

Consequently, since g is a blocking limit,

g
∫
�

|D(w)| dx =
∫
�

f ·w dx . (4-16)

Taking w as test function in inequality (4-8), it implies that

ε2 B(wε,wε,w)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(w) dx

+ (1− ε p−1)g
∫
�

|D(w)| dx ≥
∫
�

f ·w dx .

This gives, making use of (4-16),

ε3−p B(wε,wε,w)+µ
∫
�

|D(wε)|p−2 D(wε) ·D(w) dx ≥ g
∫
�

|D(w)| dx . (4-17)

Moreover, the lemma on page 66 permits us to obtain the estimate

|B(wε,wε,w)| ≤ ‖wε‖2Wp,div
‖w‖Wp,div . (4-18)

On the other hand, it is well known that the nonlinear term µ
∫
�
|D(wε)|p−2 D(wε) ·

D(w) dx converges to µ
∫
�
|D(w)|p dx [Lions 1969]. Consequently, by passing

to the limit, one can find, keeping in mind (4-18),

µ

∫
�

|D(w)|p dx ≥ g
∫
�

|D(w)| dx . (4-19)

We get thanks to (4-10)

lim infµ
∫
�

|D(wε)|p dx ≤ g lim inf
∫
�

|D(wε)| dx .
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So, using (4-14) we can infer that

lim infµ
∫
�

|D(wε)|p dx ≤ lim
∫
�

f ·wε dx,

which implies that

µ

∫
�

|D(w)|p dx ≤
∫
�

f ·w dx . (4-20)

Putting together (4-16), (4-19), and (4-20) we obtain

µ

∫
�

|D(w)|p dx = g
∫
�

|D(w)| dx =
∫
�

f ·w dx, (4-21)

which implies in particular that w ∈ C . Furthermore, by (4-8) we get

ε3−p B(wε,wε, v)+µ
∫
�

|D(wε)|p−2 D(wε) · D(v) dx

+
1

ε p−1

(
g
∫
�

|D(v)| dx −
∫
�

f · v dx
)
≥ g

∫
�

|D(v)| dx for all v ∈Wp,div.

By choosing v ∈ C in the above inequality, the passage to the limit leads to

µ

∫
�

|D(w)|p−2 D(w) · D(v) dx ≥ g
∫
�

|D(v)| dx for all v ∈ C .

This yields

µ

∫
�

|D(w)|p−2 D(w) · D(v) dx ≥
∫
�

f · v dx for all v ∈ C . (4-22)

Combining (4-21) and (4-22) yields the inequality (4-6).
Our objective now is to prove the strong convergence. With this aim, we proceed

as follows. The use of (4-7) and (4-8) permits us to affirm that for every v ∈Wp,div

ε2 B(wε,wε, v)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(v−wε) dx

≥

∫
�

f · (v−wε) dx − (1− ε p−1)g
(∫

�

|D(v)| dx −
∫
�

|D(wε)| dx
)

It follows, by setting v = w, that

−ε2 B(wε,wε,w)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(wε −w) dx

≤

∫
�

f · (wε −w) dx + (1− ε p−1)g
∫
�

(|D(w)| − |D(wε)|) dx . (4-23)

Further, since g is the blocking limit and w ∈Wp,div, one can verify that

g
∫
�

(|D(w)| − |D(wε)|) dx ≤
∫
�

f · (w−wε) dx .
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Consequently, inequality (4-23) becomes

µ

∫
�

|D(wε)|p−2 D(wε) ·D(wε−w) dx ≤
∫
�

f ·(wε−w) dx+ε3−p B(wε,wε,w).

(4-24)
This becomes

µ

∫
�

(|D(wε)|p−2 D(wε)− |D(w)|p−2 D(w)) · D(wε −w) dx

≤

∫
�

f · (wε −w) dx −µ
∫
�

|D(w)|p−2 D(w)D(wε −w) dx

+ cε3−p
‖wε‖

2
Wp,div
‖w‖Wp,div . (4-25)

Let us observe now that for every x, y ∈ Rn ,

(|x |p−2x − |y|p−2 y) · (x − y)≥ c
|x − y|2

(|x | + |y|)2−p , 1< p ≤ 2.

So applying the above inequality, (4-25) can be rewritten as

µ

∫
�

|D(wε −w)|2

(|D(wε)| + |D(w)|)2−p dx ≤ c
∣∣∣∣∫
�

f · (wε −w) dx
∣∣∣∣

+ cε3−p
‖wε‖

2
Wp,div
‖w‖Wp,div + cµ

∣∣∣∣∫
�

|D(w)|p−2 D(w)D(wε −w) dx
∣∣∣∣,

which gives, exploiting Korn’s and Hölder’s inequalities,

‖wε −w‖
p
Wp
≤ c

(∫
�

(|D(wm)| + |D(w)|)p dx
)(2−p)/2(∣∣∣∣∫

�

f · (wε −w) dx
∣∣∣∣

+ ε3−p
‖wε‖

2
Wp,div
‖w‖Wp,div +µ

∫
�

|D(w)|p−2 D(w)D(wε −w) dx
)p/2

.

Passing to the limit, we conclude, using (4-12) and taking into account the fact
that |D(w)|p−2 D(w) is bounded in L p′(�)n , that

wε→ w in Wp,div strongly,

which permits us to complete the proof. �

Corollary. Denoting by w0 the unique solution of the variational equation given by

µ

∫
�

|D(w0)|
p−2 D(w0) · D(v) dx =

∫
�

f · v dx for all v ∈Wp,div, (4-26)

then the following estimates hold:

‖D(w)‖L p(�)n×n ≤ ‖D(w0)‖L p(�)n×n ,

∫
�

f ·w dx ≤
∫
�

f ·w0 dx . (4-27)
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Proof. We can infer by setting w as a test function in (4-26) that

µ

∫
�

|D(w0)|
p−2 D(w0) · D(w) dx =

∫
�

f ·w dx .

