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We model interfaces between immiscible fluids as cost-mini-
mizing networks, where “cost” is a weighted length. We con-
sider conjectured necessary and sufficient conditions for when
a planar cone is minimizing. In some cases we give a proof;
in other cases we provide a counterexample.

1. Introduction.

In planar networks of soap films, segments meet in triples to form 120◦ an-
gles. Such angles are characteristic of nodes in length-minimizing networks.
In this paper, we study the geometry of cost-minimizing planar networks,
where we define cost to be weighted length. These networks have a much
richer geometry than do soap-film networks. In particular, cost-minimizing
networks can meet in any number around a node, with the angles between
segments determined by their relative costs.

For examples of cost-minimizing networks, we look largely to immiscible
fluids. When two immiscible fluids come together in a region of the plane,
they meet to form an interface. This interface has an associated energy pro-
portional to its length, which gives rise to a “cost constant.” When several
fluids come together, they form a network of interfaces, each interface with
a specific cost constant. The fluids arrange themselves so as to minimize the
total energy or cost. (Other generalizations of length-minimizing networks
can be found in the surveys [HRW] and [IT].)

In general, one might impose area constraints on the regions occupied by
the fluids. For this paper, though, we focus on the local behavior — how
fluids come together at nodes. So we assume our networks are in the unit
disk, and area constraints are replaced by constraints on how the regions
meet the boundary circle. Our candidates for local minimizers are simply
cones in the disk.

The conjecture.
We consider conjectured conditions for a cone to be minimizing. Conjecture
2.5 [FMMP, Conj. 2.7] states that a cone is minimizing if and only if
a certain condition holds. This “calibration” condition involves placing a
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point for each fluid, with constraints on the vectors between points. Gary
Lawlor and Frank Morgan proved that calibration is always sufficient for
minimization and necessary if all fluids are present (Theorem 2.2). They
leave open the question of whether the condition remains necessary if one
allows additional fluids. For simple cases, we prove that it does (Theorem
4.4). In general, however, we prove by counterexample that it does not
(Theorem 4.6). The primary tool that we use to prove the conjecture in
simple cases is Theorem 2.9, in which we consider an uncalibrated cone and
construct a cheaper competing network. To prove the counterexample, we
combine a modified calibration argument with an estimate on competing
networks obtained by filling regions with alternate fluids.

In the simplest case we consider, there is only one fluid absent from the
minimizing cone. In this case, we show that if the cone were not calibrated
we could insert a triangle of the extra fluid and decrease cost as in Figure 1.

Figure 1. Inserting a triangular region of another fluid can
reduce cost.

The case of two fluids absent introduces new complexities, and includes
a counterexample. When the conjecture does hold, the competing network
required by Theorem 2.9 takes the form of two triangles sharing an edge as
in Figure 2. The counterexample arises when the two new fluids are only
helpful in reducing cost by bordering diagonally opposite original fluids.

When more than two fluids are absent, the problem becomes considerably
more complicated than the previous cases, even for just three fluids present
and three absent [FMMP, §7]. In some subcases, it appears that we can
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Figure 2. Inserting two triangular regions of other fluids
can reduce cost.

prove that Conjecture 2.5 holds; in others, there will be counterexamples
analogous to Theorem 4.6.
The counterexample.
A counterexample to Conjecture 2.5 must involve at least two absent and
four present fluids (Theorem 4.4 and Remark 4.5). In fact, we use such a
network; it is easy to show that the cone of our counterexample cannot be
calibrated.

To show that our cone is minimizing, we need to show that adding the
two absent fluids cannot reduce cost. We combine a modified calibration
argument with calculations of the cost savings resulting from flooding com-
peting networks with alternative fluids. The proof we give in this paper
relies heavily on the flooding arguments to obtain contradictory estimates
on interface lengths. An alternate proof involves a more elaborate cali-
bration calculation, also taking into account the angles made by network
boundaries [GNY, Thms. 1 and 2].

Our proof also helps to understand why a counterexample with two absent
fluids requires at least four present fluids. The final contradiction we arrive
at is that one extra fluid has to connect two diagonally opposite regions,
and the other extra fluid has to connect the other diagonal pair. But this
would require fluids to overlap, which is impossible.
Previous work.
The small Geometry Groups 1995 [BTW] and 1996 [EMN] studied bub-
bles of immiscible fluids. Their work dealt with minimizing cost under area
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Figure 3. A network of six fluids, four of which are present
(R5, R6 = ∅).

constraints. By focusing on local behavior instead of entire bubbles, we
avoid some of the difficulties they encountered. Brian Elieson [E] obtained
sufficient conditions for a bound on the number of fluids meeting at a point.

