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Recent experiments by Macha et al. (Front. Bioeng. Biotech. 7 (2019), art. id. 37)
on the release of gentamicin embedded in a polylactic acid matrix film immersed
in a body fluid solution have shown, first, a sudden burst phenomenon after sev-
eral weeks and, second, a premature end to the release, such that a considerable
amount of gentamicin is kept in the matrix. It is shown that such phenomena
cannot be described adequately by assuming diffusion of the Fickian kind. In
order to improve the modeling, extensions to Fickian diffusion are proposed
as follows. The first one is of a phenomenological nature. A production term
in the diffusion equation with intrinsic parameters is introduced, all of which
can be interpreted intuitively and related to experimental data. The model al-
lows one to capture the aforementioned departure from the timewise parabolic
Fickian release characteristic eventually leading to complete release. Second, a
micromodel is presented that provides a physical explanation for the proposed
production: the drug is released from a carrier particle into the matrix, which
eventually comes to an end due to the diminishing particle surface, and the drug
adheres to a core due to surface tension. The material parameters of both models
are determined by inverse analysis of experimental data.

1. Introduction

Polylactic acid (PLA) is one of the most common polymers used as a microcarrier
of drugs [Jalil and Nixon 1990; Wischke and Schwendeman 2008; Conti et al.
1991]. Low toxicity, excellent biocompatibility, and the absence of inflammation
in contact with living organisms, as well as good mechanical properties, make
PLA attractive for the pharmaceutical industry, including for the creation of drug-
retarding systems [Conti et al. 1991].

It is important to predict drug release rates and to understand the primary pro-
cesses that manage the release. Drug release from biodegradable polymeric car-
riers, such as a PLA matrix, mostly depends on loading efficiency of the drug,
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solubility, biodegradability, diffusion, and the size of the carrier. Mathematical
models are an important tool for the development of pharmaceutical compositions,
the evaluation of drug release processes, and, in general, the optimal design of new
systems [Peppas and Narasimhan 2014].

Significant work has been done on the mathematical modeling of release profiles.
See, e.g., [Bruschi 2015, Chapter 5], according to which the most common math-
ematical models describing drug release are the zero-order model, the first-order
model, the Higuchi model, the Hixson and Crowell model, and the Korsmeyer-
Peppas model.

In the zero-order model the release kinetics of the drug dissolution is only a
function of time and the process takes place at a constant rate independent of the
active substance concentration. This model holds true only in the case of very slow
drug release.

The first-order model is based on the assumption that the change in concentra-
tion of drug in the drug carrier with respect to change in time depends only on
its concentration and on the phenomenon of dissolution of a solid particle in a
liquid with constant rate. The first-order model can be used to describe the drug
dissolution in pharmaceutical dosage forms such as those containing soluble active
substances incorporated in a porous matrix. For this system the amount of drug
released is proportional to the amount of remaining drug in the matrix. Thus, the
amount of active release tends to decrease as a function of time.

The Higuchi model [1963] was the first refined mathematical model that de-
scribed the release of a drug from an insoluble matrix as a square-root-of-time-
dependent process based on Fickian diffusion. The model was initially derived
for planar systems. However, since then it has been modified for use with differ-
ent geometries and porous systems. This model is based on several assumptions:
(i) the drug concentration in the matrix is initially much higher than the solubility
of the drug, (ii) edge effects are negligible, so diffusion is unidirectional, (iii) the
thickness of the dosage form is much larger than the size of the drug molecules,
(iv) the swelling and dissolution of the matrix is negligible, (v) the diffusivity of
the drug is constant, and (vi) perfect sink conditions are attained in the release
environment.

The Hixson and Crowell model [1931] is used to describe the dissolution process
of such dosage forms in which the dissolution surface decreases over time and the
geometric shape itself remains the same. For example, this model can be used to
describe the dissolution of a specimen consisting of identical spherical particles.
This model is based on the assertion that the dissolution rate is proportional to the
cube root of weight of the drug particles. When the Hixson and Crowell model is
used, it is assumed that the drug release is limited by dissolution velocity and not
by diffusion, which can occur through the polymeric matrix.
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The power law model developed in [Korsmeyer et al. 1983; Ritger and Peppas
1987] is a semiempirical equation describing drug release from polymeric systems.
This law is useful when the release mechanism is not known or when more than
one type of drug release phenomenon is involved. Depending on the value of the
exponent of release that best matches the release profile of an active substance in
a matrix system, it is possible to establish a classification according to the type
of observed behavior: Fickian or non-Fickian models. In the Fickian model the
drug release is governed by diffusion. In non-Fickian models the mechanisms
driving the drug release are related to the relaxation of polymer chains, diffusion
and swelling, or extreme forms of transport. The latter is characterized by tension
and breaking of the polymer (solvent crazing).

