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Let G be a split group over a locally compact field F with
non-trivial discrete valuation. Employing the structure theory
of such groups and the theory of Coxeter groups, we obtain a
general formula for the decomposition of double cosets P1σP2

of subgroups P1, P2 ⊂ G(F ) containing an Iwahori subgroup
into left cosets of P2. When P1 and P2 are the same hyperspe-
cial subgroup, we use this result to derive a formula of Iwahori
for the degrees of elements of the spherical Hecke algebra.

1. Introduction.

Let G be a semisimple algebraic group which is split over a locally compact
field F with non-trivial discrete valuation and let I be an Iwahori subgroup
of G(F ). In [6], Iwahori and Matsumoto show that the double cosets in
I\G(F )/I are indexed by the elements of the extended affine Weyl group W̃

of G, and for w in W̃ , they exhibit an explicit set of representatives for the
left cosets of I in IwI/I. They also show that the number of single cosets
of I in IwI/I is ql(w), where q is the cardinality of the residue field of F and
l is the standard combinatorial length function on W̃ .

Let OF be the ring of integers of F and let K ⊂ G(F ) be a hyper-
special subgroup, that is, a subgroup isomorphic to G(OF ), where G is a
smooth group scheme over OF with general fiber G. In [5], Iwahori gives
a formula for the number of left cosets of K contained in a double coset
in K\G(F )/K (i.e., the degree of the characteristic function of this double
coset as an element of the spherical Hecke algebra), implicitly making use of
the decomposition in [6] and the fact that K contains an Iwahori subgroup.
Suppose that π is a uniformizer of F . The double cosets in K\G(F )/K are
indexed by the dominant co-characters of a maximal torus of G via the bi-
jection λ 7→ Kλ(π)K. Let W0 be the Weyl group of G and W λ

0 the stabilizer
of λ in W0. Then there exists a unique set [W0/W λ

0 ] ⊂ W0 of representatives
of cosets of W λ

0 of minimal length. Iwahori states that the index

[Kλ(π)K : K] = ql(σλ)
∑

τ∈[W0/W λ
0 ]

ql(τ),
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where σλ is a certain element of W̃ associated with the co-character λ (see
Section 6).

In this paper, we give a summary of the above results and generalize them,
finding representatives for the left cosets of P2 in P1σP2, where P1 and P2

are subgroups of G(F ) containing an Iwahori subgroup I. To accomplish
this, we make use of the structure theory of groups over fields with discrete
valuation (as summarized in Section 3). Because of the close connection
between subgroups of G(F ) of the above type and subgroups of the affine
Weyl group (as given in [6]), the proof of the coset decomposition formula
necessitates the use of the theory of Coxeter groups to prove certain results
about the additivity of lengths of elements of W̃ (Section 4). In Section 5,
we find the coset representatives mentioned above and give a formula for
their number when the groups P1 and P2 are compact. In addition, we give
several examples of this coset decomposition and an explanation of how our
general results imply Iwahori’s in the case P1 = P2 = K (Section 6).

This information on the decomposition of double cosets is useful in com-
puting the action of Hecke operators on spaces of modular forms as defined
in [3]. In fact, the results of this paper were used in [8] when G is a compact
form of G2 or PGSp4 over Q and P1 = P2 = K to compute the action on
certain spaces of forms of the spherical Hecke algebra of functions on G(Qp)
bi-invariant by the subgroup K for several primes p at which G is split.
The action of a function in this algebra is given by integrating it against a
form f with respect to a Haar measure on G(Qp). This integral turns out
to be a finite sum. Indeed, when the Hecke operator is the characteristic
function of a double coset KσK of K, the integral is simply the sum over
the right translations of f by a set of representatives of the left cosets of
K inside KσK. Since the Hecke algebra is generated by such characteristic
functions, the decomposition of double cosets is therefore fundamental to
the explicit determination of the actions these algebras.

The idea for this paper arose from my collaboration with David Pollack
while at Harvard University. I am grateful to him for his many valuable
insights into the structure of p-adic groups. I would also like to thank
Benedict Gross for introducing me to the theory of algebraic modular forms.

2. Notation.

In the following, we will denote by G a connected semisimple algebraic
group that is split over a locally compact field F with non-trivial discrete
valuation. Let OF be the ring of integers of F and let p be the prime ideal.
We choose a uniformizing parameter π in p, and denote by k the residue
field OF /p. Let q be the (finite) cardinality of k and let R ⊂ OF be a set
of representatives for k containing 0. The group G is the general fiber of a
Chevalley group scheme G over OF whose special fiber is semisimple. We let
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K = G(OF ) ⊂ G(F ) = G(F ) be the set of integral points of G. K is then a
hyperspecial maximal compact subgroup of G(F ) (cf. [9, 3.8.1, 3.8.2]).

Let T ⊂ G be a split maximal torus scheme, and let T be its general
fiber. We define NT to be the normalizer of T in G. Denote by X∗(T ) the
character module Hom(T, Gm) of T and by X∗(T ) the co-character module
Hom(Gm, T ) of T . Let Φ ⊂ X∗(T ) be the set of roots of T , Φ+ ⊂ Φ a
subset of positive roots, and ∆ ⊂ Φ+ the corresponding set of simple roots.
Also, let Φ∨ ⊂ X∗(T ) be the coroots of T and α 7→ α∨ the standard bijection
between Φ and Φ∨. For each α ∈ Φ let Uα be the one-dimensional unipotent
subgroup scheme of G corresponding to α. Denote the general fiber of Uα

by Uα. We choose for each α an isomorphism

xα : Ga −→ Uα.

When considered as a map F −→ Uα(F ), xα restricts to an isomorphism of
OF with Uα(OF ) = Uα(F ) ∩K.

We will denote by W0 the Weyl group NT /T = (NT (F ) ∩ K)/T (OF )
of G and by W̃ the extended affine Weyl group NT (F )/T (OF ). Then W0

and W̃ act as groups of affine transformations on the space X∗(T ) ⊗Z R.
The stabilizer in W̃ of 0 ∈ X∗(T ) ⊗ R is W0, and there is an isomorphism
W̃ ∼= X∗(T )oW0, where X∗(T ) is embedded in W̃ as the group of elements
acting as translations on X∗(T ) ⊗ R. We denote by e the identity element
of W̃ and by t(λ) the element of W̃ corresponding to λ in X∗(T ). In this
notation, if w ∈ W0 and λ ∈ X∗(T ) then

wt(λ)w−1 = t(wλ).