Acknowledgments. The authors were the members of the 1997 and 1998
Geometry Groups of the Williams College small undergraduate research
program, a National Science Foundation site for Research Experiences for
Undergraduates, directed by Deborah Bergstrand and Thomas Garrity. Pro-
fessor Frank Morgan advised both groups. We would like to thank Ken
Brakke, Ronald L. Graham, Jon Kravis, Sam Payne, and Craig Wester-
land for their helpful conversations. The students at the SUNY Geneseo
Workshop gave some motivation to Conjecture 2.5 by solving some sym-
metric cases. This work has been partially supported by National Science
Foundation grants.

2. Immiscible Fluids.

Section 2 begins with definitions, known existence and regularity (Theorem
2.1), and calibration. Our Theorem 2.9 uses calibration to prove that certain
perturbations of a given network have less cost.

Definitions.
We consider disjoint, relatively open regions R1, . . . , Rn, associated with
fluids F1, . . . , Fn, in the closed unit disk D. These regions are separated by
a network N of C1 curves meeting only at their endpoints at finitely many
nodes, with

⋃
Ri = D \N . (See Figure 3.)

Each region has a prescribed boundary arc Si = Ri ∩ ∂D, consisting
of finitely many intervals. Fixed assignments of arcs Si to fluids Fi are
called boundary conditions. Each arc Si may be empty, in which case Ri

may or may not be empty. We will say that fluid Fi is present or absent
according as Ri is nonempty or empty. In general, Ri may have several
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components. For two regions Ri and Rj in a network N , we define the
interface Nij = ∂Ri ∩ ∂Rj , oriented as the boundary of Ri. We may think
of N as either the union or the collection of interfaces Nij , as dictated by
context.

To every pair of fluids Fi, Fj we assign a cost constant aij = aji > 0. We
seek networks that minimize an energy or cost

cost(N) =
∑
i<j

aij · length(Nij).(1)

We assume that the cost constants for any fluids Fi, Fj , Fk satisfy a triangle
inequality

aik ≤ aij + ajk.(2)

(Otherwise, replacing Nik by an infinitesimal layer of Fj would reduce cost.)

Existence and regularity of cost-minimizing networks.
Theorem 2.1 says that minimizing networks exist and consist of finitely many
line segments.

Theorem 2.1 ([M2, Thm. 3.3 and Cor. 4.5]). Let F1, . . . , Fn be a set of
fluids with cost constants aij that satisfy the strict triangle inequality (aik <
aij + ajk). For given boundary conditions, there exists a cost-minimizing
network N . Furthermore, N consists of finitely many line segments.

Frank Morgan [M2] and Brian White [W1], [W2] consider the more
general problem with area constraints in the context of flat chains with co-
efficients in a group representing the fluids. Morgan uses geometric measure
theory to prove that the minimizer must consist of constant-curvature arcs.
In our problem, where we do not place area constraints on the fluids, the
constant-curvature arcs are of course straight lines. Brian Elieson [E] at-
tempts a direct proof of the existence of straight-line minimizing networks,
although he succeeds only assuming a bound on the number of nodes.

Calibration.
Consider a network N , consisting of linear interfaces Nij . For each Nij 6= ∅,
construct a unit normal vector nij ⊥ Nij , pointing from Ri into Rj . We say
that points p1, . . . , pn calibrate N if

pj − pi = aijnij when Nij 6= ∅, and(3)
|pj − pi| ≤ aij when Nij = ∅.(4)

From now on we focus our attention on the local behavior of a network in
the neighborhood of a node, i.e., a cone, consisting of line segments meet-
ing at the origin. Gary Lawlor and Frank Morgan [LM] prove that such
networks minimize cost if and only if they are calibrated, assuming that all
fluids are present.
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Theorem 2.2 ([LM, Thms. 2.1 and 2.5]). Let N be a cone. If N is cali-
brated, it is cost minimizing. Conversely, if N is cost minimizing and each
fluid is present, then N can be calibrated.

Remark 2.3. If each fluid is present, then by (3) the points pi are unique,
up to an additive constant.

Lemma 2.4. Consider a cone N calibrated by points p1, . . . , pn. Then the
polygon p1 · · · pn is strictly convex and each Ri is connected.

Proof. Since N is calibrated and hence minimizing, it follows easily that
the angle between consecutive lines of N is less than 180◦. Since pj − pi is
normal to Nij , it follows that p1 · · · pn is strictly convex and that each Ri is
connected. �

The conjecture we explore in this paper seeks to extend Theorem 2.2 and
show that minimizing always implies calibrated.

Conjecture 2.5. A minimizing cone can be calibrated.

