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We show that for stochastic processes with freely indepen-
dent increments, the partition-dependent stochastic measures
can be expressed purely in terms of the higher stochastic mea-
sures and the higher diagonal measures of the original process.

1. Introduction.

Starting with an operator-valued stochastic process with freely independent
increments X(t), in [A] we defined two families {Prπ} and {Stπ} indexed
by set partitions. These objects give a precise meaning to the following
heuristic expressions. For a partition π = (B1, B2, . . . , Bn) ∈ P(k), tem-
porarily denote by c(i) the number of the class Bc(i) to which i belongs.
Then, heuristically,

Prπ(t) =
∫

[0,t)n

dX(sc(1))dX(sc(2)) . . . dX(sc(k))

and

Stπ(t) =
∫

[0,t)n

all si’s distinct

dX(sc(1))dX(sc(2)) . . . dX(sc(k)).

In particular, denote by ψk and ∆k the higher stochastic measures and the
higher diagonal measures, defined, respectively, by

ψk(t) =
∫

[0,t)k

all si’s distinct

dX(s1)dX(s2) . . . dX(sk)

and

∆k(t) =
∫

[0,t)
(dX(s))k.

Rigorous definitions of all these objects in terms of Riemann sums are given
below. These definitions were motivated by [RW], where corresponding
objects were defined for the usual Lévy processes. There is a number of
differences between the classical and the free case. First, the free increments
property implies that Stπ = 0 unless π is a noncrossing partition. Second,
the point of the analysis of [RW] was that while we are really interested in
the stochastic measures Stπ, notably ψk, these are rather hard to define or
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to handle. However, by the use of Möbius inversion these can be expressed
through the Prπ. It is easy to see that if the increments of the process X
commute, in the defining expression for Prπ all the terms corresponding to
the same class can be collected together, and the result is just a product
measure over the classes of the partition, Prπ = ∆B1∆B2 . . .∆Bn . So in this
way stochastic measures St can be defined using ordinary product measures.
This fact is a consequence of the commutativity of the increments of the
process; in the free probability case the operators do not commute, and
unless the classes of the partition π are just intervals we cannot expect Prπ

to be a product measure; indeed a counterexample was given in [A].
In this paper we show that while we cannot expect nice factorization prop-

erties in the general case of noncommuting variables, the free independence
of the increments does imply a product-like property. Namely, by an argu-
ment similar to the above one, if the increments of the process commute, then
Stπ = ψk(∆B1 ,∆B2 , . . . ,∆Bn). This property certainly does not hold either
if the increments do not commute, but if the increments are freely indepen-
dent it can be modified as follows. In a noncrossing partition, one distin-
guishes classes which are inner, or covered by some other classes, and outer.
For example, in the noncrossing partition ((1, 6, 7)(2, 5)(3)(4)(8)(9, 10)), the
classes {(2, 5), (3), (4)} are inner while the classes {(1, 6, 7), (8), (9, 10)} are
outer. For a partition with only outer classes, which therefore have to be
intervals, the product decomposition of Prπ and the above decomposition of
Stπ hold even in the noncommutative case. We show in the main theorem
of this paper that the inner classes, while making a complicated contribu-
tion to Prπ, make only scalar contributions to Stπ, and those contributions
commute with everything.

We also use the opportunity to make extensions of the definitions of [A]
in various directions. The objects Stπ and Prπ were defined by limits of
Riemann-like sums with uniform subdivisions. In this paper we extend that
definition to arbitrary subdivisions. We also make some preliminary steps
towards defining multi-dimensional free stochastic measures.

2. Preliminaries.

This paper is a sequel to [A]; see that paper for all the definitions that are
not explicitly provided here.

2.1. Notation. Denote by [n] the set {1, 2, . . . , n}.
For two vectors X = (X1, X2, . . . , Xk) and Z = (Z1, Z2, . . . , Zk−1) denote

X ◦ Z = X1Z1X2Z2 . . . Xk−1Zk−1Xk.

For a collection of vectors {Xi}n
i=1, denote by (X1,X2, . . . ,Xn) their con-

catenation.
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For a collection of objects
{
y

(i)
j

}
and a multi-index v = (v1, v2, . . . , vn),

we will throughout the paper use the notation yv to denote
∏n

j=1 y
(j)
vj .

For a family of functions {Fj}, where Fj is a function of j arguments, v
a vector with k components, and B ⊂ [k], denote F (v) = Fk(v) and

F (B; v) = F|B|(vi(1), vi(2), . . . , vi(|B|)),

where B = (i(1), i(2), . . . , i(|B|)). In particular, using this notation y(B;v) =∏
i∈B y

(i)
vi .

2.2. Partitions. Denote by P(k) and NC (k) the lattice of all set partitions
of the set [k] and its sub-lattice of noncrossing partitions. Let 0̂ and 1̂
be the smallest and the largest elements in the lattice ordering, namely
0̂ = ((1), (2), . . . , (k)) and 1̂ = (1, 2, . . . , k). Denote by ∧ the join operation
in the lattices. For π ∈ NC (k), denote by K(π) its Kreweras complement.
For π ∈ P(n), define πop ∈ P(n) to be π taken in the opposite order, i.e.,

i
πop

∼ j ⇔ (n− i+ 1) π∼ (n− j + 1).