Denote by wα the reflection in W0 through the vanishing hyperplane in
X∗(T ) ⊗ R of the root α. The Weyl group W0 is a Coxeter group with
S0 = {wα|α ∈ ∆} as its set of involutive generators. Let Φ = Φ1∪· · ·∪Φm be
the decomposition of Φ into irreducible root systems. (Each Φi corresponds
to the root system of an almost simple factor of G.) Also, let ∆i = ∆ ∩ Φi,
and put li = #∆i. Then l1 + · · ·+ lm = l, the dimension of T , i.e., the rank
of G. Let α0,i be the highest root of Φi with respect to the basis of simple
roots ∆i. Then the Coxeter group with set of involutive generators

S̃ = S0 ∪
{
t(α∨

0,i)wα0,i |1 ≤ i ≤ m
}

is isomorphic to the affine Weyl group Waf of Φ ([6, Prop. 1.1]). Via this
isomorphism, we will view Waf as a subgroup of W̃ .

Let I be the Iwahori subgroup of G(F ) generated by T (OF ), the sub-
groups xα(OF ) = Uα(OF ) for all α in Φ+, and the subgroups xα(p) for all
α in Φ−. If we denote by G the semisimple algebraic group over k obtained
by taking the special fiber of G then (as in [9, §3.5]) we have a surjective
reduction mod p map K −→ G(k), and I is the inverse image in K under
this map of the Borel subgroup of G(k) corresponding to Φ+. The triple
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(G(F ), I,NT (F )) is a generalized Tits system in the sense of [5], a fact which
will be used in Section 3 to study the structure of G(F ).

Denote the normalizer of I in G(F ) by Ĩ and set

Ω = (NT (F ) ∩ Ĩ)/T (OF ) ⊂ W̃ .

The group Ω is finite abelian and canonically isomorphic to X∗(T )/Λr, where
Λr is the submodule of X∗(T ) generated by Φ∨ (cf. [5, §2]). Moreover, Ω
normalizes Waf and there is an isomorphism W̃ ∼= Waf o Ω. If ρ ∈ Ω and
w ∈ Waf we will abbreviate the element ρwρ−1 of Waf by wρ. If Ψ is a subset
of Waf, we will write Ψρ for the set {wρ | w ∈ Ψ}.

For w in Waf, let l(w) denote the length of w as an element of Waf with
respect to S̃. If w ∈ Waf and ρ ∈ Ω then the length l(wρ) of wρ is defined to
be l(w). If w′ ∈ W̃ then we can write w′ = w1 · · ·wdρ for some w1, . . . , wd

in S̃ and ρ in Ω, and we say (by abuse of notation) that the expression
w = w1 · · ·wdρ is reduced if l(w) = d. (Under this definition, the expression
e = e is also to be considered reduced.)

Finally, if V ⊂ G(F ), and {Vi}i∈I is a collection of subsets of G(F ), then
the notation V =

∐
i∈I Vi will signify that V =

⋃
i∈I Vi and that the Vi are

pairwise disjoint.

3. Structure Theory of p-adic Groups.

We now state several results concerning the structure of G(F ) which stem
from the fact that the triple (G(F ), I,NT (F )) is a generalized Tits system
(as defined in [5]). We also state a result of Iwahori and Matsumoto ([6,
Cor. 2.7]) which gives a set of representatives for the left cosets of I contained
in a double coset of I.

We start with a summary of the structure theory pertaining to subgroups
of G(F ) containing I. For any subgroup P of G(F ) containing I, we denote
by WP the subgroup (NT (F ) ∩ P )/T (OF ) of W̃ . In addition, we let SP =
WP ∩ S̃ and ΩP = WP ∩ Ω.

Proposition 3.1. Let P, P1, P2 ⊂ G(F ) be subgroups containing I. Then

(i)

P = IWP I =
∐

w∈W̃P

IwI.

Moreover, WP is generated by SP and SP is stabilized under conjuga-
tion by elements of ΩP . The map P 7→ (SP ,ΩP ) is a bijection from
subgroups lying between I and G(F ) to pairs (S, Ω′) such that S ⊂ S̃
and Ω′ is a subgroup of Ω stabilizing S.
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(ii) If ΣP1,P2 ⊂ W̃ is a set representatives for the double coset space
WP1\W̃/WP2 then

G(F ) =
∐

σ∈ΣP1,P2

P1σP2.

In particular, if γ, γ′ ∈ W̃ then WP1γWP2 = WP1γ
′WP2 if and only if

P1γP2 = P1γ
′P2.

Note that in Proposition 3.1 (i) if P = K then WP is the Weyl group W0,
SP = {wα | α ∈ ∆}, ΩP = {e}, and the decomposition given is essentially
the standard Bruhat decomposition for the group G(k). When P = G(F ),
Proposition 3.1 (i) yields the affine Bruhat decomposition of G(F ) with
respect to I. Note that if P is a subgroup of G(F ) containing I, then P is
compact if and only if WP is finite.

We also give the following summary of the structure of the coset space
I\G(F )/I (see [6, Prop. 2.8, Theorem 3.3]).

Proposition 3.2. Let w,w′ be elements of W̃ . Then
(i) For all s ∈ S̃

a) IsIwI = IswI if l(sw) > l(w),
b) IsIwI = IswI ∪ IwI if l(sw) < l(w).

(ii) If l(ww′) = l(w) + l(w′) then

IwIw′I = Iww′I.(1)

In particular, if s1, . . . , sd ∈ S̃, ρ ∈ Ω and w = s1 · · · sdρ is a reduced
expression, then

Is1I · · · IsdIρI = IwI.(2)

In addition to the information resulting from the fact that the triple
(G(F ), I,NT (F )) is a generalized Tits system, we will also need the following
statement (cf. [6, Cor. 2.7]) concerning representatives for the left cosets of
I inside the double cosets of I corresponding to the elements of S̃.

Proposition 3.3. Suppose α ∈ ∆ and i ∈ {1, . . . , m}, where m is the
number of irreducible root systems into which Φ decomposes. Then

(i) IwαI =
∐

ν∈R xα(ν)wαI
(ii) It(α∨

0,i)wα0,iI =
∐

ν∈R x−α0,i(πν)t(α∨
0,i)wα0,iI.

We now develop notation which will allow us to give a formula for the rep-
resentatives of the left cosets of I in an arbitrary double coset in I\G(F )/I.
This formula will follow easily from the above results. For each s in S̃, we
fix a lifting s̄ of s to NT (F ). We define elements gs(ν) ∈ G(F ) for all s in S̃
and ν in R by setting

gs(ν) =
{

xα(ν)s̄ if s = wα for some α in ∆
x−α0,i(πν)s̄ if s = t(α∨

0,i)wα0,i for some i in {1, . . . ,m}.
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In this notation, Proposition 3.3 says that for each s ∈ S̃

IsI =
∐
ν∈R

gs(ν)I.