Remark 2.6. For one fluid present, the conjecture is trivially true. For two
fluids present, the triangle inequality implies the conjecture [E, Prop. 6.1].
Thus, we will only consider cases with at least three fluids present.

Remark 2.7. Conjecture 2.5 holds for length-minimizing networks, when
all cost constants aij = 1. It is well known that for such networks, segments
meet in triples to form 120◦ angles ([HRW, §1.3, Thm. 1.1, p. 6], [IT,
Ch. 3, Thm. 2.1, p. 120]). Such cones have an essentially unique calibration
consisting of an equilateral triangle, and points for the absent fluids can be
placed anywhere inside this triangle.

We will later show that this conjecture is false (Theorem 4.6), which leads
us to the following open question.

Question 2.8. When can a minimizing cone be calibrated?

Competing networks.
The following theorem shows how to reduce the cost of certain networks

by inserting absent fluids at a node. It will be used to prove in Theorems
3.1 and 4.4 that certain uncalibrated cones are not minimizing.

Theorem 2.9. Consider a smooth family {N(t)} of networks of line seg-
ments Nij(t), 0 ≤ t ≤ T all satisfying the same boundary conditions, such
that unless i, j ≤ m < n, Nij(0) is empty and for all 0 < t1, t2 ≤ T , Nij(t2)
is parallel to Nij(t1). Suppose N(0) is calibrated by p1, . . . , pm for fluids
F1, . . . , Fm, and suppose there are points pm+1, . . . , pn such that

• when i, j ≤ m and Nij(t) 6= ∅, then (pj − pi) · nij(t) = aij cos θij(t)
(where θij(t) is typically some small angle and θij(0) = 0 because N(0)
is calibrated by p1, . . . , pn); and
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• when i > m or j > m and Nij(t) 6= ∅, then pj − pi = αijnij, where
αij ≥ aij and αbc > abc for some Nbc(t) of length t. (The normal nij,
and therefore αij as well, is independent of t, since Nij(t2) is parallel
to Nij(t1).)

Then, for small positive t, cost(N(t)) < cost(N(0)). In particular, N(0) is
not a minimizing network.

Proof. Let |Nij(t)| denote the length of Nij(t). Then

cost(N(0)) =
∑

i<j≤m

aij |Nij(0)|

=
∑

i<j≤m

fluxNij(0)(pj − pi)

=
m∑

i=1

fluxSi(pi)

=
n∑

i=1

fluxSi(pi)

=
∑

i<j≤n

fluxNij(t)(pj − pi),

and

cost(N(t)) =
∑

i<j≤n

aij |Nij(t)|

=
∑

i<j≤m

aij |Nij(t)|+
∑
i<j
m<j

aij |Nij(t)|.

Combining these two equations, we get

cost(N(t))− cost(N(0)) =
∑

i<j≤m

(aij |Nij(t)| − fluxNij(t)(pj − pi))

+
∑
i<j
m<j

(aij |Nij(t)| − fluxNij(t)(pj − pi))

=
∑

i<j≤m

aij(1− cos θij)|Nij(t)|

+
∑
i<j
m<j

(aij − αij)|Nij(t)|.

Now we can calculate the derivative of cost(N(t)) at t = 0. Here, we
must recall that θij(0) = 0. Recall also that |Nij(0)| = 0 if j > m. Since
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|Nij |′(0) ≥ 0 for all j > m, therefore every (aij − αij)|Nij |′(0) ≤ 0. Further-
more, since some αbc > abc, this (abc − αbc)|Nbc|′(0) < 0. Hence

d

dt

∣∣∣∣
t=0

cost(N(t))

=
d

dt

∣∣∣∣
t=0

cost(N(t))− cost(N(0))

=
∑

i<j≤m

aij

(
sin θij(0) θ′ij(0) |Nij(0)|

+ (1− cos θij(0)) |Nij |′(0)
)

+
∑
i<j
m<j

(aij − αij)|Nij |′(0)

=
∑
i<j
m<j

(aij − αij)|Nij |′(0)

< 0.

Therefore, for sufficiently small t > 0, N(t) is a cheaper network than N(0).
�

3. One fluid absent.

Theorem 3.1 considers a minimizing network N with one fluid absent —
say Fn — and applies Theorem 2.9 to prove that N can be calibrated. By
Theorem 2.2, we already know there is a calibration p1, . . . , pn−1 for fluids
F1, . . . , Fn−1. To place pn within ain of pi for i ≤ n − 1, we just need to
know that the intersection of the disks Di = D(pi, ain) is nonempty (see
Figure 4).

Theorem 3.1. Let N be a minimizing cone. If at most one fluid is absent,
then N can be calibrated.

