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CR APPROXIMATION ON A NONRIGID HYPERSURFACE
GRAPH IN Cn

Al Boggess and Roman Dwilewicz

Let M be a hypersurface in Cn that is the graph over a
(2n − 1)-linear real space. The main result of the paper is
that any CR function on M can be uniformly approximated
on compact subsets by entire functions on Cn.

1. Introduction

In [BT], Baouendi and Treves prove a local CR approximation result that
says (in particular) that CR functions on a CR submanifold can be locally
approximated by entire functions. The global version of this theorem is
false, as seen by the example M = {(z, w) ∈ C2; |z| = 1} — the function
f(z, w) = 1/z is clearly CR on M but cannot be approximated uniformly on
compact subsets of M by entire functions. A natural question is whether a
global version of the CR approximation theorem holds in cases where there
are no topological obstructions. In this work, we establish a partial answer
to this question by showing that the global CR approximation theorem holds
on any smooth real hypersurface that is globally presented as a graph.

To precisely state our theorem, let Cn be given coordinates (z, w) ∈
C×Cn−1. Let h : R×Rn−1×Rn−1 → R be a smooth real-valued function
and let M be its graph:

M =
{
(z, w) = (h(y, u, v) + iy, u+ iv) ∈ C×Cn−1

}
.

Our goal is to prove the following theorem:

Theorem 1. Given a compact set K ⊂ Cn, there is a compact set K ′ ⊂ Cn

(with K ⊂ K ′), such that if f is continuous and CR on a neighborhood of
M ∩K ′, then there is a sequence of entire functions on Cn that converges
to f uniformly on M ∩K.

Earlier work (see [B]) established this theorem in the case where the
graphing function h is rigid (i.e., independent of y) and has polynomial
growth. Earlier results on global CR approximation, see for example [DG],
required additional technical assumptions (including certain convexity re-
strictions). Global approximation on totally real submanifolds of smooth
functions by holomorphic functions has been considered by many authors,
including [HW] and [Ch].
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202 AL BOGGESS AND ROMAN DWILEWICZ

This work only handles the hypersurface case. The analogous theorem for
higher codimension is still open and it does not appear that the techniques
in this work can be easily modified to handle the case of higher codimension.

2. Outline of proof

As with the local version of the CR approximation theorem, the idea is to
first integrate the given CR function f(z, w) against a kernel that approxi-
mates the identity. The kernel will be entire in all variables, but is supported
along a slice of M that moves as the point (z, w) moves (in a sort of Radon
transform style). Since the slices don’t depend holomorphically on (z, w),
the resulting approximating sequence is not a priori holomorphic. Thus, the
next step is to show (with the help of Stokes’ Theorem) that the slice can be
fixed, independently of the point (z, w). All of this analysis is done locally at
first and then pieced together globally with a correction term that involves
solving a ∂ problem with estimates (in a Cousin-type fashion).

3. Definition of kernel

In [BT], an approximation to the identity kernel is used that somewhat
looks like a heat kernel in Cn. Our kernel also looks like a heat kernel but
with the new feature of involving an extra complex parameter that gets
integrated along an infinite ray in C (somewhat like a complex version of
the Laplace transform). This extra parameter will allow us to handle global
approximation. More specifically, for a continuous function f on M , we
consider the sequence

Eε(f)(z, w) =
C

εn

∫
(ζ,η)∈Mu

∫
α∈Cθ

f(ζ, η)Eε(ζ, η, α, z, w)αn dα dζdη

where the kernel Eε is given by

Eε(ζ, η, α, z, w) = exp
(
α2
(ζ − z

ε

)2
+ α2Λ

(w − η

ε

)2
− αp

)
.

Here, α, ζ ∈ C and η ∈ Cn−1 will be the variables of integration; (z, w) is a
point in C × Cn−1 = Cn; ε is a real parameter that will later converge to
zero; and Λ is a fixed positive real number (chosen below). The term (w−η)2
stands for the sum of the squares of the components of w−η ∈ Cn−1 (without
any conjugates). The power p will be a real number slightly larger than 2
and will be chosen below. The domain of integration involves Mu, which is
the intersection of M with the slice {(ζ, η) ∈ C × Cn−1; Re η = u} where
u is the real part of w. The other component of the domain of integration
is the ray Cθ = {α = reiθ; r > 0}, where the angle θ will be between −π

4
and π

4 and its choice below will be determined by the desire to make the
real part of the exponent of the kernel as negative as possible (so that the
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resulting integral will converge). One angle will not work for all (ζ, η) and
(z, w) and so a localization argument with many angles must be used.

4. Main estimate

In order to obtain convergence results, we will need an estimate on the real
part of the exponent of our kernel. Various constants will emerge in the
statement and proof of this estimate that depend on the compact set K or
K ′. We denote the dependency of a constant, such as δ, on a set A by writing
δA. We also use the following coordinates: the variable of integration (ζ, η)
will always lie on M and will be written as

(ζ, η) = (h(s, u′, t) + is, u′ + it) ∈M with s ∈ R, u′, t ∈ Rn−1.

The point (z, w) lies in C×Cn−1 (not necessarily inM) and will be written as

(z, w) = (h(y, u, v) + q + iy, u+ iv) with y, q ∈ R, u, v ∈ Rn−1.

Note that q represents the vertical distance from the point (z, w) to M . In
particular (z, w) belongs to M if and only if q = 0.

We now state the main estimate on the exponent of our kernel.

Lemma 1 (Main estimate). Suppose K ⊂ K ′ are given compact sets in
Cn. There exist constants ΛK′ , CK′ , dK , δK , δK′ , CK > 0 and p = pK′

with 2 < p < 2/(1−δK′) and an open cover Qj (j = 1, . . . , N) of K and
an open cover Q′k (k = 1, . . . , N ′) of K ′ with diameters less than dK/2 and
angles θj,k such that for all α ∈ Cθj,k

= {reiθj,k ; r > 0} and for all

(ζ, η) = (h(s, u′, t) + is, u′ + it) ∈ Q′k ∩M and

(z, w) = (h(y, u, v) + q + iy, u+ iv) ∈ Qj

(with u, u′, t, v ∈ Rn−1 and s, y, q ∈ R) we have:
1) If |s− y| < 2dK for all (z, w) ∈ Qj and (ζ, η) ∈ Q′k ∩M , then θj,k can

be chosen with |θj,k| < π
4 − δK and

Re
(
α2
(ζ−z

ε

)2
+ ΛK′α2

(w−η
ε

)2
−αp

)
(1)

≤ −δK
(∣∣∣s−y

ε

∣∣∣2r2 +
∣∣∣ t−v
ε

∣∣∣2r2 + rp
)

+ CK′

∣∣∣u−u′
ε

∣∣∣2r2 + CK

(q
ε

)2
r2.

2) If |s− y| ≥ dK for all (z, w) ∈ Qj and (ζ, η) ∈ Q′k ∩M , then θj,k can
be chosen with |θj,k| < π

4 − δK′ and

Re
(
α2
(ζ − z

ε

)2
+ ΛK′α2

(w − η

ε

)2
− αp

)
(2)

≤ −δK′

(∣∣∣s− y

ε

∣∣∣2r2 +
∣∣∣ t− v

ε

∣∣∣2r2 + rp
)

+ CK′

∣∣∣u− u′

ε

∣∣∣2r2.
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Remark. Since the diameters of Qj and Q
′
k are less than dK/2, each Qj

and Q
′
k falls under either case 1 or case 2. In the second case, the constant,

δK′ , depends on K ′ (as opposed to K for the constant in the first case).
Since K ⊂ K ′, δK′ will generally be smaller than δK . Also note that the
estimate in the second case does not involve q2.

Proof of the lemma. If Ŵ is a complex number with |Arg (Ŵ )| ≥ 3δ1 > 0,
there is an angle θ with |θ| < π

4 − δ1 such that Re {e2iθŴ} < 0. If we let
Cθ = {reiθ; r > 0}, there is a δ2 > 0 such that Re {α2Ŵ} ≤ −δ2|Ŵ ||α|2 for
all α ∈ Cθ. This observation will be used below to choose the angles θj,k.

We first examine the term (ζ − z)2 that appears in the exponent of
Eε(ζ, η, α, z, w). We write

(ζ, η) = H(s, u′, t) = (h(s, u′, t) + is, u′ + it),

(z, w) = H(y, u, v) + (q, 0) = (h(y, u, v) + iy + q, u+ iv).

Note that (ζ, η) belongs to M ; but (z, w) belongs to M if and only if q = 0.
We wish to rotate (ζ − z)2 so that its real part is negative. For technical

reasons that will be clear later, the rotation angle must be less than π
2 .

Thus, the troublesome case to handle is when ζ−z is a positive real number
(which would then require a rotation angle greater than π

2 to make its real
part negative). Therefore, we will handle separately the cases when s− y =
Im{ζ − z} is small and not so small.

First, observe that there is a δ̃K > 0 such that

|Arg (hy(y, u, v) + i) | ≥ δ̃K for all (y, u, v) ∈ K.

By choosing dK > 0 small enough and by shrinking δ̃K > 0, we can arrange

(3)
∣∣∣∣Arg

(
h(s, u, v)− h(y, u, v)

s− y
+ i

)∣∣∣∣ ≥ δ̃K

for all (y, u, v) ∈ K, and |s− y| ≤ 2dK .

Choose a smooth function φ : R → [0, 1] such that φ(s − y) = 0 for
|s− y| ≤ dK/2 and φ(s− y) = 1 for |s− y| ≥ dK .

After adding and subtracting terms, we obtain

ζ − z = h(s, u′, t)− h(y, u, v)− q + i(s− y)

=
(
h(s, u, v)− h(y, u, v)

s− y
− φ(s− y)q

s− y
+ i

)
(s− y)(4)

+
(
h(s, u′, v)− h(s, u, v)

)
+
(
h(s, u′, t)− h(s, u′, v)

)
− (1− φ(s− y))q

= W · (s− y) +
(
h(s, u′, v)− h(s, u, v)

)
+
(
h(s, u′, t)− h(s, u′, v)

)
−
(
1− φ(s− y)

)
q,
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where

W =
h(s, u, v)− h(y, u, v)

s− y
− φ(s− y)q

s− y
+ i.

In view of (3) and the fact that φ(s − y) = 0 for |s − y| ≤ dK/2, δ̃K
can be shrunk, if necessary, so that |ArgW | ≥ δ̃K for (y, u, v) ∈ K and
|s− y| ≤ 2dK . If |s− y| ≥ dK with H(s, u, v) belonging to the compact set
K ′, then the inequality above holds with a constant δ̃K′ depending on K ′.
We can then find an open cover (in Cn) Q1, . . . , QN of K and an open cover
Q′1, . . . , Q

′
N ′ of K ′∩M with diameter smaller than dK/2 and angles θj,k and

constants δK > 0 and δK′ > 0 such that:

Case 1. IfH(y, u, v)+(q, 0) ∈ Qj andH(s, u, v) ∈ Q′k∩M with |s−y| ≤ 2dK ,
then |θj,k| ≤ π

4 − δK and

Re {e2iθj,kW 2} ≤ −δK |W |2 ≤ −δK .(5)

Case 2. If H(y, u, v)+(q, 0) ∈ Qj and H(s, u, v) ∈ Q′k∩M with |s−y| ≥ dK ,
then |θj,k| ≤ π

4 − δK′ and

Re {e2iθj,kW 2} ≤ −δK′ |W |2 ≤ −δK′ .(6)

For shorthand in the next set of calculations, we let θ = θj,k. From (4),
we obtain

Re
(
e2iθ(ζ − z)2

)
= Re

(
e2iθW 2(s− y)2 + e2iθ

(
h(s, u′, v)− h(s, u, v)

)2(7)

+ e2iθ
(
h(s, u′, t)− h(s, u′, v)

)2 + e2iθ(1− φ)2q2 + cross terms
)
.

For (z, w) = H(y, u, v) + (q, 0) ∈ Qj and (ζ, η) = H(s, u′, t) ∈ Q′k ∩M with
|s− y| ≤ 2dK , we have

|h(s, u′, v)− h(s, u, v)|2 ≤ CK′ |u− u′|2,
|h(s, u′, t)− h(s, u′, v)|2 ≤ CK′ |t− v|2,

for some constant CK′ depending only on K ′. Therefore, in view of (5),

Re
(
e2iθ(ζ − z)2

)
≤ −δK

2
|W |2|s− y|2 + CK′

(
|u− u′|2 + |t− v|2

)
+ CKq

2.

(8)

In this estimate we have handled the cross terms in the usual manner. For
example, the cross term W (s− y)(1− φ)q is estimated as follows:

|W (s−y)(1−φ)q| =
√
δK
4
W |s−y|·

√
4
δK

|q| |1−φ| ≤ δK
4
|W |2|s−y|2+ 4

δK
q2.

The first term on the right can be absorbed by the −δK |W |2 term in (5).
The second term on the right contributes to CKq2 appearing in (8). Other
cross terms are handled similarly.
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In the case when |s − y| ≥ dK , we have φ(s − y) = 1, so the term
in (7) involving (1 − φ)q is zero. Therefore the preceding analysis can be
repeated (using (6)) but without the term on the right involving q; that is,
if (z, w) = H(y, u, v) + (q, 0) ∈ Qj and (ζ, η) = H(s, u′, t) ∈ Q′k ∩M with
|s− y| ≥ dK then

Re
(
e2iθ(ζ − z)2

)
≤ −δK′

2
|W |2|s− y|2 + CK′

(
|u− u′|2 + |t− v|2

)
.(9)

In (8), the angle θ is θjk, satisfying |θ| = |θj,k| ≤ π
4 − δK . In (9), the angle

θ = θjk satisfies |θ| ≤ π
4 − δK′ (depending on the larger set K ′).

We now turn our attention to the terms involving η − w in the exponent
Eε(ζ, η, α, z, w). If |θ| ≤ π

4 − δ, then

Re
(
e2iθ(η − w)2

)
(10)

= Re
(
e2iθ(u′ − u+ i(t− v))2

)
≤ − cos(π2 − 2δ)(t− v)2 + (u− u′)2 + 2 sin(π2 − 2δ) |u− u′| |t− v|

≤ −(δ)(t− v)2 + (u− u′)2 +
2
√

2 |u− u′|√
δ

|t− v|
√
δ√

2

≤ −δ
2
|t− v|2 +

(
1 +

2
δ

)
|u− u′|2 (using 2 |a| |b| ≤ a2 + b2)

for all η and w. In the case |s− y| ≤ 2dK the constant δ = δK depends on
K, whereas in the case |s − y| ≥ dK the constant δ = δK′ depends on the
larger set K ′.

Now choose a p with 2 < p < 2/(1−δ), where δ is either δK or δK′ . Then
since |θ| ≤ π

4 − δ, we have p|θ| < π
2 ; so there is a δ̃ > 0 such that

if α = reiθ, with r ≥ 0, then Reαp ≥ δ̃rp.(11)

Here, δ̃ depends either on K, in the case |s−y| ≤ 2dK , or on K ′, in the case
|s− y| ≥ dK .

In the case |s − y| ≤ 2dK , we can combine the estimates given in (8)
(noting that |W | ≥ 1), (10), and (11), to obtain, with α = reiθ:

Re
(
α2
(ζ−z

ε

)2
+ Λα2

(w−η
ε

)2
− αp

)
≤ −δK

2

∣∣∣s−y
ε

∣∣∣2r2 + CK′

(∣∣∣u−u′
ε

∣∣∣2 +
∣∣∣ t−v
ε

∣∣∣2)r2
+ CK

(q
ε

)2
r2 − δK

2
Λ
∣∣∣ t−v
ε

∣∣∣2r2 + Λ
(
1+

2
δK

)∣∣∣u−u′
ε

∣∣∣2r2 − δ̃Kr
p.

