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AND MARTIN OSTOJA-STARZEWSKI

This paper aims to establish a variational framework for materials having cou-
pling interactions between electromagnetic and mechanical fields. Based on
coupled constitutive equations and the alternative field equations, a general varia-
tional form, imposing no restriction on the fields involved, is given. Subsequently,
the result is derived for the case when satisfaction of the strain-displacement equa-
tion is presumed as a restriction. Next, the variational forms for kinematically
admissible processes and, in turn, for kinematically admissible displacement-
potential processes are found. Finally, the principles characterizing the stress
field instead of the displacement field are formulated. The results of the present
work provide a framework in which the satisfaction of initial boundary conditions
is inherently considered. The proposed framework furnishes an alternative path
for the implementation of numerical approaches for PDEs governing the motion
of electromagneto-elastic materials.

1. Introduction

Electromagneto-elastic materials, a category of materials that contains both piezo-
electric and piezomagnetic phases, are being widely used in several devices includ-
ing ultrasonic transducers and microactuators, thermal-imaging devices, health-
monitoring devices, biomedical devices, biomimetics, and energy harvesting [Li
2003; Miehe et al. 2011]. Also, these materials have found applications in mi-
crowave electronic and optoelectronic instruments because of their flat frequency
response as well as the capability of energy conversion [Li and Kardomateas 2006].
Consequently, to mathematically understand the physics of such materials, several
studies have been carried out by employing a continuum approach in which classi-
cal laws are generalized to account for the coupling between mechanical, electric,
and magnetic fields. Some of the most prominent contributions in this regard can be
found in [Guggenheim 1936a; 1936b; Penfield et al. 1963; Brown 1966; Coleman
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and Dill 1971; Tiersten and Tsai 1972; Mindlin 1972; Nelson 1979; Maugin 1988;
Eringen and Maugin 1990; Landau et al. 1984].

In the linearized classical isothermal continuum mechanics, the governing equa-
tions to model a physical phenomenon are the balance of mass and balances of lin-
ear and angular momenta along with desired constitutive equations for the phenom-
enon at hand. These, accompanied by the initial and boundary conditions, often
lead to a mixed initial-boundary value problem (IBVP) in terms of the displacement
field. However, [Ignaczak 1959; 1963] proposed a robust alternative approach in
which the governing equations are formulated in terms of stress. This formulation
motivated several researchers to assess the potential of this strategy, which offers a
much more straightforward framework when the boundary conditions are of Neu-
mann type. For a comprehensive review of those works, the readers are referred
to the review paper [Ostoja-Starzewski 2019]. Among them, the most pioneering
works are convolutional variational principles, i.e., variational principles contain-
ing convolution products with respect to time, developed in [Gurtin 1963; 1964].
In these works, the framework has been rationally developed to be applicable
for mixed initial-boundary value problems, leading to integro-partial-differential
equations and the corresponding convolutional variational principles. From there
on, [Nickell and Sackman 1968] generalized Gurtin’s work to thermoelasticity and,
subsequently, a specific form of such formulation has been obtained for piezoelec-
tric materials in [Oden and Reddy 1983]. Recently, one can note the results given
in [El-Karamany and Ezzat 2011] for two-temperature thermoelasticity.

Owing to the fact that the analytical methods are only sufficient tools for prob-
lems with simple geometry and rather strict assumptions, variational principles are
of great importance in engineering sciences as they pave the way for developing
numerical approaches to solve PDEs with either more relaxed assumptions or arbi-
trary/complicated boundary conditions. The finite element, mesh-free particle, and
Ritz methods are examples stemming from variational principles. As an alternative
application of such principles, we note the homogenization theory which supplies
bounds for properties of materials (e.g., [Hashin and Shtrikman 1962]). In the case
of solid mechanics, however, the classical variants of seminal work of [Washizu
1957] are not applicable to the case of a mixed problem of elastodynamics since
the prescribed initial velocity is not realized and the knowledge of displacement
field at a later time is only presupposed [Gurtin 1964]. Therefore, starting with
[Gurtin 1964], as an alternative approach appropriate to elastodynamics, convolu-
tional variational principles have been developed. The elegance of the approach
consists of imposing the initial conditions implicitly in the form of a body force
and thus assuring appropriate satisfaction of them.

Concerning the variational principles for electromagneto-elastic materials, sev-
eral studies have been carried out dating back to [Toupin 1956].Variational principles
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for various problems including piezoelectric ceramics have been proposed in [He
2000; 2001a; 2001b; 2001c]. Convolutional regionwise variational principles for
thermopiezoelectric media can be found in [Bo 2003]. Also, for the nonlinear
case, some studies have been done, e.g., by making use of the first law of thermo-
dynamics in [Kuang 2008]. Convolutional variational principles have then been
proposed for the case of nonlinear electromagneto-elastic solids in [Wang et al.
2010]. Recently, on the basis of incremental variational principles, a general frame-
work for functional dissipative materials has been obtained in [Miehe et al. 2011]
and employed in [Miehe and Rosato 2011] to analyze piezoelectric ceramics.

To the best of the authors’ knowledge, a comprehensive and systematic gener-
alization of the results initially developed in [Gurtin 1964] for the case of linear
electromagneto-elastic materials is not available in the literature and this challenge
defines the focus of the present study. Indeed, it is of interest to enrich the nu-
merical framework relevant to the analysis of electromagneto-elastic materials be-
cause of the progressive increase in the application of such materials in the realm
of structural mechanics; see, for example, a recent review [Irschik et al. 2010].
As an example of the recent development in the use of smart materials, one can
mention the recent paper [Schoeftner and Irschik 2016] in which the design of
piezoelectric devices controlling the level of stress in thin bars has been discussed.
The methodology to form and prove the results obtained in this study, similar to
the presentation given in [Nickell and Sackman 1968], is based on [Gurtin 1964].
For the sake of completeness of the presentation, we collect in Appendix A the
mathematical concepts and lemmas originally proved in [Gurtin 1964] along with
a corollary obtained in [Nickell and Sackman 1968]. Alternative field equations,
the main ground for establishing the corresponding convolutional variational prin-
ciples, for electromagneto-elastic materials are described in Appendix B. Field
equations, along with some continuity conditions, are given in detail in Section 2.
Subsequently, analogously to [Gurtin 1964], the convolutional variational forms of
the alternative integro-partial-differential field equations are obtained and proved
comprehensively in Section 3. As mentioned earlier, the derivations in the main
body of the present study can be useful in the sense of analysis and design of
electromagneto-elastic materials in both practice and research.

