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We present a Boltzmann equation for mixtures of three species of particles re-
ducing to the Kermack–McKendrick (SIR) equations for the time evolution of
the density of infected agents in an isolated population. The kinetic model is
potentially more detailed and might provide information on space mixing of the
agents.

1. Boltzmann–SIR equations

Consider a population of identical individuals (particles) moving in physical space
and interacting upon contact. One (or several) of the individuals, say particle 1,
has an infected status at time zero. As the dynamics runs, the infection can be
transmitted, at the interaction times, to the individuals entering in contact with 1
or with the newly infected individuals. A cluster {i1, i2, . . . } of infection grows in
time, determined by the particle evolution: an individual is potentially infected at
time t > 0 if it is involved, directly or indirectly, in the forward-in-time dynamics
of 1. The “forward cluster of particle 1” (in the terminology of [Aoki et al. 2015;
Pulvirenti and Simonella 2020b]) is represented symbolically in the picture below:

0

t

For concreteness, we may want to fix an idealized mechanical setting. Let us
then proceed, as is customary in kinetic theory, by looking at N hard spheres of
unit mass and diameter ε > 0. The balls move in 3 ⊂ Rd , d = 2, 3, and interact
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through elastic collisions. Each particle flies freely with constant velocity, and
when two hard spheres collide with positions x, x∗ at distance ε and incoming
velocities v, v∗, the latter are instantaneously transformed to outgoing velocities
v′, v′

∗
by the relations {

v′ = v−ω[ω · (v− v∗)],

v′
∗
= v∗+ω[ω · (v− v∗)],

(1-1)

where ω is the normalized relative distance ω=(x−x∗)/|x−x∗|=(x−x∗)/ε∈Sd−1.
We shall mimic the basic model in the mathematical theory of epidemics [Ker-

mack and McKendrick 1927], by means of several assumptions. There are three
different species of particles, S, I , and R, which stand for susceptible, infected,
and recovered, respectively. Upon collision between a particle of type S and a
particle of type I , the reaction

S+ I → I + I

occurs instantaneously with rate β ∈ [0, 1]. All the other collisions do not change
the particle type, but in addition, a decay

I → R

occurs with rate γ ∈ [0, 1]. Note that the population size is fixed (no deaths) and that
the infection implies complete immunity. Finally for simplicity, we shall assume
that β and γ are constants (they do not depend on time).

We are relying on the idea that the details of the interactions should not be of
crucial importance (see [Stevens 2020] for a recent popular article simulating a
similar system of particles). The main features are instead the following:

• The interactions are binary and localized.

• The number of interactions per unit time is expected to be finite.

• The qualitative behavior is independent of the number of particles N , provided
that this is large in a suitable scaling limit.

• A statistical description is appropriate.

Under these assumptions, the Boltzmann equation for rarefied gases provides a tool
of investigation.

Let us perform the so-called Boltzmann–Grad limit [Grad 1949] on the hard-
sphere system under consideration. Denoting the one-particle distribution func-
tions by

fS = fS(t, x, v),

f I = f I (t, x, v),

fR = fR(t, x, v)
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for the three species of particles, we obtain the set of equations
(∂t+v ·∇x) fS = Q( fS, fS)+Q( fS, fR)+(1−β)Q( fS, f I )−βQ−( fS, f I ),

(∂t+v ·∇x) f I = Q( f I , f )+βQ+( fS, f I )−γ f I ,

(∂t+v ·∇x) fR = Q( fR, f )+γ f I ,

(1-2)

where

f = fS + f I + fR

and Q is Boltzmann’s operator (expressed in asymmetric form)

Q = Q+− Q−,

Q+( f, g)(v) :=
∫

Rd

∫
Sd−1

B(ω; v− v∗) f (v′)g(v′
∗
) dω dv∗,

Q−( f, g)(v) := f (v)
∫

Rd

∫
Sd−1

B(ω; v− v∗)g(v∗) dω dv∗.

Note that the sum f = fS + f I + fR satisfies the classical Boltzmann equation

(∂t + v · ∇x) f = Q( f, f ).

