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Introduction.

I.1. In this paper we present a general conjecture concerning the arithmetic
of critical values of the L-functions of algebraic automorphic forms. While
individual critical values seem almost always transcendental, the evidence
of Shimura (c.f., esp. [Sh1], [Sh2]) shows that interesting relations between
values at different critical integers, and between values of L-functions related
by “twisting”, do exist. Furthermore, a general recipe due to Deligne ([D])
enables one to predict many such relations. This recipe further allows one to
derive reciprocity laws which certain conjectually algebraic numbers, formed
essentially as ratios of critical values, ought to obey.

To give an example, let K be a quadratic imaginary extension of Q,
and let χ : A∗K → C∗ be a Hecke character of K with χ(k∞) = k−w∞ for
k∞ ∈ C∗ ↪→ A∗K , and w ∈ Z. Let ψ be a Hecke character of finite order of
K, and let T be the finite extension of K generated by the values of χ and
ψ on the finite idèles of K. If w > 0, both L(χ, s) and L(χψ, s) are critical
at s = 0. The ratio (defined if L(χ, 0) 6= 0) is algebraic and satisfies the
reciprocity law

σ

(
L(χψ, 0)
L(χ, 0)

)
= (ψ |T )(σ)

(
L(χψ, 0)
L(χ, 0)

)
for σ ∈ Gal(K/T ) and where we regard ψ as a Galois character. In fact,
for any σ,

σ

(
L(χψ, 0)
L(χ, 0)

)
can be given exactly if we employ as well the conjugate L-series L(τ(X), s),
L(τ(Xψ), s) for the various τ : T → C, and use a non-abelian reciprocity
law. Note that, over T , the ratio is a Kummer generator of the class field
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attached to ψ |T . This type of law was first deduced, for K a CM field, from
the results of [B1], themselves in part a refinement of some aspects of [Sh3].
However, the Deligne formalism shows clearly a) that such results in no way
require that one restrict to Hecke characters (GL1), and b) that even so, all
such reciprocity laws already occur in the setting of Hecke L-series.

On the other hand, if f is a new form of weight k ≥ 2, and ψ is an even
Dirichlet character, then Shimura showed

D(fψ, k)
D(f, k)

= αG(ψ)

where α ∈ (Tf ·Tψ)∗, and G(ψ) is the Gaussian sum attached to ψ. Of course,
if σ ∈ Gal(Q/TfTψ), then σ(G(ψ)) = ψ(σ)G(ψ), and so we have again a
ratio which satisfies a reciprocity law. This paper constructs a common
framework for unifying the known results of this sort and for predicting new
ones.

The paper has 3 sections. In Section M, we introduce the motivic lan-
guage, review the construction of Deligne’s periods c±(M), establish some
elementary facts about the action of the endomorphism algebra on M+

DR,
factor c±(M) into more basic periods c±v (M) attached to each place v of K,
and establish the reciprocity law which relates a suitable monomial cαεπ(M)
in the c±v (M) to c±(M ⊗ π) where π is an Artin motive. At the end of the
section, we give some examples. In Section L, we introduce L-functions and,
invoking Deligne’s general conjecture, obtain our main conjecture. This says
that, for a k which is critical for both M and M ⊗ π,

(1⊗ 2πi)kdα(M⊗π)L(M ⊗ π, T ; k)
cαεπ(M)

= c(δα∗ ,det(π))

where c(δα∗ ,det(π)) is a quantity characterized mod (T (M)T (π))∗ by a reci-
procity law depending on δα∗ and det(π). Here δα∗ is a character of T (M)∗

and α = (−1)k. Finally, we undertake the formal exercise of transcribing the
main conjecture into the setting of algebraic cusp forms, replacing M by an
algebraic

∏
on GLN(AK) and supposing now π is on GLm(AK), of Galois

type. Since Deligne’s conjecture is known for Hecke L-series of CM fields,
this conjecture is a theorem for K CM, and N = m = 1.

A last Section H, gives some special results which arise in the case of GL1.
This paper is a revised version of a 1987 MSRI preprint. Since then, Hida

[Hi] has obtained basic results for GL2(AK) where K is any number field; we
leave to the reader the task of confirming that Hida’s work is consistent with
what we conjecture. Also, both Harris ([Ha]) and Yoshida [Y] have, with
independent motivations, pursued the calculation of various period relations.

I would like to thank D. Ramakrishnan for encouraging me to look again
at this work and publish it in this revised form.
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M. Motives and period relations.

M.1. We briefly review our notations and basic objects. See [CV] for more
details. Let M be a motive (for absolute Hodge cycles) of pure weight w
defined over K and having coefficients in T , both number fields. Then

M = {MDR,MB,Mf , I∞, If}
with T ⊗ K module MDR, a T vector space MB, and a T ⊗ Qf module
Mf , all free of the same finite rank. Here, for a number field L, Lf denotes
the finite ideles. These modules are related by T -linear isomorphisms

I∞ : MB ⊗B C → MDR ⊗K C

If : MB ⊗ Qf → Mf .

For L as above, GL denotes the Galois group Gal(L/L). Then Mf is a GK

module, and the collection {Mλ | λ = finite place of T}, where Mλ ⊂ Mf

is the subspace associated to Tλ ⊂ T ⊗ Qf , is a compatible system of
rational λ-adic representations of GK .

Also, MB has a Hodge decomposition

MB ⊗ C =
⊕
p,q∈Z
p+q=w

Mp,q

with (Mp,q)1⊗ρ = M q,p, where ρ denotes complex conjugation. For each
p ∈ Z, there is a K subspace F pMDR ⊆ MDR such that

I∞

⊕
p′≥p

Mp′,q

 = F pMDR ⊗K C.

The Hodge decomposition is stable for the action of T .

M.2. Throughout this paper, we make the strong assumption that for two
motives M and N , defined over K, if M` is isomorphic to N`, as a GK

module, for a single prime `, then M is isomorphic to N . This hypothesis is
a motivic version of Tate’s isogeny conjecture, proved for the H1 of abelian
varieties by Faltings. See L.3 below for a variant of the conjecture.

M.3. Special motives. For a number field L, let JL and JL,R denote the
embeddings of L into C and R, respectively. Let JL,C = 〈1, ρ〉\(JL −
JL,R), i.e. JL,C is the set of complex places of L. For each σ ∈ JK,R,
let Fσ : (σM)B → (σM)B denote the action of complex conjugation on
the conjugate by σ, σM , of the motive M defined over K. Set (σM)B =
(σM)+

B ⊕ (σM)−B where (σM)±B = ker(Fσ ∓ 1). If w ∈ 2Z, assume
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Mw/2,w/2 = {0} unless K is totally real. In this case, assume that each
Fσ acts on Mw/2,w/2 by a scalar ε = ±1, independent of σ. We call such
motives special, and henceforth any motive denoted by M will be special,
defined over K, and with coefficients in T .

Define spaces F±MDR ⊆ MDR by

F±MDR = Fw/2MDR (w ∈ 2Z, ε = ±1)

F±MDR = Fw/2+1MDR (w ∈ 2Z, ε = ∓1)

F+MDR = F−MDR = F
w+1

2 MDR (w odd).

Put M±
DR = MDR/F

∓MDR. Let d = dimT MB and define d± : JT → Z
by d±(σ) = dimension of σ-eigenspace for action of T in M±

DR ⊗K C. Note
that if τ ∈ JK , (τMDR)± = τ(M±

DR).

M.4. Periods. Let RK/QM be the motive over Q obtained by applying
the restriction of scalars functor to M . Following Deligne ([D]), define
c±(M,T ) ∈ (T ⊗ C)∗ by

c±(M,T ) = detT (I±)

where I± is the composite

(RK/QM)±B ⊗ C I∞−−−→ (RK/QMDR) ⊗ C → (RK/QMDR)± ⊗ C

and the determinant is computed relative to T bases of each side. When
convenient, we will write c±(M) = c±(M,T ), leaving T implicit.

M.5. Let End(M) denote the algebra of all endomorphisms of M which are
defined over K.

Proposition 1. If M is simple, i.e. has no non-trivial submotives, then
End(M) is a division algebra with positive involution.

Proof. The proof follows, exactly as for abelian varieties, from the existence
of K-rational polarization of M .

Remark. Hence, by Albert’s classification, End(M) is 1) a totally real
number field F , or 2) a quaternion algebra B over F with B ⊗Q R isotypic,
or 3) a division algebra over a CM field. (We recall here that a CM field is
a totally imaginary quadratic extension of a totally real field.)

Let δ± denote the isomorphism class of the representation of T on M±
DR.

For a number field L, let IL denote the ring of functions from JL to Z. The
elements of IL with non-negative values are identified with the Q-rational
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representations of L as a Q-algebra. If Φ ∈ IL and τ ∈ GQ, define τΦ by
(τΦ)(η) = Φ(τ−1η) for η ∈ JL.

Proposition 2.
(a) If either T or K contains no CM subfield, then δ± is a multiple of the

regular representation. In any case, δ± + ρδ± is such a multiple.
(b) If δ± is not a multiple of the regular representation, then δ+ = δ−

and T contains a CM subfield E such that δ±(η1) = δ±(η2) if η1 and
η2 agree on E. Further, for K0 = Q(Tr δ±(t) | t ∈ T ), τδ± = δ±

if and only if τ ∈ GK0.

