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Let Γ be a torsion-free lattice in SO0(3, 1), and let M =
Γ\H3 be the corresponding hyperbolic 3-manifold. It is well-
known that in the presence of a closed, embedded, totally-
geodesic surface in M , the canonical flat conformal struc-
ture on M can be deformed via the bending construction.
Equivalently, the lattice Γ admits non-trivial deformations
into SO0(4, 1). We present a new construction of infinitesi-
mal deformations for the hyperbolic Fibonacci manifolds, the
smallest of which is non-Haken and contains no immersed to-
tally geodesic surface.

1. Introduction.

This is the first in a series of papers in which we hope to better understand
the deformation theory of SO(n, 1) lattices, particularly for the case n = 3.

We begin with an oriented n-manifold M equipped with a complete Rie-
mannian metric of constant curvature −1, and set π = π1(M). The holo-
nomy gives a discrete and faithful representation ρ0 : π → SO0(n, 1) into
the identity component of O(n, 1) which is well-defined up to conjugation.
When the volume of M is finite and n ≥ 3, Mostow Rigidity says that any
other discrete, faithful, finite covolume representation ρ1 : π → SO0(n, 1) is
conjugate to ρ0. On the other hand, we can compose ρ0 with the inclusion
SO0(n, 1) ↪→ SO0(n + 1, 1), and attempt to deform in the larger group.
When n = 2, this reduces to the well-understood theory of quasi-Fuchsian
deformations of Fuchsian groups.

More generally, consider the inclusion of a lattice ρ0 : Γ ↪→ G in a simple
algebraic group G defined over R, and suppose we have an inclusion G ↪→ H
into some other algebraic group H over R. The space of representations
Hom(Γ,H) is a real algebraic variety in a natural way, and the Zariski
tangent space at ρ0 is identified with the space of cocycles Z1(Γ, h). Here
the coefficients lie in the Lie algebra h of H, which is made into a ZΓ-module
via ρ0, the inclusion of G in H, and the adjoint action of H on h. Trivial
deformations (conjugation in H) have Zariski tangent vectors which are
coboundaries; thus we may think of the group cohomology H1(Γ, h) as the
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space of infinitesimal deformations of Γ in H. An infinitesimal deformation
is integrable if it is tangent to a non-trivial curve in Hom(Γ,H).

Raghunathan’s vanishing theorem [25] shows that if G is not locally iso-
morphic to SO(n, 1) or SU(n, 1), then a uniform lattice Γ admits no infin-
itesimal deformations in H, while a similar local rigidity result is obtained
for G = SU(n, 1), H = SU(n+1, 1), and n ≥ 2 in [8]. We will be concerned
with the case of G = SO0(n, 1), H = SO0(n + 1, 1), and n ≥ 3, where
the first examples of infinitesimal deformations (for n = 3) were given by
Apanasov [1], [3]. Around the same time, Thurston introduced the related
notion of “bending” a Fuchsian group along a geodesic lamination to obtain
quasi-Fuchsian groups [32, §8.7.3]; more general discussions of bending de-
formations can be found in [12] and [16]. There are further examples due
to Apanasov which typically arise from intersecting totally geodesic surfaces
or surfaces with a common boundary geodesic (see [2], [4] and [30]). All of
these deformations are integrable.

M. Kapovich conjectured in [13] that a closed hyperbolic 3-orbifold admits
a non-trivial (integrable) deformation in O(4, 1) if and only if it contains an
embedded quasi-Fuchsian suborbifold. In [14] he proves this conjecture for
reflection orbifolds, and shows that infinitely many surgeries on a two-bridge
knot are locally rigid. Kapovich’s conjecture was one of the starting points
for our work. We were also motivated by the close relationship with moduli
problems for constant curvature Lorentzian spacetimes, as in [24] and [29].

Our main result (Theorem 4.3) gives a new construction of infinitesimal
deformations in SO0(4, 1) for an infinite family of closed, two-generator,
hyperbolic 3-manifolds, the smallest of which is non-Haken and contains no
immersed totally geodesic surface.

I would like to thank Alan Reid, Misha Kapovich, and John Millson for
useful discussions concerning early versions of this work. Thanks also to
John Hempel, Geoff Mess, and Mike Wolf for their help and encouragement.