This yields, using Hölder’s inequality

µ‖D(w0)‖
p−1
L p(�)n×n‖D(w)‖L p(�)n×n ≥

∫
�

f ·w dx = µ‖D(w)‖p
L p(�)n×n ,

which allows us to get the first estimate. The second estimate becomes an imme-
diate consequence of the first one. �
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MM ∩

CONTINUUM THEORY
FOR MECHANICAL METAMATERIALS

WITH A CUBIC LATTICE SUBSTRUCTURE

SIMON R. EUGSTER, FRANCESCO DELL’ISOLA AND DAVID J. STEIGMANN

A three-dimensional continuum theory for fibrous mechanical metamaterials is
proposed, in which the fibers are assumed to be spatial Kirchhoff rods whose
mechanical response is controlled by a deformation field and a rotation field, the
former accounting for strain of the rod and the latter for flexure and twist of the
rod as it deforms. This leads naturally to a model based on Cosserat elasticity.
Rigidity constraints are introduced that effectively reduce the model to a variant
of second-gradient elasticity theory.

1. Introduction

The advent of 3D printing and associated microfabrication technologies has facil-
itated the design and realization of a range of mechanical metamaterials. These
lightweight artificial materials exhibit stiffness and energy-absorbing properties
far exceeding those of conventional bulk materials [Barchiesi et al. 2019; Mieszala
et al. 2017; Vangelatos et al. 2019]. A unit cell of such a material — typically
of microscopic dimensions — consists of a lattice of beam-like or rod-like fibers
interacting at internal connections. The intrinsic extensional, flexural, and torsional
stiffnesses of the fibers combine with the architecture of the lattice to confer high
stiffness on the material at the macroscale together with enhanced energy absorp-
tion via microscale buckling.

These technologies provide impetus for the development of a continuum theory
for the analysis of the macroscale response of metamaterials with lattice-like sub-
structures. Toward this end, we outline a Cosserat model in which the deformation
and rotation fields account respectively for the strains and orientations of the fibers,
regarded as spatial Kirchhoff rods. In this preliminary work we confine attention to
the simplest case of a cubic lattice architecture in which the constituent fibers are
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California, Berkeley. Steigmann gratefully acknowledges the support of the U.S. National Science
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initially orthogonal. Further, in view of the solid nature of the internal connections
in typical metamaterials [Vangelatos et al. 2019], we assume the fibers to be rigid in
the sense that they remain mutually orthogonal in the course of deformation. They
are free to extend or contract and to bend and twist, however, and these modes of
deformation are modeled explicitly.

In Section 2 we review Kirchhoff’s one-dimensional theory of rods as a pre-
lude to the development, in Section 3, of an analogous three-dimensional Cosserat
continuum model. We show that the rigidity constraint imposed in the continuum
theory effectively determines the Cosserat rotation in terms of the gradient of the
deformation field. Because the gradient of the rotation field is involved in the
constitutive functions, this has the consequence that the Cosserat model reduces
to a particular second-gradient theory of elasticity [Spencer and Soldatos 2007].
Details of this reduction are given in Section 4. Finally, in Section 5 we apply the
theory to predict the response of a block to finite flexure. This solution serves to
illustrate certain unusual features of the proposed model.

2. Kirchoff rods

In Kirchhoff’s theory the rod is regarded as a spatial curve endowed with an elastic
strain-energy function that depends on curvature and twist [Landau and Lifshitz
1986; Dill 1992; Antman 2005]. In Dill’s derivation from conventional three-
dimensional nonlinear elasticity, this theory also accommodates small axial strain
along the rod, whereas this effect is suppressed in derivations based on asymptotic
analysis or the method of gamma convergence. We include it here. In the present
section we outline the basic elements of Kirchhoff’s theory, including the kine-
matics, the constitutive theory, and the variational derivation of the equilibrium
equations. Although this theory is well known, we review it here to facilitate the
interpretation of the ensuing continuum theory of metamaterials.

2.1. Kinematics. The basic kinematic variables in the theory are a deformation
field r(s), where s ∈ [0, l] and l is the length of the rod in a reference configuration,
and a right-handed, orthonormal triad {di (s)} in which d3 = d, where d is the unit
vector defined by [Dill 1992; Steigmann 1996; Antman 2005]

r ′(s)= λd,

λ= |r ′(s)|.
(1)

Here λ is the stretch of the rod. Thus, d is the unit tangent to the rod in a deformed
configuration and dα (α = 1, 2) span its cross-sectional plane at arclength station s.

A central aspect of Kirchhoff’s theory is that each cross section deforms as a
rigid disc. Accordingly, there is a rotation field R(s) such that di = R Di , where
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Di (s) are the values of di (s) in a reference configuration; thus,

R = di ⊗ Di . (2)

The curvature and twist of the rod are computed from the derivatives d ′i (s),
where

d ′i = R′Di + R D′i . (3)

Let {Ei } be a fixed right-handed background frame. Then Di (s) = A(s)Ei for
some rotation field A, yielding

d ′i =W di = w× di , (4)
where

W = R′Rt
+ R A′At Rt (5)

is a skew tensor and w is its axial vector. If the rod is straight and untwisted in the
reference configuration, i.e., if D′i = 0, then W = R′Rt .

2.2. Strain-energy function. We assume the strain energy E stored in a segment
[l1, l2] ⊂ [0, l] of a rod of length l to be expressible as

E =
∫ l2

l1

U ds, (6)

where U , the strain energy per unit length, is a function of the list {R, R′, r ′},
possibly depending explicitly on s. Explicit s-dependence may arise from the initial
curvature or twist of the rod, or from nonuniform material properties.

We require U to be Galilean invariant and hence that its values be unaffected by
the substitution {R, R′, r ′} → {Q R, Q R′, Qr ′}, where Q is an arbitrary uniform
rotation. Because U is defined pointwise, to derive a necessary condition we select
the rotation Q = Rt

|s and conclude that U is determined by the list {Rt R′, Rt r ′}.
This list is trivially Galilean invariant. It is equivalent to {Rt W R− A′At , λD},
where D = D3 and Rt W R− A′At is a Galilean-invariant measure of the relative
flexure and twist of the rod due to deformation. Here D and A′At are indepen-
dent of the deformation and serve to confer an explicit s-dependence on the strain-
energy function; accordingly, we write U =U (Rt W R, λ; s). If the rod is initially
straight and untwisted, as we assume hereafter, then D′i = 0 and any explicit s-
dependence of the energy is due solely to nonuniformity of the material properties.
Henceforth, we assume material properties to be uniform.