For π ∈ P(n), σ ∈ P(k), define π + σ ∈ P(n+ k) by

i
π+σ∼ j ⇔ ((i, j ≤ n, i

π∼ j) or (i, j > n, (i− n) σ∼ (j − n))).
2.3. Free cumulants. All the operators involved will live in an ambient
noncommutative probability space (A, ϕ), where A is a finite von Neu-
mann algebra, and ϕ is a faithful normal tracial state on it. Let A =
(A1, A2, . . . , Ak) be a k-tuple of self-adjoint operators in (A, ϕ). Denote
their joint moments by

M(A) = ϕ[A1A2 . . . Ak].

For a noncrossing partition π, denote using the above notation

Mπ(A) =
∏
B∈π

M(B;A).

Also define the combinatorial R-transform, or the collection of joint free
cumulants R(A): Denoting

Rπ(A) =
∏
B∈π

R(B;A),

the functional R is determined inductively by

M(A) =
∑

σ∈NC (k)

Rσ(A),

or more generally by

Mπ(A) =
∑

σ∈NC (k)
σ≤π

Rσ(A).
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Any such relation can be inverted by using Möbius inversion, so we also get

Rπ(A) =
∑

σ∈NC (k)
σ≤π

Möb(σ, π)Mσ(A),

where Möb is the relative Möbius function on the lattice of noncrossing par-
titions. In particular, since |Mπ(A)| ≤

∏k
i=1 ‖Ai‖ and Möb(π, σ), |NC (k)|

are products of Catalan numbers and so are bounded in norm by 4k, we
conclude that |Rπ(A)| ≤ 16k

∏k
i=1 ‖Ai‖.

Finally, the relation between the free cumulants and free independence is
expressed in the “mixed cumulants are zero” condition: R(A) = 0 whenever
some Ai, Aj are freely independent.

Definition 1. Let X = (X(1), X(2), . . . , X(k)) be a k-tuple of free stochastic
measures with distributions µ(1), µ(2), . . . , µ(k). Here, µ(i) is a freely infinitely
divisible distribution with compact support, and X(i) is an operator-valued
measure on R that is self-adjoint, additive, stationary, and has freely inde-
pendent increments. We say that the k-tuple is consistent if the following
extra conditions are satisfied.

1) Free increments: For a family of disjoint intervals {Ii}n
i=1 and a multi-

index u of length n, the family
{
X(ui)(Ii)

}n

i=1
is a freely independent

family.
2) Stationarity: For an interval I and a multi-index u,

ϕ[X(u1)(I)X(u2)(I) . . . X(un)(I)]

depends only on u and |I|.
3) Continuity: For a fixed u, the function

|I| 7→ ϕ[X(u1)(I)X(u2)(I) . . . X(un)(I)]

is continuous.

Note that these conditions together imply that for an arbitrary collection
of intervals {Ii}n

i=1, ϕ[X(u1)(I1)X(u2)(I2) . . . X(un)(In)] depends only on u
and the sizes of all elements of

{⋂
i∈G Ii : G ⊂ [n]

}
. Note also that by defi-

nition and Möbius inversion, the stationarity and continuity properties apply
not just to M , but to Mπ, R,Rπ as well.

Remark 1. It is easy to see that a k-tuple X is consistent if X(i) = X

for all i, or if the family
{
X(i)

}k

i=1
is a freely independent family. More

examples are given in Lemma 10 and in Remark 5.

Fix a consistent k-tuple of free stochastic measures X. For t > 0, denote
X(i)(t) = X(i)([0, t)). Throughout most of the paper, we will consider t = 1,
in which case we will omit t from the notation; in particular we will denote
X(i)([0, 1)) simply by X(i). Let S = (I1, I2, . . . , IN ) be a subdivision of the
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interval [0, t) into N = |S| disjoint half-open intervals, listed in increasing
order. Denote δ(S) = max1≤i≤N |Ii|. Let X(i)

j (S) = X(i)(Ij). In the future
we will frequently omit the dependence on S and N in the notation.

Notation 2. For any set G and a partition π ∈ P(k), denote

Gk
π =

{
v ∈ Gk : i π∼ j ⇔ vi = vj

}
and

Gk
≥π =

{
v ∈ Gk : i π∼ j ⇒ vi = vj

}
.

Denote

Stπ(X,S) =
∑
v∈[N ]kπ

Xv(S)

and

Prπ(X,S) =
∑

v∈[N ]k≥π

Xv(S).

Definition 3. Define the free stochastic and product measures depending
on a partition to be the limits along the net of subdivisions of the interval
[0, t)

Stπ(X, t) = lim
δ(S)→0

Stπ(X,S),

Prπ(X, t) = lim
δ(S)→0

Prπ(X,S).