Proof. Assume that M is simple as a motive with coefficients in T . Then
δ± is the restriction to T ⊆ End(M) of a representation of End(M). Let
T ′ be a maximal subfield of End(M) which contains T . Let δ±T ′ be the
representation of T ′ on M±

DR. Then

δ±(σ) =
∑
η∈JT ′
η|T=σ

δ±T ′(η).

Regard these functions as defined on GQ. Then δ±T ′(ρg) = δ±T ′(gρ) for all
g ∈ GQ. It follows that the same property holds for δ±, and hence, if
E ⊆ T denotes the field attached to H± ⊆ GQ, the right stabilizer of δ±,
then E is one of these types of field. Since the period map

(MB ⊕ (ρM)B)± ⊗ C −−→∼ (M±
DR ⊗ C ⊕ (ρM)±DR ⊗ C)

is T ⊗ C linear, δ± + ρδ± is a multiple of the regular representation R. If
E is totally real, then δ± = ρδ±, and hence δ± is itself a multiple of R, and
E = K0 = Q. If E is a CM field, then K0 is a CM field, K can contain
no real place, and hence M+

DR = M−
DR, i.e. δ+ = δ−. If τ ∈ GQ, then τ

fixes K0 if and only if (τδ±)(t) = δ±(t) for all t ∈ T . This happens if and
only if τδ± = δ±.

Remark. The example of an abelian variety of CM type shows that δ± is
not always a multiple of R.

M.6. Basic periods. Let M be simple, and let Z be the center of End(M)
with [End(M) : Z] = n2. Let T ⊇ Z be a maximal subfield of End(M).
Then [T : Z] = n. Let L be a Galois extension of Z which contains T . Let
N = RK/QM . Then

N ⊗Z L = ⊕σ∈HomZ(T,L) N ⊗T,σ L
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where N ⊗T,σ L denotes the extension of coefficients of N via σ : T → L.
The N ⊗T,σ L are all L linearly isomorphic since each is isomorphic to the
image of M ⊗Z L by a minimal idempotent of End(M) ⊗Z L = Mn(L).
Hence, the quantities c±(M,T ) ⊗T,σ 1 ∈ L ⊗ C all lie in the same coset
modulo L∗, i.e. the class of c±(M,T ) ⊗ 1 in (L ⊗ C)∗/L∗ is fixed under the
action of Gal(L/Z) via the first factor. Put z±(σ) = (σ ⊗ 1)(c±(M,T ) ⊗
1)/c±(M,T ) ⊗ 1 ∈ L∗. Then z±(σ) is a 1-cocycle for the action of
Gal(L/Z) on L∗. Hence there exists b± ∈ L∗ such that b± = (σb±)z±(σ).
Put c±0 (M) = b±c±(M,T ). Then (σ ⊗ 1)c±0 (M) = c±0 (M), i.e., c±0 (M)
belongs to Z ⊗ C. Since the map (Z ⊗ C)∗/Z∗ → (L ⊗ C)∗/L∗ is
injective for every L, we see easily that c±0 (M) depends only on M and not
the auxiliary choices of T and L.

M.7. Relations. If F is a field contained in End(M), c±(M,F ) ∼
NT/F (c±0 (M)) mod (F ∗) where T ⊇ F is a maximal subfield, NT/F : (T ⊗
C)∗ → (F ⊗ C)∗ is the norm map, and, for any field L, and α, β ∈ L ⊗ C,
with β a unit, α ∼ β mod (L∗) means αβ−1 ∈ L = L ⊗ 1 ↪→ L ⊗ C.

Proposition. Let M be a simple motive defined over K with coefficients
in T . Let Z be the center of End(M), with [End(M) : Z] = n. Then

c±(M,T ) ∼ NTZ/T (c±0 (M))n[TZ:Z]−1
mod (T ∗).

Proof. c±(M,T ) ∼ NL/T (c±0 (M)) where L ⊇ T is a maximal subfield of
End(M). Since NL/T = NTZ/T ◦ NL/TZ , c±(M,T ) ∼ NTZ/Z(c±0 (M))[L:TZ],
because c±0 (M) ∈ Z ⊗ C. Since [L : TZ][TZ : Z] = n, the result
follows.

Although the periods c±0 (M) are more fundamental, we shall work through-
out the paper with the quantities c±(M,T ).

M.8. Factorization of c±(M,T ). Let PK = 〈1, e〉\Jk denote the set of
infinite places of K. Given M and T ⊆ End(M), we will define, for v ∈ PK
periods c±v (M,T ) ∈ (T ⊗ C)∗ such that

c±(M,T ) = α±(M) ·
∏
v∈PK

c±v (M,T )

for an elementary computable factor α(M) ∈ (T ⊗Q)∗ depending only cer-
tain choices of differentials and characterized mod T ∗ by a Galois recprocity
law.

In the following Φ ⊆ JK denotes a GT orbit of embeddings of K and Ψ
denotes a GK orbit of embeddings of T . Identifying, according to context,
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a set of embeddings Ψ ⊆ JT with the sum Σσ∈Ψσ ∈ IT , also denoted Ψ, we
have

δ± =
∑
Ψ

n±(Ψ)Ψ (n(Ψ) ≥ 0).

The algebra T ⊗ K is isomorphic to a direct sum of fields indexed by the
orbits of GQ in JT × JK : If Ψ ⊆ JT , we define Ψ∗ ⊆ JK by

Ψ∗ = π2((GQ(Ψ× 1K)) ∩ (1T × JT ))

where π2 : JT ×JK → JK denotes projection on the second factor. Similarly,
we can define Ψ∗ ⊆ JT given Ψ ⊆ JK . For a GT orbit Ψ (resp. GK orbit
Ψ) let

∼
σ ∈ Ψ (resp.

∼
τ ∈ Ψ) be a representative. Then the decomposition

becomes

T ⊗K ∼→ ⊕
Φ

(T ⊗K)Φ ∼→ ⊕
∼
σ

T
∼
σ(K)

∼→ ⊕
Ψ

(T ⊗K)Ψ ∼→ ⊕
∼
τ

∼
τ (T )K,

and the T ⊗K-module M±
DR decomposes as T ⊗K-module:

M±
DR

∼→ ⊕
Ψ

(M±
DR)Ψ

where
(M±

DR)Ψ ∼→ ((T ⊗K)Ψ)n
±(Ψ).

Let (δ±)∗ = Σ
Ψ
n±(Ψ)Ψ∗, and let d(Ψ∗) denote the number of elements in Ψ∗.

Then (T ⊗K)Ψ = (T ⊗K)Ψ∗ ∼→ T
∼
τ (K) is an extension of T of degree d(Ψ∗),

and hence (M±
DR)Ψ is a (T ⊗K)Ψ vector space of dimension n±(Ψ).

Let Ω±(Ψ) = {ω±1 (Ψ), . . . , ω±n±(Ψ)(Ψ)} be a (T ⊗ K)Ψ-basis of (M±
DR)Ψ,

and let Ω± = ∪
Ψ

Ω±(Ψ). Let η ∈ JK .

Case 1. Suppose η ∈ JK1,R. The δ± is a multiple n of the regular rep-
resentation, and η(Ω±) = U

Ψ
ηΩ±(Ψ) is a T -basis of ηM±

DR. Let Γ±(η) =

{γ±1 (η), . . . , γ±n (η)} be a T -basis of (ηM)B. Let

I±∞(η) : (ηM)±B ⊗ C ∼→ (ηM)±DR ⊗ηK C
be the T ⊗ C linear period map, and let

p(η(Ω±(Ψ)),Γ±(η)) = det
T⊗C

(P (ηω±(Ψ)i, γ±(η)j)) (1 ≤ i, j ≤ n),

where p(ω±(Ψ)i, γ±j (η)) is defined by

I±∞(η)(ηω±(Ψ)i) =
n∑
j=1

p(ηω±(Ψ)i, γ±(η)j) · γ±(η)j.



60 DON BLASIUS

Setting v = η, define

c±v (M) =
∏
Ψ

p(η(Ω±(Ψ)),Γ±(η)).

If we change Ω± and Γ±(η), then c±v (M) undergoes a change c±v (M) →
(t⊗ η(k))c+

v (M) with at t ∈ T ∗, and a k in K which is independent of η.

