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It is generally believed that a positive proportion of number fields (counted
according to increasing absolute value of the discriminant), have class num-
ber one. This conjecture, and the numerical data that has led to it, have
their origins in Gauss’ Disquisitiones Arithmaticae, where it was conjectured
that there are infinitely many quadratic fields with class number one, and
that exactly nine of these are complex. While the second half of this state-
ment was settled independently by Heegner [He] and Stark [St1], and was
reduced to a finite computation by Baker [Ba], the first half of it remains
an important open problem. In fact, it is not known whether there exist
infinitely many algebraic number fields with class number one. The modest
aim of this note is to suggest another naturally arising family of number fields
– namely the family of Hilbert class fields of imaginary quadratic fields – sus-
pected of harboring infinitely many class number one fields, and of showing
how this question is related to Gauss’ conjecture. This family is also a natu-
ral testing ground for a proposed heuristic “principle,” which in vague form
reads: The Hilbert class field of a number field with cyclic class group tends
to have class number one. We hope to test further and refine this admittedly
imprecise statement in the future.

Let K = K(0) be an algebraic number field with class number h. The
Hilbert class field of K, i.e. its maximal abelian unramified extension, has
degree h over K. A finite extension of K with class number one (if it exists)
must contain K(1) as a subfield. For i = 0, 1, 2, . . . , define K(i+1) to be
the Hilbert class field of K(i). Define an invariant `(K) called the “length
of the Hilbert class field tower of K” as follows: `(K) is the smallest non-
negative integer i such that K(i) = K(i+1), if such an integer exists, and is
∞ otherwise. The latter possibility is equivalent to the statement that every
finite extension of K has class number greater than one. In 1964, Golod and
Shafarevich [GS] proved that there exist number fields K with `(K) = ∞.
The Heegner-Stark-Baker result may be phrased as follows: there are only
nine complex quadratic fields K with `(K) = 0. We conjecture that there
are infinitely many complex quadratic fields K with `(K) = 1.
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The main results of the paper are: 1) with six exceptions, the complex
quadratic fields K with `(K) = 1 have cyclic class group; and 2) if there
are infinitely many complex quadratic fields K with even class number and
`(K) = 1, then Gauss’ conjecture is true. We also consider certain circum-
stances under which `(K) > 1 even though the class group of K is cyclic. It
is not clear whether our conjecture will eventually shed any light on Gauss’
conjecture, but the author hopes that it will broaden the methods of attack
(most notably by the addition of techniques from complex multiplication) on
the difficult problem of finding infinite families of number fields with small
class number.

This paper has been organized in two parts. In the first half, the main
results are proved, independent of any conjectures. In the second half, which
is mostly devoid of proofs, we gather together heuristic arguments, as well
as a small amount of numerical evidence, in support of the conjecture and
“principle” introduced above.

1. Main Results.

1.1. `(K) = 1.
We use the following notation throughout: For a number field K, ClK , hK ,

and dK are, respectively, its class group, class number, and discriminant. In
this section, K will always denote a complex quadratic field. We let tK be
the number of distinct prime divisors of dK . The focus of this section is to
explore the consequences of

Conjecture. Infinitely many K with tK = 1, as well as infinitely many K
with tK > 1, satisfy `(K) = 1.

Some preliminary numerical data concerning this conjecture is collected
at the end of the paper. Our main result can be summarized as follows.

Theorem 1. Suppose `(K) = 1. Then K is of one of the following types:
I . tK = 1, and ClK is a cyclic group (of odd order);
II . tK = 2, ClK is a cyclic group (of even order), and dK = d0d1 where d0

is the discriminant of a complex quadratic field with class number 1 and d1

is either 8 or a prime number equal to the discriminant of a real quadratic
field with class number 1.

III . tK = 3, dK is the product of three distinct integers, each of which is
the discriminant of a complex quadratic field with class number 1.

Let us say that K is of type I, II, or III, if it satisfies the corresponding
condition stated above. Note that by Heegner-Stark-Baker, there are only
finitely many fields of type III. In fact, the fields of type III with `(K) = 1
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all have class group of type (2, 2) and are listed in Yamamura [Ya1]: They
are the fields of discriminant −84, −132, −168, −228, −532, −627. The
following corollary shows that the above conjecture encompasses two better-
known ones.