Choosing Λ (= ΛK′) large enough so that ΛδK/2 > CK′ + δK/2 we obtain
(1) after relabeling δK to be the smaller of δK/2 and δ̃K and relabeling as
CK′ the quantity CK′ + Λ(1 + 2/δK).
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For the case when |s − y| ≥ dK , we use estimate (9) instead of (8) and
the constant δ = δK′ now depends on the larger set K ′. The only difference
in the estimates above is that the right side no longer involves the term q2

(compare (9) with (8)). Thus, (2) is obtained and this completes the proof
of the main estimate given in the lemma.

5. Approximation to the identity

We restate the definition of our basic kernel:

Eε(ζ, η, α, z, w) = exp
(
α2
(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp

)
.

Let Q = Qj and Q′ = Q′k be the open sets and let θ = θj,k be the angle
provided by Lemma 1. Suppose f is continuous with compact support in
Q′ ∩M . Define

Eε(f)(z, w) =
C

εn

∫
(ζ,η)∈Mu

∫
α∈Cθ

f(ζ, η)Eε(ζ, η, α, z, w)αn dα dζdη,

where C is a normalizing constant to be chosen later, u = Rew and

Mu = {(ζ, u+ it) ∈M} = {Re η = u} ∩M

is a totally real n-dimensional submanifold of M parameterized by

(s, t) ∈ R×Rn−1 7→ (h(s, u, t) + is, u+ it).

Here and below, dη = dη1 ∧ · · · ∧ dηn−1. The domain of integration in
Eε(f)(z, w) is Mu, which depends on Rew = u. Since p > 2 in the main
estimate (Lemma 1), and since f has compact support in Q′ ∩M , the ex-
pression Eε(f)(z, w) is well-defined for (z, w) ∈ Q. This main estimate will
also allow us to prove the following approximation result:

Lemma 2. Suppose f is continuous with compact support in Q′∩M . Then

Eε(f) → f as ε→ 0

uniformly on Q ∩M (here, Q = Qj and Q′ = Q′k are the open sets as in
Lemma 1).

Proof. We analyze the exponent

Z = α2
(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp

in the case where

(ζ, η) = (h(s, u, t) + is, u+ it) ∈Mu

(in particular, u′ = u on Mu) and

(z, w) = (h(y, u, v) + iy, u+ iv)
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(i.e., (z, w) belongs to M and so q = 0). We obtain

ζ − z = h(s, u, t)− h(y, u, v) + i(s− y) ∈ C,

η − w = i(t− v) ∈ Cn−1.

With α = reiθ, the exponent of our kernel is

Z = α2
(ζ−z

ε

)2
+ α2ΛK′

(w−η
ε

)2
− αp

= e2iθr2
(
h(s, u, t)−h(y, u, v)+ i(s−y)

ε

)2

− ΛK′

( t−v
ε

)2
e2iθr2 − eipθrp.

Now let

ŝ =
s− y

ε
∈ R, t̂ =

t− v

ε
∈ Rn−1.

Estimates (1) and (2) with u = u′ and q = 0 essentially reduce to the same
estimate except that the δ-constant depends on K in the first estimate and
on K ′ in the second estimate. Since K ⊂ K ′, we will assume that δK ≥ δK′ .
In the hat-variables, these estimates (with u = u′ and q = 0) become

ReZ ≤ −δK′
(
|ŝ|2r2 + |t̂|2r2 + rp

)
.

The function

e(ŝ, t̂, r) = rnexp
(
−δK′

(
|ŝ|2r2 + |t̂|2r2 + rp

))
is an integrable function on the set {(ŝ, t̂, r) ∈ R×Rn−1 ×R+; r ≥ 0} (to
see this, integrate ŝ and t̂ and then integrate r).

The Dominated Convergence Theorem now allows us to let ε→ 0 in the
integrand. The resulting exponent becomes

Z = e2iθr2
((

∂h(y, u, v)
∂y

+ i

)
ŝ+

∂h

∂v
(y, u, v) · t̂

)2

− ΛK′ t̂2r2e2iθ − rpeipθ.

In addition, ζ = (h(y+εŝ, u, v+εt̂)+i(y+εŝ)) converges to h(y, u, v)+iy = z
uniformly for (z, w) ∈ K as ε→ 0. Likewise, αnε−ndζ ∧ dη ∧ dα approaches
in−1rnei(n+1)θ(hy(y, u, v) + i) dŝ dt̂ dr.

Now we rewrite the first part of the exponent involving ŝ as

e2iθr2
((

∂h(y, u, v)
∂y

+ i

)
ŝ+

∂h

∂v
(y, u, v) · t̂

)2

= −r2
(
(−i)eiθWŝ+ (−i)eiθ ∂h

∂v
(y, u, v) · t̂

)2
,
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where W =
∂h(y, u, v)

∂y
+ i ∈ C. We have

lim
ε→0

Eε(f)(z, w) = ei(n+1)θCf(z, w)

×
∫
ŝ,t̂

∫
r≥0

exp
(
−r2

(
−ieiθWŝ− ieiθ ∂h

∂v
(y, u, v) t̂

)2
−ΛK′ t̂2r2e2iθ − rpeipθ

)
× rnin−1(hy(y, u, v) + i) dŝ dt̂ dr.

Using the limiting case as s → y in (5), we obtain Re
(
e2iθ(W )2

)
< 0.

Therefore

Re
(
−ieiθWŝ

)2
> 0.(12)

The idea now is to view the ŝ-integral in Eε(f) as a contour integral over
the contour C given by

ŝ 7→ z = −ieiθWŝ for ŝ ∈ R,

with dz = −ieiθ(hy(y, u, v) + i) dŝ.

The integral is
∫
C e

−r2(z+c)2 dz, where c = −ieiθhv(y, u, v) t̂. In view of (12),
e−r

2(z+c)2 is negatively exponentially decreasing on C. Cauchy’s theorem
implies that this contour integral is the same as

∫∞
−∞ e−r

2(s+c)2 ds. Therefore,

lim
ε→0

Eε(f)(z, w) = −in−2einθCf(z, w)

×
∫
s,t̂

∫
r≥0

exp
(
−r2

(
s− ieiθ

∂h

∂v
(y, u, v) t̂

)2
− ΛK′ t̂2r2e2iθ − rpeipθ

)
rn ds dt̂ dr.

Now we make a change of variables:

s̃ = s+ a t̂, with a = (−i)eiθ ∂h
∂v

(y, u, v) ∈ Cn−1,

t̃ = t̂ ∈ Rn−1.

The Jacobian of the derivative of this change of variables is 1. If a were
a real number, we could change variables in the usual manner and obtain
(after dropping the tilde)∫

s,t̂
e−r

2(s+at̂)2−r2ΛK′ t̂2e2iθ
ds dt̂ =

∫
s,t
e−r

2s2−r2ΛK′ t2e2iθ
ds dt.

Increasing ΛK′ if necessary, the left side is an analytic function of a in a
neighborhood of the ball |a| ≤ R, where R = sup |hv| over K. Therefore the
preceding equality holds (by the identity theorem for analytic functions) for
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complex a as well. We thus obtain

lim
ε→0

Eε(f)(z, w)

= −in−2einθCf(z, w)
∫
s,t

∫
r≥0

exp
(
−r2s2−ΛK′t2r2e2iθ−rpeipθ

)
rn ds dt dr.

We can now replace eiθt ∈ Cn−1 by t̃ ∈ Rn−1 and ei(n−1)θdt by dt̃. This
change of variables is justified, again, by Cauchy’s Theorem and the fact
that |θ| < π

4 . The result is (dropping the tilde)

lim
ε→0

Eε(f)(z, w)

= −in−2eiθCf(z, w)
∫
s,t

∫
r≥0

exp
(
−r2s2 − ΛK′t2r2 − rpeipθ

)
rn ds dt dr.

We change variables by letting t̂ = rt ∈ Rn−1 and ŝ = rs ∈ R (with
rn ds dt = dŝ dt̂). After integrating ŝ and t̂, the right side becomes

Cf(z, w) · ConstΛK′

∫ ∞

0
exp
(
−rpeipθ

)
eiθ dr

where ConstΛK′ ∈ C is a constant depending only on ΛK′ . We can view the
preceding integral as an integral over the contour

Cθ = {r 7→ z = reiθ}, with dz = eiθdr.

Since |θ| < π
4 , this contour lies in the right half-plane. Using the principal

branch of zp, the contour integral becomes

Cf(z, w) · ConstΛK′

∫
z∈Cθ

e−z
p
dz.

Since the integrand is analytic and rapidly decreasing at infinity (recall that
|pθ| < π

2 ), Cauchy’s Theorem can be used to transform this integral into the
following one over the positive real axis:

Cf(z, w) · ConstΛK′

∫ ∞

0
e−r̂

p
dr̂.

This is now independent of θ. Since the r̂-integral converges, we may choose
C (as a normalizing constant) so that the expression above becomes f(z, w).
This completes the proof of Lemma 2.

6. Fixing the slice Mu

So far, the function f is only required to be continuous (not CR). However,
the domain of integration in Eε(f)(z, w) is Mu = {Re η = u}, which depends
on u = Rew. So despite the fact that the kernel is entire in (z, w), the
expression Eε(f)(z, w) is not holomorphic in w. The next major step is to
show that if f is CR, then the domain can be fixed at a particular slice Mu0

(independent of w). Then, the resulting integral will be holomorphic in both
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z and w. Since f is assumed to only have support on a small neighborhood
of a fixed point (see Lemma 1), a localization argument with a partition
of unity is needed. This adds some complicating facets since a partition of
unity is not CR.

To get started with the next step, we first cover M ∩ K ′ with an open
cover Q′k (k = 1, 2, . . . , N ′), where each Q′k satisfies the properties given in
Lemma 1. Let φk be a partition of unity subordinate to this cover. Fix any
(z, w) ∈ K and let Qj be an open set that satisfies Lemma 1 and is of the
form Qj = I × J , where I ⊂ Rn−1 is an open set containing Rew and J is
an open set in C ×Rn−1 containing (z, Im w). Let θj,k be the angle given
in Lemma 1 corresponding the open sets Q′k in the coordinates (ζ, η) and
Qj in the coordinates (z, w). For the moment, the index j will be fixed and
k will vary. Therefore, we will suppress the index j and write Q = Qj and
θQ,k = θj,k. For any u0 ∈ I, define

F u0,Q
ε (f)(z, w) =

N ′∑
k=1

∫
(ζ,η)∈Mu0

∫
α∈CθQ,k

(φkf)(ζ, η)Eε(ζ, η, α, z, w)αn dζ dη dα.

From Lemma 2, F u0,Q
ε (f) → f as ε→ 0 uniformly on the set Q ∩Mu0 .

The next lemma contains the key step in fixing the domain of integration
independently of Rew. In this lemma, the size of K ′∩M (the set on which f
is CR) will be determined based on the size of the original set K. Increasing
the size of K ′ will add terms to the sum above (i.e., additional open sets, Q′k,
and additional partition of unity functions φk may be required). However
as long as K ′ is compact (which it will be), the sum will be finite.

Lemma 3. Suppose K is a compact set in Cn; then K ′ ⊂ Cn can be chosen
large enough (containing K) so that the following holds: suppose f is CR
on K ′ ∩M . Let Q = I × J be the open set described above. There exists
∆K′ > 0 such that if the diameter of I is less than ∆K′ and if u0, u1 ∈ I, then∣∣(F u1,Q

ε − F u0,Q
ε )(f)(z, w)

∣∣→ 0 as ε→ 0 uniformly for (z, w) ∈ Q = I × J .

Proof. Assume that K ′ is a closed ball of radius R′+1 in Cn. Since f is CR
on K ′∩M , we can multiply f by an appropriate cut-off function and assume
that f has compact support in K ′ ∩M and is ∂-closed on the intersection
of M with the ball of radius R′.
Mu0 and Mu1 are totally real n-dimensional slices of M that naturally

form the boundary of a real n + 1-dimensional submanifold M̃0,1 ⊂ M . In
fact, just connect u0 and u1 by a real line segment and let M̃0,1 be the graph
of h over the n+ 1 real-dimensional strip spanned by this line segment and
the n-dimensional subspace {Re η = u0} of R2n−1.

Since Eε is holomorphic, Stokes’ Theorem implies

(F u1,Q
ε − F u0,Q

ε )(f)(z, w) = S1 + S2
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with

S1 =
N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα,(13)

S2 =
N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

(φk∂f)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.(14)

We first show that the sum in (14) converges to zero as ε→ 0. The point
(ζ, η) = (h(s, u′, t) + is, u′ + it) must lie in the support of ∂f , which lies
outside the ball of radius R′ ≈ radius(K ′). Also note that u′ belongs to the
line segment connecting u0 and u1, which in turn belongs toK (or rather, the
projection ofK onto the u-axis). The point (z, w) = (h(y, u, v)+q+iy, u+iv)
lies in the smaller compact set K. We are at liberty to take R′ as large as
we please (relative to the diameter of K) in order to make the integrand in
(14) converge to zero as ε→ 0. Since (z, w) and u, u′ belong to K, we may
choose R′ large enough so that either

|s− y| ≥ R′

2
or |t− v| ≥ R′

2
(15)

for all (ζ, η) belonging to the support of ∂f .
We have two cases to consider on the exponent

Z = α2
(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp.

The first is |s− y| ≤ 2dK , in which case we repeat the estimate (1):

ReZ ≤ −δK
(∣∣∣s− y

ε

∣∣∣2r2 +
∣∣∣ t− v

ε

∣∣∣2r2 +rp
)

+ CK′

∣∣∣u− u′

ε

∣∣∣2r2 + CK

(q
ε

)2
r2.

Now u, u′ belong to I and we will require the diameter of I to be less than
∆K′ (where ∆K′ will be chosen below). In view of the inequality above and
(15), we have

ReZ ≤
−δK(R′/2)2r2 + CK′∆2

K′r2 + CKq
2r2

ε2
.

Choose R′ large enough that −δK(R′/2)2 +CKq
2 < −2 for all q in K. This

choice of R′ fixes the constant CK′ . Now choose ∆K′ small enough that
CK′∆2

K′ < 1. Then the real part of exponent is at most −r2/(ε2).
In the case where |s− y| ≥ dK , (2) implies

ReZ ≤ −δK′

(∣∣∣s− y

ε

∣∣∣2r2 +
∣∣∣ t− v

ε

∣∣∣2r2 + rp
)

+ CK′

∣∣∣u− u′

ε

∣∣∣2r2.
In view of (15)

ReZ ≤ −δK
′R′2r2

4ε2
+
CK′∆2

K′r2

ε2
.



CR APPROXIMATION ON A HYPERSURFACE GRAPH 213

By shrinking ∆K′ we can arrange

ReZ ≤ −δK
′R′2r2

8ε2
.

In either case (|s − y| ≥ dK or |s − y| ≤ 2dK), the integrand of each term
in (14) is dominated by Ce−r

2/ε2 or Ce−δK′R′2r2/(8ε2) provided u, u′ ∈ I and
the diameter of I is less than ∆K′ .

Since
∫∞
0 e−r

2/ε2 dr → 0 and
∫∞
0 e−δK′R′2r2/(8ε2) dr → 0 as ε → 0, we

conclude that the sum in (14) converges to zero.
Now we examine the sum S1 in (13), which we restate as

N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.

We have already determined the compact set K ′ (the size of which had to
be chosen large enough to make the term in (14) converge to zero as ε→ 0).
Thus, all the constants in our integral kernels (i.e., ΛK′ and p = pK′ > 2)
are now determined.

Note that the kernel Eε(ζ, η, α, z, w) in the sum immediately above is the
same for all k. The only terms that appear to vary with k are the cutoff
functions φk and the contours CθQ,k

. The following lemma states that the
integral of the kernel is independent of this contour.