In particular, let the higher diagonal measure be

∆(X, t) = St1̂(X, t) = Pr1̂(X, t),

and the k-dimensional free stochastic measure be ψ(X, t) = St0̂(X, t). If
X(i) = X for all i, we denote ∆(X, t) by ∆k(t) and ψ(X, t) by ψk(t).

Here the limits are taken in the operator norm; the proof of their existence
is part of the arguments in the next section.

Lemma 1. For an arbitrary family of intervals {Ji ⊂ [0, 1)}n
i=1, a multi-

index u, and π ∈ NC (k),

Rπ(X(u1)(J1), X(u2)(J2), . . . , X(un)(Jn))

=

(∏
B∈π

∣∣∣∣∣⋂
i∈B

Ji

∣∣∣∣∣
)
Rπ(X(u1), X(u2), . . . , X(un)).

In particular, for a subdivision S = (I1, I2, . . . , IN ) of [0, 1),

Rπ

(
X

(u1)
j , X

(u2)
j , . . . , X

(un)
j

)
= |Ij ||π|Rπ

(
X(u1), X(u2), . . . , X(un)

)
.
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Proof. The second statement follows from the first one with all intervals
Ji = Ij with a fixed j. For the first statement, it suffices to show that

R(X(u1)(J1), X(u2)(J2), . . . , X(un)(Jn))

=

∣∣∣∣∣
n⋂

i=1

Ji

∣∣∣∣∣R(X(u1), X(u2), . . . , X(un)).

Moreover, since each X(j) is an additive process with freely independent in-
crements, Rπ(A1, A2, . . . , An) is multi-linear in its arguments, and all mixed
cumulants are equal to 0, it suffices to show that

(1) R
(
X(u1)(I), X(u2)(I), . . . , X(un)(I)

)
= |I|R

(
X(u1), X(u2), . . . , X(un)

)
with I =

⋂n
i=1 Ji. First suppose that I = Ij , one of the intervals in a uniform

subdivision, with Ii = [ i−1
N , i

N ). Then using the same properties as above,

R
(
X(u1), X(u2), . . . , X(un)

)
=

∑
v∈[N ]n

R
(
X(u1)

v1
, X(u2)

v2
, . . . , X(un)

vn

)

=
N∑

i=1

R
(
X

(u1)
i , X

(u2)
i , . . . , X

(un)
i

)
= NR

(
X

(u1)
j , X

(u2)
j , . . . , X

(un)
j

)
,

where in the last equality we have used that fact that by stationarity of X,
R(X(u1)

i , X
(u2)
i , . . . , X

(un)
i ) does not depend on i. Therefore

R
(
X

(u1)
j , X

(u2)
j , . . . , X

(un)
j

)
= N−1R

(
X(u1), X(u2), . . . , X(un)

)
= |Ij |R

(
X(u1), X(u2), . . . , X(un)

)
.

By stationarity, it follows that Equation (1) holds for |I| = 1/N and conse-
quently for any rational |I|. The result follows for general I by the continuity
assumption on X. �

This was the main fact used in the proofs of [A], and so the results from
that paper carry over to the consistent k-tuples of free stochastic measures.
Note that all of these results were proven for uniform subdivisions. However,
their proofs carry over to the more general definitions of this paper without
difficulty; see Lemma 2 for an example of a computation. We list some of
those results, with the numbering from [A].

1) Stπ(X) = 0 unless π is noncrossing (Theorem 1).
2) ϕ[Stπ(X)] = Rπ(X) (Corollary 2).
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3) If π contains an inner singleton and X is centered, then Stπ(X) = 0
(Proposition 1).

4) If Z is freely independent from the free stochastic measure X, then

lim
δ(S)→0

N∑
i=1

XiZXi = ϕ[Z]∆2(X)

(Corollary 13).
5) The limit defining Stπ exists in the norm topology if the corresponding

limit exists for the free Poisson process. In particular, for any consis-
tent k-tuple X of free stochastic measures, ∆(X) is well-defined. In
fact, the argument in [A] needs to be modified (Pr should be used in
place of St); such a modification is contained in Lemma 7 of this paper.

Results 2 and 3 are consequences of, and result 4 is parallel to, the fol-
lowing theorem.

Main Theorem. Let π be a noncrossing partition of [k] with o(π) outer
classes B1, B2, . . . , Bo(π) and i(π) inner classes C1, C2, . . . , Ci(π). Then

Stπ(X) =
i(π)∏
i=1

R(Ci;X) · ψ(∆(B1;X),∆(B2;X), . . . ,∆(Bo(π);X)).

Remark 2. The distinction between the inner and the outer classes of a
noncrossing partition was noted in [BLS]. It would be interesting to see
what the relation is between the conditionally free cumulants of that paper
(which are scalar-valued) and our Stπ; cf. also [M].