In the present circumstances we have

Rt W R =Wi j Di ⊗ D j , with Wi j = di ·W d j = di · d ′j . (7)
Thus,

U =W (λ, κ), (8)
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where κ(= κi Di ) is the axial vector of Rt W R; i.e.,

κi =
1
2 ei jk dk · d ′j . (9)

Here ei jk is the Levi-Civita permutation symbol (e123 =+1, etc.), κ3 is the twist
of the rod, and κα are the curvatures. Moreover, it follows easily from (4) and (9)
that

w = Rκ = κi di (10)

if the rod is initially straight and untwisted.
For example, in the classical theory [Dill 1992; Steigmann 1996; Antman 2005],

the strain-energy function is

W (λ, κ)= 1
2 E(λ− 1)2+ 1

2 Fκακα + 1
2 T τ 2, (11)

where τ(= κ3) is the twist, E is the extensional stiffness (Young’s modulus times
the cross-sectional area), F is the flexural stiffness (Young’s modulus times the
second moment of area of the cross section), and T is the torsional stiffness (the
shear modulus times the polar moment of the cross section).

The terms involving curvature and twist in this expression are appropriate for
rods of circular cross section composed of isotropic materials [Landau and Lifshitz
1986]. The homogeneous quadratic dependence of the energy on these terms may
be understood in terms of a local length scale such as the diameter of a fiber cross
section. The curvature-twist vector, when nondimensionalized by this local scale,
is typically small in applications. For example, the minimum radius of curvature
of a bent fiber is typically much larger than the fiber diameter. If the bending and
twisting moments vanish when the rod is straight and untwisted, then the leading-
order contribution of the curvature-twist vector to the strain energy is quadratic;
this is reflected in (11). In general the flexural and torsional stiffnesses in this
expression may depend on fiber stretch, but in the small-extensional-strain regime
contemplated here, they are approximated at leading order by constants in the case
of a uniform rod.

2.3. Variational theory. The equilibrium equations of the Kirchhoff theory are
well known and easily derived from elementary considerations, but it is instructive
to review their variational derivation here as a prelude to the considerations that
follow.

We assume that equilibria of the rod are such as to satisfy the virtual-power
statement

Ė = P, (12)

where P is the virtual power of the loads — the explicit form of which is deduced
below — and the superposed dot is used to identify a variational derivative. These
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are derivatives, with respect to ε, of the one-parameter deformation and rotation
fields r(s; ε) and R(s; ε), respectively, where r(s)= r(s; 0) and R(s)= R(s; 0)
are equilibrium fields, and (see (11))

U̇ = Ẇ =Wλλ̇+µi κ̇i , (13)

where

Wλ =
∂W
∂λ

and µi =
∂W
∂κi

(14)

are evaluated at equilibrium, corresponding to ε = 0.
From (1) we have

λ̇d+ω× r ′ = u′, (15)

where u(s)= ṙ is the virtual translational velocity and ω(s) is the axial vector of
the skew tensor ṘRt ; i.e.,

ḋi = ω× di . (16)

It follows from (9) and (16) that

κ̇i =
1
2 ei jk(ḋk · d ′j + dk · ḋ ′j )

=
1
2 ei jk[ω× dk · d ′j + dk · (ω

′
× d j +ω× d ′j )], (17)

in which the terms involving ω cancel; the e − δ identity 1
2 ei jkemjk = δim (the

Kronecker delta), combined with d j × dk = emjk dm , then yields

κ̇i = di ·ω
′. (18)

Thus,
Ė = I [u,ω], (19)

where

I [u,ω] =
∫ l2

l1

(Wλd · u′+µ ·ω′) ds, (20)

with
µ= µi di . (21)

Further, from (1) we have the orthogonality constraints

r ′ · dα = 0 (22)

for α = 1, 2. To accommodate these in the variational formulation, we introduce
the energy

E∗ = E +
∫ l2

l1

fα r ′ · dα ds, (23)
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where fα(s) are Lagrange multipliers. This is an extension to arbitrary deforma-
tions of the actual energy, the latter being defined only for the class of deformations
defined by the constraints. Moreover, (12) is replaced by

Ė∗ = P, (24)
where

Ė∗ =
∫ l2

l1

[(Wλd+ fαdα) · u′+µ ·ω′+ fαdα × r ′ ·ω] ds. (25)

We do not make variations with respect to the multipliers fα explicit as these merely
return the constraints (22).

We conclude that (24) reduces to

( f · u+µ ·ω)|l2
l1
−

∫ l2

l1

[u · f ′+ω · (µ′− f × r ′)] ds = P, (26)

where
f =Wλd+ fαdα. (27)

This implies that the virtual power is expressible in the form

P = (t · u+ c ·ω)|l2
l1
+

∫ l2

l1

(u · g+ω ·π) ds, (28)

in which t and c represent forces and couples acting at the ends of the segment and
g and π are force and couple distributions acting in the interior.

By the fundamental lemma, the Euler equations holding at points in the interior
of the rod are

f ′+ g = 0 and µ′+π = f × r ′, (29)

and the endpoint conditions are

f = t and µ= c, (30)

provided that neither position nor section orientation is assigned at the endpoints.
These are the equilibrium conditions of classical rod theory in which f and µ
respectively are the cross-sectional force and moment transmitted by the segment
(s, l] on the part [0, s]. Equations (27) and (30)1 justify the interpretation of the
Lagrange multipliers fα as transverse shear forces acting on a fiber cross section.

Other boundary conditions are, of course, feasible. For example, if the tangent
direction d is assigned at a boundary point, then its variation ω× d vanishes there,
leaving ω = ωd in which ω is arbitrary. In this case (26) and (28) furnish the
boundary condition

µ · d = c, (31)

in which c = c · d is the twisting moment applied at the boundary.
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For the strain-energy function (11), we have

Wλ = E(λ− 1), (32)

together with µ3d3 = T τ d and µαdα = Fκαdα. To reduce the second expression
we use (9), together with d ·d ′µ=−dµ ·d ′, to derive κα = eα3µdµ ·d ′. From d ·d ′= 0
we have d ′= (dα ·d ′)dα and d×d ′= (dα ·d ′)d×dα = (eβ3αdα ·d ′)dβ ; thus, κβdβ =
d× d ′ and (21) becomes

µ= T τ d+ F d× d ′. (33)

From (1) we have that (29)2 is equivalent to the system

d · (µ′+π)= 0 and d× (µ′+π)= λd× ( f × d). (34)

In the second of these we combine the identity d× ( f × d)= f − (d · f )d with
(27) to obtain

f =Wλd+ λ−1d× (µ′+π), (35)

which may be combined with (29)1 and (34)1 to provide an alternative set of equi-
librium equations. The latter form of Kirchhoff’s theory furnishes a more natural
analog to the system derived for a lattice of rods in Sections 3 and 4.