Sublemma 1. Let Q′1 and Q′2 be intersecting open sets from our cover. Let
θ1 and θ2 be any two angles that satisfy the requirements of Lemma 1 relative
to Q′1 and Q′2 (in particular, |θ1|, |θ2| < π

4 − δK′). Then∫
α∈Cθ1

Eε(ζ, η, α, z, w)αndα =
∫
α∈Cθ2

Eε(ζ, η, α, z, w)αndα.(16)

To prove this, recall that Cθ is a ray in the complex plane that makes an
angle θ with the positive real axis. For R > 0, let AR,θ1,θ2 be the arc of a
circle of radius R that lies between Cθ1 and Cθ2 :

Cθ2

Cθ1

AR,θ1,θ2



214 AL BOGGESS AND ROMAN DWILEWICZ

Since Eε(ζ, η, α, z, w) is holomorphic in α, Equation (16) will follow from
Cauchy’s Theorem provided we show that

sup
α∈AR,θ1,θ2

Rn+1
∣∣Eε(ζ, η, α, z, w)

∣∣→ 0 as R→∞.(17)

We restate the kernel:

Eε(ζ, η, α, z, w) = exp
(
α2
(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp

)
.

Keep in mind that ε, ζ, η, z and w are fixed. Since p > 2, the dominant term
in the exponent is αp as |α| = R→∞. Let α = Reiφ be an arbitrary point
on the arc AR,θ1,θ2 , so θ1 ≤ φ ≤ θ2. Since |pφ| ≤ p |max(θ1, θ2)| < π

2 by the
choice of p, there exists δ > 0 such that −Reαp ≤ −δRp for α ∈ AR,θ1,θ2 .
Equation (17) now follows since Rn+1e−δR

p → 0 as R→∞. This concludes
the proof of the sublemma.

Using the fact that
∑

j φj = 1, the sum in (13) can be rewritten as

N ′∑
j=1

N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

φj(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.(18)

The support of φj∂φk is contained in Q′j ∩ Q′k ∩M . Using Equation (16),
the integral over CθQ,k

can be replaced by the integral over CθQ,j
. Therefore

(18) becomes
N ′∑
j,k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,j

φj(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.

Summing out k we see that this term is zero because
∑

k ∂φk = 0 on M∩K ′.
Thus the term in (13) is zero. Since the terms in (14) converge to zero as
ε→ 0, the proof of Lemma 3 is now complete.

Lemmas 2 and 3 imply:

Corollary 1. With the notation of Lemma 3, suppose f is CR on K ′ ∩M
and suppose that Q = I × J , where the diameter of I is less than ∆K′. If
u0 belongs to I, then

F u0,Q
ε (f)(z, w) → f as ε→ 0,

uniformly for (z, w) ∈ Q ∩M .

7. Globalization

Now F u0,Q
ε (f) is holomorphic on Q and F u0,Q

ε (f) → f on Q ∩M . The set
Q is an appropriately small open set about an arbitrary point (z, w) in K.
Our next and final step is to piece together these locally defined holomorphic
functions into a sequence of functions that are globally holomorphic on K
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with the corresponding convergence to f on K∩M . This will require solving
a ∂ problem on K with estimates.

To get started, we will assume K is a ball (in particular, K is a convex
domain and so we can solve ∂ on K). We cover K with open sets Qj
(j = 1, . . . , N) of the form Qj = Ij × Jj where Ij is an open set in Rn−1

(with coordinates u) and Jj is an open set in Rn+1 = R×R×Rn−1 (with
coordinates x ∈ R, y ∈ R, v ∈ Rn−1). We assume that Qj is small enough
to satisfy the requirements of Lemma 3 and that the diameter of each Ij is
smaller than ∆K′ (from Lemma 3). Choose points uj ∈ Ij , j = 1 . . . N . We
let ψj be a partition of unity for K subordinate to the cover Qj . We define

Fε(f)(z, w) =
(∑

j

ψjF
uj ,Qj
ε (f)(z, w)

)
− vε(z, w)

=
∑
j,k

ψj(z, w)
∫

(ζ,η)∈Muj

∫
α∈CθQj,k

(φkf)(ζ, η)

× Eε(ζ, η, α, z, w)αndζ dη dα− vε(z, w),

(19)

where vε will be chosen so that Fε(f) is holomorphic in K. We will also show
that |vε| converges to zero uniformly on K as ε→ 0. Then, Corollary 1 will
imply that Fε(f) → f uniformly on M ∩K, as desired.

In order to arrange that Fε(f) is holomorphic on K, we must require

∂vε(z, w) =
∑
j

∂{ψj}F uj ,Qj (f)(z, w)(20)

=
∑
l

ψl
∑
j

∂{ψj}F
uj ,Qj
ε (f)(z, w),

using
∑

l ψl = 1 on K. If ψl∂{ψj} is nonzero, Ql and Qj must overlap.
We wish to change F

uj ,Qj
ε to F ul,Ql

ε in the sum above. Changing Qj to
Ql involves changing the angle of the contour from CθQj,k

to CθQl,k
on the

second line of (19), which Sublemma 1 allows us to do. Changing uj to ul
is allowed by Lemma 3 but with a resulting error that tends to zero with ε.
Therefore, (20) becomes

∂vε(z, w) =
∑
l

ψl
∑
j

∂{ψj}F ul,Ql
ε (f)(z, w) +O(ε),

where O(ε) stands for terms that converge to zero uniformly on K as ε→ 0.
Summing out j and using the fact that

∑
j ∂{ψj} = 0, we conclude that

∂vε = O(ε) on K. Solving this ∂ equation with sup-norm estimates on
K, we can find a solution with |vε| = O(ε). Now returning to (19) and
using Corollary 1, we conclude that Fε(f) is analytic on K and converges
uniformly to f on M ∩K. Since K is convex, it is also polynomially convex.
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Therefore, there is also a sequence of polynomials that converge uniformly
on K ∩M to f . This concludes the proof of our main theorem.
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MAPS CHARACTERIZED BY ACTION ON ZERO
PRODUCTS

M.A. Chebotar, Wen-Fong Ke and Pjek-Hwee Lee

For prime rings containing nontrivial idempotents, we de-
scribe the bijective additive maps which preserve zero prod-
ucts. Also, we describe the additive maps which behave like
derivations when acting on zero products.

1. Introduction

In the last decade considerable works have been done concerning local prop-
erties of maps; see [1], [7], and [9]–[32], where other references can be found.
The goal of this paper is to show that automorphisms and derivations of
prime rings with nontrivial idempotents can be “almost” determined by the
action on the zero-product elements.

Our first theorem generalizes a similar result of Wong [34, Corollary D]
for simple algebras with nontrivial idempotents, as well as some other results
obtained for operator algebras [1, 13, 16, 33].

Let R be a prime ring. The definitions and some basic properties of the
maximal right quotient ring Q(R) and extended centroid C(R) of R can be
found in [6]. Recall that an element x in Q(R) is said to be algebraic of
degree ≤ n over C(R) if there exist c0, c1, c2, . . . , cn−1 ∈ C(R) such that∑n−1

i=0 cix
i + xn = 0. By degR ≥ n we mean that there exists an element

x in R that is not algebraic of degree ≤ n− 1 over C(R). The condition
that degR ≥ n is equivalent to that R can not be embedded in the ring of
(n−1)× (n−1) matrices over a field.

Theorem 1. Let A and B be prime rings and θ : A→ B a bijective additive
map such that θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that the
maximal right quotient ring Q(A) of A contains a nontrivial idempotent e
such that eA ∪Ae ⊆ A.

(i) If 1 ∈ A, then θ(xy) = λθ(x)θ(y) for all x, y ∈ A, where λ = 1/θ(1)
and θ(1) ∈ Z(B), the center of B. In particular, if θ(1) = 1, then θ is
a ring isomorphism from A onto B.

(ii) If degB ≥ 3, then there exists λ ∈ C(B), the extended centroid of B,
such that θ(xy) = λθ(x)θ(y) for all x, y ∈ A.
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It is clear that Theorem 1 can not be extended to arbitrary prime rings,
since these rings may not have “enough” zero-divisors. The condition that
the idempotent e be an element of Q(A) (instead of A) enables us to consider
matrix rings over arbitrary prime rings (not necessarily with units).

Our second result is an analog of Theorem 1 for derivations. In particular,
it generalizes [19, Theorem 6].

Theorem 2. Let A be a prime ring with center Z, maximal right quotient
ring Q and extended centroid C. Let δ : A → A be an additive map such
that δ(x)y+xδ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that Q contains
a nontrivial idempotent e such that eA ∪Ae ⊆ A.

(i) If 1 ∈ A, then δ(xy) = δ(x)y + xδ(y) − λxy for all x, y ∈ A, where
λ = δ(1) ∈ Z. In particular, if δ(1) = 0, then δ is a derivation on A.

(ii) If degA ≥ 3, there exists λ ∈ C such that δ(xy) = δ(x)y+xδ(y)−λxy
for all x, y ∈ A.

2. Isomorphisms

We start with a key result of the paper.

Theorem 3. Let A and B be prime rings and θ : A→ B a bijective additive
map such that θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that the
maximal right quotient ring Q(A) of A contains a nontrivial idempotent e
such that eA ∪ Ae ⊆ A. Then θ(x)θ(yz) = θ(xy)θ(z) for all x, y, z ∈ A.
Moreover, if A contains the unity 1, then:

(i) θ(1) lies in the center Z(B) of B.
(ii) θ(1)θ(xy) = θ(x)θ(y) for all x, y ∈ A. In particular, if θ(1) = 1, then

θ is a ring isomorphism from A onto B.
(iii) θ preserves commutativity, that is, θ(x)θ(y) = θ(y)θ(x) for all x, y ∈ A

with xy = yx.

Proof. Set f = 1 − e. Then f is a nontrivial idempotent in Q(A) such
that e + f = 1, ef = fe = 0 and fA ∪ Af ⊆ A. Since θ is additive and
y = eye+ eyf + fye+ fyf for all y ∈ A, it suffices to show that the identity
θ(x)θ(yz) = θ(xy)θ(z) holds for y in eAe, eAf , fAe and fAf , respectively.

Let x, z ∈ A. Since θ preserves zero products, (xe)(z − ez) = 0 implies
that θ(xe)θ(z − ez) = 0 and hence

θ(xe)θ(z) = θ(xe)θ(ez).

Similarly, it follows from (x− ex)(ez) = 0 that

θ(x)θ(ez) = θ(xe)θ(ez).

Thus we have

θ(x)θ(ez) = θ(xe)θ(ez) = θ(xe)θ(z) for all x, z ∈ A.(1)
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By the symmetry of e and f , we also have

θ(x)θ(fz) = θ(xf)θ(fz) = θ(xf)θ(z) for all x, z ∈ A.(2)

Note that

(xe+ xeyf)(eyfz − fz) = 0 for all x, y, z ∈ A,

so
θ(xe+ xeyf)θ(eyfz − fz) = 0 for all x, y, z ∈ A.

Since θ(xe)θ(fz) = 0 and θ(xeyf)θ(eyfz) = 0, this results in

θ(xe)θ(eyfz) = θ(xeyf)θ(fz) for all x, y, z ∈ A,

and hence

θ(x)θ(eyfz) = θ(xeyf)θ(z) for all x, y, z ∈ A(3)

in light of (1) and (2). By the symmetry of e and f , we also have

θ(x)θ(fyez) = θ(xfye)θ(z) for all x, y, z ∈ A.(4)

Thus it remains to show that

θ(x)θ(eyez) = θ(xeye)θ(z) for all x, y, z ∈ A(5)

and

θ(x)θ(fyfz) = θ(xfyf)θ(z) for all x, y, z ∈ A.(6)

Applying (1), (2), (3) and (4) we shall rewrite the product

θ(xeyezeufv1)θ(fv2)θ(fv3)θ(ew)

in two ways, via the following sequences of steps (read down each column;
each entry can be seen to be equal to the one immediately above):

θ(xeyezeufv1)θ(fv2)θ(fv3)θ(ew)

θ(x(eyezeufv1f))θ(fv2)θ(fv3)θ(ew)

θ(x)θ(eyezeufv1fv2)θ(fv3)θ(ew)

θ(x)θ(eyeze(eufv1fv2f))θ(fv3)θ(ew)

θ(x)θ(eyeze)θ(eufv1fv2fv3)θ(ew)

θ(x)θ(eyeze)θ(u(fv1fv2fv3e))θ(ew)

θ(x)θ(eyeze)θ(u)θ(fv1fv2fv3ew)

θ(xeyezeufv1)θ(fv2)θ(fv3)θ(ew)

θ(xeye(ezeufv1f))θ(fv2)θ(fv3)θ(ew)

θ(xeye)θ(ezeufv1fv2)θ(fv3)θ(ew)

θ(xeye)θ(ze(eufv1fv2f))θ(fv3)θ(ew)

θ(xeye)θ(ze)θ(eufv1fv2fv3)θ(ew)

θ(xeye)θ(ze)θ(u(fv1fv2fv3e))θ(ew)

θ(xeye)θ(ze)θ(u)θ(fv1fv2fv3ew)

Comparing the two expressions on the last line, we get(
θ(x)θ(eyeze)− θ(xeye)θ(ze)

)
θ(u)θ(fv1fv2fv3ew) = 0

for all x, y, z, u, vi, w ∈ A. Since A and B are prime and θ is bijective, we
obtain

θ(x)θ(eyeze) = θ(xeye)θ(ze) for all x, y, z ∈ A.(7)
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Similarly we express the product

θ(xeyezfufv1)θ(fv2)θ(ev3)θ(ew)

in two other ways:

θ(xeyezfufv1)θ(fv2)θ(ev3)θ(ew)

θ(x(eyezfufv1f))θ(fv2)θ(ev3)θ(ew)

θ(x)θ(eyezfufv1fv2)θ(ev3)θ(ew)

θ(x)θ(eyezf(fufv1fv2e))θ(ev3)θ(ew)

θ(x)θ(eyezf)θ(fufv1fv2ev3)θ(ew)

θ(x)θ(eyezf)θ(u(fv1fv2ev3e))θ(ew)

θ(x)θ(eyezf)θ(u)θ(fv1fv2ev3ew)

θ(xeyezfufv1)θ(fv2)θ(ev3)θ(ew)

θ(xeye(ezfufv1f))θ(fv2)θ(ev3)θ(ew)

θ(xeye)θ(ezfufv1fv2)θ(ev3)θ(ew)

θ(xeye)θ(zf(fufv1fv2e))θ(ev3)θ(ew)

θ(xeye)θ(zf)θ(fufv1fv2ev3)θ(ew)

θ(xeye)θ(zf)θ(u(fv1fv2ev3e))θ(ew)

θ(xeye)θ(zf)θ(u)θ(fv1fv2ev3ew)

Comparing both expressions, we get(
θ(x)θ(eyezf)− θ(xeye)θ(zf)

)
θ(u)θ(fv1fv2ev3ew) = 0

for all x, y, z, u, vi, w ∈ A. Since A and B are prime and θ is bijective, we
obtain

θ(x)θ(eyezf) = θ(xeye)θ(zf) for all x, y, z ∈ A.(8)

Then (5) follows immediately from the identities (7) and (8). By the sym-
metry of e and f , we obtain (6) too. Therefore,

θ(x)θ(yz) = θ(xy)θ(z) for all x, y, z ∈ A.(9)

Suppose that A contains the unity 1. Setting x = z = 1 in (9), we have

θ(1)θ(y) = θ(y)θ(1)

for all y ∈ A. Since θ is surjective, θ(1) lies in the center of B. This
establishes statement (i) of Theorem 3.

