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The nonlinear governing differential equation and variational formulation of the
Euler–Bernoulli beam model are formulated within Mindlin’s strain gradient
elasticity theory of form II by adopting the von Kármán strain assumption. The
formulation can retrieve some simplified beam models of generalized elasticity
such as the models of simplified strain gradient theory (SSGT), modified strain
gradient theory (MSGT), and modified couple stress theory (MCST). Without
the presence of nonlinear terms, the resulting linear differential equation is solv-
able by analytical means, whereas the mathematical complexity of the nonlinear
problem is treated with the Newton–Raphson iteration and a conforming isogeo-
metric Galerkin method with C p−1-continuous B-spline basis functions of order
p ≥ 3. Through a set of numerical examples, the accuracy and validity of the
present theoretical formulation at linear and nonlinear regimes are confirmed.
Finally, an application to lattice frame structures illustrates the benefits of the
present beam model in saving computational costs, while maintaining high accu-
racy as compared to standard 2D finite element simulations.

1. Introduction

Microbeams are nowadays the key components in micro- and nanoelectromechan-
ical systems (MEMS and NEMS, respectively) which are broadly applicable in
designs such as microsensors and -actuators [Hu et al. 2004; Lun et al. 2006;
Moghimi Zand and Ahmadian 2009], atomic force microscopes [Chang et al. 2007;
Turner and Wiehn 2001], and so on. In these devices, the beam thickness is
sized down to the order of microns and submicrons. A number of experimental
tests [Fleck et al. 1994; Lam et al. 2003; Stölken and Evans 1998] have demon-
strated, however, that the size-dependent behavior of these extremely small-scale
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microstructural systems cannot be predicted and explained by classical continuum
mechanics. In fact, experimental measurements have revealed that reducing the
beam/rod size, e.g., decreasing the beam/rod thickness or diameter, results in an
enhancement of the torsional stiffness of a copper wire [Fleck et al. 1994], a sig-
nificant increase in the level of plastic hardening of a thin nickel beam [Stölken
and Evans 1998], or a remarkable increase in the bending rigidity of an epoxy
beam [Lam et al. 2003]. Interestingly, another class of structures sharing the same
nature is microarchitectural structures of any scale [dell’Isola et al. 2016; Khakalo
et al. 2018; Khakalo and Niiranen 2019]: size-dependent behavior is an inherent
property of materials or metamaterials, present when the characteristic length of
the material microstructure becomes comparable with the dimensions of the struc-
ture itself, such as the thickness of thin structures. This leads to the necessity of
nonclassical continuum theories which include material length scale parameters
for predicting size effects, in addition to the classical Lamé constants used in the
conventional theory of elasticity.

The nonclassical continuum theories can be classified into two branches: “higher-
order” theories proposing additional (internal) variables [Cosserat and Cosserat
1909; Eringen 1999; Green and Rivlin 1964] and “higher-grade” theories includ-
ing higher gradients of the classical variables, displacements, or strains. In the
latter, one of the most well known theories is the strain gradient elasticity theory
pioneered by Mindlin [1964; Mindlin and Eshel 1968] and other contemporaries.
In the restriction of the present work, we focus only on the strain gradient theory
of form II in which the second derivatives of strains are involved. It is worth
noting that the three-dimensional isotropic version of Mindlin’s theory employs
five additional material parameters as compared to the classical isotropic elasticity.
Over the last fifty years, many versions of Mindlin’s original formulation have
been proposed [Lam et al. 2003; Aifantis 1992; Yang et al. 2002] in order to
introduce fewer additional material parameters. In the framework of strain gra-
dient elasticity theory, Aifantis’s proposal [1992] for a nonlocal version of the
generalized Hooke’s law introduced only one length scale parameter beside the
two conventional Lamé parameters. The corresponding variational formulation
was introduced by Altan and Aifantis [1997]. In the framework of this simplified
strain gradient theory (SSGT), bending and vibration analysis of beam- and plate-
like structures, in particular, has been accomplished in [Lazopoulos 2004; 2012;
Lazopoulos and Lazopoulos 2010; Askes and Aifantis 2009; Niiranen et al. 2019;
2017; Balobanov and Niiranen 2018]. Lam et al. [2003] simplified Mindlin’s for-
mulation to the so-called modified strain gradient theory (MSGT) involving three
material length scale parameters. By eliminating two of them, Yang et al. [2002]
suggested a modified couple stress theory (MCST) with one additional material
parameter again. Based on these two theories, many works involving static and
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dynamic investigations of linear Euler–Bernoulli and Timoshenko beams have been
published [Park and Gao 2006; Ma et al. 2008; Kong et al. 2009; Wang et al.
2010]. The reviews in [Lurie and Solyaev 2018; Thai et al. 2017] are suggested
for a detailed exposition. Regarding more general models incorporating more non-
classical constitutive parameters but still fewer than in the full anisotropic form
of Mindlin’s theory, we refer to the following recent contributions: an anisotropic
form of the so-called weak nonlocality [Lazar and Po 2015], an anisotropic version
of Mindlin’s form-II thermoelasticity [Khakalo and Niiranen 2020], a simplified
version of Mindlin’s second strain gradient (third displacement gradient) elasticity
[Khakalo and Niiranen 2018], or microarchitecture-specific second displacement
gradient formulations; see, e.g., [Boutin et al. 2017; Rickert et al. 2019; dell’Isola
et al. 2019a; 2019b; Abdoul-Anziz and Seppecher 2018].

