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THE RATE OF GROWTH OF THE NUMBER OF PRIME
ALTERNATING LINKS AND TANGLES

Carl Sundberg and Morwen Thistlethwaite

When introduced to the subject of knot theory, it is natu-
ral to ask how the number of knots and links grows in relation
to crossing number. The purpose of this article is to address
this question for the class of prime alternating links; in partic-
ular, the exact value of limn→∞(An)

1
n is obtained, where An is

the number of n-crossing, prime, unoriented, alternating link
types. This result follows from a detailed investigation of the
sequence (an), where an is the number of strong equivalence
classes of prime, alternating tangle types with n crossings (a
tangle equivalence is strong if it fixes the boundary of the
ambient ball of the tangle pointwise). The generating func-
tion

∑
anz

n is shown to satisfy a certain functional equation;
a study of the analytic properties of this equation yields an
asymptotic formula for an, and a study of its algebraic prop-
erties yields a practical method for calculating an exactly up
to several hundred crossings.

Introduction.

Throughout this paper, the symbol ∼ is to be interpreted as follows:

f(n) ∼ g(n) means lim
n→∞

f(n)
g(n)

= 1.

Theorem 1. Let an denote the number of prime, alternating tangle types
with n crossings. Then

an ∼ 3 c1
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and

λ =
101 +

√
21001

40
= 6.1479304437 ..... .

Theorem 2. Let An denote the number of prime, alternating link types
with n crossings. Then

an−1

8(2n− 3)
≤ An ≤ an−1

2
(n ≥ 3), and lim

n→∞(An)
1
n =

101 +
√

21001
40

.

(2)

Remarks.
1. The generating function w =

∑
anz

n is a root of an irreducible quintic
polynomial whose coefficients are polynomials in z . The inverse function to
w has a radical expression over the polynomial ring Z[z] ; this expression
was used to compute an exactly for n ≤ 250 . In conjunction with the first
part of Theorem 2, reasonably close bounds are then obtained on the number
of alternating link types for n ≤ 251 . Details of the computation of an are
given in §5.
2. The constant c1 is the first order coefficient of a certain Taylor series
defined in §4.
3. It follows immediately from Theorem 1 that limn→∞

an+1

an
= λ .

4. The first proof that the number of n-crossing links grows exponentially
with increasing n is in [ES]. Also, in [W], results of [Tu] on the enumeration
of planar maps are used to obtain an upper bound on this rate of growth.

Our methods are based on the study of generating functions, and stem
from the following sources: (i) J.H. Conway’s approach to the enumeration of
links, in particular his concepts of “algebraic tangle” and “basic polyhedron”
[C]; (ii) Darboux’s method for obtaining asymptotic information on the
coefficients of a power series, from knowledge of the nature of singularities
of the power series; (iii) the solution of the Tait conjecture [MT]; (iv) W.
Tutte’s determination of the number of rooted c-nets [Tu].

The paper is set out as follows.

§1. Topological background.
§2. Enumeration of tangles.
§3. Proof of Theorem 2.
§4. Proof of Theorem 1.
§5. The computation of an.
§6. Reduced tangle diagrams.
§7. Non-alternating links.
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1. Topological background.

Definition. A tangle is a pair (B, T ) , where B is the standard 3-ball
{(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} and T is a proper, tame 1-submanifold of
B meeting ∂B in the four points P = ( 1√

2
, 1√

2
, 0) , Q = (− 1√

2
, 1√

2
, 0) , R =

(− 1√
2
,− 1√

2
, 0) , S = ( 1√

2
,− 1√

2
, 0) , called the ends of T .

Figure 1.

Let ∆ be the equatorial disk of B , i.e. ∆ = {(x, y, z) ∈ B : z = 0} .
We shall take a diagram of a tangle T to be a regular projection of T in
∆ , together with an overcrossing-undercrossing structure. As is customary,
undercrossings are indicated pictorially by small gaps, as in Figure 1. When
we wish to forget the overcrossing-undercrossing structure, we shall refer to
the underlying projection of D .

Throughout this paper, the term tangle type will signify an equivalence
class of tangles under the following strong equivalence relation:
Definition. Tangles (B, T1) , (B, T2) are equivalent if there exists a home-
omorphism h : (B, T1) → (B, T2) , orientation-preserving on B , such that
h is the identity on ∂B .

On occasion, we shall also refer to the following weaker equivalence rela-
tion:
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Definition. Tangles (B, T1) , (B, T2) are weakly equivalent if there exists
a homeomorphism h : (B, T1)→ (B, T2) which is orientation-preserving on
B .

For example, the three tangles illustrated in Fig. 2 are inequivalent, al-
though they are weakly equivalent.

Figure 2.

Definition. A tangle (B, T ) is rational if it is weakly equivalent to one
of the (trivial) tangles (B, T1) , (B, T2) , where T1 consists of the two line
segments joining Q to P , R to S respectively, and T2 consists of the two
line segments joining Q to R , P to S respectively.

Figure 3. Examples of rational tangles.

As indicated by the title, we are concerned with tangles admitting al-
ternating diagrams. To avoid repetition, we shall assume henceforth that
each alternating tangle diagram D satisfies the condition that the edge of
D with one end at P has its other end at an overpass. This convention
dictates that the edge with one end at R is also incident to an overpass,
and that the edges ending at Q,S are incident to underpasses. Moreover,
we shall only consider diagrams which are prime according to the following
definition.
Definition. A tangle diagram D in a disk ∆ is prime if:
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(i) The underlying projection of D is a connected subset of the disk ∆ ;
(ii) if C is a circle in the plane meeting D transversely in two points, then
these points belong to the same edge of D (i.e. “diagrammatic connected
summands” are not allowed).

If a tangle T admits a prime, alternating tangle diagram, the results of
[M] guarantee the following topological constraints on the pair (B, T ) ;

(i) if S is a 2-sphere in B \ T , then the 3-ball in B bounded by S does not
meet T ;
(ii) if a 2-sphere S in B meets T transversely in two points, then the 3-ball
in B bounded by S meets T in an unknotted arc.

From (i), the tangle T cannot be separated by a 2-sphere in B . Also,
from (ii), T can be separated by a properly embedded disk in B if and only
if T is a rational tangle.

Henceforth, it will be assumed that all tangle diagrams conform to the
above requirements.

At this point, we need to consider the circumstances under which two
prime, alternating tangle diagrams can represent equivalent tangles.