Setting z = 1 in (9), we get

θ(x)θ(y) = θ(xy)θ(1) = θ(1)θ(xy)

for all x, y ∈ A. In particular, if θ(1) = 1, then θ is a ring isomorphism from
A onto B. This establishes (ii).

Finally, by (ii) we have

θ(x)θ(y)− θ(y)θ(x) = θ(1)(θ(xy)− θ(yx)) = θ(1)θ(xy − yx)

for all x, y ∈ A. Then (iii) follows immediately. �

In view of the preceding theorem, we see that the zero-product preserving
map θ satisfies the functional identity

θ(x)θ(yz) = θ(xy)θ(z) for all x, y, z ∈ A.

This enables us to apply the recently developed theory of functional identi-
ties. Instead of introducing complicated definitions and notations, we shall
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present some special cases of the results in [3, 4]. The first one follows from
[3, Theorem 2.4] and [4, Theorem 1.2].

Lemma 4. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C such that degR ≥ 3. Let S be a set, θ : S → R a
surjective map and M : S × S → Q a map. Suppose that

α1θ(x)M(y, z) + α2θ(y)M(x, z) + α3θ(z)M(x, y)

+ β1M(y, z)θ(x) + β2M(x, z)θ(y) + β3M(x, y)θ(z) = 0

for all x, y, z ∈ S, where the αi and βi are constants in C, not all zero. Then
there exist λ1, λ2 ∈ C, µ1, µ2 : S → C and ν : S × S → C such that

M(x, y) = λ1θ(x)θ(y) + λ2θ(y)θ(x) + µ1(x)θ(y) + µ2(y)θ(x) + ν(x, y)

for all x, y ∈ S.

The second one follows from [3, Theorem 2.4] and [4, Theorem 1.1].

Lemma 5. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C, such that degR ≥ 3. Let S be a set and θ : S → R a
surjective map. Suppose that∑

σ∈Sym(3)

ασθ(xσ(1))θ(xσ(2))θ(xσ(3)) +
∑

σ∈Sym(3)

βσ(xσ(1))θ(xσ(2))θ(xσ(3))

+ γ1(x2, x3)θ(x1) + γ2(x1, x3)θ(x2) + γ3(x1, x2)θ(x3) = 0

for all x1, x2, x3 ∈ S, where Sym(3) is the symmetric group on 3 letters,
the ασ are constants in C, the βσ are maps S → C and the γi are maps
S × S → C. Then the constants ασ and the maps βσ and γi are all zero.

With these results at hand, we are ready to prove our first main theorem.

Proof of Theorem 1. Since (i) follows from Theorem 3, it remains to prove
(ii).

Define a map M : A × A → B by M(x, y) = θ(xy) for x, y ∈ A. By
Theorem 3, we have

θ(x)M(y, z)−M(x, y)θ(z) = 0 for all x, y, z ∈ A.(10)

Then it follows from Lemma 4 that there exist λ1, λ2 ∈ C, µ1, µ2 : A → C
and ν : A×A→ C such that

M(x, y) = λ1θ(x)θ(y) + λ2θ(y)θ(x) + µ1(x)θ(y) + µ2(y)θ(x) + ν(x, y)

for all x, y ∈ A. Substituting this into (10), we obtain

λ2θ(x)θ(z)θ(y)−λ2θ(y)θ(x)θ(z)+µ2(z)θ(x)θ(y)+
(
µ1(y)−µ2(y)

)
θ(x)θ(z)

− µ1(x)θ(y)θ(z) + ν(y, z)θ(x)− ν(x, y)θ(z) = 0,
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for all x, y, z ∈ A. By Lemma 5, the constant λ2 and the maps µ1, µ2 and ν
are all zero. In other words, M(x, y) = θ(xy) = λ1θ(x)θ(y) for all x, y ∈ A.
Thus the proof is complete. �

3. Derivations

Next we prove a result analogous to Theorem 3. The idea is essentially the
same as in the proof of Theorem 3, although the computations are a bit
more complicated.

Theorem 6. Let A be a prime ring with maximal right quotient ring Q and
δ : A → A an additive map such that δ(x)y + xδ(y) = 0 for all x, y ∈ A
with xy = 0. Suppose that Q contains a nontrivial idempotent e such that
eA ∪ Ae ⊆ A. Then δ(x)yz + xδ(yz) = δ(xy)z + xyδ(z) for all x, y, z ∈ A.
Moreover, if A contains the unity 1, then

δ(xy) = δ(x)y + xδ(y)− λxy,

where λ = δ(1) is a central element of A. In particular, if δ(1) = 0, then δ
is a derivation on A.

Proof. As before, we set f = 1− e. Then f is a nontrivial idempotent in Q
such that e+ f = 1, ef = fe = 0 and fA∪Af ⊆ A. Since δ is additive and
y = eye+ eyf + fye+ fyf for all y ∈ A, it suffices to show that the identity
δ(x)yz + xδ(yz) = δ(xy)z + xyδ(z) holds for y in eAe, eAf , fAe and fAf
respectively.

Let x, z ∈ A. Since (xe)(z−ez) = 0, we have δ(xe)(z−ez)+xeδ(z−ez) = 0
by assumption and hence

δ(xe)z + xeδ(z) = δ(xe)ez + xeδ(ez).

Similarly, it follows from (x− xe)(ez) = 0 that

δ(x)ez + xδ(ez) = δ(xe)ez + xeδ(ez).

Thus

δ(x)ez + xδ(ez) = δ(xe)z + xeδ(z) = δ(xe)ez + xeδ(ez) for all x, z ∈ A.
(11)

By the symmetry of e and f , we also have

δ(x)fz + xδ(fz) = δ(xf)z + xfδ(z) = δ(xf)fz + xfδ(fz) for all x, z ∈ A.
(12)

Note that for x, y, z ∈ A, we have

(xe)(fz) = 0,

(xeyf)(eyfz) = 0,

(xe+ xeyf)(eyfz − fz) = 0,
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so
δ(xe)fz + xeδ(fz) = 0,

δ(xeyf)eyfz + xeyfδ(eyfz) = 0,

δ(xe+ xeyf)(eyfz − fz) + (xe+ xeyf)δ(eyfz − fz) = 0.

Combining these three identities, we get

δ(xe)eyfz + xeδ(eyfz) = δ(xeyf)fz + xeyfδ(fz),

and hence

δ(x)eyfz + xδ(eyfz) = δ(xeyf)z + xeyfδ(z) for all x, y, z ∈ A,(13)

in light of (11) and (12). By the symmetry of e and f , we also have

δ(x)fyez + xδ(fyez) = δ(xfye)z + xfyeδ(z) for all x, y, z ∈ A.(14)

Thus it remains to show that

δ(x)eyez + xδ(eyez) = δ(xeye)z + xeyeδ(z) for all x, y, z ∈ A(15)

and

δ(x)fyfz + xδ(fyfz) = δ(xfyf)z + xfyfδ(z) for all x, y, z ∈ A.(16)

Applying (11), (12), (13) and (14), we shall express the sum

δ(x)eyezfufvew + xδ(eyezfufv)ew + xeyezfufvδ(ew)

in two other ways. On the one hand, we have

δ(x)eyezfufvew + xδ(eyezfufv)ew + xeyezfufvδ(ew)

= δ(x)eyezfufvew + xδ(eyez(fufve))ew + xeyez(fufve)δ(ew)

= δ(x)eyezfufvew + xδ(eyez)fufvew + xeyezδ(fufvew).

On the other hand,

δ(x)eyezfufvew + xδ(eyezfufv)ew + xeyezfufvδ(ew)

= δ(x)(eyezfuf)fvew + xδ((eyezfuf)fv)ew + xeyezfufvδ(ew)

= δ(xeyezfuf)fvew + xeyezfufδ(fv)ew + xeyezfufvδ(ew)

= δ(xey(ezfuf))fvew + xey(ezfuf)δ(fv)ew + xeyezfufvδ(ew)

= δ(xey)ezfufvew + xeyδ(ezfufv)ew + xeyezfufvδ(ew)

= δ(xey)ezfufvew + xeyδ(ez(fufve))ew + xeyez(fufve)δ(ew)

= δ(xey)ezfufvew + xeyδ(ez)fufvew + xeyezδ(fufvew)

= δ(xeye)zfufvew + xeyeδ(z)fufvew + xeyezδ(fufvew).

Comparing both expressions, we get(
δ(x)eyez + xδ(eyez)− δ(xeye)z − xeyeδ(z)

)
fufvew = 0
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for all x, y, z, u, v, w ∈ A. Since A is prime, we obtain(
δ(x)eyez + xδ(eyez)

)
f =

(
δ(xeye)z + xeyeδ(z)

)
f.(17)

for all x, y, z ∈ A. Similarly we express the sum

δ(x)eyezeufvfwft+ xδ(eyezeufvfw)ft+ xeyezeufvfwδ(ft)

in two other ways. On the one hand, we have

δ(x)eyezeufvfwft+ xδ(eyezeufvfw)ft+ xeyezeufvfwδ(ft)

= δ(x)eyezeufvfwft+ xδ(eyez(eufvfwf))ft+ xeyez(eufvfwf)δ(ft)

= δ(x)eyezeufvfwft+ xδ(eyez)eufvfwft+ xeyezδ(eufvfwft).

On the other hand,

δ(x)eyezeufvfwft+ xδ(eyezeufvfw)ft+ xeyezeufvfwδ(ft)

= δ(x)(eyezeuf)vfwft+ xδ((eyezeuf)vfw)ft+ xeyezeufvfwδ(ft)

= δ(xeyezeuf)vfwft+ xeyezeufδ(vfw)ft+ xeyezeufvfwδ(ft)

= δ(xey(ezeuf))vfwft+ xey(ezeuf)δ(vfw)ft+ xeyezeufvfwδ(ft)

= δ(xey)ezeufvfwft+ xeyδ(ezeufvfw)ft+ xeyezeufvfwδ(ft)

= δ(xey)ezeufvfwft+ xeyδ(ez(eufvfwf))ft+ xeyez(eufvfwf)δ(ft)

= δ(xey)ezeufvfwft+ xeyδ(ez)eufvfwft+ xeyezδ(eufvfwft)

= δ(xeye)zeufvfwft+ xeyeδ(z)eufvfwft+ xeyezδ(eufvfwft).

Comparing both expressions, we get(
δ(x)eyez + xδ(eyez)− δ(xeye)z − xeyeδ(z)

)
eufvfwft = 0

for all x, y, z, u, v, w, t ∈ A. Since A is prime, we obtain(
δ(x)eyez + xδ(eyez)

)
e =

(
δ(xeye)z + xeyeδ(z)

)
e(18)

for all x, y, z ∈ A. Then (15) follows immediately from the identities (17)
and (18). By the symmetry of e and f , we have (16) too. Therefore,

δ(x)yz + xδ(yz) = δ(xy)z + xyδ(z) for all x, y, z ∈ A.(19)

Suppose that A contains the unity 1. Setting x = z = 1 in (19), we get
δ(1)y = yδ(1) for all y ∈ A. That is, λ = δ(1) is a central element of A.
Setting z = 1 in (19) we get

δ(xy) = δ(x)y + xδ(y)− λxy for all x, y ∈ A.

Clearly, if δ(1) = 0, then δ is a derivation. �

Now we need some lemmas to deal with the functional identity δ(x)yz +
xδ(yz) = δ(xy)z + xyδ(z). The following two results are special cases of
[5, Corollary 2.9]. The first one also appears in [2, Theorem 1.2], where
bi-additivity of the maps Fi and Gi is assumed.
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Lemma 7. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C, such that degR ≥ 3. Let Fi, Gi : R×R→ Q, i = 1, 2, 3,
be maps. Suppose that

x1F1(x2, x3) + x2F2(x1, x3) + x3F3(x1, x2)

+G1(x2, x3)x1 +G2(x1, x3)x2 +G3(x1, x2)x3 = 0

for all x1, x2, x3 ∈ R. Then there exist unique maps pi,j : R → Q, for
1 ≤ i 6= j ≤ 3, with pi,j = pj,i, and maps λi : R × R → C, for i = 1, 2, 3,
such that

Fi(xj , xk) = pi,j(xk)xj + pi,k(xj)xk + λi(xj , xk),

Gj(xi, xk) = −xipi,j(xk)− xkpj,k(xi)− λj(xi, xk)

for all xi, xj , xk ∈ R, where i, j, k are distinct, and λi = 0 if either Fi = 0
or Gi = 0.

The next result also appears in [8, Lemma 4.5], where additivity of the
maps fi and gi is assumed.

Lemma 8. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C. Let fi, gi : R→ R, for i = 1, 2, be maps. Suppose that

f1(x)y + f2(y)x+ xg1(y) + yg2(x) = 0

for all x, y ∈ R. Then there exist unique constants c1, c2 ∈ Q and maps
λ1, λ2 : R→ C such that

f1(x) = xc1 + λ1(x),

g1(y) = −c1y − λ2(y),

f2(y) = yc2 + λ2(y),

g2(x) = −c2x− λ1(x)

for all x, y ∈ R, where λi = 0 if either fi = 0 or gi = 0.

Now we are ready to conclude the paper by proving our second main
result.

Proof of Theorem 2. Since (i) follows from Theorem 6, it remains to prove
(ii).

Define two maps F,G : A × A → A by F (x, y) = δ(xy) − xδ(y) and
G(x, y) = δ(xy)− δ(x)y for x, y ∈ A. By Theorem 6, we have

xF (y, z)−G(x, y)z = 0 for all x, y, z ∈ A.

Then it follows from Lemma 7 that there exists a map p : R→ Q such that

F (x, y) = δ(xy)− xδ(y) = p(x)y,

G(x, y) = δ(xy)− δ(y)x = xp(y)

for all x, y ∈ A. Thus,

δ(xy) = xδ(y) + p(x)y = δ(x)y + xp(y),(20)
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and hence (
δ(x)− p(x)

)
y − x

(
δ(y)− p(y)

)
= 0,

for all x, y ∈ A. By Lemma 8, there exist constants c1, c2 ∈ Q such that
δ(x)− p(x) = xc1 and δ(y)− p(y) = c2y for all x, y ∈ R. Then c1 = c2 is an
element in C. Denote this element by λ. Thus

p(x) = δ(x)− λx

for all x ∈ R. Substituting this into (20), we get

δ(xy) = xδ(y) + δ(x)y − λxy

for all x, y ∈ R. The proof is complete. �
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[10] M. Brešar and P. Šemrl, On local automorphisms and mappings that preserve idempo-
tents, Studia Math., 113 (1995), 101–108, MR 1318418 (96i:47058), Zbl 0835.47020.
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WAVE EQUATIONS FOR GRAPHS AND THE
EDGE-BASED LAPLACIAN

Joel Friedman and Jean-Pierre Tillich

In this paper we develop a wave equation for graphs that
has many of the properties of the classical Laplacian wave
equation. This wave equation is based on a type of graph
Laplacian we call the “edge-based” Laplacian. We give some
applications of this wave equation to eigenvalue/geometry in-
equalities on graphs.

1. Introduction

The main goal of this paper is to develop a “wave equation” for graphs that
is very similar to the wave equation utt = ∆u in analysis. Whenever this
type of wave equation is involved in a result in analysis, our graph theoretic
wave equation seems likely to provide the tool to link the result in analysis
to an analogous result in graph theory.

Traditional graph theory defines a Laplacian, ∆, as an operator on func-
tions on the vertices. This gives rise to a wave equation utt = −∆u (since
graph theory Laplacians are positive semidefinite). However, this wave equa-
tion fails to have a “finite speed of wave propagation”. In other words, if
u = u(x, t) is a solution, we may have u(x, 0) = 0 for all vertices x within
a distance d > 0 to a fixed vertex, x0, without having u(x0, ε) vanishing for
any ε > 0. As such, this graph theoretic wave equation cannot link most
results in analysis involving the wave equation to a graph theoretic analogue.

