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It is shown that the numerical index d*(a) of a semigroup a of
*-endomorphisms of B(H) obeys the logarithmic addition formula

The proof makes essential use of the theory of continuous product
systems

1. Introduction. Let a = {at: t > 0} be a semigroup of normal
*-endomorphisms of B(H) such that α^l) = 1 and (at(A)ξ, η) is con-
tinuous in t for fixed ζ, η e H and A e B(H). Following Powers [2]
we shall refer to such an a as an E0-semigroup. It will be convenient to
rule out the degenerate case in which the α^'s are all automorphisms,
and hence we require that at(B(H)) Φ B(H) for some (and therefore
every) positive t. On the other hand, we will occasionally need to drop
the hypothesis that α^l) = 1, and will refer to such an a simply as
a ^-semigroup. We emphasize that it is essential for the techniques
below that all Hubert spaces be separable.

In [1], a numerical invariant d*(a) was introduced for £o-semi-
groups a which can be defined rather concretely as follows. Fix-
ing α, let % denote the set of all strongly continuous semigroups
U = {Ut: t > 0} of bounded operators on the Hubert space H of
a satisfying UQ = 1 and

at(A)Ut = UtA, A e B(H), t > 0.

% can be empty (cf. [3]). But if it is not, then for every pair of
elements U, V e % , there is a unique complex number c(U,V) such
that

(uv)l, t>0.

The function c is self-adjoint (c(U, V) = c(V, U)) and is conditionally
positive definite in the sense that for every finite set of complex num-
b e r s λ \ , . . . , λ n w i t h λ \ Λ + λn = 0 and every set U\,..., Un € Ua
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20 WILLIAM ARVESON

we have

(l.i)

Using (1.1), one may construct a Hubert space H(a) as follows.
Letting CoUa denote the complex vector space of all finitely nonzero
functions / : Ua —• C satisfying

we define a sesquilinear form on CoUa by

{-, •) is positive semidefinite by (1.1), and its kernel

N = {feC0Ua:(f,f) = 0}

is a linear subspace of CoUa ( , •) induces an inner product on the
quotient CoUa/N, and the completion of the latter is a Hubert space
H(a) which is necessarily separable (cf. [1], Proposition 5.2).

In case % Φ 0, d*(α) is defined as the dimension of H(a). Thus,
έ/*(α) belongs to {1,2,..., oo} where the symbol oo stands for the car-
dinal NQ If % Φ ®> it will ^ e arithmetically convenient to define
d*(a) = c, the cardinality of the continuum. The set {1,2,..., oo, c}
of values of d* is an abelian semigroup under addition, where the
usual addition in {1,2,..., oo} is extended to the set obtained from it
by adjoining c according to the rules

x + c = c + x = c, c + c = c,

x = 1,2, . . .,oo. It was shown in [1] that d*(ά) is an invariant for
outer conjugacy of iso-semigroups α, and that if a and β have the same
index in the sense of Powers and Robinson [4] then rf*(α) = d*(β).
Moreover, if a is the CAR flow of rank n then d*(ά) = n ([1], Corollary
2 of Proposition 5.3).

If a (resp. β) is an £o-semigroup acting on B(H) (resp. B(K))9 then
there is a unique £Ό-semigroup a® β acting on B(H® J£) such that

(α ® £ ) , μ ® £) = α,(Λ) 0 A(5),

for all A e B(H), B e B(K). It follows from the above remarks that
rf* obeys the logarithmic additivity property

(1.2) d*(a®β) = d*(a) +
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whenever a and β are outer conjugate to CAR flows. The purpose of
this paper is to establish (1.2) in general. Equivalently, if ^a®β = 0
then either % = 0 or ̂  = 0; and if %a®β Φ 0, then both ίίa and 2^
are nonvoid and

(1.3) H{a®β) = H(a)

The first of these two assertions is clear from the fact that if both %
and ίίp are nonvoid and we choose U G % and V G ^ 5 then the semi-
group (1/ ® K)f = ί/f ® Pi belongs to ̂ α®^ and hence α̂(g>£ ̂  0 . The
second assertion (including (1.3)) is a consequence of Theorem 4.4 be-
low. In particular, we show that every semigroup in ̂ a<S)β decomposes
into a tensor product U ®V where U e % and V e%Sβ.