Proof. If no Ri is empty, the result reduces to Theorem 2.2. Thus we may
suppose without loss of generality that Rn is empty. We will show that if
N cannot be calibrated, then it must not be a minimizer, by constructing a
cheaper network with a nonempty Rn.

Suppose N cannot be calibrated. By definition, the intersection of the
disks Di = D(pi, ain) is empty. Then, by Helly’s Theorem [Lay, Thm.
6.2], there exist 1 < b < c ≤ n − 1 (possibly after relabeling) such that
D1 ∩Db ∩Dc = ∅. Place pn in the region omitted by the three disks; note
that pn ∈ 4p1pbpc.

For small t > 0, construct a triangle

T (t) = {N1n(t), Nbn(t), Ncn(t)},
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p3
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Figure 4. The disks D(pi, ai4) must intersect pairwise be-
cause of the triangle inequality. However if all three have no
common intersection, point p4 cannot be placed close enough
to the others to satisfy (4). So the corresponding three-fluid
network will be minimizing if and only if this common inter-
section of the three disks D(pi, ai4) is nonempty; this happens
if and only if ∠p3p2q23 + ∠p1p2q12 ≥ ∠p1p2p3.

where these Nin(t) are normal to the segments pipn as in Figure 5 and
t = |N1n(t)|. Since pn ∈ 4p1pbpc, ∂T (t) consists of, in counterclockwise
order, N1n(t), Nbn(t), and Ncn(t). Translate T (t) so that its center of mass
lies at the origin; then T (t) shrinks to the origin as t → 0.

Now add segments Ni(i+1)(t) connecting Ni(i+1) ∩ ∂D (the prescribed
boundary) to the appropriate vertices of T (t). For 1 ≤ i < b, this will
be N1n(t) ∩ Nbn(t); for b ≤ i < c, this will be Nbn(t) ∩ Ncn(t); and for
c ≤ i ≤ n− 1, this will be Ncn(t) ∩N1n(t), as in Figure 5.

Then we have a family of networks N(t) = T (t)∪ {Ni(i+1)(t)}, with fluid
Fn filling the interior of T (t). It follows by Theorem 2.9 that N = N(0) is
not minimizing. �
An algebraic criterion for one of four fluids absent.
Theorems 2.2 and 3.1 (with n = 3) establish necessary and sufficient con-
ditions for whether a calibrated cone N separating three fluids can be im-
proved by adding a fourth fluid. Theorem 3.2 reduces those conditions to
an algebraic inequality on the cost constants aij .

Theorem 3.2. Consider a minimizing network N consisting of three line
segments meeting at a node, separating fluids F1, F2, F3. Its cost can be
reduced by adding a fourth fluid if and only if

(5) cos−1

(
a2

23 + a2
24 − a2

34

2a23a24

)
+ cos−1

(
a2

12 + a2
24 − a2

14

2a12a24

)
< cos−1

(
a2

12 + a2
23 − a2

13

2a12a23

)
.
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F1

pb

Nbn

N(b−1)b
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Figure 5. Starting with an uncalibrated network (left), we
know that 4p1pbpc contains pn (bottom). Hence we can con-
struct a comparison network (right) containing the triangle
T (t) = {N1n(t), Nbn(t), Ncn(t)}. (Nij(t) separates fluids Fi

and Fj ; for simplicity we have dropped the “(t)”s in the di-
agram.) This comparison network beats the original network.

Proof. In light of Theorems 2.2 and 3.1, it suffices to show that inequal-
ity (5) holds if and only if the essentially unique calibration p1, p2, p3 for
fluids F1, F2, F3 cannot be extended to a calibration p1, . . . , p4 for fluids
F1, . . . , F4, i.e., if and only if the intersection E of the three disks D(pi, ai4)
is empty.

Letting qij = ∂D(pi, ai4) ∩ ∂D(pj , aj4) (see Figure 4), we see that this
occurs if and only if

∠p3p2q23 + ∠p1p2q12 < ∠p1p2p3.

By the law of cosines, this reduces to (5). �

Remark 3.3. In the symmetric case where a12 = a13 = a23 = 1 and a14 =
a24 = a34 = a, the inequality (5) reduces to

2 cos−1

(
1
2a

)
< cos−1

(
1
2

)
=

π

3
.(6)

This holds only when cos−1
(

1
2a

)
< π

6 , or a < 1√
3
. Students at the SUNY

Geneseo Student Workshop in April 1997 [M1] proved this case.
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The Geneseo students also considered a symmetric case of adding a fifth
fluid to a minimizing cone separating F1, F2, F3, F4. Here, a12 = a23 =
a34 = a34 = 1, a13 = a24 =

√
2, and ai5 = a. In this case, the original

network can be made cheaper by adding the fifth fluid if a < 1√
2
, and (3)

and (4) can be satisfied if a ≥ 1√
2
. Extending the results of this section to

that case would be complicated.