2. Problem statement

In this section, the field equations for an electromagneto-elastic material are listed.
Throughout the paper we indicate the position vector and time parameter, respec-
tively, by x and t . Also, the standard index notation for Cartesian tensors is used.
The mathematical notation used herein along with some lemmas and theorems that
are the primary tools to obtain the results of this paper can be found in Appendix A.
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Let V denote a closed and bounded subset of 3D Euclidean space, with interior
V and boundary ∂V occupied by a deformable electromagneto-elastic material.
Furthermore, assume that V is a regular region in the sense of [Gurtin 1964].
Let ui (x, t), σi j (x, t), εi j (x, t), fi (x, t), Ei (x, t), Di (x, t), Bi (x, t), and Hi (x, t)
with (x, t) ∈ V ×[0,∞), respectively, denote the components of the displacement
vector, stress tensor, strain tensor, body force, electric field, electric displacement
field, magnetic field, and magnetic field strength. In addition, scalar fields ρ(x, t),
qe(x, t), ϕ(x, t), and ψ(x, t) denote the mass density, charge density, electric po-
tential, and magnetic potential, respectively.

Let ∂Vi denote a subset of ∂V over which i = u, σ , ϕ, D, ψ, B is prescribed
with the condition

∂Vu ∪ ∂Vσ = ∂V, ∂Vu ∩ ∂Vσ =∅,

∂Vϕ ∪ ∂VD = ∂V, ∂Vϕ ∩ ∂VD =∅,

∂Vψ ∪ ∂VB = ∂V, ∂Vψ ∩ ∂VB =∅.

(2-1)

Moreover, the symbol ∂Vi with i = u, σ , ϕ, D, ψ, B stands for the closure of
the aforementioned sets. Furthermore, the quasistatic electromagnetic condition
is presumed; that is, it is assumed that the electric and magnetic fields are both
curl free. This approximation leads to accurate results for instance, as a particular
case, in analysis of nonmagnetizable elastic dielectrics when the wavelengths of
mechanical waves are negligible if compared to wavelengths of electromagnetic
waves of the same frequency [Eringen and Maugin 1990]. Accordingly, the gov-
erning equations read [Li 2003]

ρüi = σi j, j + Fi on V × (0,∞),

Di,i = qe on V × (0,∞),

Bi,i = 0 on V × (0,∞),

(2-2)

in which σi j = σ j i . Also, kinematic equations are

εi j = u(i, j) =
1
2(ui, j + u j,i ) on V × (0,∞),

Ei =−ϕ,i on V × (0,∞),

Hi =−ψ,i on V × (0,∞),

(2-3)

in which u(i, j) denotes the symmetric part of the second-order tensor ui, j .
Next, the constitutive equations need to be set. To that end, one needs to define

which of the physical quantities are dependent variables and which are independent
ones. Thus, one can define various forms of constitutive equations based on differ-
ent independent variables. In general, in a nonlinear theory, it is a difficult task to
obtain one form of the constitutive equations from the other. Nevertheless, in linear
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theory, the necessary Legendre transformations are easy to manipulate and readily
obtain the desired variants of constitutive equations [Pérez-Fernández et al. 2009].
Assuming the isothermal condition and hyperelasticity, one can obtain the relations

σi j = Ci jklεkl − eE
ki j Ek − eH

ki j Hk on V × (0,∞),

Di = eE
iklεkl + κ

E
i j E j + κ

E H
i j H j on V × (0,∞),

Bi = eH
iklεkl + κ

E H
ji E j + κ

H
i j H j on V × (0,∞),

(2-4)

with symmetry conditions

Ci jkl = Ckli j = C j ikl = Ci jlk on V ,

eE
ki j = eE

k ji , eH
ki j = eH

kji on V ,

κE
i j = κ

E
ji , κH

i j = κ
H
ji on V .

(2-5)

Applying the Legendre transformation, one can find

εi j = Si jklσkl + d E
ki j Ek + d H

ki j Hk on V × (0,∞),

Di = d E
iklσkl +χ

E
i j E j +χ

E H
i j H j on V × (0,∞),

Bi = d H
iklσkl +χ

E H
ji E j +χ

H
i j H j on V × (0,∞),

(2-6)

with symmetry conditions

Si jkl = Skli j = S j ikl = Si jlk on V ,

d E
ki j = d E

k ji , d H
ki j = d H

kji on V ,

χ E
i j = χ

E
ji , χH

i j = χ
H
ji on V .

(2-7)

In (2-4) and (2-6) the coefficients Si jkl , Ci jkl , d E
ki j , d H

ki j , eE
ki j , eH

ki j , χ
E
i j , χH

i j , κE
i j ,

κH
i j , χ E H

i j , and κE H
i j , all functions of position, represent, respectively, components

of the compliance tensor, stiffness tensor, direct piezoelectric tensor, direct piezo-
magnetic tensor, reverse piezoelectric tensor, reverse piezomagnetic tensor, permit-
tivity under constant stress, permeability under constant stress, permittivity under
constant strain, permeability under constant strain, magnetoelectric tensor under
constant stress, and magnetoelectric tensor under constant strain. The aforemen-
tioned variables are related as

Si jklCi j pq = δkpδlq on V ,

d E
ki j = Spqi j eE

kpq on V ,

d H
ki j = Spqi j eH

kpq on V ,

χ E
i j = SpqrseE

ipqeE
jrs + κ

E
i j on V ,

χH
i j = SpqrseH

ipqeH
jrs + κ

H
i j on V ,

χ E H
i j = SpqrseH

jpqeE
irs + κ

E H
i j on V .

(2-8)
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To form the IBVP, define the boundary conditions

mechanical boundary conditions
{

ui = ûi (x, t) on ∂Vu×[0,∞),
ti = t̂i (x, t) on ∂Vσ ×[0,∞),

electric boundary conditions
{
ϕ = ϕ̂(x, t) on ∂Vϕ ×[0,∞),
d = d̂(x, t) on ∂VD×[0,∞),

magnetic boundary conditions
{
ψ = ψ̂(x, t) on ∂Vψ ×[0,∞),
b = b̂(x, t) on ∂VB ×[0,∞),

(2-9)

where ti = σi j n j , d = Di ni , b = Bi ni , and the initial conditions are

ui (x, 0)= u0
i (x), x ∈ V ,

u̇i (x, 0)= v0
i (x), x ∈ V .