2.4. Three-dimensional lattice. We suppose the three-dimensional continuum to
be composed of a continuous distribution of orthogonal rods of the kind discussed
in the foregoing. Every point of the continuum is regarded as a point of intersec-
tion of three fibers. These are assumed to be aligned, prior to deformation, with
the uniform, right-handed orthonormal triad {L, M, N}. The lattice of fibers is
assumed to be rigid in the sense that it remains orthogonal, and similarly oriented,
in the course of the deformation. That is, the set {L, M, N} of material vectors
is stretched and rotated to the (generally nonuniform) set {λl l, λm m, λnn}, where
{l,m, n} is a right-handed orthonormal triad and {λl, λm, λn} are the fiber stretches.

Accordingly, the orientation of the deformed lattice is specified by the rotation
field

R = l ⊗ L+m⊗M + n⊗ N. (36)

This furnishes the curvature-twist vectors κl, κm, κn of the constituent fibers in
accordance with (9); thus, for example, the curvature-twist vector of a fiber initially
aligned with L is κl = κ(l)i Li , where {Li } = {Lα, L} with {Lα} = {M, N}, and

κ(l)i =
1
2 ei jk lk · l ′j , (37)

where {li } = {lα, l} with {lα} = {m, n}. Here, l ′j = (∇ l j )L is the directional
derivative along the L-fiber. Because li = RLi it is evident that κl is determined
by the rotation field R and its gradient.
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In the same way, κm = κ(m)i Mi , where {Mi } = {Mα, M} with {Mα} = {N, L},
and

κ(m)i =
1
2 ei jk mk ·m′j , (38)

where {mi } = {RMi } = {mα,m}, with {mα} = {n, l}, and where m′j = (∇m j )M
is now the directional derivative along the M-fiber. Finally, κn = κ(n)i Ni , where
{Ni } = {Nα, N} with {Nα} = {L, M}, and

κ(n)i =
1
2 ei jknk · n′j , (39)

where {ni } = {RNi } = {nα, n}, with {nα} = {l,m} and n′j = (∇n j )N . Thus, all
three curvature-twist vectors are determined by the single rotation field R and its
gradient.

Because the fibers are convected as material curves, we have λl l = FL, etc.,
where F =∇χ is the gradient of the deformation χ(X) of the continuum. Here X
is the position of a material point in a reference configuration, κ say. The orthonor-
mality of {L, M, N} then furnishes

F = λl l ⊗ L+ λm m⊗M + λnn⊗ N, (40)

where λl = |FL|, etc. Evidently,

F = RU, (41)

where
U = λl L⊗ L+ λm M ⊗M + λn N ⊗ N (42)

is positive definite and symmetric. The Cosserat rotation (36) thus coincides with
the rotation in the polar factorization of the deformation gradient in which U is
the associated right-stretch tensor. Because R is uniquely determined by F in
this case, the curvature-twist vectors of the fibers are ultimately determined by the
first and second deformation gradients ∇χ and ∇∇χ . It is this fact which yields
the reduction, detailed in Section 4, of the Cosserat continuum model outlined in
Section 3 to a special second-gradient model of elasticity. Moreover, the present
model furnishes a rare example of a material for which the principal axes of strain
are fixed in the body.

It may be observed that the kinematical structure of the present three-dimensional
framework is not entirely analogous to that of rod theory. This is due to the partial
coupling between deformation and rotation implied by (1), whereas in the present
three-dimensional theory the relevant rotation field is controlled entirely by the
continuum deformation.

We note that if the fibers are inextensible, i.e., if λl = λm = λn = 1, then U = I ,
∇χ = R, and the deformation is necessarily rigid [Gurtin 1981]. Here I is the
three-dimensional identity. Thus, nontrivial deformations necessarily entail fiber
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extension or contraction. Accordingly, we expect a lattice material of the kind
envisaged to be extremely stiff — the raison d’être of mechanical metamaterials —
if the extensional stiffnesses of the fibers are large. In contrast, Kirchhoff’s theory
accommodates nonrigid inextensional deformations.

3. Cosserat elasticity

3.1. Kinematics. In the foregoing we have argued that the lattice material may
be regarded as a Cosserat continuum endowed with a rotation field R(X). This
rotation is determined by the deformation χ(X). However, in the present section
we regard these fields as being independent in the spirit of the conventional Cosserat
theory. The rotation and deformation are ultimately reconnected in Section 4. Ex-
istence theory for Cosserat elasticity is discussed in [Neff 2006].

Thus, we introduce a referential energy density U (F, R,∇R; X), where F is
the usual deformation gradient and ∇R is the rotation gradient; i.e.,

F = Fi Aei⊗ EA, R= Ri Aei⊗ EA, and ∇R= Ri A,B ei⊗ EA⊗ EB (43)

with
Fi A = χi,A, (44)

where ( · ),A= ∂( · )/∂X A and we use a Cartesian index notation that emphasizes
the two-point character of the deformation gradient and rotation fields. Here {ei }

and {EA} are fixed orthonormal bases associated with the Cartesian coordinates xi

and X A, where xi = χi (X A).

3.2. Strain-energy function. We suppose the strain energy to be Galilean invari-
ant and thus require that

U (F, R,∇R; X)=U (Q F, Q R, Q∇R; X), (45)

where Q is an arbitrary spatially uniform rotation and (Q∇R)i AB = (Qi j R j A),B =

Qi j R j A,B . The restriction

U (F, R,∇R; X)=W (E,0; X), (46)

where [Pietraszkiewicz and Eremeyev 2009; Eremeyev and Pietraszkiewicz 2012;
Steigmann 2012; 2015]

E = Rt F = E AB EA⊗ EB, E AB = Ri A Fi B, (47)

0 = 0DC ED ⊗ EC , 0DC =
1
2 eB AD Ri A Ri B,C , (48)

with W a suitable function and eABC the permutation symbol, furnishes the nec-
essary and sufficient condition for Galilean invariance. Sufficiency is obvious;
necessity follows by choosing Q = Rt

|X , where X is the material point in question,
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and making use of the fact that, for each fixed C ∈ {1, 2, 3}, the matrix Ri A Ri B,C

is skew. This follows by differentiating Ri A Ri B = δAB (the Kronecker delta). The
associated axial vectors γC have components

γD(C) =
1
2 eB AD Ri A Ri B,C , (49)

yielding [Pietraszkiewicz and Eremeyev 2009]

0 = γC ⊗ EC , (50)

and so 0— the wryness tensor — stands in one-to-one relation to the Cosserat
strain measure Rt

∇R.