For each ρ in Ω we also choose some lifting ρ̄ of ρ to NT (F ).
For every w in W̃ we fix an (l(w) + 1)-tuple e(w) = (sw,1, . . . , sw,l(w), ρw)

in S̃l(w)×Ω such that w = sw,1 · · · sw,l(w)ρw. We define gw : Rl(w) −→ G(F )
to be the function which assigns to each (ν1, . . . , νl(w)) in Rl(w) the element

gsw,1(ν1) · · · gsw,l(w)
(νl(w))ρ̄w,

using the notation of the previous paragraph. Then we have the following
fact concerning the coset space IwI/I.

Corollary 3.4. Suppose that w ∈ W̃ and that w = s1 · · · sdρ is a reduced
expression (i.e., d = l(w)), where s1, . . . , sd ∈ S̃ and ρ ∈ Ω. Then the index
[IwI : I] is ql(w). In fact,

IwI =
∐

νi∈R

gs1(ν1) · · · gsd
(νd)ρ̄I =

∐
ν∈Rl(w)

gw(ν)I.

Proof. For U ⊂ G(F ) let charU : G(F ) → {0, 1} be the characteristic func-
tion of U . Since charIw′I 7→ [Iw′I : I] (w′ in W̃ ) defines a character of
the Iwahori Hecke algebra of G with respect to I [6, §3], it follows from
Propositions 3.2 and 3.3 that

[IwI : I] = [Is1 · · · sdρI : I] = [Is1I] · · · [IsdI : I] = ql(w)

(cf. [6, Prop. 3.2]). To complete the proof it suffices to show that the
union of the ql(w) cosets given above is all of IwI. This also follows from
Propositions 3.2 and 3.3 since

IwI = Is1s2 · · · sdρI = Is1Is2I · · · IsdIρI

=
⋃

ν1∈R

gs1(ν1)Is2I · · · IsdIρI

=
⋃

ν1,... ,νd∈R

gs1(ν1)gs2(ν2) · · · gsd
(νd)ρ̄I.

�

4. Coxeter Subgroups of the Extended Affine Weyl Group.

Let W be a subgroup of the affine Weyl group Waf which is generated by
the set S = W ∩ S̃. Then W is a Coxeter group. If W ′ is a subgroup of W
generated by S ∩W ′, then W ′ is also a Coxeter group, and we will refer to
such a subgroup W ′ as a special subgroup of W . Define [W/W ′] to be the
set

{w ∈ W |l(ww′) = l(w) + l(w′) for all w′ ∈ W ′}.
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The elements of [W/W ′] are the representatives for W/W ′ of minimal length
[4, §5.12]. We will have need of the following fact concerning [W/W ′].

Lemma 4.1. Suppose that W is a Coxeter subgroup of Waf with set of gen-
erators S = S̃ ∩W . Let W ′ be a special subgroup of W . If τ in [W/W ′] and
s in S satisfy l(sτ) < l(τ), then sτ is in [W/W ′].

Proof. Since l(sτ) < l(τ) we know that l(sτ) = l(τ) − 1. For w′ in W ′ we
therefore have that

l(τw′)− 1 = l(τ) + l(w′)− 1 = l(sτ) + l(w′) ≥ l(sτw′) ≥ l(τw′)− 1.

Thus, l(sτw′) = l(sτ) + l(w′) and sτ is in [W/W ′]. �

For the remainder of the section, we fix two special subgroups W1 and
W2 of Waf with S1 = W1 ∩ S̃ and S2 = W2 ∩ S̃ as their respective sets of
involutive generators. For σ in W̃ define W σW2

1 to be the stabilizer under
left multiplication of the coset σW2 in W1, namely, W1 ∩ σW2σ

−1. Let
[W1\W̃/W2] ⊂ W̃ be a set of representatives for W1\W̃/W2 of minimal
length, i.e., each σ in [W1\W̃/W2] is to be an element of shortest length in
W1σW2. Our first order of business will be to show that W σW2

1 is a special
subgroup of W1 for any σ in [W1\W̃/W2]. Our goal will then be to show
that

l(τσw) = l(τ) + l(σ) + l(w)

for all w in W2, σ in [W1\W̃/W2], and τ in [W1/W σW2
1 ]. This fact is a simple

generalization of a result of Howlett concerning finite reflection groups (cf.
[2, §2.7]). It will prove very important in our analysis of the decomposition
of double cosets in Chapter 5.

In order to show that W σW2
1 is a special subgroup of W1, we will need the

following result, which is a simple generalization of the exchange condition
(cf. [1, §2.3A]), one of several equivalent properties that distinguish Coxeter
groups from among the more general class of groups generated by finitely
many involutions.

Proposition 4.2. Suppose w in W̃ has reduced expression w = s1 · · · sdρ
for some s1, . . . , sd in S̃ and ρ in Ω. Then for all s in S̃ either

(i) l(sw) = l(w) + 1, or
(ii) w = ss1 · · · ŝi · · · sdρ for some i in {1, . . . , d}.

The following is an easy consequence of Proposition 4.2.

Lemma 4.3. Suppose that w and w′ are elements of W̃ such that l(ww′) =
l(w) + l(w′). If s in S satisfies l(sw) = l(w) + 1, then either

(i) l(sww′) = l(ww′) + 1, or
(ii) ww′ = swŵ′ for some ŵ′ in W̃ with l(ŵ′) < l(w′).
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In fact, in the second case, if s1, . . . , sd ∈ S̃, ρ ∈ Ω and w′ = s1 · · · sdρ
′ is a

reduced expression, then

ŵ′ = s1 · · · ŝi · · · sdρ
′

for some i in {1, . . . , d}. In particular, if w′ is an element of a special
subgroup of Waf then ŵ′ is also an element of that subgroup.

Proof. l(sww′) equals either l(ww′) + 1 or l(ww′)− 1 so suppose the latter
is true. This is clearly impossible if l(w′) = 0. Moreover, if l(w) = 0
then Proposition 4.2 implies that (ii) holds. Thus we may assume that
l(w), l(w′) > 0.

Let w = t1 · · · trρ and w′ = s1 · · · sdρ
′ be reduced expressions for some

reflections t1, . . . , tr, s1, . . . , sd in S̃ and some ρ, ρ′ in Ω. Then we have the
reduced expression

ww′ = t1 · · · trρs1 · · · sdρ
′ = t1 · · · trsρ

1 · · · s
ρ
dρρ′.

Since sρ
i ∈ S̃, it follows from Proposition 4.2, that either

ww′ = st1 · · · t̂i · · · trsρ
1 · · · s

ρ
dρρ′

for some i in {1, . . . , r} or

ww′ = st1 · · · trsρ
1 · · · ŝ

ρ
i l · · · sρ

dρρ′

for some i in {1, . . . , d}. If the former holds then

sww′ = t1 · · · t̂i · · · trρw′

which implies that l(sw) < l(w), a contradiction. Therefore, we must have

ww′ = st1 · · · trsρ
1 · · · ŝρ

i · · · s
ρ
dρρ′ = sws1 · · · ŝi · · · sdρ

′.