Case 2. (η complex). The M+
DR = M−

DR. Let

Λ(Ψη) = {λ1, . . . , λn(Ψ), λ′1, . . . , λ
′
n(Ψ)}

where

λj = ηωj(Ψ) + ρηωj(Ψ)

λ′j = (1⊗ i)(ηωj(Ψ)− (ρη)ωj(Ψ))

for i =
√−1, ωj ∈ Ω(Ψ). Let Γ±(η) = {γ1(η) + ργ1(η), . . . , γd(η) +

ργd(η), (1⊗ i)(γ1(η)−ργ1(η)), . . . , (1⊗ i)(γd(η)−ργd(η))} where γ1(η), . . . ,
γd(η) is a T -basis of (ηM)B. Let

(I±∞(η)⊕ I±∞(ρη)) : (((ηM)B ⊗ C)ηΨ ⊕
((ρη)(M)B ⊗ C)ρηΨ)± → (ηM±

DR ⊗η(K) C⊕ (ρη)M±
DR ⊗ρη(K) C)

be the period isomorphism, and let, as before

p(Λ(Ψ, η), Γ±(η))

be the T ⊗C-linear determinant of the matrix representing I±∞(η)⊕ I∞(ρη)
relative to be the bases Λ(Ψ, η) and Γ±(η). Let c±v (M) =

∏
Ψ p(Λ(Ψ, η),

Γ±(η)).
Then c+

v (M) undergoes a change of the form c+
v (M) → (t ⊗ 1)c+

v (M)
if we change the basis of (ηM)±B, and a change of the form c+

v (M) →
(1 ⊗ η(k)(ρη)(k))c+

v (M) if we change the Ω(Ψ). Finally, if we replace η
by ρη, c±v (M) is unchanged.

For any ε : PK → Z and any d ∈ Z such that ε(v) = d if v is complex, let

c±ε (M) =

 ∏
v∈PK,R

c±v (M)ε(v)c∓v (M)d−ε(v)


 ∏
v∈PK\PK,R

c±v (M)

d

.

Then, because M is special, c±ε (M,T ) is independent of choices up multipli-
cation by an element t⊗ 1 for t ∈ T .
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M.9. We retain the notation of the previous paragraph. Let

{α1(Ψ), . . . , αd(Ψ∗)(Ψ)} = A(Ψ)

be a basis of (T⊗K)Ψ∗ over T . Then AΩ(Ψ)def= {α1(Ψ)Ω(Ψ), α2(Ψ)Ω(Ψ), . . . ,
αd(Ψ∗)ΩΨ} is a basis of (M±

DR)Ψ as a T vector space. Then AΩ = ∪ΨAΩ(Ψ)
is an unordered basis of M±

DR as a T -vector space.
Since the T -vector space (RM)±DR is canonically identified, ignoring the

K action on the latter, with M±
DR as T -vector space; AΩ is a T -basis of

RM±
DR. Since (RM)±B =

(
⊕

η∈JK
(ηM)B

)±
, the family of Γ±(η)’s from (M.8)

provides a basis of (((RM)B)⊗C)±. Computing c±(M,T ) using these bases,
and letting ε = 1, the ratio

c±1 (M,T )/c±(M,T ) = b±(M)

is well-defined modulo T ∗, and is computed as the T ⊗Q-linear determinant
of the matrix which expresses the basis(

∪
Ψ
∪

η∈JK,R
ηΩ(Ψ)

)
∪
(
∪
Ψ
∪

η∈RK,C
Λ(Ψ, η)

)
(where RK,C is a set of representatives in JK for 〈1, ρ〉\(JK\JK,R)), in terms
of AΩ = ∪

Ψ
AΩ(Ψ).

To do this, note that if we use the Ω(Ψ) bases to identify M±
DR with

⊕
Ψ

((T ⊗ K)Ψ)n(Ψ), then our task relates to that of calculating, for each Ψ,

the inverse b(Ψ) of the determinant of the matrix in Md(Ψ∗)(T ⊗Q) giving
the canonical isomorphism

J(Ψ) : (T ⊗K)Ψ ⊗Q ∼→ (T ⊗Q)Ψ∗ ,

where we regard the right member as the T⊗Q-algebra of maps Ψ∗ → T⊗Q,
relative to the bases given by A(Ψ) and the set of idempotents 1η, satisfying
1η(η) = 1T⊗Q, 1η(η

′) = 0 if η′ 6= η. Note that

J(Ψ)(αj(Ψ)) =
∑
η∈Ψ∗

∼
η(αj(Ψ)) · 1η,

where
∼
η is the T -linear extension of η to (T ⊗K)Ψ.

Hence,
b(Ψ) = det(

∼
η(αj(Ψ)))1≤j≤d(Ψ∗), η∈Ψ∗

and
b± =

∏
Ψ

b(Ψ)n
±(Ψ).
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Then b depends only on T,K and δ± modulo T ∗.
This quantity is characterized by a reciprocity law which is easy to com-

pute: Since each Ψ∗ is stable under the action of GT , the signature πΨ(τ)
defines a character πΨ(τ) : GT → {±1}. Define

πδ± =
∏
Ψ

πΨ(τ)n
±(τ)

and let b(δ±) = (b(δ±)σ)σ∈JT . Then

τb(δ±) = πδ±(τ)b(δ±)1

for τ ∈ GT , and, letting Rδ± = IndQ
T (πδ±), we have

(1⊗ τ)b(δ±) = R(δ±)(τ)b(δ±).

Note that b+ ∼ b− unless K is totally real and Mp,p
B 6= {0} for some p.

Several special cases are worth noting.
1. If T = Q, δ± is a multiple n± of the regular representation of K and

π(δ±) = π(JK)n
±

. Hence b± ∼ (
√
DK)n where DK is the discriminant.

2. For more general T , but if δ± is a multiple of the regular representation,
then π(δ±) = (sgn(JK) |T )n, and again

b± ∼ 1⊗
√
DK

n
.

3. If K is a CM field, and δ± is a multiple of a CM type, then GT acts
on (δ±)∗ via the same permutation as it acts on the embeddings JK0 ,
since the restriction δ± → JK0 is a bijection, where K0 is the maximal
real subfield of K. Hence π(δ±) = (sgnJF ) |T and so b ∼ 1⊗√DF .

M.10. Artin motives. Let π : GK → Aut(V ) be a representation of
GK on the rational vector space V . Set πB = V , πf = V ⊗ Qf , and
πDR = (V ⊗ Q)GK . Let I∞ : πDR ⊗K C = πB ⊗ C be the identity map,
and define If similarly. The structure π = (πDR, πB, πf , I∞, If ) is called an
Artin motive ([D]). We have πB ⊗ C = π0,0, and π admits a field T as
coefficients exactly when we can embed T into End(πB) with image in the
commutant of the image of GK . Assuming π has coefficients in T , for each
σ ∈ JK,R, let επ(σ) = 1

2
(dπ + Tr(Fσ | (σπ)B)), where dπ = dimT πB.

For v complex, put επ(v) = dπ. (Here, for σ ∈ GQ, σπ is the Artin motive
attached to the representation τ → π(σ−1τσ), τ ∈ GσK .)

M.11. Reciprocity laws. Let H, U , and V be subgroups of a topological
group G, with H finite, and U and V of finite index, and U ⊆ V . Put
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JU = G/U , JV = G/V . Let ψ : JV → Z satisfy, for an H invariant
subset S ⊆ JV , ∑

τ∈Hσ
ψ(τ) =

c σ ∈ S

0 σ /∈ S

with a constant c depending only upon ψ. Via the natural map JU → JV ,
regard ψ as a function on JU . Let GH be the subgroup of τ ∈ G for
which τHσ = Hτσ for all σ ∈ JV . For each σ ∈ JU , choose a
representative wσ ∈ G, and arrange that hwσ = whσ for all h ∈ H. Let
HS = {g ∈ G | gS = S}. Define for τ ∈ GH ∩ HS, tψ(τ) ∈ Uab by

tψ(τ) =
∏
σ∈JK

(w−1
τσ τwσ)ψ(σ) mod U c

where U c denotes the closure of the commutator subgroup.

Proposition 1. For τ ∈ GH ∩ HS, tψ(τ) is well-defined.

Proof. If w′σ = wσuσ for a uσ ∈ U , then uhσ = uσ for all h ∈ H. Hence,
it is enough to show ∏

σ∈JU
uψ(σ)
τσ ≡

∏
σ∈JU

uψ(σ)
σ mod U c.

Since τHσ = Hτσ for each σ ∈ JV , the result will follow if∑
η∈JU
η→σ

∑
h∈Hτη

ψ(h) =
∑
η∈JU
η→σ

∑
h∈Hη

ψ(h).

Since τS = S and τ(JV − S) = JV − S, each side above is either
[V : U ]c or 0, simultaneously.

Next, let Hψ = {g ∈ G | gψ = ψ}.
Proposition 2. If τ1, τ2 ∈ Hψ, tψ(τ1τ2) = tψ(τ1)tψ(τ2).

Proof. Let X ⊆ JU be a set of representatives for Hψ\JU . Then

(∗) tψ(τ) =
∏
x∈X

 ∏
y∈Hψx

(w−1
τy τwy)

ψ0(x)

where ψ0 : Hψ\JU → Z is the function defined by ψ. Fixing x, each
wy belongs to HψwxU = wx(w−1

x Hψwx·U), and hence wy = wxzy with
zy ∈ w−1

x Hψwx·U . Hence, if τ ∈ Hψ,∏
y∈Hψx

(w−1
τy τwy) =

∏
y∈Hψx

(z−1
τy (w−1

x τwx)zy).
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Now let A and B be subgroups of finite index inside a group C, and let
{zα ∈ A·B | α ∈ A·B/B} be a set of representatives in A·B for the
quotient A·B/B. If a ∈ A, define t(a) ∈ Bab by

t(a) =
∏

α∈A·B/B
(z−1
aαazα) mod Bc.