We remark that while the above definition of % (and therefore
H(a)) appears to differ from the definition of % given in [1], it is actu-
ally the same. The proof of that amounts to showing that if { Ut: t > 0}
is a weakly measurable family of bounded operators on H satisfying
Us Ut = Us+t for s, t > 0 and

at(A)Ut = UtA, A e B(H), t > 0,

then {Ut: t > 0} is strongly continuous and Ut tends strongly to 1 as
t —> 0+. To see this, note that by ([1], Theorem 4.1) there is a real
constant a such that

U*tUt = eat\, ί > 0 ,

and hence Vt = e~χllatUt is a measurable semigroup of isometries.
The assertion now follows from ([1], Proposition 2.5(ii)).

2. Multipliers of (0, oo). By a multiplier of (0, oo) we mean a Borel-
measurable function m: (0,oo) x (0,oo) —• {\z\ = 1} satisfying

(2.1) m(x, y 4- z)m(y, z) = m(x + y, z)m(x, y), x, y > 0.

The purpose of this section is to establish that every multiplier m
of (0, oo) is trivial in the sense that there is a measurable function
/ : (0,oo) -• {\z\ = 1} satisfying

While this is analogous to a well-known fact about multipliers of the
additive group R ([5], Theorem 10.38), we have been unable to find
the result we need in the literature.

We will deduce (2.2) from the following representation theorem. In
the proof, we use a familiar theorem which asserts that every weakly
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continuous one-parameter group γ = {γt: t € R} of *-automorρhisms
of B(H) is implemented by a strongly continuous one-parameter uni-
tary group U:

γt(A) = UtAUΪ, ί6R, AeB(H)

(for example, see [5] p. 141). Of course, the proof of that makes
essential use of the fact that R has no nontrivial multipliers.

PROPOSITION 2.3. Let a = {at: t > 0} be a ^-semigroup acting on
B(H) such that each at leaves the set of compact operators invariant
Then there is a strongly continuous semigroup { Vt: t > 0} ofisometries
in B(H) such that

at(A) = VtAVt*, t > 0, A e B(H).

Proof. For every t > 0, consider the linear space of operators

Et = {Te B(H): at(A)T = TA, Ae B(H)}.

Et φ {0} and is a Hubert space relative to the inner product [ , ]
defined on it by

[S,T]l = T*S, S,TeEt.

Moreover, for each s, t > 0 there is a natural unitary operator which
maps Es+t onto Es <g> Et (for details, see §2 of [1]). So if d(t) is the
dimension of Et, then d satisfies the functional equation

(2.4) d(s + t) = d(s)d(t)f s9t>0.

The only solutions of (2.4) taking values in {1,2,..., oo} are d = 1
and d = oo. Notice that the case d = oo cannot occur. For if Et is
infinite dimensional and we choose an orthonormal basis V\9 V2,...
for Et, then by ([1], Proposition 2.1) the Vn

9s are isometries having
mutually orthogonal ranges which satisfy

n=l

and this contradicts the hypothesis that at should map compact oper-
ators to compact operators.

In particular, we must have d{\) = 1. This means that E\ = C V
where V is an isometry which satisfies

AeB(H).
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Let U be a minimal unitary extension of V. This is to say that U is a
unitary operator on a Hubert space H containing H which satisfies

(i) U\H = V,
(2.5)

(ii) \Jn€ZU»H =

Let P G B(H) be the projection onto H. The map v4 € K{H) »->
G /£(#) is a *-monomorphism which identifies the compact oper-

ators on H with the corner

Ko = PK(H)P

of the compact operators on H. Thus we may think of {at: t > 0} as
a semigroup of *-endomorphisms of KQ C ̂ Γ(^) satisfying

|

for every A e Ko. Moreover, a\(A) = UAU* for AGKQ.