Setting ŵ′ = s1 · · · ŝi · · · sdρ
′, the first and second statements follow since

l(ŵ′) ≤ l(w′) − 1. The third statement holds since if w′ is in a special
subgroup of Waf, then each of the generators s1 . . . sd lies in that subgroup.

�

We are now able to state and prove our first result on the additivity of
lengths for certain elements of W̃ , which we will need to show that W σW2

1
is special.

Lemma 4.4. For all σ in [W1\W̃/W2], w in W1 and w′ in W2, we have
l(wσ) = l(w) + l(σ) and l(σw′) = l(w′) + l(σ).

Proof. We will prove the first statement; the second statement follows from
the first by taking inverses. Suppose w0 ∈ W1. The result is trivial if
l(w0) ≤ 1 as σ ∈ [W1\W̃/W2]. So assume l(w0) > 1 and suppose by
induction that l(wσ) = l(w) + l(σ) for all w in W1 with l(w) < l(w0).
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We may write w0 as sw′
0 where s ∈ S1 and w′

0 in W1 has length l(w0)−1.
Then, by induction,

l(sw0σ) = l(w′
0σ) = l(w′

0) + l(σ) = l(sw0) + l(σ) = l(w0) + l(σ)− 1.

We must therefore show that l(sw0σ) = l(w0σ)−1. Since s ∈ S1, either this
is true or l(sw0σ) = l(w0σ) + 1. But if the latter holds then, by applying
Lemma 4.3 (with w = sw0 and w′ = σ) we obtain that sw0σ = w0σ̂ for
some σ̂ of length less than l(σ). This, however, contradicts the fact that
σ ∈ [W1\W̃/W2] is of minimal length in its double coset. �

Proposition 4.5. If σ is an element of [W1\W̃/W2], then W σW2
1 is a spe-

cial subgroup of W1.

Proof. We must show that if s1, . . . , sd ∈ S1 and s1 · · · sd ∈ W σW2
1 then

s1, . . . , sd ∈ W σW2
1 . Fix w in W σW2

1 . We may write w as sw′ where s ∈ S1

and w′ ∈ W1 has length l(w) − 1. By induction, it suffices to show that w′

and hence s are in W σW2
1 .

Since w = sw′ ∈ W σW2
1 , w′σW2 = sσW2, so that w′σ = sσw0 for some

w0 in W2. Therefore, in order to show that w′ is in the stabilizer W σW2
1 of

σW2 in W1, it suffices to prove that sσw0 = σŵ0 for some ŵ0 in W2.
Now l(sσw0) is either equal to l(σw0) − 1 or l(σw0) + 1. Suppose the

former is true. Then, by Lemma 4.3 (with w = σ and w′ = w0 in W2) we
have that σw0 = sσŵ0 for some ŵ0 in W2 so that sσw0 = σŵ0. Thus it
suffices to rule out the case l(sσw0) = l(σw0) + 1.

If this holds then

l(w′σ) = l(sσw0) = l(σw0) + 1.(3)

But by Lemma 4.4, l(w′σ) = l(w′) + l(σ) and l(σw0) = l(σ) + l(w0). Thus,
by (3), l(w′) = l(w0) + 1 and hence l(w) = l(w0) + 2. On the other hand,
wσ = sw′σ = σw0 so, by Lemma 4.4 again, l(w) = l(w0). This contradiction
implies that l(σw0) cannot equal l(σw0) + 1 and the proof is complete. �

We now state and prove the main result on length additivity.

Theorem 4.6. Suppose σ ∈ [W1\W̃/W2], τ ∈ [W1/W σW2
1 ] and w ∈ W2.

Then
l(τσw) = l(τ) + l(σ) + l(w).

Proof. We will prove the theorem by induction on l(τ). The theorem is true
for τ = e by Lemma 4.4. So suppose l(τ) > 0 and that the statement is
true for all τ ′ in [W1/W σW2

1 ] with l(τ ′) < l(τ). Let s in S1 be such that
l(sτ) = l(τ)− 1. Note that the element sτ is in [W1/W σW2

1 ] by Lemma 4.1.
By Lemma 4.3 applied to (sτ)(σw), we obtain that either

(i) l(s(sτ)(σw)) = l((sτ)(σw)) + 1, or
(ii) sτσw = τγ for some γ in W̃ with l(γ) < l(σw).
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In the first case, we obtain that

l(τσw) = l(s(sτ)(σw))
= l((sτ)(σw)) + 1 by (i)
= l((sτ)σw) + 1
= l(sτ) + l(σ) + l(w) + 1 by induction
= l(τ) + l(σ) + l(w)

so it remains to rule out the second case.
We can assume that l(σw) > 0 since the statement of the theorem is

trivially true if l(σw) = l(σ) + l(w) = 0. Since l(σw) = l(σ) + l(w), we have
a reduced expression

σw = ρs1 · · · st

where s1, . . . , st ∈ S̃, ρ ∈ Ω, and for some r in {1, . . . , t}, ρ together with
the first r involutions in the product yield a reduced expression for σ while
the next t − r involutions yield a reduced expression for w. According to
Lemma 4.3, the element γ in case (ii) is obtained from σw by deleting one
of the involutions si in the above reduced word. If i ≤ r then γ = σ̂w for
some for some σ̂ with l(σ̂) < l(σ) so sτσw = τ σ̂w. Then W1σW2 = W1σ̂W2,
a contradiction as σ ∈ [W1\W̃/W2] is an element of minimal length in
W1σW2. On the other hand, if i > r then γ = σŵ for some ŵ in W2

with l(ŵ) < l(w) so sτσw = τσŵ. But then τσW2 = sτσW2 so τ ≡ sτ

(mod W σW2
1 ), a contradiction since τ is the shortest element in τW σW2

1 as
it lies in [W1/W σW2

1 ]. �

Corollary 4.7. If σ ∈ [W1\W̃/W2] then σ is the unique element of minimal
length in W1σW2.

Proof. Let w and w′ be elements of W1 and W2 respectively such that
l(wσw′) = l(σ). Write w = τγ, where τ ∈ [W1/W σW2

1 ] and γ ∈ W σW2
1 .

Then
wσw′ = τγσw′ = τσw′′

for some w′′ in W2 since γσW2 = σW2. But then

l(σ) = l(wσw′) = l(τσw′′) = l(τ) + l(σ) + l(w′′),

which implies that τ, w′′ = e so that wσw′ = σ. �

5. Double Coset Decomposition.

Throughout this section we will use the notation developed in Sections 3
and 4. Fix two subgroups P1 and P2 of G(F ) containing the Iwahori sub-
group I. The goal of this section is to find representatives for the left cosets
of P2 in a double coset P1σP2. We also give a formula for the number of left
cosets in a double coset when P1 and P2 are compact. Using the notation
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of Section 3, let Wi = WPi , the set of elements of W̃ with representatives
in Pi (i = 1, 2). We suppose for now that both W1 and W2 are contained
in Waf. We will deal with general subgroups containing I later on in the
section. Let Si = SPi be the canonical set of involutive generators of Wi.

