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EMBEDDINGS INTO THE INTEGRAL OCTONIONS

Noam Elkies & Benedict H. Gross

To Olga Taussky-Todd in memoriam

Let O be the Q-algebra of Cayley’s octonions, with basis {1, e1, e2, . . . , e7}
and multiplication rules:

e2
i = −1 all i

(eiei+1)ei+3 = ei(ei+1ei+3) = −1 all i (mod 7).

Coxeter discovered a maximal order R in O, which is unique up to the action
of Aut(O), with the property that R/pR is an octonion algebra over Z/pZ
for all primes p. We review the construction of the order R, and some of its
properties, in §1.

In §2, we let K be an imaginary quadratic field, with ring of integers
A and discriminant D. We count the number of ring embeddings of A
into R, using the L-function L(ε, s) of the quadratic Dirichlet character
ε : (Z/DZ)∗−→{±1} associated to K.

Theorem 1. The number of embeddings of A into R is −252 · L(ε,−2).

We give two different proofs of this result. The first uses theta series
and Eisenstein series of half-integral weight. The second uses the theory of
Tamagawa measures, as developed by Siegel and Weil. From the formula
in Theorem 1, it follows that the number of embeddings of A into R lies
between 3 · |D|5/2 and 5 · |D|5/2.

In §3 we let K be a definite quaternion algebra over Q, and let A be a
maximal order in K. Let S be the finite set of primes which ramify in K;
thus p ∈ S if and only if K ⊗ Qp is a division algebra over Qp. Using the
theory of Tamagawa measures, we will prove the following.

Theorem 2. The number of embeddings of A into R is 504 ·∏p∈S(p2−1).

Our interest in octonions dates from a lecture that Serre gave at Harvard
on the subject, in the fall of 1990. The embedding problems which we study
are generalizations of the results of Hasse and Eichler (cf. [14, p. 92ff.]) on
the embeddings of rings of integers in imaginary quadratic fields into certain
orders in rational quaternion algebras. Since Olga loved the arithmetic of
quaternion algebras, we felt it was appropriate to dedicate this paper to her
memory.
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1. Coxeter’s order R.

Let M be the Z-order in O spanned by 1 and the ei. Then R/M ' (Z/2Z)4,
and a basis for R/M is given by [6], [4, p. 14]:

1
2
(1 + e1 + e2 + e4)

1
2
(1 + e1 + e3 + e7)(1.1)

1
2
(1 + e1 + e5 + e6)

1
2
(e1 + e2 + e3 + e5).

The anti-involution x 7→ x of O, defined by 1 = 1 and ei = −ei, stabilizes
the order R. The linear map Tr(x) = x+ x and the quadratic form N(x) =
x · x = x · x both take integral values on R, and any x in R satisfies a monic
quadratic polynomial over Z:

x2 − Tr(x) · x+ N(x) = 0.(1.2)

The bilinear form 〈x, y〉 = Tr(xy) is symmetric, even, and positive definite
on R. It is also unimodular, so the inner product space (R, 〈, 〉) over Z is
isomorphic to the E8-root lattice.

The group Γ = Aut(R) is finite, of order 12096 = 26 · 33 · 7, and is
isomorphic to Aut(R/2R) = G2(Z/2Z) under reduction mod 2 [4, p. 14].

2. Imaginary quadratic fields.

Let K be an imaginary quadratic field, of discriminant D < 0. Let A be the
ring of integers of K; then

A = Z · 1 + Z · D +
√
D

2
.(2.1)

Let ε : (Z/DZ)∗−→{±1} be the Dirichlet character associated to K. We
have ε(p) = +1 if and only if the prime p is split in A. The L-function

L(ε, s) =
∑
n≥1

(n,D)=1

ε(n) · n−s(2.2)

is absolutely convergent for Re(s) > 1, and extends to an entire function in
s, taking rational values at negative integers (cf. [3]). The function Λ(s) =
π−

s+1
2 Γ( s+1

2
)L(ε, s) satisfies the functional equation: Λ(1−s) = Λ(s) · |D| 12−s

[7, p. 71].
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Let #(A−→R) denote the number of ring embeddings of A into R. We
will give two proofs of the formula of Theorem 1:

#(A−→R) = −252 · L(ε,−2).(2.3)

The first is based on (2.1). To give an embedding f : A−→R we must
specify an x (=

√
D) in R which satisfies:

Tr(x) = 0

N(x) = −D(2.4)

x ≡ D (mod 2R).