In this paper we study what appears to be a new type of wave equation on
graphs. This wave equation (1) involves a reasonable analogue of utt = ∆u
in analysis, (2) has “finite speed of wave propagation” and many other basic
properties shared by its analysis counterpart, and (3) seems to be a good
vehicle for translating results in analysis to those in graph theory, and vice
versa. This wave equation cannot be expressed in the language of tradi-
tional graph theory; it requires some of the notions of “calculus on graphs”
in [FT99]. It does, however, have a simple physical interpretation— namely,
the edges are taut strings, fused together at the vertices. And in fact, the
type of Laplacian we use has appeared in the physics literature as the “lim-
iting case” of a “quantum wire” (see [Hur00, RS01, KZ01] for example);
but our type of development of the wave equation and its applications to
graph theory seem to have escaped the interest of physicists.
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A second goal of this paper is to point out that whereas in analysis there is
really one fundamental Rayleigh quotient, heat equation, and wave equation,
in graph theory there are always two. These two fundamental types for an
equation or concept result from the fact that graph theory involves two differ-
ent volume measures. So while in analysis there is usually one fundamental,
top (space) dimension volume, in graph theory one has a “vertex-based”
measure, V (a type of vertex counting measure), and an “edge-based” mea-
sure, E (essentially Lebesgue measure on edges viewed as real intervals) (see
below and Section 2 for details); both V, E seem to play a volume measure
type of role. So we get a “vertex-based” Rayleigh quotient, heat equation,
wave equation, etc. and their “edge-based” counterpart. (We can also form
“mixed” equations and concepts from these two pure types, as well as vary
coefficients, add lower order terms, etc.) However, sometimes it turns out
that one of the two types of equation or concept is less interesting. This
definitely seems to be the case in the wave equation, where the vertex-based
equation does not have finite propagation speed.

A third goal of this paper is to give some examples of how to translate
results in analysis to graphs and vice versa using the edge-based Laplacian
(including the wave equation). As an example, we give a simple proof of a re-
lation between distances of sets, their sizes, and the first nonzero edge-based
eigenvalue; our result can be better (or worse) than that of Chung–Faber–
Manteuffel; our proof also works in analysis, and rederives the results in
[FT] with a simpler proof. As another example, we show that the optimal
generalized Alon–Milman type bound is essentially achieved by a gener-
alized Chung–Faber–Manteuffel bound derived by Chung–Grigor’yan–Yau.
We briefly describe how to convert graph theoretic results into analysis re-
sults. The results in analysis turn out to be independent of any discussion
of edge-based Laplacians, and hence appear as a short, separate article [FT]
(especially for analysts who wish to learn as little graph theory as possible).

In this paper we at times restrict ourselves to finite graphs; at other times
we insist that the graphs be locally finite, i.e., that each vertex meets only
finitely many edges; finally, some discussion is valid for arbitrary graphs.
We will indicate at the beginning of each section and/or subsection when
assumptions are made on the graphs therein.

The rest of this introduction, aside from closing remarks, is devoted to
giving an informal overview of the simplest form of our wave equation. If this
overview seems cryptic, the reader may wish to consult [FT99] or Section 2
of this paper.

Let G = (V,E) be a graph. Let G be its geometric realization, i.e.,
the metric space consisting of V with a real interval of length 1 joining u
and v “glued in” for edge {u, v}. Let V be the vertex counting measure,
and E be Lebesgue measure on the edges. Then the (positive semidefinite)
Laplacian, as in [FT99], takes a function, f , and returns an “integrating
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factor” (essentially a measure, see Section 2),

∆f = (∆V f) dV + (∆Ef) dE
where ∆E is minus the usual real Laplacian (i.e., second derivative), and
∆V is essentially a sum of normal derivatives along edges incident with each
vertex. It therefore makes no sense to write a wave equation1

utt = −∆u,

for the left-hand side should be a function, and the right-hand side an inte-
grating factor.

The vertex-based wave equation is

utt dV = −∆u.

This means that ∆Eu = 0, and so u is “edgewise linear” (i.e., a linear
function when restricted to any edge). For such a u, ∆V u coincides with
the traditional graph theoretic Laplacian, and we recover the wave equation
based on traditional graph theory.

The edge-based wave equation is the equation

utt dE = −∆u,

or ∆V u = 0 and utt = −∆Eu. This equation has wave propagation speed 1,
and has many other properties befitting a wave equation.

When using an edge-based concept, one may speak of Laplacian eigen-
values. In this case one is referring to the set ΛE of λ with ∆Ef = λf
and ∆V f = 0. However, traditional graph theory deals with ΛV , defined
analogously. Fortunately, it is easy to relate the two notions of eigenval-
ues, assuming we “normalize” the Laplacian ∆V (see Section 3). Namely,
assuming ∆V is normalized and our graph has all edge lengths one, we have

λ ∈ Λ̃E ⇐⇒ 1− cos
√
λ ∈ ΛV

where Λ̃E is ΛE with some “less interesting” eigenvalues (certain squares of
multiples of π) discarded. ΛV is a finite set of values between 0 and 2, and
ΛE is an infinite set of nonnegative values (whose square roots are periodic,
and whose values satisfy a one-dimensional Weyl’s asymptotic law).

In this paper we will mildly generalize this setup, allowing for edges of
variable “length” and “weight,” and vertices of various “weight.”

The rest of this paper is organized as follows: in Section 2 we review some
notions from the calculus on graphs of [FT99]. In Section 3 we discuss the
edge-based eigenfunction theory; it closely resembles standard eigenfunction
theory. In Section 4 we discuss the wave equation and its basic properties.
In Section 5 we give some applications of the edge-based Laplacian and the
wave equation.

1Recall that the minus sign appears in the wave equation since the Laplacian is positive
semidefinite.
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2. Calculus on graphs

2.1. The setup. We use a similar setting as in [Fri93], and we recall this
setting here. Let G = (V,E) be a graph (undirected), such that with each
edge, e ∈ E, we have associated a length, `e > 0. We form the geometric
realization, G, of G, which is the metric space consisting of V and a closed
interval of length `e from u to v for each edge e = {u, v}. When there is no
confusion, we identify a v ∈ V with its corresponding point in G and identify
an e ∈ E with its corresponding closed interval in G. By an edge interior
we mean the interior of an edge in G.

Definition 2.1. The boundary, ∂G, of a graph, G, is simply a specified
subset of its vertices. By the interior of G, denoted G̊, we mean G \ ∂G;
similarly the interior vertices, denoted V̊ , we mean V \ ∂G. We say that ∂G
is separated if each boundary vertex is incident upon exactly one edge.

Boundary separation is a property whose analogue for manifolds is always
true. In most practical situations one can assume the boundary is separated.

Convention 2.2. Unless specified, in this article we assume all graphs have
a separated boundary.

In this article we will give “boundary condition” for functions to satisfy
at the boundary. Neumann or mixed boundary conditions (see the next
section) behave bizarrely unless the boundary is separated.2

Convention 2.3. By a traditional graph we mean an undirected graph G =
(V,E). In this article we assume our graphs are always given with:

(1) lengths associated to each edge,
(2) a specified boundary (i.e., a specified subset of vertices).

Whenever an edge length is not specified, it is taken to be one. Whenever a
boundary is not specified, it is taken to be empty. We refer to the geometric
realization, G, of the graph as the graph, when no confusion may arise.

An edge e = {u, v} of length, `, is a real interval of length `, and as such
has two standard coordinates, one that sets u to 0 and v to `, and the other
vice versa. Whenever we speak of a property such as differentiability, we
always mean with respect to these standard coordinates.

Definition 2.4. By Ck(G), the set of k-times continuously differentiable
functions on G, we mean the set of continuous functions on G whose restric-
tion to each edge interior is k-times uniformly continuously differentiable

2It is not hard to see that the Neumann condition for a function, f , on a boundary
vertex, v, is equivalent to ∆V f = 0 at v (see this section and the next). This is only
equivalent to the normal derivative at f vanishing along all boundary edges if v is incident
upon only one edge.
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(as a function on that real interval). The same definition applies with G
replaced by Ck(G \ V ).

We cannot differentiate functions on G without orienting the edges; how-
ever, we can always take the gradient of a differentiable function as long as
we know what is meant by a vector field. Recall that a vector field on an
interval is a section of its tangent bundle or, what is the same, a function
on the interval with an orientation of the interval, where we identify f plus
an orientation with −f with the opposite orientation.

Definition 2.5. By Ck(TG), the set of k-times continuously differentiable
vector fields on G, we mean those data consisting of a k-times uniformly
continuously differentiable vector field on each open interval corresponding
to each edge interior.

Notice that a vector field is not defined at a vertex, only on edge interiors.

Definition 2.6. For f ∈ Ck(G) we may form, by differentiation, its gradi-
ent, ∇f ∈ Ck−1(TG). For X ∈ Ck(TG) we can form, by differentiation, its
calculus divergence, ∇calc ·X ∈ Ck−1(TG \ V ).

Definition 2.7. A subset Ω ⊂ G is of finite type if it lies in the union
of finitely many vertices and edges. A function on G is of finite type if
its support (i.e., the closure of the set where it does not vanish) is of finite
type. We set Ckfn(G) to be those elements of Ck(G) of finite type; we similarly
define Ckfn(G \ V ) and Ckfn(TG).

Definition 2.8. An f ∈ Ckfn(G) is said to satisfy the Dirichlet condition if
f vanishes on ∂G. We let CkDir(G) denote the set of such functions.

Definition 2.9. Lip(G) denotes the class of Lipschitz continuous functions
on G, i.e., those f ∈ C0(G) whose restriction to each edge interior is uni-
formly Lipschitz continuous. We similarly define Lipfn(G) and LipDir(G).
2.2. Two volume measures. In analysis concepts such as Laplacians,
Rayleigh quotients, and isoperimetric constants are defined using one volume
measure; in calculus on graphs we use two “volume” measures.

Definition 2.10. A vertex measure, V, is a measure supported on V with
V(v) > 0 for all v ∈ V . An edge measure, E , is a measure with E(v) = 0
for all v ∈ V and whose restriction to any edge interior, e ∈ E, is Lebesgue
measure (viewing the interior as an open interval) times a constant ae > 0.

Traditional graph theory usually works with the traditional vertex and
edge measures, VT and ET, given by VT(v) = 1 for all v ∈ V and ae = 1 for
all e ∈ E, i.e., ET is just Lebesgue measure at each edge.

Convention 2.11. Henceforth we assume that any graph has an associated
vertex measure, V, and an edge measure, E . When V is not specified we take
it to be VT; similarly, when unspecified we take E to be ET.
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In this article we write
∫
f dE and

∫
f dV for

∫
G
f dE and

∫
G
f dV.

2.3. Integrating factors. In this paper a somewhat formal notion will
become extremely important.

Definition 2.12. By an integrating factor on G we mean a formal expres-
sion of the form µ = αdV + β dE where α is a function defined (at least) on
the vertices of G, and β ∈ C0(G \ V ).

The continuity assumption on β is not essential, but it makes things nicer
for the following reason: an integrating factor as above determines a linear
functional Lµ, on C0

Dir(G) via

Lµ =
∫
fµ =

∫
fα dV +

∫
fβ dE .

We say that two integrating factors µi = αi(x) dV + βi(x) dE for i = 1, 2 are
equal if the Lµi are equal; clearly this amounts to α1 = α2 at the interior
vertices and β1 = β2 everywhere on G\V (since the βi are continuous there).

We will sometimes wish to insist that α1 = α2 on boundary vertices as
well; this corresponds to viewing integrating factors as linear functionals on
C0(G). In this case we will speak of boundary inclusive equality.

In the calculus on graphs we have two measures, and thus a need for inte-
grating factors, i.e., the need to mark functions with a dV or dE to remind
us how to integrate the function against other functions. For example, we
shall soon see that the divergence of a vector field or the Laplacian of a
function is an integrating factor. Consequently, any wave or heat equation
is most correctly regarded as an equation between integrating factors. (In
traditional graph theory, all integrating factors have a vanishing dE compo-
nent, i.e., β = 0 in the above, and they may be considered as functions on
the vertices, i.e., they may be identified with α’s values on the vertices.)
2.4. Regular graphs. In this article, r-regularity has a slightly more gen-
eral meaning than in traditional graph theory where all vertices and edges
have weight 1 (in other words E = ET and V = VT).

Here we mean the following:

Definition 2.13. We say that a graph G is r-regular if for any v ∈ V̊ we
have ρ(v) = r, where

ρ(v) = V(v)−1
∑
e3v

E(e).

Clearly graphs that are r-regular in the traditional sense are regular with
our definition. The quantity ρ(v) arises quite naturally when we consider
edgewise linear functions, i.e., continuous functions whose restriction to each
edge is a linear function. For these functions we clearly have∫

e
f dE = 1

2

(
f(u) + f(v)

)
E(e)
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for each edge e = {u, v}. Hence∫
f dE =

∫
1
2fρ dV.(2.1)

2.5. The divergence. The divergence of a vector field and the Laplacian
of a function can be defined in terms of concepts that are already fixed,
namely a graph (encompassing measures E and V) and the gradient. Inter-
estingly enough, the divergence turns out to be different from the “calculus
divergence” described earlier.

Before defining the divergence we record a “divergence theorem” for the
calculus divergence.

Let X ∈ C1(TG). For any edge e = {u, v} let X|e denote X restricted
to the interior of e and then extended to u and v by continuity. We clearly
have ∫

e
∇calc ·X dE = ae

(
ne,u ·X|e(u) + ne,v ·X|e(v)

)
,

where ne,u,ne,v denote outward pointing unit (normal) vectors. Hence we
obtain:

Proposition 2.14. For all X ∈ C1
fn(G) we have∫

∇calc ·X dE =
∫

ñ ·X dV,(2.2)

where
(ñ ·X)(v) = V(v)−1

∑
e3v

aene,v ·X|e(v).

Let CkDir(G) denote those functions in Ckfn(G) that vanish on the boundary
of G.

Definition 2.15. For a vector field, X, its divergence functional is the lin-
ear functional LX : C∞Dir(G) → R given by

LX(g) = −
∫
X · ∇g dE .

Proposition 2.16. For any X ∈ C1(TG) and g ∈ C∞Dir(G) we have

LX(g) =
∫

(∇calc ·X)g dE −
∫

(ñ ·X)g dV,

i.e., the divergence functional of X is represented by (∇calc·X) dE−(ñ·X) dV
(viewed as a linear functional via integration).

Proof. We substitute Xg for X in Equation (2.2), and note that

∇calc · (Xg) = g∇calc ·X +X · ∇g.
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Definition 2.17. For X ∈ C1(TG) we define its divergence, ∇ · X, to be
the integrating factor

(∇calc ·X) dE − (ñ ·X) dV.

If X is edgewise constant, so that ∇calc ·X = 0, we will also refer to

−ñ ·X

(a function defined only on vertices) as its divergence, and write it ∇ ·X.

We conclude:

Proposition 2.18. For any g ∈ C1
fn(G) and X ∈ C1

fn(TG) we have∫
G
(∇ ·X)g +

∫
X · ∇g dE = 0.

To make this look more like analysis we can write this as:∫
G\∂G

(∇ ·X)g +
∫
X · ∇g dE =

∫
∂G

(ñ ·X)g dV.

2.6. The Laplacian. In graph theory we usually define positive semidefi-
nite Laplacians. So we define

∆f = −∇ · (∇f).