3.3. Virtual power and equilibrium. We define equilibria to be states that satisfy
the virtual-power statement

Ėπ = Pπ , (51)

where π is an arbitrary subvolume of κ , Pπ is the virtual power of the loads acting
thereon,

Eπ =
∫
π

U dv (52)

is the strain energy contained in π , and superposed dots identify variational deriva-
tives, as in Section 2. Thus,

U̇ = Ẇ = σ · Ė+µ · 0̇, (53)

where
σ =WE and µ=W0 (54)

are evaluated at equilibrium and the variational derivatives are evaluated at an equi-
librium state. The dots interposed between the terms in (53) represent the standard
Euclidean inner product on the linear space of tensors. The explicit form of Pπ is
deduced below.

From (47) we have

Ė = Rt(∇u−�F), where u = χ̇ and �= ṘRt . (55)

Then,
σ · Ė = Rσ · ∇u−� ·Skw(Rσ Ft). (56)

Here, of course, � is skew. Let ω= ax� be its axial vector, defined, for arbitrary v,
by ω × v = �v. If α is a skew tensor and a = axα, then, as is well known,
� ·α = 2ω · a. Further, Rσ Ft

= Rσ Et Rt and Skw(Rσ Et Rt)= R(Skw σ Et)Rt

so that, finally,

σ · Ė = Rσ · ∇u− 2ax[R(Skw σ Et)Rt
] ·ω. (57)
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To reduce µ · 0̇ we make use of the formula [Steigmann 2012]

µ · 0̇ = ωE(µEC,C + eE DBµBC0DC)− (ωEµEC),C , (58)

where ω =−Rtω is the axial vector of Ṙt R. This may be recast in the form

µ · 0̇ = Div(µt Rtω)−ω ·Div(Rµ)+ωiµEC(Ri E,C − eB DE Ri B0DC). (59)

The inverse of (48)2 is

eB DE0DC = R j B R j E,C ; thus, eB DE Ri B0DC = δi j R j E,C , (60)

implying that the last term of (59) vanishes and hence that

µ · 0̇ = Rµ · ∇ω. (61)

Substitution of (57) and (61) into (51) furnishes

Pπ =
∫
∂π

Rµν ·ω da−
∫
π

{Rσ · ∇u+ω · [Div(Rµ)+ 2ax(R(Skw σ Et)Rt)]} dv,
(62)

where ν is the exterior unit normal to the piecewise smooth surface ∂π . The virtual
power is thus of the form

Pπ =
∫
∂π

(t · u+ c ·ω) da+
∫
π

(g · u+π ·ω) dv, (63)

where t and c are densities of force and couple acting on ∂π , and g and π are
densities of force and couple acting in π .

If u and ω are independent and if there are no kinematical constraints, then by
the fundamental lemma,

t = Rσν and c= Rµν on ∂π, (64)

and

g =−Div(Rσ ) and π =−Div(Rµ)− 2ax[R(Skw σ Et)Rt
] in π. (65)

These are the equilibrium conditions for a standard Cosserat continuum in which
the deformation χ and rotation R are independent kinematical fields. The use of
the axial vector ω in their derivation yields a simpler set of equations than that
derived in [Reissner 1975; 1987; Steigmann 2012; 2015] on the basis of the axial
vector ω.

3.4. Specialization to an orthogonal lattice. The curvature-twist vector κl of a
fiber initially aligned with L may be described in the present framework by using
(36) and (37) to write

κ(l)i =
1
2 ei jk Lk · Rt R′L j , (66)
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where ( · )′ is the directional derivative along L and we have assumed that the fibers
are initially straight and untwisted, i.e., that L′j = 0. Here we use R′i A = Ri A,B L B

to derive (see (60)1)

Rt R′ = RiC Ri A,B L B EC ⊗ EA = eAC D0DB L B EC ⊗ EA, (67)

which implies that κl = κ(l)i Li is determined by 0 via 0L. In the same way, κm

and κn are determined by 0 via 0M and 0N , respectively.
Moreover, from (41) and (47) we find that E = U in the case of an orthogonal

lattice. The fiber stretches are thus given by

λl = L⊗ L · E, λm = M ⊗M · E, λm = N ⊗ N · E. (68)

In a discrete lattice consisting of spatial rods interacting at interior nodes as
in [Steigmann 1996], the strain energy is the sum of the strain energies of the
individual rods. This motivates the assumption of an additive decomposition of
the strain energy in the continuum lattice model; i.e.,

W (E,0)=Wl(λl, κl)+Wm(λm, κm)+Wn(λn, κn), (69)

in which Wl,m,n are the strain energies, per unit initial volume, of the three fiber
families.

Using (54)1 and (68) we then derive

σ = σl ⊗ L+ σm ⊗M + σn ⊗ N, (70)

with

σl =
∂Wl

∂λl
L, σm =

∂Wm

∂λm
M, σn =

∂Wn

∂λn
N, (71)

yielding

σ Et
= λl

∂Wl

∂λl
L⊗ L+ λm

∂Wm

∂λm
M ⊗M + λn

∂Wn

∂λn
N ⊗ N. (72)

We thus have Skw(σ Et) = 0 and conclude that the associated interaction term
vanishes in (65)2. In general the latter may be interpreted as a distributed moment
transmitted to the fibers by a matrix material in which the fibers are embedded
[Steigmann 2012]. However, the relatively simple model discussed here does not
take account of an underlying matrix.