Notice that there is a natural way to extend {at} to a semigroup {βt}
of *-endomorρhisms of the C*-algebra K{H) of compact operators on
H. To see this, let

Kn = UnK0U*n, nel.

We have Kn+ι c Kn, and as n decreases to -oo the C*-algebras Kn

increase to a dense *-subalgebra of K(H). For each n < 0 we can
define a semigroup {βt: t > 0} of *-endomorphisms of Kn by

β(Λ) = Unat(U-nAUn)U-n,

A e Kn, t > 0. {)ffj is clearly conjugate to {at}. Moreover, the
restriction of βt to Ko is at since for A e Ko we have

= UnU-n(at(A))UnU-n = at(A).

Similarly, one checks that the defintion of βt o n ^ _ i agrees with the
definition of βt on the smaller algebra Kn for every n < 0. Hence βt is
well-defined on the dense *-subalgebra Ko u AΓ_χ u AL2 U of K(H).
So {βt: t >0} extends uniquely to a semigroup of *-endomorphisms
of K(H) satisfying

(i) lim^ollA(^)-^ll = O,
(2.6) (ii) βt\κ0 = at, and

(iii) βt(UBU~ι) = Uβt(B)U-ι

t BeK(H), t > 0.
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We claim that βι(K(H)) = K(H). Indeed, βχ{K(H)) is a C*-sub-
algebra of K{H) which is invariant under the automorphism B »-•
U~ιBU and which contains

F* = UK0U~ι = Kx.

Hence βi (K(H)) contains AΊ u A"o U AΓ_i U , and the claim follows
since the latter is dense in K(H).

By the semigroup property we conclude that βt{K(H)) = K{H) for
every t > 0 and this implies that every βt is a *-automorphism of
K(H). Extending βt to negative values of t by βt = β\t\, we obtain a
C*-dynamical system (K(H),R,β) which extends naturally to a W*-
dynamical system (B(H),R,β). By the preceding remarks there is a
strongly continuous one-parameter unitary group {Wt: ΐ eR} acting
on H such that

β(5) = WtBW-\ t>0, Be B(H).

For t >0, βt leaves the corner Ko = PK{H)P invariant and hence
WtPW~x < P. It follows that the subspace H = PH is invariant
under { Wt: t > 0}, and we obtain the desired semigroup of isometries
{Vt: t > 0} by setting Vt = Wt\H. D

COROLLARY. Let m: (0, oo) x (0, oo) —> {\z\ = 1} be a Borel-measur-
able function satisfying the multiplier equation

m{x,y + z)m{y, z) = m(x + y, z)m{x,y), x,yfz> 0.

Then there is a measurable function f: (0, oo) —• {\z\ = 1} such that

m(x v) — ( x + ^) x v > 0

Proof. For every t > 0, define an operator Ut on L2(0, oo) by

TJ f(r\ jm(t,x-t)f(x-t), x>t,
Utf{x)-\0, 0<x<t.

{Ut: t> 0} is a measurable family of isometries which, because of the
multiplier equation for m, satisfies

UsUt = m(5, ί)L^+ /, s,t > 0.

Therefore, αr(^4) = UtAU* defines a semigroup {at: t > 0} of *-
endomorphisms of B(L2(0, oo)) such that

(2.7) te(0,oo)~(at(A)f,g)
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is measurable for fixed f,ge L2(0, oo) and A e B(L2(0, oc)). By ([1],
Proposition 2.5(i)) the functions (2.7) are continuous and at(A) —• A
weakly as t —• 0+ for every bounded operator A. So if we define
ao(A) = A for all A, then {α,: / > 0} satisfies the hypothesis of Propo-
sition 2.3.

