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We are trying to test the capacity of a simplified macroscopic virus-centric model
to simulate the evolution of the SARS CoV 2 epidemic (COVID 19) at the
level of a country or a geographical entity, provided that the evolution of the
conditions of its development (behaviors, containment policies) are sufficiently
homogeneous on the considered territory. For example, a uniformly deployed
lockdown on the territory, or a sufficiently uniform overall crisis management.
The virus-centric approach means that we favor to model the population dynamic
of the virus rather than the evolution of the human cases. In other words, we
model the interactions between the virus and its environment – for instance a
specific human population with a specific behavior on a territory, instead of
modeling the interactions between individuals. Therefore, our approach assumes
that an epidemic can be analyzed as the combination of several elementary epi-
demics which represent a different part of the population with different behaviors
through time. The modeling proposed here is based on the finite superposition
of Verhulst equations commonly known as logistic functions and used in dy-
namics of population. Modelling the lockdown effect at the macroscopic level
is therefore possible. Our model has parameters with a clear epidemiological
interpretation, therefore the evolution of the epidemic can be discussed and
compared among four countries: Belgium, France, Italy, and Spain. Parameter
optimization is carried out by a classical machine learning process. We present
the number of infected patients with SARS-CoV-2 and a comparison between
data from the European Centre for Disease Prevention and Control and the mod-
eling. In a general formulation, the model is applicable to any country with
similar epidemic management characteristics. These results show that a simple
two epidemics decomposition is sufficient to simulate with accuracy the effect
of a lockdown on the evolution of the COVID-19 cases.
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1. Introduction

Significant progress has been made in epidemic modeling thanks to new capabili-
ties of numerical simulation, improved mathematical modeling as well as artificial
intelligence techniques. These modeling also benefit of continuous improvement
in data quality. It is impossible to quote all the previous works done, and this is
not the purpose of this article. However, the authors suggest consulting [Wiemken
and Kelley April 2020] or [Colizza et al. December 2006], and among the most
recent publications [Jia et al. 2020] or [Caccavo 2020] and the interesting state
of the art concerning SIR and SEIR modelling published on the CNRS web site
[Bayette and Monticelli 2020; Gonçalves 2020; Perra and Gonçalves 2015], as
well as sites that allow interactive interfacing [Github]. The SIR model and their
various developments are probably the cleverest approach at the micro and meso
scale and permit to model a large range of macroscopic phenomena. Only a few
specific studies used a single logistic function for modeling epidemics, especially
for plant diseases and with interesting results, such as [Moral and Trapero 2009;
Mesha and Hau 2008; Holb et al. 2005]. Some others used a double logistic curve
for modeling HIV, including [Mahiane et al. 2017], or an r-hybrid model for the
same virus [Eaton et al. 2019]. Another promising way consists in using PGD-like
model reduction, as in [Chinesta and Cueto 2014], for analyzing epidemic kinetics
by parametric optimization.

A large part of the existing approaches tries to model the epidemic at the indi-
vidual scale, i.e. the microscopic scale, and consider the interactions between each
individual. Then, it induces a theoretical epidemic evolution at the macroscopic
level. A lot of contributions can be found in the literature using that method. This
study takes the reverse way and try to find interesting conclusions depending on
the microscopic scale, using a macroscopic modeling based on a generalization
of the logistic function. It is a common approach developed in theoretical or ap-
plied mechanics or physics to use this type of homogenization methods to go from
the macroscopic to the microscopic scale; see [Allaire 2001; Oleinik et al. 1992;
Sanchez-Palencia 1980; Suquet 1987; Rémond et al. 2016]. Our simplified virus-
centric macroscopic modeling is coupled with an automatic parameters optimiza-
tion by machine learning and gives interesting results for the SARS-CoV-2 early
2020 pandemic. However, predicting the outcome of the epidemic across countries
seems to be a lucky guess considering the variability of the containment policies
through time and countries. Therefore, readers must be warned that our predictions,
mutatis mutandis, cannot consider subsequent events such as a possible second
epidemic, that could appear after the end of the lockdown, or other unexpected
effects. However, the results obtained by this new and simplified approach seemed
to us instructive enough to have explained it here.
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2. General theory

2.1. Introduction to logistic function or sigmoid function. On a macroscopic
scale, the elementary logistic function law, known as Verhulst’s law [Verhulst 1838;
Daley and Gani 1999], has been known for a long time (1838) as a law useful for
classical modeling of epidemics at the macroscopic scale. It was first implemented
in population dynamics. We can consider in a first approach that a population y(t)
- a read-valued function of time - of individuals evolves according to a very simple
ordinary differential equation: dy

dt = y(N (y) − M(y)) where N (y) is the birth
rate and M(y) represents the death rate. If N (y) and M(y) are linear functions,
this equation can be written dy

dt = r y
(

1 − y
K

)
, a and K being strictly positive

real numbers. K is conventionally called the carrying capacity in population dy-
namics theory, r is the growth rate which leads to an increase of population if
y(0)= y0 < K , to a decrease if y0 > K and is stable if y0 = K .