Corollary 2.
1) If there are infinitely many K satisfying `(K) = 1, then there are

infinitely many K with cyclic class group.
2) If there are infinitely many K with tK > 1 and `(K) = 1, then there

exist infinitely many real quadratic fields of prime discriminant with class
number one.

Proof. 1) This is clear since the fields of type III are finite in number.
2) If `(K) = 1 and tK > 1, then K is of type II or III. There are finitely

many K of type III, therefore the assumption is that there exist infinitely
many K of type II. But if K is of type II, then dK = d0d1 where d0 is one of
the nine negative discriminants with class number one, and d1 is the (prime)
discriminant of a real quadratic field with class number one. This proves
2).

Remark. According to the Cohen-Lenstra heuristics [CL], 97.7 · · ·% of
the fields K with tK = 1 or 2 have cyclic class group, and 75.4 · · ·% of the
real quadratic fields of prime discriminant have class number one.

The proof of the Theorem is facilitated by the following two lemmas.

Lemma 3. Suppose `(K) = 1. Then every quadratic subfield of K(1)

other than K has class number 1.

Proof. If tK = 1, then the only quadratic subfield of K(1) is K, so we may
assume tK > 1. Suppose K0 is a quadratic subfield of K(1) distinct from K;
then L = KK0 is an intermediate subfield of K(1)/K, hence quadratic un-
ramified over K. Since L is a (2, 2)-extension of Q, there is a third quadratic
subfield K1 of L. Let h0, h1 be the class number of K0,K1, respectively. By
a classic result of Herglotz [H], the class number of L is given by

hL =
hh0h1

δ
,

where δ = 1 or 2. The Hilbert class field of L is an abelian unramified
extension of K(1) and is consequently K(1) itself since this field has class
number 1. Therefore, hL = h/2, so by Herglotz, h0h1 = δ/2. We see then
that δ = 2 and h0h1 = 1, proving the lemma.
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Lemma 4. Suppose `(K) = 1. Then the odd part of ClK is cyclic. If the
2-part of ClK is not cyclic, then dK is the product of discriminants of three
distinct complex quadratic fields with class number 1.

Proof. It is well known (see, Bond [Bo] or Nomura [No]) that if the class
group of K has non-cyclic p-part for an odd prime p, then p divides the class
number of the Hilbert p-class field of K. This is not always true for p = 2,
however: The fields of type III and `(K) = 1 listed above are examples.
Assume the class group of K has non-cyclic 2-part and that the Hilbert
class field of K has class number one. By genus theory, the discriminant
d of K is divisible by at least three primes. Write d = d1d2d3 where dj
(j = 1, 2, 3) is the discriminant of a quadratic field. Then Lj = K(

√
dj)

is an unramified quadratic extension of K for j = 1, 2, 3. It follows from
Lemma 3 that the six quadratic fields

Q
(√

dj
)
,Q(

√
dkdl), j, k, l ∈ {1, 2, 3}, k 6= l,

all have class number one. Therefore, Q(
√
dkdl) must be a real quadratic

field for k 6= l (otherwise, the class number of this field would be even).
Hence, d1, d2, d3 must have the same sign. Since d is negative, d1, d2, d3 must
all be negative. Therefore they are to be found in the list of nine negative
fundamental discriminants with class number one.

Proof of Theorem 1. Suppose `(K) = 1. If tK = 1, then by genus theory
and Lemma 4, ClK is cyclic of odd order, hence K is of type I. By the same
reasoning, if tK = 2, then ClK is cyclic of even order; we must have dK =
d0d1 where d0 is a negative prime discriminant, and d1 is a positive prime
discriminant. Furthermore, by Lemma 3, the quadratic fields of discriminant
d0 and d1 have class number 1, i.e. K is of type II. Finally, if tK ≥ 3, then
the 2-part of ClK is not cyclic, hence by Lemma 4, K is one of the finitely
many fields of type III.

As a final illustration of the uses of Herglotz’ formula, we give a short
proof of the following well-known result (see e.g. Bond [Bo]). For a prime
p, the Hilbert p-class field of K is the maximal p-extension K(1)

p contained
in K(1).