(2-10)

In (2-9), ûi (x, t), t̂i (x, t), ϕ̂(x, t), d̂(x, t), ψ̂(x, t), and b̂(x, t) are, respectively,
the prescribed displacement components, traction components, electric potential,
electric displacement, magnetic potential, and magnetic field over the boundary. In
addition, by the displacement-potential boundary conditions we mean

ui = ûi (x, t) on ∂Vu×[0,∞),

ϕ = ϕ̂(x, t) on ∂Vϕ ×[0,∞),

ψ = ψ̂(x, t) on ∂Vψ ×[0,∞).

(2-11)

Similar to [Gurtin 1964], for reference in the remainder of the paper, the regularity
assumptions are listed here:

(i) ρ > 0 is continuously differentiable on V ,

(ii) C, e, κ and S, d,χ are continuously differentiable on V and meet (2-5), (2-7),
and (2-8).

(iii) u0(x) is continuously differentiable on V ,

(iv) v0(x) is continuously differentiable on V ,

(v) f and qe are continuously differentiable on V ,

(vi) û, ϕ̂, and ψ̂ are continuous on ∂Vu×[0,∞), ∂VD×[0,∞), and ∂VB×[0,∞),
respectively, and

(vii) t̂ , d̂, and b̂ are piecewise continuous on ∂Vσ × [0,∞), ∂VD × [0,∞), and
∂VB ×[0,∞), respectively.

Since our goal is to obtain variational principles for electromagneto-elastic materi-
als, analogous to [Gurtin 1964], we define what we mean by an admissible process:

Definition. An ordered array S= [u, ε, σ , E, H, D, B, ϕ, ψ] is called an admissi-
ble process on V ×[0,∞) provided that ui ∈C1,2, εi j ∈C0,0, σi j ∈C1,0, Di ∈C1,0,
Bi ∈ C1,0, ϕ ∈ C1,0, ψ ∈ C1,0, Ei ∈ C0,0, Hi ∈ C0,0, εi j = ε j i , and σi j = σ j i .
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In addition, a solution of the mixed initial-boundary value problem (i.e., IBVP)
is an admissible process which meets (2-2), (2-3), (2-4), (2-9), and (2-10).

3. Variational principles

Now, for an electromagneto-elastic material, convolutional variational forms, origi-
nally developed for the case of pure elasticity in [Gurtin 1964], will be derived. The
first part of the results, i.e., Theorems 1, 2, and 3, is devoted to the characterization
of [u, ε, σ , E, H, D, B, ϕ, ψ]. In the second part, as a corollary of Theorem 3,
a variational form characterizing [u, ϕ, ψ] is set. Finally, the results of the third
part are applied to the characterization of [σ , ϕ, ψ]. In the results, ti , t̃i , d, d̃, b,
and b̃ will be consistently used in place of σi j n j , σ̃i j n j , Di ni , D̃i ni , Bi ni , and B̃i ni ,
respectively. Additionally, the definitions of h(t) and f b

i (x, t), which shall be used
in the sequel, have been given in (B-1).

3.1. Variational principles characterizing [u, ε, σ, E, H, D, B, ϕ,ψ].
First let us derive a general form which imposes no restriction on the fields:

Theorem 1. Let � denote the set of all admissible processes. Let S = [u, ε, σ , E,
H, D, B, ϕ, ψ] be an element of � and define the functional ϑt on � at each time,
say t ∈ [0,∞), in the form of

ϑt(S)=
1
2

∫
V

Ci jkl(x)[h ∗ εi j ∗ εkl](x, t) dx−
∫

V
[h ∗ σi j ∗ εi j ](x, t) dx

−

∫
V

eE
ki j (x)[h ∗ εi j ∗ Ek](x, t) dx−

∫
V

eH
ki j (x)[h ∗ εi j ∗ Hk](x, t) dx

−
1
2

∫
V
κE

i j (x)[h ∗ Ei ∗ E j ](x, t) dx−
1
2

∫
V
κH

i j (x)[h ∗ Hi ∗ H j ](x, t) dx

−

∫
V
κE H

i j (x)[h ∗ Ei ∗ H j ](x, t) dx+
∫

V
[h ∗ Di ∗ Ei ](x, t) dx

+

∫
V
[h ∗ Hi ∗ Bi ](x, t) dx−

∫
V
[h ∗ (Di,i − qe) ∗ϕ](x, t) dx

−

∫
V
[h ∗ Bi,i ∗ψ](x, t) dx+

1
2

∫
V
ρ(x)[ui ∗ ui ](x, t) dx

−

∫
V
[(h ∗ σi j, j + f b

i ) ∗ ui ](x, t) dx+
∫
∂Vσ
[h ∗ (ti − t̂i ) ∗ ui ](x, t) dx

+

∫
∂Vu

[h ∗ ti ∗ ûi ](x, t) dx+
∫
∂Vϕ
[h ∗ d ∗ ϕ̂](x, t) dx

+

∫
∂Vψ
[h ∗ b ∗ ψ̂](x, t) dx+

∫
∂VD

[h ∗ (d − d̂) ∗ϕ](x, t) dx

+

∫
∂VB

[h ∗ (b− b̂) ∗ψ](x, t) dx. (3-1)
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Then, S is a solution of the mixed initial-boundary value problem if and only if
δϑt(S)= 0 over �, within the time interval t ∈ [0,∞).

Proof. Let S̃ = [ũ, ε̃, σ̃ , Ẽ, H̃, D̃, B̃, ϕ̃, ψ̃] ∈ � be an admissible process and
suppose that S+ λS̃ ∈� for all real values of λ. Using (3-1), (A-5), the symmetry
condition (2-5), the divergence theorem, and properties of convolution product
given in Appendix A, we obtain

δS̃ϑt(S)=
∫

V
[h ∗ (Ci jklεkl − eE

ki j Ek − eH
ki j Hk − σi j ) ∗ ε̃i j ](x, t) dx

+

∫
V
[h∗(−eE

ki jεi j−κ
E
ik Ei−κ

E H
ki Hi+Dk)∗ Ẽk](x, t) dx

+

∫
V
[h∗(−eH

ki jεi j−κ
E H
ik Ei−κ

H
ik Hi+Bk)∗ H̃k](x, t) dx

+

∫
V
[h∗(Ei+ϕ,i )∗ D̃i ](x, t) dx+

∫
V
[h∗(Hi+ψ,i )∗ B̃i ](x, t) dx

−

∫
V
[h∗(Di,i−qe)∗ϕ̃](x, t) dx−

∫
V
[h∗Bi,i ∗ψ̃](x, t) dx

+

∫
V
[h∗(u(i, j)−εi j )∗σ̃i j ](x, t)dx−

∫
V
[(h∗σi j, j+ f b

i −ρui )∗ũi ](x, t) dx

−

∫
∂Vu

[h∗(ui−ûi )∗ t̃i ](x, t) dx+
∫
∂Vσ
[h∗(ti− t̂i )∗ũi ](x, t) dx

−

∫
∂Vϕ
[h∗(ϕ−ϕ̂)∗d̃](x, t) dx−

∫
∂Vψ
[h∗(ψ−ψ̂)∗b̃](x, t) dx

+

∫
∂VD

[h∗(d−d̂)∗ϕ̃](x, t) dx+
∫
∂VB

[h∗(b−b̂)∗ψ̃](x, t) dx. (3-2)