As integrating factors we have

∆f = (∆Ef) dE + (∆V f) dV,

with ∆Ef = −∇calc · ∇f and ∆V f = ñ · ∇f . It is easy to see that:

Proposition 2.19. For all f ∈ C2
fn(G) and g ∈ C1

fn(G) we have∫
(∆f)g =

∫
∇f · ∇g dE .(2.3)

If also g ∈ C2
fn(G) we have ∫

(∆f)g =
∫

(∆g)f.(2.4)

The link with the traditional graph theoretic Laplacian is as follows:

Proposition 2.20. For f ∈ C2
fn(G) edgewise linear we have

∇calc · ∇f = 0, hence ∆f = ñ · ∇f dV.

Viewing ∆f as a function on vertices we therefore have:

(∆f)(v) = V(v)−1
∑

e∼{u,v}

ae
f(v)− f(u)

`e
.(2.5)
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When restricting to edgewise linear functions, it is common (in graph
theory) to write ∆ as D − A, where D is the diagonal matrix or operator
(classically the “degree” matrix) whose v, v entry is

L(v) = V(v)−1
∑

e∼{u,v}

ae/`e,

where we omit e’s that are self-loops from the summation, and where A is
the “adjacency” matrix or operator given by

(Af)(v) = V(v)−1
∑

e∼{u,v}

(ae/`e)f(u),

again omitting self-loops, e.

2.7. Variable integrals. We shall wish to consider the derivative at t = t0
of the function

I(t) =
∫
S(t)

f(x, t) dE(x),

where t is a real parameter, S(t) is a decreasing family of open subsets of
G, and f(x, t) is continuous in x (taking values in G) and differentiable in t
(taking values near t0).

For this paper we only need consider S(t) given by the set of points within
a distance τ − ct from a fixed set A ⊂ G, with τ fixed and 0 ≤ t0 < τ . We
will assume S(t) is of finite type for t near t0, and that ∂S(t0) is finite and
contains no vertices.

With the above assumptions, the formula for I ′(t0) is very easy. We
will discuss more general variants of these formulas later. These more gen-
eral variants are not needed in this paper, but are interesting to consider
and compare with the co-area formula and its problems at the vertices as
described in [FT99].

Calculus says that if a, b, c are constants with c > 0, and f = f(x, t) :
R2 → R is continuous in x and differentiable in t, then

d

dt

∫ b−ct

a+ct
f(x, t) dx = −c

(
f(a+ ct, t) + f(b− ct, t)

)
+
∫ b−ct

a+ct
ft(x, t) dx,

where ft = ∂f/∂t. If we replace a + ct by a in the above integral, the
f(a+ ct, t) drops out, and similarly for b− ct replaced by b.

Summing the above calculus equality over all edges yields the following
easy proposition:

Proposition 2.21. Let S(t), f(x, t), t0, I(t) be as above. Then

I ′(t0) = −
∑

(x,e) s.t. e3x,
x∈∂S(t0)

f(x, t0)cae +
∫
S(t0)

ft(x, t0) dE(x).(2.6)

In other words, the above sum is over all boundary points, x, of S(t0), and
involves the edge, e, on which x lies.
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Finally, we remark that if S(t) does not decrease “linearly” with speed c
everywhere, then we simply replace c by the speed at with ∂S(t) moves at
x in the summation of any of the above formulas.

We finish this subsection by describing what happens when ∂S(t0) con-
tains vertices. If so, then the left and right derivatives of I(t) at t0 will exist
but won’t usually be equal. Equation 2.6 will essentially hold, but different
(x, e) pairs appear in the sum. So consider pairs (x, e) with x ∈ e ∪ ∂S(t0)
(remember we identify an edge with its closed interval in G, so x may be
a vertex); we call a pair future active if e’s interior intersected with S(t0)
contains an open interval ending at x. In other words, the picture of S(t)
near x and along e is changing for t > t0 near t0 (since S(t) is decreasing in
t). We say that a pair (x, e) is past active if either x is not a vertex, or x is
a vertex and (x, e) is not future active, see Figure 1. (Geometrically, since
S(t) is decreasing in t, we are saying that for t near t0 and at a boundary
point, x, the picture of S(t) always changes when x is not a vertex, and
when x is a vertex it changes along some edges in the future (t > t0) and
other edges in the past (t < t0).)

future active edges

past active edges

• vertex in S(t)
◦ vertex not in S(t)
−−− edge (or partial edge) in S(t)
- - - edge (or partial edge) not in S(t)

Figure 1.

Summing the calculus formula shows that the right derivative of I at t0
exists and equals

I ′(t+ 0) = −
∑

(x,e) future active

f(x, t0)cae +
∫
S(t0)

ft(x, t0) dE(x).(2.7)

Similarly the left derivative is the same, with future active replaced by past
active pairs (x, e).

Notice that the notion of “future active” essentially arose in the definition
of the area of the boundary of a subset, in [FT99], Section 2, in connection
with the co-area formula.

3. The edge-based eigenvalues and eigenfunctions

In this section we discuss some facts about the “edge-based” Laplacian and
its eigenpairs, i.e., pairs (f, λ) with ∆Ef = λf and ∆V f = 0. Such pairs
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are crucial to understanding the solutions to the wave equation and invari-
ants associated with it. We concern ourselves with the basic cases at first,
later illustrating fancier boundary conditions and mixed edge and vertex
Laplacians.

It is worth mentioning that the equations ∆Ef = λf and ∆V f = 0
describe the modes associated with a physical object with a metal string for
each edge, with strings being fused together at the vertices. For example,
if we “pluck” such an object, it would produce tones with the frequencies
of
√
λ with λ ranging over the edge-based eigenvalues (this is seen from

considering the wave equation of the next section).

3.1. Basic existence theory.

Definition 3.1. We say that (f, λ) is an eigenpair for the “edge-based”
Laplacian if f ∈ C∞(G) and satisfies ∆Ef = λf and ∆V f = 0. We say
that f satisfies the Dirichlet condition if f vanishes at all boundary points;
the similarly for the Neumann condition, where f ’s normal derivatives along
its edges evaluated at any boundary point vanish.

Notice that the condition ∆Ef = λf implies that f ’s restriction to each
edge is given by A cos(ωx+ B), where A,B are constants, ω = λ1/2, and x
represents one of the two standard coordinates on the edge.

The existence of a complete set of eigenpairs for the Laplacian is well
understood in analysis for compact domains, and the same techniques carry
over to our setting, for finite graphs, with almost no modifications. We only
summarize the theory, and refer the reader to [GT83] or [Fri69].

Proposition 3.2. Let G be a finite graph. There exists eigenpairs (fi, λi)
for the edge based Laplacian, such that:

(1) 0 ≤ λ1 ≤ λ2 ≤ · · · ,
(2) the fi satisfy the Dirichlet condition,
(3) the fi form a complete orthonormal basis for L2

Dir(G, E), and
(4) λi →∞.

The same statement holds with Dirichlet replaced by Neumann and
L2

Dir(G, E) replaced by L2(G, E).

Proof. Consider the Rayleigh quotient

R(f) =
∫
|∇f |2 dE∫
|f |2 dE

,

which is certainly defined for f ∈ C1(G). Let u1, u2, . . . be a minimizing
sequence for R in C1

Dir(G), i.e., ui ∈ C1
Dir(G) with

R(ui) → inf
f∈C1

Dir(G)
R(f).
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We may assume
∫
|ui|2 dE = 1, and thus that

∫
|∇ui|2 dE are bounded. Let

H1
Dir(G) be the closure of C1

Dir(G) under the norm

‖f‖2
H1 =

∫
[|∇f |2 + |f |2] dE ;

H1
Dir(G) can also be described with Fourier transforms, or as the set of L2

functions with a weak derivative in L2; it is well-known to be a separable
Hilbert space, therefore having a weakly compact unit ball. Hence by passing
to a subsequence we may assume that the ui converge weakly in H1 to a
u ∈ H1

Dir(G).
The ui are uniformly Hölder continuous of exponent 1/2. To see this let

x, y ∈ G be of distance ρ, and fix a path γ of length ρ from x to y. We have

∣∣ui(x)− ui(y)
∣∣ ≤ ∫

γ
|∇ui| dE ≤

(∫
γ
dE
)1

2
(∫

γ
|∇ui|2 dE

)1
2
≤ Cρ1/2‖ui‖H1 ,

where C is the maximum over edges e of a−1/2
e . Hence our claim holds, and

by Ascoli’s lemma we can pass to a further subsequence and assume that
the ui converge uniformly to a u that is Hölder continuous of exponent 1/2;
since the ui vanish on the boundary, so does u.

We have (by the uniform convergence and the weak H1 convergence)

R(u) ≤ lim infR(ui),

and so equality must hold and u minimizes R over all of H1
Dir(G).

Now we claim that u is our desired eigenfunction, and λ = R(u) its
eigenvalue. This is seen by setting λ = R(u) and considering R(u+ εw) for
various w ∈ H1

Dir(G) and taking ε→ 0. We conclude that∫
∇u∇w dE = λ

∫
uw dE(3.1)

for all w ∈ H1
Dir(G). Now standard estimates for elliptic equations (e.g.,

Lemma 15.4 of [Fri69]) show that in fact u is C∞ at all edge interiors, and
satisfies

∆Eu = λu.(3.2)

Hence u’s restriction to any edge is given as A cos(ωx+B) for ω = λ1/2, and
A,B are constants depending on e (and which of the two standard coordi-
nates we place on e). Since u is Hölder continuous on G, it is certainly con-
tinuous everywhere, including all its vertices. Hence u ∈ C∞Dir(G). Finally,
given a vertex, v, let us show that (∆V u)(v) = 0. From Proposition 2.19 we
know that∫
∇u·∇w dE =

∫
(∆Eu)w dE+

∫
(∆V u)w dV = λ

∫
uw dE+

∫
(∆V u)w dV.
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From (3.1) and (3.2) we obtain∫
(∆V u)w dV = 0.(3.3)

We choose w ∈ C1
fn(G) in Equation (3.1), such that w(v) = 1 and w(v′) = 0

on other vertices and conclude

(∆V u)(v) = 0.

Letting h→ 0 we conclude that u is an “edge-based” Laplacian eigenfunction
satisfying the Dirichlet condition, with eigenvalue λ.

Set f1 = u and λ1 = λ. Now repeat the same argument, except mini-
mizing R over those functions that are orthogonal to f1. With the same
argument, we find an eigenpair (f2, λ2) with λ1 ≤ λ2 and f1 orthogonal
to f2. Now repeat again, minimizing over functions orthogonal to f1 and
f2. In this way we get a sequence of orthogonal eigenpairs (fi, λi) with λi
nondecreasing in i.

Next we show that λi → ∞. Otherwise the H1 norms of the fi are
uniformly bounded, and so the fi are uniformly Hölder continuous, and so
a subsequence of the fi converges uniformly to a g. But since the fi are
orthogonal, g would be orthogonal to all fi and therefore to itself, so g = 0.
This contradicts the uniform convergence of the subsequence of fi to g.

It remains to show that the fi are complete. If the fi are not complete,
there is a nonzero g ∈ L2

Dir(G) orthogonal to all the fi. By convolving g with
smooth approximations to Dirac’s delta function, and modifying it at the
vertices, we can find a gε ∈ C∞Dir(G) for any ε > 0 with ‖g−gε‖L2 ≤ ε. Hence
for small ε the function, h, which is the projection of gε onto the complement
of the fi’s, is: (1) nonzero, (2) orthogonal to all fi, and (3) lies in H1

Dir(G).
Now R(h) must upper bound the λi, by their minimizing property. Hence
λi are bounded, which we know is impossible.

We finish by remarking that the same proof holds for the Neumann con-
dition, except that we begin by working with C1(G) instead of C1

Dir(G). �

The same theorem holds for more general “mixed” boundary conditions.
Namely, we consider the condition that a function, f , satisfy the mixed
condition

f = 0 on K1,(3.4)

ñ · ∇f + σf = 0 on K2,(3.5)

where K1,K2 are a partition of ∂G and where σ is nonnegative. Then the
same theorem and proof hold, provided that we replace C1

Dir(G) by{
f ∈ C1(G) | f = 0 on K1

}
,
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and replace the Rayleigh quotient, R, by

R̃(f) =

∫
|∇f |2 dE +

∫
K2
σf2 dV∫

|f |2 dE
.(3.6)

We mention that V does not enter in any essential way into the edge-based
eigenvalues. Only E should affect those eigenvalues.

We can get mixed edge-vertex Laplacians. So consider the Rayleigh quo-
tient:

R(f) =
∫
γ|∇f |2 dE∫

αf2 dV +
∫
βf2 dE

,

with α, β, γ continuous, nonnegative and γ differentiable and never vanish-
ing. Its successive minimizers satisfy

−∇ · (γ∇f) = λf(αdV + β dE).(3.7)

The theorem above gives us a complete eigenbasis for L2(G, µ) with µ =
αV + βE . This basis is infinite provided that β is not identically zero.

Finally, we mention that it is easy to modify the above to work for mixed
boundary conditions with mixed edge-vertex Laplacians.

3.2. Weyl’s law. One fundamental result about edge-based eigenvalues
that is true for any finite graph is that their growth rate is determined, to
first-order, by the sum of the lengths of their edges. In analysis the analogous
quantity is the volume of the subdomain or manifold, and Weyl’s proof of
this fact (see [Wey12]) in analysis immediately carries over here.

For a finite graph, G, let NDir(λ,G) be the number of Dirichlet edge-based
eigenvalues ≤ λ for G, and similarly for NNeu(λ,G).

Proposition 3.3 (Weyl’s Law). Fix a finite graph, G. Let N(λ) be either
NDir(λ,G) or NNeu(λ,G). There is a constant, C, such that

|N(λ)− Lλ1/2/π| ≤ C,

where L is the sum of all the lengths of the edges in the graph.

Proof. Consider the graph, G1, where every vertex is a boundary point. Then
the edge-based eigenvalues of G1 are found by minimizing the same Rayleigh
quotient over a more restrictive class of functions. Hence, by the min-max
principle,

NDir(λ,G1) ≤ NDir(λ,G).
Similarly,

NNeu(λ,G) ≤ NNeu(λ,G1),
for NNeu(λ,G1) corresponds to a Rayleigh quotient over the space of func-
tions that needn’t be continuous at any vertex. For similar reasons we have

NDir(λ,G) ≤ NNeu(λ,G),
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the former N corresponding to the same class of functions as the latter
except the latter need not vanish at boundary vertices. To summarize, we
have shown

NDir(λ,G1) ≤ NDir(λ,G) ≤ NNeu(λ,G) ≤ NNeu(λ,G1).

Hence it suffices to prove the proposition for G1.
But the values of the G1 eigenfunctions don’t interact across vertices, so

NDir(λ,G1) =
∑
e∈E

NDir(λ, e),

where edges, e, are also viewed as graphs. If e is an edge of length `,
its Dirichlet eigenfunctions are fn(x) = sin(nxπ/`) for n = 1, 2, . . . , with
eigenvalues λn = (nπ/`)2. Hence we have

NDir(λ, e) = bλ1/2`/πc.

It follows that for some constant C > 0,

NDir(λ,G1) ≥ −C + (λ1/2/π)
∑
e∈E

`e = −C + Lλ1/2/π.

For similar reasons the result also holds for NNeu(λ,G1), where the eigen-
functions on an edge are fn(x) = cos

(
(n − 1)xπ/`

)
for n = 1, 2, . . . , with

eigenvalues λn =
(
(n− 1)π/`

)2. �

Again, a similar result holds for mixed boundary conditions. To see this,
we shall show that for any fixed mixed boundary condition (as in the end of
the previous subsection)

NDir(λ,G) ≤ Nmixed(λ,G) ≤ NNeu(λ,G),

where Nmixed counts eigenvalues with a mixed condition. Indeed, NDir can
be viewed as having the same Rayleigh quotient, as in Equation (3.6), as
Nmixed, except over a smaller space (i.e., the space of functions vanishing
over all of ∂G, not just K1). Furthermore, the Rayleigh quotient for Nmixed

is no less than that for NNeu, and the space for the former is more restrictive.
Hence the claim that NDir ≤ Nmixed ≤ NNeu, and hence the asymptotic law.