Hence there is a strongly continuous semigroup {Vt: t > 0} of
isometries on L2(0, oo) such that at(A) = VtAV*9 i.e.,

(2.8) C/^C/; = VtAVt*, A e B{L2{0t OC)), t > 0.

Fix / > 0. (2.8) implies that U*Vt commutes with every bounded
operator and hence there is a scalar f(t) such tht U*Vt = f(t)l. f is
measurable because of the measurability of U and V. Taking A = 1
in (2.8) we obtain UtUf = VtV* and hence Vt = UtU;Vt = f{t)Ut for
every t > 0. Thus, \f(t)\ = 1 and, for every s, t > 0 we have

f(s + t)Us+t = VSM = VsVt = f(s)f(t)UsUt

= As)f(t)m(s,t)Us+t.

The required formula follows by multiplying the latter equation on
the left by U;+t. π

3. Compact morphisms of product systems. We begin by recalling
the definition of a (continuous) product system. This is a measurable
family of separable infinite dimensional Hubert spaces

(3.1) p:E-+(0,oo)

which is endowed with a measurable associative multiplication

which acts like tensoring in the following sense. Letting Et = P~ι(t)
be the Hubert space over t e (0, oo), we require that

(i) Es+t = spaήEsEt, s,t>0, a n d
(3.2) (ii) for all x, x' e Es and y, y1 eEt, one has

(xy.x'y1) = (χ,χ'){y,y')>

In more detail, the symbol E in (3.1) denotes a standard Borel space,
p denotes a measurable surjection such that each fiber Et = P~x{t) is
endowed with the structure of a complex Hubert space, in such a way
that there is a separable infinite dimensional Hubert space Ho and a
Borel isomorphism

θ:E-+{0,oo) xHo
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of E onto the indicated trivial family which commutes the diagram

E - ^ (0, oo) x Ho

(3.3) P \ /p

(0,oo)

and is unitary on fiber spaces.
By a unit of E we mean a measurable section

t e (0, oo) ι-+ ut e Et

such that us+t = usut for all s, t > 0, and which is not the zero
section. %• will denote the set of units of E. Finally, a morphίsm of
product systems is a Borel map of product systems θ: E -> F such
that θ(xy) = θ(x)θ(y) for all x, y e E and such that the restriction
θt = Θ\E, of θ to each fiber Et is a bounded linear operator from Et

to i^ for every t > 0. A morphism 0 is called compact if each 0/ is a
compact operator.

If one is given a pair of units u e % and υ e %?F, then one can
define a morphism θ: E -> F as follows:

0(Λ;) = (x, ut)vt, x eEt, t>0.

θ is compact because each θt is of rank at most one. The purpose of
this section is to establish the following result, which asserts that these
are the only compact morphisms. This will allow us to identify the
units of a tensor product E ® F of product systems in Corollary 3.9.

THEOREM 3.4. Let E and F be product systems and let θ: E —> F
be a compact morphism such that θto Φ 0 for some to > 0. Then there
exist units u e ^£ , υ G^F such that

θt(x) = {x, ut)vt, x e Et, t>0.

Proof. We first consider the case in which F = E and each θt is a
positive compact operator in B(Et), t > 0. We will show that there is
a unit u in %E such that

θt(χ) = {x, uχ)uu xeEt, t > 0.

Note first that \\θs+t\\ = ll^ll ll^ll f o r every s, t > 0. Indeed, (3.2)
implies that there is a unitary operator

which implements a unitary equivalence of the maps 05 + ί € B(Es+t)
and θs®θt G B{ES® Et)9 from which the assertion is evident. The
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function t e (0, oo) »-> ||0,|| is clearly measurable and is nonzero at
to > 0. It follows from a simple argument (see the proof of Theorem
4.1 of [1]) that there is a real constant a such that

So by replacing θt with e~atθt if necessary, we can assume that ||0f|| =
1 for every positive t.