Let L be the subgroup of elements x in Z + 2R which satisfy Tr(x) = 0.
We then have

#(A−→R) = #{x ∈ L : 〈x, x〉 = −2D}.(2.5)

The number on the right of (2.5) is the coefficient of q|D| in the theta function
of (L, 〈, 〉).

Since (R, 〈, 〉) is isomorphic to the E8-root lattice, we can identify the
lattice L. It is even, of rank 7 and determinant 213, and has index 26 in the
E7-root lattice. In fact, L = 2 · E∗7 . Hence the theta function

ΘL =
∑
λ

q〈λ,λ〉/2 =
∑
n≥0

anq
n(2.6)

is a modular form of weight 7
2

for the group Γ0(4). Since an = 0 unless
n ≡ 0, 3 (mod 4), ΘL lies in Kohnen’s subspace [11]. (More generally, if M
is any even lattice of rank n and discriminant 2 then n ≡ ±1 mod 8 and the
theta series of 2M∗ lies in Kohnen’s space of modular forms of weight n/2
[8].) For weight 7

2
, Kohnen’s subspace is one-dimensional, and spanned by

the Eisenstein series H3 introduced by Cohen [3, p. 273]. Since a0 = 1 for
ΘL, a comparison of Fourier coefficients yields:

a|D| = −252 · L(ε,−2).(2.7)

This completes the first proof of (2.3).
The second proof is based on the fact that the Q-algebra embeddings

K−→O are permuted transitively by the group G = Aut(O), and the stabi-
lizer of a fixed embedding is the subgroup H ' SU(K⊥) [10, §3]. The group
G is an inner twisting of the split group of type G2 over Q, and H is an
inner twisting of the quasi-split group SU3(K).
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Let

ϕp : G(Qp)/H(Qp)−→R(2.8)

be the characteristic function of the Qp-embeddings K⊗Qp−→O⊗Qp which
map A ⊗ Zp into R ⊗ Zp, and put ϕ∞ = 1 on G(R)/H(R). Let ϕ =

∏
ϕv

on the adelic coset space G(A)/H(A), and let dg and dh be the Tamagawa
measures on the groupG(A) andH(A) respectively. Then by [13, p. 670-671]
we have

#(A−→R) =
∫
G(A)/H(A)

ϕ(y)dy,(2.9)

with dy = dg/dh. Indeed, both G and H are simply-connected, so have
Tamagawa numbers equal to 1 ([15]), and by [9]:

G(A) = G(Q) ·
(
G(R)×

∏
G(Zp)

)
,(2.10)

so there is only one class.
We calculate the right hand side of (2.9) by first writing dy =

∏
dyv, then

calculating the local integrals. To obtain a decomposition dg =
∏
dgv and

dh =
∏
dhv of Tamagawa measures, we fix models of G and H over Z, given

by the maximal orders R and A. Then G has good reduction at all primes p,
and H has good reduction at all p6 |D. The base change H/A is isomorphic
to SL3. Let ωG and ωH be generators of the invariant differential forms of
top degree on G and H over Z. These are determined up to sign, and we
define [15, Ch. II]:

(2.11)

dgv = |ωG|v on G(Qv)

dhv = |ωH |v on H(Qv)

dyv = dgv/dhv on G(Qv)/H(Qv).