To get an asymptotic law for mixed edge-vertex Laplacians (as in Equa-
tion (3.7)), the above arguments show it suffices to consider Dirichlet and
Neumann eigenvalues for an edge, e. Partition e into k intervals, I1, . . . Ik,
and on a fixed interval, Ij , set γmax to be the maximum value of γ there, and
βmin similarly. The Rayleigh quotient with γmax replacing γ and βmin re-
placing β is never smaller, and so the Dirichlet eigenvalue counting function
on Ij for the Rayleigh quotient with β and γ is at least⌊

λ1/2|Ij |βmin

γmaxπ

⌋
.
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We conclude that for any ε > 0 we have that the Dirichlet eigenvalue count-
ing function on e is at least

λ1/2(1/π)
(
−ε+

∫
e
β(x)/γ(x) dx

)
,

where x is a standard coordinate on e. We conclude a similar upper bound
for the Neumann eigenvalues, and conclude that N(λ) ∼ λ1/2C/π, where

C =
∑
e

∫
e

β(x)
γ(x)

dx.

3.3. A condition on edge-based eigenfunctions.

Proposition 3.4. Let G be a locally finite graph. Let (f, ω) be an edge-based
eigenpair for the Laplacian, and let ω = λ1/2. Let v be an interior vertex
such that ω`e is not a multiple of π for any e incident upon v. Then∑

e∼{v,u}

ae
f(u)− cos(ω`e)f(v)

sin(ω`e)
= 0.

If the degree of v is infinite, the theorem still holds provided the above
sum converges absolutely (and ∆V is understood in the natural way).

Proof. This is a simple consequence of the fact that if f is an eigenfunction
then ∆V f(v) = 0 at any interior vertex. Fix an edge e ∼ {v, u}, and let
x be the standard coordinate on e with x(v) = 0 and x(u) = `e. We have
f ’s restriction to e with coordinate x, fe = fe(x) = A cos(ωx+B) for some
A,B. Hence

f(v) = fe(0) = A cosB,

and
f(u) = fe(`e) = A cosB cos(ω`e)−A sinB sin(ω`e),

and the outward normal derivative of f at v is

f ′(0) = −Aω sinB = −ωf(u)− cos(ω`e)f(v)
sin(ω`e)

.

Since ∆V f = ñ · ∇f at v is V(v)−1 times the sum of the above times ae, we
conclude the proposition. �

Using this proposition one can rather easily determine all the edge-based
eigenpairs in terms of the eigenpairs of the “normalized” adjacency matrix of
the graph, provided that all edge lengths are equal; the ω’s will turn out to
be periodic of period 2π. However, we do not know of such a determination
when edge lengths vary; we shall show that a graph with two vertices joined
by three edges of varying edge lengths will not have periodic ω’s.
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3.4. The equilength case. In this subsection we consider a finite graph,
G, all of whose edges have length 1 (however the ae can vary). We can
similarly deal with any graph whose edge lengths are equal.

For any v ∈ V̊ , let av be the sum of the ae over all edges, e, incident with
v (these edges, e, may be incident with boundary vertices). We will assume
that G is connected with at least one edge, so that av > 0 for all v. Let Ã
be the “normalized” adjacency matrix, which is just the adjacency matrix
of Section 2, normalized by dividing each row by its corresponding av. Ã
represents a Markov chain if and only if G has no boundary vertices (and
it always represents a Markov chain if we add in the boundary vertices and
make them “absorbing” states).

Our main result describes the edge-based eigenvalues in terms of Ã and
the number of edges and interior vertices. We state this first, and then prove
it in a series of propositions. First we set

Z≥0 = {0, 1, 2, 3, . . . },
so that for any τ ∈ R we can write

τ + 2πZ≥0 = {τ, τ + 2π, τ + 4π, . . . }.

Theorem 3.5. Let G be a connected graph with at least one edge, and let Ã
be its normalized adjacency matrix, as above. The edge-based eigenvalues is
the multiset sum3 of the following sets: for each eigenvalue, λ, of Ã, there
is a unique cos−1(λ) ∈ [0, π]; corresponding to this λ we have eigenvalues

cos−1(λ) + 2πZ≥0, and 2π − cos−1(λ) + 2πZ≥0.(3.8)

Additionally, the sets

π + 2πZ≥0, and 2π + 2πZ≥0(3.9)

occur with multiplicity |E| − |V̊ |. This means that if |E| − |V̊ | = −1, i.e.,
G is a tree without boundary, then we subtract the list in Equation (3.9)
once from the union over Equation (3.8); i.e., nπ for nonnegative integer n
occurs with multiplicity one.

Let us mention that if G has separated boundary, then the Neumann
condition at a boundary vertex is equivalent to considering that vertex to
be an interior vertex. Hence our theorem really also handles the case where
we impose a Dirichlet condition on some vertices, and a Neumann condition
on the rest, assuming the rest are separated.

Proof. The proof of this theorem occupies the rest of this section. We prove
it in a sequence of propositions. Notice that our proof provides a method
for finding a basis for the eigenspaces.

3i.e., if λ occurs five times in the lists below, then its multiplicity is five.
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Proposition 3.6. Let ω ∈ R \ (πZ). Then ω2 is an edge-based Dirichlet
eigenvalue if and only if cosω is an eigenvalue of Ã. If so, ω2’s multiplicity
is that of cosω in Ã, and for each corresponding eigenfunction, f , of Ã
(therefore defined on the vertices), we may extend f along each edge (as
A cos(ωx + B) for some A,B and standard edge coordinate x) to an edge-
based eigenfunction.

Proof. If ω ∈ R \ (πZ) has ω2 an edge-based eigenvalue, then by Proposi-
tion 3.4 we have for each v∑

e∼{v,u}

aef(u) = cos(ω)f(v)
∑

e∼{v,u}

ae.

In other words, since f is Dirichlet, Ãf = cos(ω)f ; that is, cosω is an
eigenvalue of Ã.

Conversely, let cosω 6= ±1 be an eigenvalue of Ã with eigenfunction g.
We claim that for any fixed e = {u, v}, there is a unique way to extend g
to a function along e of the form A cos(B + ωx), where x is the standard
coordinate on e with x(v) = 0. Indeed, consider the equations in A,B for
fixed g(u), g(v):

g(v) = A cosB, g(u) = A cos(B + ω).

Since
A sinB =

g(u)− g(v) cosω
− sinω

,

A cosB and A sinB are uniquely determined by g(u), g(v). From what we
know of polar coordinates, this means either A = 0 and B is arbitrary, in
which case g’s extension along e is by 0 (and g(u) = g(v) = 0), or there
is a unique positive A = A0 and unique B = B0 modulo 2π satisfying
the equations, with the only other solution being A = −A0 and, modulo
2π, B = B0 + π. Since the function A cos(B + ωx) is the same for these
solutions, and does have the right value at x = x(v) = 0 and x = x(u) = 1, g
can be extended to satisfy ∆Eg = ω2g. Also clearly g satisfies the condition
in Proposition 3.4, which is equivalent to ∆V g = 0.

To sum up, we know that ω2 is an edge-based eigenvalue for ω ∈ R \ (Zπ)
if and only if cosω is an eigenvalue of Ã. We know that the restriction of
any ∆E eigenfunction gives an Ã eigenfunction, and we know that (given ω)
a Ã eigenfunction g has a unique extension to a ∆E eigenfunction. Hence
the multiplicities of ω2 in ∆E and cosω in Ã are equal. �

The story when ω ∈ πZ is less elegant. Indeed, there are many edge-based
eigenfunctions, f , whose restriction to the vertices vanishes.

Let Yω be the eigenspace corresponding to the Dirichlet edge-based eigen-
functions with eigenvalue ω2,

Yω = Yω(G) = {f ∈ C∞Dir(G) | ∆Ef = ω2f,∆V f = 0},
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and let Zω be those elements of Yω vanishing on all vertices,

Zω = Zω(G) =
{
f ∈ Yω | f |V = 0

}
.

We reduce the study of Yω for ω ∈ πZ to that of Zω by the following
proposition:

Proposition 3.7. Yω/Zω for ω ∈ 2πZ is one-dimensional if ∂G = ∅, and
otherwise zero. Similarly for ω ∈ π + 2πZ, except that we require ∂G = ∅
and that G is bipartite.

Proof. If f ∈ Y2πn with n ∈ Z, and e = {u, v} is an edge, then f(u) = f(v),
since f ’s restriction to e is of the form A cos(B + 2πnx). Hence f must be
constant on V . This implies that Yω/Zω is at most one-dimensional, and
must be zero if ∂G 6= ∅. On the other hand, if ∂G = ∅ then the function
whose restriction to each edge is cos(ωx) gives a nonzero element of Yω/Zω.
The case ω = (2n+ 1)π is handled similarly. �

The next two propositions essentially finish our work in this section.

Proposition 3.8. For ω > 0 there is a natural isomorphism of Yω with
Yω+2π that restricts to an isomorphism of Zω with Zω+2π. The same is true
if ω + 2π is replaced by ω + π, provided that G is bipartite.

Proof. For an arbitrary f ∈ Yω, let ιf be the function whose restriction to e
is A cos

(
B + (2π + ω)x

)
, where A,B are given by f ’s restriction to e being

A cos(B + ωx). Then ∆V f = ∆V (ιf)ω/(ω + 2π) so ∆V (ιf) = 0. From here
it is clear that ι is the desired isomorphism. �

Proposition 3.9. Let G′ = G ∪ {e} be the graph formed by adding an edge,
e, to G. Then Zω(G) naturally injects into Zω(G′), and the quotient is of
dimension 1 or zero.

Proof. If f ∈ Zω(G), we simply extend it by zero on e to get a member of
Zω(G′). Member of Zω(G′) restricts to A sin(ωx) along e for some A, and
hence any two of them are scalar multiples of each other modulo Zω(G). �

First a corollary of these two propositions:

Corollary 3.10. Let b be the number of ±1’s that appear among Ã’s eigen-
values, i.e.,

b = b(G) =


0 if ∂G 6= ∅,
1 if ∂G = ∅ and G is not bipartite, and
2 if ∂G = ∅ and G is bipartite.

Then
dimYπ + dimY2π + 2(|V̊ | − b) = 2|E|.

Hence, if G is bipartite, we further have

dimYπ = dimY2π = |E| − |V̊ |+ b.
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Proof. The first part follows from the above and Weyl’s law. The second
part follows from Proposition 3.8. �

To prove Theorem 3.5, first note that since we are working with the
Dirichlet condition we can assume the boundary is separated— if not, we
just give each boundary edge its own boundary vertex.

The corollary above shows that the theorem is true for a tree. Any con-
nected graph is the union of a tree and a number of edges. Hence it suffices
to show that if the theorem is true for G then it is true for G with an edge
thrown in, G′ = G ∪ {e}.

So assume the theorem is true for G. If b(G) = b(G′) then dimYπ+dimY2π

increases by 2. But each dimension can increase by at most 1, so they
increase precisely by that much, and the theorem holds for G′.

The only change in b that can happen by adding an edge is that b(G) = 2
but b(G′) = 1, i.e., G is bipartite but G′ isn’t. In this case dimYπ + dimY2π

remains the same. While Zπ cannot decrease in going from G to G′, Yπ/Zπ
goes from one to zero-dimensional from G to G′. Since Y2π/Z2π remains
one-dimensional, Z2π increases by one. Once again we see how the Zω’s and
Yω/Zω’s change for G′, and it is easy to see the theorem holds there. �

4. The wave equation

In this section we usually only assume that the graphs are locally finite. This
is because the wave equation has finite propagation speed, and “cannot tell”
whether or not a graph is finite (in any fixed interval of time).

Definition 4.1. Given a graph, fix nonnegative α, β ∈ C0(G), nonnegative
γ ∈ C1(G), and an interval I ⊂ R. A function u = u(x, t) : G × I → R is
said to satisfy the wave equation with coefficients α, β, γ if:

(1) u is continuous on G × I and u( · , t) ∈ C2(G) for all t ∈ I;
(2) for all x ∈ G̊ and t ∈ I̊ the derivative utt exists at (x, t) and is contin-

uous in x; and
(3) for fixed t we have

(αdV + β dE)utt = ∇ · (γ∇u)
as integrating factors.

If u vanishes on ∂G × I we say that u satisfies the Dirichlet condition;
similarly for the Neumann condition if ∇u vanishes along all edges at all
boundary vertices.

Having the equality above as integrating factors means that

αutt = −γ∆V u

at all (x, t) with x ∈ V̊ and t ∈ I̊, and that

βutt = −γ∆Eu+∇γ · ∇u
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at all (x, t) with x ∈ G̊ \ V and t ∈ I̊.
In the above definition we may also allow mixed boundary conditions as

in Equations (3.4) and (3.5).
The the vertex-based wave equation, we mean the wave equation with

coefficients α = γ = 1 and β = 0. In this case ∆Eu = 0 and so u must
be edgewise linear. As remarked in Section 2, ∆V on a finite graph can
be viewed as a bounded operator on L2

Dir(G,V). As such, for any edgewise
linear f ∈ L2

Dir(G,V) we can form

u(x, t) = cos
(
t
√

∆V

)
f = f − t2∆V f/2 + t4∆2

V f/4!− · · ·

and we easily see it satisfies the wave equation with u(x, 0) = f(x). The
boundedness of ∆V implies that if f = χv is the edgewise linear character-
istic function4 at v, then for fixed x,

u(x, t) = cos
(
t
√

∆V

)
χv = (−1)dt2dNx,v/(2d)! +O(t2d+2)

where d is x’s distance to v and Nx,v is the number of paths from x to v
of length d. It follows that u(x, t) > 0 for small t, and so the vertex-based
wave equation does not have a finite wave propagation speed.

Since traditional graph theory is based on ∆V restricted to edgewise lin-
ear functions, the above explains why approaching the wave equation with
traditional graph theory leads to unsatisfactory results.

A much better model of the wave equation appearing in analysis is the
edge-based wave equation, where β = γ = 1 and α = 0. We will show in
the next subsection that these waves propagate “along the edges” and have
finite wave speed equal to 1.

4.1. The energy inequality. Many basic properties of the wave equation
follow from well-known energy inequality, which we state and apply in this
subsection.

If A ⊂ G, then the energy of u = u(x, t) over A at time t is defined to be

Energy(A; t) =
∫
A

(
γ(∇u)2 dE + u2

t (αdV + β dE)
)
.

For real h > 0 let
Ah =

{
x ∈ G | dist(x,A) < h

}
.

Now fix coefficients α, β, γ for a wave equation and let c be the smallest
constant such that γ ≤ c2β throughout G (we assume this c exists).

Theorem 4.2. Let A be an open set with Act0 of finite type for some t0 > 0.
Then if u is a solution to the Dirichlet or Neumann wave equation we have

Energy(Act0 ; 0) ≥ Energy(A; t0).

4i.e., this function is 1 on v, 0 on other vertices, and edgewise linear.
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The same holds of the mixed boundary condition, as in Equations (3.4)
and (3.5), provided we add ∫

K2∩A
γσu2 dV

to the energy.

This theorem will be proven in the next subsection; its proof is virtually
identical to its well-known proof in analysis.

We remark that the wave equation has a time symmetry, in that if u
satisfies the wave equation then so does w(x, t) = u(x,−t). We may therefore
conclude the symmetric fact that

Energy(A; 0) ≤ Energy(Act0 ; t0).

From the energy inequality we easily conclude the following proposition:

Proposition 4.3. Assume G is locally finite, that β is strictly positive on
G, and that c exists as before (i.e., γ ≤ c2β everywhere). Let u be a solution
to the wave equation on G × [0, T ] with u(x, 0) = 0 and ut(x, 0) = 0 for all
x within a distance ct to a fixed y ∈ G. Then u(y, t) = 0.

