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A POLYNOMIAL CHAOS EXPANDED
HYBRID FUZZY-STOCHASTIC MODEL

FOR TRANSVERSELY FIBER REINFORCED PLASTICS

EDUARD PENNER, ISMAIL CAYLAK, ALEX DRIDGER AND ROLF MAHNKEN

This work is focused on polymorphic uncertainties in the framework of consti-
tutive modeling for transversely isotropic materials. To this end, we propose a
hybrid fuzzy-stochastic model, where the stochastic part accounting for aleatory
uncertainties of material parameters is expanded with the multivariate polyno-
mial chaos expansion. In order to account for epistemic uncertainties, polyno-
mial chaos coefficients are treated as fuzzy variables. The underlying minimum
and maximum optimization problem for the fuzzy analysis is approximated by
α-level discretization, resulting in a separation of minimum and maximum prob-
lems. To become more universal, so-called quantities of interest are employed,
which allow a general formulation for the target problem. Numerical examples
with fuzzy, fuzzy-stochastic, and hybrid fuzzy-stochastic input demonstrate the
versatility of the proposed formulation.

1. Introduction

A fundamental data uncertainty of different types underlies most materials in en-
gineering science. Possible examples are variations in the manufacturing process,
where composites are typical materials, measurement errors, and missing or in-
complete information. In order to improve the credibility of mathematical models
in engineering science, uncertainties have to be taken into account, where two
categories are distinguished: aleatory and epistemic; see, e.g., [Sullivan 2015].

Aleatory uncertainties refer to variability as a consequence of, e.g., fluctuations
through time, variation across space, or manufacturing differences. This type of
uncertainty is irreducible and can be treated with a stochastic analysis. An aleatory
uncertain problem of a mechanical system can be modeled by stochastic partial
differential equations (SPDEs), where the system response may be described by a
distribution with statistical moments. The solution of these SPDEs can be obtained
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numerically using a stochastic simulation, where the Monte Carlo (MC) method
[Caflisch 1998; Hurtado and Barbat 1998] is widely used. Alternatively, spectral
stochastic surrogate models, e.g., polynomial chaos expansion (PCE), are used in
order to reduce the computational effort. Corresponding research areas are: linear
elasticity of solids and mechanics [Ghanem and Spanos 1991], plasticity of solids
and mechanics [Anders and Hori 1999; Rosić 2013], large deformations [Achar-
jee and Zabaras 2006; Acharjee 2006; Caylak et al. 2018], fluid flow [Le Maître
et al. 2001; 2002], flow-structure interactions [Xiu and Karniadakis 2002; Xiu et al.
2001], and linear convection problems [Jardak et al. 2002].

Contrary to aleatory uncertainties, epistemic uncertainties refer to subjectivity
as a consequence of, e.g., incomplete scientific understanding or lack of measure-
ments, which indicate a possible value range rather than a probability function. In
addition, epistemic uncertainties are reducible by empirical effort, e.g., investing
more in measurements. Methodologies for the modeling of epistemic uncertainties
are, e.g., interval analysis and, increasingly applied over the last years, fuzzy analy-
sis, which represents indistinct boundaries [Zadeh 1965]. In order to perform math-
ematical operations with fuzzy sets, the so-called α-level discretization method is
applied. Here, the fuzzy response at each selected α-level is obtained by solving
a minimum-maximum problem of a quantity of interest (QoI). In [Mahnken 2017]
QoIs are employed within a variational formulation for fuzzy analysis in continuum
mechanics.

A realistic modeling of uncertainties requires a combination of different uncer-
tainty types. Following [Graf et al. 2015], this is referred to as polymorphic uncer-
tainties. Corresponding models are: Dempster–Shafer evidence theory [Dempster
1967], coherent lower prevision theory [Walley 1991], possibility theory [Dubois
and Prade 2012], probability box (P-box) theory [Ferson et al. 2003], and fuzzy
probability theory [Gudder 1998; Beer 2009] or fuzzy-randomness [Möller and
Beer 2004]. Recently published works using fuzzy-randomness are in the field of
civil engineering [Reuter et al. 2012], fuzzy-random dynamical structural analysis
[Graf et al. 2015], failure probability evaluation [Jahani et al. 2014], and fuzzy-
stochastic partial differential equations [Motamed 2017].

Note that the QoI in the publications listed in the previous paragraph may be
a fuzzy-stochastic random variable. The numerical computation of the stochas-
tic part is realized by sampling methods which require a large number of sam-
ples. From the received samples, different statistical moments can be computed to
solve the minimum-maximum problem of the QoI at each α-level. Thus, at each
optimization step, statistical moments must be determined, which lead to high
computational costs. In order to reduce this effort, we introduce a novel hybrid
fuzzy-stochastic model based on the polynomial chaos expansion. In particular
the following aspects are investigated:
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• The stochastic part of the hybrid polymorphic model is expanded with the
PCE.

• For the fuzzy part of the hybrid polymorphic model, the polynomial chaos
(PC) coefficients are treated as fuzzy variables.

• At each optimization step, the statistical moment only depends on determin-
istic PC coefficients.

• Experimental investigation and uncertainty quantification of transversely fiber
reinforced plastics are carried out.

This paper is structured as follows. Section 2 provides the stochastic formulation
for the state and target problem and their discretizations with the PCE. In Section 3
the hybrid fuzzy-stochastic formulation and the computational scheme for the nu-
merical implementation with polymorphic uncertainties are proposed. Section 4
incorporates the experimental investigation and the parameter identification for
fiber reinforced plastics (FRP). Finally, in Section 5 the representative numerical
examples demonstrate the versatility of the proposed model considering different
types of uncertainties.

2. Stochastic analysis

2.1. Constitutive stochastic state problem. To set the stage for a hybrid fuzzy-
stochastic model accounting for polymorphic uncertainties, we introduce a design
vector

[s1, . . . , sns ]
T
= s ∈ S (1)

within a design space S ⊂ Rns of ns design variables. In general it may represent
several influences on a structure, such as material properties, loading parameters,
geometric properties, and boundary conditions. In this section, we assume the de-
sign space S ⊂Rns in (1) is a precise set or a fundamental set of ordered pairs. The
aleatory uncertainties are modeled by stochastic random variables. In this context
the probability space is denoted by (�,6,P), where � is the set of elementary
events, 6 is the σ -algebra, and P is the probability measure. Moreover, we let ω
be an element of �.

Typically, constitutive modeling in mechanics is based on stress-strain relations.
To this end, we introduce a stress-strain space M ⊂ E 3

× E 3, where E 3 denotes
the Euclidean space. An uncertain functional for a strain tensor ε on the design
space S and on the probability space � may be interpreted as a random variable
ε( · , s) :�→M indexed by s ∈S on the design space S, where for any elementary
event ω yields a realization ε(ω, · ) : S→M; see, e.g., [Wang and Zhang 1992].
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Figure 1. Mapping from stochastic and design space to strain space.

In both interpretations, an uncertain functional is a measurable function

ε(ω, s) :=
{
�×S→M⊂ E 3

× E 3,

(ω, s) 7→ ε(ω, s).
(2)

The mapping ε( · , · ) from stochastic and design space to strain space is visualized
in Figure 1, where for simplicity time dependence, explicit probabilistic depen-
dence, and explicit design dependence are not considered in the illustration.

Based on the stochastic strain-driven mapping equation (2), a stochastic linear
elastic constitutive problem can be formulated as

1. (constitutive equation) σ = C(κ(ω, s)) : ε(κ(ω, s)) ∈M,

2. (stress constraint) σ = σ (ω, s) ∈Mσ ⊂M,

3. (strain constraint) ε = ε(ω, s) ∈Mε ⊂M,

(3)

where
κ(ω, s)= [κ1(ω, s), . . . , κi (ω, s), . . . , κnm (ω, s)]T (4)

is the material parameter vector of nm polymorphic uncertain material parameters.
In addition, in (3)1 the symmetric Cauchy stress tensor σ and the polymorphic un-
certain elasticity material tensor C(κ(ω, s)) are used. Stress and strain constraints
in (3)2 and (3)3 are formulated on the spaces Mσ and Mε, where Mσ ∪ Mε =M

and Mσ ∩ Mε = ∅ hold, and defined by prescribed stresses σ (ω, s) and strains
ε(ω, s), respectively. In the sequel, we assume that κ(ω, s) is the only uncertain
input variable that depends on the aleatory elementary event ω and on the design
variables s. We exploit a strain based method and formulate

the stochastic state problem:

for given s ∈ S and ω ∈� find ε(κ(ω, s)) such that

r(κ(ω, s)) := C(κ(ω, s)) : ε(κ(ω, s))︸ ︷︷ ︸
σ (ε(κ(ω,s)))

−σ = 0,
(5)

where r(κ(ω, s)) has the interpretation of a stochastic residual for a strain-driven
algorithm.
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2.2. Stochastic quantity of interest and target problem. In the subsequent expo-
sition we do not merely want to characterize the design properties of the random
strain tensor ε(κ(ω, s)) satisfying the stochastic state equation (5). Instead, we are
more interested in the stochastic design analysis of a physical event or a feature of
a structure that depends upon ε, where quantities of interest (QoIs) are character-
ized by functionals Q(ε(κ(ω, s))) of the solutions ε(κ(ω, s)) to (5). A possible
realization of the QoI is

Q(ε(κ(ω, s)))= σ (ε(κ(ω, s))) : σ (ε(κ(ω, s))). (6)

Note that the QoI may be a stochastic random variable Q(κ(ω, s)) that depends
on ω and s. Therefore, it is common to generate a relatively large number nMC of
samples Q j (s), j = 1, . . . , nMC, for Q(κ(ω, s)), as, e.g., in the Monte Carlo (MC)
simulation, based on its stochastic distribution described by a probability density
function and to evaluate a QoI based on the computed results of all samples Q j (s),
j = 1, . . . , nMC. From the received samples, different deterministic values can be
computed to evaluate a so-called surrogate QoI Qω. The upper index ω indicates
that Qω is a surrogate QoI with respect to a QoI Q. Possible realizations for the
surrogate QoI Qω of the state problem in (5) are:

• expectation value (or sample mean)

Qω
= E[Q(ε(κ(ω, s)))] ≈

1
nMC

nMC∑
j=1

Q j , (7)

• variance (or adjusted sample variance)

Qω
= var[Q(ε(κ(ω, s)))] ≈

1
nMC− 1

nMC∑
j=1

(Q j − E[Q])2, (8)

• square norm in L2(�,6,P) or second moment, also called stochastic norm
[Le Maître and Knio 2010]

Qω
= E[Q2(ε(κ(ω, s)))] ≈

1
nMC

nMC∑
j=1

Q2
j , (9)

• functional dependencies of stochastic and design variables

Qω
= Qω(κ(ω, s)), (10)

whereby surrogate QoIs (7)–(9) are based on sample empirical moments. The
adjusted sample variance in (8) refers to the fact that the sum of squared deviations
is divided by nMC− 1 rather than by nMC. With a specific choice of a surrogate
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QoI Qω, for example according to (7)–(10), we formulate

the stochastic target problem:

for given s ∈ S and ω ∈� find z := Qω(s, ε(κ(ω, s))).
(11)

Note that, due to the dependency ε(κ(ω, s)), solution of the target problem in (11)
involves solution of the state problem in (5).

2.3. Discretization by polynomial chaos expansion. As mentioned before in Sec-
tion 2.2, the MC simulation, based on a relatively large number of samples, could
be used for numerical evaluation of the QoI in (6). However, if only individual
empirical moments in (7)–(9) are sought, a discrete surrogate model, e.g., in terms
of the polynomial chaos expansion (PCE) [Ghanem and Spanos 1991; Caylak et al.
2018] can be used in order to reduce the numerical effort. This expansion involves
a basis of known random functions with deterministic PC coefficients. Therefore,
stochastic variables κ(ω, s) may be represented with the PCE

κ(ω, s)≈
n P∑
l=0

κ̂ l(s)9l(θ(ω))= κ̂0(s)+
n P∑
l=1

κ̂ l(s)9l(θ(ω)), (12)

where κ̂ l(s) are nm × 1 PC coefficient vectors, n P + 1 is the number of the ac-
companying PC terms, and 9l(θ(ω)) are PC basis functions described by mul-
tivariate single-index polynomials with uncorrelated standard distributed random
variables θ .

In this paper Hermite polynomials with standard normal distributed random vari-
ables θ = [θ1, . . . , θnm ] are chosen. Table 1 provides a single-index representation
with a polynomial order p= 1 for nm = 5 stochastic parameters. For a more detailed
description, we refer to [Keese 2004]. The 0-th PC coefficient in (12) represents
the expectation value κ̂0(s)= E[(κ(ω, s))]. With (12) the i-th material parameter

order p l 9l

0 0 90 = 1

1 1 91 = θ1

2 92 = θ2

3 93 = θ3

4 94 = θ4

5 95 = θ5

Table 1. Single-index representation of the multivariate polynomi-
als for nm = 5 stochastic parameters and polynomial order p = 1,
which leads to n P = 5.
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can be expanded as

κi (ω, s)≈
n P∑
l=0

κ̂il(s)9l(θ(ω))=κ̂i0(s)+
n P∑
l=1

κ̂il(s)9l(θ(ω)), i=1, . . . , nm . (13)

Note that in the deterministic case of the i-th material parameter with n P = 0
and the independence on s, (13) renders κi = κ̂i0. Similarly, a nonstochastic i-th
material parameter with n P = 0 is given by κi (s)= κ̂i0(s).

Inserting (12) into the stochastic state problem of (5) and applying the Galerkin
projection [Ghanem and Spanos 1991] renders

the discrete stochastic state problem:

for given s ∈ S and ω ∈� find ε̂m(s, κ̂) such that

rk(κ(ω, s)) :=
n P∑
l=0

n P∑
m=0

cklm(ω)Ĉl(s, κ̂) : ε̂m(s, κ̂)− σ k

= 0 for all k ∈ {0, . . . , n P},

(14)

where
1. cklm(ω)= E[9k9l9m],

2. σ k = E[σ9k],

3. rk(κ(ω, s))= E[r(κ(ω, s))9k].

(15)

In (14) κ̂(s) describes the nm × (n P + 1) matrix of PC coefficients

κ̂(s)= [κ̂0(s), . . . , κ̂n P
(s)] =

 κ̂10(s) . . . κ̂1n P (s)
...

. . .
...

κ̂nm0(s) . . . κ̂nm(n P )(s)

 ∈ Rnm×(n P+1). (16)

With the above preliminaries at hand, the PCE based discrete surrogate QoI Qω

for an arbitrary QoI Q can be formulated using the PCE in (12). The PCE based
discrete QoI is

Q(κ(ω, s))=
n P∑

k=0

Q̂k(s, κ̂)9k(θ(ω)), (17)

where Q̂k(s, κ̂) are the corresponding PC coefficients. For a specific case, inserting
the QoI in (6) into the PC expanded QoI in (17) renders the PC coefficients as

Q̂k =
1
dk

n P∑
l=0

n P∑
m=0

cklm σ̂l σ̂m for all k ∈ {0, . . . , n P}, (18)
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where cklm is given in (15)1 and

dk = ckk0 = E[92
k ] for all k ∈ {0, . . . , n P}. (19)

With the PCE based discrete QoI in (17) the discrete surrogate QoIs of (7)–(9)
become

Qω
= E[Q(κ(ω, s))] = Q̂0(s, κ̂), (20)

Qω
= var[Q(κ(ω, s))] =

n P∑
k=1

dk Q̂2
k(s, κ̂), (21)

Qω
= E[Q2(κ(ω, s))] =

n P∑
k=0

dk Q̂2
k(s, κ̂); (22)

see, e.g., [Le Maître and Knio 2010]. In (20)–(22) it can be seen that the surro-
gate QoIs of random variables depend only on the design variables s in (1), the
deterministic PC coefficients κ̂(s) in (16), and the expectation values in (19).

With a specific choice of a discrete surrogate QoI Qω, for example according to
(20)–(22), we formulate

the discrete stochastic target problem:

for given s ∈ S and ω ∈� find z := Qω(s, ε̂(s, κ̂), d),
(23)

where ε̂(s, κ̂)= [ε̂0(s, κ̂), . . . , ε̂n P (s, κ̂)]
T and d = [d0, . . . , dn P ]

T . Note that, due
to the dependency ε̂(s, κ̂), solution of the discrete target problem in (23) involves
solution of the discrete state problem in (14).

2.4. Example. In order to demonstrate the concept of a surrogate QoI in linear
isotropic elasticity we consider a uniaxial strain-driven loading case with ε = 0.1.
Furthermore, a PC expanded Young’s modulus E(ω) is assumed as a normal dis-
tributed random variable according to (13) with nm = 1 and n P = 1:

E(ω)= Ê0+ Ê1θ(ω)= 80 GPa+ 5 GPa θ(ω). (24)

In Figure 2, left, the distribution of the random variable in (24) is illustrated as a
solid line, where in addition the histogram represents Young’s modulus E(ω) using
nMC = 108 Monte Carlo samples. From the solution of the discrete stochastic state
problem in (14), we obtain the stress random variable σ(ω) as

σ(ω)= σ̂0+ σ̂1θ(ω)= Ê0ε+ Ê1εθ(ω)= 8 GPa+ 0.5 GPa θ(ω). (25)

The stress PC coefficients in (25) are used to calculate the QoI PC coefficients with
n P = 1 according to (18), where cklm and dk in (15)1 and (19), respectively, for
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Figure 2. PCE and MC distribution of Young’s modulus E(ω)
(left) and QoI Q(ω) (right) of (24) and (27), respectively.

k l m cklm dk

0 0 1

0 0 1 0 1
1 0 0
1 1 1

0 0 0

1 0 1 1 1
1 0 1
1 1 0

Table 2. Values of cklm and dk for a stochastic dimension nm = 1
and polynomial order p = 1, which leads to k, l,m = 0, . . . , 1.

k, l,m = 0, 1 are known by [Ghanem and Spanos 1991] according to Table 2. With
the resulting PC coefficients

Q̂0 = σ̂
2
0 + σ̂

2
1 = 64.25 GPa2, Q̂1 = 2σ̂0σ̂1 = 8 GPa2 (26)

the PCE based QoI Q(ω) in (17) becomes

Q(ω)= Q̂0+ Q̂1θ(ω)= 64.25 GPa2
+ 8 GPa2 θ(ω). (27)

In Figure 2, right, the distribution of the random variable in (27) is illustrated as a
solid line, where in addition the histogram represents the QoI Q(ω) obtained from
nMC = 108 Monte Carlo samples.

Finally, results for surrogate QoIs using the PCE in (20)–(22) with n P = 1 and
MC in (7)–(9) with nMC = 104 and nMC = 108 are summarized in Table 3. In
addition to the quantitative values of three surrogate QoIs E[Q], var[Q], and E[Q2

],
the corresponding computational times tC are presented. It can be seen that the PCE
based results are in good agreement with MC based results and show convergence
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MC (nMC = 104) MC (nMC = 108) PCE (n p = 1)
Qω Qω tC/ms Qω tC/ms Qω tC/ms

E[Q]/GPa2 64.3062 0.375 64.2494 126.1 64.25 13.8
var[Q]/GPa4 64.3729 0.841 64.1268 226.3 64 23.6
E[Q2
]/GPa4 4199.6 0.542 4192.1 218.1 4192.7 21.8

Table 3. Surrogate QoIs and computational times tC for MC with
nMC = 104, MC with nMC = 108, and PCE with n P = 1.

after nMC = 108 realizations. The increase to nMC = 109, which is not shown here,
results in a similar behavior.

3. Hybrid fuzzy-stochastic analysis

3.1. Fuzzy set and fuzzy number. So far, the design space S ⊂ Rns in (1) has
been assumed to be a precise set or a fundamental set of ordered pairs. However,
in the case of a lack of knowledge also known as epistemic uncertainty, this is not
realistic. Therefore, in the sequel, modeling of epistemic uncertainty is accounted
for by the fuzzy analysis. To this end, the precise set S in (1) is replaced by a
nonprecise set, or fuzzy set [Möller and Beer 2004], respectively, of ordered pairs

1. Ŝ=
{
(s, µS(s))

∣∣ s ∈ Rns , µS(s)= min
i=1,...ns

{µSi (si )}
}
,

2. Ŝi = {(si , µSi (si )) | si ∈ R, µSi (si ) ∈ [0, 1]},

3. µSi : R→ [0, 1], si 7→ µSi (si ).

(28)

According to (28)1 Ŝ comprises all combinations of the design variables s1, . . . , sns

of the fuzzy sets Ŝi in (28)2. The corresponding function µSi (si ) in (28)3 describes
the degree of membership of si ∈ Si ⊂ R and therefore is called the membership
function. In this work only normalized membership functions with the property
supsi∈Si

[µSi (si )] = 1 are considered. A triangular fuzzy number [Möller and Beer
2004]

Ŝi = 〈sL
i , s M

i , s R
i 〉, where sL

i < s M
i < s R

i , (29)

is a special case of a fuzzy set and is illustrated in Figure 3, left. The stochastic
QoI Q(κ(ω, s)) in (6) becomes a function of the fuzzy design variables s and can
be treated as a hybrid fuzzy-stochastic function. In order to determine Q(κ(ω, s)),
we introduce a novel hybrid fuzzy-stochastic model based on the polynomial chaos
expansion. In this way, the fuzzy-random material parameter vector κ(ω, s) in (4)
propagates the fuzzy-random output variable Q(κ(ω, s)) in (6) or the fuzzy output
variable Qω(κ(ω, s)) in (7)–(10).
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Figure 3. Schematic graph of fuzzy analysis with α-level opti-
mization from (left) design variable (triangular) to (right) QoI.