Proposition 5. Suppose the Hilbert 2-class field of K has odd class num-
ber. Then tK ≤ 3.

Proof. Suppose tK > 3. Write dK = d0d1d2d3 where the dj are fundamental
discriminants. Since the Hilbert 2-class field of K has odd class number, it
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is also the Hilbert 2-class field of the quadratic unramified extension L =
K(
√
d0). For a number field F , let h′F be the 2-part of the class number of

F . Then, by Herglotz,

h′L =
1
δ
h′Kh

′
Q(
√
d0)h

′
Q(
√
d1d2d3) =

1
2
h′K .

It follows that Q(
√
d1d2d3) has odd class number, a contradiction.

1.2. `(K) > 1.
As mentioned above, even though one expects that the fields of type I and

type II are each infinite in number, it is not even known whether there are
infinitely many complex quadratic fields with cyclic class group. (Indeed,
the author is not aware of a proof that there are infinitely many algebraic
number fields with cyclic class group.) It is not difficult to see that there
exist fields K of each type I, II and III, with `(K) > 1 (see e.g. the tables in
Yamamura [Y2]). One might ask whether there are infinitely many complex
quadratic fields K of type I (respectively, of type II) with `(K) > 1. As an
interesting special case of this question, consider fields of type I whose class
number is divisible by 3; for these fields, the parity of hK(1) is influenced by
the existence of certain quartic fields, as we now explain.

Proposition 6. Suppose K = Q(
√−p), where p ≡ 3 (mod 4) is a prime

number. There exists a quartic field of discriminant −p if and only if K
admits a cyclic cubic unramified extension whose class number is even.

Sketch of Proof. It is not difficult to show (see, e.g., Kondo [Ko]) that the
splitting field E of a quartic field F of discriminant −p is an S4-extension
of Q, unramified over K; since E/K has Galois group A4, it admits an
intermediate field N such that N/K is cyclic cubic (hence 3 divides hK) and
E/N is (2, 2), hence hN is even. Conversely, suppose there exits a cyclic
cubic extension N/K such that N has even class number. By Lemma 8,
the class group of N has 2-rank at least 2, hence, there is an unramified
extension E of K with absolute Galois group S4, proving the existence of
the quartic field F . See Serre [Se] for examples and a discussion of the
associated two-dimensional Galois representations.

There are six examples of this phenomenon for K = Q(
√−p) with p <

1000, namely p ∈ {283, 331, 491, 563, 643, 751}. In each of these cases, we
have 3|hK and hN is even (hence divisible by 4), where N is the unique un-
ramified cyclic cubic extension of K. The field N (1)

2 is a normal S4-extension
of Q and admits a quartic subfield with discriminant −p. It seems plausible,
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though it is probably difficult to prove, that there are infinitely many quar-
tic fields with prime discriminant −p; if, in addition, for infinitely many of
these primes, Q(

√−p) has cyclic class group, then there are infinitely many
type I fields with class field tower of length greater than one. This question
on quartic fields is also related to the question of the existence of infinitely
many non-isomorphic elliptic curves over Q with prime conductor.

As for fields of type II, one expects that there are infinitely many real
quadratic fields with prime discriminant and class number one which admit
unramified non-solvable extensions (see, for example, [Ya2] and its refer-
ences), hence infinitely many type II fields K with `(K) > 1.

2. Heuristics.

2.1. Cyclic class groups.
This section contains an informal discussion of some heuristic principles

and numerical data concerning class numbers, which provide some justifica-
tion for introducing the conjecture discussed in the first half of the paper.

We can identify at least three phenomena responsible for the existence of
number fields with large class number: (a) genus theory; (b) CM extensions;
(c) non-cyclic class groups. We give a brief explanation for each.

(a) If K/F is a Galois extension of prime degree p in which many primes
ramify, then the p-part of the class group ofK has large p-rank (e.g. Martinet
[Ma]), and therefore K has large class number.

(b) Stark [St2] has shown that CM fields tend to have large class number:
As K runs over totally complex quadratic extensions of a fixed totally real
field F , the “minus class number” hK/hF tends to infinity. In fact, under
either the Artin Conjecture or the Generalized Riemann Hypothesis, there
are only finitely many CM fields of given minus class number; see Odlyzko
[Od] where weaker unconditional statements are also proved.