Example 3. Let π be as in the theorem, and {X(t)} be the free Brownian
motion. Then the free cumulants of µt are r1(t) = 0, r2(t) = t, rn(t) = 0
for n > 2, and the diagonal measures of X are ∆1(t) = X(t), ∆2(t) = t,
∆n(t) = 0 for n > 2. Therefore the theorem states that

Stπ(X, t) =


0 if π contains a class of more than 2 elements,
0 if π contains an inner singleton,
ti(π)t#{Bj :|Bj |=2}ψ#{Bj :|Bj |=1}(t) otherwise

=

{
t#{V ∈π:|V |=2}ψ#{V ∈π:|V |=1}(t) if ∀i, j, |Ci| = 2, |Bj | = 1, 2,
0 otherwise.

Example 4. Let π be as in the theorem, and {X(t)} be the free Poisson
process. Then for n ≥ 1, rn(t) = t, ∆n(t) = X(t). Therefore the theorem
states that

Stπ(t) = ti(π)ψo(π)(t).
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3. Proof of the theorem.

We start the analysis with a single free Poisson stochastic measure. It has the
following remarkable representation: One can take I 7→ X(I) to be sp(I)s,
where s is a variable with a semicircular distribution freely independent
from p(I), and I 7→ p(I) is a projection-valued measure, such that disjoint
intervals correspond to orthogonal projections, and ϕ[p(I)] = |I|.

Lemma 2. Given a subdivision S = (I1, I2, . . . , IN ) of [0, 1), let {pi}N
i=1 be

orthogonal projections adding up to 1 with ϕ[pi] = |Ii|. Let {Zi,j}i∈[N ],j∈[k]

be a family of operators (dependent on S) such that for each i, the family
{Zi,j}j∈[k] is freely independent from pi. In addition, assume that for each i,
at least one of Zi,j is centered, and that for all i, j,S, ‖Zi,j‖ < c/16. Then

lim
δ(S)→0

N∑
i=1

piZi,1piZi,2 . . . Zi,kpi = 0,

where the limit is taken in the operator norm.

Proof. Denote

A(S) =
N∑

i=1

piZi,1piZi,2 . . . Zi,kpi =
N∑

i=1

(pi, . . . , pi) ◦ Zi,

where Zi = (Zi,1, . . . , Zi,k). Then

(A(S)A(S)∗)n =
N∑

i=1

(pi, . . . , pi) ◦ (Zi, (Zi)∗, . . . ,Zi, (Zi)∗),

where (Zi)∗ = (Z∗
i,k, . . . , Z

∗
i,1). Then as in [A, Theorem 3],

ϕ[(A(S)A(S)∗)n]

=
N∑

i=1

∑
π∈NC (2nk)

RK(π)(Zi, (Zi)∗, . . . ,Zi, (Zi)∗) ·Mπ(pi, pi, . . . , pi).

At least one Zi,j is centered, so for partitions that contribute to the sum,
at least n elements do not belong to singleton classes of K(π). Therefore
|K(π)| ≤ 2nk − n and |π| ≥ (n+ 1) (since |π|+ |K(π)| = 2nk + 1). Thus

ϕ[(A(S)A(S)∗)n] ≤
N∑

i=1

∑
π∈NC (2nk)
|π|≥n+1

c2nkϕ[pi]|π| ≤ 42nkc2nkδ(S)n.

Therefore

‖A(S)‖2n < δ(S)1/2k4kck,

and so ‖A(S)‖ < δ(S)1/2k(4c)k, which converges to 0 as δ(S) → 0. �
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Lemma 3. Let I 7→ X(I) = sp(I)s be a free Poisson stochastic measure
(see [A]), so that Xi = spis with pi as in Lemma 2. Let Zi,j be as in
Lemma 2. Then

lim
δ(S)→0

N∑
i=1

XiZi,1XiZi,2 . . . Zi,kXi = 0.

Proof. By the free independence assumption on {Zi,j}, the joint distribution
of {Xi, Zi,1, Zi,2, . . . , Zi,k} is, for each i, entirely determined by the distribu-
tion of Xi and the joint distribution of {Zi,j}k

j=1. These distributions, and
hence the conclusion of the lemma, are not changed if we assume in addition
that the family {Zi,j}k

j=1 is freely independent from s.
(Xi, . . . , Xi) ◦ Zi = (spis, . . . , spis) ◦ Zi = s((pi, . . . , pi) ◦ (sZis))s, where

sZis denotes the vector Zi with each term multiplied by s on both sides.
Since s and Zi are freely independent, if Zi,j is centered then so is sZi,js.
Then Lemma 2 implies the result. �

Lemma 4. Let π ∈ NC (k) have only one outer class B consisting of n+ 1
elements. That is,

π = {(u0 = 1, u1, u2, . . . , un = k), π(1), π(2), . . . , π(n)} ,

where π(j) is supported on Cj = [uj−1 + 1, uj − 1]. Let X be a free Poisson
stochastic measure. Then for X with all X(i) = X,

Stπ(X) =
n∏

j=1

Rπ(j)(Cj ;X) ·∆(B;X).

Proof. Let Zi,j(N) =
∑
v∈([N ]\{i})

|Cj|
π(j)

X(Cj ;v).