To derive the relevant expression for the couple stress µ we use (18), for the
fiber family initially aligned with L, in the form

κ̇(l)i = li · (∇ω)L = RLi ⊗ L · ∇ω. (73)

Thus,
∂Wl

∂κ(l)i
κ̇(l)i = Rµl ⊗ L · ∇ω, with µl =

∂Wl

∂κ(l)i
Li . (74)
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Proceeding from (54)2 and (61) in the same way, we find that

W0 · 0̇ = R(µl ⊗ L+µm ⊗M +µn ⊗ N) · ∇ω, (75)

with

µm =
∂Wm

∂κ(m)i
Mi and µn =

∂Wn

∂κ(n)i
Ni , (76)

and comparison with (61) furnishes

µ= µl ⊗ L+µm ⊗M +µn ⊗ N. (77)

In the virtual-power statement (51) we then have

Ėπ =
∫
∂π

Rµν ·ω da+
∫
π

[Rσ · ∇u−ω ·Div(Rµ)] dv, (78)

where
Div(Rσ )= [∇(Rσl)]L+ [∇(Rσm)]M + [∇(Rσn)]N (79)

and
Div(Rµ)= [∇(Rµl)]L+ [∇(Rµm)]M + [∇(Rµn)]N. (80)

The equilibrium equations are not obtained by substituting into (64) and (65), how-
ever, because the virtual translational velocity u and rotational velocity ω are not
independent.

Suppose, for example, that all three fiber families have identical uniform proper-
ties, each with a strain-energy function of the form (11). Then (see (71)1 and (74)2),

Rσl = E(λl − 1)l and Rµl = T τl l + F l × (∇ l)L, etc., (81)

where τl = κ(l)3, etc., in which E , T , and F respectively are the constant extensional,
torsional, and flexural stiffnesses of the fibers. Again we note that the torsional and
flexural stiffnesses could conceivably depend on fiber stretch. However, for small
extensional strains they are approximated at leading order by constants.

4. Reduction to second-gradient elasticity

4.1. Reducing a linear form in the rotational virtual velocity to a linear form in
the gradient of the translational virtual velocity. To effect the reduction of the
Cosserat model to a second-gradient elasticity model [Toupin 1964; Mindlin and
Tiersten 1962; Koiter 1964], we proceed from (36) to write the virtual spin tensor
�= ṘRt in the form

�= l̇ ⊗ l + ṁ⊗m+ ṅ⊗ n, (82)

where, from (40),
λl l̇ = (∇u)L− λ̇l l, etc. (83)
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Its axial vector ω is such that

ω× v = (v · l)l̇ + (v ·m)ṁ+ (v · n)ṅ (84)

for every vector v. Using the well known identity

a× (b× c)= (a · c)b− (a · b)c, (85)

we derive

(v · l)l̇ = (l × l̇)× v+ (v · l̇)l, etc., (86)

yielding

ω× v = (l × l̇ +m× ṁ+ n× ṅ)× v+�tv, (87)

and thus conclude that

ω = 1
2(l × l̇ +m× ṁ+ n× ṅ). (88)

In the virtual-power statement (78) we have two linear expressions of the form
a ·ω. We write these as

a ·ω = 1
2(a× l · l̇ + a×m · ṁ+ a× n · ṅ), (89)

where

a× l · l̇ = λ−1
l a× l · (∇u)L = λ−1

l (a× l)⊗ L · ∇u, etc. (90)

Altogether,

a ·ω = 1
2 [λ
−1
l (a× l)⊗ L+ λ−1

m (a×m)⊗M + λ−1
n (a× n)⊗ N] · ∇u. (91)

Every linear scalar-valued function of ω may thus be expressed as a linear function
of ∇u. We thereby reduce (78) to

Ėπ =
∫
π

P · ∇u dv+
∫
∂π

Q · ∇u da, (92)

where

P = Rσ − 1
2 [λ
−1
l (a× l)⊗ L+ λ−1

m (a×m)⊗M + λ−1
n (a× n)⊗ N],

with a = Div(Rµ), (93)

and

Q= 1
2 [λ
−1
l (b×l)⊗L+λ−1

m (b×m)⊗M+λ−1
n (b×n)⊗N], with b= Rµν. (94)
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4.2. Constraints on the virtual velocity gradient and the extended variational
problem. The translational virtual velocity gradient is subject to further constraints
associated with the rigid connectivity of the lattice. This implies that (see (36)
and (40))

FL · F M = 0, FL · FN = 0, and F M · FN = 0. (95)

To accommodate these we replace the virtual-power statement (51) by

Ė∗π = Pπ , (96)

where

E∗π = Eπ +
∫
π

1
23 ·C dv+

∫
∂π

1
24 ·C da, (97)

is the extended energy, C = Ft F is the right Cauchy–Green deformation tensor,
and

3=3L M(L⊗M+M⊗L)+3L N (L⊗N+N⊗L)+3M N (M⊗N+N⊗M),

4=4L M(L⊗M+M⊗L)+4L N (L⊗N+N⊗L)+4M N (M⊗N+N⊗M),
(98)

in which 3L M , 4L M , etc., are Lagrange multipliers. We require multipliers on ∂π
because the gradient of u thereon, which figures in the virtual-work statement
(see (92)), is restricted by (95). Their role in the theory is illustrated in Section 5.

Equation (96) is treated as an unconstrained variational problem in which the
additional terms have the variational derivatives

1
23 · Ċ = F3 · ∇u and 1

24 · Ċ = F4 · ∇u (99)

at fixed values of the multipliers, whereas variations with respect to the latter merely
return the constraints and, as before, are not made explicit. Finally, in (96) we have

Ėπ =
∫
π

T · ∇u dv+
∫
∂π

S · ∇u da, (100)

where
T = P + F3 and S= Q+ F4 (101)

and it is understood that these are evaluated with the constraints (95) in force.
It is useful to observe, from (101), (93), and (70), that

T = Tl ⊗ L+ Tm ⊗M + Tn ⊗ N, (102)

where
Tl = Rσl + λm3L M m+ λn3L N n + 1

2λ
−1
l l × a,

Tm = Rσm + λl3L M l + λn3M N n + 1
2λ
−1
m m× a,

Tn = Rσn + λl3L N l + λm3M N m+ 1
2λ
−1
n n× a, (103)
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and a is given by (93)2. Similarly,

S= Sl ⊗ L+ Sm ⊗M + Sn ⊗ N, (104)

where
Sl = λm4L M m+ λn4L N n+ 1

2λ
−1
l b× l,

Sm = λl4L M l + λn4M N n+ 1
2λ
−1
m b×m,

Sn = λl4L N l + λm4M N m+ 1
2λ
−1
n b× n, (105)

and b is given by (94)2.