As seen, the studies in [Lazopoulos 2004; 2012; Lazopoulos and Lazopoulos
2010; Askes and Aifantis 2009; Niiranen et al. 2019; 2017; Balobanov and Ni-
iranen 2018; Park and Gao 2006; Ma et al. 2008; Kong et al. 2009; Wang et al.
2010] are restricted to the linear regime of structural analysis. However, the beam
structures used in MEMS or NEMS, or microarchitectural structures, can exhibit
large deformations in which the stretching becomes dominant, which results in ge-
ometrical nonlinearity which, in turn, results in significant changes in the structural
response in both statics and dynamics [Hassanpour et al. 2010; Abdel-Rahman et al.
2002]. Therefore, beside the linear investigations listed above, studies on nonlin-
earities have gotten attention. For instance, Xia et al. [2010] developed a nonlinear
Euler–Bernoulli model based on MCST for the analysis of statics, free vibration,
and postbuckling. Asgharis et al. [2010; 2012; Kahrobaiyan et al. 2011] studied the
same beam problems by using a nonlinear Timoshenko beam model. Lazopoulos
et al. formulated the nonlinear bending and buckling problems of beams [Lazopou-
los et al. 2014] and shallow shells [Lazopoulos and Lazopoulos 2011]. In addition,
Ramezani [2012; 2013] adopted the multiple scales perturbation technique to solve
analytically the geometrically nonlinear beam and plate problems based on strain
gradient elasticity. As observed in the aforementioned works, the governing dif-
ferential equations in the framework of strain gradient theory are mathematically
complex due to the appearance of many nonlinear terms involving higher-order
derivatives of the variables. Generally, analytical approaches can be utilized only
in some simple cases of geometries, loadings, and boundary conditions. Therefore,
numerical techniques are necessary. Furthermore, the numerical tools must be
somewhat special in cases which require higher-order continuity. Dadgar-Rad and
Beheshti [2017] proposed a novel two-node microbeam element based on using
fifth-order Hermite functions in order to deal with the stringent continuity require-
ments. By another way, Hughes et al. [2005] proposed an isogeometric analysis
(IGA) utilizing the same basis functions as a B-spline or NURBS in describing the
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geometry to construct the finite approximation. Literature on the computational
application of IGA is extremely vast, especially for the beam and plate problems
[Bauer et al. 2016; Kiendl et al. 2015; Luu et al. 2015; Tran et al. 2013; Thai et al.
2014; Vo and Nanakorn 2020; Greco and Cuomo 2014; Greco et al. 2017; Greco
2020]. One of the most salient features of the IGA shown clearly in Niiranen’s
works [Niiranen et al. 2019; 2017] is to use a conforming isogeometric C p−1-
continuous discretization (with order p ≥ 3) to naturally fulfill the required C2-
continuity requirement without any additional variables. In the present work, we
extend this approach to nonlinear deformations.

First, we formulate a nonlinear strain-gradient-elastic beam model based on
Mindlin’s strain gradient elasticity theory of form II [Mindlin 1964]. The formula-
tion takes into account the von Kármán strain tensor for geometrical nonlinearity.
With proper choices of length scale parameters, we retrieve various one-parameter
beam models corresponding to SSGT, MSGT, and MCST and a relation between
these models.

Second, we adopt isogeometric B-spline basis functions for implementing a
conforming C p−1-continuous Galerkin method. Then by applying the Newton–
Raphson method, the nonlinear beam bending problem is solved iteratively. Through
a set of numerical benchmarks, the accuracy and validity of the present theoretical
formulations at linear and nonlinear regimes are confirmed.

Third, we demonstrate the advantages of applying the strain gradient elasticity
theory for analyzing 2D triangular lattice structures from the linear regime to the
regime of the von Kármán–type geometrical nonlinearity. By using a dimension
reduction model, we significantly reduce the number of degrees of freedom, which
results in essential savings in computational costs, while maintaining a good level
of accuracy, as compared to standard 2D finite element simulations. From the
theoretical point of view, it is interesting to witness that beam structures having a tri-
angular, stretching-dominated lattice microarchitecture follow the size-dependent
generalized beam models, allowing us to extend the results of [Khakalo et al. 2018;
Khakalo and Niiranen 2019] concerning the linear regime of the generalized Euler–
Bernoulli and Timoshenko beam models. From the mechanical point of view, it
is crucial that these beam models share the kinematical assumption of straight
cross-sectional fibers fulfilled by the lattice beams [Khakalo and Niiranen 2019,
Appendix C].

This paper is outlined as follows. The next section details the strain gradient
elasticity theory for the Euler–Bernoulli beam model adopting the von Kármán
strain assumption. In Section 3, we derive a variational formulation of the beam
model for which we then write a conforming Galerkin method based on isogeomet-
ric analysis. A set of numerical examples is examined in Section 4. Finally, some
concluding remarks close the article.
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2. Continuum models for generalized beams

2.1. Strain gradient elasticity theory. To capture the size effects of isotropic mate-
rials, Mindlin [1964] proposed the strain energy density of a microstructural solid
in a general form with an additional higher-order strain gradient tensor ξ beside
the infinitesimal strain tensor ε appearing in the conventional continuum theories:

U (ε, ξ)= 1
2λεi iε j j +µεi jεi j

+ a1ξi ikξk j j + a2ξi j jξikk + a3ξi ikξ j jk + a4ξi jkξi jk + a5ξi jkξk ji (1)

where λ and µ are the classical Lamé constants related to Young’s modulus and
Poisson’s ratio as λ = Eν/(1− 2ν)(1+ ν) and µ = E/2(1+ ν), whereas the ai

(i = 1, 2, . . . , 5) are nonclassical material parameters. The components of the third-
order strain gradient tensor ξi jk are defined according to the type-II formulation of
Mindlin’s theory as

ξi jk = ε jk,i (2)

where the infinitesimal strain tensor εi j is written in terms of the displacement
components ui according to the Green strain assumption as usual in continuum
mechanics:

εi j =
1
2(ui, j + u j,i + uk,i uk, j ). (3)

Note that the symbol ( · ),i denotes the derivative with respect to coordinate xi .
The constitutive equations for the Cauchy-like stress and double stress are then
given by