With S in (1) replaced by Ŝ in (28) the hybrid fuzzy-stochastic representation
(4) for the input quantity κ(ω, s) of the state and target problem in (5) and (11)
accounts for the most general case in which every single component κi (ω, s) can
be subjected to polymorphic uncertainty. Depending on the given uncertainty type
of κ(ω, s) in (4), the following five scenarios of uncertainty analysis (of PCE based
hybrid fuzzy-stochastic analysis) can be distinguished:

• deterministic analysis

κ = κ̂ = κ̂0, n P = 0, ns = 0, (30)

where each material parameter κi = κ̂i = κ̂i0, i = 1, . . . , nm , is deterministic,

• stochastic analysis

κ = κ(ω), κi = κi (ω), n P > 0, ns = 0, and deterministic κ̂, (31)

where at least one material parameter is a random variable,

• fuzzy analysis

κ = κ(s), κi = κi (s), n P = 0, ns > 0, (32)

where at least one material parameter is a fuzzy variable,

• fuzzy-stochastic analysis

κ = κ(ω, s), κi = κi (ω), κ j = κ j (s), n P > 0, ns > 0, (33)

where at least one material parameter is a random variable and one parameter
is a fuzzy variable,

• hybrid fuzzy-stochastic analysis

κ = κ(ω, s), κi = κi (ω, s), n P > 0, ns > 0, (34)

where at least one material parameter is a (polymorphic uncertain) fuzzy-
random variable.
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We recall that in (30)–(34) ns is the number of design variables of s in (1), nm

is the number of material parameters of κ(ω, s) in (4), and n P is the number of PC
truncations in (12).

3.2. α-level discretization and optimization. To avoid significant numerical effort
the determination of a fuzzy output can be approximated by the so-called α-level
discretization, which represents fuzzy sets numerically by α-cuts as

Si,αk = {si |µSi,αk (si )≥ αk, si ∈Si } = [sL
i,αk
, s R

i,αk
] := s I

i,αk
, i = 1, . . . , ns . (35)

The α-cuts are characterized by lower and upper bounds sL
i,αk

and s R
i,αk

and there-
fore define crisp intervals. Figure 3, left, illustrates the crisp interval s I

i,αk
and the

membership function µSi (si ) discretized by nα α-levels. In this context, 0≤ αk ≤ 1
denotes the membership level; see, e.g., [Möller and Beer 2004]. All fuzzy design
variables si are discretized using the same α-level structure, i.e., the number and
the increments of α-levels, to form the associated crisp sets. Therefore, intervals
in (35) lead to an ns-dimensional constrained design space

Sαk = [S1,αk × · · ·×Si,αk × · · ·×Sns ,αk ] ⊂ S⊂ Rns . (36)

The determination of the minimum and maximum values of the surrogate QoI
in (11) or (23), respectively, at each α-level requires the solutions of

two hybrid fuzzy-stochastic α-level optimization problems:

1. find QωL
αk
= min

s∈Sαk

Qω(s, ε(κ(ω, s)))≈ min
s∈Sαk

Qω(s, ε̂(s, κ̂), d),

2. find QωL
αk
= max

s∈Sαk

Qω(s, ε(κ(ω, s)))≈ max
s∈Sαk

Qω(s, ε̂(s, κ̂), d).

(37)

As visualized in Figure 3, right, the two extrema QωL
αk

and QωR
αk

render two points
of the membership function µQ(Q) for the membership level αk . The interval
QωI
αk
=[QωL

αk
, QωR

αk
] is fully described by the lower and upper bounds QωL

αk
and QωR

αk
.

As no requirements are formulated for the continuous mapping model, both opti-
mization problems in (37) involve only simple constraints. Problems of this kind
are discussed in detail in [Bertsekas 1982].

3.3. Numerical implementation. In principle, fuzzy and stochastic dominated ap-
proaches with polymorphic uncertainties are conceivable [Reuter et al. 2012] for
numerical determination of the target (11) or (23). The two approaches are illus-
trated in Figure 4, top and bottom. The difference between both approaches is the
sequences of the evaluations of uncertainties.

For the fuzzy dominated approach, the stochastic analysis is performed inside
the fuzzy analysis, which leads to α-level optimization loops (sequence: fuzzy



A POLYNOMIAL CHAOS EXPANDED HYBRID FUZZY-STOCHASTIC MODEL 111

fuzzy analysis
of membership function
for surrogate QoI
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stochastic analysis
of random (surrogate) QoI
MC: j = 1, . . . , nMC samples

κj(s) of κ(ω, s)
PCE: k = 0, . . . , nP pc coefficients

κ̂k(s) of κ(ω, s)

deterministic analysis
of deterministic QoI
(samples or PC coefficients)

Qj(κj(s)),

Q̂k(κ̂k(s))

Q(κ(ω, s)),
Qω(κ(ω, s))

µ(Qω(κ(ω, s)))

stochastic analysis
of (surrogate) membership functions
for QoI
MC: j = 1, . . . , nMC samples

κj(sj) of κ(ω, s)

fuzzy analysis
of membership fuction
for deterministic QoI (samples)

deterministic analysis
of deterministic QoI
(samples)

µj(Qj(κj(sj)))

Qj(κj(sj))

µ(Q(κ(ω, s)), ω),
µω(Q(κ(ω, s)))

Figure 4. Computational scheme for the determination of QoIs
with polymorphic uncertain parameters: (top) fuzzy dominated
approach and (bottom) stochastic dominated approach.

analysis) (see (37)) with fuzzy-random variables κ(ω, s). Within each iteration of
the optimization loop a certain number nMC of samples κ j (s) (e.g., MC method) or
PC coefficients κ̂k(s) (PCE method) are generated (sequence: stochastic analysis).
Then, samples Q j (s) or PC coefficients Q̂k(s) for a QoI Q(κ(ω, s)), e.g., (6), are
calculated (sequence: deterministic analysis). After that, surrogate QoIs in (7)–
(10) or the discrete PCE based surrogate QoIs in (20)–(22) (sequence: stochastic
analysis) are determined and used for the α-level optimization (sequence: fuzzy
analysis). Note, with a specific choice of a surrogate QoI, the α-level optimization
problems at each α-level will be solved only once using the fuzzy dominated ap-
proach. The required design variables s for the solution of the membership function
for (surrogate) QoIs will be used for further calculation of, e.g., stresses or strains.

In contrast, the stochastic dominated approach, where the fuzzy analysis is per-
formed inside the stochastic analysis, leads to a certain number nMC (sequence:
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stochastic analysis) of optimization loops (sequence: fuzzy analysis) with deter-
ministic samples, e.g., κ j of κ(ω) (sequence: deterministic analysis). The required
design variables s j for the solution of the membership function for each QoI sample
µ j (Q j (κ j , s j )) may be used for further calculation of interested quantity samples,
e.g., samples of stresses or strains. After the fuzzy deterministic analysis, the outer
stochastic analysis leads to stochastic distributions of membership functions µ or
to surrogate membership functions µω, respectively.

In this paper, the hybrid fuzzy-stochastic analysis is performed by the PCE based
surrogate model, which directly provides the calculation of the surrogate QoIs in
(20)–(22) and the required design variables. Therefore, and due to the small number
of optimizations loops, only one fuzzy optimization of the chosen surrogate QoI,
fuzzy dominated approach is preferred. In contrast, in the stochastic dominated
approach, the fuzzy optimization must be performed for all samples nMC. The MC
simulation, in the fuzzy dominated and also in the stochastic dominated approaches,
is also performed for each example to verify the accuracy of the results, as well as
the computational time.

4. Experimental investigation of fiber reinforced plastics

In order to describe unidirectional fiber reinforced plastics (FRP), a transversely
isotropic elasticity model is used, where the plane normal to the fiber direction can
be considered as an isotropic plane. In Figure 5, the fibers are aligned with the
1-axis, which is normal to the 2-3-plane of isotropy.

In Voigt notation, the constitutive equation (3)1 for transversely isotropic elas-
ticity reads

1. σ = Cε, where

2. σ = [σ11, σ22, σ33, σ12, σ13, σ23]
T , ε = [ε11, ε22, ε33, γ12, γ13, γ23]

T ,

3. C =



C11 2ν(λ+G⊥) 2ν(λ+G⊥) 0 0 0
λ+ 2G⊥ λ 0 0 0

λ+ 2G⊥ 0 0 0
G‖ 0 0

sym G‖ 0
G⊥


,

4. C11 =
E‖2(E⊥− 4G⊥)

4E⊥G⊥ν2+ E‖E⊥− 4E‖G⊥
,

5. λ=−
2G⊥(2E⊥G⊥ν2

+ E‖E⊥− 2E‖G⊥)
4E⊥G⊥ν2+ E‖E⊥− 4E‖G⊥

.

(38)
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Figure 5. A transversely isotropic volume element, where fibers
are aligned with the 1-axis.

In addition to the Voigt notation in (38)2 of the stress tensor σ , the Mandel notation

σM = [σ11, σ22, σ33,
√

2σ12,
√

2σ13,
√

2σ23]
T (39)

is introduced, whereby (6) reads

Q(ε(κ(ω, s)))= σ T
M(ε(κ(ω, s)))σM(ε(κ(ω, s))). (40)

In (38) ν is the dimensionless Poisson ratio and E‖, E⊥ and G‖,G⊥ are Young’s
moduli and shear moduli in fiber and transverse direction, respectively. According
to (4), the nm = 5 required transversely isotropic material parameters are summa-
rized in the material parameter vector

κ = [κ1, κ2, κ3, κ4, κ5]
T
= [E‖, E⊥,G‖,G⊥, ν]T . (41)

The determination of the shear modulus G⊥ in the isotropic plane requires a shear
test apparatus, which currently is not available. Instead only tensile tests can be
performed, which are used to determine the material parameters in (41), except G⊥,
experimentally.

To this end, three plates made of unidirectional FRP with different fiber orien-
tations (0◦, 45◦, 90◦) were produced. From each plate 30 tensile specimens were
cut out. The geometry of the tensile specimen is depicted in Figure 6b. The width
b0 and the thickness t0 of the specimens differ from 0◦ orientation to 45◦ and 90◦

orientation, where the dimensions for the different fiber orientations are summa-
rized in Table 4. Furthermore, Figure 6c–e shows schematically the different fiber
orientations of the specimens. These are clamped into a tensile testing machine
with hydraulic clamping jaws as illustrated in the experimental setup in Figure 6a.
The FRP is subjected to an off-axis uniaxial stress loading, in which the fibers are
oriented in the 1-direction, and rotated around the 3-direction by an angle ϕ. With
respect to the testing machine a machine-fixed coordinate system (x, y) in Figure 6
is defined. The experiments, which are displacement controlled according to DIN
EN ISO 527-5, are loaded in the longitudinal direction x at an angle ϕ with respect
to the fiber direction. In particular, ϕ = 0◦ and ϕ = 90◦ correspond to longitudinal
and transverse uniaxial stress loading, respectively. A load cell supplies forces F
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(a) (b) (c) (d) (e)

x

y

1
'

Figure 6. Experimental investigation: (a) experimental setup,
(b) geometry of specimens, and schematic specimens for fiber ori-
entation (c) 0◦, (d) 90◦, and (e) 45◦. Machine-fixed coordinate
system (x, y) and fibers aligned to 1-axis.

[mm] 0◦ 45◦/90◦

length l0 150 150
clamping length h 50 50
width b0 15 25
thickness t0 1 2

Table 4. Measures of specimens depending on fiber orientations.

at different observation states, whereby corresponding stresses in longitudinal di-
rection σ x = F/A0 are determined using the cross-sectional area A0 = b0t0; see
Table 4. By applying a video extensometer, the strains in longitudinal and trans-
verse directions εx and εy are measured.

Fiber orientation ϕ = 0◦. In order to determine the Young’s modulus E‖ in fiber
direction as well as the Poisson’s ratio ν, tensile tests are applied for samples
illustrated in Figure 6c. DIN EN ISO 527-1 provides further information regarding
the test procedure and the data evaluation. The resulting curves for stress σ11 = σ x

versus strain ε11= εx for 30 experiments are shown in Figure 7, left, where the slope
of each curve describes the corresponding Young’s modulus E‖ =1σ11/1ε11 in
fiber direction. Furthermore, in Figure 7, right, experimental longitudinal strain ε11

versus transversal strain |ε22| = |εy| curves are illustrated, where the slope of
each regression line for each curve renders the corresponding Poisson’s ratio ν =
−1ε22/1ε11. The frequency distributions of E‖ and ν are illustrated in Figure 8,
left and right.
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Figure 7. Experimental results for fiber orientation 0◦: (left) lon-
gitudinal stress σ11 versus longitudinal strain ε11 curves and (right)
longitudinal strain ε11 versus transversal absolute strain |ε22|

curves.
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Figure 8. Frequency distributions of identified parameters for
fiber orientation 0◦: (left) Young’s modulus in fiber direction E‖
and (right) Poisson’s ratio ν.

Fiber orientation ϕ = 90◦. To determine the Young’s modulus E⊥ transverse to the
fiber direction, tensile tests are applied for samples illustrated in Figure 6d. DIN
EN ISO 527-1 provides further information regarding the test procedure and the
data evaluation. Results for 30 experimental stress σ22 = σ x versus strain ε22 = εx

curves are illustrated in Figure 9, left, where the slope of each curve renders the
corresponding Young’s modulus E⊥ = 1σ22/1ε22. The frequency distribution
of E⊥ is illustrated in Figure 9, right.

Fiber orientation ϕ = 45◦. In order to determine the shear modulus G‖ in fiber
direction, tensile tests according to DIN EN ISO 527-5 are applied for samples il-
lustrated in Figure 6e. Results for 30 experimental maximal shear stress σ12= σ x/2
versus shear strain γ12 ≈ εx − εy , according to DIN EN ISO 14129, are illustrated
in Figure 10, left, where the slope of each regression line for each curve renders
the corresponding shear modulus G‖ = 1σ12/1γ12. The frequency distribution
of jG‖ is illustrated in Figure 10, right.
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Figure 9. Experimental results and identification for fiber orien-
tation 90◦: (left) curves for stress σ22 transversal to fiber versus
strain ε22 transversal to fiber and (right) frequency distribution of
Young’s modulus in transverse direction E⊥.
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Figure 10. Experimental results and identification for fiber orien-
tation 45◦: (left) maximal shear stress σ12 versus maximal shear
strain γ12 curves and (right) frequency distribution of shear mod-
ulus in fiber direction G‖.

5. Representative numerical examples

For the following strain controlled examples, fuzzy analysis, fuzzy-stochastic anal-
ysis, and hybrid fuzzy-stochastic analysis, the strain vector is given as

ε= [ε11, ε22, ε33, γ12, γ13, γ23]
T
= [0.05, 0.02, 0.03, 0.005, 0.004, 0.002]T . (42)

As mentioned in Section 4, we are currently not able to determine the shear modu-
lus in the isotropic plane. Therefore, G⊥ = 3.9286 GPa is taken from the literature
according to [Soden et al. 1998] and is regarded as deterministic.

5.1. Fuzzy analysis. In the first representative example, all material parameters
except G⊥ in (41) are assumed as purely epistemic uncertain. Since G⊥ is deter-
ministic it can be considered as a degenerated fuzzy variable in Figure 11e. The
(fuzzy) input according to (32) includes no (stochastic) random variables and is
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Figure 11. Fuzzy analysis: input membership functions for mate-
rial design variables (a) E‖, (b) E⊥, (c) G‖, (d) ν, and (e) G⊥.

defined as

κ(s)= [E‖(s), E⊥(s),G‖(s),G⊥, ν(s)]T = [s1, s2, s3,G⊥, s4]
T , (43)

such that the vector in (1) of ns = 4 design variables for nm = 5 material parameters
is given by

s = [s1, s2, s3, s4]
T
= [E‖, E⊥,G‖, ν]T . (44)

In the special case of fuzzy analysis according to (32), the matrix of PC coefficients
in (16) reduces with n P = 0 to a vector corresponding to the material parameter
vector in (43)

κ̂(s)= κ̂0(s)= κ(s). (45)

As discussed in [Möller and Beer 2004] several possible membership functions
can be laid over the frequency distributions. This may depend, e.g., on the avail-
able data. Since there are no experimental results available for validation in the
current work, we decided to use simple triangular shape functions by normalizing
the memberships. Based on the identified parameters represented as frequency
distributions in Figures 8; 9, right; and 10, right; membership functions µ(s) are
generated for the input quantities E‖, E⊥,G‖, and ν according to Figure 11a–d.
To this end, the empirical mean E[s∗i ] of the identified parameter samples s∗i are
chosen as mean values s M

i to obtain triangular fuzzy numbers according to (29) as

Ŝi = 〈sL
i , s M

i , s R
i 〉 = 〈E[s

∗

i ] − f ∗i , E[s∗i ], E[s∗i ] + f ∗i 〉, (46)
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where f ∗i =max{E[s∗i ]−min s∗i ,max s∗i −E[s∗i ]}, that is, for each material parameter
a maximum deviation of f ∗i for the epistemic uncertainty is assumed. Thus, the
triangular fuzzy numbers

1. Ŝ1 = 〈128.1, 149.15, 170.2〉GPa, f ∗1 = 21.05 GPa,

2. Ŝ2 = 〈2.2, 7.3, 12.4〉GPa, f ∗2 = 5.1 GPa,

3. Ŝ3 = 〈3.9, 4.52, 5.14〉GPa, f ∗3 = 0.62 GPa,

4. Ŝ4 = 〈0.215, 0.319, 0.423〉, f ∗4 = 0.104

(47)

are chosen for the four design variables in (44). The α-discretization is performed
with nα = 11 cuts. These discrete input parameters define the stresses in (38) and
the QoI in (40). Note that the QoI Q(s) in (40) in the purely (epistemic) fuzzy
analysis is independent on ω such that no surrogate QoIs are needed. The mini-
mization and maximization problems in (37)1 and (37)2 are solved for Q(s) in (40)
at each α-level using a standard optimization tool for constrained functions. In this
work the function fmincon with the sequential quadratic programming [Nocedal
and Wright 1999] algorithm of the Matlab Optimization Toolbox is applied.

In Figure 12, the resulting output membership function of the optimization prob-
lems in (37) for the QoI Q(s) presented in (40) is illustrated. The marks − and |
show that from each pair of interval bounds of the design variables sL

i,αk
and s R

i,αk

at each α-level αk , k = 1, . . . , 11, in Figure 11a,d, the interval bounds of the QoIs
QωL
αk

and QωR
αk

are obtained. Therefore, calculating the stresses σ(ω, s) in (38), the
left and right interval bounds sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, can

be used.
The uncertain stress coefficients σi j of the stress vector σ in (38) are illustrated

in Figure 13. Due to Hooke’s law described in (38) the normal stress coefficients
σi i (s) are effected by the design variables s = [E‖, E⊥,G‖, ν]T and the fixed ma-
terial parameter G⊥. Remarkably, the membership functions for the normal stress
coefficients σi i (s) in Figure 13a–c become nonlinear. This is due to the nonlinear
mathematical operations of fuzzy variables for the calculation of C11 and λ in (38).

40 60 80 100
0

0.5

1

Q/GPa2

µ
(Q

)

Figure 12. Fuzzy analysis: output membership function for quan-
tity of interest Q(ε(s)) in (40).
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Figure 13. Fuzzy analysis: output membership functions for
stresses (a) σ11, (b) σ22, (c) σ33, (d) σ12, (e) σ13, and (f) σ23.

The stress components σ12(s) and σ13(s) are only effected by the design variables
G‖(s). Therefore, the membership functions µ(σ12) and µ(σ13) in Figure 13d–e
have the same triangular shape as the membership function µ(G‖) of the design
variable G‖ in Figure 11c. The shear stress σ23 depends on the deterministic pa-
rameter G⊥. Therefore, The membership function µ(σ23) in Figure 13f becomes
deterministic and is represented by a straight vertical line.

5.2. Fuzzy-stochastic analysis. From an industrial point of view, the mechanical
properties in the fiber direction are of great interest. Therefore, in practice more ex-
perimental investigations are carried out in the fiber direction than in the transverse
direction. Consequently, in the second representative example, two material param-
eters E‖(ω) and ν(ω) of the input vector in (41) are assumed as purely aleatoric,
whereas E⊥(s), G‖(s), and G⊥ = 3.9286 GPa remain epistemic and deterministic
as in Section 5.1. For a fuzzy-stochastic analysis the input material parameter
vector (41) according to (33) is defined as

κ(ω, s)= [E‖(ω), E⊥(s),G‖(s),G⊥, ν(ω)]T , (48)

such that the design variable vector (1) of material parameters is given by

s = [s1, s2]
T
= [E⊥,G‖]T . (49)

The stochastic parameters E‖(ω) and ν(ω) are assumed to be normally distributed
random variables, which requires a truncation of n P = 2 in (12). The membership
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Figure 14. Fuzzy-stochastic analysis: input density functions for
the aleatory material parameters (a) PDF for E‖, (b) PDF for ν,
(c) CDF for E‖, and (d) CDF for ν.

functions µ(s) for the material parameters E⊥ and G‖ remain unchanged accord-
ing to Figure 11a,d and used as input quantities for the fuzzy analysis. Based
on the frequency distributions in Figure 8 normally distributed density functions
are generated from the expectation values E[E‖(ω)], E[ν(ω)] and standard devia-
tions std[E‖(ω)], std[ν(ω)] for material parameters E‖(ω), ν(ω), which are used
as input quantities for the stochastic sequence in the fuzzy-stochastic analysis. In
Figure 14 the corresponding probability density functions (PDFs) and cumulative
density functions (CDFs) are given. According to (13), the PCEs for the normally
distributed random variables E‖(ω) and ν(ω) for n P = 2 are

E‖(ω)= Ê‖0+ Ê‖1θ1(ω)+ Ê‖2θ2(ω),

ν(ω)= ν̂0 + ν̂1θ1(ω) + ν̂2θ2(ω).
(50)

We assume, further, that E‖(ω) and ν(ω) are independent random variables such
that (50) renders

E‖(ω)= Ê‖0+ Ê‖1θ1(ω),

ν(ω)= ν̂0 + ν̂2θ2(ω),
(51)

with PC coefficients

Ê‖0 = E[E‖] = 153.145, Ê‖1 = std[E‖] = 9.214,

ν̂0 = E[ν] = 0.306, ν̂2 = std[ν] = 0.0528.
(52)

Consequently, the corresponding input matrix in (16) of material parameter PC
coefficients becomes

κ̂(s)=


Ê‖0 Ê‖1 0

E⊥(s) 0 0
G‖(s) 0 0
G⊥ 0 0
ν̂0 0 ν̂2

=


153.145 9.214 0
s1 0 0
s2 0 0

3.9286 0 0
0.306 0 0.0528

 . (53)
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Figure 15. Fuzzy-stochastic analysis: membership function for
surrogate QoIs in (20)–(22) according to QoI in (40), (left) Qω

=

E[Q], (center) Qω
= var[Q], and (right) Qω

= E[Q2
].