4.3. Equilibrium conditions. Equation (100) involves the restriction to the bound-
ary of the gradient of the translational virtual velocity. To treat this we introduce the
surface parametrization X(θα) of ∂π , where θα (α = 1, 2) is a system of convected
curvilinear coordinates. This induces the tangent basis Aα = X,α and dual tangent
basis Aα, which we use to decompose ∇u|∂π as

∇u = u,α ⊗ Aα + uν ⊗ ν, (106)

where u,α = ∂u(X(θβ))/∂θα = (∇u)Aα are the tangential derivatives of u and
uν = (∇u)ν is the normal derivative. Thus,

S · ∇u = Sν · uν + Sα · u,α, (107)

where Sα = SAα.
Because ∂π is piecewise smooth it is the union of a finite number of smooth

subsurfaces ωi that intersect at edges ei . Applying Stokes’ theorem to each of these
subsurfaces, we find that∫

∂π

Sα · u,α da =
∑ ∫

∂ωi

Sαξ(i)α · u ds−
∫
∂π

Sα
|α · u da, (108)

where ξi = ξ(i)αAα is the unit normal to the curve ∂ωi such that {νiξiτi } forms a
right-handed orthonormal triad, where τi is the unit tangent to ∂ωi and s is arc-
length measured in the direction of τi , and where Sα

|α is the covariant divergence
on ∂π , defined by

Sα
|α = A−1/2(A1/2 Sα),α, (109)

with A = det(Aα · Aβ). It is understood that each curve ∂ωi in (108) is traversed
counterclockwise as the smooth subsurface ωi is viewed from the side of ωi into
which its surface normal νi is directed. We elaborate further below.

Accordingly (100) is reduced to

Ė∗=
∫
∂π

[(Tν−Sα
|α)·u+Sν ·uν] da+

∑ ∫
∂ωi

Sξi ·u ds−
∫
π

u ·Div T dv, (110)
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and (96) implies that the virtual power has the form

Pπ =
∫
∂π

(t · u+ s · uν) da+
∑ ∫

ei

fi · u ds+
∫
π

g · u dv, (111)

where ei is the i-th edge of ∂π .
If no further kinematic constraints are operative, then because u and uν may

be specified independently on ∂π , the fundamental lemma yields the traction and
double force

t = Tν− Sα
|α and s = Sν, (112)

respectively, on ∂π , and the body force

g =−Div T (113)

in the interior of π . By choosing ν = L, M, N in succession, we may conclude,
from (112)1, (102), and (103), that the Lagrange multipliers 3L M , etc., are pro-
portional to transverse shear stresses acting on the fiber “cross sections” (see (27)).
Similarly, 4L M , etc., are proportional to transverse double forces.

Concerning the edge forces fi , we observe that an edge e is the intersection of
two subsurfaces ω+ and ω−, say. Accordingly, in (111) e is traversed twice: once
in the sense of τ+ and once in the sense of τ− = −τ+. With (112) and (113) in
force the fundamental lemma then furnishes the edge force density

f = [Sξ ] on e, (114)

where [ · ] is the difference of the limits of the enclosed quantity on e when ap-
proached from ω+ and ω−, i.e, [ · ] = ( · )+− ( · )−.

Fuller discussions of edge forces, and of the wedge forces operating at vertices
in continua of grade higher than two, may be found in [Mindlin 1965; dell’Isola
and Seppecher 1995; 1997; dell’Isola et al. 2012; Fosdick 2016].

4.4. Rigid-body variations. In classical rigid-body mechanics the relevant actions
are the net force and couple acting on the body. To deduce their forms in the present
model, we specialize the virtual-power statement to rigid-body virtual translations
and rotations. In view of the invariance of the strain energy under such variations
(see (45)), this statement reduces to Pπ = 0 for all deformations of the form

χ(X; ε)= Q(ε)x+ d(ε), (115)

where x = χ(X) is an equilibrium deformation field, Q(ε) is a one-parameter
family of rotations with Q(0)= I , and d(ε) is a family of vectors with d(0)= 0.
Again using superposed dots to denote derivatives with respect to ε, evaluated at
ε = 0, we compute the virtual translational velocity u(X)= ω× x+ ḋ, where ω is
the axial vector of Q̇.
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Because ω and ḋ are arbitrary, the virtual-work statement (see (111)) is satisfied
if and only if ∫

∂π

t da+
∫
π

g dv+
∑ ∫

ei

fi ds = 0 (116)

and ∫
∂π

(x× t + c) da+
∫
π

x× g dv+
∑ ∫

ei

x× fi ds = 0, (117)

where
c= xν × s (118)

and
xν = Fν (119)

is the normal derivative of the equilibrium deformation on ∂π .
These are respectively the force and moment balances for the arbitrary part

π ⊂ κ of the body, the latter implying that c is a distribution of couples acting
on ∂π . Because these conditions were derived using a special form of u, they are
necessary for equilibrium. Indeed, it may be shown that they follow from (112)
and (113). However, they are not sufficient — the arbitrariness of π notwithstand-
ing — because (112)2 involves the entire double force on ∂π , whereas (118) is
insensitive to that part of the double force which is parallel to xν . This situation
stands in contrast to first-gradient elasticity, in which (116) and (117) (with c and
fi equal to zero) are both necessary and sufficient for equilibrium. The utility of
the variational approach to our subject can thus hardly be overestimated [Germain
1973]. This perspective is amplified and extended in a recent revival [Eugster and
dell’Isola 2017; 2018a; 2018b; Eugster and Glocker 2017] of Hellinger’s approach
to continuum mechanics.

5. Example: bending a block to a cylinder

To illustrate the model we use it to solve the classical problem of bending a block
to a cylindrical annulus [Ogden 1984]. The conventional treatment of this prob-
lem relies on the use of first-gradient elasticity. Here we highlight the additional
flexibility in its solution afforded by the present model.

We choose the fibers to be aligned initially with a Cartesian coordinate system
(X, Y, Z), so that

X = X L+ Y M + Z N. (120)

The block occupies the volume defined by A < X < A+W , −H/2< Y < H/2,
and −D/2< Z < D/2, where A is a positive constant, W is the width of the block,
H is the height, and D is the depth. The deformed position is

x = χ(X)= r(X)er (θ(Y ))+ Z N, (121)
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where
er (θ)= cos θL+ sin θM. (122)

Thus, the deformation maps vertical planes X = const. to cylinders r = const., and
horizontal planes Y = const. to radial planes θ = const.. There is no displacement
along the Z -axis.