σi j =
∂U
∂εi j

= λεkkδi j +µεi j (4)

τi jk =
∂U
∂ξi jk

=
1
2a1(δi jξkpp + 2δ jkξppi + δikξ j pp)+ 2a2δ jkξi pp

+ a3(δi jξppk + δikξppj )+ 2a4ξi jk + a5(ξ jki + ξki j ). (5)

By assigning specific values for the additional material parameters ai , certain
versions of strain gradient theories can be obtained. For instance, Lam et al. [2003]
introduced the modified strain gradient theory with three length scale parameters
li (i = 0, 1, 2) which are used to calculate the five independent parameters ai in
Mindlin’s form II as

a1 = µ
(
−

4
15 l2

1 + l2
2
)
, a2 = µ

(
l2
0 −

1
15 l2

1
)
,

a3 = µ
(
−

4
15 l2

1 −
1
2 l2

2
)
, a4 = µ

(1
3 l2

1 + l2
2
)
, a5 = µ

( 2
3 l2

1 − l2
2
)
.

(6)

In the special case of l0 = l1 = l2 = l, the nonclassical material parameters ai

can be written in terms of one additional length scale parameter as

{a1, a2, a3, a4, a5} =
1
30µl2

{22, 13,−23, 40,−10}. (7)
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Similarly, Yang et al. [2002] suggested the modified couple stress theory by
eliminating l0 and l1. As a consequence, (6) is rewritten as

a1 =−2a2 =−2a3 = a4 =−a5 = µl2. (8)

In the framework of simplified strain gradient theory [Aifantis 1992], only the
nonclassical terms related to a2 and a4 are considered by introducing a material
length scale parameter g as

a1 = a3 = a5 = 0, a2 =
1
2 g2λ, a4 = g2µ. (9)

2.2. Kinematics of Euler–Bernoulli beams. Let us consider a three-dimensional
prismatic beam structure with length L , thickness h, and width b. For simplicity, it
is assumed that the beam cross-section A is constant. Within the Euler–Bernoulli
hypotheses for in-plane bending, the displacement field of an arbitrary point in the
beam is defined as

ux(x, y, z)= u(x)− yw′(x), u y(x, y, z)= w(x), uz(x, y, z)= 0, (10)

where u and w denote the axial extension and transverse displacement of the beam,
respectively. Substituting the displacement field of (10) into (3), with such an as-
sumption that the beam can exhibit large deflection but small or moderate rotation,
only one nonzero strain component remains active, expressed according to the
von Kármán strain formulation as

εxx = u′x +
1
2(u
′

y)
2
= ε0+ yε1. (11)

Accordingly, two nonzero components of the strain tensor gradient are obtained
according to (2):

εxxx = εxx,x = ε2+ yε3,

εyxx = εxx,y = ε1,
(12)

where these variables can be written in a matrix form as

ε̂ =


ε0

ε1

ε2

ε3

=


u′+ 1
2(w

′)2

−w′′

u′′+w′w′′

−w′′′

 . (13)

Herein, the prime stands for a derivative with respect to x . By following the
constitutive equations in (4) and (5), the nonzero Cauchy-like stress and double
stress for the beam are given as

σxx = Eεxx , τxxx = 2
5∑

I=1

aI εxxx = α1εxxx , τyxx = 2(a2+ a4)εyxx = α2εyxx .

(14)



A GEOMETRICALLY NONLINEAR EULER–BERNOULLI BEAM MODEL 351

3. Variational formulation and Galerkin-type isogeometric analysis

3.1. Variational formulation and boundary conditions. The virtual strain energy
in the Euler–Bernoulli beam model based on the strain gradient theory has the form

δU =
∫

V
(σxxδεxx + τxxxδεxxx + τyxxδεyxx) dV

=

∫ L

0

∫
A
(σxx(δε0+ yδε1)+ τxxx(δε2+ yδε3)+ τyxxδε1) d A dx

=

∫ L

0
(Nδε0+ (M + Q)δε1+ Rδε2+ Pδε3) dx =

∫ L

0
δε̂T σ̂ dx, (15)

where the classical and nonclassical stress resultants are defined as

N =
∫

A
σxx d A = E A

[
u′+ 1

2(w
′)2
]
, M =

∫
A

yσxx d A =−E Iw′′,

R =
∫

A
τxxx d A = α1 A(u′′+w′w′′), P =

∫
A

yτxxx d A =−α1 Iw′′′,

Q =
∫

A
τyxx d A =−α2 Aw′′.

(16)

We note that M and N represent the classical stress resultants and N includes
a nonlinear strain term as usual, whereas P , Q, and R are characteristic for the
generalized beam models as follows. P is a parameter-dependent higher-order
bending term responsible for possible boundary layers depending on boundary
conditions [Niiranen et al. 2019]. Q brings a size dependency to the model, which
can be revealed as follows [Niiranen et al. 2019]: when Q, proportional to α2 A,
which in turn is proportional to α2h2, is combined with M , proportional to EI,
being in turn proportional to Eh4, one obtains a bending term proportional to
E I (1+ α2/h2). The first term of R can be identified as a boundary layer term
related to the corresponding bar problem [Niiranen et al. 2016], whereas the sec-
ond term is a nonclassical term having a link to the nonlinear part of strain. In fact,
when the second term of R is combined with M and Q, it can be interpreted as a
stiffening nonlinear term (actually, equal to −w′Q by assuming that α1 = α2).