4. Two fluids absent.

Section 4 considers a minimizing cone N of n fluids, with two fluids absent,
say Fn−1 and Fn. Theorem 4.4 proves that N can be calibrated, with one
possible exception. By Remark 2.6 we can assume n ≥ 5; the exception
first occurs when n = 6 (four fluids present, two absent). Theorem 4.6
will later show that the exceptional case yields a counterexample. Before
showing that minimizing implies calibrated (with the stated exception), we
must first introduce a few concepts.

“Eyes”.
An eye is the intersection of (closed) disks. An arc of the eye is a circular
arc making up part of the boundary of the eye. A vertex of the eye is an
intersection of two arcs.

Define the two eyes

En−1 =
n−2⋂
i=1

D(pi, ai(n−1)) and En =
n−2⋂
i=1

D(pi, ain).

We will call pi a cost-realizing point for pn ∈ En if |pi − pn| = ain.
We wish to show that (with the stated exception) any minimizing network

can be calibrated. To do this, we will show that any network that cannot
be calibrated can be beaten. By Theorem 2.2, any network without a cali-
bration for F1, . . . , Fn−2 can be beaten (using only fluids F1, . . . , Fn−2). By
Theorem 3.1, any network with En−1 = ∅ or En = ∅ can be beaten (using
only n− 1 fluids). Therefore, for the purposes of the following lemmas, we
assume that

• p1, . . . , pn−2 calibrate F1, . . . , Fn−2; and
• En−1 and En are nonempty.

Let us place pn−1 ∈ En−1 and pn ∈ En so as to minimize |pn−1 − pn|. If
there is no calibration of N for all n fluids F1, . . . , Fn, then

|pn−1 − pn| > a(n−1)n.(7)

Lemma 4.1. The points pn−1 ∈ En−1 and pn ∈ En which minimize
|pn−1 − pn| lie on vertices of En−1 and En.

Proof. Let α = |pn−1 − pn|. Clearly D(pn−1, α) and En meet only at a single
point, which is pn. If pn is on the interior of the pi-arc of the eye En, then
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the two circles circ(pn−1, α) and circ(pi, ain) are tangent. It follows that
pn ∈ pipn−1. By inequality (7), α > a(n−1)n and

ai(n−1) ≥ |pi − pn−1|
= |pi − pn|+ |pn − pn−1|
= ain + α

> ain + a(n−1)n,

contradicting the triangle inequality for cost constants. So pn cannot be in
the interior of an arc on the eye, and it must be at a vertex. Similarly, pn−1

must be on a vertex of En−1. �

Lemma 4.2. Suppose that pn−1 ∈ En−1 and pn ∈ En are placed as close
together as possible. Then there exist two cost-realizing points pi and pj for
pn−1 such that pn−1 ∈ 4pipjpn.

Proof. Consider the convex hull of pn along with all of the cost-realizing
points for pn−1. (By Lemma 4.1 there are at least two cost-realizing points
for pn−1.) If pn−1 were not inside this convex hull, moving it closer to the
nearest point of the convex hull would decrease the distance between pn−1

and all of the points involved in the convex hull (i.e., pn and the cost-realizing
points). Since we chose pn−1 ∈ En−1 to be as close to pn as possible, this
cannot happen. Hence pn−1 lies inside the convex hull of pn and the cost-
realizing points. Since this is just the union of triangles formed by pn and
pairs of cost-realizing points, there is a pair {pi, pj} of cost-realizing points
such that pn−1 ∈ 4pnpipj . �

We will say that pn−1 lies on the pi-pj vertex of its eye En−1 if pn−1 ∈ En−1

and pn ∈ En are placed as closed together as possible and pi and pj satisfy
the conclusion of Lemma 4.2, i.e., if pi and pj are cost-realizing points for
pn−1 such that pn−1 ∈ 4pipjpn.

Lemma 4.3. Suppose pn−1 ∈ En−1 and pn ∈ En have been chosen to mini-
mize |pn−1 − pn|. Then pn−1 and pn cannot both be on pb-pc vertices of their
eyes.

Proof. If both pn−1 and pn are on pb-pc vertices of En−1 and En, then by
Lemma 4.2, pn−1 ∈ 4pbpcpn and pn ∈ 4pbpcpn−1. But this can hold only
if pb, pc, pn−1, pn are collinear, which cannot happen by triangle inequality
considerations similar to those in Lemma 4.1. It follows that pn−1 and pn

cannot both be on pb-pc vertices. �

Two fluids absent.
We can now state and prove our theorem about two fluids absent. It is here
that we encounter a counterexample to Conjecture 2.5. We do, however,
prove that many types of minimizing networks can be calibrated. Theorem
4.6 provides a counterexample to Conjecture 2.5 at the end of the section.
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Suppose that pn−1 ∈ En−1 and pn ∈ En are placed as close together as
possible, with pn−1 on the pb-pc vertex of En−1 and pn on the pd-pe vertex
of En. Let us renumber p1, . . . , pn−2 in a counterclockwise order, so that
(without loss of generality) b < c and d < e. We will say that pn−1 and pn

are on opposite vertices of their eyes if b < d < c < e.