The deformation gradient is

F = r ′er ⊗ L+ rθ ′eθ ⊗M + N ⊗ N, (123)

where eθ = N × er , and we assume, as in the classical treatment, that θ(Y )= αY ,
with α a positive constant. Accordingly, det F = αrr ′, and the usual restriction
det F > 0 implies that r(X) is an increasing function, i.e., r ′ > 0. It follows
immediately that

R= er⊗L+eθ⊗M+N⊗N and E=U=r ′L⊗L+αr M⊗M+N⊗N, (124)

and hence, from (36) and (42), that

l = er (θ), m = eθ (θ), n= N,

λl = r ′(X), λm = αr(X), λn = 1.
(125)

Clearly the rigidity constraints (95) are satisfied.
Using (37)–(39) we find that all fiber twists τl,m,n(= κ(l,m,n)3) vanish. Assuming

the fiber constitutive relations (81)2, we deduce that

Rµl = Rµn = 0,

Rµm = αF N,
(126)

so that a = 0 in (93) and (103), whereas

b= αF(M · ν)N (127)

in (94). Guided by the structure of solutions to rod theory for uniformly curved
rods, we seek a solution in which the various 3— the transverse shear stresses
acting on the fiber cross sections — vanish. In this case (81) and (103) imply that

Tl = f (λl)er ,

Tm = f (λm)eθ ,

Tn = 0,

(128)

where (see (81)) f (λ)= E(λ− 1). We use (79)–(81) to compute

Div T = E[r ′′−α(αr − 1)]er , (129)
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and conclude, from (113) (with vanishing body force), that r(X) satisfies the simple
linear differential equation

r ′′−α2r =−α, (130)

the general solution to which is

r(X)= α−1
+C1 exp(αX)+C2 exp(−αX), (131)

where C1,2 are constants.
To complete the solution we proceed as in the classical case and impose zero

traction (and double-force) conditions at X = A and X = A+W . With ν =±L we
find that b vanishes. We also assume that the various 4 vanish on these surfaces,
and hence that S also vanishes. The double force then vanishes, as required, and
the tractions are ±Tl . The condition of zero traction thus requires that f (λl) vanish,
and hence that r ′ = 1 at X = A and at X = A+W . We thus obtain

C1 = α
−1 exp(−αB)[1+ exp(−αW )]−1,

C2 =−α
−1 exp(αB)[1+ exp(αW )]−1,

(132)

where B = A+W , and verify that the admissibility condition r ′(X) > 0 is satisfied.
On the planes Z =±D/2 we again assume that the various 4 vanish, finding

that the tractions and double forces also vanish on these surfaces. From (114) we
also find that the edge forces vanish on the edges defined by (X, Z)= (A,±D/2)
and (X, Z)= (A+W , ±D/2).

The situation is different on the planes Y =±H/2. For example, at Y = H/2
we have ν = M, yielding

Tν = E(αr − 1)eθ
s = Sm = (r ′4+L M − F/2r)er +4

+

M N N,
(133)

where the 4+ are the values of the 4 at Y =+H/2. Further,

Sα
|α = Sl,X + Sn,Z , (134)

where
Sl = α(r4+L M + F/2r ′)eθ +4+L N N,

Sn = r ′4+L N er +αr4+M N eθ .
(135)

Then (112) and (128) deliver the traction

t = [E(αr − 1)−α(r4+L M + F/2r ′),X ]eθ
−4+L N ,X N − r ′4+L N ,Z er −αr4+M N ,Z eθ . (136)
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Accordingly, and in contrast to the classical treatment [Ogden 1984], we may im-
pose a zero-traction condition on this surface, provided that

E(r −α−1)− (r4+L M + F/2r ′),X − r4+M N ,Z = 0, (137)

together with
4+L N ,X = 0 and 4+L N ,Z = 0. (138)

We assume that 4+M N ,Z = 0 and use (130) to reduce (137) to

Eα−2r ′′(X)− (r4+L M + F/2r ′),X = 0, (139)

concluding that
Eα−2r ′− (r4+L M + F/2r ′)= G+(Z), (140)

for some function G+.
The couple distribution c+ on Y = H/2 is given by (118), with xν = F M =αr eθ .

Thus,
c+ = αr eθ × Sm = αr ′(F/2r ′− r4+L M)N +αr4+M N er . (141)

A solution with c+ parallel to the cylinder axis N and independent of Z is ob-
tained by taking 4+M N = 0 and G+ to be constant. From (133)2 this is seen to be
tantamount to the assignment of the double-force distribution on Y = H/2. The
edge forces operating at the edges defined by (X, Y ) = (A, H/2) and (X, Y ) =
(A+W, H/2) are found, using (114), to be

f =∓[α(r4+L M + F/2)eθ +4+L N N], (142)

respectively, where 4+L M and 4+L N are evaluated at X = A, A+W , respectively,
and we have used the condition r ′ = 1 at both edges. These edge forces vanish if
and only if 4+L N and r4+L M + F/2 vanish at X = A, A+W . Combing the latter
with (140), we find that

G+ = Eα−2, (143)

and (140) then delivers

4+L M(X)= r−1
[Eα−2(r ′− 1)− F/2r ′] (144)

with r(X) given by (131) and (132). The couple distribution on Y = H/2 is

c+ = [αF + Eα−1r ′(r ′− 1)]N. (145)

Moreover, because 4+L N is independent of X (see (138)1), it vanishes everywhere
on this surface.

Finally, the edge forces acting on the edges defined by (Y, Z)= (H/2,±D/2)
are found to be

f =±αr4+M N eθ , (146)
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respectively. These vanish provided that 4+M N vanishes at Z = ±D/2. Because
this function was assumed to be independent of Z in the course of constructing the
solution, it then vanishes everywhere on the plane Y = H/2. We conclude that Sn

vanishes there, and that Sl and the double force are given respectively by

Sl = Eα−1(r ′− 1)eθ and Sm = r−1
[Eα−2r ′(r ′− 1)− F]er . (147)

The situation on the surface Y =−H/2 is similar and so we leave the remaining
details to the interested reader. A novel feature of the present model is the predic-
tion that the tractions transmitted by the initially vertical fibers to the surfaces
Y = ±H/2 can be nullified by the rigid joints of the intersecting fibers via the
associated Lagrange multipliers.

We have said nothing about the stability of this solution. In particular, the
vertical fibers near X = A may become susceptible to buckling as the flexure
angle α increases. However, we defer the analysis of buckling — of considerable
importance in the mechanics of metamaterials — to a future investigation.
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