By Proposition 3.1,

G(F ) =
∐

σ∈[W1\W̃/W2]

P1σP2.

Let us therefore fix σ in [W1\W̃/W2] and consider the coset P1σP2. We first
decompose P1σP2 into a disjoint union of double cosets in I\G(F )/P2.

Lemma 5.1. The double coset P1σP2 is the disjoint union of the cosets
IτσP2 as τ ranges over [W1/W σW2

1 ].

Proof. By Proposition 3.1 (i), we have that

P1 =
∐

w∈W1

IwI.

It follows that
P1σP2 =

⋃
w∈W1

IwIσP2.

We claim that this last expression is equal to
⋃

w∈W1
IwσP2.

By Equation (2) in Proposition 3.2, if we write w′ in W1 as a reduced
expression w′ = s1 · · · sd where s1, . . . , sd ∈ S1, we have that

Iw′IσI = Is1 · · · sdIσI = Is1I · · · IsdIσI.

But by Proposition 3.2 (i) applied repeatedly

Iw′σI = Is1 · · · sdσI ⊂ Is1I · · · IsdIσI = Iw′IσI

and
Iw′IσI = Is1I · · · IsdIσI ⊂

⋃
w∈W1

IwσI.

Therefore ⋃
w∈W1

IwσI =
⋃

w∈W1

IwIσI

and the claim follows.
We must now determine which of the terms in the above union are the

same. To this end, we apply Proposition 3.1 (ii) to the subgroups I and P2

of G(F ). Since WI = 〈e〉 and WP2 = W2, it follows that for any w,w′ in
W1, IwσP2 = Iw′σP2 if and only if wσ ≡ w′σ (mod W2), i.e., if and only if
w ≡ w′ (mod W σW2

1 ). Therefore, to obtain a disjoint union of cosets IwσP2

we take the union over w in the set of representatives [W1/W σW2
1 ]. �
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We now decompose P1σP2 into left cosets of P2 by expressing each dou-
ble coset IτσP2 as a union of such left cosets. Recall that R is a set of
representatives in OF for the residue field k which contains 0.

Theorem 5.2. Suppose that P1 and P2 are subgroups of G(F ) containing
I. If WP1 ,WP2 ⊂ Waf and σ ∈ WP1\W̃/WP2, then the double coset P1σP2

is equal to the disjoint union

P1σP2 =
∐

τ∈[WP1
/W

σWP2
P1

]

∐
ν∈Rl(τσ)

gτσ(ν)P2.

Proof. By Corollary 3.4, we have the decomposition

IτσP2 = IτσIP2 =

 ∐
ν∈Rl(τσ)

gτσ(ν)I

 P2(4)

=
⋃

ν∈Rl(τσ)

gτσ(ν)P2.

Because of Lemma 5.1, the theorem will follow if we show that the cosets
in the union (4) are distinct. So suppose that

gτσ(ν)P2 = gτσ(ν ′)P2

for some τ ∈ [W1/W σW2
1 ] and ν, ν ′ ∈ Rl(τσ). We will show that ν = ν ′. The

main idea of the argument is to transfer the problem from P2-cosets in G(F )
to W2-cosets in W̃ and then to bring to bear our results on Coxeter groups
from Section 4.

First we note that by Proposition 3.1 (i) and Corollary 3.4,

gτσ(ν)P2 =
∐

w∈W2

gτσ(ν)IwI

=
∐

w∈W2

∐
ν′′∈Rl(w)

gτσ(ν)gw(ν ′′)I

and similarly

gτσ(ν ′)P2 =
∐

w∈W2

∐
ν′′∈Rl(w)

gτσ(ν ′)gw(ν ′′)I.

Since these two P -cosets are equal, there must exist some w in W2 and ν ′′

in Rl(w) such that gτσ(ν ′)gw(ν ′′)I equals gτσ(ν)ge(0)I = gτσ(ν)I. We will
show that this equality can only hold if w = e. Then we will have that
gτσ(ν)I = gτσ(ν ′)I, which immediately implies that ν = ν ′ by Corollary 3.4.

So suppose that gτσ(ν)I = gτσ(ν ′)gw(ν ′′)I, where w ∈ W2 and ν ′′ ∈ Rl(w).
By the definition of gτσ(ν) and Proposition 3.2 (ii), we have that

gτσ(ν)I ⊂ IτσI.(5)
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Similarly, for each ν ′′ in Rl(w),

gτσ(ν ′)gw(ν ′′)I ⊂ IτσIwI.

We are now able to use Section 4 since σ ∈ [W1\W̃/W2], τ ∈ [W1/W σW2
1 ]

and w ∈ W2. By Theorem 4.6, we conclude that l(τσw) = l(τσ) + l(w).
This implies via Equation (1) in Proposition 3.2 that IτσIwI = IτσwI.
Hence,

gτσ(ν ′)gw(ν ′′)I ⊂ IτσwI.(6)

Since the double cosets in (5) and (6) both contain the left I-coset gτσ(ν)I =
gτσ(ν ′)gw(ν ′′)I, we conclude that they must be equal. But IτσI = IτσwI

implies w = e since I\G(F )/I is represented by W̃ (Proposition 3.1). �

Remark 5.3. If we take as a representative of P1σP2 an element σ′ of σW2

not equal to σ then

P1σP2 =
∐

τ∈[W1/W
σ′W2
1 ]

⋃
ν∈Rl(τσ′)

gτσ′(ν)P2,

but this union is no longer disjoint. For the number of cosets in the pre-
ceeding union is larger than than the number of cosets given in Theorem 5.2
as l(τσ′) = l(τ) + l(σ′) > l(τ) + l(σ) = l(τσ) for any τ ∈ [W1/W σ′W2

1 ] by
Theorem 4.6.

We now give a decomposition of double cosets into left cosets for arbitrary
subgroups of G(F ) containing I. Adjusting our notation slightly, we let P ′

1

and P ′
2 be two such subgroups. Set W ′

i = WP ′
i

and Wi = W ′
i ∩ Waf. As

before let Si = Wi∩ S̃. Recall that Si is stabilized by ΩP ′
i

under conjugation
(Proposition 3.1). For i = 1, 2, let Pi ⊂ P ′

i be the subgroup IWiI. Then

P ′
i =

∐
ρ∈ΩP ′

i

Piρ =
∐

ρ∈ΩP ′
i

ρPi

by Proposition 3.1.
Let [W ′

1\W̃/W ′
2] = [WP ′

1
\W̃/WP ′

2
] be a set of representatives of smallest

possible length for the double cosets in W ′
1\W̃/W ′

2. (Note that this set of
representatives is no longer unique in contrast to [W1\W̃/W2].)