Let D be a diagram of a tangle T , and let B′ be the closure of the
complement in S3 of the ball B containing the tangle T . We may view
B′ as a rigid vertex attached to the tangle T ; thus we have associated in a
natural way a diagram of a rigid-vertex graph to the original diagram D .
Since a homeomorphism exhibiting a tangle equivalence fixes pointwise the
boundary of B , the type of the resulting rigid-vertex graph depends only
on the type of the tangle T . From the solution of the Tait conjecture [MT],
any two alternating diagrams representing the equivalence class of this rigid-
vertex graph must be related via a sequence of flypes. Hence the same is
true for any two alternating diagrams representing the tangle T .

Thus we have established that the solution to the Tait flyping conjecture
applies equally well to tangle diagrams, though of course the argument of the
previous paragraph relied on the fact that equivalences between tangles are
of the strong variety. Indeed, it is false that any two alternating diagrams of
weakly equivalent tangles are related by a sequence of flypes, as evidenced
by the example of Figure 2. The classification of alternating tangles under
weak equivalence is feasible, however, and will be undertaken in a separate
article.

2. Enumeration of tangles.

Let (cn) be a sequence of real numbers. The generating function for the
sequence (cn) is the power series γ =

∑
cnz

n . We may regard γ as a
formal power series, but often it will be profitable to regard z as a complex
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variable, and γ as a function of z . We can then invoke techniques of analysis
to obtain information on the asymptotic behavior of the coefficients cn .

The generating function of primary concern in this paper is

w =
∑

anz
n,

where an is the number of n-crossing prime, alternating tangle types. The
purpose of this section is to establish a functional identity satisfied by w . To
this end, we shall describe a recursive procedure for constructing alternating
tangles, based on an extension of the Conway scheme [C]. The reader famil-
iar with Conway’s paper [C] will recall that Conway generates diagrams of
links using two ingredients, namely basic polyhedra and algebraic tangle dia-
grams. A basic polyhedron is a 4-valent planar map (i.e. graph embedded in
R2 ), with no two-sided complementary region. Diagrams are then obtained
by substituting algebraic tangle diagrams for each vertex of the basic polyhe-
dron. The power of this method for alternating links of low crossing-number
resides in the fact that all flypes occur within the substituent algebraic tan-
gle diagrams. Our approach is essentially the same, but in order to obtain
a recursive scheme which is canonical, and which works well with respect to
flyping in full generality, we need to refine the definitions slightly.
Definition. A tangle diagram D is the horizontal tangle sum of tangle
diagrams A , B if D conforms to Figure 4(i), and D is the vertical tangle
sum of A , B if D conforms to Figure 4(ii).

(i) (ii)

Figure 4.

Recall from [C] that algebraic tangle diagrams are precisely those obtained
recursively from the 1-crossing diagram by means of horizontal and/or
vertical tangle sums.

Thus, for example, the tangle diagrams illustrated in Figure 2 are alge-
braic, and the tangle diagram of Figure 1 is not algebraic. Any tangle which
admits an algebraic diagram is algebraic in the sense of [BS]. The converse
fails for alternating diagrams, but a characterization of those alternating
tangle diagrams which represent algebraic tangles (in the sense of [BS]) is
given in [Th].
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In order to describe a recursive procedure for generating arbitrary tangle
diagrams, we shall use the notion of a template, which is a “generalized dia-
gram” obtained from a tangle diagram D by selecting some subset of the set
of crossings of D , and replacing each crossing from this subset with a small
disk called a slot. The motivation behind this is that we can manufacture
a tangle diagram D from a template τ by inserting a tangle diagram into
each slot of τ (see Fig. 5).

Definition.
(i) If a template τ is obtained by replacing some or all of the crossings of a
diagram D by slots, we say that τ is derived from D .
(ii) If a tangle diagram D is obtained by inserting tangle diagrams into the
slots of a template τ , we say that D is associated with τ .

Note that the concepts “horizontal or vertical tangle sum” and “flype”
extend naturally to templates.

We shall need to consider two particular kinds of template.
Definition.
(i) An algebraic template is a template derived from an algebraic tangle
diagram. In particular, an algebraic tangle diagram may be regarded as an
algebraic template where the number of slots is zero.
(ii) The algebraic template with one slot and no crossing will be called the
trivial algebraic template.
Definition. A basic polyhedral template is a template τ satisfying the
following conditions:
(i) τ has no crossing;

(ii) τ has more than one slot;
(iii) τ contains no “Conway circle”, i.e. if a circle in the plane meets τ

transversely in four distinct edges of τ , then either these four edges
are all incident to some slot of τ , or else they are incident to the four
ends of τ ;

(iv) τ cannot be decomposed as a non-trivial sum of two templates.
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Algebraic templates Basic polyhedral templates

Figure 6.

We digress for a moment to point out an important bijective correspon-
dence between basic polyhedral templates and rooted c-nets, i.e. 3-connected
rooted planar maps without multiple joins [Tu]. Given a basic polyhedral
template τ in a disk ∆ , in similar spirit to the construction relating to the
function ψ in §3, we may form a 4-valent planar map M by connecting a
vertex in R2 \∆ to τ by four arcs, as in Figure 7(i). We regard this extra
vertex as being a distinguished vertex of the map M . Next, we may shade
the regions of M alternately black and white, in checkerboard fashion, so
that the region adjacent to the NW and NE ends of τ are colored black.
We can then construct a new planar map N by the medial construction as
illustrated in Figure 7(ii); the vertices of N correspond to the white regions
of M , and the edges of N correspond to the vertices of M . In particular,
N has one distinguished edge, the root of N , passing through the distin-
guished vertex of M . It is easily verified that N is a rooted c-net, and that
the assignment of N to τ is indeed a bijective correspondence between the
set of basic polyhedral templates and that of rooted c-nets.

(i) (ii)

Figure 7.

The results of this paper depend in an essential way on Tutte’s determi-
nation of the rooted c-net generating function, denoted C(z) in [Tu]. Let
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q be the generating function for basic polyhedral templates with n slots.
Since a rooted c-net with n + 1 edges corresponds to a basic polyhedral
template with n slots, the functions q , C are related by z q(z) = C(z) .

We shall use the following closed formula for q , which apparently was not
previously known:

q(z) =
1

2 (z + 2)3

(
(1− 4z)

3
2 + (2z2 − 10z − 1)

)
− 2

1 + z
− z + 2.(3)

In [Tu] a recursive formula is given for the number of rooted c-nets with
n edges; however, the closed formula (3) may be obtained by algebraic
manipulation of expressions in Tutte’s paper. On p. 263 of [Tu], on the
sixth line after (8.8), the following equations are given:

η = −y (3 + η)2

3 + 2η
, 27u = −η (3 + η)2.

From the first of these equations, η can be expressed in terms of y by
solving a quadratic equation. If this expression for η is substituted into
the second equation, u is obtained as a function of y . Four lines further
down it is stated that x is the same function of z as u is of y ; therefore
the variable x may be eliminated from (8.8), yielding a closed formula for
C(z) .