Then we have∫
G(A)/H(A)

ϕ(y)dy =
∫
G(R)/H(R)

dy∞ ·
∏
p

∫
G(Qp)/H(Qp)

ϕp(yp)dyp.(2.12)

Since G(Zp) acts transitively on embeddings A⊗ Zp−→R⊗ Zp, with sta-
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bilizer H(Zp) [15, p. 112], we find

∫
G(Qp)/H(Qp)

ϕp(yp)dyp =
∫
G(Zp)

dgp

/∫
H(Zp)

dhp

=
#G(Z/pZ)/pdimG

#H(Z/pZ)/pdimH

=
(1− p−6)(1− p−2)

(1− ε(p)p−3)(1− p−2)

=
(1− p−6)

(1− ε(p)p−3)
.

Hence ∏
p

∫
G(Qp)/H(Qp)

ϕp(yp)dyp = ζ(6)−1/L(ε, 3)−1.

The real integral is given by ([2, p. 122], [9, p. 269])

∫
G(R)/H(R)

dy∞ =
∫
G(R)

dg∞

/∫
H(R)

dh∞

=
(2π)8

5!

/
(2π)5

2!|D|5/2

=
(2π)3|D|5/2

22 · 3 · 5 .

But

ζ(6) =
(2π)6

26 · 33 · 5 · 7(2.13)

L(ε, 3) =
−(2π)3

22|D|5/2L(ε,−2).

The first identity is due to Euler, and the second follows from the func-
tional equation of L(ε, s). Combining (2.9) with (2.12, 2.13), we obtain
(2.3).

To estimate #(A−→R) it is better not to invoke the functional equation
of L(ε, s), and to use the formula

#(A−→R)
|D|5/2 =

126
π3

L(ε, 3).(2.14)



152 NOAM ELKIES & BENEDICT H. GROSS

For real s > 1,

L(ε, s) =
∏
p6 |D

(1− ε(p)p−s)−1

=
∏
p6 |D

(1 + ε(p)p−s + ε(p2)p−2s + . . . ),

with ε(pn) = ±1 ≤ 1. Hence the p term in the product is bounded above by

(1− p−s)−1 = (1 + p−s + p−2s + . . . ),

and

L(ε, s) ≤ ζ(s) ·
∏
p|D

(1− p−s).

But we also have

(1− ε(p)p−s)(1 + ε(p)p−s) = (1− p−2s)

for all p6 |D. Hence

(1− p−2s)−1

(1− ε(p)p−s)−1
≤ (1− p−s)−1,

and

ζ(2s)
∏
p|D(1− p−2s)
L(ε, s)

≤ ζ(s) ·
∏
p|D

(1− p−s).

This gives the upper and lower bounds:

ζ(2s)
ζ(s)

·
∏
p|D

(1 + p−s) ≤ L(ε, s) ≤ ζ(s)
∏
p|D

(1− p−s),

which imply the slightly cruder estimates:

ζ(2s)
ζ(s)

≤ L(ε, s) ≤ ζ(s).(2.15)

Taking s = 3 in (2.15), and using (2.14), we find

126
π3
· ζ(6)
ζ(3)

≤ #(A−→R)
|D|5/2 ≤ 126

π3
· ζ(3).(2.16)
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Since

3.4392 <
126
π3
· ζ(6)
ζ(3)

<
126
π3
· ζ(3) <4.8848,

this gives the estimate stated in the introduction.
We conclude this section with a short table of numerical values, taken from

[3, p. 284] and [5, p. 125]. These values can be computed independently
using the formula [16, p. 31]

L(ε,−2) = −D
2

3

D∑
a=1

ε(a)B3(a/D),(2.17)

where B3(x) = x(x − 1
2
)(x − 1) is the third Bernoulli polynomial. In seven

cases, namely −D = 3, 4, 7, 8, 11, 15, 23, the number of embeddings divides
the order 12096 = 26 · 33 · 7 of the finite group Γ = Aut(R); it turns out that
in each of these cases, Γ acts transitively on the embeddings. In particular
for D = −23 the action is transitive and free, as we show later, at the end
of §3.



154 NOAM ELKIES & BENEDICT H. GROSS

Table 2.18.