As mentioned in Section 3.3, both analyses, the fuzzy and the stochastic ones, are
combined with the fuzzy dominated or stochastic dominated approach as illustrated
in the computational scheme in Figure 4. Here, the focus is on the PCE based fuzzy
dominated approach, in which the PC coefficients in (53), although only the 0-th,
are represented as fuzzy design variables. Since the QoI in (40) will be a fuzzy-
random variable, it is necessary to choose a surrogate QoI to perform the outer
fuzzy optimization introduced in Figure 4, left (sequence: fuzzy analysis).

In Figure 15, the resulting output membership functions of the optimization
problems in (37) for three possible realizations of surrogate QoIs presented in
(20)–(22) are illustrated. The marks − and | show that from each pair of interval
bounds of the design variables sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, in

Figure 11b–c, the interval bounds of the surrogate QoIs QωL
αk

and QωR
αk

are obtained.
Therefore, for postprocessing, e.g., calculating the stresses σ(ω, s) in (38), the left
and right interval bounds sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, can be

used.
In the fuzzy dominated approach as presented in Figure 4, left, for verification,

the MC method with nMC = 104 Monte Carlo samples renders similar values.
Results for surrogate QoIs using the PCE in (20)–(22) with n P = 2 and MC in
(7)–(9) with nMC = 103 and nMC = 104 are summarized in Table 5. In addition to
the quantitative values of the three surrogate QoIs E[Q], var[Q], and E[Q2

], the
computational times tC are presented. It can be seen that in the MC solution, even
with a small number of samples, the computational effort is considerably greater
than with the PCE solution, although the deviations are not negligible.

Due to the Hooke’s law (38) the stress components σ12(s) and σ13(s) are only
effected by the design variables G‖(s), where σ23 depends on the deterministic
parameter G⊥. Consequently, σ12, σ13, and σ23 remain unchanged compared to
the results in Figure 13d–f of the fuzzy analysis in Section 5.1. However, by
(38) the normal stresses σi i (ω, s), i = 1, 2, 3, are effected by design variables
E⊥(s),G‖(s) and stochastic variables E‖(ω), ν(ω). Therefore, σi i (ω, s) become
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MC (nMC = 103) MC (nMC = 104) PCE (n p = 2)
Qω αk QωL

αk
QωR
αk

tC/s QωL
αk

QωR
αk

tC/s QωL
αk

QωR
αk

tC/s

1 62.10 62.10 61.31 61.31 61.98 61.98
E[Q]

GPa2 0.5 60.57 65.36 192 60.17 64.97 1916 60.31 65.73 3.7
0 59.69 76.16 59.29 75.81 59.38 79.16

1 58.37 58.37 53.38 53.38 52.54 52.54var[Q]
GPa4 0.5 56.23 63.46 218 51.85 51.85 2011 51.02 56.47 3.8

0 55.07 86.95 51.03 76.71 50.22 78.87

1 3856 3856 3864 3864 3894 3894
E[Q2
]

GPa4 0.5 3667 4277 110 3675 4282 1071 3688 4377 3.5
0 3560 5833 3569 5826 3576 6343

Table 5. Surrogate QoIs and computational times tC using MC
with nMC = 103, MC with nMC = 104 and PCE with n P = 2.
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Figure 16. Fuzzy-stochastic analysis: P-boxes at α-levels α1 = 0,
α6 = 0.5 and α11 = 1 for normal stresses (left) σ11, (center) σ22,
and (right) σ33.

hybrid fuzzy-stochastic variables, which can be seen in Figure 16, i.e, the CDFs of
σi i (ω, s) are not anymore given by a unique CDF as for a stochastic variable, e.g., in
Figure 14c–d. Instead, they are given by left upper bounds Fαk (σi i ) and right lower
bounds Fαk (σi i ) at each α-level, where the intervals of CDFs [Fαk (σi i ), Fαk (σi i )]

are called probability boxes (P-boxes). For further explanation on P-boxes the
reader is referred to [Ferson et al. 2003]. The P-boxes of the normal stresses σi i at
three α-levels 0, 0.5, and 1 are shown in Figure 16.

In addition, different statistical moments of the fuzzy-stochastic variables σi i can
be calculated. The expectation values E[σi i ] and variances var[σi i ] are illustrated in
Figures 17 and 18. While, as shown in Figure 16, σi i are fuzzy-stochastic random
variables, their moments in Figures 17 and 18 are fuzzy variables. The red dots in
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Figure 17. Fuzzy-stochastic analysis: output membership func-
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Figure 18. Fuzzy-stochastic analysis: output membership func-
tions for variances of normal stresses (left) var[σ11], (center)
var[σ22], and (right) var[σ33].

Figure 16 indicate the expectation values of the left upper bounds Fαk (σi i ) and right
lower bounds Fαk (σi i ) at three α-levels α1 = 0, α6 = 0.5, and α11 = 1. The same
values are also shown by red dots in Figure 17. Among others, these figures are
suitable for investigating the influence of design variables s on statistical moments
E[σi i ] and var[σi i ], respectively. Both in Figures 17 and 18 the sensitivity of the
design variables s can be clearly seen. Higher values of s result in a larger increase
in statistical moments than for smaller values of s. The study of such influences
are of great importance in industrial applications and can be used in the risk and
reliability analysis.

5.3. Hybrid fuzzy-stochastic analysis. In the third representative example, all ma-
terial parameters are the same as in the previous example in Section 5.2 except
E‖, which is assumed as a polymorphic uncertain material parameter E‖(ω, s) as
illustrated in Figure 19. For a hybrid fuzzy-stochastic analysis the input material
parameter vector equation (41) is given as

κ(ω, s)= [E‖(ω, s), E⊥(s),G‖(s),G⊥, ν(ω)]T , (54)

whereas the design variable vector equation (1) of material parameters is given by

s = [s1, s2, s3, s4]
T
= [Ê‖0, Ê‖1, E⊥,G‖]T . (55)
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Figure 19. Hybrid fuzzy-stochastic analysis: P-boxes at α-levels
α1 = 0, α6 = 0.5, and α11 = 1 for E‖.

The PCE in (12) for the polymorphic uncertain and stochastic parameters E‖(ω, s)
and ν(ω) is truncated by n P = 2. The membership functions µ(s) and the den-
sity distributions for the purely fuzzy parameters E⊥(s) and G‖(s) and the purely
stochastic parameter ν(ω), respectively, remain unchanged according to Figures
11a,d and 14.

According to (13), the PCEs for the (fuzzy-)random variables E‖(ω, s) and ν(ω)
for n P = 2 are

E‖(ω, s)= Ê‖0(s)+ Ê‖1(s)θ1(ω)+ Ê‖2(s)θ2(ω),

ν(ω)= ν̂0 + ν̂1θ1(ω) + ν̂2θ2(ω).
(56)

We assume, further, that E‖(ω, s) and ν(ω) are stochastically independent such
that (56) renders

E‖(ω, s)= Ê‖0(s)+ Ê‖1(s)θ1(ω),

ν(ω)= ν̂0 + ν̂2θ2(ω),
(57)

with PC coefficients

Ê‖0(s)= E[E‖(s)] = s1, Ê‖1(s)= std[E‖(s)] = s2,

ν̂0 = E[ν] = 0.306, ν̂2 = std[ν] = 0.0528.
(58)

Consequently, the corresponding input matrix in (16) of material parameter PC
coefficients becomes

κ̂(s)=


Ê‖0(s) Ê‖1(s) 0
E⊥(s) 0 0
G‖(s) 0 0
G⊥ 0 0
ν̂0 0 ν̂2

=


s1 s2 0
s3 0 0
s4 0 0

3.9286 0 0
0.306 0 0.0528

 . (59)
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Figure 20. Hybrid fuzzy-stochastic analysis: input membership
functions for (left) the zeros Ê‖0 and (right) first Ê‖1 PC coeffi-
cients of E‖.

In this example, the corresponding artificially chosen input membership func-
tions for s1 = E[E‖(ω, s)] = Ê‖0 and s2 = std[E‖(ω, s)] = Ê‖1 are shown in
Figure 20. Therefore, E‖(ω, s) becomes a hybrid fuzzy-stochastic variable, i.e,
the CDF of E‖(ω, s) is not anymore given by unique function as depicted in
Figure 14c. Instead, the CDF is given by left upper bounds Fαk (E‖) and right
lower bounds Fαk (E‖) at each α-level. Then, the P-boxes of Young’s modulus
[Fαk (E‖), Fαk (E‖)] at three α-levels α1 = 0, α6 = 0.5, and α11 = 1 are shown in
Figure 19. The red dots in Figure 19 indicate the expectation values of left upper
bounds Fαk (E‖) and right lower bounds Fαk (E‖) at the three α-levels. The same
values are also shown by red dots in Figure 20, left.

The fuzzy and the stochastic analysis are combined to a hybrid fuzzy-stochastic
approach. In Figure 21, the resulting output membership functions of the optimiza-
tion problems in (37) for the three possible realizations of surrogate QoIs presented
in (20)–(22) are illustrated. The − and | marks show that from each pair of interval
bounds of the design variables sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11,

in (49), the interval bounds of the QoIs QωL
αk

and QωR
αk

are obtained. Therefore,
for postprocessing, e.g., calculating the stresses σ(ω, s) in (38), the left and right
interval bounds sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, can be used.
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Figure 22. Hybrid fuzzy-stochastic analysis: P-boxes at α-levels
α1 = 0, α6 = 0.5 and α11 = 1 for normal stresses σ11, σ22, σ33.

The purely fuzzy or deterministic shear stresses remain unchanged compared
to the first example in Section 5.1. The P-boxes of the normal stresses σi i (ω, s),
which depend on deterministic G⊥, fuzzy E⊥(s) and G‖(s), stochastic ν(ω), and
hybrid fuzzy-stochastic E‖(ω, s) parameters, are shown in Figure 22 for three α-
levels. In contrast to the previous example in Section 5.2, wider breadth is obtained
between the left upper bounds Fαk (σ11) and right lower bounds Fαk (σ11) for each
α-level, whereas the bound distributions for σ22 and σ33 are narrow, which was
to be expected because of the wider input of E‖. In addition, the membership
functions for the expectation values and the variances of σ11, σ22, and σ33 are
given in Figure 23. The sensitivity of the design variables s can be clearly seen in
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Figure 23. Hybrid fuzzy-stochastic analysis: output membership
functions for expectation values (top row) and variances (bottom
row) of normal stresses.



A POLYNOMIAL CHAOS EXPANDED HYBRID FUZZY-STOCHASTIC MODEL 127

both figures. Higher values of s result in a larger increase in statistical moments
than for smaller values of s.

6. Conclusion and outlook

The objective of this article is to consider polymorphic uncertain material param-
eters, for unidirectional FRP, in a hybrid fuzzy-stochastic transversely isotropic
elastic model. For this purpose, a state and a target problem is formulated as (fuzzy)
stochastic equations that take into account PC expanded (fuzzy) random variables,
where the PC coefficients are interpreted as fuzzy design variables. To this end, a
stochastic Galerkin projection is applied to reduce the (fuzzy) stochastic equation
into a system of (fuzzy) equations. Hence, the target problem or the QoI depends
only on (fuzzy) PC coefficients. The fuzzy analysis, including α-level optimization,
is used to get representative membership functions for QoIs. Since the QoIs may be
random variables, surrogate QoIs based on empirical moments are used to perform
the fuzzy optimization. The material parameters for the proposed model are deter-
mined based on homogeneous experiments of tensile specimens with different fiber
orientations. This is followed by statistic evaluations of material parameters. These
results are used for the generation of stochastic distributions or fuzzy membership
functions, respectively, and applied as input quantities for the numerical analysis.
Representative examples, for fuzzy analysis, fuzzy-stochastic analysis, and hybrid
fuzzy-stochastic analysis demonstrate the versatility of the proposed model.

In the future, inhomogeneous experiments will be carried out for validation and
compared with the proposed hybrid fuzzy-stochastic transversely isotropic elastic
model of unidirectional FRP. Furthermore, a multiscale model should be developed,
which takes into account a polymorphic uncertain homogenization method, where
the composite material may exhibit polymorphic uncertainties in the constituent
material properties.
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DYNAMIC BOUNDARY CONDITIONS
FOR MEMBRANES WHOSE SURFACE ENERGY DEPENDS

ON THE MEAN AND GAUSSIAN CURVATURES

SERGEY GAVRILYUK AND HENRI GOUIN

Membranes are an important subject of study in physical chemistry and biology.
They can be considered as material surfaces with a surface energy depending
on the curvature tensor. Usually, mathematical models developed in the litera-
ture consider the dependence of surface energy only on mean curvature with an
added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss
curvature term can be eliminated because of the Gauss–Bonnet theorem. Rosso
and Virga (Proc. Roy. Soc. Lond. A 455:1992 (1999), 4145–4168) considered the
dependence on the mean and Gaussian curvatures in statics and under a restric-
tive assumption of the membrane inextensibility. The authors derived the shape
equation as well as two scalar boundary conditions on the contact line.

In this paper — thanks to the principle of virtual working — the equations
of motion and boundary conditions governing the fluid membranes subject to
general dynamical bending are derived without the membrane inextensibility as-
sumption. We obtain the dynamic “shape equation” (equation for the membrane
surface) and the dynamic conditions on the contact line generalizing the classical
Young–Dupré condition.

1. Introduction

The study of equilibrium, for small wetting droplets placed on a curved rigid sur-
face, is an old problem of continuum mechanics. When the droplets’ size is of
micron range the droplet volume energy can be neglected. The surface energy of
the surface S can be expressed in the form

E =
∫∫

S
σ ds,

where σ denotes the energy per unit surface. Two types of surfaces are present in
physical problems:
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• rigid surfaces (only the kinematic boundary condition is imposed) and

• free surfaces (both the kinematic and dynamic boundary conditions are im-
posed).

We will see the difference between the energy variation in the case of rigid and
free surfaces.

The simplest case corresponds to a constant surface energy σ , but in general, σ
also depends on physical parameters (temperature, surfactant concentrations, etc.
[Gouin 2014a; Rocard 1952; Steigmann and Li 1995]) and geometrical parameters
(invariants of curvature tensor). The last case is important in biology and, in particu-
lar, in the dynamics of vesicles [Alberts et al. 2002; Lipowsky and Sackmann 1995;
Seifert 1997]. Vesicles are small liquid droplets with a diameter of a few tens of mi-
crometers, bounded by an impermeable lipid membrane of a few nanometers thick.
The membranes are homogeneous down to molecular dimensions. Consequently,
it is possible to model the boundary of vesicle as a two-dimensional smooth surface
whose energy per unit surface σ is a function both of the sum (denoted by H ) and
product (denoted by K ) of principal curvatures of the curvature tensor:

σ = σ(H, K ).

In mathematical description of biological membranes, one often uses the Helfrich
energy [1973; Tu 2011]:

σ(H, K )= σ0+
κ

2
(H − H0)

2
+ κK , (1)

where σ0, H0, κ , and κ are dimensional constants. Another purely mathematical
example is the Wilmore energy [1993]:

σ(H, K )= H 2
− 4K .

This energy measures the “roundness” of the free surface. For a given volume, this
energy is minimal in case of spheres. One can also propose another surface energy
in the form

σ = σ0+ h0(H 2
− H 2

0 )
2
+ k0(K − K0)

2,

where σ0, h0, H0, k0, and K0 are dimensional constants. This kind of energy
is invariant under the change of sign of principal curvatures, (i.e., the change of
sign yields H → −H and K → K ). It can thus describe the “mirror buckling”
phenomenon: a portion of the membrane inverts to form a cap with equal but
opposite principal curvatures. It is also a homogeneous function of degree four
with respect to principal curvatures.

The equilibrium for membranes (called “shape equation” by Helfrich) is formu-
lated in numerous papers and references herein [Biscari et al. 2004; Capovilla and
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Guven 2002; Fournier 2007; Helfrich 1973; Napoli and Vergori 2010; Zhong-can
and Helfrich 1989]. The “edge conditions” (boundary conditions at the contact
line) are formulated in few papers and only in statics. In particular, in [Rosso and
Virga 1999] the shape equation and two boundary conditions are formulated for
the general dependence σ(H, K ) under the assumption of the membrane inexten-
sibility. However, the boundary conditions obtained do not contain the classical
Young–Dupré condition for the constant surface energy. In the case where the
energy depends only on H a static generalization of Young–Dupré condition was
derived in [Gouin 2014b].

The aim of our paper is to develop the theory of moving membranes which are
in contact with a solid surface. The surface energy of the membrane will be a
function both of H and K . We obtain a set of boundary conditions on the moving
interfaces (membranes) as well as on the moving edges.

The motion of a continuous medium is represented by a diffeomorphism φ of a
three-dimensional reference configuration D0 into the physical space. In order to
analytically describe the transformation, variables X = (X1, X2, X3)T single out
individual particles corresponding to material or Lagrangian coordinates, where su-
perscript “T ” means the transposition. The transformation representing the motion
of a continuous medium occupying the material volume Dt is

x = φ(t, X) or x i
= φi (t, X1, X2, X3), i = {1, 2, 3},

where t denotes the time and x = (x1, x2, x3)T denote the Eulerian coordinates.
At t fixed, the transformation possesses an inverse and has continuous derivatives
up to the second order (the dependence of the surface energy on the curvature
tensor will regularize the solutions, so the cusps and shocks do not appear).

At equilibrium, the unit normal vector to a static surface ϕ0(x)= 0 is the gradient
of the so-called signed distance function defined as follows. Let

d(x)=


min|x− ξ | if ϕ0 > 0,

0 if ϕ0 = 0,
−min|x− ξ | if ϕ0 < 0,

(2)

where the minimum is taken over points ξ at the surface, and | · | denotes the Eu-
clidean norm. The unit normal vector is

n=∇d(x).

In dynamical problems, the main difficulty in formulating boundary conditions
comes from the fact that one cannot assume that for all time t the unit normal
vector to the surface is the gradient of the signed distance function.

Indeed, if the material surface is moving, i.e., the surface position depends on
time t , the surface points of the continuum medium are also moving and they will



134 SERGEY GAVRILYUK AND HENRI GOUIN

depend implicitly on x. Let ϕ(t, x)= 0 be the position of the material surface at
time t . Its evolution is determined by the equation

ϕt + uT
∇ϕ = 0, (3)

where u is the velocity of particles at the surface. Equation (3) is the classical
kinematic condition for material moving interfaces. Let us derive the equation for
the norm of ∇ϕ. Taking the gradient of (3) and multiplying by ∇ϕ, one obtains

(|∇ϕ|)t + nT
∇(uT

∇ϕ)= 0, (4)

where n = ∇ϕ/|∇ϕ| is the unit normal vector to surface ϕ(t, x) = 0. It follows
from (4) that, even if initially |∇ϕ| = 1 (i.e., unit normal n is defined at t = 0 as the
gradient of the signed distance function), this property is not conserved in time.

The following definitions and notations are used in the paper. For any vectors
a, b, we write aT b for their scalar product (the line vector is multiplied by the
column vector), and abT for their tensor product (the column vector is multiplied
by the line vector). The last product is usually denoted as a⊗ b. The product of a
second-order tensor A by a vector a is denoted by Aa. Notation bT A means the
covector cT defined by the rule cT

= (AT b)T . The identity tensor is denoted by I .
The divergence of A is covector div A such that, for any constant vector h, one has

(div A)h = div(Ah),

i.e., the divergence of A is a row vector, in which each component is the divergence
of the corresponding column of A. It implies

div(Av)= (div A)v+ tr
(

A
∂v

∂x

)
,

for any vector field v. Here tr is the trace operator. If f is a real scalar function
of x, ∂ f

∂x is the linear form (line vector) associated with the gradient of f (column
vector): ∂ f

∂x = (∇ f )T .
If n is the unit normal vector to a surface, P = I − nnT is the projector on the

surface with the classical properties

P2
= P, PT

= P, Pn= 0, nT P = 0.

For any scalar field f , the vector field v, and second-order tensor field A, the tan-
gential surface gradient, tangential surface divergence, Beltrami–Laplace operator,
and tangent tensors are defined as

vtg = Pv, Atg = P A, ∇tg f = P∇ f,

divtg vtg = tr
(

P
∂vtg

∂x

)
, 1tg f = divtg(∇tg f ),
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and for any constant vector h,

divtg(Atgh)= divtg(Atg)h.

The following relations between surface operators and classical operators applied
to tangential tensors in the sense of previous definitions are valid:

divtg vtg = div vtg+ nT
(
∂n
∂x

)T

vtg, (5)

divtg vtg = nT rot(n× vtg), (6)

divtg Atg = div Atg+ nT
(
∂n
∂x

)T

Atg, (7)

divtg( f vtg)= f divtg vtg+ (∇tg f )T vtg, (8)

divtg( f Atg)= f divtg Atg+ (∇tg f )T Atg, (9)

where rot denotes the curl operator. The proof is straightforward. Indeed, since

∂(nT vtg)

∂x
= nT

(
∂vtg

∂x

)
+ vT

tg

(
∂n
∂x

)
= 0,

one has

divtg vtg = tr
(

P
∂vtg

∂x

)
= div vtg− nT

(
∂vtg

∂x

)
n= div vtg+ nT

(
∂n
∂x

)T

vtg,

which proves relation (5). To prove relation (6), one uses the following identity
valid for any vector fields a and b:

rot(a× b)= a div b− b div a+
∂a
∂x

b−
∂b
∂x

a.

We apply this identity to the vectors a = n and b = vtg. Multiplying on the left
by nT , one obtains relation (6). Relations (7), (8), and (9) are direct consequences
of relation (5).