Our definition of “basic polyhedral template” corresponds closely to Con-
way’s definition of “basic polyhedron”; apart from the fact that here we are
working in the category of tangles rather than links, the only difference is
that we have altered the definition slightly so as to exclude Conway circles.
Thus, for example, we would not consider the Conway basic polyhedron
10*** [C] to be “basic”, but rather we would consider that it had been
obtained by substituting a 5-crossing tangle into a vertex of 6*.

We need to single out those tangle diagrams which are associated with
basic polyhedral templates.

Definition. A tangle diagram D is of type I if it is associated with a basic
polyhedral template; otherwise it is of type II.

There is a sense in which algebraic and basic polyhedral templates are
complementary. It follows from the definitions that any tangle diagram D
of type II is associated with a non-trivial algebraic template. This algebraic
template might not be unique, as the set of algebraic templates is closed
under the operation of substitution; however, D is associated with a unique
maximal algebraic template, which is characterized by the property that all
substituent tangle diagrams of the template are of type I.
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On the other hand, the absence of Conway circles in a basic polyhedral
template implies that any type I tangle is associated with just one basic
polyhedral template.

It follows from this discussion that each tangle diagram has a unique
“hierarchy”, in the sense that there is a unique way of building it recur-
sively from algebraic and basic polyhedral templates, if we impose the single
restriction that any substituent of an algebraic template must be of type
I. Furthermore, any flype of a tangle diagram arises from a flype of some
algebraic template in the hierarchy; therefore, once we have successfully enu-
merated flype-equivalence classes of algebraic templates, we no longer have
to consider flypes in the enumeration of alternating tangle types.

Having defined the recursive procedure for generating tangles, we now
turn to enumeration of tangles. The following example illustrates a principle
often used in the computation of generating functions.

Let us consider for a moment a basic polyhedral template with k slots,
say. Let these slots be labelled σ1 , ... , σk , in some arbitrary fixed order.
Suppose we wish to manufacture from this template a tangle diagram with
n crossings, where n ≥ k . Thus we insert into each slot σi a tangle diagram
with ni crossings, the numbers ni being chosen so that

∑
ni = n . If ar is

the number of tangles with r crossings, then the total number of n-crossing
tangles obtainable from this template is∑

an1an2 ...ank

where the sum is taken over all k-tuples n1, ..., nk such that
∑
ni = n .

Therefore, if

w =
∞∑
r=1

arz
r

is the generating function for the number of alternating tangles, this template
yields a contribution to an which is equal to the coefficient of zn in the
formal product wk .

Similarly, if τ is an algebraic template with k slots and ` free crossings,
then the contribution to an from τ is z`uk , where u is the generating
function for the number of type I tangles.

Let us use this principle to compute the generating function for flype-
equivalence classes of algebraic templates. Since an algebraic template has
two attributes, namely the number of crossings and the number of slots, this
generating function will be a function of two variables. Specifically, we shall
denote the generating function as

α(z, ζ) =
∞∑
m=1

∞∑
n=1

amnz
mζn
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where amn is the number of flype-equivalence classes of algebraic templates
with m crossings and n slots.

Proposition 2.1.

α(z, ζ) =
1
2

(1 + z − ζ)−
√

(1− z + ζ)2 − 8
1− z (z2 − zζ + ζ)

 .(4)

Proof. Let γ(z, ζ) =
∑∑

gmnz
mζn be the generating function for the set

consisting of (i) flype-equivalence classes of algebraic templates which are
decomposable as a non-trivial horizontal tangle sum, together with (ii) the
trivial algebraic template. Since there is an obvious bijective correspondence
between templates decomposable as a horizontal sum and those decompos-
able as a vertical sum, we have the identity

α(z, ζ) = 2γ(z, ζ) + z − ζ.(5)

(i) (ii)

Figure 8.

Now consider an algebraic template τ with m crossings and n slots,
decomposable as a horizontal tangle sum. If τ should have a summand
with just one crossing, then by flyping we may assume that this summand
is situated at the extreme right of τ (Fig. 8(i)). Thus τ is the sum of
an arbitrary algebraic template with m − 1 crossings and n slots with a
1-crossing tangle diagram. Thus the contribution given to gmn by this type
of diagram is precisely am−1,n , i.e. the coefficient of zn in zα = z(2γ+z−ζ) .
If, on the other hand, τ does not have a summand with a single crossing,
then τ is a horizontal sum of k tangles where k is some integer ≥ 2
and each summand is either a vertically decomposable tangle or a trivial
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algebraic template (Fig. 8(ii)). The contribution given to gmn by this type
of diagram is equal to the coefficient of zmζn in

γ2 + γ3 + γ4 + ... =
γ2

1− γ .

Therefore γ satisfies the identity

γ = z(2γ + z − ζ) +
γ2

1− γ + ζ

or

2γ2 − (1− z + ζ) γ +
z2

1− z + ζ = 0.

γ is now obtained by application of the quadratic formula, the choice of
solution being determined by the condition γ(0, 0) = 0 . The formula for
the generating function α now follows from (5).

Continuing the general discussion, let T denote the set of all alternating
tangle types, and let U denote the subset of T consisting of equivalence
classes of alternating tangles of type I.

Let w denote the generating function for T , and let u denote the gen-
erating function for U .

Since any tangle is obtained by inserting a type I tangle into each slot of
an algebraic template, we obtain

w(z) = α(z, u(z)).

Also, since any type I tangle is obtained by inserting an arbitrary tangle
into the slots of a basic polyhedral template, we obtain

u(z) = q(w(z)),

where q is the basic polyhedral template generating function (3). Combining
these gives the following functional identity for w(z) :

w(z) = α(z, q(w(z))).(6)

Formulae (3) and (4) yield an explicit expression, involving radicals, for
the right-hand side of (6). In §5 it is explained how to exploit this so as to
expand w as a power series in z .
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3. Proof of Theorem 2.

The main concern of this section is the proof of the first part of Theorem 2;
the second part then follows easily, using Theorem 1.

First, we must set up a suitable mapping from the set of n-crossing al-
ternating tangles to the set of (n + 1)-crossing alternating links. In similar
spirit to the rigid-vertex construction used in the previous section, we may
obtain from each prime, alternating tangle diagram with n crossings a link
diagram by adjoining a single crossing, as in Figure 9(i). The resulting
(n + 1)-crossing link diagram will also be prime, and it will be alternating
if and only if the correct strand of this extra crossing is chosen to be the
overcrossing.