For each t > 0 let et be the projection of Et onto the nonzero finite
dimensional subspace

{ξeEt:θtξ = ξ}.

Since the sequence θ(, θf9 θf,... converges strongly to et for every
positive ί, it follows that t »-> ̂  is a measurable family of operators.

We claim that each et is one-dimensional. To see this, note that
for every s, t > 0 the unitary equivalence θs+t = θs ® θt implies that
θ"+t - @s ® #f f° r every n > 1, and hence <?5+ί = ^ ® ̂ . So the
dimension d(t) of ̂  satisfies the functional equation

d(s + t) = d(s)d(ή, s,t>0.

The only solution of the latter, taking values in {1,2,...}, is the func-
tion d(t) = 1, t > 0, and the claim is proved.

We claim next that there is a measurable section t G (0, oo) ^ ξt e
^ of unit vectors such that et(ξt) = ξt, t > 0. To prove this, we may
assume by (3.3) that 2? is the trivial family (0, oo) x Ho and that et

is a one-dimensional projection in B(H0) for every t > 0. Choose an
orthonormal basis ζ\, £2» for //Q. For each £ > 0, define n{t) to
be the smallest positive integer k such that et{ζk) φ 0. The function
n: (0,oo) —> N is measurable, and therefore

p _ en(t)(Cn(t)) π

defines a measurable section with the asserted properties.
We now show that ξt has the form

ξt = f{t)ut,

where u is a unit of is and / : (0, oo) —• C is a measurable function
satisfying \f{t)\ = 1 for every t > 0. To prove this, we claim first that
ξsξt is proportional to ξs+t for every 5, t > 0. Indeed,

0s+ί(£s&) = θs(ξs)θt(ξt) =ξsξt,
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so that ξsξt is a unit vector in the range of es+t. The claim follows
from the fact that es+t is one-dimensional.

Thus, there is a unique function m: (0,oo) x (0,oo) —• {\z\ = 1}
such that

(3.6) ξsξt = m{s,t)ξs+t.

m is clearly measurable. Note that m must satisfy the multiplier equa-
tion

(3.6) m(r, s + t)m(s, t) = m(r + s, t)m(r, s), r,s,t> 0.

Indeed, fixing r, s, t > 0 and using associativity of the multiplication
in E we have

m(r, s + ήm(s, t)ξrζsξt = m(r, s + t)ξrξs+t = ξr+s+t>

whereas

m{r + s, t)m{r, s)ζrξsξt = m{r + s, t)ξr+sξt = ξr+s+t,

and (3.6) follows.
By Proposition 2.3 there is a measurable function / : (0, oo) —•

{\z\ = 1} such that

s,t>0.

If we define ut = f(t)ξt, then ||u;|| = 1 for all t > 0 and (3.5) implies
that u is a unit.

It follows that θt can be decomposed as an orthogonal sum of op-
erators

(3.7) θt = et + Pt

where et is the one-dimensional projection et(x) = (x, ut)ut and where
{pt: t > 0} is a measurable family of positive compact operators sat-
isfying \\ρt\\ < 1 and ρtet = etρt = 0, t > 0.

It remains to show that each pt is zero. Fix s, t > 0. We have seen
that θs+t is unitarily equivalent to θs ® Bu and hence es+t + Ps+t is
unitarily equivalent to the direct sum

(es Θ et) Θ (es ® pt) Θ (ps 0 ^) θ (ps ® Λ)

Because w5+, = usut, es+t is identified with e5 ® e* in the above unitary
equivalence, and hence ps+t is unitarily equivalent to the direct sum

(es ® pt) 0 (/?5 (8) ̂ ) © (ps ® Λ ) .
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Taking s — t and noting that \\ρt\\ < 1 for all/ > 0, we conclude that
if p2( φ 0, then necessarily pt Φ 0 and \\pit\\ = H/MI Moreover, if d{s)
is the dimension of the eigenspace

{ξeEs:ps(ξ) = \\ps\\ξ},

then we may also conclude that d(2t) = 2d(t) whenever p2t Φ 0.
Now suppose there is a to > 0 such that pto φ 0. The preceding

paragraph implies that

d(t0) = 2</(ίo/2) = 4rf(ί0/4) = = 2nd(t0/2n)

for every n > 1. Since d(to/2n) is a positive integer we conclude that
2" divides d(to) for every n > 1, which is absurd.