First, based on Theorem B.2, for every S̃ ∈ � (0 ≤ t <∞) we immediately find
δS̃ϑt(S)= 0 when S is a solution of the IBVP, implying δϑt(S)= 0 over �. Con-
versely, suppose δϑt(S)= 0 over �. Let S̃ = [ũ, 0, 0, 0, 0, 0, 0, 0, 0] ∈� where ũ
and all its spatial derivatives are identical to zero on ∂V ×[0,∞). Then, based on
δϑt(S)= 0, (3-2), and Lemma A.1, we obtain h∗σi j, j+ f b

i −ui = 0 on V ×[0,∞).
Next, suppose ũ and all its spatial derivatives are identical to zero on ∂Vu×[0,∞).
Based on Lemma A.2, h ∗σi j, j+ f b

i −ui = 0 on V ×[0,∞), δϑt(S)= 0, and (3-2),
we have h ∗ (ti − t̂i )= 0 on ∂Vσ ×[0,∞). Since h 6= 0, the property of convolution
reads (ti− t̂i )=0 on ∂Vσ×[0,∞). Considering (2-5), by the same token,−eE

ki jεi j−

κE
ki Ei−κ

E H
ki Hi+Dk = 0 on V×(0,∞) and−eH

ki jεi j−κ
E H
ik Ei−κ

H
ki Hi+Bk = 0 on

V × (0,∞) can be obtained. With the same logic mentioned so far, one can readily
deduce (2-2)2–3, (2-3)2–3, and (2-9)4,6. Next, let S̃ = [0, ε̃, 0, 0, 0, 0, 0, 0, 0] ∈� in
which ε̃ is a symmetric second-order tensor and zero-valued on the whole boundary
at all times. Thus, the symmetry of the constitutive equations and symmetry of σ ,
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δϑt(S)=0, (3-2), and Lemma A.1 imply h∗(Ci jklεkl−eE
ki j Ek−eH

ki j Hk−σi j )=0 on
V ×[0,∞), leading to (2-4)1. Similarly, by taking S̃ = [0, 0, σ̃ , 0, 0, 0, 0, 0, 0] in
which σ̃ is a symmetric second-order tensor and zero-valued on the whole boundary
at all times, considering symmetry of εi j , we conclude (2-3)1. Moreover, let us
define S̃ = [0, 0, σ̃ , 0, 0, 0, 0, 0, 0] ∈ � in which σ̃ is a symmetric second-order
tensor and zero-valued on the boundary ∂Vσ at all times. By taking into account
(2-3)1, δϑt(S) = 0, (3-2), and Lemma A.3, we immediately find ui − ûi = 0 on
∂Vu × [0,∞). Also, by having S̃ = [0, 0, 0, 0, 0, D̃, 0, 0, 0] in which D̃ is zero
on ∂VD at all times, using (2-3)2, δϑt(S) = 0, (3-2), and the Corollary A.4, we
conclude h∗(ϕ−ϕ̂)= 0 on ∂Vϕ×[0,∞), which implies (2-9)3. In a similar fashion,
we have (2-9)5. Hence, based on Theorem B.2, δϑt(S)= 0 over � yields a solution
of the mixed initial-boundary value problem, and the proof is complete. �

Next, as the first example in which there is a restriction on fields, analogous to
[Gurtin 1964], we obtain a variational form of the mixed initial-boundary value
problem of the admissible process for which the kinematic equation (2-3)1 is iden-
tically satisfied.

Theorem 2. Let � denote the set of all admissible processes which satisfy (2-3)1.
Let S=[u, ε, σ , E, H, D, B, ϕ, ψ] be an element of� and define the functional4t

on � at each time, say t ∈ [0,∞), in the form of

4t(S)=
∫

V
[h ∗ σi j ∗ εi j ](x, t) dx−

1
2

∫
V

Si jkl(x)[h ∗ σi j ∗ σkl](x, t) dx

−

∫
V

d E
ki j (x)[h ∗σi j ∗Ek](x, t) dx−

∫
V

d H
ki j (x)[h ∗σi j ∗Hk](x, t) dx

−
1
2

∫
V
χ E

i j (x)[h ∗Ei ∗E j ](x, t) dx−
1
2

∫
V
χH

i j (x)[h ∗Hi ∗H j ](x, t) dx

−

∫
V
χ E H

i j (x)[h ∗Ei ∗H j ](x, t) dx+
∫

V
[h ∗Di ∗Ei ](x, t) dx

+

∫
V
[h ∗ Bi ∗Hi ](x, t) dx−

∫
V
[h ∗(Di,i−qe)∗ϕ](x, t) dx

−

∫
V
[h ∗ Bi,i ∗ψ](x, t) dx+

1
2

∫
V
ρ(x)[ui ∗ui ](x, t) dx

−

∫
V
[ f b

i ∗ui ](x, t) dx−
∫
∂Vu

[h ∗ ti ∗(ui− ûi )](x, t) dx

−

∫
∂Vσ
[h ∗ t̂i ∗ui ](x, t) dx+

∫
∂Vϕ
[h ∗d ∗ ϕ̂](x, t) dx

+

∫
∂VD

[h ∗(d− d̂)∗ϕ](x, t) dx+
∫
∂Vψ
[h ∗b∗ ψ̂](x, t) dx

+

∫
∂VB

[h ∗(b− b̂)∗ψ](x, t) dx. (3-3)
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Then, S is a solution of the mixed initial-boundary value problem if and only if
δ4t(S)= 0 over �, within the time interval t ∈ [0,∞).