Conversely, we may start with a prime, alternating link diagram D with
n+1 crossings, and produce an n-crossing prime, alternating tangle diagram
by selecting any one of the n+1 crossings of D and deleting a neighborhood
of it. In this process, a further choice is needed, namely a choice of any
one of the eight “cyclic” bijections between the set of four edges incident
to the crossing and the set of tangle ends {P,Q,R, S} , corresponding to
the elements of the dihedral group of a square. If necessary, we reflect
the resulting tangle diagram in the projection plane so as to keep to the
convention that the arc with one end at P is incident to an overpass.

(i) (ii)

Figure 9.

Since the action of attaching the extra crossing is canonical, this action
defines a function, ψ say, from the set of n-crossing prime, alternating tangle
types to the set of (n + 1)-crossing prime, alternating link types. We note
that ψ−1(L) is small in relation to n if and only if all alternating diagrams
of L are highly symmetrical; excluding the Hopf link, the extreme case is
that of a (2, n)-torus link (n ≥ 3) , which yields two tangle types under the
operation ψ−1 (Fig. 9(ii)). Indeed, the Hopf link yields only one tangle
type, and we shall exclude the Hopf link from further discussion.
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Our aim is to obtain an upper bound for the cardinality of ψ−1(L) . We
need to examine the equivalence class of D under flyping, as different dia-
grams in this equivalence class might yield different sets of tangles. Let L
be an alternating link, and let D be an alternating diagram representing
L .
Definition. A flyping circuit C of D is a maximal decomposition of D
into a number k ≥ 2 of non-trivial tangle summands D1 , D2 , ..... , Dk , in-
terspersed with crossings called active crossings of C , as indicated in Figure
10(i). It is required that a flyping circuit should contain at least one active
crossing overall. The number k is called the weight of the flyping circuit
C .
Observation. A crossing of D cannot be an active crossing of more than
one flyping circuit of D .

(i) (ii)

Figure 10.

The operation of flyping allows the active crossings to be distributed arbi-
trarily amongst the “gaps” between the tangle diagrams Di , but any flype
of D preserves the cyclic arrangement of the Di in the flyping circuit (of
course, there may be flypes taking place internally within the Di ). If the
gap between Di and Di+1 contains active crossings ν1, ν2 , then the tangles
obtained from ν1, ν2 are equivalent. However, if ν1, ν2 belong to different
gaps, then ν1, ν2 will in general produce inequivalent tangles. If ν1, ν2

belong to a sequence of crossings as in Fig. 10(ii), corresponding to a degen-
erate version of a flyping circuit, then none of the crossings in the sequence is
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active, and of course ν1, ν2 will also produce equivalent tangles. Let us call
such a sequence of crossings an inactive twist of D . We allow the possibility
that an inactive twist might contain just one crossing.

Examples.
(i) The link diagram at the right of Figure 9(i) contains one active crossing
(the leftmost crossing), and two inactive twists each with three crossings.
The active crossing belongs to a flyping circuit of weight 2.
(ii) If the function ψ is applied to the tangle diagram of Figure 1, the
resulting link diagram has one active crossing (originally adjacent to the
end S ), two inactive twists each containing two crossings, and four inactive
twists each containing one crossing.
Definition. The weight of a link diagram D is γ(D) = κ(D) + µ(D) ,
where κ(D) is the sum of the weights of the flyping circuits of D , and µ(D)
is the number of inactive twists of D .

From the above discussion, we have the following result concerning the
function ψ:

Proposition 3.1. Let L be a prime, alternating link type represented by
a prime, alternating diagram D . Then |ψ−1(L)| ≤ 8 γ(D) .

The next stage in the proof of Theorem 2 is to obtain an upper bound on
γ(D) . First, we need to extend the notion of a flyping circuit to the case
where D is a tangle diagram. Let D be the rigid-vertex graph diagram ob-
tained by attaching a 4-valent rigid vertex to the ends of D , as in Fig. 7(i).
The concepts of flyping circuit, active crossing and inactive twist extend in
an obvious way to rigid-vertex graph diagrams: We simply regard the rigid
vertex as a variant of a tangle diagram, but with no internal structure. We
now declare that flyping circuits, active crossings, inactive circuits and inac-
tive twists of the tangle diagram D are simply the corresponding attributes
of the associated rigid-vertex graph diagram D .

Proposition 3.2. Let D be a tangle diagram with n ≥ 2 crossings. Then
γ(D) ≤ 2n− 3 .

Proof. We proceed by induction on n . We first consider two special cases,
which constitute the basis for the induction. First, let D be a rational tangle
with at least two crossings, with Conway symbol c1c2 ... ck , [C]. Then D
is constructed by plaiting in k stages, where ci half-twists are performed
at the kth stage. Moreover, c1 ≥ 2 , and ci ≥ 1 for i ≥ 2 . After the first
stage, the diagram consists of a single inactive twist, and has weight 1. At
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each successive stage, a new flyping circuit is created with weight 2, whereas
the status of existing crossings is unaltered. Therefore the weight of D =
c1c2 ... ck is 2k−1 , whereas the number of crossings of D is

∑k
i=1 ci ≥ k+1 .

Therefore the conclusion holds in this case.
The second special case is that of an n-crossing tangle diagram of type I,

associated with a basic polyhedral template whose substituents are all single
crossings. Then κ(D) = 0 and µ(D) = n , so γ(D) = n , and since n ≥ 5
the conclusion holds in this case also.

Now let D be an n-crossing tangle diagram not covered by these two
special cases. Suppose first that D is of type I, associated with a basic
polyhedral template with k slots. Let this template have m ≥ 1 substituent
tangle diagrams D1, D2, ..., Dm , with more than one crossing, and k −m
single-crossing substituents. Let Di have ni crossings (1 ≤ i ≤ m) , and
let Di have weight wi . Then the weight of D is

γ(D) =
m∑
i=1

wi + (k −m) ≤
m∑
i=1

(2ni − 3) + (k −m) = 2
m∑
i=1

ni + k − 4m

and the crossing-number of D is n =
∑m
i=1 ni + (k −m) . But

(2n− 3)− γ(D) ≥ k + 2m− 3 > 0, since k ≥ 5.

Finally, suppose that D is of type II. Then D is a non-trivial tangle
sum of k tangles, say, where k ≥ 2 . Since we have already dealt with the
case where D consists of a single twist, we may assume that at least one of
the summands has more than one crossing. Let the non-trivial summands
be D1 , D2 , ... , Dm , where m ≥ 1 . If k > m , then these tangles belong to
a flyping circuit of D of weight m + 1 , and with k −m active crossings.
Again, let Di have crossing-number ni and weight wi , (1 ≤ i ≤ m) . Then
the number of crossings of D is

n =
m∑
i=1

ni + (k −m),

and the weight of D is

γ(D) =


∑m
i=1wi +m+ 1 (k > m)∑m
i=1wi (k = m).