Here we chose B(ω; v − v∗) = (ω · (v − v∗))1(ω · (v − v∗) ≥ 0), corresponding
to the hard-sphere cross section. However, as said above, conclusions drawn from
the kinetic model should not be very sensitive to the interaction rule; e.g., we shall
consider as well different kernels B(ω; v− v∗)≥ 0 such that∫

Sd−1
B(ω; v− v∗) dω = |v− v∗|b,

for some b ≥ 0.
In the second part of this exposition we will give more details on the passage

from the particle dynamics to (1-2). Before that, we make a few elementary re-
marks on the equations themselves.

1.1. Maxwell collisions: Kermack–McKendrick equations. Averaging (1-2) over
velocities, the Q operators vanish (because

∫
Q+ =

∫
Q−), and in the spatially

homogeneous case (no dependence on x), the expected fractions of individuals of
the species A ∈ {S, I, R}, A(t)=

∫
f A(t, v) dv, satisfy the equations

Ṡ =−β
∫
|v− v∗|

b fS(v) f I (v∗) dv dv∗,
İ = β

∫
|v− v∗|

b fS(v) f I (v∗) dv dv∗− γ I,
Ṙ = γ I.
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These equations are not closed, except when dealing with “Maxwellian molecules”
(case b = 0 [Bobylev 1988]), for which we get

Ṡ =−β I S,
İ = βSI − γ I,
Ṙ = γ I,

(1-3)

namely the epidemiology model of [Kermack and McKendrick 1927] in the case
of time-independent rates. This model has been analyzed and used extensively,
and several generalizations have been conceived; see, e.g., [Anderson and May
1979; Brauer and Castillo-Chávez 2001; Murray 2002; Harko et al. 2014]. The
kinetic equation (1-2) stands as an extension accounting for dependence on space
and velocity of the individuals.

To remind the reader of the original motivations for such SIR models [Ross 1916;
Kermack and McKendrick 1927], we recall that an epidemic is not necessarily
terminated by the exhaustion of the susceptible individuals, nor by the extinction
of the virulence. This is apparent from (1-3), over a threshold value of the density.
Setting indeed A∞ := limt→∞ A(t), A0 = A(0), and R(t) = R0 + γ

∫ t
0 I (τ ) dτ

(showing that I (t)→ 0 as t →∞), one has that d S
d R = −(β/γ )S and hence (by

R∞+ S∞ = 1 and the assumption R0 = 0) S∞ = S0e−(β/γ )(1−S∞), or

e−(β/γ )S∞
β

γ
S∞ = S0

β

γ
e−β/γ . (1-4)

Since max ye−y
= 1/e, given a value of β/γ one can find nonvanishing solutions

for S∞.

1.2. Confinement. The model can be easily adapted to investigate several different
situations. Examples might be boundary conditions or external potentials, impos-
ing internal spatial constraints or local enhancing of density. There has been recent
intense interest in the effects of isolation of individuals, and of the reduction of
social mixing, by means of physical distancing measures [Li et al. 2020; Prem
et al. 2020]. At the level of (1-2), the energy can be used as a simple parameter
regulating the interaction rate.

Here we give an example of one adaptation of (1-2), intended to model a confine-
ment effect. Following [Stevens 2020] we assume that, for each species, there are
two types of particles: wandering and confined. We denote by gA, A ∈ {S, I, R},
the distribution of confined particles, while we maintain the notation f A for the
wandering particles. The distribution of the species A is h A := f A + gA and
f =

∑
A h A. Wandering particles have mass mw = 1, while confined particles

have mass mc = +∞ and zero velocity. The distribution gA is proportional to a
Dirac delta in velocity. Confined particles are frozen, and their total distribution is
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stationary:
gS(t, x)+ gI (t, x)+ gR(t, x)= const. for all t .

The collision law becomes{
v′ = v− (2m∗/(m+m∗))ω[ω · (v− v∗)],
v′
∗
= v∗+ (2m/(m+m∗))ω[ω · (v− v∗)],

where m,m∗ are the masses of the incoming particles, and (1-2) is replaced by

(∂t+v ·∇x) fS = Q( fS, hS)+Q( fS, h R)+(1−β)Q( fS, h I )−βQ−( fS, h I ),

(∂t+v ·∇x) f I = Q( f I , f )+βQ+( fS, h I )−γ f I ,

(∂t+v ·∇x) fR = Q( fR, f )+γ f I ,

ġS =−βQ−(gS, f I ),

ġI = βQ+(gS, f I )−γ gI ,

ġR = γ gI .