(c) The mechanism behind large class numbers in (a) and (b) is ram-
ification, but sometimes class numbers are large as a result of non-cyclic
unramified extensions; for instance, if F is a number field satisfying the
Golod-Shafarevich criterion at p (namely, the p-rank of CF is large with re-
spect to the degree of F ), then the p-rank of ClK tends to infinity as K runs
over the unramified p-extensions of F [Ha2].

On the other hand, the only method known to the author for bounding
class numbers from above is that of discriminant bounds, which applies only
in a limited number of cases. In the face of the numerical data suggesting
that class number one is a common occurrence, but lacking an understanding
of the mechanisms behind it, one can gather together the known mechanisms
responsible for large class numbers and hypothesize that in their absence,
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class numbers tend to be small.
In an attempt to formulate a more precise statement, let us note that

sometimes a number field has large class number because one of its subfields
is under the influence of one of the phenomena (a), (b), or (c) discussed
above. To take this into account, for a number field K, define the “old class
field” K(1)

old of K as follows:

K
(1)
old =

⋃
K0⊂K

K
(1)
0 ,

i.e. K(1)
old is the composita of the Hilbert class fields of all proper subfields of

K. Clearly, we have K(1)
old ⊆ K(1). Define the “new class number” of K to

be hnew
K = [K(1) : K(1)

old].
Following Stark, we can formulate the following hypothesis: In a “generic”

family of non-CM number fields, ordered according to increasing absolute
value of discriminant, a positive proportion of the fields have new class num-
ber one. Of course, it is difficult to make the term “generic” more precise,
but, for instance, for the fields in question, normal subextensions of prime
index should have few ramifying primes (in order to avoid class number
contributions coming from genus theory).

Now we would like to suggest that one such “generic” family is that of
Hilbert class fields of number fields with cyclic class group. In other words,

(1) A positive proportion of number fields K

with cyclic ClK have `(K) = 1.

Some corroborating evidence for this heuristic principle is provided by

Lemma 7. If the p-class group of K is cyclic, then p does not divide the
class number of the Hilbert p-class field of K.

Proof. This well known fact can be proved as follows. If G is the Galois
group, over K, of the maximal unramified p-extension of K, then, by the
Burnside basis theorem, G is cyclic because its maximal abelian quotient
is isomorphic to ClK by class field theory. Since G is abelian, the Hilbert
p-class field of K is the maximal unramified p-extension of K, so it must
have class number prime to p.

The principle (1) is simplest to study and most effective when ClK has
prime order. Let us assume then that K is a number field with prime class
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number p. Then p does not divide hK(1) . Of course, some other prime q
might divide hK(1) , but this has strong consequences:

Lemma 8. Suppose L is a Galois extension of K of prime degree p, and
that q is a prime not dividing phK. If q divides hL, then qf divides hL, where
f is the order of q in (Z/pZ)×. Moreover, the q-rank of CL is divisible by f .

Proof. This follows easily from a study of the q-part of CL as Gal(L/K)-
module; see, e.g., Iwasawa [Iw].

Returning to our K with class number p, we see that hK(1) , if it is not
1, is a product of prime powers which are congruent to 1 modulo p, hence
tends to be quite a bit larger than p, especially for most large p. Moreover,
if q divides hK(1) and q 6≡ 1 (mod p), then ClK(1) not cyclic. This is very
significant because a principle of Lenstra [CL] asserts that when predict-
ing the proportion of number fields that have a given abelian group G2 as
their class group, one should weigh the group with the factor 1/|AutG|. In
particular, the components of class groups of number fields not under the
influence of genus theory tend to be cyclic. For example, primes q which are
primitive roots mod p are not very likely to divide hK(1) . These restrictions
on the shape of the class group of K(1) suggest that this field ought to have
an affinity for having class number 1. When K(1) has a non-trivial prime
factor q, then the residue class of q (mod p) is likely to be 1, since this
would maintain the possibility that ClK(1) is cyclic. In this case, we have
the following result, due to Honda [Ho].

Proposition 9 (Honda). Suppose hK = p is prime, and K(1) has cyclic
class group. If hK(2) > 1, then ClK(2) is the direct sum of p copies of an
abelian group.