2. Curvature tensor

The unit normal vector being prolonged in the surface vicinity, we can directly
obtain the expression of its derivative:

∂n
∂x
= P

ϕ′′

|∇ϕ|
,

where ϕ′′ is the Hessian matrix of ϕ with respect to x. One obviously has

nT ∂n
∂x
= 0.



136 SERGEY GAVRILYUK AND HENRI GOUIN

However, since in dynamics n is not the gradient of the signed distance function,
we cannot have the property

∂n
∂x

n= 0. (10)

The curvature tensor is defined as

R =−P
ϕ′′

|∇ϕ|
P =−

∂n
∂x

P .

Hence, in dynamics

R 6= −
∂n
∂x
.

Let us note that the derivation of the shape equation and boundary conditions in
statics always uses property (10) and the curvature tensor coming from the defini-
tion of the signed distance function. In dynamics, we cannot use these properties
and new tools should be developed.

Tensor R is symmetric and has zero as an eigenvalue:

R = RT , Rn= 0.

In the eigenbasis, tensor R is diagonal:

R =

c1 0 0
0 c2 0
0 0 0

 ,
where c1, c2 are the principal curvatures. The two invariants of curvature tensor R
are

H = c1+ c2, K = c1c2.

Invariant H is the double mean curvature, and invariant K is the Gaussian curvature.
They can also be expressed in the form

H = tr R =− tr
(
∂n
∂x

)
,

2K = (tr R)2− tr(R2)=

[
tr
(
∂n
∂x

)]2

− tr
[(
∂n
∂x

)2]
.

Lemma 1. The following identities are valid:

divtg P = H nT ,

divtg R =∇T
tg H + (H 2

− 2K )nT ,

R2
= H R− K P .
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Proof. First, let us remark that P = Ptg and R = Rtg. One can apply (7) to obtain

divtg P =− div(nnT )+ nT
(
∂n
∂x

)T

P

=−(div n)nT
− nT

(
∂n
∂x

)T

+ nT
(
∂n
∂x

)T

(I − nnT )

=−(div n)nT ,

which proves the first relation. The proof of the second relation is as follows:

div R =− div
(
∂n
∂x

)
+ div

(
∂n
∂x

nnT
)

=−
∂(div n)
∂x

+ div
(
∂n
∂x

n
)

nT
+ nT

((
∂n
∂x

)2)T

=−
∂(div n)
∂x

+ div
(
∂n
∂x

)
nnT
+ tr

((
∂n
∂x

)2)
nT
+ nT

((
∂n
∂x

)2)T

=
∂H
∂x

P + tr
((
∂n
∂x

)2)
nT
− nT

(
∂n
∂x

)T

R.

Consequently,

divtg R =
∂H
∂x

P + tr
((
∂n
∂x

)2)
nT .

Using tr
((
∂n
∂x
)2)
= tr(R2)= H 2

− 2K , we obtain the second relation of the lemma.
Now, the curvature tensor satisfies the Cayley–Hamilton theorem:

R3
− H R2

+ K R = 0.

The minimal polynomial is

R2
− H R+ K P = 0,

which proves the third relation. �

3. Virtual motion

Define a one-parameter family of virtual motions

x =8(t, X, λ)

with scalar λ ∈ O , where O is an open real interval containing zero and such that
8(t, X, 0)= φ(t, X) (the motion of the continuous medium is obtained for λ= 0).
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The virtual displacement of particle X is defined as [Gavrilyuk 2011; Serrin 1959]

δx(t, X)=
∂8(t, X, λ)

∂λ

∣∣∣∣
λ=0
.

In the following, the symbol δ means the derivative with respect to λ at fixed
Lagrangian coordinates X and t , for λ = 0. We will also denote by ζ (t, x) the
virtual displacement expressed as a function of Eulerian coordinates:

ζ (t, x)= ζ (t,φ(t, X))= δx(t, X).

4. Variational tools

We assume that Dt has a smooth boundary St with edge Ct . We respectively denote
by D0, S0, and C0 the images of Dt , St , and Ct in the reference space (of Lagrangian
coordinates). The unit vector n and its image n0 are the oriented normal vectors
to St and S0; the vector t is the oriented unit tangent vector to Ct and n′ = t × n
is the unit binormal vector (see Figure 1). F = ∂φ(t,X)

∂X ≡
∂x
∂X is the deformation

gradient. For the sake of simplicity, we will use the same notations for quantities
as F, n, etc., both in Eulerian and Lagrangian coordinates.

Lemma 2. We have the relations

δ det F = det F div ζ , (11)

δn=−P
(
∂ζ

∂x

)T

n, (12)

δ(F−1n)=−F−1 ∂ζ

∂x
n+ F−1δn, (13)

δ

(
∂n
∂x

)
=
∂δn
∂x
−
∂n
∂x
∂ζ

∂x
. (14)

Proof of relation (11). The Jacobi formula for the determinant is

δ(det F)= det F tr(F−1δF).

Also,

δF = δ
(
∂x
∂X

)
=
∂δx
∂X

.

Then

tr(F−1δF)= tr
(
∂X
∂x

∂δx
∂X

)
= tr

(
∂δx
∂X

∂X
∂x

)
= tr

(
∂ζ

∂x

)
= div ζ . �

Proof of relation (12). Surface ϕ(t, x) = 0 is a material surface. It can be repre-
sented in the Lagrangian coordinates as ϕ(t, x)= ϕ0(X), which implies that δϕ= 0.
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Also,

δ

(
∂ϕ

∂x

)
= δ

(
∂ϕ

∂X
F−1

)
=
∂δϕ

∂x
−
∂ϕ

∂x
∂ζ

∂x
=−

∂ϕ

∂x
∂ζ

∂x
.

Here we used the following expression for the variation of F−1 coming from the
relation F−1 F = I :

δF−1
=−F−1 ∂ζ

∂x
.

One also has

δ|∇ϕ| =
(∇ϕ)T δ∇ϕ

|∇ϕ|
.

Finally, taking the variation of n=∇ϕ/|∇ϕ|, one can obtain

δn= (nT n− I)
(
∂ζ

∂x

)T

n=−P
(
∂ζ

∂x

)T

n. �

Proof of relation (13).

δ(F−1n)= δ(F−1)n+ F−1δn=−F−1 ∂ζ

∂x
n+ F−1δn. �

Proof of relation (14).

δ

(
∂n
∂x

)
= δ

(
∂n
∂X

F−1
)
=
∂δn
∂X

F−1
+
∂n
∂X

δF−1
=
∂δn
∂x
−
∂n
∂x
∂ζ

∂x
. �

We denote by σ the energy per unit area of surface St . The variation of σ is δσ .
This variation depends on the physical problem through the dependence of σ on
geometrical and thermodynamical parameters. For now, we do not need to know
this variation in explicit form; the variation will be given further. The next lemma
gives the variation of the surface potential energy [Gouin 2014a; 2014b].

Lemma 3. Let us consider a material surface St of boundary edge Ct . The varia-
tion of surface energy

E =
∫∫

St

σ ds

is

δE =
∫∫

St

[δσ − (∇T
tgσ + σH nT )ζ ] ds+

∫
Ct

σn′T ζ dl,

where ds, dl are the surface and line measures, respectively.1

1It is interesting to remark that the combination δ̂σ = δσ − (∇T
tgσ)ζ is the variation of σ at fixed

Eulerian coordinates. Indeed, since the symbol δ means the variation at fixed Lagrangian coordinates,
and δ̂ is the variation at fixed Eulerian coordinates, this formula is a natural general relation between
two types of variations [Gavrilyuk and Gouin 1999; Gavrilyuk 2011].
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Proof. We suppose that the unit normal vector field is locally extended in the
vicinity of St . For any vector field w one has

rot(n×w)= n divw−w div n+
∂n
∂x
w−

∂w

∂x
n.

From relation nT n = 1, we obtain nT ∂n
∂x = 0. Using the definition of H (that is,

H =− div n), we deduce on St

nT rot(n×w)= divw+ H nTw− nT ∂w

∂x
n. (15)

The surface energy is given by

E =
∫∫

St

σ |d1x ∧ d2x|,

where di x = ∂x
∂si

dsi (i = 1, 2) and si are curvilinear coordinates on St . This integral
can also be written as

E =
∫∫

St

σ det(n, d1x, d2x)=
∫∫

S0

σ det(F F−1n, Fd10 X, Fd20 X).

Here di0 X = ∂X
∂si0

dsi0 and si0 are the corresponding curvilinear coordinates on S0.
Finally,

E=
∫∫

S0

σ(det F) det(F−1n,d10 X,d20 X)=
∫∫

S0

σ det((det F)F−1n,d10 X,d20 X).

Let us remark that (det F)F−1n is the image of n and is not the normal vector
to S0 because F is not an orthogonal transformation.

One has

δE=
∫∫

S0

δσ det F det(F−1n,d10 X,d20 X)+
∫∫

S0

σδ(det F det(F−1n,d10 X,d20 X)).

Using Lemma 2, one gets∫∫
S0

σδ(det F det(F−1n, d10 X, d20 X))

=

∫∫
St

σ div ζ det(n, d1x, d2x)+ σ det(δn, d1x, d2x)− σ det
(
∂ζ

∂x
n, d1x, d2x

)
=

∫∫
St

(
div(σζ )− (∇Tσ)ζ − σnT ∂ζ

∂x
n
)

ds.

Relation (15) yields

div(σζ )+ σH nT ζ − nT ∂(σζ )

∂x
n= nT rot(σn× ζ ).
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It implies∫∫
S0

σδ(det F det(F−1n, d10 X, d20 X))

=

∫∫
St

−(σH nT
+ (∇Tσ)P)ζ ds+

∫∫
St

nT rot(σn× ζ ) ds.

Since P∇σ ≡∇tgσ , one has∫∫
St

nT rot(σn× ζ ) ds =
∫

Ct

det(t, σn, ζ ) dl =
∫

Ct

σn′T ζ dl,

and we obtain Lemma 3. �

Lemma 4. Let σ be a function of curvature tensor R, or equivalently, a function
of H and K . Then,

∂σ

∂R
= a I + bR with a =

∂σ

∂H
+ H

∂σ

∂K
and b =−

∂σ

∂K
, (16)

where for the sake of simplicity, we indifferently write σ(R) or σ(H, K ). In par-
ticular, this implies

nT ∂σ

∂R
∂n
∂x
= 0. (17)

Proof. Since H = tr R, 2K = (tr R)2− tr(R2), and

∂ tr(Rk)

∂R
= k Rk−1,

one gets
∂σ

∂R
=

(
∂σ

∂H
+ H

∂σ

∂K

)
I −

∂σ

∂K
R.

Since

R =−
∂n
∂x

P and
∂σ

∂R
= a I + bR, (18)

we obtain

nT ∂σ

∂R
∂n
∂x
= anT ∂n

∂x
− bnT

(
∂n
∂x

)2

= 0. �

5. Variation of σ

This is a key part of the paper. The variation of the surface energy per unit area is
obtained in the general case σ = σ(H, K ). The membrane is determined by a sur-
face St having a closed contact line Ct on a rigid surface S= S1∪ S2 (see Figure 1).
The dependence on other parameters such as concentrations of surfactants on the
membranes can further be taken into account as in [Gouin 2014a; Steigmann and
Li 1995].
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St

t
n

n′1
n′n1Ct

S2
S1

A

Figure 1. A drop lies on solid surface S = S1 ∪ S2; St is a free
surface; n1 and n are the external unit normal vectors to S1 and St ,
respectively. Contact line Ct separates S1 and S2, t is the unit
tangent vector to Ct on S. Vectors n′1 = n1× t and n′ = t × n are
the binormals to Ct relative to S and St at point A of Ct , respec-
tively.

Lemma 5. The variation of surface energy σ(R) is given by the relation

δσ =− divtg

(
∂σ

∂R
Rζ + P

∂σ

∂R
δn
)
+ divtg

(
∂σ

∂R
R
)
ζ + divtg

(
P
∂σ

∂R

)
δn. (19)

Proof. Using Lemma 2, we have

δR =−δ
(
∂n
∂x

P
)
=−

(
∂δn
∂x
−
∂n
∂x
∂ζ

∂x

)
P +

∂n
∂x
δ(nnT ).

By taking account of (12) and δ(nnT )= δnnT
+ nδnT , we get

δR =−
∂δn
∂x

P +
∂n
∂x
∂ζ

∂x
P −

∂n
∂x

P
(
∂ζ

∂x

)T

nnT
−
∂n
∂x

nnT ∂ζ

∂x
P .

We deduce

δσ = tr
(
∂σ

∂R
δR
)

= tr
[
∂σ

∂R

(
−
∂δn
∂x

P +
∂n
∂x
∂ζ

∂x
P −

∂n
∂x

P
(
∂ζ

∂x

)T

nnT
−
∂n
∂x

nnT ∂ζ

∂x
P
)]
.

From (17), we get nnT ∂σ
∂R

∂n
∂x

∂ζ
∂x = 0 and nnT ∂σ

∂R
∂n
∂x nnT ∂ζ

∂x = 0.
Consequently, ∂σ

∂R
∂n
∂x P ∂ζ

∂x =−
∂σ
∂R R ∂ζ

∂x , which implies

δσ =− tr
[

P
∂σ

∂R
∂δn
∂x
+
∂σ

∂R
R
∂ζ

∂x

]
=− div

(
P
∂σ

∂R
δn
)
+ div

(
P
∂σ

∂R

)
δn− div

(
∂σ

∂R
Rζ
)
+ div

(
∂σ

∂R
R
)
ζ .
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By taking account of (5), we get

δσ =− divtg

(
P
∂σ

∂R
δn
)
+ divtg

(
P
∂σ

∂R

)
δn− divtg

(
∂σ

∂R
Rζ
)
+ divtg

(
∂σ

∂R
R
)
ζ ,

and relation (19) is proven. �

Now, we have to study term divtg
(

P ∂σ
∂R
)
δn.

Lemma 6. divtg

(
P
∂σ

∂R

)
δn=− divtg

[
P divT

tg

(
P
∂σ

∂R

)
nT ζ

]
+ divtg

[
P divT

tg

(
P
∂σ

∂R

)]
nT ζ − divtg

(
P
∂σ

∂R

)
Rζ .

Proof. Using relation (12), one obtains

divtg

(
P
∂σ

∂R

)
δn=− divtg

(
P
∂σ

∂R

)
P
(
∂ζ

∂x

)T

n

=− divtg

(
P
∂σ

∂R

)
P
[(
∂(nT ζ )

∂x

)T

−

(
∂n
∂x

)T

ζ

]
=− divtg

(
P
∂σ

∂R

)
∇tg(nT ζ )− divtg

(
P
∂σ

∂R

)
Rζ

= divtg

[
P divT

tg

(
P
∂σ

∂R

)]
nT ζ − divtg

(
P
∂σ

∂R

)
Rζ

− divtg

[
P divT

tg

(
P
∂σ

∂R

)
nT ζ

]
. �

Now, from Lemma 3 and (19), we obtain the following fundamental lemma.

Lemma 7. The variation of surface energy E =
∫∫

St
σ ds, where St has an oriented

boundary line Ct with tangent unit vector t and binormal unit vector n′ = t × n, is
given by the relation

δE =
∫∫

St

[
divtg

(
∂σ

∂R
R
)
− divtg

(
P
∂σ

∂R

)
R+ divtg

(
P divT

tg

(
P
∂σ

∂R

))
nT

− σH nT
−∇

T
tgσ

]
ζ ds

+

∫
Ct

n′T
{[
σ I −

∂σ

∂R
R− divT

tg

(
P
∂σ

∂R

)
nT
]
ζ +

∂σ

∂R
P
(
∂ζ

∂x

)T

n
}

dl.

Proof. By taking account of Lemmas 5 and 6, we get

δσ =− divtg

[
∂σ

∂R
Rζ + P

∂σ

∂R
δn+ P divT

tg

(
P
∂σ

∂R

)
nT ζ

]
+

[
divtg

(
∂σ

∂R
R
)
− divtg

(
P
∂σ

∂R

)
R+ divtg

(
P divT

tg

(
P
∂σ

∂R

))
nT
]
ζ .
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By using (6) and Lemma 3 associated with the Stokes formula, and property
n′T P = n′T , we obtain

δE =
∫∫

St

[
divtg

(
∂σ

∂R
R
)
− divtg

(
P
∂σ

∂R

)
R+ divtg

(
P divT

tg

(
P
∂σ

∂R

))
nT

− σH nT
−∇

T
tgσ

]
ζ ds

+

∫
Ct

n′T
{[
σ I −

∂σ

∂R
R− divT

tg

(
P
∂σ

∂R

)
nT
]
ζ −

∂σ

∂R
δn
}

dl.

From Lemma 2 we deduce

−n′T
∂σ

∂R
δn= n′T

∂σ

∂R
P
(
∂ζ

∂x

)T

n,

which proves Lemma 7. �

6. Equations of motion and shape equation

The vesicle occupies domain Dt with a free boundary St which is the membrane
surface, and S1 which belongs to the rigid surface S = S1 ∪ S2. S1 denotes the
footprint of Dt on S, and Ct is the closed edge (contact line) between S1 and S2

(see Figure 1).
We denote by n1 the external unit normal to S1 along contact line Ct . Then

denoting t1 =−t , one has

n′1 = t1× n1 = n1× t.

The surface energy of membrane St is denoted σ . Solid surfaces S1 and S2 have
constant surface energies denoted σ1 and σ2. The geometrical notations are shown
in Figure 1.

One can formulate the virtual work principle in the form [Germain 1973; Gouin
2007]

δAe+ δAi − δE= 0,

where δAe is the virtual work of external forces, δAi is the virtual work of inertial
forces, and δE is the variation of the total energy. The energy E is taken in the
form

E=

∫∫∫
Dt

ρε dv+
∫∫

St

σ ds+
∫∫

S1

σ1 ds,

where specific internal energy ε is a function of density ρ. As we mentioned
before, one can also include in this dependence several scalar quantities which are
transported by the flow (specific entropy, mass fractions of surfactants, etc.). From
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Lemma 2, (11), and the mass conservation law

ρ det F = ρ0(X),

we obtain the variation of the specific energy and density at fixed Lagrangian co-
ordinates in the form

δε =
p
ρ2 δρ with δρ =−ρ div ζ ,

where p is the thermodynamical pressure. Consequently, the variation of the first
term is [Berdichevsky 2009; Gavrilyuk 2011; Serrin 1959]

δ

∫∫∫
Dt

ρε dv = δ
∫∫∫

D0

ρ0ε dv0 =

∫∫∫
D0

ρ0δε dv0

=

∫∫∫
Dt

ρδε dv =−
∫∫∫

Dt

p div ζ dv.

The variation of the surface energy is given in Lemma 3. The third term is the
surface energy of S1 with energy σ1 per unit surface. The virtual work of the
external forces is given in the form

δAe =

∫∫∫
Dt

ρ f T ζ dv+
∫∫

St

T T ζ ds+
∫

Ct

σ2n′T1 ζ ds,

where ρ f is the volume external force in Dt , T is the external stress vector at the
free surface St , and σ2n′1 is the line tension vector exerted on Ct . The last term
on the right-hand side comes from Lemma 3 which can be also applied for rigid
surfaces. Finally,

δAi =−

∫∫∫
Dt

ρaT ζ dv

is the virtual work of inertial force, where a is the acceleration. The virtual work
of forces δT applied to the material volume Dt is defined as

δT=

∫∫∫
Dt

(−ρaT
+ ρ f T

−∇
T p)ζ dv+

∫∫
S1

(p+ H1σ1)nT
1 ζ ds

+

∫∫
St

[
− divtg

(
∂σ

∂R
R
)
+ divtg

(
P
∂σ

∂R

)
R

− divtg

(
P divT

tg

(
P
∂σ

∂R

))
nT
+ (p+ Hσ)nT

+∇
T
tgσ + T T

]
ζ ds

−

∫
Ct

{[
(σ1− σ2)n′T1 + σn′T − n′T divT

tg

(
P
∂σ

∂R

)
nT
− n′T

∂σ

∂R
R
]
ζ

+ n′T
∂σ

∂R
P
(
∂ζ

∂x

)T

n
}

dl. (20)
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As usual, H1 and H are the sum of principle curvatures of surfaces S1 and St ,
respectively. Terms on Dt , S1, St are in separable form with respect to the field ζ .
Expression (20) implies the equation of motion in Dt and boundary conditions
on surfaces S1, St [Schwartz 1966, Chapitre 3]. Virtual displacement ζ must be
compatible with conditions of the problem; for example, S1 is an external surface
to domain Dt and consequently ζ must be tangent to S1. This notion is developed
in [Berdichevsky 2009]. They are presented below.

6.1. Equation of motion. We consider virtual displacements ζ which vanish on
the boundary of Dt . The fundamental lemma of virtual displacements yields

ρa+∇ p = ρ f , (21)

which is the classical Newton law in continuum mechanics.

6.2. Condition on surface S1. Due to the fact that the surface S1 is — a priori —
given, the virtual displacements must be compatible with the geometry of S1. This
means that the nonpenetration condition (slip condition) is verified:

nT
1 ζ = 0. (22)

Constraint (22) is equivalent to the introduction of a Lagrange multiplier P1 into (20)
where ζ is now a virtual displacement without constraint. The corresponding term
on S1 will be modified into∫∫

S1

(p+ H1σ1−P1)nT
1 ζ ds.

Since the variation of ζ on S1 is independent, (20) implies

P1 = p+ H1σ1. (23)

This is the classical Laplace condition allowing us to obtain the normal stress com-
ponent P1n1 exerted by surface S1.

6.3. Extended shape equation. Taking account of (21) and (23), for all displace-
ment ζ on moving membrane St , one has from (20)∫∫

St

[
− divtg

(
∂σ

∂R
R
)
+ divtg

(
P
∂σ

∂R

)
R

− divtg

(
P divT

tg

(
P
∂σ

∂R

))
nT
+ (p+ Hσ)nT

+∇
T
tgσ + T T

]
ζ ds = 0.
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It implies{
p+ Hσ − divtg

[
P divT

tg

(
P
∂σ

∂R

)]}
n

+∇tgσ − divT
tg

(
∂σ

∂R
R
)
+ R divT

tg

(
P
∂σ

∂R

)
+ T = 0. (24)

Equation (24) is the most general form of the dynamical boundary condition on St .
Due to the fact that surface energy σ must be an isotropic function of curvature
tensor R, i.e., a function of two invariants H and K , we obtain (for proof, see the
Appendix) that the vector

∇tgσ − divT
tg

(
∂σ

∂R
R
)
+ R divT

tg

(
P
∂σ

∂R

)
is normal to St and consequently T can be written in the form

T =−Pn.