(1-5)

In the spatially homogeneous case, integrating (1-5) in v, calling Aw =
∫

f A dv
and Ac =

∫
gA dv, A = S, I, R, we obtain

Ṡw =−β
∫
|v− v∗|

b fS(v)h I (v∗) dv dv∗,
İw = β

∫
|v− v∗|

b fS(v)h I (v∗) dv dv∗− γ Iw,
Ṙw = γ Iw,
Ṡc =−Sc

∫
|v∗|

b f I (v∗) dv∗,
İc = Sc

∫
|v∗|

b f I (v∗) dv∗− γ Ic,

Ṙc = γ Ic.

Again, the above equations reduce to a standard SIR model in the case of Maxwellian
molecules: 

Ṡw =−βSw(Iw + Ic),

İw = βSw(Iw + Ic)− γ Iw,
Ṙw = γ Iw,
Ṡc =−Sc Iw,
İc = Sc Iw − γ Ic,

Ṙc = γ Ic.

(1-6)

1.3. Related problems. The kinetic model presented above should be interpreted
as a remark in the vein of mathematical physics: we do not pretend that it can
be of use in epidemiology. It is more detailed than the classical SIR, insofar as it
includes space and velocities of the agents. Presumably, its main potential interest
in applications is the identification of spatial patterns having an impact on the
history of epidemics. Moreover, a dynamical representation in terms of forward
(or backward) clusters would provide information on the tracing of the infection.
We comment next on a few other problems arising naturally.
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The typical question concerning SIR equations is determining the long-time
behavior in relation with the parameters β, γ and its dependence on local charac-
teristics of the initial data. We are interested in masses but also in local densities
in the presence of spatial inhomogeneities. From the mathematical side, little can
be done, but the problem is suited to numerical investigation. In analogy to gas
dynamics, it is natural to use stochastic methods, as we will discuss in the next
section.

At the theoretical level, it would be interesting to detect large-scale limits and de-
rive, starting from (1-2), equations for locally conserved quantities. Equation (1-2)
can be useful in fact for limited amounts of time. Preliminarily, one should char-
acterize the equilibria. Let FA = limt→0 f A be the asymptotic distributions. Then
we expect FI = 0, and the other two distributions should satisfy{

Q(FS, FS)+ Q(FS, FR)= 0,
Q(FR, FR)+ Q(FR, FS)= 0.

The latter equation is satisfied if both FS and FR are Maxwellians

FA = A∞
e−(v−u)2/(2σ 2)

(2πσ 2)d/2

for some constants S∞ and R∞, with σ and u determined by the initial conditions.
A∞ would be obtained as in (1-4). Notice that, when f = fS + f I + fR is a global
equilibrium, a solution ( fS, f I , fR) of (1-2) for b = 0 is given by the same global
equilibrium with densities S(t), I (t), R(t) driven by (1-3).

2. Particle systems

2.1. Stochastic particle system. In this section we introduce a particle system
yielding, in a suitable scaling limit, kinetic equations of type (1-2). The interest
of this dynamics is twofold. First, it can be considered a microscopic model to be
accepted through phenomenology, covering a large variety of kernels B. It would
be somewhat funny to believe that the laws of Newton can be used to efficiently
describe the interaction among individuals. On the other hand, we do not know
so much concerning the details of such interactions; thus, a stochastic collision
appears to be more robust than a deterministic one. Secondly, the particle scheme
corresponds numerically to the direct simulation Monte Carlo method, widely used
to approximate rarefied gas dynamics. There are several variants of such methods
[Bird 1994; Rjasanow and Wagner 2005]. Below, we will deal with an inhomoge-
neous Kac model [1956] for three species with reactions.
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We start by regularizing the collision operator (1-2). The strictly local interaction
is smeared as

Qh
= Qh

+
−Qh

−
,

Qh
+
( f,g)(x,v) :=

∫
Rd

∫
Rd

∫
Sd−1

B(ω;v−v∗)h(|x−y|) f (x,v′)g(y,v′
∗
)dωdv∗ dy,

Qh
−
( f,g)(x,v) :=

∫
Rd

∫
Rd

∫
Sd−1

B(ω;v−v∗)h(|x−y|) f (x,v)g(y,v∗)dωdv∗ dy,

where h : R+→ R+ is a smooth approximation of the delta function.
To simplify the notation, we limit ourselves to the case of (1-2) with β = 1, with

the more general cases being a trivial extension. We therefore consider
(∂t + v · ∇x) fS = Qh( fS, fS)+ Qh( fS, fR)− Qh

−
( fS, f I ),

(∂t + v · ∇x) f I = Qh( f I , f )+ Qh
+
( fS, f I )− γ f I ,

(∂t + v · ∇x) fR = Qh( fR, f )+ γ f I .