Theorem 4.4. Consider a minimizing cone N . If at most two regions Ri

are empty, then N can be calibrated, with the following possible exception:
placing the points — say, pn−1 and pn — for two absent fluids as close as
possible while still close enough to the essentially uniquely placed other pi

puts them on opposite vertices of the eyes En−1 and En.

Remark 4.5. When n = 5, there are no opposite vertices for pn−1 and pn

to lie on since all fluids in the original network are adjacent. However, when
n ≥ 6, this situation can occur, and Theorem 4.6 provides a counterexample
to Conjecture 2.5.

Proof. If at most one Ri is empty, the result reduces to Theorem 3.1. Thus
we may suppose without loss of generality that regions Rn−1 and Rn are
empty. We proceed by contradiction, supposing that N cannot be calibrated
and that the exceptional condition does not hold.

Recall that p1, . . . , pn−2 are the essentially unique calibration for fluids
F1, . . . , Fn−2 and that pn−1 ∈ En−1 and pn ∈ En have been chosen to mini-
mize the distance between them. To derive a contradiction, we will assume
that inequality (7) holds and then produce a family {N(t)} of competing
networks of less cost.

By Lemma 4.2, pn−1 lies on a pb-pc vertex and pn lies on a pd-pe vertex.
Relabel if necessary so that p1, . . . , pn−2 are in counterclockwise order (so
the cone N consists of interfaces Ni(i+1) with indices taken modulo n − 2)
with 1 = b < c and d < e. By Lemma 4.3, we may take b < d as well. We do
not consider b < d < c < e, so we have only the cases where b < c ≤ d < e.

Now, we know that the polygon p1 · · · pn−2 is convex by Lemma 2.4. Also,
pn−1 ∈ 4p1pcpn and pn ∈ 4pdpepn−1 by Lemma 4.2. Hence the four poly-
gons at the top of Figure 6,

P1 = p1p2 · · · pc−1pcpn−1,

P2 = pcpc+1 · · · pd−1pdpnpn−1,

P3 = pdpd+1 · · · pe−1pepn, and
P4 = pepe+1 · · · pn−2p1pn−1pn,

are all convex, regardless of whether c = d (in which case P2 is just a triangle)
or c < d.

For t > 0 small, construct a split quadrilateral

Q(t) = {N1(n−1)(t), Nc(n−1)(t), N(n−1)n(t)} ∪ {N(n−1)n(t), Ndn(t), Nen(t)}
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N(e−1)e

N(c−1)c
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Fd
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Fn−1
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N(n−1)n

N(e−1)e

Nen

N(d−1)d
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N(c−1)c

Ndn

Nd(d+1)
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Ne(e+1)
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p1 = pb
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P1

P3

pn

P2

pe

pc = pd

P1

P4

pn−1

pn

p1 = pb

Figure 6. Since the polygons P1, P2, P3, P4 (top) are con-
vex, we can construct a comparison network containing the
quadrilateral Q(t) (bottom). (Nij(t) separates fluids Fi and
Fj ; for simplicity we have dropped the “(t)”s in the diagram.)
This works regardless of whether c = d (left) or c < d (right).

composed of two triangles sharing an edge, with these Nij(t) normal to the
segments pipj (see Figure 6, bottom) and t =

∣∣N(n−1)n(t)
∣∣. The convexity

of polygons Pi ensures that the two triangles

4n−1(t) = {N1(n−1)(t), Nc(n−1)(t), N(n−1)n(t)}
4n(t) = {N(n−1)n(t), Ndn(t), Nen(t)}

are disjoint except for their shared edge N(n−1)n(t); and also ensures that
∂Q(t) consists of, in counterclockwise order, the edges N1(n−1)(t), Nc(n−1)(t),
Ndn(t), Nen(t). Furthermore, translate Q(t) so that its center of mass lies
at the origin; then, as t → 0, Q(t) shrinks to the origin.