D #(A−→R) |D|−5/2#(A−→R)

−3 56 = 23 · 7 3.5924+

−4 126 = 2 · 32 · 7 3.9375

−7 576 = 26 · 32 4.4430+

−8 756 = 22 · 33 · 7 4.1763+

−11 1512 = 23 · 33 · 7 3.7676+

−15 4032 = 26 · 32 · 7 4.6269+

−19 5544 = 23 · 32 · 7 · 11 3.5232+

−20 7560 = 23 · 33 · 5 · 7 4.2262−

−23 12096 = 26 · 33 · 7 4.7678+

−24 11592 = 23 · 32 · 7 · 23 4.1080−

−31 24192 = 27 · 33 · 7 4.5213+

3. Definite quaternion algebras.

Now let K be a definite quaternion algebra over Q, and let A be a maximal
order in K. Let S be the set of primes which ramify in K, and put D =∏
p∈S p [14, Ch. III, §5].
The embeddings of Q-algebras K−→O are again permuted transitively

by G = Aut(O). In this case, the stabilizer of a fixed embedding is the
subgroup H ' K∗N=1 of elements of norm 1 in K∗, which acts on K⊥ by left
multiplication [10]. Over Q, this H is a long-root SL2 subgroup of G ' G2.
Defining ϕ =

∏
ϕv on G(A)/H(A) as in §2, we have [13, p. 670-671]

#(A−→R) =
∫
G(A)/H(A)

ϕ(y)dg/dh,(3.1)

where dg =
∏
dgv as in §2 and dh is Tamagawa measure on H(A).
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We obtain a local decomposition for dh by choosing a model for H over
Z (with good reduction at all primes p6 |D) corresponding to the order A:
H(Z) = A∗N=1. Let ωH be a generator of the invariant differentials of top
degree on H over Z, and define dhv = |ωH |v, dyv = dgv/dhv. Then∫

G(A)/H(A)

ϕ(y)dy =
∫
G(R)/H(R)

dy∞ ·
∏
p

∫
G(Qp)/H(Qp)

ϕp(yp)dyp.(3.2)

Again, G(Zp) acts transitively on the embeddings A ⊗ Zp−→R ⊗ Zp
[15, p. 112]. If p6 |D the stabilizer is H(Zp). If p|D the stabilizer is the
subgroup (1 + π(A ⊗ Zp))N=1 of index (p + 1) in H(Zp), where π ⊂ A ⊗ Zp
is a uniformizing element. Hence if p6 |D we have:∫

G(Qp)/H(Qp)

ϕp(yp)dyp =
∫
G(Zp)

dgp

/∫
H(Zp)

dhp

= (1− p−6)(1− p−2)

/
(1− p−2)(3.3)

= (1− p−6).

If p|D we have∫
G(Qp)/H(Qp)

ϕp(yp)dyp =
∫
G(Zp)

dgp

/
1

p+ 1
·
∫
H(Zp)

dhp

= (1− p−6)(1− p−2)

/
1

p+ 1
(1 + p−1)(3.4)

= (1− p−6)(p+ 1)(1− p−1).

Hence ∏
p

∫
G(Qp)/H(Qp)

ϕp(yp)dyp = ζ(6)−1 ·
∏
p|D

(p+ 1)(1− p−1)

= ζ(6)−1 ·
∏
p|D(p2 − 1)

D
.(3.5)

Over R, we find (cf. [9], [14, p. 54]).∫
G(R)/H(R)

dy∞ =
∫
G(R)

dg∞

/∫
H(R)

dh∞

=
(2π)8

5!

/
(2π)2

D
.(3.6)
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Hence

#(A−→R) = 504 ·
∏
p|D

(p2 − 1),(3.7)

as claimed in Theorem 2.
We illustrate Theorem 2 in a few special cases, using the results of Theo-

rem 1. From Table 2.18 we find that the number of x = i in R with i2 = −1
is 126, and the number of x = ρ in R with ρ3 = 1 but ρ 6= 1 is 56. For a
fixed i and given a ∈ {−1, 0, 1} we want to count the number Ni(a) of ρ with
〈i, ρ〉 = a. To do this we recall (see e.g. [1, Ch. V]) that the only invariants
in degree < 6 of the Weyl group of the E7 lattice are powers of the norm. It
follows that if P is any homogeneous polynomial of degree < 6 on E7 ⊗ R
whose average on the unit sphere vanishes then