Equation (16) can be rewritten in a compact form as

σ̂ = [N ,M + Q, R, P]T = Dε̂ (17)

in which D= diag(E A, E I +α2 A, α1 A, α1 I ) forms a diagonal constitutive matrix.
The virtual work done by the external forces fx and fy can be written as

δW =
∫ L

0
( fxδu+ fyδw) dx, (18)
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and finally the principle of virtual work is expressed in the form

0= δ5=−δU+δW

=−

∫ L

0
(Nδε0+(M+Q)δε1+Rδε2+Pδε3) dx+

∫ L

0
( fxδu+ fyδw) dx . (19)

Let us next integrate by parts (19) until getting terms which contain the virtual
displacements δu and δw as common factors. Thereafter, the strong form as a pair
of governing equations is expressed as

(δu) −N ′+ R′′ = fx ,

(δw) −(Nw′)′− (M + Q)′′+ (R′w′)′+ P ′′′ = fy .
(20)

Additionally, the corresponding boundary conditions are obtained via the fol-
lowing essential (left) or natural (right) conditions:

u = u or N − R′ = N ,

u′ = α or R = R,

w = w or (N − R′)w′+ (M + Q)′− P ′′ = V ,

w′ = β or −(M + Q)+ Rw′+ P ′ = M,

w′′ = κ or P = P.

(21)

The overlined symbols above denote prescribed boundary values, as usual.
By substituting the definitions of the stress resultants in (16) into (20), the gov-

erning equation can be rewritten in terms of displacements as

−E A[u′′+w′w′′] +α1 A(u(4)+ 3w′′w′′′+w′w(4))= fx ,

−E A
[
u′w′+ 1

2w
′3]′
+ (E I +α2 A)w(4)

+α1 A[(u′′′w′+w′2w′′′+w′w′′2)]′−α1 Iw(6) = fy .

(22)

In particular, by eliminating the nonlinear terms in (22) we can obtain the equi-
librium equations corresponding to the linear form of the strain gradient Euler–
Bernoulli beam model as a pair of decoupled stretching and bending equations
[Niiranen et al. 2019]:

−E Au′′+α1 Au(4) = fx ,

(E I +α2 A)w(4)−α1 Iw(6) = fy
(23)
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with the respective boundary conditions

u = u or E Au′−α1 Au′′′ = N ,

u′ = α or α1 Au′′ = R,

w = w or −(E I +α2 A)w′′′+α1 Iw(5) = V ,

w′ = β or (E I +α2 A)w′′−α1 Iw(4) = M,

w′′ = κ or α1 Iw′′′ = P.

(24)

Regarding (23) and (24), notice that the axial and transverse displacements are
prescribed independently.

3.2. Finite element equations. Solving the nonlinear equation (22) even in the
simplest cases is a nontrivial task. Therefore, we prefer solving the problem via
a weak form equation based on the discrete formulation of (19) by using the iso-
geometric finite element method [Hughes et al. 2005]. With an open knot vector
4= {ς1, ς2, . . . , ςm+p+1}, which is a nondecreasing sequence of parameter values
ςi ∈ R+ (i = 1, 2, . . . ,m+ p) with m denoting the number of basis functions, the
univariate B-spline basis functions φ p

i (ς) are defined recursively by using the Cox–
de Boor algorithm [Piegl and Tiller 1997]:

φ
p
i (ς)=

ς − ςi

ςi+p − ςi
φ

p−1
i (ς)+

ςi+p+1− ς

ςi+p+1− ςi+1
φ

p−1
i+1 (ς) if p ≥ 1,

φ0
i (ς)=

{
1 if ςi < ς < ςi+1,

0 otherwise.

(25)

Similar to the traditional finite element method, isogeometric analysis invokes
the isoparametric concept in which the displacements are approximated by a linear
combination of the basis functions and the unknown degrees of freedom in the
form

uh
=

∑
I=1

φI (ς)dI (26)

where dI = [u I , wI ]
T denotes the degrees of freedom associated to control point I .

According to the approximate displacement in (26), the variation of the strain
vectors denoted by δε̂ can be computed as

δε̂ =
∑

I

BI δdI (27)

where the generalized strain matrix is defined as

BI =

[
φ′I 0 φ′′ 0
w′φ′I −φ

′′

I w′φ′′I +w
′′φ′I −φ

′′′

I

]T

. (28)
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As seen, the third derivative of the basic function is required in (28). Therefore,
at least cubic B-spline basis functions (p ≥ 3) providing C2-continuity are adopted
for spanning the approximation space.

By substituting (27) into (19), one can obtain the nonlinear equilibrium equa-
tions (after eliminating the arbitrary nodal virtual displacement δdI ) as

R(d)=
∑

I

∫ L

0
BT

I σ̂ dx − FI = 0 (29)

where FI is the load vector

FI =

∫ L

0
φI [ fx , fy]

T dx . (30)

The nonlinear equation (29) is solved iteratively by the Newton–Raphson scheme
in which the obtained solution is updated by an incremental displacement 1d given
through the following system of a linear algebraic equation:

KT1d =−R (31)

where the tangent stiffness matrix is defined as

KT =
∂R
∂d
=

∑
I

∫ L

0

(
BT

I
∂σ̂

∂d
+
∂BT

I

∂d
σ̂

)
dx

=

∑
I

∑
J

∫ L

0
(BT

I DBJ + Nφ′Iφ
′

J I + R(φ′Iφ
′′

J +φ
′′

I φ
′

J )I) dx (32)

where I denotes an identity matrix. The iteration is repeated until the difference
between two consecutive iterations reduces below a desired error tolerance, e.g.,
0.1%. For a detailed description of the solution procedure, one can refer to [Tran
et al. 2015; Tran and Kim 2018].