(2-1)

We can pass to the limit Qh
→ Q inside (2-1), whenever we have a smooth solution

of the initial value problem.
We shall indicate by A= S,I,R⊂ {1, 2, . . . , N } the (random) disjoint sets of

particles of types A = S, I, R, respectively. They form a partition of {1, 2, . . . , N },
so that the process Z N : R

+
→ X, Z N = Z N (t)= (z1(t), . . . , zN (t)), zi = (xi , vi ),

takes values in

X=
⋃

S,I,R

X(S,I,R), X(S,I,R)= {(ZS, ZI, ZR)},

with
|S| + |I| + |R| = N

and zi ∈3×Rd . Here |A| denotes the cardinality of the set A. The configurations
of particles in the three species are ZS = (zs1, zs2, . . . ), ZI = (zi1, zi2, . . . ), and
ZR = (zr1, zr2, . . . ), respectively.

Le us define the time evolution. Particles move freely for a random time, expo-
nentially distributed with intensity scaling like N . Then two particles are randomly
chosen, say particles j and k, according to

∫
B(ω; v j − vk)h(|x j − xk |) dω, and

their velocities are updated as in (1-1) with ω ∼ B( · ; v j − vk). If the pair of
colliding particles is of type (A, A) or (S, R) or (I, R), the particles do not change
their species. If the pair is of type (S, I ), then the outgoing pair is of type (I, I ).
We abbreviate from now on h j,k = h(|x j − xk |), and we denote by J jk the linear
operator transforming the velocities j and k to a postcollisional pair with scattering
vector ω. The generator of the process reads

L= L0+Li +Ld
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where L0 =
∑
vi · ∇xi is the generator of the free motion,

Liφ(Z N )=
1
N

∑
j∈S

∑
k∈I

∫
B(ω; v j − vk)h j,k

× (J jkφ(ZS\{ j}, ZI∪{ j}, ZR)−φ(Z N )) dω

+
1
N

(∑
j∈S

∑
k∈R

+

∑
j∈I

∑
k∈R

)∫
B(ω; v j − vk)h j,k(J jkφ(Z N )−φ(Z N )) dω

+
1

2N

∑
A=S,I,R

∑
j,k∈A
j 6=k

∫
B(ω; v j − vk)h j,k(J jkφ(Z N )−φ(Z N )) dω, (2-2)

and

Ldφ(Z N )= γ
∑
i∈I

(φ(ZS, ZI\{i}, ZR∪{i})−φ(Z N )). (2-3)

We choose now test functions of the form

φA(Z N )=
1
N

∑
`∈A

ϕ(z`)

and focus, for instance, on the case A = S. We have that LdφS = 0. Evaluating
(2-2) in φS we notice that, given j and k, all the terms with ` 6= j, k cancel out. In
the second line of (2-2) we find∑

`∈S
6̀= j

J jkϕ(z`)−
∑
`∈S

ϕ(z`)=−ϕ(z j ).

Therefore,

LiφS(Z N )=−
1

N 2

∑
j∈S

∑
k∈I

∫
B(ω; v j−vk)h j,kϕ(z j ) dω

+
1

N 2

∑
j∈S

∑
k∈R

∫
B(ω; v j−vk)h j,k(ϕ(x j , v

′

j )−ϕ(z j )) dω

+
1

2N 2

∑
j,k∈S
j 6=k

∫
B(ω; v j−vk)h j,k(ϕ(x j , v

′

j )+ϕ(xk, v
′

k)−ϕ(z j )−ϕ(zk)) dω. (2-4)

Next, we introduce a probability measure with density W N
:X→R+, assumed to

be symmetric in the exchange of the particle labels within each one of the species.
An example is provided by the fully factorized (chaotic) state, which we shall
assume, to fix ideas, as the initial distribution of the particle process: W N (0)= f ⊗N

0
with f 0

=
∑

A f 0
A, A= (S, I, R), where f 0

A are the initial data for (2-1). We further
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denote by f N
A = f N

A (z) the one-particle marginals of W N , defined as∫
f N

A (z)ϕ(z) dz =
∫

W N (Z N )φA(Z N ) d Z N .