Then t(a) is well-defined, and

t(a1a2) =
∏

α∈A·B/B
(z−1
a1a2α

a1a2zα) mod Bc

=
∏

α∈A·B/B
(z−1
a1a2α

a1za2α)(z−1
a2α
a2zα) mod Bc

= t(a1)t(a2) mod Bc.

Applying this remark to a1 = w−1
x τ1wx, a2 = w−1

x τ2wx, A = w−1
x Hψwx

and B = U , we see that inner term of (*) is a homomorphism and we are
done.

Note that if ψ is a constant, taking the value d, then Hψ = G and
tψ : Gab → Uab is the d-th power of the usual transfer map. However,
in general, for τ /∈ Hψ, tψ is not a homomorphism. Rather, we find
tψ(τ1τ2) = tτ2ψ(τ1)tψ(τ2) for general τ1, τ2 ∈ G.

Below, we apply the results with H = 〈1, ρ〉, U = GK and V = GKcm ,
where Kcm ⊆ K is the maximal CM subfield, or Q, if K contains no CM
subfield. Hence, if S = JV , GH = HS = GQ.

M.12. If L and T are number fields with L ⊇ T , we regard any δ ∈ IT
as a function in IL via the map JL → JT . Let L be a Galois extension of Q
which contains T . Then, for δ± as in M.5, there exists a unique δ±∗ ∈ IKcm
(c.f. Prop. M.5.2.) such that δ±∗ (σ) = δ±(σ−1) for all σ ∈ JL. If τ ∈ GQ,
then τδ±∗ depends only upon the image of τ in JT .

The ψ ∈ IK which are of interest to us are of the form δ±∗ , and hence
satisfy

ψ(ρσ) + ψ(σ) = w (σ ∈ JK).
(M.12.1)

ψ(σ1) = ψ(σ2) if σ1 = σ2 on Kcm.(M.12.2)

τψ = ψ (τ ∈ JT ).(M.12.3)

Clearly, for such ψ, the above procedure defines ψ∗ ∈ IT , and we have
(ψ∗)∗ = ψ.
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M.13. Let ψ be as in M.12, and define rψ : GQ → (Gab
K )JT by rψ,η = tηψ,

for each η ∈ JT . Then, if ϕ : Gab
K → T ∗ is a character, define, for τ ∈ GQ,

ϕ∗rψ(τ) ∈ (T ⊗Q Q)∗ by

ϕ∗rψ(τ)η = (ηψ) ◦ rψ,η(τ) (η ∈ JT ).

Proposition. There exists an element c(ψ,ϕ) ∈ (T ⊗ Q)∗, unique up
to a change of the form c(ψ,ϕ) 7→ (t ⊗ 1)c(ψ,ϕ) with t ∈ T ∗, such that
for all τ ∈ GQ,

(1 ⊗ τ)c(ψ,ϕ) = ϕ∗rψ(τ)c(ψ,ϕ).

Proof. Let πϕ be an Artin motive, defined over K, with coefficients in Q(ϕ),
the field generated by the values of ϕ. Set π = πϕ ⊗Q(ϕ) T . Then
dimT πB = 1, and hence there exists p(ϕ) ∈ (T ⊗ Kab)∗ such that
γ = p(ϕ)·w where 0 6= γ ∈ πB, and w is a basis of the free T ⊗ K
module πDR. If τ ∈ GK , it follows, from the definition of πDR, that
(1 ⊗ τ)p(ϕ) = (ϕ(τ) ⊗ 1)p(ϕ), and p(ϕ) is independent of choices, up to
change of the form p(ϕ) → αp(ϕ) with an α ∈ (T ⊗ K)∗.

Now let ψ : JT → Z be as in M.12. with the roles of T and K reversed,
and for an a ∈ (T ⊗ Q)∗, define ψ(a) ∈ T ⊗ Q by ψ(a)σ = aψ(σ)

σ . For
σ ∈ JK , put p(ϕ)σ = (1 ⊗ wσ)p(ϕ), and set

P (ψ,ϕ) =
∏
σ∈JK

(σψ)(p(ϕ)σ).

Note that, for τ ∈ GQ, we have (1 ⊗ τ)(ψ(a)) = (τψ)(τa). Then

(1 ⊗ τ)P (ψ,ϕ) =
∏
σ∈JK

(τσψ)((1 ⊗ wτσk(τ, σ))p(ϕ))

=
∏
σ∈JK

(τσψ)((ϕ(k(τ, σ)) ⊗ wτσ)p(ϕ))

=

[ ∏
σ∈JK

(τσψ)(ϕ(k(τ, σ)) ⊗ 1)

]
P (ψ,ϕ),

where we have set τwσ = wτσk(τ, σ) with k(τ, σ) ∈ GK .
Now, for η ∈ JT ,[ ∏

σ∈JK
(τσψ)(ϕ(k(τ, σ)) ⊗ 1)

]
η

= (ηϕ)

( ∏
σ∈JK

k(τ, σ)(τσψ)(η)

)

= (ηϕ)

( ∏
σ∈JK

k(τ, σ)(τ−1ηψ∗)(σ)

)
= ηϕ ◦ tτ−1ηψ∗(τ).
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Thus (1 ⊗ τ)P (ψ,ϕ) = ϕ ∗ rψ∗(τ)P (ψ,ϕ).
If we now start with a ψ : JK → Z as in the hypothesis of the Proposition,

we prove the above result with the roles of ψ and ψ∗ reversed, using (ψ∗)∗ =
ψ. Put c(ψ,ϕ) = P (ψ∗, ϕ). Then we are done since the reciprocity law
clearly characterizes c(ψ,ϕ) up to multiplication by t ⊗ 1.

M.14.

Corollary 1. Define c(ψ,ϕ) ∈ (T ⊗ Q)∗ as in M .13. then
(i) if ϕn = 1, then c(ψ,ϕ)n ∈ T ∗,
(ii) let E ⊆ T be the field corresponding to Hψ. Then c(ψ,ϕ)1 ∈ Eab,
(iii) over E(ϕ), c(ψ,ϕ)1 generates the Kummer extension attached to the

character ϕ ◦ tψ of Gab
E .

Proof. Part (i) is obvious, part (ii) follows from Prop. M.13 upon direct
calculation of the actions of τ1τ2 and τ2τ1 for τ1, τ2 ∈ GE, and part iii) is
elementary.

Corollary 2. The numbers c(ψ,ϕ)η (η ∈ JT ) generate abelian extensions
of CM fields.

Proof. By Prop. M.12., E = Q or E is a CM field, and the result follows
from (ii) above.

M.15. Let Eψ be the field generated over E by the elements c(ψ,ϕ)1 as ϕ
varies among the characters of finite order of Gab

K .

Proposition.
(i) Eψ is the subfield of Eab corresponding to the subgroup of E∗f consisting

of the elements e for which ψ∗(e) belongs to the connected component of
K∗f/K

∗
+, where K∗+ ⊆ K∗ is the subgroup of totally positive elements.

(ii) Suppose that ψ is a CM type, i.e. ψ(σ) + ψ(ρσ) = 1, and ψ(σ) ≥ 0
for all σ ∈ JK, and let F be the maximal totally real subfield of the
field E.

Let z ∈ F ⊗ C − F ⊗ R be a CM point of type (E,ψ∗) (c.f. [CV]). Then
Eψ is the field generated over E by the values at z of all arithmetic Hilbert
modular functions (e.g. elements of A0(Qab) in the notation of [Sh3]) which
are defined at z.

Proof. The argument of Tate in [L] extends immediately to our case to show
that rK(ψ∗(e)) = tψ(σ) if rE(e) = σ ∈ Gab

E , and where, for any number
field L, rL : L∗f → Gab

L denotes the Artin reciprocity law. Thus, (i) is
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immediate. To see (ii), recall that the field generated by the given values
is the compositum of E with the fields of moduli k(P ) of the collection of
PEL structures P = (A,C, ϑ, v1, . . ., vN), where (A,C) is a fixed polarized
abelian variety with an action ϑ of OF , and v1, . . ., vN denote a variable set
of torsion points. By [SH2], Prop. 5.17, Ek(P ) is the field of moduli of
(A,C, ϑ∗), where ϑ∗ : E∗ → End(A) ⊗ Q is an extension of ϑ. By [Sh2],
Prop. 5.16, ∪P Ek(P ) is the class field attached to

∩n≥1 (ψ∗(K∗UK(n)))−1 = (ψ∗(∩n≥1(K∗UK(n))))−1

where UK(n) denotes the subgroup of local units in K∗f whose elements
are congruent to 1 modulo n. Since ∩n≥1 K

∗UK(n)/K∗ is the connected
component of K∗f/K

∗
+, we are done.