By induction,

γ(D) ≤
m∑
i=1

(2ni − 3) +m+ 1 =
m∑
i=1

2ni − 2m+ 1,
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and it follows that

(2n− 3)− γ(D) ≥ 2k − 4 ≥ 0.

Remark. It follows from the proof of Proposition 3.2 that the upper bound
2n− 3 is achieved only for rational tangles of form 2111...1 .

Proposition 3.3. Let D be a prime, alternating link diagram with n ≥ 3
crossings. Then γ(D) ≤ 2n− 3 .

Proof. If D should have no flyping circuit, then γ(D) is equal to the total
number of inactive twists of D , whence γ(D) ≤ n . Therefore the conclusion
follows in this case.

Suppose that D has a flyping circuit with k ≥ 2 tangle diagrams D1,
D2, ... , Dk and α active crossings. Let Di have crossing-number ni and
weight wi . From Lemma 3.1, wi ≤ 2ni − 3 . Therefore

γ(D) =
k∑
i=1

wi + k ≤ 2
k∑
i=1

ni − 2k.

Therefore
(2n− 3)− γ(D) ≥ (2α− 3) + 2k > 0.

Corollary 3.3.1. Let D be a prime, alternating link diagram with n ≥ 3
crossings. Then 2 ≤ |ψ−1(L)| ≤ 8(2n− 3) .

Remark. The upper bound of Corollary 3.3.1 is a little conservative; but
the aim is to show that there exists an upper bound which is linear in n .

The first part of Theorem 2, namely
an−1

8(2n− 3)
≤ An ≤ an−1

2
,

follows at once from Corollary 3.3.1. Taking logarithms and dividing by n ,
we obtain

log(an−1)
n

− log(8(2n− 3))
n

≤ log(An)
n

≤ log(an−1)
n

− log(2)
n

.

By Theorem 1, the outermost expressions of this inequality both tend to
log(λ) for large n so we have proved that

lim
n→∞

log(An)
n

= log(λ), or lim
n→∞(An)

1
n = λ,

thus concluding the proof of Theorem 2.
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4. Proof of Theorem 1.

In this section we establish the asymptotic formula of Theorem 1. The gen-
erating function w is defined as the formal power series

∑
anz

n , where an
is the number of prime, alternating tangle types with n crossings; however,
if we are to apply analytical techniques directly to w , we need to verify that
the series

∑
anz

n has a positive radius of convergence.

Proposition 4.1 ([Tu, W]). The radius of convergence of w is at least
4
27

.

Proof. We may associate bijectively to each tangle diagram a rooted non-
separable planar map, by means of the medial construction explained in
§2. Therefore the radius of convergence of w cannot be less than that of
the generating function B(x) for rooted non-separable planar maps with
n edges. But from the formula for B(x) ([Tu], 6.4), the radius of con-
vergence of B(x) is 4

27
. (See also [W] for a discussion of closely related

matters.)

Proposition 4.1 has the following interpretation. If we did not impose
the equivalence relation of flyping on alternating tangles, the radius of con-
vergence of the generating function w would be precisely 4

27
. Incorporat-

ing flypes evidently reduces the number of objects being counted, and the
amount by which the radius of convergence of w exceeds 4

27
is in some sense

a measure of this reduction.
Recall that the function w satisfies the functional identity (6), which we

restate in the following convenient form:

F (z, w) = w(1 + z)− w2 − (w + 1) q(w)− z − 2z2

1− z = 0.(7)

We now introduce a number fundamental to this paper. Referring to (7),
the equation F (z, 1

4
) = 0 , after multiplication by 1−z , becomes a quadratic

equation in z . It is readily verified that this equation has a positive root,
which we shall denote r0 . From (3), q( 1

4
) = 1

540
, so we have

r0 =
√

21001− 101
270

.(8)

The next task is to prove that r0 is the radius of convergence of the
series

∑
anz

n . It is necessary to proceed in careful steps, as initially we
do not know whether w(z) is represented by a power series at any point
outside the circle |z| = 4

27
. First, we show that there is a unique function

w : [0, r0] → [0, 1
4
] of class C1 satisfying (7) together with the condition
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w(0) = 0 . Since for the time being we are concerned only with real numbers,
we introduce

u = <w, x = <z,
and re-write the identity (7) as

F (x, u) = u(1 + x)− u2 − (u+ 1) q(u)− x− 2x2

1− x = 0.(9)

Let D denote the rectangle {(x, u) ⊆ R2 : 0 ≤ x ≤ r0 and 0 ≤ u ≤ 1
4
} .

Since the function q is of class C1 on [0, 1
4
] , it follows that F is of class C1

on D .
In the following lemma, the symbols ∂F

∂u
, ∂F
∂x

refer to one-sided derivatives
where appropriate.

Lemma 4.2.1. (i) ∂F
∂u

> 0 on D , and (ii) ∂F
∂x

< 0 on D .

Proof. Since the functions q , q ′ are represented by series with non-negative
coefficients on [0, 1

4
] , both q , q ′ are increasing on [0, 1

4
] . We have

∂F

∂u
= (1 + x)− (2u+ q(u) + (u+ 1) q ′(u))

> 1−
(

1
2

+ q

(
1
4

)
+

5
4
q ′
(

1
4

))
=

1
2
− 1

540
− 5

4
.

167
2025

> 0.

Also, we have

∂F

∂x
< u− 1 < 0.

Lemma 4.2.2. For each x ∈ [0, r0] , there exists precisely one number
u ∈ [0, 1

4
] such that F (x, u) = 0 .

Proof. First we show that if x ∈ [0, r0] , F (x, u) = 0 has at least one
solution for u ∈ [0, 1

4
] . From (9) it is readily checked that F (x, 0) ≤ 0 and

that F (x, 1
4
) ≥ 0 , for x ∈ [0, r0] . By continuity it follows that for each

x ∈ [0, r0] , F (x, u) = 0 for some u ∈ [0, 1
4
] .

To show that there cannot be more than one solution, it is sufficient to
observe that Lemma 4.2.1 guarantees that F (x, u) is an increasing function
of u for 0 ≤ u ≤ 1

4
.
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It follows from Lemmas 4.2.1, 4.2.2 that we have defined a function from
[0, r0] to [0, 1

4
] , which is represented by the power series

∑
anx

n within the
interval of convergence of that series. Therefore it is appropriate to denote
this function u : [0, r0]→ [0, 1

4
] . Since ∂F

∂u
exists and is non-zero on D , the

derivative of u exists on [0, r0] . Also, since ∂F
∂u
, ∂F
∂x

have opposite signs on
D , the derivative of u is strictly positive on [0, r0] .