Proof. Let S̃ = [ũ, ε̃, σ̃ , Ẽ, H̃, D̃, B̃, ϕ̃, ψ̃] ∈ � be an admissible process and
suppose that S+λS̃ ∈� for all real values of λ. By employing (3-3) and using (A-5),
the compatibility equation (2-3)1, the symmetry condition (2-7), the divergence
theorem, and properties of convolution product given in Appendix A, one can find

δS̃4t(S)=−
∫

V
[h ∗ (Si jklσkl + d E

ki j Ek + d H
ki j Hk − εi j ) ∗ σ̃i j ](x, t) dx

+

∫
V
[h∗(Dk−d E

ki jσi j−χ
E
ik Ei−χ

E H
ki Hi )∗ Ẽk](x, t) dx

+

∫
V
[h∗(Bk−d H

ki jσi j−χ
E H
ik Ei−χ

H
ik Hi )∗ H̃k](x, t) dx

−

∫
V
[(h∗σi j, j+ f b

i −ρui )∗ũi ](x, t) dx+
∫

V
[h∗(Ei+ϕ,i )∗ D̃i ](x, t) dx

+

∫
V
[h∗(Hi+ψ,i )∗ B̃i ](x, t) dx−

∫
V
[h∗(Di,i−qe)∗ϕ̃](x, t) dx

−

∫
V
[h∗Bi,i ∗ψ̃](x, t) dx−

∫
∂Vu

[h∗(ui−ûi )∗ t̃i ](x, t) dx

+

∫
∂Vσ
[h∗(ti− t̂i )∗ũi ](x, t) dx−

∫
∂Vϕ
[h∗(ϕ−ϕ̂)∗d̃](x, t) dx

−

∫
∂Vψ
[h∗(ψ−ψ̂)∗b̃](x, t) dx+

∫
∂VD

[h∗(d−d̂)∗ϕ̃](x, t) dx

+

∫
∂VB

[h∗(b−b̂)∗ψ̃](x, t) dx. (3-4)

Due to Theorem B.2, if S is a solution to the IBVP, then we conclude δS̃4t(S)= 0
for every S̃ ∈� (0≤ t <∞), leading us to δ4t(S)= 0 over �. Also, with the same
path given in Theorem 1, by using Lemmas A.1, A.2, and A.3, Corollary A.4,
(3-4), δ4t(S) = 0 over �, properties of convolution product, considering (2-6),
(2-7), (2-8), and Theorem B.2, the implication in the other direction is proved. �

Theorem 1 is the most general variational form giving a solution of the elas-
todynamics IBVP for electromagneto-elastic materials. The displacement-strain
kinematic equation in Theorem 2 is employed as the only restriction. Hence, one
can further restrict the admissible process by which it automatically satisfies some
of the field equations and boundary conditions. In doing so, define a kinematically
admissible process and consequently obtain a relevant variational form.

Definition. An admissible process is called a kinematically admissible process if
it satisfies the kinematic equations (2-3), the constitutive equations (2-4), and the
displacement-potential boundary conditions.
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Theorem 3. Let� denote the set of all kinematically admissible processes. Let S=
[u, ε, σ , E, H, D, B, ϕ, ψ] be an element of � and define the functional 6t(S) on
� at each time, say t ∈ [0,∞), in the form of

6t(S)=
1
2

∫
V
[h ∗ σi j ∗ εi j ](x, t) dx+

1
2

∫
V
ρ(x)[ui ∗ ui ](x, t) dx

−

∫
V
[ f b

i ∗ ui ](x, t) dx−
1
2

∫
V
[h ∗ Di ∗ Ei ](x, t) dx

−
1
2

∫
V
[h ∗ Bi ∗ Hi ](x, t) dx+

∫
V
[h ∗ qe ∗ϕ](x, t) dx

−

∫
∂Vσ
[h ∗ t̂i ∗ ui ](x, t) dx−

∫
∂VD

[h ∗ d̂ ∗ϕ](x, t) dx

−

∫
∂VB

[h ∗ b̂ ∗ψ](x, t) dx. (3-5)

Then, S is a solution of the mixed initial-boundary value problem if and only if
δ6t(S)= 0 over �, within the time interval t ∈ [0,∞).

Proof. Let S̃ = [ũ, ε̃, σ̃ , Ẽ, H̃, D̃, B̃, ϕ̃, ψ̃] be an admissible process and suppose
that S+λS̃ ∈� for all real values of λ. Obviously, it implies ũi = 0 on ∂Vu×[0,∞),
ϕ̃= 0 on ∂Vϕ×[0,∞), and ψ̃ = 0 on ∂Vψ×[0,∞). By making use of (3-5), (A-5),
kinematic equation (2-3), the constitutive equation (2-4), the symmetry condition
(2-5), and the divergence theorem, we obtain

δS̃6t(S)=−
∫

V
[(h ∗ σi j, j + f b

i − ρui ) ∗ ũi ](x, t) dx

−

∫
V
[h ∗ (Di,i − qe) ∗ ϕ̃](x, t) dx−

∫
V
[h ∗ Bi,i ∗ ψ̃](x, t) dx

+

∫
∂Vσ
[h ∗ (ti − t̂i ) ∗ ũi ](x, t) dx+

∫
∂VD

[h ∗ (d − d̂) ∗ ϕ̃](x, t) dx

+

∫
∂VB

[h ∗ (b− b̂) ∗ ψ̃](x, t) dx. (3-6)

As is clear when S is a solution of the mixed initial-boundary value problem, then
δS̃6t(S) = 0 for every admissible S̃ (0 ≤ t <∞), leading to δ6t(S) = 0 over �.
Conversely, similar to Theorem 1, since the array [ũ, ϕ̃, ψ̃] can be defined arbitrar-
ily, for every t ∈ [0,∞), on the domain and the boundary ∂V , then by employing
δ6t(S)= 0 over �, (3-6), Lemmas A.1 and A.2, properties of convolution product,
and Theorem B.2, we obtain the desired result. �

3.2. Variational principles characterizing [u, ϕ,ψ]. With the aid of Theorem 3,
it is straightforward to obtain a variational form in terms of the displacement field,
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electric potential, and magnetic potential. In this regard, define an admissible and
a kinematically admissible displacement-potential process as follows:

Definition. An array S = [u, ϕ, ψ] is called an admissible displacement-potential
process if u ∈ C1,2, ϕ ∈ C1,0, and ψ ∈ C1,0.

Definition. An array S=[u,ϕ,ψ] is called a kinematically admissible displacement-
potential process if it is an admissible displacement-potential process and meets the
displacement-potential boundary conditions.