Here scalar P has the dimension of pressure.
One obtains from (44) (see the Appendix)

Hσ −1tga− b1tg H −∇T
tgb∇tg H − divtg(R∇tgb)

+ (2K − H 2)
∂σ

∂H
− H K

∂σ

∂K
= P− p. (25)

Relation (25) is the normal component of (24).
It is important to underline that (24) is only expressed in the normal direction

to St . This is not the case when surface energy σ also depends on physicochemical
characteristics of St , such as temperature or surfactants. In this last case, Marangoni
effects can appear producing additive tangential terms to St .

Using Lemma 1 (second equation) and expressions of scalars a and b given
by (16), we get the extended shape equation:

H
(
σ − K

∂σ

∂K

)
+ (2K − H 2)

∂σ

∂H
−1tg

∂σ

∂H
− H1tg

∂σ

∂K

−∇
T
tg H∇tg

∂σ

∂K
+ divtg

(
R∇tg

∂σ

∂K

)
= P− p. (26)

Equation (26) was also derived in [Rosso and Virga 1999] under the hypothe-
sis (10) and the assumption of inextensibility of the membrane. Our derivation
does not use these hypotheses. For example, the inextensibility property is not
natural even in the case of incompressible fluids (at fixed volume, the surface of a
three-dimensional body may vary).
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tangent plane to St

t

n

n′1
n′n1tangent plane to S1

Ct

A

θ

Figure 2. Tangent planes to membrane St and solid surface S1:
n1 and n are the unit normal vectors to S and St , external to the
domain of the vesicle; contact line Ct is shared between S and St

and t is the unit tangent vector to Ct relative to n; n′1 = n1 × t
and n′ = t × n are binormals to Ct relative to S and St at point A,
respectively. Angle θ = 〈n′, n′1〉. The normal plane to Ct at A
contains vectors n, n′, n1, n′1.

6.4. Helfrich’s shape equation. The Helfrich energy is given by (1). The shape
equation (26) can immediately be written in the form

σ0 H +
κ

2
(H − H0)[4K − H(H + H0)] − κ1tg H = P− p, (27)

which is the classical form obtained by Helfrich.2

7. Extended Young–Dupré condition on contact line Ct

Let us denote by θ = 〈n′, n′1〉 = π+〈n, n1〉 (mod 2π) the Young angle between S1

and St (see Figure 2).
Due to the fact that Ct belongs to S1, the virtual displacement on Ct is in the

form
ζ = α t +βn′1, (28)

2Let us note that Helfrich considered the vesicle as an incompressible fluid. He also assumed that
the membrane has a total constant area. Then, the virtual work can be expressed as

δT=

∫∫∫
D
ρ f T ζ dv+

∫∫
S

T T ζ ds− δ
∫∫

S
σ ds+ λ0δ

∫∫
S

ds+ δ
∫∫∫

D
p div ζ dv,

where the scalar λ0 is a constant Lagrange multiplier and p is a distributed Lagrange multiplier. The
“shape equation” is similar to (27).
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where α and β are two scalar fields defined on S1. Let us remark that condition (28)
expresses the nonpenetration condition (22) on S1. Moreover, since n, n1, n′1 be-
long to the normal plane to Ct at A (see Figure 2), one has

n= n′1 sin θ − n1 cos θ. (29)

But relation ζ T n1 = 0 implies

P
(
∂ζ

∂x

)T

n1+ P
(
∂n1

∂x

)T

ζ = 0.

Replacing (29) into (20) one has

δT=−

∫
Ct

{[
(σ1− σ2)n′T1 + σn′T − n′T divT

tg

(
P
∂σ

∂R

)
nT
− n′T

∂σ

∂R
R
]
ζ

+ n′T
∂σ

∂R
P
(
∂ζ

∂x

)T

n
}

dl

=−

∫
Ct

{[
(σ1− σ2)n′T1 + σn′T − n′T divT

tg

(
P
∂σ

∂R

)
nT
− n′T

∂σ

∂R
R

+ cos θn′T
∂σ

∂R
P
(
∂n1

∂x

)T]
ζ

+ sin θ n′T
∂σ

∂R
P
(
∂ζ

∂x

)T

n′1

}
dl = 0. (30)

We choose now the virtual displacement in the form ζ = βn′1. One has

∂ζ

∂x
= n′1(∇β)

T
+β

∂n′1
∂x

,

(
∂ζ

∂x

)T

=∇βn′T1 +β
(
∂n′1
∂x

)T

.

Since
( ∂n′1
∂x
)T n′1 = 0, it implies (

∂ζ

∂x

)T

n′1 =∇β.

The integral (30) becomes∫
Ct

{[
(σ1− σ2)n′T1 + σn′T − n′T divT

tg

(
P
∂σ

∂R

)
nT
− n′T

∂σ

∂R
R

+ cos θn′T
∂σ

∂R
P
(
∂n1

∂x

)T]
n′1β + sin θ n′T

∂σ

∂R
P∇β

}
dl = 0. (31)
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Since β and the components of ∇β can be chosen as independent, relation (31)
implies two boundary conditions. The first condition on line Ct is

sin θ n′T
∂σ

∂R
P = 0. (32)

The second condition is[
(σ1− σ2)n′T1 + σn′T − n′T divT

tg

(
P
∂σ

∂R

)
nT

− n′T
∂σ

∂R
R+ cos θ n′T

∂σ

∂R
P
(
∂n1

∂x

)T]
n′1 = 0. (33)

The case sin θ = 0 all along Ct is degenerate. If θ = 0, this corresponds to
a hydrophobic surface (the contact line is absent). If θ = π , this corresponds to
a complete wetting. In the last case n′1 = −n′, n1 = n, and the condition (33)
becomes trivial: σ1− σ2− σ = 0.

The general case corresponds to the partial wetting (sin θ 6= 0). Due to (18),

n′T
∂σ

∂R
P ≡ n′T (a I + bR)P ≡ an′T + bn′T R ≡ n′T

∂σ

∂R
.

Hence, (32) yields

n′T
∂σ

∂R
= 0. (34)

Equation (34) implies (see Lemma 4)

n′T
[(

∂σ

∂H
+ H

∂σ

∂K

)
I −

∂σ

∂K
R
]
= 0.

Consequently, n′ is an eigenvector of R. We denote by cn′ the associated eigenvalue
c2. Then

∂σ

∂H
+ H

∂σ

∂K
= cn′

∂σ

∂K
. (35)

Due to the fact that t is also an eigenvector of R with eigenvalue ct = c1 (t and n′

form the eigenbasis of R along Ct ), we get H = ct + cn′ and the equivalent to the
boundary condition (35) in the form

∂σ

∂H
+ ct

∂σ

∂K
= 0. (36)

From Lemma 4, (16), we immediately deduce

divtg

(
P
∂σ

∂R

)
=∇

T
tga+ (aH + bH 2

− 2bK )nT
+∇

T
tgbR+ b∇T

tg H. (37)
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Due to the fact that n′T n= 0, we obtain

n′T divT
tg

(
P
∂σ

∂R

)
= n′T [∇tga+ R∇tgb+ b∇tg H ] = n′T [∇a+ R∇b+ b∇H ].

Consequently, one obtains the second condition on Ct in the form

σ1− σ2+ σ cos θ − sin θ n′T (∇a+ b∇H + R∇b)= 0. (38)

This is the extended Young–Dupré condition along contact line Ct between mem-
brane St and solid surface S.3

In the case of Helfrich’s energy given by relation (1), we obtain the extended
Young–Dupré condition (38) in the form:

σ1− σ2+ σ cos θ − κ sin θ n′T∇H = 0. (39)

This last condition was previously obtained in [Gouin 2014b].

8. Surfaces of revolution

8.1. Shape equation for the surfaces of revolution. Along a revolution surface,
the invariants of the curvature tensor depend only on s, which is the curvilinear
abscissa of meridian curve denoted by 0 [Aleksandrov and Zalgaller 1967]:

H = H(s), K = K (s).

3The virtual displacement taken in the most general form (28) does not produce new boundary
conditions. Due to the linearity of the virtual work, to prove this property it is sufficient to take
ζ = α t . We obtain

∂ζ

∂x
= t(∇α)T +α

∂ t
∂x
,

(
∂ζ

∂x

)T
n′1 = α

(
∂ t
∂x

)T
n′1.

Since
∂ t
∂x
= cN tT ,

where N is the principal unit normal and c is the curvature along Ct , one obtains(
∂ζ

∂x

)T
n′1 = αct NT n′1

and

sin θ n′T
∂σ

∂R
P
(
∂ζ

∂x

)T
n′1 = αc sin θ n′T

∂σ

∂R
t NT n′1,

which is equal to zero thanks to (34).
Moreover, thanks to (34), we immediately obtain that term[
(σ1− σ2)n′T1 + σn′T − n′T divT

tg

(
P
∂σ

∂R

)
nT
− n′T

∂σ

∂R
R+ cos θ n′T

∂σ

∂R
P
(
∂n1
∂x

)T ]
tα

is vanishing. Hence, new boundary conditions do not appear on Ct .
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meridian plane

t = e2

n
n′1

tangent plane to S1

Ct

0

n′ = e1

n1

A

Figure 3. The case of a revolution domain. The line Ct (contact
edge between St and S1) is a circle with an axis which is the rev-
olution axis collinear to n1. The meridian curve is denoted 0;
normal vector n and binormal vector n′ are in the meridian plane
of revolution surface St . We have n′= e1 and t= e2, corresponding
to the eigenvectors of the curvature tensor R at A.

One of the eigenvectors, denoted e1, of the curvature tensor R is tangent to meridian
curve 0 (see Figure 3). Let us remark that for any function f (s), one has

∇tg f =
d f
ds

e1, 1tg f =
d2 f
ds2 .

Indeed, the first equation is the definition of the tangential gradient. The second
equality is obtained as follows:

divtg

(
d f
ds

e1

)
= tr

(
P
∂

∂x

(
d f
ds

e1

))
= tr

(
P

d
ds

(
d f
ds

e1

)
⊗ e1

)
= tr

(
d2 f
ds2 Pe1⊗ e1+ c1(s)

d f
ds

n⊗ e1

)
=

d2 f
ds2 .

The Frénet formula was used here:

de1

ds
= c1n.
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Also,

divtg(R∇tg f )= divtg

(
d f
ds

Re1

)
= divtg

(
d f
ds

c1e1

)
=

d
ds

(
c1

d f
ds

)
.

For surfaces of revolution the shape equation (26) becomes

H
(
σ − K

∂σ

∂K

)
+ (2K − H 2)

∂σ

∂H
−

d2

ds2

(
∂σ

∂H

)
− H

d2

ds2

(
∂σ

∂K

)
−

d H
ds

d
ds

(
∂σ

∂K

)
+

d
ds

(
c1

d
ds

(
∂σ

∂K

))
= P− p.

8.2. Extended Young–Dupré condition for surfaces of revolution. One has along
Ct , t = e2 and n′ = e1. It implies n′T Rt = 0. Also, one has

n′T (∇a+ b∇H + R∇b)=
da
ds
+ b

d H
ds
+ c1

db
ds
.

The Young–Dupré condition (38) becomes

σ1− σ2 cos θ − sin θ
(

da
ds
+ b

d H
ds
+ ct

db
ds

)
= 0.

Since

a =
∂σ

∂H
+ H

∂σ

∂K
, b =−

∂σ

∂K
,

one finally obtains

σ1− σ2 cos θ − sin θ
[

d
ds

(
∂σ

∂H

)
+ cn′

d
ds

(
∂σ

∂K

)]
= 0.

For the Helfrich energy (1) this expression yields

σ1− σ2 cos θ − κ
d H
ds

sin θ = 0.

9. Conclusion

Membranes can be considered as material surfaces endowed with a surface energy
density depending on the invariants of the curvature tensor: σ = σ(H, K ). By
using the principle of virtual working, we derived the boundary conditions on the
moving membranes (“shape equation”) as well as two boundary conditions on the
contact line. In limit cases, we recover classical boundary conditions. The “shape
equation” and the boundary conditions are summarized below in the nondegenerate
case (see (26), (36), and (38)) as the following:
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• The equation for the moving surface St :

H
(
σ − K

∂σ

∂K

)
+ (2K − H 2)

∂σ

∂H
−1tg

∂σ

∂H
− H1tg

∂σ

∂K

−∇
T
tg H∇tg

∂σ

∂K
+ divtg

(
R∇tg

∂σ

∂K

)
= P− p.

• The clamping condition on the moving line Ct :

∂σ

∂H
+ ct

∂σ

∂K
= 0.

Also, (t , n, n′) — which is the Darboux frame — are the eigenvectors of cur-
vature tensor R.

• Dynamic generalization of the Young–Dupré condition on Ct :

σ1− σ2+ σ cos θ − sin θn′T
(
∇tg

(
∂σ

∂H

)
+ (H P − R)∇tg

(
∂σ

∂K

))
= 0.

In the case of Helfrich’s energy the generalization of the Young–Dupré condition
is reduced to (39):

σ1− σ2+ σ cos θ − κ sin θ n′T∇tg H = 0.

The last term, corresponding to the variation of the mean curvature of St in the
binormal direction at the contact line, can dominate the other terms. It could be
interpreted as a line tension term usually added in the models with constant surface
energy [Babak 2004]. It should also be noted that the droplet volume has no effect
in the classical Young–Dupré condition. This is not the case for the generalized
Young–Dupré condition since the curvatures can become very large for very small
droplets (they are inversely proportional to the droplet size). The clamping condi-
tion for the Helfrich energy fixes the value of H on the contact line:

H = H0− ct
κ

κ
.

The new shape equation and boundary conditions can be used for solving dynamic
problems. This could be, for example, the study of the “fingering” phenomenon
appearing as a result of the nonlinear instability of a moving contact line. This
complicated problem will be studied in the future.

Appendix

Since σ = σ(H, K ), we get

∇tgσ =
∂σ

∂H
∇tg H +

∂σ

∂K
∇tgK . (40)
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From (16), we obtain

divtg

(
P
∂σ

∂R

)
=∇

T
tga+ (aH + bH 2

− 2bK )nT
+∇

T
tgbR+ b∇T

tg H. (41)

Also, one has

divtg

(
∂σ

∂R
R
)
= divtg(a R)+ divtg(bR2).

Due to (9), one has

divtg(a R)= (∇T
tga)R+ a∇T

tg H + a(H 2
− 2K )nT ,

divtg(bR2)= divtg[b(H R− K P)]

= ∇
T
tg(bH)R+ bH [∇T

tg H + (H 2
− 2K )nT

] −∇
T
tg(bK )− bK H nT .

Consequently,

divtg

(
∂σ

∂R
R
)
= (∇T

tg(a+ bH))R

+ (a+ bH)∇T
tg H −∇T

tg(bK )+ (aH 2
+ bH 3

− 2aK − 3bH K )nT . (42)

From relations (40), (41), and (42), we deduce

∇tgσ − divT
tg

(
∂σ

∂R
R
)
+ R divT

tg

(
P
∂σ

∂R

)
= (2aK + 3bH K − aH 2

− bH 3)n.

Using (41), one obtains

P divT
tg

(
P
∂σ

∂R

)
=∇tga+ R∇tgb+ b∇tg H.

One deduces

divtg

[
P divT

tg

(
P
∂σ

∂R

)]
=1tga+ divtg(R∇tgb)+ b1tg H +∇T

tgb∇tg H. (43)

From relations (40), (41), and (42), we deduce

∇tgσ − divT
tg

(
∂σ

∂R
R
)
+ R divT

tg

(
P
∂σ

∂R

)
= (2aK + 3bH K − aH 2

− bH 3)n+
∂σ

∂H
∇tg H +

∂σ

∂K
∇tgK

− R∇tg(a+ bH)− (a+ bH)∇tg H +∇tg(bK )+ R∇tga

+ (aH + bH 2
− 2bK )Rn+ R2

∇tgb+ bR∇tg H + T

= 0.
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Using relations Rn = 0, Lemma 1 (identity 3) and expressions of a and b given
by (16), we obtain

∂σ

∂H
∇tg H +

∂σ

∂K
∇tgK − R∇tg(a+ bH)− (a+ bH)∇tg H +∇tg(bK )

+ R∇tga+ (aH + bH 2
− 2bK )Rn+ R2

∇tgb+ bR∇tg H = 0.

Consequently,

∇tgσ − divT
tg

(
∂σ

∂R
R
)
+ R divT

tg

(
P
∂σ

∂R

)
= (2aK + 3bH K − aH 2

− bH 3)n.

Finally, using (43), one obtains[
p+ Hσ −1tga− b1tg H −∇T

tgb ∇tg H − divtg(R∇tgb)

+ (2aK + 3bH K − aH 2
− bH 3)

]
n+ T = 0, (44)

where all tangential terms disappear in the boundary condition on St .
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ENERGY-BASED TRAJECTORY TRACKING
AND VIBRATION CONTROL

FOR MULTILINK HIGHLY FLEXIBLE MANIPULATORS

IVAN GIORGIO AND DIONISIO DEL VESCOVO

“I accept nothing on authority. A hypothesis must be backed by reason, or else it is worthless.”
— Isaac Asimov, “Reason”, I, Robot (1950)

In this paper, a discrete model is adopted, as proposed by Hencky for elastica
based on rigid bars and lumped rotational springs, to design the control of a
lightweight planar manipulator with multiple highly flexible links. This model is
particularly suited to deal with nonlinear equations of motion as those associated
with multilink robot arms, because it does not include any simplification due to
linearization, as in the assumed modes method. The aim of the control is to track
a trajectory of the end effector of the robot arm, without the onset of vibrations.
To this end, an energy-based method is proposed. Numerical simulations show
the effectiveness of the presented approach.

1. Introduction

Discrete formulations for continuous systems, usually, are required to avoid the
difficulty associated with solving partial differential equations and with satisfying
their boundary conditions. In order to eliminate the spatial dependence from the
problem and, thus, to deal with a set of ordinary differential equations which ap-
proximates the distributed-parameter system, a proper discretization can be made.
The adopted techniques for this purpose can be grouped into two main categories:
procedures based on the approximation of the solution by means of a finite se-
ries of given functions and approaches resulting in lumped parameter systems. In
particular, to model multilink flexible arms, many authors employed the assumed
modes method [Bellezza et al. 1990; Khorrami et al. 1991; De Luca and Siciliano
1991] and the finite element formulation [Ramachandran et al. 1992; Sharf 1996],
both of which belong to the first group; other authors prefer the lumped-parameter
approach [Rubinstein 1999; Dupac and Noroozi 2014; Giorgio and Del Vescovo
2018] for ease of use.
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In the assumed modes method, the solution representing the transverse deflec-
tion of the flexible beams is expanded into a finite summation of space-dependent
functions satisfying the geometric boundary conditions (i.e., admissible functions)
with time-dependent coefficients, i.e., the generalized coordinates. In this method,
the set of admissible functions is much larger than the set of eigenfunctions (i.e.,
normal modes); thus, the solution is affected by an error related to the choice of
the admissible functions. This error increases with the eigenfrequencies, and to
reduce it, a relatively large number of the terms of the truncated series is advisable
to be employed. Although this method has been widely used in the literature, it is
only applicable to discretize linear systems. Nevertheless, the equations related to
a multilink manipulator are strongly nonlinear. To overcome this issue, a simplified
assumption should be made considering that the motion could be characterized by
two distinct time scales: one “slower” for the overall motion and one “faster” for
the superimposed vibration. Therefore, the key idea is to linearize the nonlinear
equations around any configuration reached during the motion, or in other words
it is possible to assume that, in a reasonably small time interval, the overall motion
is sufficiently slow and the current configuration is almost time-constant when
compared to the vibration. In view of these considerations, the problem of the time
dependence of the frequency equation for planar multilink flexible arms [De Luca
and Siciliano 1991] could be solved by keeping constant the boundary conditions
due to mass terms for a fixed arm configuration. But in this way, many admis-
sible functions for the transverse displacement discretization are required, which
increases the number of discrete Lagrange equations obtained. An alternative way,
to keep the number of final ordinary equations lower, consists of updating the values
of the mass and inertia coefficients which appear in the boundary conditions at each
time step, thinking of them, in view of the two time scales, as constant parameters
and, hence, having a suitable approximation for the admissible functions (see, e.g.,
[Giorgio et al. 2019]).

The finite element formulation has the same basic idea as the assumed modes
method; the main difference between the two approaches lies in the nature of the
admissible functions. In the assumed modes method, the trial functions are defined
on the entire domain; in the finite element method, they are functions defined on
compact subdomains of the system, namely, the “finite elements”. This particular
subdivision of the entire domain allows one to use simpler admissible functions,
typically low-degree polynomials (i.e., interpolating functions). Unfortunately, the
greater flexibility of this method entails more degrees of freedom and, ultimately,
a greater number of discrete equations than those required by the assumed modes
method. Besides, analogously to the previous method, the natural frequencies
computed with the finite element analysis are overestimated. However, from a
computational point of view, this method requires fewer mathematical operations;
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therefore, it is particularly suited for dynamic model-based online controller im-
plementations [Theodore and Ghosal 1995]. Although the finite element method
can be identified as a different version of the assumed modes method, it can be
generalized to be used in a wider context, in particular, when nonlinear effects
arise as for a multilink manipulator [Sharf 1996; Eugster et al. 2014; Luongo and
D’Annibale 2013]. To address some issues related to failures in convergence that
are occasionally experienced, some authors have proposed a mixed formulation,
based on both stress and displacement degrees of freedom, which appears very
promising in this respect [Hodges 1990; Garcea et al. 1998]. However, this refor-
mulation of the problem involves a greater complexity of modeling. An alterna-
tive approach is based on the isogeometric formulation proposed by [Hughes et al.
2005] and further developed by many other research groups (see, e.g., [Greco and
Cuomo 2013; Balobanov et al. 2016; Cazzani et al. 2016; Weeger et al. 2013]
and more recently [Greco et al. 2017; Yildizdag et al. 2018]). The key concept of
the isogeometric analysis consists of using B-splines or NURBS curves both for
representing the geometry of the system and as interpolating functions in the finite
element method. Some examples in which such a method has been adopted within
the framework of nonlinear structural vibration analysis produced very promising
results. In addition, this formulation allows one to use fewer elements than the
classical polynomial-based finite element analysis without losing accuracy.