Returning now to the complex variables z , w , it is clear that the function
F in the identity (7) is analytic at points (z, w) ∈ R2 belonging to the
interior of D . Therefore we may use the complex version of the Implicit
Function Theorem, together with Lemma 4.2.1, to deduce that there exists
a neighborhood N of the half-open interval [0, r0) in the complex plane,
and a function φ defined on N , with the following properties:

(i) φ agrees with u on [0, r0) , and
(ii) φ is analytic on N .

We are now in a position to prove:

Proposition 4.2.
(i) The radius of convergence of w is r0 .
(ii) The series

∑
anr

n
0 converges to w(r0) = 1

4
.

Proof. (i) Let the radius of convergence of w be r . Since the coefficients
of the series

∑
anz

n are positive for all sufficiently large n , Pringsheim’s
Theorem ([H], Theorem 5.7.1) ensures that w is singular at r . Since we
have just shown that w is analytic on the half-open interval [0, r0) , it follows
that r ≥ r0 .

To complete the proof of (i), it is sufficient to show that w is singular
at r0 . Let us suppose, to the contrary, that w were analytic at z = r0 .
Then from (6) the composite function q ◦ w would be analytic at z = r0 .
But, from Lemma 4.2.1 above, w ′(r0) is non-zero; therefore the function
w would have an inverse, analytic within a neighborhood of w(r0) = 1

4
.

It would follow that the function q was analytic at 1
4

, contradicting the
presence of (1− 4z) 3

2 in (3).
(ii) It follows from the discussion preceding this proposition that w is

continuous at r0 from the left. Since an ≥ 0 for all n , w(r) =
∑∞
n=0 anr

n ↗
w(r0) = 1

4
as r ↗ r0 , and it follows that

∑∞
n=0 anr

n
0 ≥ 1

4
. Suppose that∑∞

n=0 anr
n
0 > 1

4
. Then there would exist an N such that

∑N
n=0 anr

n
0 > 1

4
,

which would mean that for r < r0 sufficiently close to r0 ,
∑N
n=0 anr

n > 1
4

.
This would lead to the inequality w(r) =

∑∞
n=0 anr

n ≥ ∑N
n=0 anr

n > 1
4

, a
contradiction.

It follows from part (ii) of Proposition 4.2 that for any point z on the
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circle |z| = r0 the series
∑
anz

n is absolutely convergent, hence convergent.
Therefore the series

∑
anz

n represents w as a continuous function on the
closed disk |z| ≤ r0 .

Moreover, since there is at least one tangle of any given crossing-number,
the series w(z) =

∑
anz

n has two adjacent terms with strictly positive
coefficients. For non-real z , the corresponding terms in the series w(z0) =∑
anz

n
0 will be complex numbers with differing arguments, and so

|∑∞n=0 anz
n| < ∑∞

n=0 an|z|n . Therefore, for all points in the closed disk
|z| ≤ r0 other than r0 , we have the strict inequality |w(z)| < w(r0) = 1

4
.

The next proposition elucidates the behavior of w(z) on its circle of con-
vergence.

Proposition 4.3. w is analytic at all points other than r0 on the circle
|z| = r0 .

Proof. With a view to using the Implicit Function Theorem, we first show
that ∂F

∂w
cannot vanish at (z , w(z)) when z is in the closed disk |z| ≤ r0 .

In the third inequality we make repeated use of the fact that for a series∑
knz

n with kn ≥ 0 , |∑ knz
n| ≤ ∑ kn|z|n ; also, in the fourth inequality

we use the fact that if 0 ≤ z ≤ r0 , then 0 ≤ w(z) ≤ w(r0) = 1
4

.
We have∣∣∣∣ ∂F∂w (z, w(z))

∣∣∣∣ = | 1 + z − (2w(z) + q(w(z)) + (w(z) + 1) q ′(w(z)) ) |
≥ |1 + z| − | 2w(z) + q(w(z)) + (w(z) + 1) q ′(w(z)) |
≥ |1 + z| − ( |2w(z)|+ |q(w(z))|+ |(w(z) + 1) q ′(w(z))|)
≥ |1 + z| − ( 2w(|z|) + q(w(|z|)) + (w(|z|) + 1) q ′(w(|z|)))
≥ (1− r0)− ( 2w(r0) + q(w(r0)) + (w(r0) + 1) q ′(w(r0)))

=
1
2
− 1

540
− 5

4
167
2025

− r0

> 0.

We have already seen that w(r0) = 1
4

, and that |w(z0)| < 1
4

for points
z0 such that |z0| = r0 , z0 6= r0 . Now the function q(w) is analytic for
|w| < 1

4
. Therefore the function F (z, w) is analytic at points (z, w(z)) for

which z is a point on the circle |z| = r0 distinct from r0 . The conclusion
now follows by application of the Implicit Function Theorem.

Remark. Once we have established the asymptotic formula of Theorem
1, it will be evident that the “growth factor” λ of Theorems 1, 2 is simply
the reciprocal of r0 .
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Let us now introduce variables

ζ = (1− 4w)
1
2 , η = (r0 − z) 1

2 .(10)

Our immediate aim is to show that ζ is an analytic function of η within a
neighborhood of z = r0 .

We define functions f , g as follows:

f(w) =
1

2 (w + 2)3
, g(w) =

2w2 − 10w − 1
2 (w + 2)3

− 2
1 + w

− w + 2.

Then f , g are analytic at w = 1
4

, and from (3)

q(w) = ζ3 f(w) + g(w).

Also, we note that

g

(
1
4

)
= q

(
1
4

)
=

1
540

, g ′
(

1
4

)
= q ′

(
1
4

)
=

167
2025

.

The functional equation (7) may now be written

(1− ζ2)2

16
− 1− ζ2

4
+
ζ2

4
z +

5− ζ2

4
(
ζ3 f(w) + g(w)

)
= −3

4
z − 2z2

1− z ,
(11)

where for conciseness we have written w for 1−ζ2

4
. The value of the left-hand

side of (11) at w = 1
4
, z = r0 is

1
16
− 1

4
+

5
4
g

(
1
4

)
= − 5

27
.

Subtracting this quantity from each side of (11), we obtain

ζ2 U(ζ , z) = (r0 − z) V (z),

where

U(ζ, z) =
1
8

+
z

4
+

ζ2

16
+
ζ (5− ζ2)

4
f(w) − 1

4
g(w) +

5
4
g(w)− g ( 1

4

)
ζ2

,

V (z) =
5

4(1− z)

(
101 +

√
21001

270
+ z

)
.
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Now

U(0, r0) =
1
8

+
r0

4
− 1

4
q

(
1
4

)
+

5
16
q ′
(

1
4

)
=
r0

4
+

8
81

=
3
√

21001 + 17
3240

,(12)

V (r0) =
5

4(1− r0)

√
21001
135

=
21001 + 371

√
21001

46656
.(13)

Each of these expressions is non-zero. Therefore there exist functions
G(ζ, z) , H(z) , analytic within a neighborhood of ζ = 0 , z = r0 , such that

G2 = U, H2 = V.