Now, to obtain the desired variational form as a corollary of Theorem 3, the
constitutive equations (2-4) and kinematic relations (2-3) need to be employed
in (3-5). Doing so, one can easily obtain the variational form corresponding to a
kinematically admissible displacement-potential process:

Theorem 4. Let � denote the set of all kinematically admissible displacement-
potential processes. Let S = [u, ϕ, ψ] be an element of � and define the functional
2t on � at each time, say t ∈ [0,∞), in the form of

2t(S)=
1
2

∫
V
[h ∗ (Ci jkluk,l + eE

ki jϕ,k + eH
ki jψ,k) ∗ ui, j ](x, t) dx

+
1
2

∫
V
[h ∗ (eE

ikluk,l − κ
E
i j ϕ, j − κ

E H
i j ψ, j ) ∗ϕ,i ](x, t) dx

+
1
2

∫
V
[h ∗ (eH

ikluk,l − κ
E H
ji ϕ, j − κ

H
i j ψ, j ) ∗ψ,i ](x, t) dx

−

∫
V
[ f b

i ∗ ui ](x, t) dx+
∫

V
[h ∗ qe ∗ϕ](x, t) dx

+
1
2

∫
V
ρ(x)[ui ∗ ui ](x, t) dx−

∫
∂Vσ
[h ∗ t̂i ∗ ui ](x, t) dx

−

∫
∂VD

[h ∗ d̂ ∗ϕ](x, t) dx−
∫
∂VB

[h ∗ b̂ ∗ψ](x, t) dx. (3-7)

Then, S = [u, ϕ, ψ] is a solution of the mixed initial-boundary value problem if
and only if δ2t(S)= 0 over �, within the time interval t ∈ [0,∞).

3.3. Variational principles characterizing [σ, ϕ,ψ]. Theorem B.4 motivates us
to develop variational forms in terms of the stress field rather than the displace-
ment field, which is more desirable when the mechanical boundary conditions are
traction-type. In other words, it is of interest to obtain conditions by which the array
S = [σ , ϕ, ψ] is a solution to the mixed initial-boundary value problems. To this
end, let first define what we mean by a kinematically admissible electromagneto-
stress process:

Definition. An array [σ , ϕ, ψ] in which σ is a second-order symmetric tensor and
σ ∈C2,0, ϕ∈C2,0, andψ ∈C2,0 is called a kinematically admissible electromagneto-
stress process if ϕ = ϕ̂(x, t) on ∂Vϕ ×[0,∞) and ψ = ψ̂(x, t) on ∂Vψ ×[0,∞).



IBVP FOR ELECTROMAGNETO-ELASTIC MATERIALS: VARIATIONAL APPROACH 59

Now, the following statement for the kinematically admissible electromagneto-
stress processes holds true.

Theorem 5. Let � denote the set of all kinematically admissible electromagneto-
stress processes. Let S = [σ , ϕ, ψ] be an element of � and define the functional ϒt

on � at each time, say t ∈ [0,∞), in the form of

ϒt(S)=
1
2

∫
V

[h
ρ
∗ σi j, j ∗ σik,k

]
(x, t) dx−

∫
V

[( 1
ρ

f b
(i

)
, j) ∗ σi j

]
(x, t) dx

+
1
2

∫
V
[Si jklσi j ∗ σkl +χ

E
i j ϕ,i ∗ϕ, j +χ

H
i j ψ,i ∗ψ, j ](x, t) dx

+

∫
V
[−d E

iklσkl ∗ϕ,i − d H
iklσkl ∗ψ,i +χ

E H
i j ψ, j ∗ϕ,i ](x, t) dx

−

∫
V
[qe ∗ϕ](x, t) dx+

∫
∂Vu

[(
f b
i

ρ
− ûi

)
∗ ti

]
(x, t) dx

+

∫
∂Vσ

[h
ρ
∗ (t̂i − ti ) ∗ σi j, j

]
(x, t) dx+

∫
∂VD

[d̂ ∗ϕ](x, t) dx

+

∫
∂VB

[b̂ ∗ψ](x, t) dx. (3-8)

Then, S is a solution of the mixed initial-boundary value problem if and only if
δϒt(S)= 0 over �, within the time interval t ∈ [0,∞).

Proof. Let S̃ = [σ̃ , ϕ̃, ψ̃] be an ordered array in which σ̃i j = σ̃ j i , σ̃ ∈ C2,0, ϕ̃ ∈
C2,0, and ψ̃ ∈ C2,0 such that S+ λS̃ ∈� for all real values of λ— which implies
ϕ̃ = 0 on ∂Vϕ × [0,∞) and ψ̃ = 0 on ∂Vψ × [0,∞). By making use of (3-8),
(A-5), and symmetry condition (2-7), applying the divergence theorem, properties
of convolution, and the above-mentioned restriction, we find

δS̃ϒt(S)=
∫

V

[(
−

(h
ρ
∗σ(ik,k

)
, j)+Si jklσkl−d E

ki jϕ,k−d H
ki jψ,k−

( 1
ρ

f b
(i

)
, j)

)
∗σ̃i j

]
(x,t) dx

+

∫
V
[((d E

iklσkl −χ
E
i j ϕ, j −χ

E H
i j ψ, j ),i

− qe) ∗ ϕ̃](x, t) dx

+

∫
V
[(d H

iklσkl −χ
E H
ji ϕ, j −χ

H
i j ψ, j ),i

∗ ψ̃](x, t) dx

+

∫
∂Vu

[(h
ρ
∗ σik,k +

f b
i

ρ
− ûi

)
∗ t̃i
]
(x, t) dx

+

∫
∂Vσ

[h
ρ
∗ (t̂i − ti ) ∗ σ̃i j, j

]
(x, t) dx

−

∫
∂VD

[((d E
iklσkl −χ

E
i j ϕ, j −χ

E H
i j ψ, j )ni − d̂) ∗ ϕ̃](x, t) dx

−

∫
∂VB

[((d H
iklσkl −χ

E H
ji ϕ, j −χ

H
i j ψ, j )ni − b̂) ∗ ψ̃](x, t) dx. (3-9)
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Obviously, if S is a solution of the mixed initial-boundary value problem, then
δS̃ϒt(S)= 0 for every above-defined S̃ (0≤ t <∞) is implied from Theorem B.4,
resulting in δϒt(S)= 0 over�. Conversely, if δϒt(S)= 0 over�, then, by utilizing
Lemmas A.1, A.2, A.3, and A.5, and Theorem B.4, we obtain the desired result. �

When the mechanical boundary condition is entirely traction-type, say traction
problems, one can establish a more convenient variational form in terms of the
ordered array S = [σ , ϕ, ψ].

Definition. A kinematically admissible electromagneto-stress process is called a
dynamically admissible electromagneto-stress process if σi j n j = t̂i (x, t) on ∂Vσ ×
[0,∞).