All of these models can de used to describe the drug release of gentamicin (GM)
in PLA carrier [Trang et al. 2019]. However, sudden burst phenomena are observed
after several weeks on graphs of GM release from PLA microspheres, which the
above models do not take into account. This kind of behavior was also observed
in [Macha et al. 2019] during the initial release of GM from a PLA matrix, as well
as a premature stop to the release.

Obviously different mathematical models are required to model such observa-
tions. To this end we will, in a first step, introduce a phenomenological production
term in the classical Fickian diffusion equation, which contains two constitutive
parameters for modeling the speed and extend of saturation in the two stages. In
a second step, this production term will be introduced and interpreted based on
microphysical considerations: the drug is embedded and needs to be delivered to
the carrier first. However, the solubility of the embedded drug is limited. The
effects resulting from the degradation of the polymer carrier will not be described
here but studied in future work instead.

The two developed mathematical models will be tested on the experiment de-
scribed by Macha et al. [2019], which we briefly summarize in the following pas-
sages. It should be noted that they also attempted to fit the data based on simple
Fickian diffusion laws. Note that the models presented in this paper go considerably
beyond this traditional approach.

In recent experiments by Macha et al. [2019] the dissolution behavior of dif-
ferent drugs in various carriers was investigated. One of the investigated systems
concerned the release of GM in a PLA matrix as follows. As a release medium
mimicking the body fluid, phosphate-buffered saline solution was used. This solu-
tion had a pH of 7.4 and was kept at a “body temperature” of 37± 0.1 ◦C. The GM
was stored in a nanoporous matrix made of PLA. A scanning electron micrograph
(SEM) of the situation is shown in Figure 1. The PLA matrix is shown in gray color
whereas GM blisters embedded within the matrix are in white. The distribution of
the drug is fairly random.
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Figure 1. SEM of the GM containing PLA film.

Figure 2. Film matrix specimens before and after curling.

In the experiment the drug-loaded PLA matrix sheet curled up and formed a
cylindrical tube. After insertion into a tube filled with solution it slowly started
to disintegrate. During this process more and more pore spaces for drug release
within the PLA matrix opened up. The film matrix specimens before and after
curling are shown in Figure 2.

The initial amount of drug in the matrix was md = 7.5 mg, and the solution
volume was Vs = 15 ml. Therefore, the maximum expected drug release concen-
tration is cmax = 0.5 mg/ml. This information was used to calculate the fraction of
the drug released at time t ,

F(t)=
cs(t)
cmax

, 0≤ F(t)≤ 1, (1)

where cs(t)= m(t)/Vs is the average concentration of the drug in the solution at
time t .
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Figure 3. Fractional cumulative release for GM in PLA.

The dependence of the experimentally determined fractional cumulative release
on time is indicated by the black circles in Figure 3.

The curve of Figure 3 has several characteristic features. We can clearly distin-
guish two stages, before and after the fifth week. Moreover, between weeks 1 and 3
the curve runs initially in a parabolic fashion, which indicates Fickian diffusion
behavior. However, between weeks 3 and 5 it levels off as if supply of drug is
lacking. After that between weeks 5 and 7 we observe another steep boost, which
if considered as Fickian would result in a parabolic growth law in time leading to
a 100% dissolution of drug in the body fluid. However, in reality this is not so and
again some saturation can be observed. Indeed, the connecting black lines during
weeks 5 to 15 clearly indicate a nonparabolic, i.e., non-Fickian behavior.

To demonstrate this quantitatively, an inverse analysis was performed based on
a purely Fickian model (similar as in [Macha et al. 2019] or [Rickert et al. 2019],
where also more details regarding the computational methods can be found). From
the experiment it is known that the matrix curls into a tube. Therefore, we consider
a hollow cylinder � of internal and outer radii ri = 3.2 mm and ro = 3.4 mm,
respectively, with a height of H = 20 mm; see Figure 4. Since the thickness d =
ro−ri = 0.2 mm of the cylinder is very small, it is assumed that the drug is released
only through the inner and outer side surfaces 0 and not through the rims at the
top into the body fluid solution. The distribution in the z direction is assumed to
be uniform. In addition it is assumed that compared to the matrix the diffusion
of the drug in the body fluid is much faster and a homogeneous distribution is
instantaneously assumed. No differential equations need to be used to analyze that
process. We assume that all that is released from the matrix into the body fluid
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Figure 4. Cylindrical geometry.