This completes the proof in the case where F — E and each θt is a
positive operator. Now suppose more generally that 0: E —> F is an
arbitrary morphism such that θt: Et -+ Ft is compact for every t > 0.
The adjoint 0* = {0,*: t > 0} defines a measurable family of compact
operators from F to E. We claim that θ* is a morphism, i.e.,

(3.8) θ*M{xy) = θ*s(x)θ;(y), xeFs, ye Ft,

for every 5, t > 0. To see this, fix 5 and t and choose x € F5, y G f/,
x'eEs, y' eEt. We have

= {x, θs(x'))(y, θt(y'))

(3.8) follows because EsEt spans £"5+ .̂
Therefore ω ? = θ*θt9 t > 0, defines a morphism of £ consisting of

positive compact operators, not all of which are zero. By the above
argument, there is a unit M E % satisfying | |u;| | = 1 and a real number
a such that

ωt(x) = eat(x, ut)ut, x e Et, t > 0.

It follows that the initial space of θt is the one-dimensional space
spanned by uu t > 0. Put vt = θt(ut). v is a unit of F because u is a
unit of E and 0 is a morphism. It follows that for every x e E\ we
have

0/M = 0/((x, Mί)Wί) = ( ^ Ut)vt9

as required. D

Now let E, F be two product systems and let

E®F = {Et®Ft:t>0}
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be the tensor product of product systems (cf. [1], §3). The multiplica-
tion in E ® F is defined uniquely by requiring

(x ® y)(u ® v) = (xw) ® (jw),

for x G ^ y E F ^ w G Eu v eFt, s, t> 0. If w G % and υ E^F are
units then one can define a unit w ® υ of E ® F by (u <g> υ)t = ut ® vt9

t>0.

COROLLARY 3.9. Let E and F be product systems. Then every unit
ofE ® F decomposes as a tensor product u®v where u and v are units
ofE and F respectively.

Proof. Let F be the conjugate of the product system F, i.e., F
consists of the same family of Hubert spaces p: F -» (0,oo) except
that scalar multiplication in the fibers of F is conjugated: thus for
λeC and x eFt, λ- x means λx rather than λx. The multiplications
in F and F are the same. The identity map of F can be considered a
Borel isomorphism of F on F which we denote by x κ-> x. This map
preserves multiplication and is anti-unitary on the fiber spaces. The
inner product in Ft is given by {X,y) = (y, x)9 x, y G Ft.

Now let w be a unit of E ® F. For each t > 0, the bounded bilinear
map

can be viewed as a sesquilinear map on EtxFt. Thus there is a unique
bounded linear operator θt: £7 —• Ft such that

(3.10) (θt(x),y) = (x®y,wt), xeEt, yeFt.

Notice that θ: E —• F is a morphism. Indeed 0 is clearly a measurable
family of bounded linear operators and it is multiplicative because if
x G Es, x' e Et then for every vector in Fs+t of the form yy' with
y E Fs and y' G JF^ we have

= (x®y,ws)(x'®y',wt) = (^

The assertion follows because Fs+t is spanned by
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We claim that each θt is a Hilbert-Schmidt operator. Indeed, if ζχ9

,... (resp. f/i, ηι>...) is an orthonormalbasis for Et (resp. F,) then

m m,n

because {£w Θ ηn: m,« > 1} is an orthonormal basis for Et®Ft.
Thus, θ is a compact morphism. By Theorem 3.4 and the fact that

every unit v of F has the form vt = wt for some unit of w of F, we
conclude that there are units ue%Έ and ^ € ^> such that

= (x, ut)Tt, xeEt, t>0.