Now, based on Theorem 5, it is straightforward to obtain a variational framework
for the dynamically admissible electromagneto-stress processes:

Theorem 6. Let � denote the set of all dynamically admissible electromagneto-
stress processes. Let S = [σ , ϕ, ψ] be an element of � and define the functional =t

on � at each time, say t ∈ [0,∞), in the form of

=t(S)=
1
2

∫
V

[h
ρ
∗ σi j, j ∗ σik,k

]
(x, t) dx−

∫
V

[( 1
ρ

f b
(i

)
, j) ∗ σi j

]
(x, t) dx

+
1
2

∫
V
[Si jklσi j ∗ σkl +χ

E
i j ϕ,i ∗ϕ, j +χ

H
i j ψ,i ∗ψ, j ](x, t) dx

+

∫
V
[−d E

iklσkl ∗ϕ,i − d H
iklσkl ∗ψ,i +χ

E H
i j ψ, j ∗ϕ,i ](x, t) dx

−

∫
V
[qe ∗ϕ](x, t) dx+

∫
∂VD

[d̂ ∗ϕ](x, t) dx+
∫
∂VB

[b̂ ∗ψ](x, t) dx. (3-10)

Then, S is a solution of the traction problem (i.e., ∂Vu=∅ ) if and only if δ=t(S)= 0
over �, within the time interval t ∈ [0,∞).

Proof. The proof is analogous to that of Theorem 5. �

4. Conclusion

In parallel to [Gurtin 1964], on the basis of alternative field equations for electro-
magneto-elastic materials, which are comprehensively given in Appendix B, the
convolutional variational principles have been derived and proved rigorously. In
Theorem 1, a general convolutional variational form, in which the admissible
process is not required to meet any field equations and/or boundary/initial con-
ditions, has been derived. The convolutional variational principle corresponding
to an admissible process that meets only the strain-displacement relation has been
formulated in Theorem 2. Next, the result for a more restricted process — namely,
a kinematically admissible process — has been formulated in Theorem 3. As a
corollary of Theorem 3, the convolutional variational principle corresponding to a
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kinematically admissible displacement-potential has been set in Theorem 4. Lastly,
through Theorems 5 and 6, variational principles in terms of stress rather than
displacement have been established, respectively, for general problems and trac-
tion problems. On the application side, the results of the present work provide a
robust basis for numerical analysis of electromagneto-elastic materials with general
material domain geometry and boundary/initial conditions.

Appendix A: Mathematical background

Here, for the sake of completeness, we summarize the basic concepts, originally
developed in [Gurtin 1964; Nickell and Sackman 1968], that are employed in the
main body of the paper. For a comprehensive discussion, the readers are referred
to those references.

Smoothness of a vector (or scalar) function f (or f ) is expressed mathematically
by C M,N , where M and N are nonnegative integers, with the following definition:
f (or f ) ∈ C M,N , in which f (or f ) is a function of position and time defined
on V × (0,∞), if and only if the functions f (n),i j ···k︸︷︷︸

m indices

(m = 0, 1, . . . ,M and n =
0, 1, . . . , N ) exist and are continuous.

The pair (x, t) ∈ ∂V ×[0,∞) is called a regular point if the unit outward nor-
mal n at x, and at any time, is continuous. Moreover, the function f is called a
piecewise regular function on boundary ∂Vi × [0,∞) with i = u, σ , ϕ, D, ψ, B
if and only if it is piecewise continuous on ∂Vi ×[0,∞) and continuous on every
regular point of that region. Additionally, for piecewise regular functions f and f̂
on ∂V i×[0,∞), we say f = f̂ if and only if the equality holds true for any regular
point (x, t) ∈ ∂Vi ×[0,∞).

The symbol f ∗g, in which f and g are functions of the position and continuous
functions of time defined on <× [0,∞), with < a subset of the Euclidean space,
indicates the convolution of two functions in the sense of

[ f ∗ g](x, t)=
∫ t

0
f (x, t − λ)g(x, λ) dλ, (x, t) ∈ <× [0,∞). (A-1)

In this regard, one can show that the following properties hold true:

f ∗ g = g ∗ f, (A-2)

f ∗ g = 0 ⇐⇒ f = 0∨ g = 0, (A-3)

f ∗ (g ∗ h)= ( f ∗ g) ∗ h = f ∗ g ∗ h. (A-4)

A functional is a real-valued function on a subset of a linear space. Denoting a
linear space by L and a subset of L by K , and defining 8(S) as a functional on K ,
we define

δS̃8(S)=
d

dλ
8(S+ λS̃)

∣∣∣∣
λ=0

(A-5)
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for all real numbers λ, where S, S̃ ∈ L , and S+ λS̃ ∈ K . And we say the variation
of8(S) is zero and write δ8(S)= 0 over K if and only if δS̃8(S) exists and equals
zero for all S̃ such that S, S̃ ∈ L , and S+ λS̃ ∈ K .

Now, we list four lemmas and one corollary proved in [Gurtin 1964; Nickell and
Sackman 1968]. However, we write them in such a way that they are applicable to
the present study.

Lemma A.1 [Gurtin 1964]. Let ϑ be a continuous function on V × [0,∞) and
suppose ∫

V
ϑ ∗ω(x, t) dx = 0, 0≤ t <∞, (A-6)

for every ω ∈ C∞,∞ which, together with its spatial derivatives, vanishes on ∂V ×
[0,∞). Then

ϑ = 0 on V ×[0,∞). (A-7)

Lemma A.2 [Gurtin 1964]. Let ϑ be a piecewise regular function on ∂Vi ×[0,∞)
with i = σ , D, B, and suppose∫

∂Vi

ϑ ∗ω(x, t) dx = 0, 0≤ t <∞, (A-8)

for every ω ∈ C∞,∞ that vanishes on ∂V j ×[0,∞) with, respectively, j = u, ϕ, ψ .
Then

ϑ = 0 on ∂Vi ×[0,∞). (A-9)

Lemma A.3 [Gurtin 1964]. Let ϑi be continuous on ∂Vu × [0,∞), and suppose
we have ∫

∂Vu

ϑi ∗ (ωi j n j )(x, t) dx = 0, 0≤ t <∞, (A-10)

for every ωi j ∈ C∞,∞ which, together with all of its spatial derivatives, vanishes
on ∂Vσ ×[0,∞) and has the property ωi j = ω j i . Then

ϑi = 0 on ∂Vu×[0,∞). (A-11)

The following statement is a corollary of Lemma A.3.