Recalling from (10) that η = (r0 − z) 1
2 , we now have

ζ G(ζ , r0 − η2) = η H(r0 − η2),(14)

which will define ζ as an analytic function of η within a neighborhood of
η = 0 by the Implicit Function Theorem, provided the derivative of the
left-hand side of (14) with respect to ζ is non-zero at ζ = η = 0 . But the
value of this derivative at ζ = η = 0 is simply G(0, r0) , which we have just
seen is non-zero. Since ζ = 0 when η = 0 , we have therefore proved

Proposition 4.4. Let ζ = (1− 4w) 1
2 , η = (r0 − z) 1

2 . Then there exists a
neighborhood N of η = 0 and a function Φ(η) analytic on N , such that

ζ = η Φ(η) (η ∈ N).(15)

We now list some assorted facts linking derivatives of ζ with derivatives
of Φ and the functions G , H . They may all be obtained by straightforward
differentiation.

∂G

∂ζ
(0, r0) = −5

8
f

(
1
4

)
(G(0, r0))−1 = − 20

729
(G(0, r0))−1(16)

dζ

dη

∣∣∣∣
η=0

=
H(r0)
G(0, r0)

= Φ(0)(17)

d2ζ

dη2

∣∣∣∣
η=0

= −2
(H(r0))2

(G(0, r0))3

∂G

∂ζ
(0, r0) = 2 Φ ′(0).(18)
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Our overall aim is to obtain asymptotic information on the coefficients
an of the power series w =

∑
anz

n . To this end, we shall use the recently
gleaned information on the function Φ(η) . From (15) together with w =
1
4
(1− ζ2) , we obtain

w =
1
4
− 1

4
(r0 − z) (Φ(η))2.(19)

Let us write

−1
4

(Φ(η))2 =
∞∑
0

cnη
n.(20)

Then, using (12), (13), (16)-(18),

c0 = −1
4

(Φ(0))2
,

c1 = −1
2

Φ(0) Φ ′(0) =
10
729

√
V (r0)3

U(0, r0)5

=
5 7

2

35
√

2

√√√√√√
(
21001 + 371

√
21001

)3

(
17 + 3

√
21001

)5 .(21)

We note that both c0 , c1 are non-zero.
We are finally in a position to extract the asymptotic information we

desire regarding the coefficients an of w . From (19), (20) we have

w =
1
4
− 1

4
(r0 − z) (Φ(0))2 +

∞∑
n=1

cn(r0 − z)1+n
2 .

Subtracting the first term of the sum from both sides of this equation gives

w − c1(r0 − z) 3
2 =

1
4
− 1

4
(r0 − z) (Φ(0))2 +

∞∑
n=2

cn(r0 − z)1+n
2 .(22)

We now observe that the third derivative with respect to z of the right-hand
side of (22) contains just one term of negative exponent, namely c3(r0−z)− 1

2 ;
therefore this third derivative is integrable on its circle of convergence. Let

ψ(z) =
d3

dz3

(
w − c1(r0 − z) 3

2

)
=
∑

unz
n say,(23)

where the power series expansion is valid for |z| ≤ r0 , z 6= r0 . The key to
obtaining the asymptotic estimate for an will be:
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Proposition 4.5. limn→∞ unrn0 = 0 .

The proof of Proposition 4.5 uses standard analytic techniques; a detailed
account of the proof is given, as it is anticipated that most readers will not
be specialists in the field of analysis. We begin with a lemma.

Lemma 4.5.1.

lim
r↗r0

∫ π

−π

∣∣ψ(r0e
iθ)− ψ(reiθ)

∣∣ dθ
2π

= 0.

Proof. We may write

ψ(z) =
h(z)

(r0 − z) 1
2

+ k(z),

where h , k are analytic in a neighborhood of r0 . We choose δ > 0 such that
h , k are analytic within a neighborhood of the arc {r0e

iθ : −δ < θ < δ}.
Since ψ is continuous at all points of the circle |z| = r0 other than r0 ,

it is sufficient to prove that

lim
r↗r0

∫ δ

−δ

∣∣ψ(r0e
iθ)− ψ(reiθ)

∣∣ dθ
2π

= 0.

Also, since it is clear from continuity that∫ δ

−δ

∣∣k (r0e
iθ
) − k

(
reiθ

)∣∣ dθ
2π
→ 0 as r ↗ r0,

all we need show is that

lim
r↗r0

∫ δ

−δ

∣∣∣∣∣ h
(
r0e

iθ
)

(r0 − r0eiθ)
1
2
− h

(
reiθ

)
(r0 − reiθ) 1

2

∣∣∣∣∣ dθ2π
= 0.(24)

We split up the integral (24) as I1 + I2 , where

I1 =
∫
|θ|<η

∣∣∣∣∣ h
(
r0e

iθ
)

(r0 − r0eiθ)
1
2
− h

(
reiθ

)
(r0 − reiθ) 1

2

∣∣∣∣∣ dθ2π
,

I2 =
∫
η<|θ|<δ

∣∣∣∣∣ h
(
r0e

iθ
)

(r0 − r0eiθ)
1
2
− h

(
reiθ

)
(r0 − reiθ) 1

2

∣∣∣∣∣ dθ2π
,

η being some small number to be chosen presently.
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By continuity, there exists M such that |h(z)| < M for all z in a neigh-
borhood of the arc {r0e

iθ : −δ < θ < δ} . Then, for all r sufficiently close
to r0 and all sufficiently small η ,

∫ η

−η

∣∣∣∣∣ h
(
r0e

iθ
)

(r0 − r0eiθ)
1
2
− h

(
reiθ

)
(r0 − reiθ) 1

2

∣∣∣∣∣ dθ2π

<
M

r
1/2
0

∫ η

−η

dθ/(2π)

|1− eiθ| 12
+

M

r1/2

∫ η

−η

dθ/(2π)

|(r0/r)− eiθ|
1
2

<
M

r
1/2
0

∫ η

−η

dθ/(2π)

|1− eiθ| 12
+

M

r1/2

∫ η

−η

dθ/(2π)

|1− eiθ| 12

<
3M

r
1/2
0

∫ η

−η

dθ/(2π)

|1− eiθ| 12
<

4M

r
1/2
0

∫ η

−η

dθ/(2π)

|θ| 12
.(25)

Given ε > 0 , we can choose η such that the last integral of (25) is less
than ε

2
. For this η , we may choose r1 such that r1 < r < r0 implies that

I2 <
ε
2

, on account of the fact that

h(reiθ)

(r0 − reiθ)1/2
→ h(r0e

iθ)

(r0 − r0eiθ)
1/2

uniformly for η < |θ| < δ.