M.16. For M special, irreducible and π an Artin motive, M ⊗ π is special
if and only if i) Mw/2,w/2 = {0} (w ∈ 2Z), or ii), if w ∈ 2Z and
Mw/2,w/2 6= {0}, then K is totally real, Fτ acts as a scalar independent of τ
on each τπ, for all τ ∈ JK , and tr(Fτ , (τM)B) is independent of τ . Assume
that these conditions are satisfied.

Theorem. For a special motive M and π, as above, both with coefficients
in T and defined over K,

c±1 (M ⊗ π) ∼ c±επ(M)c(δ±∗ ,det π) mod (T ∗)

where επ is defined in M .10, det π is the maximal T linear exterior power,
and we have omitted notation referring to T .

Proof. For σ ∈ JK , let ξ(σ) = (ξ1(σ), . . ., ξdπ(σ)) be a basis of (σπ)B.
Define ∆σ : (σM)dπ → σ(M ⊗ π) by

∆σ,B(v1, . . ., vdπ) =
dπ∑
i=1

vi ⊗ ξi(σ)

where v1, . . ., vdπ belong to (σM)B. Passing to quotients, define ∆±σ :
((σM)±DR ⊗σK Q)dπ → (σ(M ⊗ π))±αDR ⊗σK Q, via ∆σ,DR, where
α = 1 unless Mw/2,w/2 6= {0} and π(ρ) = −1, in which case α = −1.

We consider two commutative diagrams. First, if σ ∈ JK,R, assume
that ξ(σ) has been chosen so that ξ(σ)i ∈ (σπ)+

B if 1 ≤ i ≤ ε(σ) and
ξ(σ)i ∈ (σπ)−B if ε(σ) + 1 ≤ i ≤ dπ. Then,

(((σM)±B)ε(σ) ⊕ ((σM)∓B)dπ−ε(σ))⊗C J±σ−−−−→ ((σM)±DR ⊗σK C)dπ
↓ ∆σ,B ↓ ∆±σ

(σ(M ⊗ π))±B ⊗C I±σ−−−−→ (σ(M ⊗ π))±DR ⊗σK C
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commutes, where J±σ = (I±σ )ε(σ) × (I∓σ )dπ−ε(σ). Hence,

c±σ (M ⊗ π) ∼ c±σ (M)ε(σ)c∓(M)dπ−ε(σ) × det(∆±σ ),

since det(∆σ,B) ∈ T ∗. If σ ∈ JK,C, assume ξ(ρσ) = ρξ(σ). Then

((σM)dπB ⊕ (ρσM)dπB )± ⊗C
Idπσ ⊕Idπρσ−−−−−→ ((σM)±DR ⊗σK C)dπ⊕

((ρσM)±DR ⊗ρσK C)dπy∆σ,B⊕∆ρσ,B

y∆±σ⊕∆±ρσ

((σ(M ⊗ π))B ⊕ (ρσ(M ⊗ π))B)± ⊗C
Iσ⊕Iρσ−−−−→ ((σ(M ⊗ π))±DR ⊗σK C)⊕

((ρσ(M ⊗ π))±DR ⊗ρσK C)

commutes. Hence, if v denotes the place of K corresponding to the pair
(σ, ρσ), then

c±v (M ⊗ π) ∼ c±v (M)dπ det(∆±σ ) det(∆±ρσ),

where we agree that det(∆±σ ) has component 1 at any η ∈ JT which fails
to occur in σM±

DR. Thus, we must show∏
σ∈JK

det(∆±σ ) ∼ c(δ±∗ ,det π).

From the definition of ∆σ, we see that if w1, . . ., wdπ belong to M±
DR,

∆±σ (σw1, . . ., wdπ) =
dπ∑
i=1

σwi ⊗ ξi(σ).

Let µ1, . . ., µdπ be a basis of the free T ⊗ K module πDR, then

ξi(σ) =
dπ∑
j=1

aij(σ)σ(µj),

with aij(σ) ∈ T ⊗ Q. Thus,

∆±σ (σw1, . . ., σwd±) =
dπ∑
i=1

dπ∑
j=1

σ(wi ⊗ µj)aij(σ).

Decomposing this map into its η eigencomponents for η ∈ JT , we see that

(det(∆±σ ))η = det(A(σ))σδ
±(η)

η

where A(σ) = (aij(σ))1≤i,j≤dπ .
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Without loss of generality, assume that K ⊂ R, if K has a real em-
bedding. Choose ξ(1) as above and let ξ(σ) = wσξ(1). Then for each
real σ, ξ(σ) satisfies our hypothesis, and ρξ(σ) = ξ(ρσ) if σ is complete.
Now, for any Artin motive π, defined over K, and any τ ∈ GQ, the map
τ : πB → (τπ)B is the restriction of τ : πDR ⊗K K → (τπ)DR ⊗τK τK,
defined by τ(µ ⊗ k) = τµ ⊗ τk for µ ∈ πDR and k ∈ K. Thus,

ξi(σ) =
dπ∑
i=1

(1 ⊗ wσ)aij(1) · wσµj.

Hence det A(σ) = (1 ⊗ wσ) det A(1), and so∏
σ∈JK

det(∆±σ ) ∼
∏
σ∈JK

(σδ±)((1 ⊗ wσ) det(A(1))).

As to det(A(1)), note that (1 ⊗ τ)(ξ1(1) ∧ · · · ∧ ξdπ(1)) = det(π) ξ1(1) ∧
· · · ∧ ξdπ(1) for τ ∈ GK , and so, from the definition of πDR,

(1 ⊗ τ) det(A(1)) = ((det(π))(τ) ⊗ 1) det(A(1)).

Setting det(A(1)) = p(det(π)), as in the proof of Prop. M.13, and recalling
that argument, we are done.

M.17. Applications.

Corollary 1. Suppose that K is totally complex. Then

c±(M ⊗ π) ∼ c±(M)dπc(δ±∗ ,det π) mod (T ∗).

Proof. Apply Theorem M.16. and Prop. M.9.

For the next applications, let L be a finite extension of K. For each
σ ∈ JK , let r(σ) the number of real embeddings of L which extend σ, and
define εL/K : JK → Z by

εL/K(σ) =


[L:K]+r(σ)

2
σ real

[L : K] σ not real.

Let M ×K L denote the motive over L obtained from M by extending
scalars.

Corollary 2. Suppose that M ×K L is special. Let πL/K be the character
of GK which gives the sign of the permutation given by the action of GK on
GK/GL. Then, with ε = εL/K,

c±(M ×K L) ∼ c±ε (M)c(δ±∗ , πL/K) mod (T ∗).
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Corollary 3. Suppose that K is totally complex. Then

c±(M ×K L) ∼ c±(M)[L:K]c(δ±∗ , πL/K) mod (T ∗).

Proof. Apply Corollary 2 and Prop. M.9.

It is easy to give the quantities c(δ±∗ , πL/K) an explicit form. Let `1, . . ., `t
be a basis of L as a K vector space. Put

pL/K = det(σ(`i))1≤i≤t,σ ∈ GK/GL .

This determinant is well defined up to an element of K∗, and τpL/K =
πL/K(τ)pL/K . As in the proof of Prop. M.13, we can put

c(δ±∗ , πL/K) =
∏
σ∈JK

(σδ±)((1 ⊗ wσ)(1 ⊗ pL/K)).

Suppose next that δ± is a multiple m± of the regular representation of T .
Then, for ϕ : GK → T ∗, the reciprocity law is

(1 ⊗ τ)c±(δ±∗ , ϕ) = (ϕ ◦ trK/Q(τ)m
± ⊗ 1)c±(δ±∗ , ϕ)

where trK/Q : GQ → Gab
K is the transfer homomorphism. Let

∼
ϕ : K∗f → T ∗

be the character of K∗f associated to ϕ via rK . Let ψ : Kf → C∗ be a
non-trivial additive character. Define

G(ϕ) = G(ϕ,ψ) =
∫
UK

∼
ϕ(u) ⊗ ψ(u)du ∈ (T ⊗ Qab)∗

with the Haar measure du on Kf which assigns measure 1 to the integral
adeles. Then the identity

(1 ⊗ rQ(z))G(ϕ) ∼ (
∼
ϕ(z) ⊗ 1)G(ϕ)

is immediate, provided we recall that rQ(z)(e2πi/m) = e2πia/m where a ∈
(Z/(m))∗ is the inverse of the image of z. Since the diagram

Q∗A −−−→ Gab
Qy ytrK/Q

K∗A −−−→ Gab
K

commutes, we see that

(1 ⊗ τ)G(ϕ) = (ϕ ◦ trK/Q(τ) ⊗ 1)G(ϕ)
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for all τ ∈ GQ. Thus we have

c(δ±∗ , ϕ) ∼ G(ϕ)m
±

mod (T ∗)

for δ± = m± times the regular representation.

Corollary 4. Let K have a real place. Then

c±(M ⊗ π) ∼ c±επ(M)(1 ⊗ D
1/2
K )d

±α·dπG(det(π))m
±α

mod (T ∗)

where α = +1 unless Mw/2,w/2 6= {0}, in which case α is the scalar by
which ρ acts on π.

Proof. δ± is m± times the regular representation by Prop. M.5.2, since K
contains no CM subfield.