Substitution of the latter in (3.10) gives

({x, ut)Wt, y) = {χ® y, wt), xe Et, y e Ft.

The left side can be written

{x,ut)(v~t)y) = (x,ut)(y,vt) = (x®y,ut®υt).

It follows that wt = ut®vt9 as asserted. D

REMARK. Referring back to the context of the introduction, let
{at: t > 0} and {βt: t > 0} be F0-semigroups acting on B(H) and
B(K) respectively, and let {Wt: t > 0} be a semigroup of isometries
in B(H®K) such that

(a®β)t{A)Wt = WtA, AeB{H®K), ί > 0.

Then there are semigroups of isometries U in % and V in lίp such
that Wt = Ut ® Vt for every / > 0. This follows from Corollary 3.9
together with the basic results on the relation between an £Ό-semigroup
7 = {yt- t > 0} and its associated product system ([1], §2).

4. Dimension and index. We now apply the results of §3 to prove an
addition theorem for the dimension of product systems and the index
of Fo-semigroups.

Let F be a product system and let % be its set of units. Theorem
4.1 of [1] asserts that for every pair of units u, v e %Έ there is a
complex number c(u,v) such that

(utfυt) = etc^vK t>0.

c: %E χ %E —* C is called the covariance function of F and it is self-
adjoint and conditionally positive definite. As in the introduction, one
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can use c to construct a (necessarily separable) Hilbert space HE. The
dimension of E is defined as follows

,. _ f dim/fc, i f % # 0 ,
(4.1) dimis = ̂
v ; W, if% = 0.
Notice that (4.1) differs slightly from the definition given in §5 of [1];
in the former we define dim E to be 0 in the exceptional case where
%• = 0. The present definition leads to somewhat more attractive
algebraic formulas.

Before presenting the main results we prove a simple lemma about
abstract covariance functions which will facilitate the computation of
dim £. By an (abstract) covariance function we mean a pair (X,c)
consisting of a nonvoid set X and a function c: X xX -+C satisfying

. (i) c(x,y) = c(y,x), and
1 ' } ( ϋ ) Σ l λ i
for all λ\,..., λn G C satisfying λ\ + + λn = 0, all X\,..., xn e
X, and all n = 1,2, Starting with the vector space CQX of all
finitely nonzero functions / : X —• C satisfying Σxf(

χ) = 0> w e c a n

construct a Hilbert space H{X,c) by the same method sketched in the
introduction (for more detail, in §5 of [1]).

We define the direct sum of two covariance functions (X, a) and
(Y,b) to be the covariance function (X x Y9c) where c: (X x Y) x
( J x η ^ C i s defined by

LEMMA 4.3. Let (X, a), (Y, b) be covariance functions.
(i) If there exists a surjective function θ: X —> Y such that b(θx, θy)

= a(x, y) for all x, y e X, then

dimH(X,a) = dimH(Y,b).

(ii) If(XxY, c) is the direct sum of(X, a) and (Y, b), then

dimH{X xY,c) = dimH(X, a) + dimH(Y, b).

Proof. To prove (i), we will construct a unitary operator from
H(X, a) to H(Y, b). Define sesquilinear forms ( , •) and ( , •)' on
and C$Y respectively by

(fg)=
χ,yex

(h,k)'= Σ h(u)k(ϋ)b(u,v).
u,veY
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Both are positive semidefinite, and

N = {feC0X:(f,f) =

are subspaces of C0X and C0Y respectively such that ( , •) and ( , •)'
induce inner products on C0X/N and C0Y/N'. H{X,a) and H(Y,b)
are the respective completions of these inner product spaces.

