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We give an explicit expression for the low-temperature ratchet current in a multi-
level system and find its numerical value as the number of states goes to infinity.

1. Introduction

In [Maes et al. 2014], the authors study stationary occupations in nonequilibrium
multilevel systems at low temperatures. The system under consideration is an irre-
ducible continuous time Markov jump process on a set of states K with transition
rates λ(x, y) expressed in terms of the reactivities a(x, y) and depending on the
inverse temperature β. It is assumed that the system is in contact with an environ-
ment at uniform temperature and also subject to external forcing which breaks the
Boltzmann occupation statistics. Being away from detailed balance implies that
a current can flow in the system. To achieve nonequilibrium conditions, different
physical models exist such as flashing ratchets. This corresponds to a random
flipping between a flat potential and a nontrivial energy landscape. This is known
as a continuous time Parrondo game [Parrondo 1998] and is studied in [Maes et al.
2014] as an example of their asymptotic formula for the stationary occupations.
The authors model the multilevel system by a graph consisting of two rings of N
vertices which represent the states, and the edges stand for the preferred succes-
sors. This enables them to determine the direction of the ratchet current at low
temperatures, which cannot be determined by entropic considerations only, and to
evaluate it numerically while in the present paper we give an exact expression for it
up to exponentially small corrections. This calculation confirms their result and in
particular that the ratchet current is positive. The proof is based on an application of
the Tutte matrix tree theorem. In the present section, we recall the definitions and re-
sults from [Maes et al. 2014, §3], and in the next section we give an explicit expres-
sion for the ratchet current and find its limit as the number of states goes to infinity.
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The zero-temperature logarithmic limit denoted by φ(x, y) is given by

φ(x, y) := lim
β→∞

1
β

log λ(x, y).

The zero-temperature logarithmic limit of the escape rates of state x is denoted
by 0(x) and given by

0(x) := − lim
β→∞

1
β

log
(∑

y

λ(x, y)
)
=−max

y
φ(x, y).

The logarithmic-asymptotic transition probability is given by e−βU (x,y) where

U (x, y) := −0(x)−φ(x, y).

We have U (x, y)> 0 for all x, y ∈ K . The smaller U (x, y) is, the larger is the prob-
ability of transition from state x to state y. Hence, the set of preferred successors
of x is defined by

{y ∈ K |U (x, y)= 0}.

When U (x, y) = 0, the probability of transition from x to y is high. Thus, we
consider the directed graph K D defined by the vertex set K and edge set {(x, y) |
U (x, y)= 0} where (x, y) indicates an oriented edge from x to y. The transition
rates are related to the reactivities by the relation

λ(x, y)= a(x, y)e−β(0(x)+U (x,y)).

Using the Kirchhoff formula on K D , the stationary occupation ρ is given by

ρ(x)=
W (x)

Z
, where W (x)=

∑
Tx

∏
(y,z)∈Tx

λ(y, z) and Z=
∑
x∈K

W (x)

where the sum runs over all oriented edges (y, z) in the in-tree Tx . The low-
temperature asymptotic of the stationary occupation is given in:

Theorem [Maes et al. 2014, Theorem 2.1]. There is ε > 0 so that as β→∞,

ρ(x)=
1
Z

A(x)eβ(0(x)−2(x))(1+ O(e−βε))

with
2(x) :=min

Tx
U (Tx) for U (Tx) :=

∑
(y,y′)∈Tx

U (y, y′),

A(x) :=
∑

Tx∈M(x)

∏
(y,y′)∈Tx

a(y, y′)= eo(β)

where the last sum runs over all spanning trees minimizing U (Tx) (i.e., Tx ∈ M(x)
if 2(x)=U (Tx)).
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Figure 1. The directed graph K D .

The case a� 1 satisfies detailed balance, and the model is then running on a
single ring while in the case a� 1 the rings are uncoupled and detailed balance
happens again for a = 0. We thus consider the case a = 1 corresponding to the
nonequilibrium situation. The states, or energy levels, on the outer ring are denoted
by (0, i) and on the inner ring by (1, i), where i = 1, . . . , N . The energies are
denoted by Ei , i = 1, . . . , N , and are such that E1 < · · ·< EN . The transition rates
on the outer ring are thus given by

λ((i, 0), (i + 1, 0))= eβ(Ei−Ei+1)/2, λ((i + 1, 0), (i, 0))= eβ(Ei+1−Ei )/2.

On the inner ring, the transition rates are constant and equal to one, that is,

λ((i, 1), (i + 1, 1))= λ((i + 1, 1), (i, 1))= 1.

The two rings are connected with transition rates constant and equal to one:

λ((i, n), (i, 1− n))= 1, where n ∈ {0, 1}.

The digraph K D modeling the ratchet is represented in Figure 1. In the present
case, for all x ∈ K , there exists an in-spanning tree Tx in K D , so that U (Tx)= 0,
and therefore, 2(x)= 0. Let D be the set of states for which 0(x)= 0; it is given
by D = {(1, 0), (i, 1), i = 1, . . . , N }. We denote f ' g if f = g + O(e−βε) as
β→∞. For x ∈ D, we have ρ(x) ' |M(x)|/Z, where |M(x)| is the number of
in-spanning trees in K D. For x /∈ D, the stationary distribution is exponentially
small since from the theorem it is given by ρ(x)' |M(x)|eβ0(x)/Z, with 0(x) < 0.
The stationary ratchet current in the clockwise direction is given by

JR = j ((i + 1, 0), (i, 0))+ j ((i + 1, 1), (i, 1)), for i = 1, . . . , N ,

where j (x, y)= λ(x, y)ρ(x)− λ(y, x)ρ(y).
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For i = 1,

JR = j ((2, 0), (1, 0))+ j ((2, 1), (1, 1)).