Corollary A.4 [Nickell and Sackman 1968]. Let ϑ be continuous on ∂Vϕ (or ∂Vψ )×
[0,∞) and suppose∫

∂Vϕ (or ∂Vψ )
[ϑ ∗ (ωi ni )](x, t) dx = 0, 0≤ t <∞, (A-12)

for every ωi ∈ C∞,∞ which, together with its spatial derivatives, vanishes on ∂VD
(or ∂VB)×[0,∞). Then

ϑ = 0 on ∂Vϕ (or ∂Vψ )×[0,∞). (A-13)
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Lemma A.5 [Gurtin 1964]. Let ϑi be a piecewise regular function on ∂Vσ×[0,∞),
and suppose ∫

∂Vσ
ϑi ∗ (ωi j, j )(x, t) dx = 0, 0≤ t <∞, (A-14)

for all ωi j ∈ C∞,∞ with ωi j = ω j i . Then

ϑi = 0 on ∂Vσ ×[0,∞). (A-15)

Appendix B: Integro-partial-differential field equations

The alternative integro-partial-differential field equations of motion of an electro-
magneto-elastic body are derived in this part. To start with, define the functions
[Gurtin 1964]

h(t)= t, 0≤ t <∞,

f b
i (x, t)= h ∗ f (x, t)+ ρ(x)(tv0

i (x)+ u0
i (x))

(B-1)

in which f b
i is a vector field obtained from the prescribed data (2-10) and the body

force. We now have the following alternative formulation of (2-2)1.

Theorem B.1. Let ui ∈ C0,2 and σi j ∈ C1,0 be a vector field and a second-order
symmetric tensor field, respectively. Then u and σ meet (2-2)1 and the associated
initial boundary conditions (2-10) if and only if

ρu = h ∗∇.σ + f b on V ×[0,∞). (B-2)

Proof. See [Gurtin 1964]. �

Now, with the help of the following theorem, which is the direct result of
Theorem B.1, one can define alternative field equations of the mixed initial-boundary
value problem.

Theorem B.2. The admissible process S = [u, ε, σ , E, H, D, B, ϕ, ψ] is a solu-
tion of the mixed initial-boundary value problem if and only if it satisfies (B-2),
(2-2)2–3, (2-3), (2-4), and (2-9).

Now, through the next two theorems, we obtain two variants of field equations
for electromagneto-elastic materials.

Theorem B.3. Let ui ∈ C2,2, ϕ ∈ C2,0, and ψ ∈ C2,0. Then the ordered array
[u, ϕ, ψ] corresponds to a solution of the mixed initial-boundary value problem if
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and only if the following equations hold true:

ui = h ∗ (Ci jkluk,l + eE
ki jϕ,k + eH

ki jψ,k), j + f b
i on V ×[0,∞),

(eE
ikluk,l − κ

E
i j ϕ, j − κ

E H
i j ψ, j ),i = qe on V ×[0,∞),

(eH
ikluk,l − κ

E H
ji ϕ, j − κ

H
i j ψ, j ),i = 0 on V ×[0,∞),

ui = ûi (x, t) on ∂Vu×[0,∞),

(Ci jkluk,l + eE
ki jϕ,k + eH

ki jψ,k)n j = t̂i (x, t) on ∂Vσ ×[0,∞),

ϕ = ϕ̂(x, t) on ∂Vϕ ×[0,∞),

(eE
ikluk,l − κ

E
i j ϕ, j − κ

E H
i j ψ, j )ni = d̂(x, t) on ∂VD×[0,∞),

ψ = ψ̂(x, t) on ∂Vψ ×[0,∞),

(eH
ikluk,l − κ

E H
ji ϕ, j − κ

H
i j ψ, j )ni = b̂(x, t) on ∂VB ×[0,∞).

(B-3)

Proof. First, suppose that relations (B-3) hold true. Thus, (2-9)1,3,5 are automat-
ically satisfied. Define ε, E, and H through (2-3). Also, define σ , D, and B
via (2-4). Then, (2-9)2,4,6 are identically satisfied due to the symmetry (2-5); the
above-defined ε, σ , and (2-5) together with (B-3)1 give (B-2); (B-3)2–3 together
with the above-defined D, B, ε, E, H , and symmetry (2-5) give (2-2)2–3. Hence,
by Theorem B.2, (B-3) is a solution to the mixed initial-boundary value problem.
On the other hand, (B-2), (2-2)2–3, (2-3), (2-4), (2-5), and (2-9) imply (B-3) and
the proof is complete. �

Theorem B.4. Let σi j ∈ C2,0, ϕ ∈ C2,0, and ψ ∈ C2,0 with σi j = σ j i . Then the
ordered array [σ , ϕ, ψ] is a solution to the mixed initial-boundary value problem
if and only if the following equations hold true:

Si jklσkl =

(h
ρ
∗σ(ik,k

)
, j)+

( 1
ρ

f b
(i

)
, j)+d E

ki jϕ,k+d H
ki jψ,k on V×[0,∞),

(d E
iklσkl−χ

E
i j ϕ, j−χ

E H
i j ψ, j ),i = qe on V×[0,∞),

(d H
iklσkl−χ

E H
ji ϕ, j−χ

H
i j ψ, j ),i = 0 on V×[0,∞),

h
ρ
∗σik,k+

1
ρ

f b
i = ûi (x, t) on ∂Vu×[0,∞),

σi j n j = t̂i (x, t) on ∂Vσ×[0,∞),

ϕ = ϕ̂(x, t) on ∂Vϕ×[0,∞),

(d E
iklσkl−χ

E
i j ϕ, j−χ

E H
i j ψ, j )ni = d̂(x, t) on ∂VD×[0,∞),

ψ = ψ̂(x, t) on ∂Vψ×[0,∞),

(d H
iklσkl−χ

E H
ji ϕ, j−χ

H
i j ψ, j )ni = b̂(x, t) on ∂VB×[0,∞).

(B-4)
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Proof. First, suppose that (B-4) holds. Hence, (2-9)2,3,5 are automatically satisfied.
Define u, E, and H through (B-2), (2-3)2, and (2-3)3, respectively. Also, define
ε, D, and B via (2-6). Then, (2-9)1,4,6 are identically satisfied; (2-6) and (2-8)
imply (2-4); (2-3)1 holds because of (B-4)1, (B-4)4, and the above-defined u and ε;
(B-4)2–3 together with the above-defined D, B, E, and H give (2-2)2–3. Hence, by
Theorem B.2, (B-4) is a solution to the mixed initial-boundary value problem. On
the other hand, (B-2), (2-2)2–3, (2-3), (2-4), (2-8), and (2-9) imply (B-4), and the
proof is complete. �
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