Lemma 5.4. The set [W1\W̃/W2] is equal to the set of all products of the
form ρ1σρ2 as ρi ranges over ΩP ′

i
(i = 1, 2) and σ ranges over [W ′

1\W̃/W ′
2].

In particular, if ρi ∈ ΩP ′
i

(i = 1, 2) and σ ∈ [W1\W̃/W2], then ρ1σρ2 is also
in [W1\W̃/W2].
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Proof. The elements ρ1σρ2 clearly exhaust W1\W̃/W2 since

W̃ =
∐

σ∈[W ′
1\W̃/W ′

2]

W ′
1σW ′

2 =
∐

σ∈[W ′
1\W̃/W ′

2]

⋃
ρ1∈ΩP ′1

⋃
ρ2∈ΩP ′2

W1ρ1σρ2W2.

Moreover, ρ1σρ2 is of minimal length in W1ρ1σρ2W2 since σ is of minimal
length in W ′

1σW ′
2. The second statement follows trivially from the first. �

Let us now fix an element σ in [W ′
1\W̃/W ′

2] and consider the double coset
P ′

1σP ′
2. Denote by Ωσ

P ′
1

the stabilizer {ρ ∈ ΩP ′
1
|σρ = σ} of σ in ΩP ′

1
and

let Ωσ
P ′

1,P ′
2

= Ωσ
P ′

1
∩ ΩP ′

2
. Also, let Jσ

P ′
1,P ′

2
be a set of representatives for

ΩP ′
1

/
Ωσ

P ′
1,P ′

2
.

Lemma 5.5. If ρ ∈ ΩP ′
1
, then

ρ[W1/W σW2
1 ]ρ−1 = [W1/W

σρW ρ
2

1 ].

(Recall that W ρ
2 denotes the set {wρ | w ∈ W2}.) In particular, if ρ ∈ Ωσ

P ′
1,P ′

2
,

then ρ[W1/W σW2
1 ]ρ−1 = [W1/W σW2

1 ].

Proof. The first statement is true since ΩP ′
1

stabilizes W1 and since

ρW σW2
1 ρ−1 = ρ(W1 ∩ σW2σ

−1)ρ−1 = W1 ∩ σρW ρ
2 (σρ)−1 = W

σρW ρ
2

1 .

The second statement follows from the first and the fact that if ρ ∈ Ωσ
P ′

1,P ′
2

then ρ stabilizes σ and W2. �

Following our procedure in the beginning of the section, we first decom-
pose P ′

1σP ′
2 into a union of cosets in I\G(F )/P ′

2.

Lemma 5.6. The double coset P ′
1σP ′

2 is the disjoint union∐
γ∈Jσ

P ′1,P ′2

∐
τ∈[W1/W

σW2
1 ]

IγτσP ′
2.

Proof. Since σ ∈ [W1\W̃/W2] and WPi = Wi ∈ Waf (i = 1, 2), we have that

P1σP2 =
∐

τ∈[W1/W
σW2
1 ]

IτσP2,

by Lemma 5.1. Therefore,

P ′
1σP ′

2 =
⋃

ρi∈ΩP ′
i

ρ1P1σP2ρ2(7)

=
⋃

ρi∈ΩP ′
i

⋃
τ∈[W1/W

σW2
1 ]

ρ1IτσP2ρ2
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=
⋃

ρi∈ΩP ′
i

⋃
τ∈[W1/W

σW2
1 ]

Iρ1τσρ2P2

=
⋃

ρi∈ΩP ′
i

⋃
τ∈[W1/W

σW2
1 ]

Iτρ1σρ1ρ1ρ2P2

=
⋃

ρ1∈ΩP ′1

⋃
τ∈[W1/W

σW2
1 ]

Iτρ1σρ1ρ1P
′
2.

Using the definitions of ΩP ′
1

and Jσ
P ′

1,P ′
2
, we can eliminate some of the

repetition of cosets in the union (7). For (7) is equal to⋃
ρ1∈ΩP ′1

⋃
τ∈[W1/W

σW2
1 ]

Iτρ1σρ1ρ1P
′
2(8)

=
⋃

γ∈Jσ
P ′1,P ′2

⋃
ρ∈Ωσ

P ′1,P ′2

⋃
τ∈[W1/W

σW2
1 ]

IτγρσγργρP ′
2

=
⋃

γ∈Jσ
P ′1,P ′2

⋃
ρ∈Ωσ

P ′1,P ′2

⋃
τ ′∈γρ[W1/W

σW2
1 ](γρ)−1

Iτ ′σγργP ′
2.(9)

By Lemma 5.5 and the fact that Ωσ
P ′

1,P ′
2

stabilizes σ and W2, this last ex-
pression is equal to ⋃

γ∈Jσ
P ′1,P ′2

⋃
τ ′∈[W1/W

σ
γ

W
γ
2

1 ]

Iτ ′σγγP ′
2.(10)

As in the proof of Lemma 5.1, we now determine whether the terms in
the union (10) are distinct. Let γ, γ′ ∈ Jσ

P ′
1,P ′

2
, and let τ ∈ [W1/W

σγW γ
2

1 ],

τ ′ ∈ [W1/W
σγ′W γ′

2
1 ]. We will show that the terms IτσγγP ′

2 and Iτ ′σγ′γ′P ′
2

in (10) are equal only if γ = γ′ and τ = τ ′. By Proposition 3.1 applied to I
and P ′

2, we have that the two double cosets are equal if and only if

τσγγW ′
2 = τσγ′γ′W ′

2.(11)

Since W ′
2 =

∐
γ∈ΩP ′2

γW2, this is equivalent to the condition that

τσγγρW2 = τ ′σγ′γ′W2

for some ρ ∈ ΩP ′
2
. But τ, τ ′ ∈ W1 so this means that

W1σ
γγρW2 = W1σ

γ′γ′W2.(12)

Now both σγγρ = γσρ and σγ′γ′ = γ′σare in [W1\W̃/W2] by Lemma 5.4
since σ is an element of [W ′

1\W̃/W ′
2]. As a consequence of the uniqueness

of the coset representatives of shortest length of W1\W̃/W2 (Corollary 4.7),
Equation (12) can hold only if σγγρ = σγ′γ′. Since W̃ = Waf o Ω, it follows
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easily from this that γρ = γ′ and hence that σγ = σγ′ . Thus γ−1γ′ = ρ ∈ ΩP ′
2

and γ−1γ′ ∈ Ωσ
P ′

1
so that γ ≡ γ′ (mod Ωσ

P ′
1,P ′

2
). Since γ, γ′ ∈ Jσ

P ′
1,P ′

2
we must

have γ = γ′ and ρ = e.
Since γ = γ′, it follows from (11) that τγσW ′

2γ
−1 = τ ′γσW ′

2γ
−1. Thus

τ and τ ′ are elements of [W1/W
σγW γ

2
1 ] which lie in the same left coset of

W
σγW γ

2
1 . This forces τ = τ ′. Therefore, we see that the union in (10) is

disjoint; i.e.,

P ′
1σP ′

2 =
∐

γ∈Jσ
P ′1,P ′2

∐
τ∈γ[W1/W

σW2
1 ]γ′

IτσγγP ′
2 =

∐
γ∈Jσ

P ′1,P ′2

∐
τ∈[W1/W

σW2
1 ]

IγτσP ′
2.