In summary, a large positive density of number fields K with prime class
number should satisfy `(K) = 1, with most of the others satisfying `(K) = 2.

For number fields with cyclic class group of composite cardinality, one
would still expect that the class number of the Hilbert class field is often
one. Take any prime p dividing hK and consider the abelian unramified
extension K(1)/K(1)

p , where K(1)
p is the Hilbert p-class field of K. Since p

does not divide the class number of K(1)
p , Lemma 8 and the Lenstra heuristic

imply that hK(1) tends to be prime to p. The possibility exists that for a
different prime q dividing hK , the power of q in the class number grows in
going from K to K(1)

p , but this also figures to be a relatively rare occurence,
because it transfers to the extension K(1)/K(1)

q , where the class number of
the base field and the degree of the extension are prime to q, so Lemma 8
applies.
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2.2. Real quadratic fields.
There are examples where the heuristic principle (1) reduces to other,

more tested and better established, ones. Consider, for instance, real quadratic
fiels K of discriminant 5p1, where p1 ≡ 13, 17 (mod 20) is a prime. It is easy
to see that the 2-class group of K has order 2 (since p1 is a non-residue
mod 5), and, by [CL], one expects infinitely many of these K to have trivial
odd-class group. For those K, we have K(1) = Q(

√
5,
√
p1); by Lemma 7,

K(1) has odd class number, hence by Herglotz, hK(1) = hQ(
√

5)hQ(
√
p1). Thus,

`(K) = 1 if and only if hQ(
√
p1) = 1, which we expect to happen infinitely

often, again, by [CL]. More generally, the Cohen-Lenstra heuristic (which
incidentally fits very well with the best available numerical data) predicts
that a large positive density of real quadratic fields of class number 2 have
Hilbert class field tower of length 1.

2.3. Complex quadratic fields.
Now suppose K is complex quadratic and L is an unramified extension

of K of odd prime degree p. Then L is a dihedral extension of Q; it has
a subfield of index 2, call it F , which has a unique real place, and is a
non-Galois degree p extension of Q.

Lemma 10. With L,K,F as above, we have hL = h2
FhKa/p, where a is

either 1 or p. If the p-part of ClK is cyclic, then a = 1.

Proof. The first statement is from Moser [Mo, Theorem IV.1]. If the p-part
of ClK is cyclic, then it follows from Lemma 7 that the p-part of the class
number of L is hK/p. Therefore, a cannot be equal to p.

In particular, if K is complex quadratic with prime class number hK = p,
then hK(1) = h2

F where F is a maximal real subfield of K(1). Since F has
no proper subfields, its class number is its new class number, and F is not
CM, of course. Furthermore, p does not divide hK(1) nor hF . The Stark
principle, then, suggests that hF and hK(1) are 1 frequently. Note also that
Stark’s principle suggests that complex quadratic K with `(K) = 1 do not
have CM subfields of large degree, which, by genus theory, translates into
the condition that the 2-class group ought to be cyclic; this was confirmed
in Theorem 1.

Lastly, let us consider some numerical data regarding complex quadratic
fields. Much useful data (some of it conditional upon the Generalized Rie-
mann Hypothesis) about the maximal unramified extension of complex qua-
dratic fields of discriminant −d with 0 < d < 1000 is compiled in Yamamura
[Ya2]. In this range, there are 239 fields with cyclic class group. These
can be partitioned into 3 sets: There are 89 fields of type I, 109 fields of
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type II, and 41 remaining fields of neither type. The latter 41 fields K have
`(K) > 1 by Theorem 1. Of the 89 fields of type I, exactly 6 have `(K) > 1
(they are the fields that admit unramified A4-extensions; we met them in
Section 1.2). Finally, all but one (d = 731 = 17 · 43) of the 109 fields of type
II have `(K) = 1. Overall, 48 (approximately 20%) of the 239 fields with
cyclic class group have `(K) > 1. Moreover, for K of discriminant −d with
0 < d < 15000 and odd prime class number ≤ 19, the 2-part of the class
number of K(1) is trivial with four exceptions (three we met in Section 1.2,
and d = 14947). This was checked using elliptic units in [Ha1].
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