is immediately homogeneously distributed in there and contributes to F(t), which
can then be calculated by simple algebra. Our goal is to describe the diffusion
process within the matrix domain and the mass transfer across the boundary, as
well as to determine the diffusion coefficient of the dissolved drug in the matrix,
which is one of the key parameters characterizing the kinetics of release. To this
end one may think simplistically of using the mass balance together with Fick’s
first law,

∂c(r, t)
∂t

=−∇ · J, J =−D∇c(r, t), (2)

in order to obtain the classical diffusion equation, which describes the diffusion
process in the matrix m,

∂cm(r, t)
∂t

= D1cm(r, t)≡
(
∂2

∂r2 +
1
r
∂

∂r

)
cm(r, t) for all r ∈�, (3)

cm being the concentration of drug in the matrix, which depends on both time
and position, and an equation (or boundary/transfer condition) describing the mass
transfer across the boundary into the solution s,

Vs
∂cs(t)
∂t
= 2πH D

(
r
∂cm(r, t)
∂r

)∣∣∣∣
0

, (4)

where Vs denotes the volume of the solution of body fluid and cs(t) is the time-
dependent concentration in the solution.

As initial conditions, a uniform distribution of the drug in the matrix and the
absence of the drug in the solution are assumed: cm(r, t = 0) = c0 for all r ∈ �
and cs(t = 0)= 0, where c0 is the initial concentration of drug in the matrix,

c0 =
md

Hπ(r2
o − r2

i )
≈ 90.4 mg/ml. (5)
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The equations of the model were solved numerically by using the finite volume
method [Macha et al. 2019; Rickert et al. 2019]. In order to account for the two
stages, two corresponding diffusion coefficients were introduced.

The diffusion coefficients for two different stages were determined by minimiz-
ing the target function E = (1/N )

∑N
i=0|(Fexp(ti ) − Fnum(ti ))/Fnum(ti )|, where

Fexp refers to the experimentally determined data known at discrete times ti with
i ∈ [0, 10]. Moreover, Fnum = cs(t)/cmax is the numerically predicted function.

The mass release is depicted in Figure 3 by the red curve. The resulting values of
the diffusion coefficients for the two stages, (I) t ∈ [0, 5] weeks and (II) t ∈ [5, 15]
weeks, are

DI = 1.461× 10−9 mm2/s, DII = 5.183× 10−10 mm2/s. (6)

Note that the values differ only slightly from those shown in [Rickert et al. 2019,
(12.47)] from a finite element discretization. The following remarks are in order:
(i) In stage I the prediction first underestimates the observed release and then begins
to take off. There is no leveling off or saturation. (ii) The release prediction in
stage II first overshoots a little and then begins to take off. Again it does not allow
for a saturation below 100% of release. It would continue to increase and finally get
close to 100% of cumulative release. (iii) The predicted diffusion coefficient during
stage II is less than that of stage I. This is contrary to intuition, because we believe
the matrix will start to deteriorate with ongoing time, which creates fissures and,
therefore, phenomenologically speaking, the diffusion coefficient should increase.
In summary, it is fair to say that this approach is more or less a brute-force fit
ignoring possible physical effects based on the simplest type of diffusion equations
available. We proceed to improve the situation.

2. Advanced modeling process

2.1. Model 1: a phenomenological production term mimicking a locking effect.
The main feature of this model is that it allows only a limited precipitation of the
drug in the carrier matrix to the solution. It is achieved by adding a phenomeno-
logically introduced sink (or negative production) term −χ(r, t). Its purpose is to
mimic a locking effect in the matrix so that after a certain time t∗ it will stop the
release of the drug. Consequently, we write

∂cm(r, t)
∂t

= D1cm(r, t)−χ(r, t) for all r ∈�, (7)

while (4), describing the mass transfer across the boundary and the initial condi-
tions, remains unchanged.
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Figure 5. Matrix concentration (9) and production term (11) as a
function of time. Time t∗ is indicated by a red line.

In order to find an explicit expression for χ(r, t) we first consider (7) without
the flux term, i.e.,

∂cm(r, t)
∂t

=−χ(r, t). (8)

A suitable form of the production is then found by means of a phenomenological
argument: we want the concentration of the drug at every point in the matrix to
change around a certain point in time, t∗ = 7 weeks, from the level c̃∗m, and then
finally assumes a constant level c̃∞m , where the symbol “∞” refers to long times,
namely 15 weeks. This behavior can be described by using the function

cm(r, t)=
c̃∗m− c̃∞m
π

arctan
(
−

t − t∗
εt∗

)
+

c̃∗m+ c̃∞m
2

, (9)

where ε is a dimensionless parameter allowing us to control the slope of the curve.
We can estimate all parameters from the experimental release profile at t∗ = 7 and
t∞ =∞≈ 15 weeks, i.e., the beginning and the saturation of the second stage:

c̃∗m = 1× c0, c̃∞m = 0.844× c0. (10)

Moreover, in order to guarantee the observed transition sharpness, we choose
ε = 0.05. The concentration-time function is shown on the left of Figure 5. The
transition into saturation is clearly visible.