4. Numerical examples

4.1. Model comparison. Let us consider a microbeam with thickness h, length L ,
and width b = 2h subjected to a concentrated load Q = 100µN placed at the
mid-span in the case of simply supported (SS) or clamped (CC) constraints at both
ends or at the free-end of a cantilever beam (CF). At first, the assumption of small
deformations is adopted for studying the linear behavior of the beams. It is assumed
that the beam is made of epoxy with material properties as Young’s modulus and
Poisson ratio E = 1.44 GPa and ν = 0.38, respectively, and with the length scale
parameter assigned to be equal to l = 17.6µm [Lam et al. 2003]. Note that in the
case of MSGT, the number of length scale parameters is reduced to one by setting
l0 = l1 = l2 = l = 17.6µm. The beam dimension is scaled up, by which the ratio
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MSGT MCST SSGT C
h/ l FEM l exact l l = 33.08 l l = 19.91 exact

SS 1 1.2718 1.2722 1.2722 3.8957 1.2733 1.601 1.270 20.8336
5 12.8917 12.8998 12.8997 17.7471 12.9041 14.0603 12.8987 20.8336

100 20.8013 20.8016 20.8013 20.8245 20.8016 20.8085 20.8016 20.8336

CC 1 0.3173 0.3173 0.3173 0.9739 0.3183 0.399 0.317 5.2083
4 2.6526 2.6526 2.6526 4.0955 2.6571 2.9706 2.6515 5.2083
8 4.1973 4.1973 4.1973 4.8771 4.2002 4.3829 4.1966 5.2083

100 5.1999 5.2004 5.2003 5.2061 5.2004 5.2021 5.2004 5.2083

CF 1 20.3678 20.3659 62.3306 20.372 25.6345 20.3667 333.333
4 170.0372 170.0373 262.1083 170.0555 190.4536 170.0324 333.333
8 268.7979 268.798 312.1289 268.8093 280.6895 268.7949 333.333

100 332.8219 332.8219 333.1885 332.822 332.9337 332.8219 333.333

Table 1. Normalized central deflection 103ŵ of the microbeams
in the linear regime of deformation (L/h = 30, Q = 100µN, E =
1.44 GPa, ν = 0.38, l = 17.6µm, and b = 2h). See [Dadgar-Rad
and Beheshti 2017] for the FEM column and [Timoshenko and
Goodier 1970] for the C column.

of the thickness to the length scale parameter h/ l changes in the range of [1, 100],
while the slenderness ratio is kept unchanged at the value L/h= 30. The maximum
normalized deflection ŵ=wE I/(QL3) for the three different types of beams based
on MSGT, MCST, SSGT, and classical elasticity (C) has been reported in Table 1.
For the sake of comparison, the results of Dadgar-Rad’s work [Dadgar-Rad and
Beheshti 2017] based on MSGT are inserted in the table. In addition, the maximum
deflection values based on the classical Euler–Bernoulli beam theory [Timoshenko
and Goodier 1970] given as ŵ = 1

48 ,
1

192 ,
1
3 for the simply supported, clamped, and

cantilever beams, respectively, are also supplied. As can be seen, the deflections
of classical elasticity are constant and independent of ratios L/h and h/ l. On
the other hand, all nonclassical theories propose lower deflection values which are
strongly dependent on ratio h/ l. It is observed that the discrepancy as compared
to the classical elasticity becomes very small as thickness h is far greater than the
value of the material length scale parameter l, e.g., l/h = 100. Importantly, the
present numerical simulation using IGA and based on only two unknowns (u and w)
produces results in accordance with the FEM results by Dadgar-Rad [Dadgar-Rad
and Beheshti 2017] utilizing a nonconforming element with five degrees of free-
dom per node and also analytical solutions (given in the Appendix) for all of the
case studies. For instance, as seen in Figure 1, the numerical results depicted
with markers perfectly match the analytical curves plotted with lines. Moreover,
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Figure 1. Comparison of various size-dependent theories for a
simply supported beam (L/h = 30 and h = 17.6µm) with a
concentrated load Q = 100µN at the mid-span. Note that the
closed-form results are plotted with lines, while markers depict
the numerical results based on IGA.

it is also clearly indicated that different strain gradient elasticity theories produce
different results. For example, MCST in the green line, eliminating the sixth-order
term in the governing equation (23), overestimates the transverse displacement as
compared to the others. To find the relation between these nonclassical models, let
us revisit the analytical deflection function in (35) with the values of integration
constants given in (37), (39), and (41) according to the different types of boundary
constraints. By keeping the integration constant c3 fixed, a relation of the material
length scale parameter for a particular model is given as

(lMCST, lSSGT)=

(√
53
15
,

√
53

30(1+ ν)

)
lMSGT. (33)

According to relation (33), the material length scale parameters of MCST and
SSGT are given by factors 33.08 and 19.91, respectively, in accordance with the
parameter 17.6 of MSGT. With these factors, the results of the models become
practically identical as seen in Table 1 [Niiranen et al. 2019].

As the next step, we again investigate the singly simply supported microbeam
with the above data except for a couple of changes: the slenderness ratio is L/h =
20 and the concentrated load is Q = 12 mN, in order to make sure that the beam
exhibits a relatively large deflection involving geometric nonlinearity. Table 2 lists
a tabular comparison between the nonlinear finite element analysis by Dadgar-Rad
[Dadgar-Rad and Beheshti 2017] based on the MSGT and classical elasticity and
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MSGT MCST SSGT classical
h/ l FEM l l l = 33.08 l l = 19.91 FEM IGA

1 0.9895 0.9897 1.4253 0.9909 1.1065 0.9894 1.7312 1.6765
2 2.8646 2.8649 3.6020 2.8675 3.0727 2.8643 4.0287 3.9591
4 7.1612 7.1622 8.2773 7.1663 7.4860 7.1611 8.8529 8.7573

100 20.8010 20.8058 20.8287 20.8058 20.8124 20.8054 21.0016 20.8331

Table 2. Normalized central deflection 103ŵ of a simply sup-
ported microbeams considering geometrically nonlinear effect un-
der a concentrated load at mid-span Q = 12 mN (L/h = 20,
E = 1.44 GPa, ν = 0.38, l = 17.6µm, b = 2h). See [Dadgar-
Rad and Beheshti 2017] for the FEM columns.