N∑
i=1

X
(u0)
i Zi,1X

(u1)
i Zi,2 . . . Zi,nX

(un)
i =

N∑
i=1

∑
G⊂[n]

(
X

(u0)
i , . . . , X

(un)
i

)
◦ Z(G),

where Z(G) is a vector of length n such that

Z(G)j =

{
Zi,j − ϕ[Zi,j ], j ∈ G,
ϕ[Zi,j ], j 6∈ G.

For G 6= ∅, at least one of the Z(G)j is centered. So Lemma 3 applies and
the limit, as δ(S) goes to 0, of the appropriate term is 0. On the other
hand, it follows from [A, Corollary 2] that for any i the limit of ϕ[Zi,j ] is
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Rπj (Cj ;X). We conclude that, denoting ı = (i, i, . . . , i),

lim
δ(S)→0

N∑
i=1

X
(u0)
i Zi,1X

(u1)
i Zi,2 . . . Zi,nX

(un)
i =

n∏
j=1

Rπ(j)(X) · lim
δ(S)→0

N∑
i=1

X(B;ı)

=
n∏

j=1

Rπ(j)(X) ·∆(B;X),

where ∆(B;X) is well-defined for the free Poisson stochastic measure by [A,
Corollary 4]. On the other hand,

N∑
i=1

X
(u0)
i Zi,1X

(u1)
i Zi,2 . . . Zi,nX

(un)
i =

∑
σ

Stσ(X,S),

where the sum is taken over all partitions σ of [k] which contain the class B
and such that for all j, the restriction of σ to Cj is π(j). The only noncrossing
partition satisfying these requirements is π, so

lim
δ(S)→0

∑
σ

Stσ(X,S) = Stπ(X).

�

Notation 4. Let π ∈ NC (k). Then π can be written as

π = (B1(π), B2(π), . . . , Bo(π)(π), I1(π), I2(π), . . . , Io(π)(π)).

Here, {Bi(π)} are outer classes of π, listed in increasing order. Denote Bi =
{j|∃a, b ∈ Bi : a ≤ j ≤ b}, the subset covered by Bi, and let Ii(π) be the
restriction of π to the set Bi\Bi strictly covered by Bi. Denote by I ′i(π) the
noncrossing partition (Bi(π), Ii(π)). Finally, denote C(π) = [k]\

⋃o(π)
i=1 Bi,

and let I(π) be the partition consisting of all inner classes of π, i.e., the
restriction of π to C(π).

Lemma 5. With the above notation, for a consistent k-tuple X of free sto-
chastic measures, Prπ(X) =

∏o(π)
i=1 PrI′i(π)(X).

Proof. Such a product decomposition is valid for any subdivision S. �

Lemma 6. Let X be a consistent k-tuple of free stochastic measures. Then:
1) The measures Prπ(X) and Stπ(X) are related as follows: For π ∈

NC (k),

Prπ(X) =
∑

σ∈NC (k)
σ≥π

Stσ(X),

Stπ(X) =
∑

σ∈NC (k)
σ≥π

Möb(π, σ)Prσ(X).
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2) Let π1, π2, . . . , πn be noncrossing partitions such that π = π1 + π2 +
· · · + πn ∈ NC (k). For each i, identify πi with a sub-partition of π,
and let Ci be the support of πi in [k]. Denote τ ∈ NC (k) the partition
(C1, C2, . . . , Cn). Then

n∏
i=1

Stπi(Ci;X) =
∑

σ∈NC (k)
σ∧τ=π

Stσ(X).

Proof. Statement 1) is based on a purely combinatorial observation that

Prπ(X,S) =
∑

σ∈P(k)
σ≥π

Stσ(X,S)

and the fact that Stσ(X) = 0 for σ 6∈ NC (k); see Corollary 1 of [A]. State-
ment 2) is based on a purely combinatorial observation that

n∏
i=1

Stπi((Ci;X),S) =
∑

σ∈P(k)
σ∧τ=π

Stσ(X,S)

and the same fact. �

Lemma 7. The limit defining Prπ(X) exists in norm if the corresponding
limit exists for the free Poisson stochastic measure.

Proof. Let S = (I1, I2, . . . , IN ) be a subdivision of [0, 1). Let T be another
such subdivision, and let S ∧ T = (J1, J2, . . . , JM ) be their common refine-
ment. Temporarily denote by p(s) the index i such that Js ⊂ Ii. Denote
A(S) = Prπ(X,S), and similarly for S ∧ T .

A(S)−A(S ∧ T ) =
∑

v∈[N ]k≥π

∑
p−1(s1)=v1

X(1)
s1

(S ∧ T ) · · ·
∑

p−1(sk)=vk

X(k)
sk

(S ∧ T )

−
∑

u∈[M ]k≥π

Xu(S ∧ T )

=
∑

p(s)∈[N ]k≥π ,

s6∈[M ]k≥π

Xs(S ∧ T ).