�

Proceeding as in the proof of Theorem 5.2, we now use this decomposition
of P ′

1σP ′
2 to conclude, in analogy to (4), that

P ′
1σP ′

2 =
∐

γ∈Jσ
P ′1,P ′2

∐
τ∈[W1/W

σW2
1 ]

⋃
ν∈Rl(τσ)

gγτσ(ν)P ′
2.

(Note that l(γτσ) = l(τσ) since γ ∈ Ω.) In order to prove that these P ′
2-

cosets are distinct, we note that the argument in Theorem 5.2 will still work
if P2 is replaced by P ′

2 and W2 by W ′
2 provided that l(γτσw′) = l(γτσ)+l(w′)

for all γ in Jσ
P ′

1,P ′
2
, τ in [W1/W σW2

1 ] and w′ in W ′
2. This condition is easily

proved to hold—write w′ as w′′ρ where w′′ ∈ W2 and ρ ∈ ΩP ′
2
. Then, since

σ ∈ [W1\W̃/W2] and τ ∈ [W1/W σW2
1 ], we have by Theorem 4.6 that

l(γτσw′) = l(γτσw′′ρ)
= l(τσw′′)
= l(τσ) + l(w′′)
= l(γτσ) + l(w′′ρ)
= l(γτσ) + l(w′).

Thus the P ′
2-cosets appearing in the union are distinct and we have proved

the following theorem.

Theorem 5.7. Let P ′
1, P

′
2 be subgroups of G(F ) containing the Iwahori sub-

group I. Let σ be an element of [WP ′
1
\W̃/WP ′

2
]. Then

P ′
1σP ′

2 =
∐

γ∈Jσ
P ′1,P ′2

∐
τ∈[WP1

/W
σWP2
P1

]

∐
ν∈Rl(τσ)

gγτσ(ν)P ′
2.

The number of terms in the disjoint union in Theorem 5.7 is calculated
in the following corollary when W1 and W2 are finite (i.e., P1 and P2 are
compact).
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Corollary 5.8. Let σ be an element of [W ′
1\W̃/W ′

2]. Suppose that W1 is
finite. Then the number of left cosets of P ′

2 in P ′
1σP ′

2 is

#(Jσ
P ′

1,P ′
2
) · ql(σ) ·

∑
τ∈[W1/W

σW2
1 ]

ql(τ) = [ΩP ′
1

: Ωσ
P ′

1,P ′
2
]

∑
γ∈W1σW2

ql(γ)

/ ∑
w∈W2

ql(w) .

Proof. That the number of cosets is equal to the first expression is immedi-
ate from the theorem and the definition of gγτσ(ν). To prove that the two
expressions are equal, first note that #(Jσ

P ′
1,P ′

2
) = [ΩP ′

1
: Ωσ

P ′
1,P ′

2
]. Also, ob-

serve that {τσ | τ ∈ [W1/W σW2
1 ]} is a set of coset representatives in W1σW2

for W1σW2/W2 so ∑
γ∈W1σW2

ql(γ) =
∑

τ∈[W1/W
σW2
1 ]

∑
w∈W2

ql(τσw).

On the other hand, since l(τσw) = l(τ) + l(σ) + l(w), we obtain(
ql(σ)

∑
τ∈[W1/W

σW2
1 ]

ql(τ)

)( ∑
w∈W2

ql(w)

)

=
∑

τ∈[W1/W
σW2
1 ]

∑
w∈W2

ql(τ)+l(σ)+l(w)

=
∑

τ∈[W1/W
σW2
1 ]

∑
w∈W2

ql(τσw).

�

Example 5.9. Let G be the group PGSp4. The rank of G is 2, and we
choose a set of simple roots consisting of a short root α1 and a long root α2.
We also let α0 be the highest root corresponding to this basis. The Weyl
group W0 is generated by the reflections w1 = wα1 and w2 = wα2 , while Waf

is generated by these reflections and w0 = t(α∨
0 )wα0 . The group Ω is cyclic

of order 2. We denote the generator of Ω by ρ and note that it interchanges
w0 and w2 but fixes w1.

We consider the Coxeter groups W1 = 〈w1〉 and W2 = 〈w0, w2〉 inside Waf.
The reflections w0 and w2 commute so that W2 consists of the four elements
e, w0, w2 and w0w2. Let W ′

i = WiΩ and let P ′
i be the compact subgroup

IW ′
iI of G(F ) (i = 1, 2). We will use the results of this to decompose double

cosets in P ′
1\G(F )/P ′

2 and P ′
2\G(F )/P ′

2.
Let σ = w1w0. It is easily shown that σ ∈ [W ′

1\W̃/W ′
2]. Consider the

double coset P ′
1σP ′

2. The group W σW2
1 = W1 ∩ σW2σ

−1 is trivial so that
[W1/W σW2

1 ] = [W1/W σW2
1 ] = {e, w1}. The stabilizer Ωσ

P ′
1,P ′

2
is trivial as well
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which means that Jσ
P ′

1,P ′
2

= {e, ρ}. By Lemma 5.6, P ′
1σP ′

2 is the disjoint
union of the four double cosets

Iw0w1P
′

Iw1w0w1P
′
2

Iρw0w1P
′
2 = Iw2w1P

′
2

Iρw1w0w1P
′
2 = Iw1w2w1P

′
2.

Thus by Theorem 5.7, P ′
1σP ′

2 is the disjoint union of the 2q2 + 2q3 cosets

gw0w1(ν1)P ′
2 (ν1 ∈ R2)

gw1w0w1(ν2)P ′
2 (ν2 ∈ R3)

gw2w1(ν3)P ′
2 (ν3 ∈ R2)

gw1w2w1(ν4)P ′
2 (ν4 ∈ R3).

Now let σ = w1w0w1 ∈ [W ′
2\W̃/W ′

2] and consider the double coset P ′
2σP ′

2.
Here the group W σW2

2 = W2 ∩ σW2σ
−1 = 〈w0〉 since we have the braid

relation w1w0w1w0w1w0w1 = w0. Thus [W2/W σW2
2 ] = {e, w2}. Also,

Jσ
P ′

2,P ′
2

= {e, ρ}. By Lemma 5.6, P ′
2σP ′

2 is the disjoint union of the four
double cosets

Iw1w0w1P
′
2

Iw2w1w0w1P
′
2

Iρw1w0w1P
′
2 = Iw1w2w1P

′
2

Iρw2w1w0w1P
′
2 = Iw0w1w2w1P

′
2.