2. Preliminaries.

Consider a group π with a fixed presentation 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉
and suppose V is a Zπ-module. We will compute the group cohomology
H1(π, V ) in terms of the standard resolution; thus, a 1-cocycle is a function
c : π → V satisfying c(gh) = c(g)+gc(h) for all g, h ∈ π, and a 1-coboundary
is a 1-cocycle of the form c(g) = (1−g)w for some w ∈ V . Writing Fn for the
free group on n generators, we can make V into a ZFn-module in a natural
way. There is an isomorphism between V n and Z1(Fn, V ) given in terms of
the Fox derivatives [7]

(v1, . . . , vn) 7→

(
g 7→

n∑
i=1

∂g

∂xi
vi

)
.
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From this one obtains:

Lemma 2.1 ([7]).

Z1(π, V ) ∼=

{
(v1, . . . , vn) ∈ V n

∣∣∣ n∑
i=1

∂rj
∂xi

vi = 0 for j = 1, . . . , p

}
.

Under this isomorphism, the subspace B1(π, V ) of coboundaries consists
of all elements of V n of the form ((1 − x1)w, (1 − x2)w, . . . , (1 − xn)w) for
some element w of V .

The next lemma is an immediate consequence of the local rigidity theo-
rems for lattices, first proved in this case by Calabi.

Lemma 2.2 ([12]). Fix a representation ρ0 : π → SO0(3, 1) ↪→ SO0(4, 1).
The Lie algebra so(4, 1) splits as an SO0(3, 1)-module so(4, 1) ∼= so(3, 1) ⊕
R4

1, inducing a splitting in cohomology

H∗(π, so(4, 1)) ∼= H∗(π, so(3, 1))⊕H∗(π,R4
1).

When ρ0 is an isomorphism onto a uniform lattice in SO0(3, 1), we have

H1(π, so(4, 1)) ∼= H1(π,R4
1).

3. Fibonacci Manifolds and Turk’s Head Links.

The Fibonacci groups are defined by the presentation

F (2, n) = {a1, . . . , an | aiai+1 = ai+2 (mod n)}.

Determining the structure of these groups has proved to be quite difficult;
indeed, only in the last ten years has it been determined exactly which values
of n yield a finite group. A nice overview of the results in this area can be
found in [31]. Most important to us is the fact that the group F (2, 2m),
m ≥ 4, is the fundamental group of a closed orientable hyperbolic 3-manifold
Fm which can be obtained by side-pairings on an appropriate polyhedron
in H3. We call these manifolds Fm the Fibonacci manifolds, first described
in [9] (a preprint of which appeared in 1989) and discussed from a similar
point of view in [17]. From this result we obtain a discrete and faithful
representation ρ0 : F (2, 2m) ∼= Γm ⊂ SO0(3, 1) which can be written down
explicitly as in [31]. We will only need to indicate here one or two special
features of ρ0.

The defining polyhedron for Fm has an order m rotational symmetry
about its central axis which induces the group automorphism ai 7→ ai+2.
We may conjugate so that the invariant axis of this rotation fixes 0 and ∞
in CP 1 ≈ ∂H3. It follows that the automorphism ai 7→ ai+1 which cyclically
permutes the generators is given by an orientation-reversing isometry t of
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H3 which interchanges the points 0 and ∞ in CP 1. This isometry can be
written

t(z) =
r2ξ2m

z̄
, t−1ait = ai+1 (mod 2m)

where r is an appropriate positive real number and ξ2m = cos( π
m)+ i sin( π

m).
After conjugating the representation of [31] to our desired position, the

element ρ0(a1) is given by
(
α β
γ δ

)
∈ PSL(2,C) with

α = 1− ψ

1− ξ−2
2m

, δ = 1− ψ̄

1− ξ−2
2m

,

where

ψ =
3
2
− cos

(
2π
m

)
+
i
√
ρ

2
and

ρ =
(

3− 2 cos
(

2π
m

))(
1 + 2 cos

(
2π
m

))
.