The resolution of this simple ordinary differential equation allows to define the
logistic function

y(t)= K
[
1+

(K
y0
− 1

)
e−r t

]−1
, lim

t→+∞
y(t)= K . (1)

This function is the solution defined on [0, +∞[, of the system constituted by
y(0)= y0 and y′ = r y

(
1− y

K

)
.

2.2. General and macroscopic epidemic modeling. In this paper, we consider a
virus centric epidemic modeling, which is the modeling of the evolution of virus
through time in a specific environment. For this modeling we assume that the
number cases of people can be assimilated to the number of virus. The human
population of a given territory is the environment the virus has to survive into.
The environment is more or less welcoming depending of the human behavior,
the territory density and obviously the considered human sub-population. If we
consider the whole human population, the number of virus is assimilated to the
number of human COVID 19 cases. If we consider a more viable environment
for the virus, for instance the sub-population of human susceptible enough to be
hospitalized, the number of virus is assimilated of the number of hospitalizations.
The same logical thinking could be applied for the number of intensive cares, death
and recovery cases.

Therefore, we assume that the number of daily or cumulative cases of people
is characterized by a function Ek(t) of R in R. Ek(t) is defined over a given
geographical territory with k the studied phenomena (infection, hospitalization, in-
tensive care, death, recovery). Geographic territories should be chosen as territories
in which we notice a similar epidemic management (for instance, territories with
a similar lockdown intensity, as countries or other administrative entities, etc.).
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This function Ek(t) is itself the sum of continuous functions Ek
i (t) of R in R

with i ∈ {1, .., i, .., P}, characterizing the effect of the epidemic on P different
populations belonging to the same geographic territory:

Ek(t)=
i=P∑
i=1

Ek
i (t)

Finally, each population may have a series of Ci different behaviors over time, and
therefore

Ek
i (t)=

j=ci∑
j=1

qi j (t)Ek
i j (t),

Ek(t)=
i=P∑
i=1

j=Ci∑
j=1

qi j (t)Ek
i j (t)= qi j (t)Ek

i j (t),

where the Einstein summation convention is in effect for i and j , and where∑ j=C
j=1 qi j (t)= 1.
In the case of two different behaviors of a unique population i , the transition

function q(t) can be written as follow:

Ek
i (t)= q(t)Ek

i1(t)+ (1− q(t))Ek
i2(t) (2)

with q(t) a monotonically increasing function defined from [0,+∞[ to ]0, 1[.
Many functions may be suitable. We will define a specific one in the application
paragraph.

3. Basic application to the 2020 Covid-19 epidemic

In the case of the Covid-19 epidemic which particularly occurred in Europe at
the beginning of 2020, an interesting way to test the validity of such a model
consists in taking particularly simplified hypothesis: one population per country
(i = 1), two behaviors ( j = 2), with a continuous passage from one to the other.
Those two behaviors can be identified as the transition from a first behavior of the
population before the containment measures to a second behavior considering the
containment measures, especially the lockdown. Other subsequent behaviors could
have been considered and identified, such as the end of containment measures, or
a less rigorous behavior through time, lockdown, etc.

In our case, we define the elementary epidemic function Ek(t) with an equation
similar to (1):

Ek(t)= Lk[1+ e−rk(t−tSk)]
−1

(3)

Ek(t) thus, represents the cumulative number of cases of k (infected, hospitalized,
in intensive care, deceased, cured) at time t. We will note Lk the final number of
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cases of k in one epidemic, rk the characteristic of the epidemic kinetics for the
criterium k and tS the time taken to reach the peak of the epidemic, described on a
daily basis of new cases.

To model it, the following assumptions and development have been made:

H1: We assume that the global behavior of the population is given by the com-
bination of two functions Ek

1(t) and Ek
2(t), as mention by equation (2), which

characterize the difference of behavior, before and after the lockdown. As we
will consider the unique criterium “number of infected cases” we will not use the
exponent k anymore. Consequently, we have

E1(t)= L1[1+ e−r1(t−tS1)] and E2(t)= L2[1+ e−r2(t−tS2)].