It is the probability density of finding a particle of type A in z. Similarly, f N
A1,A2
=

f N
A1,A2

(z1, z2) denotes the two-particle marginal, namely the probability density of
finding two particles of type A1 and A2 in z1 and z2:∫

f N
A1,A2

(z1, z2)ϕ(z1, z2) dz1 dz2 =

∫
W N (Z N )φA1,A2(Z N ) d Z N

for

φA1,A2(Z N )=
1

N (N − 1)

∑
j∈A1

∑
k∈A2
k 6= j

ϕ(z j , zk).

Even though the initial measure is factorized, the time-evolved density W N (t) is
not, due to correlations generated by the dynamics. The factorization is however
recovered in the limit N →∞ and

f N
A1,A2

(z1, z2)≈ f N
A1
(z1) f N

A2
(z2). (2-5)

We are ready to compute

d
dt

∫
W N (t)φS =

∫
W N (t)LφS.

Using (2-4), the definition of marginal, and (2-5), we deduce that, as N →∞,

d
dt

∫
f N
S (t)ϕ ≈

∫
f N
S (v · ∇xϕ)+

∫
Qh( f N

S , f N
S )ϕ

+

∫
Qh( f N

S , f N
R )ϕ−

∫
Qh
−
( f N

S , f N
I )ϕ,

that is, the first equation of (2-1) in weak formulation.
The other two equations can be recovered similarly. For A = I , (2-3) yields

LdφI (Z N )=
γ

N

∑
i∈I

( ∑
`∈I\{i}

ϕ(z`)−
∑
`∈I

ϕ(z`)
)
=−

γ

N

∑
i∈I

ϕ(zi ),

while in the second line of (2-2) we find∑
`∈I∪{ j}

J jkϕ(z`)−
∑
`∈I

ϕ(z`)= J j,kϕ(z j )+ (J j,kϕ(zk)−ϕ(zk))
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so that
d
dt

∫
f N

I (t)≈
∫

f N
I (v · ∇xϕ)+

∫
Qh
(

f N
I ,
∑

A

f N
A

)
ϕ

+

∫
Qh
+
( f N

S , f N
I )ϕ− γ

∫
f N

I ϕ,

which is the second equation of (2-1).

2.2. Mechanical system. We briefly come back to the deterministic particle model,
which was our starting point, that is, N hard spheres of diameter ε moving in physi-
cal space and colliding elastically, with reactions simulating infection and recovery.
We call this system “mechanical” as the interaction is deterministic. Clearly there
is still stochasticity in the reactions and, strictly speaking, we are dealing again
with a stochastic process.

We can easily adapt to this case the formal arguments of the previous sec-
tion. The process Z N still takes values in X, but in addition the strict exclusion
mini 6= j |xi − x j | > ε is imposed. In the generator (2-2), 1/N is replaced by εd−1,
B is the hard-sphere kernel (ω · (v j − vk))1(ω · (v j − vk) ≥ 0), h j,k is absent,
and the operator (J j,k − 1) is replaced by (δ(xk − x j −ωε)J j,k − δ(xk − x j +ωε)).
Following [Pulvirenti and Simonella 2020a, §2.1] and assuming the chaos property
(2-5), (1-2) is obtained in the limit N →∞, ε→ 0 with εd−1 N = 1.

2.3. Rigorous results. We have formally derived the kinetic equations under proper
scaling limits, presenting only the basic ideas. A rigorous approach is possible,
based on existing literature. In the case of the stochastic system, one can apply
martingale techniques as in [Wagner 1992], or the hierarchy of equations for the
family of the marginals [Pulvirenti et al. 1994], or coupling techniques [Graham
and Méléard 1997]. In the case of the mechanical model, one can resort to the
validity techniques for the Boltzmann equation, leading to a short-time result; see
[Lanford 1975] and subsequent works [Illner and Pulvirenti 1989; Spohn 1991;
Cercignani et al. 1994; Gallagher et al. 2013; Pulvirenti et al. 2014; Pulvirenti and
Simonella 2017; Denlinger 2018].
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