∑
ρ P (ρ) = 0. Taking for

P suitable combinations of powers of the norm and of the linear functional
η 7→ 〈η, i〉, we obtain several linear equations in the Ni(a), which together
with

∑1
a=−1Ni(a) = 56 determine them uniquely (and, with more equations

than unknowns, provide another check on the computations):

Ni(−1) = 12, Ni(0) = 32, Ni(1) = 12

for each i. Hence the number of pairs (i, ρ) with 〈i, ρ〉 = 1 is 12 ·126 = 3 ·504.
This is the number of embeddings A−→R when D = 2, as in this case
A = Z+ Zi+ Zρ+ Ziρ with 〈i, ρ〉 = 1.

Similarly, the number of pairs (i, ρ) with 〈i, ρ〉 = 0 is 32 · 126 = 8 · 504.
This is the number of embeddings A−→R when D = 3, as in this case
A = Z+ Zρ+ Zi+ Ziρ with 〈i, ρ〉 = 0.

Finally, assume D = 7 and let A0 be the ring of integers in Q(
√−7).

Then A = A0 + A0i with i in A⊥0 ⊂ R. The lattice A⊥0 is even, of rank 6
and determinant 73. It is isomorphic to the lattice associated with the Klein
quartic (as described explicitly by Serre, see [12, 235-6]), and has 42 vectors
i with 〈i, i〉 = 2 [4, p. 3]. Hence #(A−→R) = 42 ·#(A0−→R) = 42 · 576 =
48 · 504, as claimed.

When D 6= 2, 3 the finite group Aut(R) acts freely on the embeddings
of the maximal order A into R. Since this finite group has order 12096 =
24 · 504, we obtain the formula:

#{(A−→R)/Aut(R)} =
∏
p|D(p2 − 1)

24
.(3.8)

In particular, when D = 5 there is a single orbit of embeddings, and when
D = 7 there are two orbits. When D = 2 (resp. D = 3) there is a single
orbit, with stabilizer a quaternion group of order 8 (resp. a cyclic group of
order 3).
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We can now also show that Γ = Aut(R) acts simply transitively on the
embeddings into R of the quadratic order of discriminant −23. Since the
number of such embeddings equals #Γ it is enough to show that any embed-
ding has trivial stabilizer. If some stabilizer were nontrivial, it would contain
an element of Γ of order 2, 3, or 7. But the fixed subrings of these auto-
morphisms are quaternion algebras with D = 2, 3 and quadratic orders with
D = −3,−7, and none of these contains an element of discriminant −23.
Similar considerations also yield the transitivity of Γ on embeddings of the
quadratic orders of the six remaining discriminants −3,−4,−7,−8,−11,−15
for which the number of embeddings, as given in Theorem 1 and tabulated
in Table 2.18, divides 12096 = #Γ.

4. Non-maximal orders.

The second proof of Theorem 1, using Tamagawa measures and the group
G = Aut(O), generalized to quaternion algebras. But the first proof, using
the results of Kohnen and Cohen on forms of weight 7

2
, also gives the number

of embeddings for non-maximal orders A of K = Q(
√
D). If A has discrimi-

nant ∆ = D · f2, then A = Z · 1 +Z · ∆+
√

∆
2

and the embeddings are counted
by the Fourier coefficient a|∆| of ΘL. By Cohen’s formula [3, p. 273]:

#(A−→R) = −252 · L∆(−2),(4.1)

where

L∆(s) = L(ε, s) ·
∑
d|f

µ(d) · ε(d) · d−s · σ1−2s(f/d)(4.2)

is the L-function introduced by Zagier [17, p. 130].
For example, if the conductor f of A is a prime p, then

#(A−→R) = −252 · L(ε,−2) · (1− ε(p) · p2 + p5).(4.3)

Can one also obtain these results on non-maximal orders by the method of
Tamagawa measures, and generalize them to non-maximal orders in definite
quaternion algebras?
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