The two functions Ei (t) are distinguished by their respective coefficient ri .

H2: Let us assume that the studied epidemic has a classical sigmoid / gaussian
behavior. We have then the total number of cumulative case L and a “new infected
case” peak ts . We assume furthermore that the studied epidemy can be described
as the combination of two epidemics with the same total number of cumulative
cases L and the same peak ts . Therefore, we keep the same value L i = L and we
keep the same time tSi = tS for the two functions Ei (t).

H3: We choose the transition function q(t) as q(t)= 1
2 [tanh(αc(t− ti )+1], defined

on [0, +∞[.
We obviously have 0≤ q(t)≤ 1. The coefficient αc, positive number, represents

the efficiency of the lockdown. ti represents the duration between the start of the
epidemic and the date of lockdown increased by the duration of appearance of its
first effects. Due to the asymptotic variation of q(t), q(0) = ε� 1 for the used
values of ti , which does not influence the results of the modeling.

With these assumptions, the evolution of the new infected cases of the epidemic
is given by:

E(t)= q(t)E1(t)+ (1− q(t))E2(t)

The model is therefore defined by the six simple parameters given in Table 1.

4. Machine learning identification algorithm

To obtain the parameters of the model by supervised machine learning, a python
code was developed using gradient descents conventionally used in machine learn-
ing. In our case, the Levenberg–Marquardt algorithm [Marquardt 1963; Levenberg
1944], was chosen to optimize the mean squared error function.

The learning datasets for each country have been compiled using official Euro-
pean information from the European Center for Disease Prevention and Control or
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Parameters Definition Unit
L Total number of cases -

k1 Characteristic of the epidemic without lockdown Day−1

k2 Characteristic of the epidemic with lockdown Day−1

ti Duration between the start of the epidemic and the start
of the lockdown + time of appearance of the first effects
of the lockdown

Day

tS Duration from start of epidemic to date of inflection
point*

Day

αc Lockdown efficiency coefficient Day−1

Table 1. List and definition of the model parameters. * The inflec-
tion point of the sigmoid corresponds to the maximum value of its
derivative, which is often called the peak of the epidemic.

Parameters Input value in the algorithm
L 0.0031 × Population of the country

k1 0.3

k2 0.1

ti Time from the start of the epidemic to the start of lockdown

tS Time between the start of the epidemic and the
appearance of the inflection point + 15 days

αc 0.1

Table 2. input values of the model parameters, i.e., before super-
vised learning.

ECDC [ECDC]. Considering the small amount of data, it was not possible to build
a test data set.

To achieve the learning optimizations for each country, the following initial
values have been set:

These values have been chosen through data analysis to be consistent with our
model and the available experimental data.

For L , k1, k2, ti , tS , αc, the input values influences the speed of the convergence
of the algorithm and also ensure the bypassing of local minima:

L: the input value in the algorithm for the total number of people reached by
Covid-19 was chosen to be 0.31% of the total population, following several data
analysis.
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k1, k2: their input values are linked to the analysis of the evolution of the epidemic
as well as the analysis of experimental data.

ti : the start dates of containment of the targeted countries are obviously available
on government websites. They are as follows:

Country Lockdown dates

Belgium 18 Mar 2020
France 17 Mar 2020
Italy 09 Mar 2020
Spain 14 Mar 2020

Ten days are added on those values, reflecting the delay needed to see the results
of the lockdown. This duration, like the other parameters, is optimized by the
algorithm.

tS: the initial value for the inflection date tS is chosen lockdown so tS is greater than
the lockdown date. 15 days were added on top of that after careful data analysis. αc:
the initial value was also set after data analysis and after the analysis of simulation
curves.

Note that the total population of each country is also provided by the ECDC
(https://www.ecdc.europa.eu/en); this information is reported to be from the World
Bank Group (https://www.worldbank.org).

5. Results

5.1. The data. We took data from a single, reliable official source so that it could
be compared across countries [ECDC]. It is obvious that regarding the detection of
cases of infected persons, these data are highly dependent on the number of tests
carried out and the identification protocols. In addition, it is regularly the case
that the data is corrected later following updates. The figures used for Belgium,
France, Italy, and Spain are shown in Figure 1. We can see that the raw data is
unsurprisingly very noisy. We will not comment here on the roots of this fact. To
increase the ability of the algorithm to quickly converge on a solution, we smoothed
the raw data over several days (3 days, 5 days, 7 days). So, for a smoothing over
three days, we have: Ci(smoothed) =

1
3(Ci−1+Ci +Ci+1). To minimize the noise

effects and obtain the best possible convergence, we decided to use only the values
smoothed over 7 days. The last data used dates from 21 April 2020. The smoothing
over 7 days implies that the last valid dates for modeling correspond to 18 April
2020. We see on the following figures the raw data and the smoothed data for each
country.
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Figure 1. Number of detected cases of COVID-19 in 2020 in the
four countries under consideration: raw data and data smoothed
over 7 days. Values taken from [ECDC].