On the outer ring, j ((2,0), (1,0))=λ((2,0), (1,0))ρ(2,0)−λ((1,0), (2,0))ρ(1,0)
with

λ((1, 0), (2, 0))' 0, λ((2, 0), (1, 0))= e(E2−E1)β/2,

ρ(2, 0)'
|M(2, 0)|

Z
eβ0(2,0) =

|M(2, 0)|
Z

e−(E2−E1)β/2,

so that j ((2, 0), (1, 0))' |M(2, 0)|/Z.
On the inner ring, j ((2,1),(1,1))=λ((2,1),(1,1))ρ(2,1)−λ((1,1),(2,1))ρ(1,1)

with

λ((2, 1), (1, 1))= λ((1, 1), (2, 1))= 1,

ρ(2, 1)'
|M(2, 1)|

Z
, ρ(1, 1)'

|M(1, 1)|
Z

,

so that j ((2, 1), (1, 1)) ' (|M(2, 1)| − |M(1, 1)|)/Z. The ratchet current is thus
given by

JR '
1
Z
(|M(2, 0)| + |M(2, 1)| − |M(1, 1)|).

Considering converging arborescences, the Laplacian matrix of a directed graph is
defined by L = D− A where D is the diagonal out-degree matrix and A= (Ai j ) is
the adjacency matrix such that Ai j is the number of directed edges from i to j . The
rows and columns of L are indexed by the vertices of the graph. Here, we index
it first by the states on the outer ring and then the ones on the inner ring, that is
(1, 0), (2, 0), . . . , (N , 0), (1, 1), (2, 1), . . . , (N , 1). The Tutte matrix tree theorem
[Aigner 2007] relates the number of spanning arborescences converging to x in K D

to the cofactors of the Laplacian det L x,y . Let x ∈ K . Then for all y ∈ K ,

|M(x)| = (−1)x+y det L x,y .

In particular, for y = x , we have |M(x)| = det L x . Therefore, we have

JR '
1
Z
(det L(2,1)+ det L(2,0)− det L(1,1)).

The Laplacian matrix is given by

L =
(

F G
Id C

)
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where F is the N × N lower triangular matrix given by

F =


1
−1 1

. . .
. . .

−1 1
−1 0 1

 ,

G is the N × N matrix such that all coefficients are zero except G(1,0),(1,1) =−1,
the matrix Id is the N × N identity matrix, and C is the circulant matrix

C =



3 −1 −1

−1 3
. . .

. . .
. . .

. . .

. . .
. . . −1

−1 −1 3


.

2. Calculation of the ratchet current

From [Maes et al. 2014], the numerator of JR is given by

det L(2,1)+ det L(2,0)− det L(1,1) = det BN−1− 2 det BN−2− 2

where BN is the N × N tridiagonal matrix with 3 on the diagonal and −1 on the
two off-diagonals which satisfies the recurrence relation det BN = 3 det BN−1 −

det BN−2 with det B1 = 3 and det B2 = 8. By solving the associated characteristic
equation, we get

det BN =
5− 3
√

5
10

(
3−
√

5
2

)N

+
5+ 3
√

5
10

(
3+
√

5
2

)N

.

The normalization factor is given by

Z=
∑
x∈K

∑
Tx

∏
(y,z)∈Tx

λ(y, z)'
∑
x∈D

|M(x)| =
∑
x∈D

det L x .

The sum is over the states in D since the contribution of the states which are not
in D is exponentially damped. Therefore, we have

Z' det L(1,0)+
N∑

i=1

det L(i,1). (1)

We have
det L(1,0) = det C.
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The circulant matrix C has eigenvalues µ j = 3−2 cos(2π j/N ), j = 0, 1, . . . , N−1
[Biggs 1993]. Hence,

det L(1,0) =
N−1∏
j=0

(3− 2 cos(2π j/N ))=U 2
N−1(
√

5/2)

where UN is the N -th degree Chebyshev polynomial of the second kind. Thus,

det L(1,0) =
(

3+
√

5
2

)N

+

(
3−
√

5
2

)N

− 2. (2)

From the Tutte matrix tree theorem, the cofactor (−1)N+i det L(i,1) is equal to the
number of converging arborescences to (i, 1) and is equal to the cofactor of the
Laplacian where row (i, 1) and any column are removed. Since the only nonzero
element of G is in column indexed by (1, 1), we choose to remove that one, so that

|M(i, 1)| = (−1)(N+i)+(N+1) det L(i,1),(1,1) = (−1)i+1 det C(i,1),(1,1) (3)

since F is lower triangular. On the other hand, by adding to the first column of C
all the other ones, we have

det C =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1

1 3
. . .

−1
. . .

. . .

. . .
. . . −1

1 −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

N∑
i=1

(−1)i+1 det C(i,1),(1,1). (4)

Putting (1), (2), (3), and (4) together, we have

Z' 2 det C = 2
(

3+
√

5
2

)N

+ 2
(

3−
√

5
2

)N

− 4.

Up to exponentially small corrections e−βε , the ratchet current is given for all N
by

JR '

(
5+3
√

5
10

(
3+
√

5
2

)N−1

+
5−3
√

5
10

(
3−
√

5
2

)N−1

−
5+3
√

5
5

(
3+
√

5
2

)N−2

−
5−3
√

5
5

(
3−
√

5
2

)N−2

−2
)/(

2
(

3+
√

5
2

)N

+2
(

3−
√

5
2

)N

−4
)
.

As a consequence, in the large system size limit the current saturates and has the
limit

lim
N→∞

JR '
1
2
−

1
√

5
.
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