the present IGA. In addition, we also provide some results using MCST, SSGT,
and classical elasticity as well, for comparison. First, let us note that the normal-
ized deflection reduces with an increase in thickness, in contrast to the constant
20.8336 of the classical model. As seen, the smallest beam (h = l) exhibits the
largest deformation with relative deflection w/h = 2.165. Thus, the geometrically
nonlinear effect becomes significant and makes the beam stiffer. Meanwhile, the
largest beam (h = 100l) reveals a very small relative deflection w/h = 0.003, indi-
cating no geometrically nonlinear effects. Therefore, the transverse displacement
coincides with that of linear analysis — opposite to the finite element method used
by Dadgar-Rad [Dadgar-Rad and Beheshti 2017] which overestimates the linear
solution. This indicates that the present nonlinear finite element formulation works
very well for both linear and nonlinear bending analysis. Furthermore, the same
conclusions regarding linear analysis are drawn here. (1) The obtained results are in
good agreement with the result using FEM in [Dadgar-Rad and Beheshti 2017], and
(2) the nonclassical theories exhibit higher bending rigidity due to the appearance of
gradient terms related to the material length scale parameter l. However, the effect
is no longer dominant in large-scale structures (e.g., h/ l = 100). (3) By choosing
the material length scale parameter according to (33), the results are practically
identical for all the generalized theories. Therefore, in future studies, we prefer to
use MSGT as a representative model in the numerical simulations unless otherwise
specified.

4.2. Nonlinear behavior of generalized beams under a uniform distributed load.
Let us continue to study the nonlinear behavior of the microbeams with thickness
h= 17.6 mm and slenderness ratio L/h= 20 subjected to a uniform distributed load
with magnitude q = 30 N/m for the simply supported (SS) beam or q = 60 N/m
if the beam is clamped (CC). These loading values are chosen to make sure that
the maximum rotation of the cross-section does not exceed 15◦ (Figures 3 and 4),
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Figure 2. Load displacement curve of a microbeam under differ-
ent boundary conditions: (bottom) SS and (top) CC (with linear
and nonlinear responses plotted with dashed and solid lines, re-
spectively).

which satisfies the moderate rotation limitation of the von Kármán assumption.
Figure 2 plots the load displacement curves at the mid-span of the beams for dif-
ferent values of the length scale parameter l scaled down to [1, 2, 4, 8, 100] times
thickness h. It is observed that the linear load displacement responses (dashed lines)
are always tangent — at the origin — to the nonlinear load displacement curves
(solids lines). Also, the response curves are strongly dependent on ratio h/ l. As can
be seen, the stiffest beam (h/ l = 1) does not exhibit much nonlinearity, typically
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Figure 3. Behavior of a simply supported beam under a uniform
load q = 30 N/m with L/h = 20 and h = 17.6µm: (top) the
deflection profile and (bottom) the corresponding rotation of the
cross-section.

meaning that the linear and nonlinear results coincide (especially for the clamped
beam). However, increase in ratio h/ l essentially increases the beam deflection.
As the deflection-to-thickness ratio becomes high (i.e., w/h > 1), geometric non-
linearity plays a more essential role through the large difference between the linear
and nonlinear solutions. To close this subsection, the distributions of transverse
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Figure 4. Behavior of a clamped-clamped beam under a uniform
load q = 60 N/m with L/h = 20 and h = 17.6µm: (top) the
deflection profile and (bottom) the corresponding rotation of the
cross-section.

displacement and cross-section rotations through the beam axis coordinate are re-
vealed in Figures 3 and 4. It is noted that the absolute value of rotation based on
the strain gradient theory is smaller than that predicted by the classical formulation
due to the size effect taken into account.
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Figure 5. Top: one half of a lattice frame with L = 90 mm and
h = 8.66 mm, produced by replicating a unit cell 18 and 2 times
along the x- and y-axes, respectively. Bottom: 2D finite element
mesh of a unit cell in the FEM software COMSOL Multiphysics.

4.3. Application to triangular lattice structures. In order to demonstrate the ap-
plicability of strain gradient theories for structures, we further study the linear and
geometrically nonlinear behavior of an elastic triangular lattice frame (see Figure 5)
with length L = 180 mm and height h = 8.66 mm. The frame is constrained at two
ends by clamped and simply supported conditions and subjected to a uniformly
distributed load applied in increments of 1q = 4 N/m until reaching the final
magnitude of 200 N/m. Due to symmetry, only a half of the frame is modeled
as given in Figure 5, top. As seen, the lattice strip can be produced simply by
replicating a unit cell or the so-called representative volume element (RVE with
the dimensions from [Khakalo et al. 2018, Table 3]). The material properties of
the structure are simply Young’s modulus E = 2 GPa and Poisson’s ratio ν = 0.25.

A reference model of the structure is built by using linear quadrilateral finite
elements of classical elasticity in COMSOL Multiphysics with a mesh for each unit
cell shown in Figure 5, bottom. The structure can be modeled by a one-dimensional
generalized beam model as a homogenized isotropic beam with equivalent mechan-
ical properties as Eeff = 246.7 MPa and νeff = 0.335 and intrinsic material length
scale parameter l = 1.57 mm [Khakalo et al. 2018].