5.2. Comparison of the basic functions of the model by country. We see in Figure
2 comparisons of the graphs of the two epidemic functions E1(t) and E2(t) which
frame the behavior of the epidemic between its standard evolution and its evolution
with a lockdown from the start. A marked difference between these two graphs indi-
cates a more significant effect of the lockdown. We could relate it to the efficiency
of this lockdown in the considered territory.

The transition from the function E1(t) to the function E2(t) is done by the
function q(t) (Fig. 3). q(t) has been created to be a smoothed Heaviside step
like function. The intensity of the slope is causally linked to the efficiency of the
lockdown effect as the slope depends of the parameter αc

5.3. Simulation results for past and current data. After the machine learning
optimization of the parameters, the basic functions have been presented for each
country. We now compare the smoothed data and the model in Figure 4.

5.4. Model predictions. So far, we presented the results up to the date of 18 April,
i.e., up to the available data with which we trained the model. Obviously, one the
main question is the quality of the predictions beyond this date. We present the
results up to 18 May in Figure 5. Therefore, the reader can observe that the model
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Figure 2. Graph of E1(t) (no lockdown, blue curve) and E2(t)
(lockdown from the start, orange curve) for the four countries un-
der consideration.
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Figure 3. Comparison of the functions q(t) for the four countries.
The parameters were optimized by machine learning.

is based on data available up to 21 April (18 April once smoothed), we also draw
the available data at the time of the publication, that is to say up to 3 May (30 April
once smoothed). This allow the reader to assess the quality of the prediction.
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Figure 4. Comparison of our model’s results with the smoothed
data of the number of detected cases of COVID-19.

Final Value ti αc L k2 tS k1

Belgium 22.31 0.140 56271 0.098 38.23 0.158
France 26.53 0.076 146277 0.093 37.47 0.181
Italy 23.12 0.089 247302 0.063 39.95 0.174
Spain 26.27 0.096 265181 0.074 38.53 0.250

Error ti αc L k2 tS k1

Belgium 0.22 0.01 2089 0.00 0.77 0.00
France 1.26 0.01 11025 0.01 1.39 0.01
Italy 0.27 0.00 10356 0.00 1.22 0.01
Spain 0.78 0.00 17900 0.01 1.51 0.02

Table 3. Final values of the model parameters for the four coun-
tries, and analysis of the corresponding errors (standard deviation
error) - ti and tS in days.

The reader will find below the corresponding value of the optimized parameters
for each targeted country. Interestingly, those values are close for all countries, ex-
cept for the total number of cases L, which obviously relies on country population.
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Figure 5. Comparison between the smoothed data of the number
of detected cases of COVID-19 (orange: smoothed data available
up to 18 April, green: up to 30 April) and our model (blue curve)
based on the smoothed data of 18 April. (As discussed later, the
data quality for Spain seems debatable since on the dataset up to
30 April, the raw data has been changed from that of 15 April with
variation up to 160%; even stranger is that the number of cases on
19 April is negative (−1400 cases).

6. Discussion

We see that a simple macroscopic modeling of the Covid-19 epidemic in 2020, built
with only two basic functions which permit to consider lockdown and its effects,
allows to correctly model the evolution of the cases of people infected by the virus
until the dates for which data are available. Simulation of other characteristics
of the epidemic, such as the follow-up of hospitalizations or resuscitation, have
also been carried out and will be published later [Rémond and Rémond]. They
use the same model and the same optimization algorithm. For the forecasts, they
are always to be taken with caution because on the one hand, unexpected events
having biological, human causes or of management of the epidemic can occur
which modify the form of it in a significant way, on the other hand the assump-
tions used may seem too summary to assign a level of probability to them. In
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peculiarly, the unlockdown time can be considered as a new behavior for a given
population and modeled with a new elementary function in addition to the two
functions used. This unlockdown time is not considered in the simulations. The
results are however interesting and show how a learning algorithm can allow a
simple model to correspond well to the macroscopic effects of the epidemic.