The above expression A(S) − A(S ∧ T ) is a sum with positive coefficients.
Hence so is ((A(S)−A(S ∧T ))(A(S)−A(S ∧T ))∗)n. Therefore its expecta-
tion is a sum over a collection of indices, with weights given by products of
|Js|, all of which are independent of the distribution of X, of free cumulants
of X of order 2kn. Each of those free cumulants is bounded in norm by
(16 ‖X‖)2nk, where ‖X‖ = maxi

∥∥X(i)
∥∥. Since for the free Poisson process

all such cumulants are equal to 1, the result is at most (16 ‖X‖)2nk times
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the corresponding quantity for the free Poisson process, for which we denote
Prπ(X,S) by a(S). That is,

ϕ[((A(S)−A(S ∧ T ))(A(S)−A(S ∧ T ))∗)n]

≤ (16 ‖X‖)2nkϕ[((a(S)− a(S ∧ T ))(a(S)− a(S ∧ T ))∗)n],

and so

‖A(S)−A(S ∧ T )‖2n ≤ (16 ‖X‖)k ‖a(S)− a(S ∧ T )‖2n ,

which implies in particular that

‖A(S)−A(S ∧ T )‖ ≤ (16 ‖X‖)k ‖a(S)− a(S ∧ T )‖ .

By assumption, the net a(S) converges in norm, and

‖A(S)−A(T )‖ ≤ ‖A(S)−A(S ∧ T )‖+ ‖A(T )−A(S ∧ T )‖

≤ (16 ‖X‖)k(‖a(S)− a(S ∧ T )‖+ ‖a(T )− a(S ∧ T )‖).

Therefore the net A(S) is a Cauchy net, and so converges. �

Corollary 8. Prπ(X), and hence Stπ(X), is well-defined for all π,X.

Proof. Let X be a free Poisson stochastic measure. By Lemma 4, Stπ(X)
is well-defined for π ∈ NC (k) with a single outer class. Since for such π
and σ ∈ NC (k), σ ≥ π, σ also contains only one outer class, by Lemma 6
Part (1) we conclude that for such π, Prπ(X) is well-defined as well. By
Lemma 5, Prπ(X) is then well-defined for an arbitrary π ∈ NC (k), and
applying Lemma 6 Part (1) again implies that Stπ(X) is well-defined for an
arbitrary π as well. Finally, by Lemma 7 the same is true for an arbitrary
consistent k-tuple X of free stochastic measures. �

Corollary 9. Let X be a consistent k-tuple of free stochastic measures. For
an interval I, define ∆(X)(I) = limδ(S)→0 St1̂(X,S), where S is a subdivi-
sion of I in place of [0, 1). With this notation, ∆(X) is a free stochastic
measure.

Lemma 10. Let X be a consistent k-tuple of free stochastic measures. Let
G1, G2, . . . , Gm ⊂ [k], and denote XG = (X(u1), X(u2), . . . X(u|G|)) for G =
(u1 < u2 < · · · < u|G|). Then the m-tuple

(∆(XG1),∆(XG2), . . . ,∆(XGm))

is also consistent.

Proof. The free increments property and stationarity follow immediately
from the corresponding properties of X. For a general n-tuple Y of free
stochastic measures that has these two properties, by stationarity the con-
tinuity property is equivalent to the continuity of the function

t 7→ ϕ[Y (v1)(t) . . . Y (vl)(t)]
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for all t, v. By Möbius inversion, this is equivalent to the continuity of t 7→
R(Y (v1)(t), . . . , Y (vl)(t)) for all t, v. By additivity and the free increments
property, this is equivalent to the continuity of this function, for all v, at
t = 0, and so to the same property for M .

Thus finally, for the m-tuple in the hypothesis, it suffices to prove that
ϕ[∆(XG1 , t)∆(XG2 , t) . . .∆(XGm , t)] → 0 as t → 0. Note that we do not
need to put in a multi-index v since {Gi}m

i=1 is already an arbitrary collection
of subsets of [k]. Denote by σ ∈ NC (l) the partition (B1, B2, . . . , Bm) with
interval classes

Bj =

{(
j−1∑
s=1

|Gs|

)
+ 1, . . . ,

j∑
s=1

|Gs|

}
,

and let Y = (XG1 ,XG2 , . . . ,XGm). Clearly Y is a consistent l-tuple. Then

ϕ[∆(XG1 , t)∆(XG2 , t) . . .∆(XGm , t)]

= ϕ[Prσ(Y(t))] =
∑
τ≥σ

ϕ[Stτ (Y(t))]

=
∑
τ≥σ

Rτ (Y(t)) =
∑
τ≥σ

t|τ |Rτ (Y)

by Lemma 1, and so goes to 0 as t→ 0. �

Lemma 11. Let σ = (B1, B2, . . . , Bn) be an interval partition of [k]. Then

∆(∆(B1;X), . . . ,∆(Bn;X)) = ∆(X).

Proof. Let S = (I1, I2, . . . , IN ) be a subdivision of [0, 1). For each i, let
Si = (Ii,1, Ii,2, . . . , Ii,Mi) be a subdivision of Ii, and T be the subdivision of
[0, 1) obtained by combining {Si}N

i=1. Then as δ(S1), . . . , δ(SN ) → 0, also
δ(T ) → 0. Therefore

lim
δ(S1),...,δ(SN )→0

∆(X, T ) = ∆(X),

and so ∆(X) is also the limit of the left-hand-side if in addition δ(S) → 0.
Here

∆(X, T ) =
N∑

i=1

Mi∑
s=1

k∏
t=1

X(t)(Ii,s).