The property of ρ0(a1) which we need for our main theorem is that ω = αδ̄
is real; this can be verified by a direct calculation (it turns out that ω =
−1

4 csc2( π
m)). Note that the condition ω ∈ R is stable under conjugation by t,

indeed under conjugation by any isometry leaving {0,∞} ⊂ CP 1 invariant.
The group PSL(2,C) acts on 2×2 Hermitian matrices by A ·Q = AQĀt.

This action gives the usual identification of PSL(2,C) with SO0(3, 1) by
identifying a point (x1, x2, x3, x4) ∈ R4

1 with the Hermitian matrix(
q11 q12

q21 q22

)
=
(
x3 + x4 x1 + ix2

x1 − ix2 x4 − x3

)
.

We choose to work directly with the basis q12, q21, q11, q22 with respect to
which we have

t =


ξ2m 0 0 0
0 ξ−1

2m 0 0
0 0 0 r
0 0 r−1 0

 , a1 =


ω βγ̄ αγ̄ βδ̄
γβ̄ ω γᾱ δβ̄
αβ̄ βᾱ |α|2 |β|2
γδ̄ δγ̄ |γ|2 |δ|2

 .

Here and in all that follows we suppress the representation ρ0.

These manifolds can be realized as branched coverings of links in S3 in
several different ways. For k ≥ 2, let Bk denote the kth Turk’s head link;
this is the closed 3-braid in S3 given by (σ1σ

−1
2 )k in the usual notation for

the braid group. The link Bk has three components when k ≡ 0 (mod 3)
and is a knot otherwise. In particular, B2 is the figure-eight knot 41, B3 is
the Borromean rings 63

2, B4 is the Turk’s head knot 818, and B5 = 10123 in
the standard tables. Let Tk = S3 \Bk. We have the following:
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Proposition 3.1. Fm is the m-fold cyclic branched cover of the figure-eight
knot and also the 2-fold branched cover of Bm. The branched covering over
Bm induces the automorphism a1 7→ a−1

1 , a2 7→ a−1
2 of F (2, 2m).

Proof. We give a sketch of the proof following [20]. Let a and b be a pair
of standard generators for π1 of a once-punctured torus, and write R and
L for Dehn twists on these curves in the usual fashion, so that R · b = ab
and L · a = ba. The fundamental group of the once-punctured torus bundle
with monodromy (RL)m is generated by a, b, and an element t such that
conjugation by t induces the monodromy. Let Φm be the manifold obtained
by surgery on this bundle killing the generator t, so that

π1(Φm) ∼= 〈a, b | a = (RL)ma, b = (RL)mb〉.
Clearly Φm is an m-fold cyclic branched cover of M1 ≈ S3 branched over the
core of the attached solid torus (the figure-eight knot). It is easy to check
that sending a−1

2i+1 7→ (RL)ib and a−1
2i+2 7→ (RL)ia defines an isomorphism of

F (2, 2m) and π1(Φm). Since it is well-known that the m-fold cyclic branched
cover of 41 is hyperbolic if and only if m ≥ 4 [10], it follows from Mostow
Rigidity that Φm is isometric to Fm in its polyhedral description [9].

The involution of T 2\{pt} given by a 7→ a−1 and b 7→ b−1 gives a branched
covering of D2 branched over three points p1, p2, p3. This extends fiber-wise
to an involution of the once-punctured torus bundle and then to the surgered
manifold Φm. Via the explicit isomorphism above, this involution acts by
a1 7→ a−1

1 and a2 7→ a−1
2 on F (2, 2m). The quotient of Φm under this map is

an orbifold T̂m ≈ S3 with branched set coming from images of the pi×I. By
choosing orientations carefully, the twist R induces the braid group element
σ1 onD2 and L induces σ−1

2 , so the branched set is precisely the link Bm. �

4. Cohomology Computations.

As in the proof of Proposition 3.1, T̂m is the π-orbifold branched on the
Turk’s head link Bm, and we will write ∆m for the orbifold fundamental
group of T̂m, a split Z2-extension of Γm.

Proposition 4.1. H1(Γm,R4
1) ∼= H1(∆m,R4

1).