Lumped parameter models, applied to a beam-like structure, simplify the de-
scription of the behavior of one-dimensional continuum systems into an articulated
chain consisting of a discrete number of rigid bodies that approximate the behavior
of the distributed system under the assumption that all interactions between the
rigid segments take place via frictionless hinges with elastic rotational spring and
possibly dampers [Wang et al. 2015; Kocsis et al. 2017; Turco et al. 2016]. There-
fore, the lumped-parameter approach is the only method born naturally nonlinear.
The first author, to our knowledge, to propose the replacement of the continuum
structure with a discrete one was Hencky in 1920, who studied the buckling of a
beam. To solve dynamical problems, also the distributions of the mass should be
discretized, sometimes by taking into account the inertial properties of the rigid
segments [Rubinstein 1999] and other times by considering lumped masses in the
fictitious joints [Feliu et al. 1992]. In order to improve performances of trajectory
tracking for the end effector of a multilink manipulator, in this paper, for its simplic-
ity and nonlinear character, the latter method is adopted. Indeed, improving perfor-
mances means decreasing the overall time of the motion for the task; this makes
the hypothesis of linearization characterizing the assumed modes method no longer
satisfied in many applications. In any case, all the methods described have advan-
tages and disadvantages. Therefore, the wise judgment of the researcher should be
the guide in a case-by-case choice, depending on the particular application.
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The aim of the work concerns the modeling and control of flexible planar mul-
tilink arms. Many researchers have been recently paying attention to this kind of
system because of its increasing importance within the applications of so-called
soft robots. In addition, it is conceivable to use the present formulation to model
polymeric chains as well as some highly flexible structures in the space applications.
Thus, the considered model may find applications from nano- until macroscales.
The key point of the paper is using flexible hinges and their description using
finite rotations within the discrete modeling of the multilink arm. In particular,
an energy-based method is proposed to control the trajectory of the robot arm
end effector, without the onset of vibrations. The paper is organized as follows.
First, Section 2 gives the kinematic description for the introduced discrete method
applied to planar multilink flexible arms in a recursive form and, accordingly to a
Lagrangian approach, the equations of motion. Section 3 is devoted to describing
the proposed control strategy using a trajectory planning described in Section 3.1.
Section 4 reports simulation results for a two-link flexible arm. Conclusions are
presented in the final section.

2. Modeling

A planar articulated kinematic chain of n` flexible links of length `i — connected by
revolute joints — is considered. The i-th flexible link is studied as a lumped param-
eter system consisting of ne successive rigid rods of length η j (with j = 1, . . . , ne)
and connected by torsional springs. For the sake of simplicity, it is assumed that the
rods are arranged along a straight line in the undeformed configuration. Lumped
masses are placed at the boundaries of each rigid segment. As a result, each link is
a system of ne massless rigid rods and ne+ 1 point masses. The flexural stiffness
of links is given by torsional springs. Finally, actuators and payload are modeled
as rigid bodies. The center of mass of each actuator is located at the joint point of
the link, while the payload barycenter is located at the tip of the whole system.

In order to describe motions of the multilink arm, n` moving reference frames
are introduced, i.e., one for each flexible link in the spirit of the Denavit–Hartenberg
convention. The x-axis (abscissa) of the i-th link is oriented as its first rigid seg-
ment and its origin, whose position vector expressed in the global frame is denoted
by ri , coincides with the position of the actuated joint. Therefore, such moving
reference frames can be referred to as “pseudoclamped” frames (see Figure 1).

The following two Lagrangian coordinates are introduced for the multilink arm.
First is the joint angle, ϑi (t), i.e., the relative rotation between the first segment of
the i-th link and the last segment of the preceding link, which meet in the i-th joint.
The angle ϑ1(t) is evaluated with respect to the X0-axis of the global reference
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Figure 1. Discrete system corresponding to a planar two-link flex-
ible arm.

frame. Second is 8i j (t), with i = 1, . . . , n` and j = 1, . . . , ne, the relative angle
of the j-th segment with respect to the x-axis of i-th reference frame.

The relative angles between adjacent segments are defined as ϕi j (t)=8i j (t)−
8i j−1(t), with ϕi1(t)=8i1(t). Within the local reference frame related to link i ,
the position vector of any end point of rigid segments is denoted as i pi j (t). There-
fore, within the same i-th frame, the relation iri+1(t)= i pi ne(t) is valid owing to
the hinge constraint requiring the origin of the (i + 1)-th frame and the end point
of the i-th link to have the same position in space. By introducing the rotation
matrices

Ri =

[
cosϑi − sinϑi

sinϑi cosϑi

]
, R̂i j =

[
cos8i j − sin8i j

sin8i j cos8i j

]
(1)

the position of the generic point of the kinematic chain can be written in the local
reference frame using the recursive formula

i pi j =
i pi j−1+ R̂i j−1(8i j−1)

i pi1,
i pi1 ≡ [ηi , 0]T , (2)

and in the global reference frame as

pi j = ri + Qi
i pi j (3)
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where the global transformation operator Qi (with i = {1, . . . , n`}) is obtained by
the recursive equation

Qi = Q̂i−1 Ri (ϑi ),

{
Q̂0 = I,

Q̂i = Qi R̂i ne(8i ne),
(4)

I being the identity operator. Similarly, the following expression is fulfilled by the
origins of the local reference frames:

ri+1 = ri + Qi
iri+1. (5)

The angular velocity of the i-th reference frame reads as

α̇i (t)=
i∑

j=1

ϑ̇ j (t)+
i−1∑
k=1

8̇k ne(t) (6)

while the angular velocity of the payload can be evaluated as α̇p(t)= α̇n`(t)+8̇n` ne

and, finally, the velocity vector of any point of the kinematic chain is easy to
compute as

ṗi = ṙi + Q̇i
i pi + Qi

i ṗi . (7)

The total kinetic energy of the mechanical system stemming from the above
assumptions is

K=

n∑̀
i=1

(Khi +K`i )+Kp (8)

where the following terms can be recognized:

(1) the kinetic energy of the actuator located at the i-th joint and characterized by
mass mhi and moment of inertia Jhi ,

Khi =
1
2 mhi ṙT

i ṙi +
1
2 Jhi α̇

2
i ,

(2) the kinetic energy of each link with lumped mass mi j ,

K`i =
1
2

ne∑
j=1

mi j ṗT
i j ṗi j ,

(3) and the kinetic energy of the payload with mass m p and moment of inertia Jp,

Kp =
1
2 m p ṗT

n` ne
ṗn` ne +

1
2 Jpα̇

2
p.

The elastic potential energy is assumed to be

U=

n∑̀
i=1

ne∑
j=1

bi [1− cosϕi j ] (9)
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where bi = Yi ji/ηi is the lumped bending stiffness of the introduced torsional
springs, Yi is the Young modulus of constituting material, and ji is the second
moment of area of the link’s cross-section. We remark that this model is able
to take into account also nonlinear elastic behaviors of the system; indeed, it has
been shown [dell’Isola et al. 2016] that such a model, in the homogenized limit,
converges to that of a nonlinear beam [Turco 2018; Pietraszkiewicz and Eremeyev
2009; Spagnuolo and Andreaus 2019] being shear undeformable, suitable for the
description of problems involving large displacements and large deformations (see
[Rosi et al. 2018; Placidi et al. 2017; Baroudi et al. 2019] for more details on
methods for obtaining material parameters), and whose deformation energy density
depends only upon the exact curvature. Note that the linearized form of (9) is
simply a quadratic form in the relative angle ϕi j . Here, the general expression (9) of
the strain energy is considered, because we are dealing with situations in which the
kinetic energy contains nonnegligible nonquadratic terms. It would not be coherent
to consider a quadratic approximation only for the elastic energy (while not for the
kinetic energy) and, in any case, it would not lead to any significant simplification.
Besides, the linearization of corresponding equation is a mathematical trick which
aims to obtain solutions more easily, but it is not always possible.

It is worth noting that the choice of8i j variables implies a simpler expression for
the kinetic energy, while the choice of ϕi j variables implies a simpler expression for
the elastic energy; therefore, since the kinetic energy represents the more complex
term in the Lagrangian, the first set of variables is used.

The equations of motion obeyed by the considered planar n`-link flexible arm
can be derived by introducing the Lagrangian:

L= K−U. (10)

Possibly, some viscous dissipation can also be introduced by means of a Rayleigh
potential as

D=

n∑̀
i=1

ne∑
j=1

1
2 ci ϕ̇

2
i j . (11)

By differentiating D with respect to the velocities ϕ̇i j and multiplying the result
by the virtual angular displacements δϕi j , the work done by dissipative moments∑n`

i=1
∑ne

j=1 ci ϕ̇i jδϕi j can be evaluated. This work becomes

n∑̀
i=1

ne∑
j=1

ci (8̇i j − 8̇i j−1)δ(8i j −8i j−1)

when it is expressed in terms of the chosen Lagrangian coordinates and, hence, the
dissipative terms to be added to the equations of motion are easily obtained.
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In order to model friction which may occur within the joints, a Lund–Grenoble
model is employed. The reason for such a choice lies in the fact that it is able to
take into account the predominant nonlinear effects involved in such phenomena
like presliding displacement, stick-slip motion, the Stribeck effect, and so forth
[Canudas de Wit et al. 1995]. Since this formulation is based on a dynamic model,
the friction torque evolves according to a differential equation conceived to match
experimental measures. A simple evolution rule for the friction torques τfi can be
assumed as

dτfi
dt
= ki ϑ̇i

(
1−

τfi

τL(ϑ̇i )
sign ϑ̇i

)
(12)

where τL(ϑ̇i ) = τC + (τS − τC) exp[−(ϑ̇i/νs)
2
] is the limit torque related to the

Stribeck effect. The quantity τS is the static friction torque, τC is the Coulomb
friction torque, and νs represents the Stribeck velocity.

3. Control strategy

In this section, an energy-based control approach is proposed to solve a trajectory-
tracking and vibration control problem. In particular, given a family of desired
trajectories for the tip of each link, xdes i (t), we propose to implement a strategy of
control based on the potential energy

U (ϑi , ϕi j )=

n∑̀
i=1

1
2 Kc i‖ pi ne(ϑi , ϕi j )− xdes i (t)‖2 (13)

where Kc i are positive constant control parameters. The virtual work related to
that “control action” can be easily expressed as

δU =
n∑̀

i=1

∂U
∂ϑi

δϑi +

n∑̀
i=1

ne∑
j=1

∂U
∂ϕi j

δϕi j (14)

where the negative gradient of the potential U , whose components are −∂U/∂ϑi

and −∂U/∂ϕi j , is the generalized conservative action which does work on the
Lagrangian coordinates ϑi and ϕi j . Indeed, these actions can be interpreted as
joint torques and lumped moments which bend the link in correspondence of the
connections between adjacent rigid segments. Therefore, measuring the variables
ϑi and ϕi j , it is possible to compute these generalized actions and to feed them
back to the multilink in order to mimic the above mentioned potential U . Re-
garding the design phase of the control, both the measurements of variables ϕi j

and the feeding of applied moments ∂U/∂ϕi j can be implemented by means of
piezoelectric patches located on the ends of the segments in which the system has
been discretized. We briefly recall, indeed, that piezoelectric transducers are simul-
taneously able to be employed as both sensors and actuators [Alessandroni et al.
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2005; Lumentut and Howard 2015; Chróścielewski et al. 2019; Lossouarn et al.
2015] and they can nowadays exert forces up to 70 kN [Aminzahed et al. 2017].
Thus, they are particularly suited for this kind of control, which results in being
colocated in the sense of [Cannon 1984]. In addition, the present technique can be
classified in the framework of a virtual passive approach. As it is characterized by
a passive constitutive law, it exhibits with respect to a purely active approach the
main advantage of being unconditionally stable [Juang and Phan 1992].

To improve the performance of the control, we can also introduce a dissipative
control action by means of the Rayleigh function

D(ϑi , ϕi j , ϑ̇i , ϕ̇i j )=

n∑̀
i=1

1
2Cc i‖ ṗi ne − ẋdes i (t)‖2 (15)

expressed in terms of the relative velocities between the moving ends of each link
and the desired points of the trajectory. The quantities Cc i are positive constant
control parameters related to the introduced damping. Analogously to what has
been done above, the virtual work done by the dissipative control action is

δD =
n∑̀

i=1

∂D
∂ϑ̇i

δϑi +

n∑̀
i=1

ne∑
j=1

∂D
∂ϕ̇i j

δϕi j , (16)

the quantities −∂D/∂ϑ̇i and −∂D/∂ϕ̇i j being the new generalized actions to be
added to the previous ones. In order to implement this additional contribution,
however, it is necessary to employ further velocity sensors for ϑ̇i and ϕ̇i j .

3.1. Trajectory planning. In this section, in order to analyze the capabilities of
the proposed control law, a two-link arm is considered and two geometric paths to
be followed by the end effector xdes n` = xdes n`(u) are introduced, defined by means
of a parametrization in terms of the scalar u: a rectilinear and a closed loop path.
Each geometric path is tracked according to the motion law u = u(t). In particular,
a polynomial function, whose coefficients have been determined in order to satisfy
proper boundary conditions, i.e., null values up to the time derivative of the jerk,
is employed as

udes(t)=u0+Ades[126(t/Ts)
5
−420(t/Ts)

6
+540(t/Ts)

7
−315(t/Ts)

8
+70(t/Ts)

9
]

(17)
where u0 is the value at the initial instant, Ades is the amplitude, and Ts is the time
of the task.

Once the trajectory is assigned to the end effector, the trajectories for the inter-
mediate joint points are obtained by assuming a rigid motion for the corresponding
links.
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Figure 2. Straight trajectory.

Rectilinear trajectory. The considered rectilinear trajectory is defined as{
xdes 2 = `1+ `2− udes cosα,
ydes 2 = udes sinα

(18)

where u0 = 0 and Ades =

√
`2

1+ (`1+ `2)2. The parameter udes ranges from 0
to Ades (achieved at time Ts); this means that initially the manipulator is arranged
along the axis X0, and finally the end effector reaches the Y0 axis at the point (0, `1).
Hence, α = atan[`1/(`1+ `2)].

Closed loop trajectory. The closed loop trajectory is defined as{
xdes 2 =

1
8

[
cos udes+

√
3+ 2 sin udes− sin(udes)2

]
,

ydes 2 =
1
4(1+ sin udes)+ `1/5

(19)

where u0 = 3/2π and Ades = 2π . The parameter udes ranges from u0 to u0+ Ades.
These values are chosen so as to have the end effector initially on the Y0 axis — at
the point (0, `1/5)— and returning to the same position at the end of the motion.

4. Numerical simulations

In performing numerical simulations we have considered the links in the two-link
planar manipulator having length `1 = `2 = 0.5 m and having a rectangular cross-
section of size 2 × 50 mm; the discretization of each link is made by dividing
it into four segments. The Young modulus of the material constituting the link is
Yb = 200 GPa, and thus, the bending stiffnesses are b1= b2= 53.3 N m; the lumped
masses are assumed to be mi j = 0.0981 kg for the inner points and half of this value
for the outermost points; the payload mass and moment of inertia are m p = 0.1 kg
and Jp = 0.005 kg m2, respectively; the hub mass and moment of inertia are mh1 =

mh2 = 1 kg and Jh1 = Jh2 = 0.1 kg m2, respectively. The considered dissipation
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Figure 3. Straight trajectory: angular joint positions (left), and
angular link deformations (right).

0 0.5 1 1.5 2 time, s
-5

-4

-3

-2

-1

0

1

2

3

4

5

to
rq

u
es

, 
N

 m

1

2

0 0.5 1 1.5 2
time, s

-4

-3

-2

-1

0

1

2

3

4

m
o
m

e
n
ts

, 
N

 m

M
11

M
12

M
13

M
21

M
22

M
23

Figure 4. Straight trajectory: joint torques (left), and lumped mo-
ments applied to ϕi j (right).

coefficients are c1 = c2 = 0.15 N m s. The parameters related to friction actions
are assumed to be the same for the two joints, and specifically they are: the static
friction torque τS = 0.2 N m, the Coulomb friction torque τC = 0.1 N m, the Stribeck
velocity νs = 0.1 rad/s, and the friction coefficients k1 = k2 = 103 N m.

As a first example, we consider the case in which the trajectory of the end
effector is rectilinear, as shown by stroboscopic moving pictures in Figure 2, and
lasts for 2 s. The control action consists only of torques and moments deriving
from (14). The control parameters should be positive for stability reasons, and are
set to be Kc1 = Kc2 = 4× 105 N/m. In Figure 2 the trajectories of the link tips
are highlighted in dark red for the actual motion. In particular, in Figure 3, the
trajectories of the joint angles ϑi and the angular deformations ϕi j are reported.
We note that the angular deformations are very small for the considered trajectory
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Figure 6. Closed loop trajectory.

planning; indeed, the maximum angular deformation associated to the variable ϕ11

is at most 1.2 degrees. The positioning error is not shown since it is negligible.
Figure 4 shows the plots of applied joint torques and the lumped moments on ϕi j ,

respectively. The nominal trajectory has a settling time of 2 s in order that from a
technological point of view it is possible to consider motors and actuators which are
reasonably powerful but not too big. Indeed, the moments required by piezoelectric
actuators are easily obtained by exploiting the potentiality provided by the latest
technologies.

Figure 5 shows, for the first and second joints, respectively, a comparison be-
tween the friction torques and the joint speeds. From this figure it is easy to
recognize nonlinear effects such as stick-slip motion and Stribeck effect.

Finally, the case of the closed loop trajectory is considered, as shown in Figure 6.
Here, the task time is set to 4 s. Regarding the control action, the control law of the
previous case is improved by adding a further damping action; see (16). With this
term, possible oscillations of the control actions which can cause some troubles in
the real implementation, especially at the beginning, can be avoided. The damping
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Figure 7. Closed loop trajectory: angular joint positions (left),
and angular link deformations (right).
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Figure 8. Closed loop trajectory: joint torques (left), and lumped
moments (right).

control parameters are set to be Cc1 = Cc2 = 1× 103 N s/m.
Figure 7 shows the joint angles ϑi and the angular deformations ϕi j for the new

case. Again, the angular deformations are very small and the maximum angular
deformation associated to the variable ϕ11 is at most 0.8 degrees. In Figure 8, the
applied joint torques and the lumped moments on ϕi j are plotted.

5. Conclusions

In this paper, a planar multilink robot manipulator made up of flexible beams has
been modeled by means of a discrete Hencky bar-chain model. An energy-based
control has been proposed and validated by numerical simulations.

The use of a Hencky bar-chain approach for space discretization has been mo-
tivated in order to consider cases in which the linearization at the basis of the
assumed modes method is not feasible. Indeed, the linearization underlying the
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assumed modes method would entail that the motion would be characterized by two
distinct time scales: one “slower” for the overall motion and one “faster” for the
superimposed vibration. Clearly, this is not possible when dealing with nonlinear
systems, as the two time scales are very close and, thus, not neatly distinct.

The finite element method could potentially be suitable for solving such non-
linear problems. Nevertheless, commercial codes which are currently available
are still lacking in this respect. Therefore, a homemade code would be needed.
The Hencky bar-chain model, for its simplicity and accuracy, has been preferred.
Indeed, increasing the number of rigid bars in the discretization results in the
Hencky model converging to the nonlinear “elastica” theory. Remarkably, in the
case of the proposed control, using a nonlinear model does not entail an excessive
computational burden as when employing the computed torque approach which,
differently from the energy-based control applied herein to the Hencky bar-chain
model, requires the online solution of the whole model.
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A MODEL OF THE PROPPANT FLOWBACK
SETUP OF THE THEORETICAL FRAMEWORK

KSENIA P. FROLOVA,
POLINA M. GRIGOREVA, KONSTANTIN E. LEZHNEV

AND GRIGORIY V. PADERIN

Proppant flowback control is one of the main issues in hydraulic fracture
modeling since the propping agent maintains the crack in an open state and
therefore provides oil inflow to the wellbore. The main objective of this paper
is to determine the conditions that can lead to proppant flowback during the
direct operation of the well. The main outcome of this paper is an evolution
criterion for proppant flowback occurrence, which takes the external pressures
affecting the proppant particles, the proppant properties, and the crack open-
ing width into account. We propose a two-component continuum model con-
sisting of the proppant and the oil to find the stress-strain state of the proppant
and thereby to obtain the stress components in the evolution criterion. We
solve both a stationary problem for estimating the probability of the proppant
flowback occurrence under regular conditions as well as a transient problem
for taking the possibility of fast changing external conditions into account.

1. Introduction

Proppant flowback is a process of producing a propping agent from a hydraulically
created cleavage fracture during extraction of the hydrocarbons or treatment of
the wellbore. This process can significantly increase well operation costs due to
decreases in the crack permeability when the proppant pack used for keeping it
open is removed leading to its closure. Moreover, the entrained proppant moves
with the fluid to the wellbore and increases the risk of mechanical damage of the
wellbore equipment.

Proppant flowback and its mechanisms were extensively studied over the last
30 years due to the importance of its control. One of the first lab experiments
used for studying the stability of a proppant pack is described in [Milton-Tayler
et al. 1992]. It was shown that the fracture width, the closure stress, the pressure
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drawdown, and the proppant properties are key parameters affecting the proppant
pack stability. Then a distinct-element model (DEM) of the proppant pack was
conceived, which provided numerical results proving the laboratory data [Asgian
et al. 1995]. Calculations performed for interacting cohesionless, unbonded prop-
pant grains subjected to a drag force showed that the pack becomes unstable when a
crucial ratio of mean grain diameter to the fracture width is reached. This numerical
modeling also revealed the mechanism of proppant pack instability. At widths less
than a critical value, a stable proppant arch is formed at the proppant pack face.
This arch suffers deformations from compressive strains, resists extrusive stresses,
and keeps the rest of the proppant grains inside the crack. If the drag forces are
sufficiently high to make the arch fail, proppant production is started.