Now, add segments Ni(i+1)(t) connecting Ni(i+1) ∩ ∂D (the prescribed
boundary) to the appropriate vertices of Q(t). For 1 ≤ i < c, this will
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F3

F2

F4

S4

F1

S2

S3

S1

Figure 7. A counterexample to Conjecture 2.5, consisting
of four present fluids and two absent. The network is mini-
mizing but cannot be calibrated.

be N1(n−1)(t) ∩ Nc(n−1)(t); for c ≤ i < d (if such i exist), this will be
Nc(n−1)(t) ∩ Ndn(t); for d ≤ i < e, this will be Ndn(t) ∩ Nen(t); and for
e ≤ i ≤ n− 2, this will be Nen(t) ∩N1(n−1)(t). (See Figure 6, bottom.)

Then we have a family of networks N(t) = Q(t)∪ {Ni(i+1)(t)}, with fluid
Fn−1 filling the interior of 4n−1(t) and fluid Fn in the interior of 4n(t). It
follows by Theorem 2.9 that N = N(0) is not minimizing. �

A counterexample to the conjecture.
Finally, we prove a counterexample to Conjecture 2.5.

Theorem 4.6. Consider the network N consisting of four straight lines
meeting at a node separating a disc into four regions of fluids F1, F2, F3,
F4 as in Figure 7. There exist cost constants aij (1 ≤ i, j ≤ 6) satisfying
the strict triangle inequality such that N cannot be calibrated, but is still
minimizing.

Proof. We define six points p1, p2, . . . , p6 in R2 as in Figure 8:

p1 = (cos 30◦, 2)
p2 = (0, 1.5)
p3 = (0, 0.5)
p4 = (cos 30◦, 0)
p5 = (cos 30◦ − 0.11, 0.94)
p6 = (cos 30◦ − 0.11, 1.06).

The cost constants are given by aij = |pi − pj |+g(i, j)ε, where ε is a small
positive constant chosen to be 10−9 and g(i, j) is defined as follows:

g(i, j) =


60000 if (i, j) = (1, 5), (3, 5), (2, 6) or (4, 6)
−1 if (i, j) = (5, 6)
0 otherwise.
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p5

p1

p2

a25

a45

p4

p3

p6

Figure 8. The points p1, p2, p3, p4 calibrate the network for
four fluids, but an attempted placement of a point q5 for fluid
F5 must lie below the dotted line. The heavy line is the axis
of symmetry.

The numerical values of the cost constants are given below.

a12 = a23 = a34 = 1

a13 = a24 =
√

3 ≈ 1.73205080757

a14 = 2

a15 = a46 ≈ 1.06575226327

a16 = a45 ≈ 0.94641428561

a25 = a36 ≈ 0.94083708003

a26 = a35 ≈ 0.87480248277

a56 = 0.119999999.

It is easy to check by hand that strict triangle inequalities are satisfied.
Alternatively, observe that the cost constants are equal to the Euclidean
distances between corresponding points, sometimes with small corrections.
The triangle inequality for the Euclidean metric thus implies strict triangle
inequality for our cost constants with ε small, since no three points pi, pj , pk

lie on the same line.
Now, we claim that no calibration for F1, F2, . . . , F6 exists for network N .

For suppose that {q1, q2, . . . , q6} calibrated N with respect to F1, F2, . . . , F6.
Since aij = |pi − pj | for 1 ≤ i < j ≤ 4, the placing of points q1, q2, q3 and q4 is
essentially unique. So we may assume q1, q2, q3, q4 coincide with p1, p2, p3, p4,
respectively, as in Figure 8. Since a25 = |p2 − p5| and a45 = |p4 − p5|, we
conclude that q5 lies (horizontally) below p5. Similarly, q6 must lie above p6.
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Since p5 and p6 lie on the same vertical line, |q5 − q6| ≥ |p5 − p6| = a56 +ε >
a56, and it follows that N cannot be calibrated.

The difficult part is to show that N is cost-minimizing for F1, F2, . . . , F6.
Suppose not; let M be a minimizing network. Since by Theorem 2.2 N is
minimizing for fluids {F1, F2, F3, F4, F5} and for {F1, F2, F3, F4, F6}, both
F5 and F6 must be present in the network M .

In the network M with interfaces Mij , let Ri denote the region of fluid
Fi.

The main technique of our proof will be a process called flooding. We
consider the alternative network formed when we flood a particular region
of M with a different fluid. Since M is already cost-minimizing, this process
cannot reduce cost. We will use this fact to generate bounds on the lengths
of various interfaces.

The next step of our proof is to show that the region R1 of fluid F1 is
connected. Of course, the boundary conditions force R1 to be nonempty.
But if there were a second component of R1 disjoint from S1, then flooding
it with F6 would reduce cost, since aj6 < a1j . It follows that there is only
one connected region of fluid F1. Similarly, we see that R2, R3 and R4 are
all connected (by flooding with F6, F5 and F5, respectively).