Proof. Using the transfer operator in group cohomology, H1(∆m,R4
1) is iso-

morphic to the subspace of H1(Γm,R4
1) of cohomology classes invariant un-

der the covering translation. Now Γm is a two-generator group so an element
[c] ∈ H1(Γm,R4

1) is given by a pair (v1, v2) ∈ R4
1 × R4

1. We may integrate
this class to a deformation ρt of F2. For any value of t, there exists an
orientation-preserving involution inverting ρt(a1) and ρt(a2) which can be
obtained by a rotation of π about an axis in H4 perpendicular to the in-
variant axes of ρt(a1) and ρt(a2). This defines a deformation of ∆m to first
order, hence an element of H1(∆m,R4

1). �
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Corollary 4.2. dimRH
1(Γm,R4

1) ≤ 2.

Proof. Since the centralizer of ∆m in SO0(4, 1) is trivial, the dimension of
B1(∆m,R4

1) is 4, so it suffices to show that dimZ1(∆m,R4
1) ≤ 6. Because

the Turk’s head links are closed 3-braids, the group ∆m is generated by
three order-two elliptics γ1, γ2, γ3 ∈ SO0(3, 1). Any cocycle is trivial when
restricted to the Z2 generated by one of the γj , so it is determined by a
triple of the form ((1− γ1)v1, (1− γ2)v2, (1− γ3)v3) for v1, v2, v3 ∈ R4

1. But
an order-two element in SO0(3, 1) has 1 as an eigenvalue of multiplicity two,
so the space of such triples is 6-dimensional. �

Next we will state and prove our main result. The proof proceeds by a
direct computation, exploiting the symmetry of the manifolds involved to
reduce the cohomology calculation to a tractable linear algebra problem.

Theorem 4.3. For all m ≥ 4, dimRH
1(Γm, so(4, 1)) = 2.

Proof. By Corollary 4.2 and Lemma 2.2 it suffices to show dimH1(Γm,R4
1)

≥ 2. Throughout the proof, all indices i will be taken modulo 2m.
Writing Ri for the relator aiai+1a

−1
i+2, we have the Fox derivatives

∂Ri

∂ai
= 1,

∂Ri

∂ai+1
= ai,

∂Ri

∂ai+2
= −aiai+1a

−1
i+2 = −1.

A cocycle is thus given by a 2m-tuple of vectors vi ∈ R4
1 satisfying vi +

aivi+1 = vi+2 for each i. With this in mind, we define 8× 8 real matrices

Ai =
(

0 I
I ai

)
and T =

(
t 0
0 t

)
so that a cocycle is the same thing as a 1-eigenvector (v1, v2) ∈ R4

1 ×R4
1 for

the matrix

A2mA2m−1 · · ·A1 = T−(2m−1)A1T
2m−1 · · ·T−1A1TA1 = (TA1)2m.

Our plan is to find six distinct eigenvalues of TA1 which are 2mth-roots of
unity; four of these will correspond to the space of coboundaries. We claim
that these are exactly the eigenvalues of t (namely 1,−1, ξ2m, and ξ−1

2m). To
see this, let v be a λ-eigenvector for t. Then(

0 t
t ta1

)(
(1− a1)v
(1− a2)v

)
=
(
t(1− a2)v
t(1− a1a2)v

)
=
(

(1− a1)tv
(1− a2)tv

)
=λ

(
(1− a1)v
(1− a2)v

)
.

We now claim that −ξ2m and hence −ξ−1
2m are eigenvalues of TA1, which

suffices to prove the theorem. For λ 6= 0 to be an eigenvalue of TA1, we
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need (v1, v2) such that (
0 t
t ta1

)(
v1
v2

)
=
(
λv1
λv2

)
.

Taking v1 = λ−1tv2, this reduces to finding v2 such that (λ−1t2 + ta1 −
λI)v2 = 0. Multiplying through by t−1 and setting E(λ) = λ−1t−λt−1, this
is equivalent to showing

det(a1 + E(λ)) = 0.

With respect to our chosen representation of Γm, we have

E(λ) =


λ−1ξ2m − λξ−1

2m 0 0 0
0 λ−1ξ−1

2m − λξ2m 0 0
0 0 0 (λ−1 − λ)r
0 0 (λ−1 − λ)r−1 0

 .