Then by substituting this function into (8), we obtain the following expression
for the production term:

χ(r, t)=
c̃∗m− c̃∞m
πεt∗

(
1+

(
t∗− t
εt∗

)2)−1

. (11)
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The production term is shown on the right of Figure 5. As it should be, it is a
very sharp function distinctly different from zero only around the time t∗, which is
indicated by the straight red lines in the plots. This also means that there is nearly
no production during stage I. Here the release process will essentially be modeled
as Fickian.

2.2. Model 2: production term obtained from a micromodel. Note that Model 1
of Section 2.1 was phenomenological in the sense that we made the drug release
stop by prescribing an appropriate production term. In this subsection we attempt to
give reasons why the release stops and will “derive” the corresponding production
term from micromechanical considerations. To this end, we will assume that ini-
tially the matrix as well as the solution do not contain any drug, i.e., cm(r, t = 0)= 0
for all r ∈� and cs(t = 0)= 0, but rather the matrix will be filled gradually with
drug by dissolution of the drug particles stored within. As in (7) of Section 2.1 this
process is described by an additional (this time positive) production term χ(r, t)
in the diffusion equation,

∂cm(r, t)
∂t

= D1cm(r, t)+χ(r, t) for all r ∈�, (12)

and (4) describing the mass transfer across the boundary remains unchanged. The
diffusion coefficient D is unknown and will be determined from inverse analysis.

In order to obtain a suitable form for a physics-based production term we now
argue microscopically and start from a dissolution law established by Shukarev
[Zelikman et al. 1983, p. 424; Wikipedia 2017] to obtain its concrete mathematical
form. This law is formulated as follows. The amount of substance transferred
across the interface by dissolution of a single particle is proportional to the differ-
ence between the concentration at the interface c|0̃ and the concentration further
away, in other words by the “intensity of the sensing phase” c, the phase contact
surface dF , and time increment dt :

dm = α(c|0̃ − c) dF dt, (13)

where dm is the mass increment of the solute and α the mass transfer coefficient.
Now in order to get to the continuum scale we homogenize and assume that the

drug-carrying particles are all spherical of the same initial radius R0≈ 7.5×10−6 m
based on SEM examinations. For simplicity and in a first step it is also assumed
that they are initially uniformly distributed throughout the matrix. This means that
the particle density n = N/Vm is constant, while N is the number of particles and
Vm is a representative volume element of the matrix. Then Shukarev’s law suggests
the following form for the production term on the continuum level:

χ(r, t)= 4πR2(t)α(R)n[cm|0̃ − cm(r, t)] for all r ∈�, (14)
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where R(t) is the particle radius, which is a function of time, n = N/Vm is the
particle number density, N is the number of particles, Vm is the matrix volume,
and cm|0̃ is the concentration of dissolved drug at the interface between solid drug
and dissolved drug. It will be estimated from the condition that the part of the drug
that can dissolve in the remaining volume of the matrix is completely dissolved:

cm|0̃ =
N · ρd ·

4
3π(R

3
0 − R3

cr)

Vm− N · 4
3πR3

cr
, (15)

where ρd = 1032 mg/ml is the mass density of drug and Rcr is a critical radius to
which the drug particles dissolve and which will be discussed further. And α(R)
is the mass transfer coefficient, which depends on the radius of the drug particle.

We proceed to give a reason why the mass transfer coefficient is not constant
but is rather a kinetic characteristic. We assume that it is a function of the (average
homogenized) radius R of the drug particles. In fact, the smaller the radius of
the particle, the greater the surface tension and therefore the smaller the mass
transfer coefficient. We must also take into account that the drug particles do
not completely dissolve, i.e., a certain critical radius Rcr exists. When the particle
approaches this radius, the production stops, because the stabilizing surface tension
is too strong. This fact has been known for a long time [Finholt and Solvang 1968]
and observed until today [Dahlberg et al. 2008]. Hence, we propose the following
linear approximation carrying all these features:

α(R)= α0
R(t)− Rcr

R0− Rcr
, (16)

where α0 is an amplitude to be determined from inverse analysis. As evident by
its unit it is characteristic of the speed of dissolution. The critical radius Rcr is a
parameter to be adjusted depending on the observed saturation level and can be
calculated from mass conservation:

[1−F(15 weeks)]m0=N ·ρd·
4
3πR3

cr =⇒ Rcr≈0.54R0, cm|0̃≈74 mg/ml. (17)

In other words, the parameter Rcr puts an end to the dissolution. As mentioned
before the idea is that surface tension limits the size of particles that can dissolve.
Clearly, the particle radius will change with time until it reaches this limit. Hence,
we need a suitable kinetic equation. If we consider the dissolution of one drug
particle, Shukarev’s law reads

ṁ(t)=−α(R)[cm|0̃ − cm(r, t)] · 4πR2(t). (18)

We decompose the rate of change of drug mass as a product of drug density and
the rate of change in particle volume:

ρdV̇ (t)=−α(R)(cm|0̃ − cm(r, t)) · 4πR2(t). (19)
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After substituting the volume of the spherical particle V (t)= 4/3πR3(t) into (19)
we get

ρd
dR(t)

dt
=−α(R)[cm|0̃ − cm(r, t)]. (20)

Hence, during the inverse analysis we must solve the coupled system of equations
(7), (14), (16), and (20), subject to the initial and boundary conditions mentioned
at the beginning of this subsection and R(0)= R0.

3. Results and discussion

We begin by presenting the results of the phenomenological model with the nega-
tive production from Section 2.1. The predicted mass release is shown in Figure 6.
Two values for the diffusion coefficients during the two stages were obtained from
inverse analysis of the data:

DI = 1.470× 10−9 mm2/s, DII = 1.509× 10−9 mm2/s. (21)

Note that DII is slightly larger than DI. Coincidentally this is confirms our intuition:
we expect fissures in the matrix to be generated and to increase during longer
exposure of the specimen to the body fluid. Overall this would correspond to an
increasing diffusion coefficient. However, it should be emphasized that this result
is nothing more than a coincidence and not really substantiated by the model.

Summarizing we may say that the traditional Fickian model of drug release from
the matrix and its release into a body fluid solution was extended by introducing a
phenomenologically motivated production term. It turns out that the stagnation of
the release can be modeled adequately in the second stage during weeks 5 to 15.
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Figure 6. Fractional cumulative release with two-stage diffusion coefficient.
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Figure 7. Fractional cumulative release predicted by Shukarev’s
dissolution model.

We now turn to the micromechanical model with constant particle distribution
in the matrix from Section 2.2. The predicted mass release and the experimental
data are depicted in Figure 7.

The corresponding values for the diffusion coefficients during the two stages are

DI = 2.418× 10−9 mm2/s, DII = 3.588× 10−9 mm2/s. (22)

As part of the inverse analysis the following value for the model parameter of
the mass transfer coefficient (16) was obtained: α0 = 2× 10−9 m/s.

By looking at the graph it turns out that the stagnation of the release can be
modeled quite well in the second stage during weeks 5 to 15. As in the model
from Section 2.1, the first stage stagnation after week 3 is not represented at all.
Again the diffusion coefficient for the second stage is slightly larger than during
the first stage. As discussed before this agrees conveniently with our intuitive
view for easier diffusion due to progressing deterioration of the matrix. It is to be
understood that the diffusion coefficient is a kinematic characteristic that, generally
speaking, depends on many facts (including the ones listed above). Therefore, our
assumption about the relationship between the quality of the matrix and the values
of the diffusion coefficient has been put into a new perspective.

4. Conclusions and outlook

Various mathematical models have been analyzed in order to describe the diffusion
process in a carrier matrix and drug release across the boundary. After a short
review of results from classical Fickian diffusion an extended diffusion equation
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with two different production terms was presented. These can mimic a locking
effect, one on a phenomenological basis and the other one on microscopic grounds
regarding the dissolution of individual drug particles.

It is intuitively clear that the deterioration of the quality of the polymer matrix
over time can be “incorporated” in the determination of the diffusion coefficient
for two different stages — before and after the fifth week.

However, we must conclude that the suggested models can give only an approx-
imate understanding of the drug release described in [Macha et al. 2019], since
they do not describe the saturation during the first phase as well as the destruction
of the carrier polymer matrix into parts before the active substance is completely
released, which is one of the reasons for the burst-type release. The analysis of
this is left to future research.

Moreover, our enhanced models may well describe drug dissolution and diffu-
sion in a nonbiodegradable polymer matrix. Such a matrix after the release of the
active substance must be removed from the body either mechanically or through
the gastrointestinal tract. To describe the release of a drug from such a matrix, we
do not need to introduce two stages and two diffusion coefficients.
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