Corollary 5. Let K be totally real. Let L be a totally complex finite
extension of K of degree 2a. Suppose that Mw/2,w/2 = {0} if w ∈ λZ.
Then M ×K L is special, and

c±(M ×K L) ∼ (c+(M)c−(M))aG(πL/K)m
±

mod (T ∗).

Corollary 6. Let K be totally real. Let L be a totally real extension of K
of degree a. Then M ×K L is special, and

c±(M ×K L) ∼ c±(M)aG(πL/K)m
±

mod (T ∗).

Example. Let L be a cubic extension of Q. Then either L is cyclic over Q
or N , the Galois closure of L, has for its Galois group the symmetric group
on 3 letters. In the first case, πL/Q ≡ 1. In the second, there is a unique
quadratic extension of Q contained in M such that πL/Q is the non-trivial
quadratic character of Gal(N/Q) associated to this extension. L is either
totally real, or has one real and one complex place. Hence, Theorem M.16
provides the following possibilities:

c±(M ×Q L) ∼


c±(M)3(1 ⊗ D

1/2
L/Q)d

±
(L totally real, non-cyclic),

c±(M)3 (L totally real, cyclic),

c±(M)2c∓(1 ⊗ D
1/2
L/Q)d

±
(L not totally real).
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L. L-functions.

L.1. For a finite place v of K, let Dv, Iv, and Φv denote a decomposition
group, an inertia subgroup of Dv, and a (geometric) Frobenius coset in
Dv/Iv, respectively. In order to define L-functions we henceforth assume that
each structure on M as motive with coefficients in T is strictly compatible:
For each finite plane λ of T , the polynomial

Lv(M,T ;X)−1 = detT (1 − ΦvX,M
Iv
λ ) ∈ Tλ[X]

belongs to T [X] and is independent of the choice of λ. Let Lv(M,T ; s) be
the image of Lv under the map T [X] → T ⊗ C[N−sv ] where Nv denotes
the norm of v and s ∈ C. Then define

L(M,T ; s) =
∏
v

Lv(M,T ; s).

If we assume the Riemann hypothesis for M , i.e. that the roots of
NT/Q(Lv(M,T ; X))−1 ∈ Q[X] all have absolute value (Nv)w/2, then
L(M,T ; s) converges for Re(s) > w+1

2
and takes values, for such s, in

T ⊗ C. It is standard to conjecture that L(M,T ; s) continues to a mero-
morphic function on C. Further, if M is simple, the continuation should be
entire, unless M = Q(−w/2), in which case L(M,Q; s) = ζK(s − w/2)
where ζK denotes the Dedekind zeta function of K.

L.2. The various L(M,T ; s) attached toM for different coefficient structures
are related by the following elementary result.

Proposition. Let M be a simple motive defined over K with coefficients
in T . Let F be the center of the division algebra End(M). Then there
exists a unique Dirichlet series L0(M, s) =

∏
v

L0,v(M, s), L0,v(M, s) =

L0,v(M,X)|X=N−sv with L0,v(M,X)−1 ∈ F [X], such that

L(M,T ; s) = NTF/T (L0(M, s))n/d

where n2 = [End(M) : F ] and d = [TF : F ]. In particular, for any
T ⊇ F with [T : F ] = n, L(M,T ; s) = L0(M, s).

Proof. Suppose first that T ⊇ F , [T : F ] = n, and let T ′ ⊆ T be a Galois
extension of F . Let v and λ be finite planes of K and F , respectively, whose
restrictions to Q are distinct. Then

TrT⊗Fλ(Φv,M
Iv
λ ) = TrT⊗FT ′⊗Fλ(Φv,Mλ ⊗F T ′) =

Tr(T ′)n⊗FFλ(Φv, (N Iv
λ )n) = TrT ′⊗Fλ(Φv, N

Iv
λ ) ∈ T ′ ⊆ (T ′)n,
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where Nλ = e(Mλ ⊗F T ′) for a minimal idempotent of T ⊗F T ′. The
first term belongs to T ⊗ 1 while the last term belongs to 1 ⊗ T ′. Since
T ⊗ 1 ∩ 1 ⊗ T ′ = F (inside T ⊗F T ′), L(M,T ; s) is an Euler product
formed of polynomials with coefficients in F . Now End(M ⊗F T ′) =
End(M) ⊗F T ′ = Mn(T ′) and T ⊗F T ′ ∼−→ (T ′)n ↪→ Mn(T ′) is a maximal
semisimple commutative subalgebra. Hence, Nλ is independent of the choice
of T , and depends only upon the choice of T ′ which splits End(M). Thus
L(M,T ; s) = L(M ;T1; s) if T1 ⊇ F is any coefficient structure with
[T1 : F ] = n.

Put L0(M, s) = L(M,T ; s), with T as above. Next let T2 be any coeffi-
cient structure for M , and assume, changing T if necessary, that T ⊇ T2.
Then L(M,T2; s) = NT/T2(L0(M, s)) = NT2F/T2(NT/T2F (L0(M, s))) =
NT2F/T2(L0(M, s))n/d with d = [T2F : F ], since [T : T2F ] = [T : F ][T2F :
F ]−1. Q.E.D.

L.3. We say that M satisfies the Tate conjecture if, for each prime `, the
Q` subalgebra of End(M`) generated by the image of GK is the commutant
of End(M) ⊗ Q`.

Proposition. Let M be a simple motive over K with coefficients in T . Let
F be the center of End(M). Let F T be the field attached to the subgroup
of GQ which stabilizes GTGF/GF . Then i) the polynomials Lv(M,T ;X)−1

have coefficients in F T and, ii) if M satisfies the Tate conjecture, the coef-
ficients of the Lv(M,T ;X)−1 generate F T .

Proof. From the previous proposition, we see that the coefficients lie in the
field generated by the elements TrTF/T (α), where α ∈ F varies among the
coefficients of the L0,v(M,X)−1. Since the map GT/GTF → GQ/GF is
injective, with image GTGF/GF , this field is F T .

To see ii), let A be the commutant of End(M) inside MB. Then the center
of A is F . By assumption, and the Cebotarev density theorem, the Q` span
of the Frobenius elements Φv is A ⊗ Q`, for any prime `. Hence the Q`

span of their reduced traces TrA/F ⊗ 1 : Q ⊗ Q` → F ⊗ Q` is
F ⊗ Q`. Let F0 ⊆ F be the field generated over Q by the coefficients of
L0(M, s). Then F0 coincides with the field generated by the above traces.
Thus F0 ⊗ Q` = F ⊗ Q`, for all `. Hence F = F0. Now it follows
from the analysis above for part i) that the coefficients of the Lv(M,T ;X)
generate F T . The last claim is obvious.

L.4.
Remarks. There exists an abelian variety A defined over Q for which
End(A) ⊗ Q is a non-commutative division algebra. Set M = H1(A).
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Then L(M, s) = NF/Q(L0(M, s))n where n2 = [End(A) ⊗ Q : F ] and F is
the center of End(M). L(M, s) is the usual Hasse-Weil L-function in degree
one of A. NF/Q(L0(M, s)) cannot itself occur as L(N, s) for N = H1(B)
with an abelian variety B, because then L(N, s)n = L(M, s), and so by
Tate’s isogeny conjecture, proved for the motives attached to H1 of abelian
varieties, A is isogenous to Bn, contrary to hypothesis.

L.5. Critical strip. Let M be a critical motive defined over K, and put
N = RK/QM . If NB ⊗ C = Nw/2,w/2 with w ∈ 2Z, put I1 = Z.
Otherwise, put I1 = {P + 1, . . ., Q} with

P = max
p<q
{p|Np,q 6= 0}.

Recall that if Nw/2,w/2 6= 0, then F∞ acts on Nw/2,w/2 as a scalar (−1)ε for
ε = 0 or 1. The critical strip for M is C(M) = C`(M) ∪ Cr(M) where

Cr(M) =
{
λ ∈ I1 | λ ≤ w

2
and λ 6≡ ε(2)

}
.

C`(M) =
{
λ ∈ I1 | λ >

w

2
and λ ≡ ε(2)

}
.

Recall (M.6) that we have attached to M a pair of basic periods c±0 (M).

L.6. The following conjectures are due to Deligne [D].

Conjecture 1. Let M be a simple special motive defined over K. Then,
for each k ∈ C(M),

L0(M,k) ∼ (1 ⊗ 2πi)keα/ncα0 (M) mod (F ∗)

where α = (−1)k, F is the center of End(M), [End(M) : F ] = n2, and
eα = dimF ((RK/QM)αB).

Conjecture 1 implies the following assertions.

Conjecture 2. Let M be a special motive over K with coefficients in T .
Then, for each k ∈ C(M),

L(M,T ; k) ∼ (1 ⊗ 2πi)kdαcα(M,T ) mod (T ∗)

where dα = dimT ((RK/QM)αB).