The maximum deflection of the beam is recorded at the mid-span and plotted for
each load increment in Figure 6. The red solid lines denote the nonlinear solutions,
while red dashed lines correspond to the linear ones, both corresponding to the
2D reference model. As seen, the present results from the 1D strain gradient
beam model with red circles and diamond markers, corresponding to the linear
and nonlinear regimes, respectively, are nearly lying on the curves. This means
that the strain gradient beam model captures the bending behavior of the lattice
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Figure 6. Load displacement curves of a lattice beam under uni-
form load q = 200 N/m with h = 8.66 mm, L = 180 mm, and
l = 1.57 mm with (top) simply supported and (bottom) clamped
boundary conditions.

frame in both linear and nonlinear regimes. Again, the same observation as for
Figure 2 is that the predicted deflection of the lattice frame (or the strain gradient
beam model) is always smaller than that of the classical beam theory plotted with
a blue curve. Furthermore, a comparison of the deflection distribution between the
2D reference and 1D beam simulations is plotted in Figure 7. As observed, the
present generalized beam model is in good accordance with the global deflection
of the frame represented through the mid-line OA but, naturally, does not describe
in detail any local behavior such as bending or buckling of single struts near the
clamped end of the frame as shown in Figure 8, bottom.
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Figure 7. A comparison for the deflection distribution along the
mid-line between the 1D beam model and 2D reference simu-
lations with clamped (CC) and simply supported (SS) boundary
conditions.

2D reference model 1D beam model
N DoFs time (s) DoFs time (s)

2 165366 258
4 651562 880 24 0.5
8 2586450 4416

Table 3. Number of DoFs and time consumption for the present
1D beam model and the 2D reference model.

To end this subsection, we discuss the computational efficiency of the present
beam model by studying clamped lattice structure strips subjected to a concentrated
load P = 30 N at the mid-span. A series of beam-like lattice structures is formed by
scaling up the frame studied above having two (N = 2) unit cells in the thickness
direction. The subsequent structures of the series have four and eight (N = 4
and N = 8) unit cells in the thickness direction, whereas the slenderness of the
beam-like structures is kept constant: L/h = 20.7. Table 3 shows the number of
degrees of freedom (DoFs) and time consumption in the 2D reference and 1D beam
simulations. As seen, in 2D simulations doubling factor N implies an increase of
N 2 DoFs. Meanwhile, the present strain gradient beam model requires 8 elements
associated with 24 DoFs (as using quartic B-spline basic functions with q = 4) but
still achieves a good agreement with the 2D solutions as shown in Figure 9. (Both
programs are compiled on a desktop PC with an Intel Core i7-7600U 2.80 GHz
CPU and 16 GB of RAM.)
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Figure 8. The transverse displacement of a lattice frame modeled
by 2D finite elements (with COMSOL Multiphysics) under simply
supported (top) and clamped (bottom) boundary conditions.

5. Conclusions

This paper studies the nonlinear bending of the Euler–Bernoulli beam model within
Mindlin’s strain gradient elasticity theory of form II retrieved with simplified one-
parameter beam models of generalized elasticity. In principle, different beam mod-
els give different results. In practice, however, by choosing the value of the length
scale parameter properly, almost identical results can be obtained — for both linear
and nonlinear regimes of deformation. Furthermore, the geometrical nonlinearity
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Figure 9. Load displacement curves for structures with N unit
cells in the thickness direction: linear solutions (dashed lines),
nonlinear solutions with 2D reference model (solid lines), and 1D
beam model (markers).

and size effects reduce the deflection of the beams as compared to the classical
theory of elasticity, especially as the material length scale parameter becomes
comparable to the beam thickness. It is noted that according to the von Kármán
strain assumptions nonlinear deformations are limited to small or moderate rota-
tions. More general large deformations are left for further works.

For the computational part, besides analytical results for some benchmark prob-
lems, a conforming and isogeometric B-spline Galerkin discretization is adopted
for numerical solutions. With basis functions of order p ≥ 3, the method naturally
satisfies the stringent C2-continuity required by the strain gradient beam model.

Finally, we demonstrate the advantage of the present beam model by studying
2D lattice frame structures. With a 1D beam model, we significantly reduce the
number of DoFs but still maintain a good level of accuracy as compared with 2D
reference simulations. However, the beam model as a homogenized model describ-
ing the mid-line of the beam does not describe such behavior as local bending or
buckling of single lattice struts in the vicinity of concentrated loads or constrained
boundaries. A homogenization method considering initial imperfections for geo-
metrically nonlinear analysis [Reinaldo Goncalves et al. 2016] could be considered
to treat this issue in future studies.
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Appendix: Analytical solution for linear statics of strain-gradient-elastic
thin beams

First, let us consider a singly simply supported beam with a concentrated load Q at
the mid-span. The governing equation related to the transverse displacement can
be derived from (23) by setting fy = 0, giving

(E I +α2 A)w(4)−α1 Iw(6) = 0. (34)

The analytical solution of (34) is given by

w(x)= c0+ c1x + c2x2
+ c3x3

+ c4eβx
+ c5e−βx (35)

in which β=
√
(E I +α2 A)/α1 I and the six integration constants cI (I =0,1, . . . ,5)

are determined from the essential and natural boundary conditions. In this beam
problem, due to symmetry, a half of the beam is considered with boundary condi-
tions

w(0)= 0, V (L/2)= Q/2,

M(0)= 0, w′(L/2)= 0,

w′′′(0)= 0, w′′′(L/2)= 0.

(36)

With these constrains, the integration constants are defined as

c0=
6c3

β3 sinh(βL/2)
(1−cosh(βL/2)), c3=

−Q
12(E I+α2 A)

,

c1=c3

(
6
β2−

3L2

4

)
, c4=

−3c3

β3 sinh(βL/2)
(1−e−βL/2),

c2=0, c5=
−3c3

β3 sinh(βL/2)
(1−eβL/2).

(37)

Second, analogously, a singly clamped beam with a concentrated load at the
mid-span satisfies the boundary conditions

w(0)= 0, V (L/2)= Q/2,

w′(0)= 0, w′(L/2)= 0,

w′′′(0)= 0, w′′′(L/2)= 0.