Some experiments on proppant flowback for proppants of different properties
and a very simple mathematical model can also be found in [McLennan et al. 2015].
This model offers a phenomenological dependence of pressure in a proppant pack
on oil production rate. In [Andrews and Kjørholt 1998] a phenomenological prop-
pant pack stability criterion was suggested. It describes the proppant pack behavior
in terms of a proppant free wedge concept, which states that in a three-dimensional
space with axes of closure stresses, pressure drawdown, and fracture width there is
a shell, the points inside of which are points of proppant pack stability. According
to this concept, the maximum stable fracture function was chosen in a polynomial
form when fitting the experiment results. However, this choice shows that this
criterion is incorrect for the case of critical condition values. In later work (e.g., in
[Canon et al. 2003]) the criterion was corrected, but as it was based on measurement
results that cannot be determined perfectly, such phenomenological criteria could
give only an approximate probability for the start of proppant flowback. A model
taking the ability of proppant flowback to stop with the closure of the crack or a
decrease of the drag force into account should be more complex and preferably
include time dependence and cumulative effects.

Some complex models for proppant flowback were already developed in [Aidag-
ulov et al. 2007]. They include plastic flow of the proppant after pack stability
loss and changes in porosity. These are significant when calculating the crack
permeability. Nevertheless, the criterion for the beginning of proppant flowback
is still determined phenomenologically: it is based on a Mohr–Coulomb failure
criterion, which does not describe the mechanism of proppant arch crushing, and
therefore can give only approximate results.

In summary, we can say that the development of the criteria of the proppant
flowback is still of interest in science and industry. The criteria developed in this
paper and the corresponding model will not only predict the beginning of the prop-
pant flowback but also determine “safe” regimes of hydrocarbon production and
wellbore treatment.
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2. Flowback criterion

Presently there exists no widely known criterion for proppant pack stability loss
that takes all the main factors into account that, according to experimental studies,
primarily affect the flowback, namely the ratio of the width of the crack opening to
the diameter of the proppant grains, as well as the type and coating of the proppant.
The phenomenological dependencies that were proposed in the literature acknowl-
edge only the influence of a few specific factors. Flowback criteria proposed in
continuum models do not consider the effects of the discreteness of the proppant
pack. Discrete models are not based on criteria that consider the stress state of
the whole modeling area. In the proposed model an attempt is made to take the
most important conditions affecting proppant flowback into account and to describe
more accurately the process that occurs when proppant pack stability is lost.

The purpose of this paper is to determine conditions under which the proppant is
produced during the direct treatment of the wellbore. Generally, the main reasons
for the flowback are

• low stresses acting on the fracture walls, which cannot keep the proppant in
the crack,

• a huge force of hydrodynamic resistance, acting on proppant particles, which
leads to a loss of stability of the proppant pack, and

• accumulation of internal stresses and deformations during long-term operation
of the well and its cyclic use.

In addition to the above-listed reasons of flowback following from the experi-
mental results presented in literature [Vo et al. 2014; Lu et al. 2016], the form and
coating of the proppant grains affecting the internal friction forces between individ-
ual proppant particles have a significant effect on the removal process, which in turn
affects the stability of the proppant pack. Furthermore, from experimental data and
from results when modeling the proppant removal process by the distinct element
method, it follows that the packing becomes unstable, starting with a certain ratio
of the average grain diameter to the width of the crack opening.

We consider the known mechanism of the stability loss when the proppant flow-
back starts after the failure of the arch formed by proppant particles [Asgian et al.
1995]. Within the framework of our model, the compressive stresses holding the
proppant particles in the arch are the principal stresses in the proppant acting along
the axis directed perpendicular to the axis of the crack. Drag forces lead to the
main stresses in the proppant, which are directed along the axis of the crack. We
assume that a Coulomb dry friction force acts between the proppant particles. The
corresponding friction coefficient depends on the surface roughness of the proppant,
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its coating, and other cohesive properties. This takes one of the important factors
influencing the proppant transport into account.

As mentioned above, the main reasons affecting the proppant transport are the
closure stress, the flow rate of the fluid through the proppant pack, and the ratio
of the proppant grain diameter to the crack opening width. The influence of the
closing stress and the flow rate on the stability of proppant pack can be taken into
account mechanically, whereas the effect of the mentioned ratio is described mostly
empirically. The experiments show that a proppant pack with one or two proppant
particles in the arch is stable even at the low closure stresses and high fluid rates.
However, if the crack width is too big, namely starting from 6–10 proppant grains
(depending on the type of proppant; see, e.g., [Andrews and Kjørholt 1998; Barree
and Conway 2001]), the flowback occurs at most of the treatment regimes. That
means that starting with some value the discreteness of the arch plays a role no
more. Concluding all the mentioned reasons, we suggest the flowback criterion

µp Tpzz < Tpxx k
[

1− exp
(

d − z0

z0

)]
, (1)

where µp is the coefficient of dynamic viscosity of proppant, Tpzz and Tpxx are
the components of the stress tensor of proppant acting in the directions of the
crack opening and the crack length, respectively, k is the correction factor, d is
the diameter of the proppant grain, and z0 = z2− z1 is the fracture width, where
z1 and z2 are the coordinates of the crack edges. The exponential expression is
motivated by a three-parameter Weibull distribution characterizing, for example,
the statistical variation of bending strength in brittle materials, such as glass or
ceramics. In this context, the parameter z0 in the numerator and in the denominator
would, in general, be different. The z0 in the numerator would be a characteristic
threshold stress under which no failure can occur, whereas the z0 in the denominator
is simply a suitable normalization stress (see [Manderscheid and Gyekenyesi 1987]
for details, especially the discussion around (1)). Here, obviously, both have been
taken as equal for simplicity.

If we want the criterion not to be fulfilled such that, consequently, no flowback
occurs, it is necessary for the closure stress to be large enough to exceed the stress
tending to push the proppant particle out of the arch with some factor increas-
ing with increasing crack opening width. In order to make the flowback criterion
meaningful, this parameter k should be chosen such that, at a critical ratio of the
diameter of the proppant particle to the width of the crack opening, the multiplier
is approximately equal to 1. The value of the parameter k differs with the value of
the critical ratio: for z0/d ≈ 5.5 [Andrews and Kjørholt 1998] k is equal to 1.79
and for z0/d ≈ 10 [Barree and Conway 2001] k is equal to 1.67.
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In addition, it should be taken into account that (1) is a local criterion, which
can be violated at several points inside of the proppant pack. Then flowback would
still not happen. Thus, this criterion is a “lower estimate” for the critical values of
the production conditions at which the proppant will not be taken out. For a more
accurate assessment, one can introduce an integral criterion, which will take the
number of violations of this criterion throughout the entire volume of the proppant
pack into account.

It should also be noted that in this paper the proppant removal process itself is not
modeled. This process can be described by using proppant transport models based
on multiphase medium mechanics models, which are widely used when describing
proppant placement processes in a crack.

3. Physicomathematical model

According to the proppant flowback criterion presented in the previous section, it
is necessary to know the values of the stress tensor components Tpzz and Tpxx apart
from the proppant properties and the fracture geometry in order to estimate as to
whether proppant flowback occurs. In this spirit, we present a model, which allows
one to obtain the stress-strain state of a propping agent under loading.

The proppant behavior under loading can be described within different approaches,
namely discrete, continuum, and crossbred ones. In this paper, we follow the
continuum approach. This is motivated primarily by the fact that discrete models
mostly describe the proppant flowback mechanism, but do not allow one to estimate
the propping agent properties before and after the start of the flowback. Moreover,
calculations based on the continuum model will take much less time than those
involved in a discrete model.

We model a single transverse crack initiated in a horizontal well filled with a
tightly packed proppant and oil flowing through. As has been already mentioned
in the section devoted to the flowback criterion, we do not model the proppant
removal process. In this respect, we solve a quasistatic problem for the proppant.
We consider the deformation of the propping agent affected by the oil flow and
take the possibility of occurring vacancies into account.

For a more accurate prediction of the proppant behavior, both stationary and
nonstationary laminar oil flows are considered. The stationary flow of oil through
a packed proppant allows one to investigate the influence of various physical and
mechanical proppant properties on its behavior. Considering a transient flow of oil
allows one to take a changing borehole pressure, changes in the rate of the oil flow,
a pause and subsequent resumption of the well treatment, etc., into account.

To find the stress-strain state of the proppant, we consider a two-component con-
tinuum consisting of proppant and oil. We assume that at each point of space both
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fluid and proppant are simultaneously present. Their partial densities determine the
mass fractions of each of the components. Note that we allow the possibility of the
vacancies’ occurrence by considering the proppant density as a function of space
coordinates and time. Some information on continuum mixture theory relevant to
this paper can be found in [Brazgina et al. 2016].

The wellbore and the rock surrounding the fracture are not considered directly
in the framework of the investigated model and are not included as additional
components in the multicomponent media. Their presence is accounted through
boundary conditions.

When modeling each component of the continuum, it becomes necessary to
establish the corresponding constitutive relations. In this context, we use some
simplifying hypotheses.

Generally, the proppant is considered as a granular material. However, since
in the present case the proppant is the only reason for preventing cleavage closing
under the pressure caused by the surrounding rock, it has a sufficiently high density.
According to numerical simulations and experimental evidence, such granular me-
dia possess not only volumetric, but also shear stiffness and their behavior are the
same as for an elastically deformable solid under pressure. Moreover, we assume
that the proppant, repacked after hydraulic fracturing is finished, undergoes small
deformations. Finally, we assume the material of the propping agent to be isotropic.

The second component of the model, usually oil, is considered as a weakly com-
pressible Newtonian fluid in order to satisfy experimental observations. Different
correlations are used for different types of oil in order to determine the effect of
the applied pressure on the oil compressibility. Since in this paper we would like
to outline and study the general problem of proppant flowback and to predict as to
whether it occurs or not, we assume that the oil is an incompressible fluid.

3.1. Balance and constitutive equations. We introduce a Cartesian coordinate sys-
tem (x, y, z), where the x axis coincides with the direction of the crack length, the
z axis with the direction of its opening width, and the y axis with the direction of
the crack aperture (see Figure 1).

The mass balance for both components, namely oil and proppant, is

δiρi

δt
+ ρi∇ · νi = 0, (2)

where subscript i = f, p refers to the components of the fluid or of the proppant,
respectively, ρ is the density, νi is the velocity, and ∇ is the differential operator
with respect to spatial coordinates. The substantial (material) derivative δi/δt of a
field quantity φ is defined as

δiφ(r, t)
δt

=
∂φ(r, t)
∂t

+ νi · ∇φ(r, t), (3)
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Figure 1. Schematic representation of the fracture.

where r is the position vector of the control volume (point of observation) or in
other words of the certain area in space through which the structure moves as time
passes (see, e.g., [Ivanova et al. 2016]).

Since the fluid is assumed as incompressible, the substantial derivative in (2) is
equal to zero for the fluid component. Thus, the mass balance for the oil leads to
the incompressibility constraint

∇ · ν f = 0. (4)

The deformations of the proppant are supposed to be small, and the mass balance
for the proppant component reduces to the following equation for the proppant
density:

ρp(r, t)= ρp(r, 0)
[
1+ tr

(
εp(r, t)

)]
, (5)

where tr(εp) is the first invariant of strain tensor εp.
The balance of momentum for both components in the local form reads

ρi
δiνi

δt
= ρi fe+ fin+∇ · Ti , (6)

where fe is the external body force density, fin is the internal volumetric force
density, and Ti is the Cauchy stress tensor.

Gravity is the only external body force. The internal volumetric force represents
the interaction between two continua, namely oil and proppant. This force should
depend on the densities of both components and be eliminated in the balance equa-
tion for the whole media. The internal volumetric force can be written as

fin =
ρ f ρp

ρ f + ρp
f d

f p, (7)

where f d
f p is the interaction force between oil and proppant per unit mass.
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The interaction between fluid and proppant is due to the presence of viscous fric-
tional forces caused between two continua when the oil flows through a proppant
pack. The occurring friction depends on the relative velocity of the components.
The main parameter determining the magnitude of the corresponding force is the co-
efficient of viscous friction between the two components, which depends on many
factors, including the type of proppant coating, its size and shape, the rheological
properties of oil, etc.

Here, we assume a linear dependence of the dissipative components of the
forces on the difference in the velocities of the two components. Since we solve a
quasistatic problem for the proppant and do not consider the proppant motion, the
following equation holds:

f d
f p = µ f p ν f , (8)

where µ f p is the coefficient of viscous friction between proppant and oil.
Thus, the balance of momentum for fluid in the local form can be rewritten as

ρ f

(
∂ν f

∂t
+ ν f · ∇ν f

)
= ρ f g+

ρ f ρp

ρ f + ρp
f d

f p +∇ · Tf , (9)

where g is the gravitational acceleration.
Note that in the stationary case the partial derivative in (9) is absent, because the

flow is steady and the velocity in each point of observation does not change with
time.

The appropriate constitutive relation for a linear incompressible fluid reads

Tf =−ρ f E+
ρ f

ρ f + ρp
2µ f (∇ν)

s, (10)

where p f is the hydrostatic oil pressure, E is the unit tensor, µ f is the coefficient
of dynamic viscosity of the oil, and (∇ν)s is the symmetric part of the velocity
gradient.

Since a quasistatic proppant behavior is considered, the balance of momentum
for proppant reduces to

ρp g−
ρ f ρp

ρ f + ρp
f d

f p +∇ · Tp = 0. (11)

We suppose the proppant to be a linear isotropic elastic material satisfying
Hooke’s law:

Tp =
ρp

ρ f + ρp

(
Eν

(1+ ν)(1− 2ν)
tr(εp)E+

E
1+ ν

εp

)
, (12)

where E and ν are Young’s modulus and Poisson’s ratio, respectively, εp is the
linear strain tensor of the proppant, and εp = (∇up)

s , where up is the proppant
displacement.



A MODEL OF PROPPANT FLOWBACK: SETUP OF THE THEORETICAL FRAMEWORK 183

Finally, let us assume that all variables do not depend on the y coordinate so that
we can consider a state of plane-strain. Then by taking all of the simplifications into
account, the whole system of equations in coordinate form is given by (13)–(19):

• equation for the proppant density

ρp (r, t)= ρp (r, 0)
(

1+
∂ux

∂x
+
∂uz

∂z

)
, (13)

• incompressibility condition for the oil

∂ υ f x

∂x
+
∂ υ f z

∂z
= 0, (14)

• the balance of momentum for the oil along the x axis

ρ f

[
∂υ f x

∂t
+ υ f x

∂υ f x

∂t
+ υ f z

∂υ f x

∂z

]
=−ρ f g−

∂p f

∂x
+

ρ f ρp

ρ f + ρp
µ f p υ f x +

ρ f

ρ f + ρp
µ f

[
∂2υ f x

∂x2 +
1
2

(
∂2υ f x

∂z2 +
∂2υ f z

∂z ∂x

)]
−

ρ f

(ρ f + ρp)2
µ f

[
∂υ f x

∂x
∂ρp

∂x
+

1
2

(
∂υ f z

∂x
+
∂υ f x

∂z

)
∂ρp

∂z

]
, (15)

• the balance of momentum for the oil along the z axis

ρ f

[
∂υ f z

∂t
+ υ f x

∂υ f z

∂x
+ υ f z

∂υ f z

∂z

]
=−

∂p f

∂z
+

ρ f ρp

ρ f + ρp
µ f p υ f z +

ρ f

ρ f + ρp
µ f

[
∂2υ f z

∂z2 +
1
2

(
∂2υ f z

∂x2 +
∂2υ f x

∂x ∂z

)]
−

ρ f

(ρ f + ρp)2
µ f

[
∂υ f z

∂z
∂ρp

ρz
+

1
2

(
∂υ f z

∂z
+
∂υ f x

∂z

)
∂ρp

∂x

]
, (16)

• the balance of momentum for the proppant along the x axis

ρp g−
ρ f ρp

ρ f + ρp
µ f p υ f x

+
ρp

ρp + ρ f

E
1+ ν

[
1
2

(
∂2u pz

∂z ∂x
+
∂2u px

∂z2

)
+

1− ν
1− 2ν

∂2u px

∂x2 +
ν

1− 2ν
∂2u pz

∂x ∂z

]
−

ρ f

(ρ f+ρp)2

E
1+ν

[
∂ρp

∂x

(
1−ν
1−2ν

∂u px

∂x
+

ν

1−2ν
∂u pz

∂z

)
+

1
2

(
∂u pz

∂x
+
∂u px

∂z

)
∂ρp

∂z

]
=0,

(17)
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• the balance of momentum for the proppant along the z axis

−
ρ f ρp

ρ f + ρp
µ f p υ f z

+
ρp

ρp + ρ f

E
1+ ν

[
1
2

(
∂2u pz

∂x2 +
∂2u px

∂x ∂z

)
+

1− ν
1− 2ν

∂2u pz

∂z2 +
ν

1− 2ν
∂2u px

∂x ∂z

]
−

ρ f

(ρ f+ρp)2

E
1+ν

[
∂ρp

∂z

(
1−ν
1−2ν

∂u pz

∂x
+

ν

1−2ν
∂u px

∂x

)
+

1
2

(
∂u pz

∂x
+
∂u px

∂z

)
∂ρp

∂x

]
=0,

(18)

• and flowback criterion in the coordinate form

µp

(
(1−ν)

∂u pz

∂z
+ν

∂u px

∂x

)
<

(
(1−ν)

∂u px

∂x
+ν

∂u pz

∂z

)
k
[

1−exp
(

d−z0

z0

)]
. (19)

3.2. Boundary and initial conditions. The initial distribution of the proppant
grains along the fracture and the final shape of the fracture are supposed to be
known, e.g., from a solution of the corresponding boundary-value problem.

As has been mentioned already, the presence of the wellbore and the rock sur-
rounding the fracture will be accounted for by the boundary conditions, namely
the pressures at the fracture edges and at the bottom of the crack and its tip.

When modeling hydraulic fracture usually it is assumed that the value of the
pressure acting at the crack edges at the initial time is equal or close to the value
of the rock pressure. The function of the pressure decrease depends on the amount
of fluid flow. Note that this pressure depends only on the oil flow and does not
depend on the proppant behavior. It means that one can suppose that the rock is
acting only on oil:

T f zz|z1(x)= Pr , T f zz|z2(x)=−Pr , (20)

where T f zz is the component of the stress tensor of oil acting in the direction of
the crack opening, z1(x) and z2(x) are functions with respect to the crack edges
(see Figure 1), and Pr is the rock pressure.

Apart from the rock pressure, there is closure stress acting at the crack edges.
So in fact both rock pressure and closure stress act on the two-component con-
tinuum. Equation (20) leads to the assumption that the closure stress affects only
the proppant (since the rock pressure acts on only the oil) and does not affect the
oil. Such an assumption is correct from the mechanical point of view since the
proppant does not allow for closing the fracture. Hence, the proppant particles are
most affected by the stress that tends to close the crack edges. Consequently, the
following boundary conditions hold:

Tpzz|z1(x)= σr , Tpzz|z2(x)=−σr , (21)
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where σr is the closure stress. Many authors note that this stress affects proppant
flowback and consider it as one of the main terms to control the proppant flowback
[Milton-Tayler et al. 1992; Asgian et al. 1995; McLennan et al. 2015; Andrews
and Kjørholt 1998; Canon et al. 2003; Aidagulov et al. 2007; Vo et al. 2014; Lu
et al. 2016; Barree and Conway 2001; Larsen and Smith 1985; Ely et al. 1990].
The value of the closure stress is significant enough to hold the packed proppant
in the fracture even when the outgoing force is big enough.

Apart from stresses acting at the crack edges, it is necessary to take into account
the oil flow along the crack’s boundary. If the fracture geometry is simple, it is
permissible to assume that the inflow is perpendicular to the fracture boundary.
Hence, the following conditions hold:

t · ν f |z1(x) = 0, ρ f n · ν f |z1(x) = D(ρ f − ρ
p
f )|z1(x),

t · ν f |z2(x) = 0, ρ f n · ν f |z2(x) = D(ρ f − ρ
p
f )|z2(x),

(22)

where t is the vector tangent to the fracture boundary, n is the outer normal vector,
D is the oil permeability coefficient, and ρ p

f is the oil concentration in the rock.
We assume that the proppant particles at the crack edges adhere to them. It

means that these particles cannot be removed from the crack. From a mechanical
point of view, this assumption can be justified by the fact that the velocity of the
laminar flow of oil and, accordingly, the probability of proppant transport are higher
when approaching from the periphery to the center of the channel formed by the
cleavage. Then the components of displacement at the boundary read

u px |z1(x)·z2(x)= u pz|z1(x)·z2(x)= 0. (23)

Finally, it is necessary to define the boundary conditions at the bottom of the
crack and at its tip. We assume that there is a pressure difference inside of the
crack initiated by a bottom stress and the rock pressure.

In the case of a stationary problem, there will be a constant pressure difference,
whereas in the case of a transient flow it is necessary to allow for the possibility
of changes in the external conditions. Practically, such changes are usually very
fast and can be observed in the case when the bottom pressure, determined by the
operating conditions, significantly changes in time. Then the boundary conditions
should depend on time and vary according to a certain prescribed law.

The following conditions hold:

T f xx |x=0= Pb, T f xx |x=lf=−Pr , (24)

where T f xx is the component of the stress tensor of oil acting in the directions of
the fracture length, l f is the fracture length, and Pb is the bottom pressure.