Conjecture 3. If M is K-simple, and k ∈ C(M),

L(M,T ; k) ∼ (1 ⊗ 2πi)kdαcα(M,T ) mod ((F T )∗).
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L.7. Results. Conjecture 2 is known when M = M(χ) is the motive of
CM type attached to an algebraic Hecke character χ of a CM field K, by
the principal result of [CV]. A method of Harder ([H]) will establish the
theorem for general K, by reduction to the former case. See H.12 below.
Also, the truth of Conjecture 2, for all T coefficient structures on M implies
Conjecture 1 for M , by an easy argument. Thus, all three conjectures are
known in this case. Conjecture 2 is also known for the motives attached to
classical holomorphic modular forms ([D]) and for the tensor product of two
such motives ([Sh1], [BO]). For a partial result in the case of a triple tensor
product, see [BO].

L.8. Main conjecture. Let π be an Artin motive with coefficients in T . From
Conjecture L.6.2 and Theorem M.16, we obtain:

Conjecture 4. Let k ∈ C(M) ∩ C(M ⊗ π), then

L(M ⊗ π, T ; k) ∼ bm(1 ⊗ 2πi)kdα(M⊗π)cαεπ(M)c(δα∗ ,det(π)) mod (T ∗)

where α = (−1)k, where b = b(δ±) unless Mw/2,w/2
B 6= {0}, in which case

b = b(δαsgn(π)).

This conjecture is known for Hecke L-series provided dimT π = 1, and
results compatible with this conjecture have been obtained by Shimura in
[Sh1]. If M is K simple with dimT M > 1, then for all cases in which it
is known, δ± is a multiple of the regular representation.

L.9.1. Automorphic L-functions. Fix K and let
∏

be a cuspidal automor-
phic representation ofGLN(AK) whose infinite part π∞ = ⊗

v∈PK
πv is algebraic

in the sense of Clozel ([C]). It is now standard to conjecture (c.f. [C]) that
there exists a motive M defined over K, with coefficients in some field T ,
such that

e1(Lv(M,T ; s)) = Lv(π, s)

for all places v of K; here e1 : T ⊗ C → C is the projection determined by
1T ∈ JT . It is thus reasonable to ask for a reformulation of L.8 in purely
automorphic terms, invoking additional hypotheses as needed.

L.9.2. Let v ∈ PK and let Wv denote the Weil group of Kv. To each
∏
v is

attached a representation

R (πv) : Wv → GLN(C)

whose isomorphism class we denote by [R(
∏
v)]; the restriction of R(

∏
v) to

R∗ > 0 ⊆ Wv is a scalar c 7→ r−w for w ∈ Z which is independent of v. For



76 DON BLASIUS

v a complex place of K, let σ ∈ JK be an embedding determining v. Then
σ determines an isomorphism

σ−1 : C∗ ∼→ K∗v .

We can write

R
(∏

v

)
· σ−1 ∼→ Diag(z−a1(σ)z−(w−a1(σ)), . . . , z−aN (σ)z−(w−aN (σ)))

with integers ai(σ).
On the other hand, if v = σ is real, the class of R (

∏
v) ◦ ∼σ

−1
: C∗ →

GLN(C) is independent of the choice of isomorphism
∼
σ
−1

: C ∼→ Kv, and
R (
∏
v) ◦ ∼σ

−1
can be diagonalized as above.

L.9.3. Our first task is to define the critical strip C (
∏

) of
∏

. To do this,
let

kmin = 1 + max
σ,j
{aj(σ) | aj(σ) < w/2}

d = w − 2kmin + 1

and let

C1

(∏)
= {kmin, w − kmin + 1}.

If there is a σ and a j for which aj(σ) = w
2

, then C (
∏

) = ∅ unless K is
totally real and a signature condition is satisfied: For each 1-dimensional
factor χ of R (

∏
v), the sign χ(j)(= ±1) is independent of v and χ in R (

∏
v).

(Here j ∈ Wv satisfies j2 = −1.) We denote this sign by sgn(
∏

) when it is
defined.

Now let

C`
(∏)

=
{
k ∈ C1

(∏)∣∣∣ k < [w
2

]
, sgn

(∏)
= (−1)k+1

}
Cr
(∏)

=
{
k ∈ C1

(∏)∣∣∣ k ≥ [w
2

]
, sgn

(∏)
= (−1)k

}
.

Then C (
∏

) = C1 (
∏

) if no aj(σ) = w
2

, = C1 (
∏

) ∩ C` (
∏

) ∩ Cr (
∏

) if some
aj(σ) = w

2
, K totally real, and sgn(

∏
) is defined, = ∅ otherwise.

L.9.4. Definition of δ±∗ (
∏

) , d± (
∏

). Let

d±
(∏)

=
1
2

∑
v∈PK,R

(
N ± tr

(
R
(∏

v

)
(j)
))

+
∑

v/∈PK,R
N.
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Let δ±∗ = d± (
∏

)
(

Σ
σ∈JT

σ

)
unless K is totally complex.

If K is totally complex, v ∈ PK , and σ ∈ JK determines v, let f(σ) be
the number of indices i (1 ≤ i ≤ N) such that ai(σ) < w− ai(σ), and define
a function F : JT × JK → Z by F (1, σ) = f(σ) and F (τ |T , τσ) = F (1, σ) for
all τ ∈ Gal(Q/Q). Finally put

δ±(π) =
∑
σ∈JT

F (σ, 1) · σ.

L.9.5. Galois forms. Let π be a cuspidal algebraic representation of
GLm(AK) such that σ(πv) has finite image for each v in PK . Such a π
is called of Galois type since L(π, s) is conjecturally an Artin L-function.
Let ωπ denote the central character of π.

Define επ : PK → N by

επ(v) = m if v complex

επ(v) =
1
2

(m+ tr(R(πv)(j))) if v is real.

L.9.6. Tensor product
∏⊗π. Let LS(

∏⊗π, s) denote the usual Rankin
product L-function of

∏
and π without Euler factors for v ∈ S, a finite set

of places including the infinite ones. Define

d±
(∏
⊗π
)

=
1
2

∑
v∈PK ,R

(
Nm ± trR(πv)(j) tr

(
R

(∏
v

)
(j)

))
+

∑
v/∈PK ,R

Nm

and define C (
∏⊗π) using the tensor product representations R ((

∏⊗π)v)
def= R (

∏
v)⊗R(πv) instead of R (

∏
v). As before, if some R (

∏
v) contains an

abelian representation, we must have ε(πv) = ±m, with a sign independent
of v, if C (

∏⊗π) 6= ∅. Let sgn(π) ∈ {±1} be this sign.

L.9.7. Conjugates. Let τ ∈ Aut(C). Then τ
∏
f is defined, where

∏
f

is the “finite part” of
∏

=
∏
∞⊗

∏
f . If

∏
is algebraic,

∏
f should be

definable over a finite extension of Q and we let T (
∏

) be fixed field of
H =

{
τ ∈ Gal(Q/Q) | τ ∏j

∼→ ∏
f

}
. Let L∗s (

∏
, s) be the T ⊗ C valued L-

function such that eτ (L∗s(π, s)) = Ls
(
τ
∏
f , s
)

where eτ : T ⊗ C → C is the
projector attached to τ ∈ JT . Similar remarks and definitions apply to the
formal product

∏
f ⊗πf , and we let now T be any number field containing

T (
∏

)T (π).

L.9.8. Conjecture. There exist quantities c±v (
∏

) ∈ (T (
∏

)⊗ C)∗ (v ∈ PK)
such that for all cuspidal π of GLm(AK) of Galois type, all k ∈ C (

∏
) ∩
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C (
∏⊗π), and any finite S containing PK ,

L∗S
(∏
⊗π, k

)
∼ b(δαsgn(π)

∗ )(1⊗ 2πi)kd
α(
∏
⊗π)Cα

επ

(∏)
C(δα∗ , wπ)

mod
(
T
(∏)

T (π)
)∗

where α = (−1)k and

Cα
επ

(∏)
=

 ∏
v∈PK,R

Cα
v

(∏)επ(v)

C−αv
(∏)m−ε(v)

×
 ∏
v/∈PK,R

Cα
v

(∏)m

.

H. CM Motives.

H.1. In this chapter, we employ a method of [CV] to derive special period
relations which obtain between periods of motives of CM type with respect
to T , i.e. dimT MB = 1. Some proofs are only sketched or omitted since
they are easy consequences of the methods of [CV] and the earlier results
of this paper. Let χ : K∗f → T ∗ be an (algebraic) Hecke character (cf.
[CV], 3.2). Recall that from χ, we construct a motive M = M(χ), over K
with coefficients in T , whose T linear isomorphism class depends only upon
χ and T . M(χ) is special if and only if, for all α ∈ K∗ ⊂ K∗f , putting

(∗) χ(α) =
∏
σ∈JK

σ(α)n(σ),

we have n(σ) 6= n(ρσ) for any σ ∈ JK . As in [CV], (5.1), we say
that χ is critical if k = 0 belongs to C(M). Assuming χ is critical, put
c±(χ) = c±(M), and L(χ, k) = L(M,T ; k). Here L(M,T ; s) is simply to
T ⊗ C valued series whose components are the Hecke L-series L(ηχ, s) for
η ∈ JT . Write L(χ) = L(χ, 0).