We can define a linear transformation W§\ CQX —> CQY by

xex
δy denoting the function with value 1 at y e Y and 0 elsewhere.
Noting that

Σ wo(f)(y) = Σ ί Σ sw] = Σ /(*) = °
yeY yeY \θx=y J *

we see that Wo does not indeed map CoX into CQY. We claim that
WQ is surjective. Indeed, if g is any nonzero element of Co^ and
{y\>--->yn} is the set of points where g Φ 0, then we may find
Xι,...,xn in X such that θxi = y, , 1 < / < n. Putting

ϊ=l

we have / € C0X and W0(f) = g.
Notice next that (W0(f), WQ(g))f = (/, g) for all / , g € C0X. For

we can write
\

(Woif),Wo(g))= f{x)g{x')b{θx,θx')
θx=y

\θx'=y'

-Σ Σ

as asserted. It follows that W0(N) C Nf and that WQ induces a surjec-
tive isometry
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The closure of W is the required unitary operator from H(x, a) to

H(Y,b).
To prove (ii), we exhibit a unitary operator V from H(X x Y, c) to

H(X, a) Θ H(Y, b). First, we define a linear transformation Vo from
Co(X x Y) into the direct sum of vector spaces CQX + CQY by V0(f) —
{f\Ji) where

yeY xeX

Note that Vo is surjective. For if / G Co f̂ and g e C0(Y) and we
choose any points XQ e X, yo e Y, then (/, g) = V0(h) where h is the
function in Co(^ x Y) defined by

Let ( , •) be the sesquilinear form defined on CQ(X X Y) by c:

'>y')c{{x, y)9 (xf, / ) ) ,

the sum extended over all x, x' eX and all y, yr EY. Using

we find that

(f,g) =
x,x' y,y'

where ( , )i and ( , -)ι are the sesquilinear forms defined on CQX and
CQY by a and b respectively. This formula implies that VQ induces a
surjective isometry of inner product spaces

V: C0(X x Y)/N - , C 0 ( A W i © C0Y/N2

and so the closure of V is a unitary operator from H(X x Ytc) to
H{X9a)@H{Y,b). Ώ

THEOREM 4.4. / w ύf«y /wo product systems E, F we have

άim(E ®F) = dim E + dim F

Proof. Assume first that at least one of the two sets % , ^> is void.
Then at least one of the two cardinals dimE, dimF is c, and hence
their sum is c. On the other hand, Corollary 3.9 implies that
must be void and so dim(£' ® F) is also c.
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Thus we can assume that both E and F possess units. Let (%, a),
i&F'b), and (&E®F>C) be the covariance functions of E, F, and E®F
respectively and let (% x^Ffd) be the sum of (%, a) and (#>,&):

v), (*Λ v')) = Λ(M, W') + b(υ, υ').

We claim that

(4.5) aimH(%E x&F,d) = dimi/(% Θ F ,c) = dim(E®F).

By Lemma 4.3(i), it is enough to observe that the map θ: % x .
defined byθ(w,^) = w®?;is surjective and satisfies

(4.6) c(θ(u, v), θ(u\ v1)) = a(u, u1) + b(υ, v!).

The surjectivity of θ is immediate from (3.9). If u, u! e %E and
v, v1 G ̂ > then for every t > 0 we have

= eta(u,u')eίb{v,vf) = gtWuM

and (4.6) follows from this.
Finally, Lemma 4.3(ii) implies that

x a>, d) = dimH(%SE,a) + dimH(^Ff b)

= dimjE'

and we are done. D

The main result on additivity of the index of £ O " s e m i g r o u P s is n o w

a simple consequence of (4.4).

COROLLARY 4.7. Let a, β be Eo-semigroups. Then we have

Proof. Let Ea and Eβ be the product systems associated to a and β
as in §2 of [1]. By ([1], Proposition 3.15 et seq.), Ea<S)β is isomorphic
to the tensor product of product systems Ea®Eβ. Hence

d*(a Θ β) = d i m J S ^ = d i m ^ <g> Eβ).

By Theorem 4.4 the right side is

dim2sα + dirnis^ = d*(a) + d*(β). π
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