The result will follow from the symmetry λ ↔ −λ−1; in particular, we
already know that det(a1 + E(ξ−1

2m)) = 0 since λ = ξ−1
2m corresponds to a

coboundary. The matrices E(ξ−1
2m) and E(−ξ2m) only differ by reversing

the first two diagonal entries, so these determinants can be compared easily.
Setting

C = ξ2m − ξ−1
2m = 2i sin

( π
m

)
,

and collecting terms we have

det(a1 + E(−ξ2m)) = det(a1 + E(−ξ2m))− det(a1 + E(ξ−1
2m))

=
(
ξ22m − ξ−2

2m)(2Im (αγ̄γδ̄)(Cr + |β|2)
+ 2Im (βδ̄αβ̄)(Cr−1 + |γ|2)
− 2|α|2Im (βδ̄γδ̄)− 2|δ|2Im (αγ̄αβ̄)

)
.

Now αγ̄γδ̄ = ω|γ|2 ∈ R so the first term vanishes, and similarly the second
term. The last two terms combine to give:

−2Im (|α|2βδ̄γδ̄ + |δ|2αγ̄αβ̄) = −2ωIm (ᾱδ̄βγ + αδβ̄γ̄) = 0.

�

5. Concluding Remarks.

Since Fm is obtained as a branched cover of the closed 3-braid Tm, the
results of [18] imply that while Fm contains a closed incompressible surface
for m ≥ 5, the manifold F4 is non-Haken. In particular, F4 contains no
closed, embedded, totally geodesic surface. Even better, it is known [9],
[11] that Γm is arithmetic for m = 4, 5, 6, 8, and 12 and the results of [19]
applied to the casem = 4 show that F4 contains no non-elementary Fuchsian
subgroups at all (the invariant trace field and quaternion algebra for Γ4 are
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computed in [27]). Our result should also be contrasted with the fact that
the complex structure on Γ\SL(2,C) is rigid if and only if the first Betti
number of Γ is zero [6], [26].

It is shown in [22] that for m ≥ 2, the hyperbolic volume of F2m is equal
to the volume of Tm. In particular, the volume of F4 is equal to the volume of
the figure-eight knot complement, 2.02988 . . . (this result for F4 also appears
in [27]). The alert reader may note [21], [27] that F4 double covers vol3,
the manifold obtained by (3, -2; 6, -1) surgery on the Whitehead link. The
notation is meant to indicate that vol3 has the third smallest volume among
known hyperbolic 3-manifolds. Although vol3 is obtained by surgery on a
two-bridge link, it does not follow directly from the results in [14] that it is
locally rigid. We have verified however that the cohomology classes given by
the main theorem do not transfer to this smaller manifold, indeed by direct
computation that H1(π1(vol3), so(4, 1)) = 0. We conjecture that F4 is the
smallest volume hyperbolic 3-manifold admitting infinitesimal deformations
in SO0(4, 1). We believe the best previously known example is the smallest
volume hyperbolic 3-manifold containing a closed embedded totally geodesic
surface [5] which has volume 6.4519 . . .

The deformation theory of the Turk’s head links appears quite interest-
ing in its own right, and we hope to return to the question of computing
H1(π, so(4, 1)) at various points along the SL(2,C) character variety. A
better understanding of these cohomology groups for hyperbolic knots in S3

can be viewed as an approach to the Menasco-Reid conjecture [23], which
states that no hyperbolic knot complement in S3 contains a closed embedded
totally geodesic surface. In particular, computations similar to the ones in
this paper, [14], and [23] can be used to verify the conjecture for knots of
up to 10 crossings. A related rigidity theorem for closed manifolds obtained
by hyperbolic Dehn surgery is proved in [28].

We do not know if the cohomology classes constructed in the main theo-
rem are integrable. An easy calculation shows that the quadratic obstruction
to integrability of [c] ∈ H1(π,R4

1) vanishes in general, but recent examples
of Kapovich and Millson [15] lead one to believe that there may be higher
order obstructions in some cases.
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[13] M.È. Kapovich, Deformations of representations of fundamental groups of three-
dimensional manifolds, Siberian Math. J., 32(1) (1991), 33-38.

[14] , Deformations of representations of discrete subgroups of SO(3, 1), Math.
Ann., 299(2) (1994), 341-354.
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