H.2. Assume that K is not totally real until H.5. Let KCM ⊆ K be the
maximal CM subfield. Define ψ ∈ IK by ψ(σ) = n(σ), with the n(σ) as
in H.1. Then ψ ∈ IKCM ⊆ IK . If χ is critical, then either ψ or 1 − ψ
(with 1(σ) = 1 for all σ ∈ JK) equals wΦ + µρ − µ where µ, Φ ∈ IKCM ,
Φ(σ) + Φ(ρσ) = 1, Φ(σ) ≥ 0 and µ(σ) ≥ 0 for all σ in JK , and µ(σ) = 0
unless Φ(σ) = 1. Let E be the field attached to the group HΦ ⊆ GQ, with
HΦ as in M.11. Then Φ∗ ∈ IE is defined. Let rΦ∗ : E∗f → K∗f be defined
by rΦ∗ = det(Φ∗). For η ∈ JE and τ ∈ GQ, let εηΦ(τ) ∈ {1,−1} be the
sign of the permutation of < 1, ρ > \JK obtained via the composition

〈1, ρ〉\JK ∼−→ |ηΦ| ∼−→ |τηΦ| ∼−→ 〈1, ρ〉\JK
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where | | denotes support. Note that εΦ : GE → {1,−1} is a character.
For η ∈ JT , let eΦ(η) = (−1)t(η) where t(η) is the number of elements in
|ρΦ| ∩ |ηΦ| ⊆ JK . Let χa : K∗f → T ∗f be the map defined by (∗).
H.3. The following result summarizes a basic construction of [CV].

Theorem. Let χ be a critical Hecke character of K whose values on K∗f
lie in T . Let N be a motive defined over E with coefficients in T attached
to the algebraic Hecke character χ ◦ rΦ∗ · εΦ. Then

a) there exists a collection {γ±η | η ∈ JE, 0 6= γ±η ∈ (ηN)B} such
that for all η ∈ JE, τ ∈ GQ, and k ∈ K∗f satisfying rK(k) = τ on Kab,

τ(If (γ±η )) = χa(k)−1χ(k)εηΦ(τ)eΦ(η)eΦ(τη)If (γ±τη)

this collection is uniquely characterized by this formula up to a change γ±η →
tγ±η for a t ∈ T ∗ which is independent of η ∈ JE and the choice of sign.

b) Put
γ± =

∑
η∈JE

γ±η

and define F ∗ = F s(RE/QN)DR where F s 6= (RE/QN)DR but
F s−1(RE/QN)DR = (RE/QN)DR. Then dimT (RE/QN)DR/F ∗ = 1, and
if I∗ : (RE/QN)B ⊗ C → ((RE/QN)DR/F ∗) ⊗ C denotes the map
constructed from I∞, we have, for 0 6= ω ∈ (RE/QN)DR/F ∗

I∗(γ±) ∼ c±(χ) · ω mod (T ∗).

Proof. The proof is given, in [CV], 4 and 5, for an analogous result for the
dual motive, {γ+

η | η ∈ JE}, and where K is a CM field. For the case
here, the construction of {γ−η | η ∈ JE} and c−(χ) follows by the same
method, if we use elements γσ − γρσ (σ ∈ JK) starting from (5.2.4)
of [CV]. For general K, the proof is the same as in [CV], but employs the
εηΦ where [CV] employed a simpler character ∼ ε of GQ.

H.4.

Proposition. Let M be a motive associated to the χ of Theorem H.3. Then

c+(χ) ∼ eΦ · c−(χ)

where eΦ = {eΦ(η) | η ∈ JE} ∈ E ⊗ Q ⊆ T ⊗ Q.

Proof. From the construction of the γη out of vectors γσ, σ ∈ JK , we see
at once that γ−η = eΦ(η)γ

+
η , and the result follows from H.3.
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H.5. Let C(χ) = C(M(χ)), the critical strip.

Corollary. For m,n ∈ C(χ),

(1 ⊗ 2πi)−mgL(χ,m) ∼ (1 ⊗ 2πi)−ngL(χ, n)e(m−n)
Φ ,

where g = 1
2
[K : Q], unless K is totally real, when g = [K : Q].

H.6. If K is totally real, let Φ ∈ IK be the regular representation. Let
εΦ : GQ → {1,−1} be defined by τD

1/2
F = εΦ(τ)D1/2

F . Let c(K,Φ) ∈
(T ⊗ Q)∗ satisfy τc(K,Φ)η = εηΦ(τ)c(K,Φ)τη for all τ ∈ GQ and η ∈ JT .

Proposition. Let 0 < η ∈ Z, and let χ be a critical Hecke character.
Then

c±(χn) ∼ c±(χ)nc(K,Φ)n−1 mod (T ∗).

Proof. Suppose that K is not totally real. If c±(χ) is defined via {γ±η |
η ∈ JE} and ω ∈ (RE/QN)DR/F ∗, as in Theorem H.3, then c±(χ)n is
defined using {γ±⊗nη | η ∈ JE} and ω⊗n on RE/QN

⊗n. On the other
hand, let Nn be the motive attached to χn as in Theorem H.3. Then Nn

is attached to the character χn ◦ rΦ∗ · εΦ, and c±(χn) is defined via a
system {γ±η (n) | η ∈ JE} and wn. The map sending γ±⊗nη to γ±η (n) is a
T -linear isomorphism λ± : RE/Q(Nn) × Q → RE/Q(Nn) × Q. Since
N⊗n is attached to the character χn ◦ rΦ∗ · εnΦ, λ(ω⊗n) ∼ c(K,Φ)n · ωn,
and the claim is proved. If K is totally real, the result is an elementary
calculation.

H.7.

Corollary. Let χ be a critical Hecke chracter and let 0 < n ∈ Z. Then

L(χn) ∼ L(χ)nc(K,Φ)n−1 mod (T ∗).

H.8.

Proposition. Let χ be a critical Hecke character of K. Suppose that L is
a finite extension of K for which χ ◦ NL/K is critical. Then

c±(χ ◦ NL/K) ∼ c±(χ)[L:K]c(Φ, πL/K)

with πL/K : GK → {1,−1} as in M.17.

Proof. The proposition just restates M.17, Corollary 3 and Corollary 6, since
these are the only possible cases. We use here that Φ = δ±∗ .
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See M.17., below Corollary 3, for a discussion of c(Φ, πL/K).

H.9.

Corollary. Let χ be a critical Hecke character of K, and assume that
Conjecture L.6.2 holds for M(χ) and M(χ ◦ NL/K), with a finite extension
L of K for which χ ◦ NL/K is critical. Then

L(χ ◦ NL/K) ∼ L(χ)[L:K]c(Φ, πL/K).

H.10. Now let L be a subfield of K such that χa ∈ IK lies in the image of
IL. Then:

i) If χ is critical, χ|L∗
f

is also critical.
ii) The following formula holds:

c±(χ) ∼ c±(χ|L∗
f
)c(K,Φ)c(L, φ) mod (T ∗).

Proof. If K is complex, then, we compute c±(χ) and c±(χ|L∗
f
) by means of

Theorem H.3. as periods of motives RE/Q(M(χ ◦ rΦ∗εΦ)) and RE/Q(M(χ ◦
rΦ∗ · εΦ|L)), respectively, where εΦ|L is the character obtained by regarding Φ
as an element of IL. The proof now concludes as in the proof of Proposition
H.6. If K is totally real, then the result follows easily from the identity
c±(χ) ∼ c±(χ ◦ trK/Q · πK/Q) with πK/Q as in M.17.

H.11.

Remark. Let KCM = L be the maximal CM subfield of K, in the case
where K is totally complex. Then c(KCM ,Φ) ∼ 1 ⊗ D

1/2
F mod (T ∗),

where F is the maximal real subfield of L. It is not hard to check that

c(K,Φ) ∼ (1 ⊗ D
1/2
F )[K:L]β mod (T ∗)

with β = {βη | η ∈ JT} and

βη =
∏
σ∈JF

βη(σ)

βη(σ) = det(βτi )1≤i≤[K:L],τ∈Sη,σ

for a basis β1, . . ., β[K:L] of K over L, and where

Sη,σ = {τ ∈ |ηΦ| such that τ |F = σ}

and is ordered by first imposing an order upon 〈1, ρ〉\JK , and ordering |ηΦ|
via its image in this set.
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H.12.

Theorem. Let χ be a critical Hecke character of a totally complex field K
with maximal CM subfield L. Let T be the field generated by the values of χ
on K∗f . Suppose that [K : L] > 1. Then Conjecture L.6.2 is true for M(χ)
if and only if

L(χ) ∼ L(χ|L∗
f
)(1 ⊗ D

1/2
F )([K:L]−1)β mod (T ∗)

with the notations introduced above.

Proof. The hypothesis ensures that L(χ|L∗
f
) ∈ (T ⊗ C)∗. Since Theorem

9.3.1 of [CV] establishes L.6.2 for χ|L∗
f
, the theorem follows from H.10 and

H.11.

H.13. It appears likely that the method of Harder ([H]) will establish H.12.
The paper [H] treats the case where [K : L] = 2.
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Note: Corollary 3 in Section M.17 was missing from the paper version. Also,
the references there to L.5.2 should be to L.6.2.