Now the following Lemma 4.7 yields a contradiction, as desired. �

Lemma 4.7. In the minimizing network M (with both F5 and F6 present),
• Some component of R5 is adjacent to both R2 and R4.
• Some component of R6 is adjacent to both R1 and R3.

Proof. To begin with, we need a few definitions. For each region Ri, let
|Mi| = |Mi5|+ |Mi6| denote the total length of the boundary that Ri shares
with the two additional fluids F5 and F6. Define the three numerical con-
stants:

C1 = g(1, 5) = g(3, 5) = g(2, 6) = g(4, 6) = 60000,

C2 = 1 +
a14 + a23 − 2a45

2a35 − a13
≈ 64.07174803043, and

C3 = max{a16 − a15, a26 − a25, a36 − a35, a46 − a45} ≈ 0.11933797766.

Now, suppose that no component of R5 is adjacent to both R2 and R4.
(The other case can be dealt with symmetrically.) First we use flooding to
show that |M56| is relatively small.

By flooding R5 with fluid F6, we find that

|M56| ≤ C3
|M1|+ |M2|+ |M3|+ |M4|

a56
.(8)

By flooding R5 ∪R6 with F1 and then with F3, we calculate that

|M1|+ |M2|+ |M3|+ |M4| ≤ C2 (|M2|+ |M4|).(9)
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Let U be a connected component of R5 that is adjacent to R2. By as-
sumption U is not adjacent to R4, so by flooding U with F6 and using
|U1|+ |U3|+ |U6| ≥ |U2| we find that

|U1|+ |U3| ≥ a56 + a25 − a26

a56 + a36 − a35
|U2| ≥

a56 − C3

a56 + C3
|U2|,

where |Ui| denotes the length of the interface ∂U ∩ ∂Ri. Of course, this
inequality still holds (trivially) for a connected component U of R5 that is
not adjacent to R2, since then |U2| = 0. So by summing over all components
of R5, we get

|M25| ≤ a56 + C3

a56 − C3

(
|M15|+ |M35|

)
.(10)

Similarly, we obtain

|M45| ≤ a56 + C3

a56 − C3

(
|M15|+ |M35|

)
.(11)

It follows from (8) and (9) that

|M56| ≤ C3

a56
C2

(
|M25|+ |M26|+ |M45|+ |M46|

)
.

Therefore by (10) and (11),

|M56| ≤ C2C3

a56

(
|M26|+ |M46|+ 2

a56 + C3

a56 − C3

(
|M15|+ |M35|

))
(12)

≤ C2C3

a56
· 2 a56 + C3

a56 − C3

(
|M26|+ |M46|+ |M15|+ |M35|

)
≤ C1

(
|M26|+ |M46|+ |M15|+ |M35|

)
.

Finally, we use a calibration-style calculation to obtain a contradictory
estimate that |M56| is relatively large.

cost(N) =
∑

i<j≤4

aij |Nij | =
∑

1≤i<j≤4

fluxNij (pj − pi)

=
4∑

i=1

fluxSi(pi) =
6∑

i=1

fluxSi(pi)

=
∑

1≤i<j≤6

fluxMij (pj − pi)

≤
∑

1≤i<j≤6

|pi − pj | · |Mij |.
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Since M was chosen to be cost-minimizing,

0 > cost(M)− cost(N)

≥
∑

1≤i<j≤6

aij |Mij | −
∑

1≤i<j≤6

|pi − pj | · |Mij |

=
∑

1≤i<j≤6

g(i, j) ε |Mij |

=
(
|M26|+ |M46|+ |M15|+ |M35|

)
C1ε− |M56|ε,

contradicting Eq. (12). �

Remark 4.8. If instead we set

g(i, j) =

{
−1 if (i, j) = (5, 6)
0 otherwise,

then N still cannot be calibrated, but N is not minimizing for F1, F2, . . . , F6.
So a non-calibrated cone for which placing points for the two absent fluids
as close together as possible puts them on opposite vertices of their eyes
(i.e., an exception to Theorem 4.4) may or may not be minimizing.

Remark 4.9. Kenneth Brakke ([B1], [B2], [B3]) has considered more gen-
eral variable-coefficient calibrations than the constant-coefficient calibra-
tions we use. He also considers more general networks (called real flat
chains), where fluids are allowed to have fractional densities. We suspect
that the network of our counterexample is not minimizing among these real-
coefficient networks, and therefore cannot be calibrated even by variable-
coefficient flows.

Remark 4.10. For further details on the proof of Theorem 4.6, as well as
an alternate counterexample to Conjecture 2.5 whose proof is based on a
more complicated calibration-style calculation that keeps track of angles in
addition to lengths, see [GNY].
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