On the other hand,

N∑
i=1

n∏
j=1

Mi∑
s=1

∏
t∈Bj

X(t)(Ii,s) =
N∑

i=1

n∏
j=1

∆((Bj ;X),Si)



26 M. ANSHELEVICH

and

lim
δ(S)→0

lim
δ(S1),...,δ(SN )→0

N∑
i=1

n∏
j=1

∆((Bj ;X),Si) = lim
δ(S)→0

N∑
i=1

n∏
j=1

∆(Bj ;X)

= ∆(∆(B1;X), . . . ,∆(Bn;X)).

Therefore the difference

∆(∆(B1;X), . . . ,∆(Bn;X))−∆(X)

is the limit, as δ(S1), . . . , δ(SN ) → 0 and then as δ(S) → 0, of

N∑
i=1

n∏
j=1

Mi∑
s=1

∏
t∈Bj

X(t)(Ii,s)−
N∑

i=1

Mi∑
s=1

k∏
t=1

X(t)(Ii,s).

This expression is a sum with positive coefficients. Also, for the free Poisson
process,

∆(∆(B1;X), . . . ,∆(Bn;X))−∆(X) = ∆(X, . . . ,X)−X = 0.

By the same estimates as in Lemma 7, the result follows. �

Lemma 12. For π ∈ NC (k),

Stπ(X) = RI(π)(C(π);X) · St(B1(π),B2(π),...,Bo(π)(π))

o(π)⋃
i=1

Bi(π);X

 .

Proof. Let C be an inner class of π, and let π′ ∈ NC (k − |C|) be the
restriction of π to [k]\C. Then it suffices to prove that

Stπ(X) = R(C;X) · Stπ′(([k]\C);X).

Denote A = Stπ(X)−R(C;X) · Stπ′(([k]\C);X).

ϕ[(AA∗)n] =
∑

G⊂[2n]

(−R(C;X))|G|ϕ[Stπ1(X1)Stπ2(X2) . . .Stπ2n(X2n)],

where:

• If j 6∈ G, j odd, then πj = π,Xj = X.
• If j 6∈ G, j even, then πj = πop,Xj = Xop.
• If j ∈ G, j odd, then πj = π′,Xj = (([k]\C);X).
• If j ∈ G, j even, then πj = (π′)op,Xj = (([k]\C);X)op.

Denote πG = π1 + π2 + · · ·+ π2n. Let Ci(G) be the support of πi identified
as a sub-partition of πG, and let τG = (C1(G), C2(G), . . . , C2n(G)). Then
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by Part (2) of Lemma 6,

‖A‖2n
2n =

∑
G⊂[2n]

(−1)|G|R(C;X)|G|
∑

σ∈NC (2nk−|G|·|C|)
σ∧τG=πG

ϕ[Stσ(X1,X2, . . . ,X2n)]

=
∑

G⊂[2n]

(−1)|G|
∑

σ∈NC (2nk−|G|·|C|)
σ∧τG=πG

R(C;X)|G|Rσ(X1,X2, . . . ,X2n).

Fix G ⊂ [2n]. Let σ ∈ NC (2nk), σ ∧ τ∅ = π∅, where τ∅ = 1̂k + · · · +
1̂k and π∅ = π + πop + π + · · · + πop. Denote Cop = (k + 1 − C) the
class of πop corresponding to C. Since C is an inner class of π, the con-
dition σ ∧ τ∅ = π∅ implies that (2jk + C) and ((2j + 1)k + Cop) are
classes of σ for 0 ≤ j < n. Let gG map such a σ to the partition in
NC (2nk − |G| · |C|) obtained by removing from σ the classes (2jk + C)
for (2j + 1) ∈ G and ((2j + 1)k + Cop) for (2j + 2) ∈ G. It is easy to see
that gG is a bijection onto {σ ∈ NC (2nk − |G| · |C|)|σ ∧ τG = πG}, and that
R(C;X)|G|RgG(σ)(X1,X2, . . . ,X2n) = Rσ(X,X, . . . ,X). Therefore

‖A‖2n
2n =

∑
G⊂[2n]

(−1)|G|
∑

σ∈NC (2nk)
σ∧τ∅=π∅

Rσ(X,X, . . . ,X) = 0

since the first sum equals to 0. �

Proof of the Main Theorem. The statement of the theorem holds for π = 0̂k.
From now on, assume π > 0̂k. The proof will proceed by induction on k.
The statement of the theorem is vacuous for k = 1; assume that it holds for
all tuples of less than k elements.

By Lemma 12,

StI′i(π)(Bi(π);X) = RIi(π)(Bi(π)\Bi(π);X) ·∆(Bi(π);X).