It follows from Theorem 5.7 that P ′
2σP ′

2 is the disjoint union of the 2q3 +2q4

cosets
gw1w0w1(ν1)P ′

2 (ν1 ∈ R3)
gw2w1w0w1(ν2)P ′

2 (ν2 ∈ R4)
gw1w2w1(ν3)P ′

2 (ν3 ∈ R3)
gw0w1w2w1(ν4)P ′

2 (ν4 ∈ R4).

6. Degrees of Spherical Hecke Operators.

We now consider the special case when the subgroups P1 and P2 containing
I are both equal to the hyperspecial subgroup K. Using the results of the
previous section, we can determine the left cosets of K occurring in a given
double coset KσK. The number of such cosets is by definition the degree
of the function chKσK in the spherical Hecke algebra of K. With the coset
decomposition of the preceeding section, we will derive the formula for the
degree given in [5, §5].

Since WK = W0, the elements of W0\W̃/W0 index the double coset space
K\G(F )/K. Therefore, as a result of the fact that W̃ ∼= X∗(T )oW0, we see
that K\G(F )/K can be identified with the set of orbits of W0 on X∗(T ).
(This is the Cartan decomposition—cf. [6, 2.5].) A set of representatives
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in X∗(T ) for these orbits is the set X+ of dominant co-characters, i.e., co-
characters λ such that 〈α, λ〉 ≥ 0 for all α in Φ+. The isomorphism W̃ ∼=
X∗(T ) o W0 can be chosen to satisfy the condition that the image in W̃ of
the element λ(π) of T (F ) is t(λ). Thus we have a one-to-one correspondence

X+ −→ K\G(F )/K

given by the map λ 7→ Kt(λ)K = Kλ(π)K.
Now given λ ∈ X∗(T ), there is a unique element wλ in W0 such that

l(t(λ)wλ) = minw∈W0 l(t(λ)w) (see [6, §1.9]). It can be shown (see [7, §2.2])
that the representative of the double coset W0t(λ)W0 of shortest length is
t(λ)wλ. Thus [W0\W̃/W0] is equal to the set {t(λ)wλ | λ ∈ X+}.

Since W0 acts on X∗(T ), we may consider the stabilizer W λ
0 in W0 of

an element λ of X∗(T ). It is easily seen that W λ
0 = W

t(λ)wλW0

0 so that
[W0/W λ

0 ] = [W0/W
t(λ)W0

0 ].
Fix λ in X+. Applying Theorem 5.2 with P1 = P2 = K and σ = t(λ)wλ

we arrive at the following results.

Proposition 6.1. The double coset

Kλ(π)K = Kt(λ)K

is equal to the disjoint union∐
τ∈[W0/W λ

0 ]

∐
ν∈Rl(τt(λ)wλ)

gτt(λ)wλ
(ν)K.

Corollary 6.2. The number of left (or right) cosets of K in Kλ(π)K is

ql(t(λ)wλ)
∑

τ∈[W0/W λ
0 ]

ql(τ) = qminw∈W0
l(t(λ)w)

∑
τ∈[W0/W λ

0 ]

ql(τ)

=
∑

γ∈W0t(λ)W0

ql(γ)

/ ∑
w∈W0

ql(w) .

Proof. This follows from Corollary 5.8 and the definition of wλ. �

Example 6.3. In [8], for compact forms G of PGSp4 over Q corresponding
to various quaternion algebras, we determined the actions of spherical Hecke
algebras on G(Qp) for certain primes p at which G is split. This necessitated
computations of the above kind for the simple adjoint group G = PGSp4 of
type C2 = B2. Examples of such computations follow.

We carry over the notation from the example in the previous section.
Since PGSp4 is of adjoint type (i.e., X∗(T ) is the lattice dual to the lat-
tice generated by Φ), the fundamental co-weights ω̌1, ω̌2 in Λ (which satisfy
〈αi, ω̌j〉 = δij) are in X∗(T ). Furthermore, any λ in X+ is of the form
a1ω̌1 + a2ω̌2 for some non-negative integers a1 and a2.
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If λ in X+ is 0 then W λ
0 is clearly all of W0 and [W0/W λ

0 ] is trivial.
On the other hand, if λ = a1ω̌1 + a2ω̌2 for positive a1, a2, then W λ

0 = 〈e〉
and [W0/W λ

0 ] = W0. Now suppose that λ is the long co-weight ω̌1. We
have W ω̌1

0 = 〈w2〉 and [W0/W ω̌1
0 ] is the set {e, w1, w2w1, w1w2w1}. Also,

t(ω̌1) can be shown to have the reduced expression w0w1w2w1. A reduced
expression for t(ω̌1)wω̌1 can be obtained from t(ω̌1) by dropping the last
three involutions in this expression (which are contained in W0) to yield w0.

We therefore have that Kω̌1(π)K is the disjoint union of the double cosets

Iw0K

Iw1w0K

Iw2w1w0K

Iw1w2w1w0K.

It follows that Kω̌1(π)K is the union of the q + q2 + q3 + q4 = q · q4−1
q−1 cosets

gw0(ν1)K (ν1 ∈ R)
gw1w0(ν2)K (ν2 ∈ R2)
gw2w1w0(ν3)K (ν3 ∈ R3)
gw1w2w1w0(ν4)K (ν4 ∈ R4).

For the short co-weight ω̌2, we have W ω̌2
0 = 〈w1〉 and [W0/W ω̌2

0 ] is the
set {e, w2, w1w2, w2w1w2}. A reduced expression for t(ω̌2) is w0w1w0ρ =
ρw2w1w2, and for t(ω̌2)wω̌2 is ρ. Kω̌2K is the union of the cosets

IρK

Iw2ρK

Iw1w2ρK

Iw2w1w2ρK.

Therefore, Kω̌2K is the union of the 1 + q + q2 + q3 = q4−1
q−1 left cosets

ρK
gw2ρ(ν1)K (ν1 ∈ R)
gw1w2ρ(ν2)K (ν2 ∈ R2)
gw2w1w2ρ(ν3)K (ν3 ∈ R3).

Remark 6.4. If G is the group over k obtained by taking the special fiber
of G, denote by Bλ the standard parabolic subgroup of G corresponding to
the co-character λ and the choice of positive roots Φ+. In [8], it is shown
using the formula in Corollary 6.2 that the index [Kλ(π)K : K] is equal to

#
(
G/Bλ

)
(k)

qdim(G/Bλ)(k)
· q〈2δ,λ〉,
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where δ = 1
2

∑
α∈Φ+ α and 〈 , 〉 is the standard pairing between X∗(T ) and

X∗(T ).
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