It will also be noted that the inflection point of the tS sigmoid occurs on average
38.65 days (from 37.47 to 39.95) after the start of the epidemic (Table 3) for the four
countries. This means that as of this date, half of the people who will be affected
by the epidemic have been infected. Analysis of the values of ti (duration entered
at the start of the epidemic and the date of lockdown + duration of appearance of
the first effects of lockdown) shows that the duration of appearance of the effects of
lockdown is very similar for the four countries, of the order of 10.30 days (between
9.53 for France and 11.27 for Spain). It should also be noted that the number of
infected cases is half lower in France than in Italy and then in Spain.

The parameters αc are associated to the velocity of changing of behavior after
the lockdown. France, Italy, and Spain, with αc between 0.076 and 0.096, have
similar reactions for this evolution. By the way, to appreciate the step between the
two behaviors, we must analyze the step between k1 and k2 for each country. The
ratio k1/k2 represents the intensity of this change. In that case, Belgium appears
to have the smallest change of behavior with a ratio of 1.62. France a ratio of 1.92
is better. Italy has a high ratio of 2.76 and Spain has strongly changed its behavior
with a ratio of 3.36.

It is interesting to remember that the equation of the elementary basic functions
Ek(t) of the epidemic, given by the equation (2), or its initial form given in equa-
tion (1), are the solution of a elementary differential equation detailed in 2.1. This
differential equation is solved for the boundary condition y(0)= y0. The boundary
condition y0 characterizes the number of cases at time t0. We show in the table 4 the
values of y0 given by the raw data and the smoothed data. They can be compared
with the values of y0 obtained by the modeling after the machine learning process.
The differences of these values for raw and smoothed data are the intensity of the
noise associated to these data. On the opposite, the differences between the values
of y0 for the data and the modeling are interesting. It shows that the number of
cases at time t0 were strongly underestimated by a factor 5 in Italy and in Belgium,
and by a factor 10 for France and Spain. The more precise measurement of these
boundary conditions at t0 could have helped to better appreciate the intensity of
this epidemic in a short time.

Note the extremely high value of y0 for Belgium compared with the number of
the inhabitants of this country, six times lower than the three other countries.

The coefficients R2 of the model are given in the table below and by country,
with smoothed and non-smoothed data. We see that the simulation is particularly
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Country y0 – Raw data y0 – Smoothed data y0 – Given by
(Sum of new cases (Value of new cases the model

from t =−3 to t = 0) at t = 0)
Belgium 22 24 135
France 45 24 237
Italy 226 92 524
Spain 23 12 109

Table 4. Values of the number of cases y0 at t0 measured with the
raw and smoothed data, comparing to the number of cases y0 at t0
given by the model.

Country Smoothed data Raw data – 18th April
Belgium 0.993 0.733
France 0.986 0.648
Italy 0.996 0.928
Spain 0.995 0.928

Table 5. R2 coefficient of quality of simulations compared to raw
data and smoothed data.

good for smoothed data. For raw data, the case of France is special given the
positive data jumps that were recorded on certain days for administrative reasons.
For Spain, despite of a good R2 coefficient which show a good correlation between
the data and the model, the official data given by this country after the identifica-
tion of the model have changed strongly after 15 April. Then there is no peculiar
significance on the analysis of this variation.

Therefore, this global modeling of the COVID-19 epidemic seems to be under-
standable as a sum of only two different elementary basis functions including the
effects of the lockdown, and the development of such analysis will probably per-
mit to analyze the specific behavior of population, in complement of the classical
approaches by micro-macro analysis.

7. Conclusion

We have created a particularly simple virus-centric model of the Covid-19 epi-
demic, based on a decomposition in generic basic functions adaptable to all coun-
tries and to all the characteristic criteria of its development. Using a simple machine
learning process, we show that only two basic elementary functions were suffi-
cient to simulate the epidemic evolution for four European countries applying a
lockdown, with accuracy. The results permit to quantify the difference of behavior



246 JEAN RÉMOND AND YVES RÉMOND

before and after the lockdown for these countries as well as the velocity of change
and the intensity of change. We focused here on the model’s ability to simulate
the numbers of new cases reported in the Covid-19 epidemic over time. However,
this model could be used for modeling hospitalizations, intensive care, and death.
The prediction of a unlockdown effects should be also possible with this model, by
adding a third elementary basic function describing the specific behavior of popu-
lation after this event. The presented simulations are relevant and clearly show the
effects of the various lockdowns carried out. The analysis of basic functions used
in this decomposition could in any case allow us to have a macroscopic analysis
of how the lockdowns were respected. Other characteristics and simulations of the
2020 SARS CoV 2 epidemic for other countries will be given in a sequel to this
paper [Rémond and Rémond].
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