Therefore

PrI′i(π)(Bi(π);X) =
∑

σi≥I′i(π)

Stσi(Bi(π);X)

=
∑

σi≥I′i(π)

(RI(σi)(B(σi)\B(σi);X) ·∆(B(σi);X)).
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Then by Lemma 5,

Prπ(X) =
o(π)∏
i=1

PrI′i(π)(Bi(π);X)

=
o(π)∏
i=1

∑
σi≥I′i(π)

(RI(σi)(B(σi)\B(σi);X) ·∆(B(σi);X))

=
∑
σ≥π

∀i:Bi(σ)=Bi(π)

RI(σ)(C(σ);X)
o(π)∏
j=1

∆(Bj(σ);X)

=
∑
σ≥π

∀i:Bi(σ)=Bi(π)

RI(σ)(C(σ);X)

× Pr0̂o(π)
(∆(B1(σ);X), . . . ,∆(Bo(π)(σ);X)).

In its turn,

Pr0̂o(π)
(∆(B1(σ);X), . . . ,∆(Bo(π)(σ);X))

=
∑

ρ∈NC (o(π))

Stρ(∆(B1(σ);X), . . . ,∆(Bo(π)(σ);X)).

Since π > 0̂k, σ has at most k−1 classes, so the induction hypothesis applies
to Y = (∆(B1(σ);X), . . . ,∆(Bo(σ)(σ);X)). Thus

Stρ(Y) = RI(ρ)(C(ρ);Y) · ψ(∆(B1(ρ);Y), . . . ,∆(Bo(ρ)(ρ);Y)).(2)

Define the map f : NC (o(π)) ×
{
σ ∈ NC (k)|σ ≥ π,∀i : Bi(σ) = Bi(π)

}
→

NC (k) by i
f(ρ,σ)∼ j ⇔ ((i σ∼ j) or (i ∈ Bs(σ), j ∈ Bt(σ), s

ρ∼ t)). Note that
the outer classes of f(ρ, σ) are in one-to-one correspondence with the outer
classes of ρ, and each inner class of f(ρ, σ) corresponds to a unique inner
class of either ρ or σ. It is easy to see that f is in fact a bijection onto
{τ ∈ NC (k)|τ ≥ π}. Combining Equation (2) with Lemma 11, we see that

RI(σ)(C(σ);X) · Stρ(∆(B1(σ);X), . . . ,∆(Bo(π)(σ);X))

= RI(τ)(C(τ);X) · ψ(∆(B1(τ),X), . . . ,∆(Bo(τ)(τ);X)),

with τ = f(ρ, σ). Therefore

Prπ(X) =
∑
τ≥π

RI(τ)(C(τ);X)

× ψ(∆(B1(τ),X),∆(B2(τ);X), . . . ,∆(Bo(τ)(τ);X)).
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On the other hand, for all π, Prπ(X) =
∑

τ≥π Stπ(X). Note that the Möbius
inversion formula for π > 0̂k involves only σ > 0̂k. Therefore, applying this
formula,

Stπ(X) = RI(π)(C(π);X)

× ψ(∆(B1(π),X),∆(B2(π);X), . . . ,∆(Bo(π)(π);X))

=
i(π)∏
i=1

R(Ci;X) · ψ(∆(B1;X),∆(B2;X), . . . ,∆(Bo(π);X)).

�

Remark 5 (Higher-dimensional analogs). The Main Theorem gives a com-
plete description of the higher stochastic measures Stπ as given in Defini-
tion 3. However, under the original definitions of [RW] (modified for pro-
cesses with freely independent increments) these only correspond to values
on cubes, hence their dependence on only 1 and not k parameters. In this
remark we briefly describe how one could extend the definition to more
general rectangles of the form I = [a1, b1) × [a2, b2) × · · · × [ak, bk). It
is clear that it suffices to give the definition only for the case when for
1 ≤ i, j ≤ k the intervals [ai, bi) and [aj , bj) are either disjoint or the
same (one then needs to show that the resulting definition is consistent).
Assume that the rectangle I is of this form. Then we can define a par-

tition π(I) ∈ P(k) by i
π(I)∼ j ⇔ [ai, bi) = [aj , bj). Let π(I) have classes

B1, B2, . . . , Bl. Let c(i) be the index such that i ∈ Bc(i), 1 ≤ i ≤ k.
Let X be a free stochastic measure, and X a k-tuple of free stochastic
measures given by X(j)([a, b)) = X([a − aj , b − aj)). The conditions on
ai, bi imply that this k-tuple is consistent. Let S = {Sj} be subdivisions
of [ac−1(j), bc−1(j)), 1 ≤ j ≤ l into intervals Ij,s. For σ ∈ NC (k), denote

Sσ =
{
v ∈ Nk : (

∏k
i=1 Ic(i),vi

) ∩ Rk
σ 6= ∅

}
. Note that if π(I) = 1̂ and S is a

single subdivision with N classes, Sσ = [N ]kσ. Define

Stσ(X,S) =
∑
v∈Sσ

k∏
i=1

X(Ii,vi)

and St(I) = limδ(S)→0 Stσ(X,S). It follows immediately that St(I) = 0
unless σ ≤ π(I). Indeed, if σ 6≤ π(I) then for any subdivision S, Sσ = ∅.
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