(38)
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The integration constants are accordingly defined as

c0=
6c3

β3 sinh(βL/2)
(1−cosh(βL/2)), c3=

−Q
12(E I+α2 A)

,

c1=
6c3

β2 , c4=
−3c3

β3 sinh(βL/2)
(1−e−βL/2),

c2=−
3Lc3

4
, c5=

−3c3

β3 sinh(βL/2)
(1−eβL/2).

(39)

Third, a cantilever beam subjected to loading Q at the free end gets the integra-
tion constants of (41) which satisfy the boundary conditions

w(0)= w′(0)= 0,

w′′′(0)= w′′′(L)= 0,

V (L)= Q, M(L)= 0

(40)

and integration constants

c0 =
6c3

β3 sinh(βL)
(1− cosh(βL)), c3 =

−Q
6(E I +α2 A)

,

c1 = 6c3/β
2, c4 =

−3c3

β3 sinh(βL)
(1− e−βL),

c2 =−3c3L , c5 =
−3c3

β3 sinh(βL)
(1− eβL),

(41)
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TEODOR ATANACKOVIĆ University of Novi Sad, Serbia

VICTOR BERDICHEVSKY Wayne State University, USA
GUY BOUCHITTÉ Université du Sud Toulon-Var, France

FELIX DARVE Institut Polytechnique de Grenoble, France
CARLO MARCHIORO Università di Roma “La Sapienza”, Italia

ERRICO PRESUTTI Università di Roma Tor Vergata, Italy
MARIO PULVIRENTI Università di Roma “La Sapienza”, Italia

LUCIO RUSSO Università di Roma “Tor Vergata”, Italia

ADVISORY BOARD
HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany

HARM ASKES University of Sheffield, UK
ANDREA BRAIDES Università di Roma Tor Vergata, Italia
MAURO CARFORA Università di Pavia, Italia

ERIC DARVE Stanford University, USA
FABRIZIO DAVÌ Università Politecnica delle Marche, Ancona (I), Italy
ANNA DE MASI Università dell’Aquila, Italia

EMMANUELE DIBENEDETTO Vanderbilt University, USA
VICTOR A. EREMEYEV Gdansk University of Technology, Poland

BERNOLD FIEDLER Freie Universität Berlin, Germany
IRENE M. GAMBA University of Texas at Austin, USA
PIERRE GERMAIN Courant Institute, New York University, USA

SERGEY GAVRILYUK Université Aix-Marseille, France
TIMOTHY J. HEALEY Cornell University, USA

ROBERT P. LIPTON Louisiana State University, USA
ANGELO LUONGO Università dell’Aquila, Italia

JUAN J. MANFREDI University of Pittsburgh, USA
JEAN-JACQUES MARIGO École Polytechnique, France

ANIL MISRA University of Kansas, USA
ROBERTO NATALINI Istituto per le Applicazioni del Calcolo “M. Picone”, Italy

THOMAS J. PENCE Michigan State University, USA
ANDREY PIATNITSKI Narvik University College, Norway, Russia

MIGUEL A. F. SANJUAN Universidad Rey Juan Carlos, Madrid, Spain
A. P. S. SELVADURAI McGill University, Canada
MIROSLAV ŠILHAVÝ Academy of Sciences of the Czech Republic

GEORG STADLER Courant Institute, New York University, United States
GUIDO SWEERS Universität zu Köln, Germany

LEV TRUSKINOVSKY École Polytechnique, France
JUAN J. L. VELÁZQUEZ Bonn University, Germany

VINCENZO VESPRI Università di Firenze, Italia
VITALY VOLPERT CNRS & Université Lyon 1, France Angelo Vulpiani & Università di Roma La Sapienza, Italia

MEMOCS (ISSN 2325-3444 electronic, 2326-7186 printed) is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems at the Università dell’Aquila, Italy.

Cover image: “Tangle” by © John Horigan; produced using the Context Free program (contextfreeart.org).

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2020 Mathematical Sciences Publishers

http://msp.org/memocs/
www.contextfreeart.org
http://msp.org/
http://msp.org/


Mathematics and Mechanics of Complex Systems

vol. 8 no. 4 2020

261On a stochastic approach to model the double
phosphorylation/dephosphorylation cycle

Alberto Maria Bersani, Alessandro Borri, Francesco Carravetta,
Gabriella Mavelli and Pasquale Palumbo

287A new comprehensive approach for bone remodeling under medium
and high mechanical load based on cellular activity

Daniel George, Rachele Allena, Céline Bourzac, Stéphane Pallu,
Morad Bensidhoum, Hugues Portier and Yves Rémond

307Models for drug release of gentamicin in a polylactic acid matrix
Anna S. Morozova, Elena N. Vilchevskaya, Wolfgang H. Müller
and Nikolay M. Bessonov

321Analytical mechanics allows novel vistas on mathematical epidemic
dynamics modeling

Paul Steinmann

345A geometrically nonlinear Euler–Bernoulli beam model within strain
gradient elasticity with isogeometric analysis and lattice structure
applications

Loc V. Tran and Jarkko Niiranen

MEMOCS is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems
at the Università dell’Aquila, Italy.

MM ∩

2326-7186(2020)8:4;1-8

M
A

T
H

E
M

A
T

IC
S

A
N

D
M

E
C

H
A

N
IC

S
O

F
C

O
M

P
L

E
X

SY
ST

E
M

S
vol.

8
no.

4
2

0
2

0


	1. Introduction
	2. Continuum models for generalized beams
	2.1. Strain gradient elasticity theory
	2.2. Kinematics of Euler–Bernoulli beams

	3. Variational formulation and Galerkin-type isogeometric analysis
	3.1. Variational formulation and boundary conditions
	3.2. Finite element equations

	4. Numerical examples
	4.1. Model comparison
	4.2. Nonlinear behavior of generalized beams under a uniform distributed load
	4.3. Application to triangular lattice structures

	5. Conclusions
	Appendix: Analytical solution for linear statics of strain-gradient-elasticthin beams
	References
	
	