Thus if r1 < r < r0 , we see that

∫ δ

−δ

∣∣∣∣∣ h
(
r0e

iθ
)

(r0 − r0eiθ)
1
2
− h

(
reiθ

)
(r0 − reiθ) 1

2

∣∣∣∣∣ dθ2π
≤ I1 + I2 < ε.

Proof of Proposition 4.5.
For 0 < r < r0 , we have∫ π

−π
ψ
(
reiθ

)
e−inθ

dθ

2π
= unr

n,(26)

and it follows from Lemma 4.5.1 that

unr
n
0 =

∫ π

−π
ψ
(
r0e

iθ
)
e−inθ

dθ

2π
.(27)

Let ε > 0 . By Lemma 4.5.1 again, we may choose 0 < r < r0 such that∫ π

−π

∣∣ψ (r0e
iθ
) − ψ (reiθ)∣∣ dθ

2π
<
ε

2
.
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Also, since
∑
unr

n converges for 0 < r < r0 , we may choose N such that
n ≥ N implies that |unrn| < ε

2
. Then, from (26), (27),

|unrn0 | = |un (rn0 − rn)| + |unrn|
≤
∫ π

−π

∣∣ψ (r0e
iθ
) − ψ

(
reiθ

)∣∣ dθ
2π

+ |unrn| < ε.

We now conclude the proof of Theorem 1. From (22) we have

un r
n
0 = n(n+ 1)(n+ 2) an+3 r

n
0 −

3
8
c1 r

− 3
2

0

3
2
.
5
2
.
7
2
. ..... .

2n+ 1
2

1
n!

= n(n+ 1)(n+ 2) an+3 r
n
0 −

3
4
√
π
c1 r

− 3
2

0

Γ(n+ 3
2
)

Γ(n+ 1)
.

Since the second term of this difference has a positive lower bound, we
deduce that

n(n+ 1)(n+ 2) an+3 r
n
0 ∼

3
4
√
π
c1 r

− 3
2

0

Γ(n+ 3
2
)

Γ(n+ 1)
.

But from Stirling’s formula,

lim
n→∞

Γ(n+ 3
2
)

Γ(n+ 1)
=
√
n,

so we deduce that

n3 an+3 r
n
0 ∼

3
4
√
π
c1 n

1
2 r
− 3

2
0 ,

and finally that

an ∼ 3
4
√
π
c1 n

− 5
2 r
−(n− 3

2 )
0 .

5. The Computation of an .

From the functional equation (7) and the closed formula (3) for q , one can
easily obtain an explicit formula involving radicals for z in terms of w .
From this formula, a program such as PARI will produce a series for z in
powers of w , to a specified number of terms, from which the series for w
can be obtained by series inversion. By this method an was computed on
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a PC for n ≤ 250 ; the entire computation took about 11
2

minutes. Table 1
lists an for n ≤ 50 .

n an n an
1 1 26 10509472317890690
2 2 27 58659056351295672
3 4 28 328591560659948828
4 10 29 1846850410940949702
5 29 30 10412612510292744992
6 98 31 58877494436409193754
7 372 32 333824674188182988872
8 1538 33 1897547736517167483401
9 6755 34 10811965262963697918390
10 30996 35 61743712191685678016610
11 146982 36 353346524877622075891224
12 715120 37 2026177347462171700453095
13 3552254 38 11640600587816460301163560
14 17951322 39 66996349258043741043340070
15 92045058 40 386246530925962967964742478
16 477882876 41 2230378992391449594561463197
17 2508122859 42 12899088068723013463347397454
18 13289437362 43 74709139668891399374031990962
19 71010166670 44 433304503640281884536963608542
20 382291606570 45 2516458655255640459944907578072
21 2072025828101 46 14633147958143711975783070855666
22 11298920776704 47 85194787578604567988225302223590
23 61954857579594 48 496584378798958350593234750705656
24 341427364138880 49 2897722141068904014462120608500022
25 1890257328958788 50 16927166534580561781535347570516714

Table 1.

It is interesting to compare expected and actual values of an . Substituting
n = 50 into the asymptotic estimate of Theorem 1 yields approximately
1.644 × 1034 , an error of approximately 3%. For n = 250 , the error is
approximately 0.57%.

One may eliminate radicals to obtain w as a root of a polynomial of
degree 5 in w and degree 4 in z :

(z4 − 2z3 + z2)w5

+ (8z4 − 14z3 + 8z2 − 2z)w4

+ (25z4 − 16z3 − 14z2 + 8z + 1)w3

+ (38z4 + 15z3 − 30z2 − z + 2)w2

+ (28z4 + 36z3 − 5z2 − 12z + 1)w

+ (8z4 + 17z3 + 8z2 − z).
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For certain integer values of z , this yields a quintic polynomial in w
whose Galois group is the symmetric group of degree 5; therefore one cannot
hope to obtain w as a radical expression in z .

6. Reduced alternating tangles.

A tangle diagram D is said to be reduced if the ends of D are incident to
four distinct crossings of D . For example, the diagrams of Figures 1, 2 are
reduced, whereas a standard diagram of a rational tangle is not reduced (see
Figure 3). An n-crossing diagram of a rational tangle can be obtained by
applying a plait to a 1-crossing tangle diagram; at each stage of the plaiting
process one adds a crossing by twisting two adjacent ends of the tangle.
Taking flyping into account, at each stage there are essentially two choices
involved: One can either twist the NE and SE ends, or one can twist the NE
and NW ends (Figure 11). Similarly, any unreduced tangle diagram which
is not a rational tangle diagram may be obtained by applying a plait to a
unique reduced tangle diagram.

Figure 11.

Let w0 =
∑
bnz

n be the generating function for reduced alternating tan-
gles with n crossings. From the above discussion, we have

w = (w0 + z)(1 + 2z + (2z)2 + .....) =
1

1− 2z
(w0 + z),

whence
w0 = (1− 2z)w − z.

It follows that

b1 = 0, bn = an − 2an−1 (n ≥ 2),

and that
bn ∼

(
1− 2

λ

)
3 c1

4
√
π
n−

5
2λn−

3
2 ,

where c1, λ are as in Theorem 1.
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7. Non-alternating links and tangles.

The machinery developed in this paper can be used to show that the ratio of
the number of prime, alternating links with n crossings to the total number
of prime links with n crossings tends to zero exponentially. The method
is to incorporate a suitable non-alternating tangle into the recursive process
for building tangles. The functional equation is then modified slightly, and
the resulting generating function has a slightly smaller radius of convergence
than r0 . One has to show that flyping suffices to generate equivalences of
tangles built this way; details will appear in a separate article.
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