Finally, in order to solve the nonstationary problem, it is necessary to set the
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initial conditions for the oil flow velocity and for the proppant displacement. We
assume that at the initial moment the following conditions hold:

ν f x |t=0= ν f z|t=0= 0, u px |t=0= u pz|t=0= 0. (25)

4. Conclusion

In this paper, a local stability criterion is proposed in order to verify the possible
occurrence of proppant flowback as a function of the physical and mechanical
properties of the proppant and of the oil, the external pressures, the geometric
dimensions of the fracture, and the ratio of the average proppant particle size to
the crack opening width. In order to obtain the stress components involved in
the developed criterion, a physicomathematical model for the determination of
the proppant strain-stress state was presented. The proposed model is based on a
continuum description of a two-component medium consisting of oil, modeled by
the Newtonian incompressible fluid, and the proppant, modeled by a linear-elastic
deformable solid. We considered steady-state oil flow for estimating the probability
of proppant flowback occurrence under regular conditions and transient flow for
taking the possibility of fast changing of the external conditions into account.
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THE OBJECT DETECTION BY AUTONOMOUS APPARATUS
AS A SOLUTION OF THE BUFFON NEEDLE PROBLEM

MIKHAIL A. GUZEV, GURAMI S. TSITSIASHVILI AND MARINA A. OSIPOVA

The problem of object detection by autonomous apparatus is considered. The
probabilistic formulation of the problem is proposed by means of a reduction to
the classical Buffon problem. The latter naturally arises when the problem is
formulated in the coordinate system associated with the apparatus. The problem
of detection is considered for devices moving in the open space along a circle
around one body, for vehicles patrolling along the linear boundary protecting
the bodies, and for devices protecting the system of bodies. The problem of
object detection was shown to admit an analysis in the presence of an asymptotic
parameter determined by the ratio of the local size of the apparatus scanning
area to the global size of the problem under consideration. For all problems,
the minimum number of apparatuses that could detect a penetrating object with
probability one was calculated.

1. Introduction

Nowadays, the attention of researchers is focused on the study of self-propelled
particle systems [Della Corte et al. 2016; Brambilla et al. 2013; Bellomo and Brezzi
2016; Adamatzky and Jones 2008; Herrero and Soler 2015]. Analysis of these
systems leads to the need to solve various problems closely related to the theory of
dynamical systems. The simplest systems can be the systems of particles studied in
the framework of Maxwell–Boltzmann, Fermi–Dirac, and Bose–Einstein statistics
[Kardar 2007]. Billiard systems, where stochastic properties can arise even with a
small number of particles and in the absence of random factors [Zaslavsky 2007],
are an important analogue of self-propelled particles systems.

When considering the self-propelled particle systems, the number of particles is,
as a rule, assumed to be sufficiently large. In particular, such assumptions are used
in modeling the movement of vehicles, crowds and flocks, financial markets, and
other socio-economic systems [Herrero and Soler 2015], consisting of a sufficiently
large number of self-driven particles. In this connection, one should point out
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Figure 1. The Buffon needle problem.

the model of the quantum economy [Maslov 2005], in which a large number of
self-driven particles leads to the appearance of synergistic effects — the nonlinear
(exponential or power) dependence of the efficiency indicators on the number of
particles.

At the same time, the self-propelled particle systems are close to the mobile
robot systems that can be equipped with artificial intelligence. To describe the
dynamics of the mobile robot systems, the models of differential games [Alspach
2004; Chung et al. 2011; Galceran and Carreras 2013], random graph models
[Hazra et al. 2018; 2017a; 2017b], which underlie many artificial intelligence sys-
tems, etc., are used. Within these model frameworks, different problems are solved:
determination of the shortest trajectory of a robot or a group of robots which covers
the entire field of vision [Alspach 2004; Galceran and Carreras 2013], searching
for the minimum number of robots that guarantee the capture [Chung et al. 2011],
and many others.

This paper is devoted to solving the problem of calculating the detection prob-
ability of a mobile object penetrating through a system of mobile robots modeled
by self-propelled particles and not possessing a sufficiently developed artificial
intelligence. Such a problem may arise when designing a system of mobile robots
that track the object penetration into a controlled area at sea, on land, in air, etc.

We analyze this problem using the solution of Buffon’s problem [Kendall and
Moran 1963; Ambartzumian 1982] about calculating the probability of intersection
of a random segment on a plane with a system of parallel lines. This model takes
into consideration the kinematic and geometric features of the movement of mobile
robots and the mobile object much more fully.

The Buffon problem (see Figure 1) is the determination of the probability of
intersection of a needle with length l, which is randomly thrown onto a plane ruled
by equally spaced parallel lines a distance L apart, with any one of these lines. This
problem formed the basis for stochastic geometry and was widely used in applied
statistics. The main elements of the probabilistic model in the Buffon problem are
the random variables that determine the mutual position of the segment, occupied
on the plane by the needle, and the equally spaced horizontal lines [Ambartzumian
1982; Kendall and Moran 1963]. The distance z from the segment’s lower end to
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the first overlying line and the angle ϕ < π between this line and the segment are
such random variables. Knowing the distribution law of the random vector (z, ϕ)
formed by these random variables, we can determine the probability of the event
P(l sinϕ ≥ z) of the needle intersection with one of the parallel straight lines. For
this event to happen, it is necessary and sufficient that the segment intersect with
a straight line lying directly above its lower end.

In this paper we tried to adopt the Buffon problem to consider object detection
by autonomous apparatus. The article outline is as follows.

In Section 2 we describe the joint motion of the vehicles and the object in order
to calculate the probability of the intersection of the trajectory of an object, which
is moving toward the body, with the apparatus scanning area. To determine the
probability of the object detection, this model is recorded in a coordinate system
associated with devices moving along a circle around the protected body.

In Section 3, we performed an analytical study of the proposed model for move-
ment of the vehicles and the object in the polar coordinate system. With a certain
ratio between the linear size of the detection area and the size of the area of the
devices’ motion, this task differs little from the classical Buffon problem. The
resulting reduction allows us to calculate the minimum number of vehicles at which
the probability of detecting an object is close to one.

Cyclic motion of vehicles along a closed linear segment is analyzed in Section 4.
To calculate the minimum number of vehicles for which the probability of the
object detection is close to one, the approach proposed in Section 2 is used, which
consists of a transition to the coordinate system of the moving device.

In Section 5, we consider the protection model of the network structure of bodies
which are located in the nodes of a square lattice bounded by the circle along
which the vehicles move. For two different strategies of the vehicles’ movement,
the minimum number of vehicles was determined at which the probability of the
object detection is close to one, and the most effective strategy is indicated.

Section 6 presents the final comments on the study performed and identifies the
statements of new problems that follow from the considerations made in this paper.

Material of the article is partially presented in [Guzev et al. 2018], which ex-
amines the vehicle’s movement along a circle around a single protected body and
along a straight line segment.

2. Buffon problem in the coordinate system associated with
vehicles moving around a circle

Let n vehicles move along a circle of radius R with a fixed linear velocity v and at
an equal distance from each other. Each of these vehicles is equipped with circular
radar with scanning radius r (see Figure 2). We will use the following symbols
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C

R

O

r

Figure 2. The vehicles’ movement around a circle in a stationary
coordinate system.

in all drawings: black dots are protected bodies, black arrows show the direction
of vehicle motion, filled circles are the area of the locator survey, and wide filled
arrows show the direction of object motion.

The circular radar can be understood as a vehicle that rotates a beam with an
angular velocity large enough for the linear velocity of the beam to notably exceed
the linear speed of the vehicle.

It is required to calculate the probability of detection of a mobile object by means
of locators installed on the vehicles. By detection, we mean here that the object
falls into a circle which is scanned by any of the vehicles.

The peculiarity of the task of calculating the probability of detecting a mobile
object in a stationary coordinate system, associated with an external observer, is
that both the vehicle and the object are moving, and therefore, some transition to
the Buffon problem, in which at least parallel straight lines are fixed, is required.

Such a transition is realized when the motion of the object under study is con-
sidered in a coordinate system associated with vehicles rotating around a certain
point O along a circle C of radius R. In this coordinate system, the radar scan cir-
cles with radius r become fixed. To be detected by the vehicle, the object trajectory
should intersect one of these circles.

In order to simplify the study of this problem, we suppose that, in a stationary
coordinate system, the mobile object moves with the velocity u along a segment
connecting the starting point of its movement with the center O of the circle C .

In a rotating coordinate system, the shape of the object trajectory Aψ differs from
the segment (see Figure 3): it will be some curve that starts at a random point ψ
of the circle C∗, with radius R+ r and with center at O . Thus, in the coordinate
system associated with the orbiting vehicles, circles of radius r play the role of
parallel lines and curves Aψ the role of the segments in the problem of Buffon.

We further assume everywhere in this paper that the random angle ψ has a
uniform distribution on the segment [0, 2π ]. The transition from the curve Aψ ′
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ψ
C∗

Aψ

O

Figure 3. Trajectory of object motion in a Cartesian coordinate
system associated with vehicles moving around a circle.

y

C∗

x
O

Aψ ′′i

ψ ′′i

Fi

ψ ′i

Aψ ′i
Di

Figure 4. Control area of one circle of radar scan in the Cartesian
coordinate system (x, y) associated with moving vehicles.

to the curve Aψ ′′ is carried out by rotation of the curve Aψ ′ around the point O
by the angle ψ ′′ − ψ ′. It should be noted that, on the circle C∗, each circle Di

with radius r allocates an arc Fi bounded by two curves Aψ ′i and Aψ ′′i that touch
the circle Di , i = l, . . . , n, from the outside (see Figure 4). Thus, on the circle
C∗, the scan circle Di with the center at the point, where the apparatus i is located,
allocates the arc Fi , i = 1, . . . , n. Now we can calculate the probability of detection
of a mobile object by circular view radars installed on vehicles. Let the set F be
the union of the arcs Fi : F =

⋃n
i=1 Fi . This set is the union of a finite number

of disjoint arcs (which may be less than n). Then the total angular length s(F) of
those arcs divided by 2π is the required probability of detection a mobile object
by radar locators installed on the vehicles.

Therefore, if the arcs Fi , i = 1, . . . , n, do not intersect, the probability of the
object detection by the vehicles is P = ns(Fi )/(2π), where s(Fi ) is the angular
length of the arc Fi . In the general case, P =min(1, ns(Fi )/(2π)).
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3. Buffon problem in the polar coordinate system

The task of determining the curves Aψ and finding the arcs Fi is solved, as a rule,
numerically. However, at some additional assumptions, it is possible to obtain
analytical formulas. Let us transition from the rectangular coordinate system (x, y)
associated with the vehicle rotating around point O to the polar coordinate system
(see Figure 5, left) with the vertical coordinate ρ =

√
x2+ y2 and the horizontal

coordinate ϕ = arctan(x/y).
In a rectangular coordinate system (x, y), a circle of radius r centered at (O, R)

is described by equations

x = x(ψ)= r cosψ, y = y(ψ)= R+ r sinψ, 0≤ ψ ≤ 2π,

giving a parametric definition of the circle: ψ is a parameter. In the polar coordinate
system (ρ, ϕ) this circle is given parametrically by the equations

ρ

R
=

(
r2

R2 cos2 ψ +

(
1+

r
R

sinψ
)2 )1/2

, ϕ = arctan
(r/R) cosψ

1+ (r/R) sinψ
,

since ψ remains a parameter. A typical image of a circle with a radius r in this
polar coordinate system looks like an oval with pointed upper end (see Figure 5,
left). For small values of the parameter r/R� 1, the last system of equations can
be approximated as

ρ

R
≈ 1+

r
R

sinψ, ϕ ≈
r
R

cosψ.

Thus, a circle of radius r in the coordinate system (x, y), rotating with the appara-
tus, transforms into almost a circle of radius r/R in a normalized polar coordinate
system (ρ/R, ϕ) (see Figure 5, right). The linear speed of the vehicle is v, and

ϕ

2πO

R

R+ r

ρ

l

ϕ

2π

α

O

1

r
R
+ 1

ρ/R
s

Figure 5. The control area of one circle of radar scan in the polar
coordinate system (left) and in the normalized polar coordinate
(right) associated with moving vehicles.
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the speed of the mobile object in the fixed coordinate system is u, so in a fixed
Cartesian coordinate system, the object moves to the center O of the circle C∗
with velocity v, and the vehicles move along the circle C (in the angle ϕ) with the
angular velocity u/R. In the fixed polar coordinate system (ρ/R, ϕ), the object
moves along the radial coordinate ρ/R with velocity v/R, and the vehicles move
along the angular coordinate ϕ with velocity u/R. Therefore, in the polar coordi-
nate system (ρ/R, ϕ) associated with the vehicles, the vehicles are fixed, whereas
the object moves along the radial coordinate ρ/R with the velocity v/R, and along
the angular coordinate ϕ with velocity −u/R [Dreizler and Lüdde 2010].

Then, in the normalized polar coordinate system (ρ/R, ϕ) associated with the
moving vehicles, the speed of the mobile object is equal to

√
v2+ u2/R and makes

an angle α = arctan(u/v) with line ρ/R = 0. Therefore, each circle representing
the control area of the radar locator overlaps a segment of length s = 2r/(R sinα)
for the mobile object (see Figure 5, right).

Let’s move from the probability of the object detection to the minimum number
of vehicles M = min(n : ns ≥ 2π) at which the probability of a mobile object
detection is equal to one; then

M =min(n : nr ≥ R sinα),
R sinα

r
≤ M ≤

R sinα
r
+ 1. (1)

If the number of vehicles is n = M , then the distance between the centers of the
neighboring survey circles can obviously be less than l.

4. The movement of vehicles along a straight line

Now let the vehicles move along a segment B A of length L in one direction and,
after reaching its end, turn and move in the opposite direction (see Figure 6). We
believe that the distance between neighboring vehicles is 2L/n; a similar model
was considered in [Kozhemyakin et al. 2017].

Then the scan circles associated with the vehicle locators move along the cylin-
drical surface with the generatrix A∗A∗∗ = B∗B∗∗ of length 2r and the directrix

A∗

A

A∗∗ B∗∗

B∗

a

b

Figure 6. Vehicle and object motion in a fixed coordinate system.
The bold arrow indicates the direction the object is moving.
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A∗

A

A∗∗ B∗∗

B∗
ss

α α

Figure 7. Vehicle and object motion in a coordinate system asso-
ciated with the vehicles moving along the cylindrical surface.

B∗A∗B∗ of length 2L . In a fixed coordinate system, the object moves vertically,
and its horizontal coordinate at the time of crossing the strip is a, 0≤ a ≤ L . Let’s
transition to the coordinate system associated with the vehicles moving along the
cylindrical surface and denote as b the distance from point B to the nearest vehicle
in the movement direction (from right to left in Figure 6).

Let the probabilistic distribution of the random vector (a, b) be uniform on the
rectangle [0, L]× [0, 2L/n]. Then, in the coordinate system associated with mov-
ing vehicles, we can specify subsegments of length l = 2r/ sinα on the segment
A∗B∗, where the object can be detected (see Figure 7).

The task of calculating the probability of the object detection is more com-
plicated when the vehicles are moving along a straight line but not along a cir-
cle. A relatively simple solution to this problem was obtained by transitioning
from the probability of the object detection to the minimum number M of ap-
paratuses for which the probability of the object detection is equal to one, namely
M =min(n : nr ≥ L sinα). Such a technique can be applied for multiagent systems,
considered in [Maggio et al. 2013].

5. Protection of the net structure

The network structure consists of bodies in the nodes of a square lattice located
inside a large circle. To protect the network structure, the following strategies can
be proposed. The first strategy involves the protection of each body separately
(see Figure 8, left). Let M1(n) be the minimum number of devices that implement
this strategy. However, we are trying to choose a defense strategy that reduces
the number of devices. Therefore, we propose a second strategy to protect the
entire network structure (see Figure 8, right). The minimum number of machines
implementing the second strategy is denoted by M2(n). The calculation of M1(n)
and M2(n) is based on formula (1), which determines the minimum number of
vehicles moving around the body at the center of the circle.

For convenience in describing various ways to protect the network structure of
bodies from object penetration, we transition from a Cartesian coordinate system
(x, y) to a system of dimensionless coordinates (X, Y ), X = x/(2(r + R)) and
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Figure 8. Strategies of apparatus motion: first (left) and second (right).

Y

X

Figure 9. The location of bodies in the network structure.

Y = y/(2(r + R)). The parameters r and R were defined earlier in Section 2.
In this coordinate system, a circle of radius r + R is transformed into a circle of
radius 1

2 . In the coordinate system (X, Y ), consider a circle Cn of radius n centered
at the coordinate origin and an integer square lattice (see Figure 9). Suppose that
there are bodies in the nodes of this lattice inside the circle Cn , and N (n) denotes
the number of these bodies. In the original coordinate system (x, y), the circle Cn

has a radius Tn = 2(r + R)n.
Around each of these bodies, its own group of vehicles moves along a circle

of radius R/(r 2(r + R)); in the coordinate system (x, y), this circle has radius R.
Obviously, these circles do not intersect each other and lie entirely in a circle of
radius n+1. Then, in accordance with (1), M1(n)∼ N (n), N (n)� 1, vehicles are
needed to find with probability one an object that can move to any of these N (n)
bodies, and by virtue of (1),

N (n) f ≤ M1(n)≤ N (n)( f + 1), f =
R sinα

r
. (2)

Consider an alternative protection system for N (n) bodies, assuming that the
vehicles move along a circle with a center at (0, 0) and a radius of n+ 1; in the
(x, y) coordinate system, the radius of this circle is 2(n + 1)(r + R). Then the
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minimum number of vehicles M2(n)moving along a circle of radius 2(n+1)(R+r)
(in the coordinate system (x, y)) satisfies the relations

2(n+ 1)g ≤ M2(n)≤ 2(n+ 1)g+ 1, g =
(R+ r) sinα

r
. (3)

We now use the known estimates for N (n). So in [Hardy 1999] an estimate of
Gauss is given, showing that the number N (n) is equal to the area of the figure
composed of unit squares of the lattice, for which the lower left corner lies in the
circle Cn . Since the greatest distance between the points of the unit square does not
exceed

√
2, all unit squares that intersect the boundary of the circle Cn are located

in the ring

{(X, Y ) : (n−
√

2)2 ≤ X2
+ Y 2

≤ (n+
√

2)2}

with area 4π
√

2n. Therefore, relations∣∣∣∣N (n)
πn2 − 1

∣∣∣∣≤ 4
√

2
n

=⇒ N (n)∼ πn2, n� 1 (4)

hold.
Thus, M1(n)∼ N (n)∼ n2 and M2(n)∼ n, n� 1 (it follows from (3) and (4)).

Combining relations (2)–(4), we obtain that for n� 1 estimates M1(n)/M2(n)∼ n
are valid.

Consequently, the application of the protection of the body system reduces the
number of vehicles in proportion to n � 1 compared to the protection of each
body separately. The value of n is equal to the radius Tn of the large circle which
surrounds the lattice points, divided by the lattice step 2(r + R).

The estimation of the N (n) value, given in (4), was repeatedly refined. Thus,
Gauss showed that |N (10)/(π · 102) − 1| ≤ 1

100 , whereas for n = 10 the right-
hand side of inequality (4) is approximately equal to 566

1000 . The refinement of the
estimation of the N (n) value [Hardy 1915; Huxley 2002] continues nowadays and
is one of the key problems of analytic number theory.

It should be emphasized in conclusion that we considered a dynamic version
of the Buffon problem which includes such characteristics as the trajectories and
speeds of the mobile extraneous object and unmanned underwater vehicles. This
circumstance leads to the necessity of transitioning to coordinate systems associ-
ated with moving vehicles and to additional, not always obvious, geometric con-
structions and the application of the small parameter method.

In addition to the trajectory of the object movement to the center O of circle C
(see Figure 2) along the radius, other trajectories are possible, for example, helically
[Guzev et al. 2017]. In this case, the body is protected if the viewing circle of each
locator intersects with the viewing circle of another locator (see Figure 10). The
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Figure 10. The disposition of the viewing circles of the locators
to control the object movement along an arbitrary trajectory.

minimum number of devices detecting an object with probability one is M ′ =
min(n : ns ′ ≥ 2π), s ′ = 2d and d = arcsin(r/R), and hence π/d ≤ M ′ ≤ π/d + 1.

Let M ′1(n) be the minimum number of vehicles that provide the detection of the
object arbitrarily moving towards each body in the specified system; then

N (n)
π

d
≤ M ′1(n)≤ N (n)

(
π

d
+ 1

)
. (5)

Let M ′2(n) be the minimal number of vehicles moving along a circle of radius
2(n+ 1)(R+ r) and providing detection of an object in its arbitrary moving; then

π

(
arcsin

r
2(n+ 1)(R+ r)

)−1

≤M ′2(n)≤π
(

arcsin
r

2(n+ 1)(R+ r)

)−1

+1. (6)

From (4)–(6) we obtain that, in the case of an object with arbitrary motion, the
protection of a system of bodies also requires a smaller number of vehicles than
the protection of each body separately. The decrease in the vehicle number is
proportional to n � 1, equal to the radius Tn divided by the step length of the
lattice 2(r + R): M ′1(n)/M ′2(n)∼ n.

6. Conclusions

In searching for a solution to the problem of detecting the object, which is mov-
ing to the protected body, we came to the classical Buffon model. With such a
reduction, obtaining the corresponding analytical results of the original problem
turned out to be possible, provided that the vehicles move along a circle around
the protected body. The constructed solution was used to analyze the possibilities
of protecting the network structure of the body system. Note that the application
of the results obtained for a single body to the body system became possible due
to the homogeneity of the internal structure of the system and to the preservation
of the geometry of the original problem at the system boundary. In particular, such
a structure homogeneity is fixed by choosing the same scales in two orthogonal
directions, and the geometry of the boundary is given by a circle.
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The generalization of the results obtained is possible if we expand the set of the
vehicles’ trajectories. For engineering applications, the use of the zigzag motions
is of interest [Galceran and Carreras 2013; Tuphanov and Scherbatyuk 2015], the
effectiveness of which is confirmed in practice. However, an understanding of
the fundamental aspects of the choice of control parameters for such a strategy
is a blind spot of modern model theory. Therefore, gaining new knowledge for
researchers engaged in this field is undoubtedly relevant.
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