Proof. For any ε > 0 we have

Energy({y}c(t−ε); 0) = 0.

We conclude that ut(y, s) vanishes from s = 0 to s = t − 2ε, and hence
u(y, t− 2ε) = 0. Now we let ε→ 0 and use the continuity of u. �

Some immediate corollaries of this are:

Corollary 4.4. If u,w are two solutions to the wave equation such that u
and w agree at time t = 0 on all points within distance ct to y, and the same
for ut and wt, then u(y, t) = w(y, t). In other words, the value of u(y, t)
depends only on the value of u at a fixed time in the “space-time cone of
speed c at y”. In other words, this wave equation has finite speed of wave
propagation bounded by c.

Corollary 4.5. Fixing u( · , 0) and ut( · , 0), there is at most one solution,
u(x, t) for t > 0, to the wave equation.

4.2. A proof of the energy inequality. Let I ⊂ R be an interval. By a
(graph-time) vector field on G × I we mean a pair (G,F ) where F = F (t) is
an integrating factor on G and G = G(t) is vector field on G both depending
on t ∈ I. By its divergence we mean

∇gt · (G,F ) = ∇ ·G+ Ft,

which is an integrating factor that depends on time, t, where by Ft we mean
the partial derivative of F with respect to t, i.e., we differentiate F ’s dV
component and its dE component with respect to time.
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Proposition 4.6. Consider a divergence free graph-time vector field,
(G,F ), i.e., ∇ · G + Ft = 0 as a boundary inclusive equality. Write F =
FV dV + FE dE. Assume that FV ≥ 0 at all vertices and that cFE ≥ |G| on
(G \ V ) × I. If A is any open set with Act0 of finite type, and if 0, t0 ∈ I,
then

I(t) =
∫
Ac(t0−t)

F (t)

is a nonincreasing function in t ∈ [0, t0].

The energy inequality in Section 4.1 follows almost at once by taking

F = γE(∇u)2 + (αV + βE)u2
t and G = −2γut∇u,

adding γσu2V|K2 to F for the mixed boundary condition.

Proof. Let S(t) = Ac(t0−t). If ∂S(t) contains a vertex, then I(t) is right
continuous at t, and has a jump (if any) from the left of

I(t− 0)− I(t) =
∑

x∈V̊ ∩∂S(t)

FV (x)V(x).

Next partition ∂S(t) into interior and boundary points,

B̊ = ∂S(t) ∩ G̊ and B∂ = ∂S(t) ∩ ∂G.

B̊ will contain no vertices for all but finitely many t. If B̊ contains no vertex,
then using Proposition 2.21 we see that

I ′(t) = −
∑

x∈B̊,e3x

FE(x, t)cae +
∫
S(t)∪B∂

Ft(t)

(where Ft contains both a dV term and a dE term). By taking S(t) and
adding to it ∂S(t) as new vertices each of weight 1, we get a graph, Gt;
taking FV = 0 at all new vertices, we may write:∫

S(t)∪B∂

Ft(t) =
∫
Gt\B̊

Ft(t) = −
∫
Gt\B̊

∇ ·G(t)

=
∫
B̊

ñ ·G(t) =
∑

x∈B̊,e3x

ne,x ·G(x, t)ae,

using the divergence theorem.
Recalling that ne,x is a unit vector, we have

−FE(x, t)c+ ne,x ·G(x, t) ≤ −FE(x, t)c+ |G(x, t)| ≤ 0

for all x, t. Hence

I ′(t) =
∑

x∈B̊,e3x

ae
(
−FE(x, t)c+ ne,x ·G(x, t)

)
≤ 0.
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We have shown that I(t) is nonincreasing at all but finitely many points
(i.e., the t’s with B̊ containing a vertex), and at these finitely many points
we know that I(t) is continuous or has a decreasing jump. Hence I(t) is
nonincreasing. �

The proposition is usually proven (in analysis) by invoking a space-time
divergence theorem on a truncated cone in space-time (or graph-time here),
such as those (x, t) with dist(x,A) < c(t0 − t) (see, for example, [Smo83]
Chapter 4 or [CH89]). While this approach also works, setting up a graph-
time divergence theorem seems like more trouble than it’s worth for our
purposes at this point.

4.3. More general wave equations. One can generalize the uniqueness
results for the wave equation, i.e., Corollaries 4.4 and 4.5, to the same results
for a wave equation of the form

(αdV + β dE)utt = ∇ · (γ∇u) + δ · ∇u+ εu,

where δ is a C0 vector field and ε is a C0 function, and we assume β never
vanishes. The proof is a simple adaptation of the analysis proof given in, for
example, Smoller’s book [Smo83]. We define the energy exactly as before
(ignoring δ and ε), but now prove

eKt0Energy(Act0 ; 0) ≥ Energy(A; t0)(4.1)

for some constant K depending on δ, ε, provided that u, ut vanish on Act0

at t = 0. Uniqueness with “propagation speed” at most c follows as before.
We shall outline the proof of Equation (4.1) when δ = 0; the general

case is a bit messier but similar (see [Smo83] for details). First we notice
that if all is the same as in Proposition 4.6 except that ∇ ·G+ Ft does not
necessarily vanish (where by F and G we mean F = γE(∇u)2 +(αV+βE)u2

t

and G = −2γut∇u), then we have

I(t) ≤ I(0) +
∫ t

0

∫
Ac(t0−s)

(∇ ·G+ Ft) ds.

Hence setting
E(t) = Energy(Ac(t0−t); t)

for 0 ≤ t ≤ t0, we have for such t

E(t) ≤ E(0)− 2
∫ t

0

∫
Ac(t0−s)

εu(x, s)ut(x, s) dE(x) ds.(4.2)

The integral on the right-hand side can be bounded by∣∣∣∣∫ t

0

∫
Ac(t0−s)

uut

∣∣∣∣ ≤ ∫ ∫ u2/2 +
∫ ∫

u2
t /2.

The u2
t /2 term integrated over space is bounded by a constant times E(t)

(since β vanishes nowhere), and the u2/2 can be bounded by a constant
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times t2 times a u2
t integral by Poincaré’s inequality (see [Smo83]). It

easily follows that the double integral in Equation (4.2) is bounded by a
constant times

∫ t
0 E(s) ds, and hence

E(t) ≤ E(0) +K

∫ t

0
E(s) ds

for a constant K. Gronwall’s inequality implies E(t) ≤ eKtE(0), which is
just Equation (4.1).

4.4. Differentiability and the wave equation. In this subsection we
show how to prove the existence of a solution to the wave equation for suffi-
ciently “differentiable” initial conditions. On the circle, i.e., R/(2πZ), there
is a rough correspondence between differentiability and having Fourier coef-
ficients decaying. We shall use the same for graphs, to give a nice description
of when we are sure that the wave equation has a solution.

Let f1, f2, . . . be the eigenfunctions of ∆E with eigenvalues λ1, λ2, . . .
with some boundary conditions of any type specified before. Let Dk (which
depends on the boundary conditions) be those formal sums

∑
i aifi with∑

i i
k|ai| <∞ (here k is any real, although typically a nonnegative integer).

Let Bk be the same, except that the ai’s are subject to the weaker condition
that ik|ai| is bounded in i. Let Diffk be those functions f ∈ Ck such that
for j = 0, . . . , k − 1 we have:

(1) f (j)(v, e) depends only on v if j is even, where f (j)(v, e) is the j-th
derivative of f at v along e.

(2) The sum of f (j)(v, e) over all e for fixed v is zero for all v, if j is odd.

It is not hard to prove the following facts:

Proposition 4.7. We have natural inclusions Bk+1+ε ⊂ Dk ⊂ Bk for any
k and ε > 0, and inclusions Dk ⊂ Diffk ⊂ Bk for any nonnegative integer k.

We remark that Diffk’s compatibility withDk, Bk makes it, in some sense,
a better notion of differentiability than Ck defined in Section 2.

Proof. The first inclusions are straightforward. The inclusion Dk ⊂ Diffk

follows by viewing the formal sum as an absolutely convergent sum of func-
tions whose derivatives up to k-th order also form an absolutely convergent
sum (here we use the periodic nature of the eigenpairs). Finally the inclu-
sion Diffk ⊂ Bk follows by integration by parts of the inner product (f, fi)
for an f ∈ Diffk along each edge:

∫ 1
0 f(x)Ae cos(ωx+Be) is proportional to

the integral of ω−kf (k)(x) times sine or cosine of plus or minus ωx+Be plus
boundary terms. The boundary terms at v ∈ V̊ are proportional to sums
over e of f (j)(v, e)Ae times sine or cosine ωx+Be. Knowing that Ae cos(Be)
is independent of e (for a given v, with x = 0 corresponding to v), and
knowing that the sum of Ae sin(Be) vanishes (since ∆V fi = 0 for all i), we
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see that the boundary terms at V̊ disappear; similarly we see that boundary
terms at boundary vertices vanish. Now we use Weyl’s law and the fact that
f ∈ Ck to see that ik(f, fi) is bounded. �

We now state an existence theorem in terms of D2; it follows from the
above proposition that our theorem also applies to the class Diff4, which is
easier to understand, in a sense, than D2.

Proposition 4.8. Let g, h ∈ D2. If g =
∑
aifi and h =

∑
bifi, then

u(x, t) =
∑
i

fi

(
ai cos(

√
λi t) +

bi√
λi

sin(
√
λi t)

)
(4.3)

is a solution to the wave equation with u( · , 0) = g and ut( · , 0) = h.

Proof. We need to know that utt exists, and if g, h ∈ D2 then the sum of
twice differentiated terms is absolutely convergent and this utt exists. The
rest is an easy verification. �

Any g, h in L2, say, will have eigenfunction expansions. It makes sense to
define u(x, t) by the formal sum above (in Equation (4.3)), which for fixed
t will always lie in L2 (although utt need not exist).

4.5. Chebyshev polynomials and the wave operator. We again as-
sume that G is finite in this subsection. Let fi, λi be as in the Section 4.4,
and set Summ to be D0 in the notation of the previous section, i.e.,

Summ =
{∑

i

aifi

∣∣∣ ∑ |ai| <∞
}
.

Elements of Summ may be viewed as formal sums, or we may identify them
with the bounded function on G to which they converge (since the fi are
uniformly bounded). Summ is the set of functions with a summable eigen-
function coefficient series; it is easy to see that it contains, for example,
H1(G). The map sending fi to its restriction on vertices extends to a con-
tinuous map from Summ to L∞(G,V). Since G is finite this gives rise to a
continuous map ME→V : Summ → L2(G,V).

If g ∈ Summ with g =
∑
aifi, then(

cos
√

∆E

)
g =

∑
ai
(
cos
√
λi
)
fi

lies in Summ, and we know

ME→V

(
cos
√

∆E

)
g =

∑
ai
(
cos
√
λi
)
ME→V fi.

Since 1− cos
√
λi is the ∆V eigenvalue corresponding to ME→V fi and Ã =

I −∆V , we have
ÃME→V = ME→V cos

√
∆E
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as maps from Summ to L2(G,V), assuming all edge lengths are 1. It follows
that for any polynomial, P , we have

P
(
Ã
)
ME→V = ME→V P

(
cos
√

∆E

)
.

If Tk is the k-th Chebyshev polynomial, given by

Tk(cosx) = cos(kx),

we have
Tk
(
Ã
)
ME→V = ME→V cos

(
k
√

∆E

)
.

We conclude the following theorem:

Theorem 4.9. Let all edge lengths be 1. Let g ∈ Summ, and let u be the
formal solution to the wave equation as in Equation (4.3) with h = 0. Then
for any integer k and interior vertex v we have

u(v, k) = Tk
(
Ã
)
ME→V g.

So if we wish to know this wave equation solution at vertices and at only
integral times, we need only know the initial condition at the vertices. The
values of the solution there are given in term of Chebyshev polynomials of
the normalized adjacency matrix. Notice that knowing the values of u at
nonintegral times requires knowing f along the edges.

Notice that Theorem 4.9 is valid for infinite (locally finite) graphs, since
the wave equation solution is determined locally for any finite time, and the
equality in Theorem 4.9 is a local statement as well.

We finish this subsection by remarking that if we ignore the map ME→V ,
we can say that Ã “acts like” cos

√
∆E . Noting that Ã is I − ∆V for an

appropriate graph theoretic Laplacian, ∆V , we can see that I − ∆V “acts
like” cos

√
∆E .

4.6. Wave propagation through vertices. Using Theorem 4.9 it is not
hard to see what happens when a wave is sent through a vertex. More
precisely, let G be the infinite d-regular star,5 i.e., G’s vertices are v0 union
vi,j with i = 1, . . . , d and j a positive integer, and G’s edges are {v0, vi,1}
for all i, and {vi,j , vi,j+1} for all i and for all positive j (see Figure 2).

Taking g to be a function which is zero on all vertices except v1,j for some
j ≥ 2, we apply Theorem 4.9 to see that of the “wave” traveling towards v0,
we have (2/d)− 2 of the wave comes back along the i = 1 edge, and 2/d of
it travels down each i > 1 edge.

This motivates the following theorem. We state this theorem in terms
of the length 1 d-regular star, by which we mean the graph, G, as above,

5Note that the wave equation effectively ignores vertices of degree 2, i.e., one gets the
same equation if one treats the two edges incident with the vertex as one longer edge. So
the infinite d-regular star is equivalent to a graph with one degree d vertex and d edges
of infinite length.
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v0 vd,1 vd,2v1,1v1,2

v2,1
vi,1

vi,2

Figure 2.

except we restrict j to take on only the value 1. We endow the edges of G
with standard coordinates x1, . . . , xd where xi(0) = v0 and xi(1) = vi,1.

Theorem 4.10. Let u(x, t) be the solution to the wave equation for 0 ≤ t ≤
1/4 given by

u(xi, t) =

{
f(x1 + t) for i = 1,
0 otherwise,

where f is any twice differentiable function supported on (1/4, 3/4). Then
the solution for 0 ≤ t ≤ 5/4 to the wave equation exists and is given by

ũ(xi, t) =

{
f(x1 + t) +

(
(2/d)− 1

)
f(t− x1) for i = 1,

(2/d)f(t− xi) otherwise.

Notice that this theorem tells us how waves propagate through vertices.
Also, notice that we know that ũ is unique.

Proof. Clearly ũ satisfies the wave equation on edge interiors. At v0, the
only vertex of interest for t ≤ 5/4, we have ũ is continuous (taking the
limiting value 2f(t)/d along each edge at v0) and satisfies ∆V ũ = 0 there.
Hence ũ satisfies the wave equation. �

4.7. Finite propagation speed of wave operators. There are a num-
ber of operators on L2(G, E) that arise from the wave operator, which have
a “finite speed of propagation”. We mention one classical one, and a gener-
alization of it. First we need some definitions.

By the support of a function, f , in L2(G, E) we mean the complement of
the union of those open sets, U , for which f = 0 almost everywhere in U .

Definition 4.11. Let At be a family of bounded (everywhere defined) oper-
ators on L2(G, E) indexed on t ≥ 0. We say that At have speed of propagation
at most c if (Atf, g) = 0 for any f, g ∈ L2(G, E) and t with the supports of
f and g a distance at least ct apart.
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Definition 4.12. A subset, D, of L2(G, E) is called supportingly dense if
for any f ∈ L2(G, E) and ε > 0 there is f̃ ∈ D such that ‖f − f̃‖2 < ε and
(each point of) the support of f̃ is within distance ε of the support of f .

In our propagation speed definition, rather than requiring f, g ∈ L2(G, E),
it suffices to take f, g ∈ D where D is any supportingly dense subset of
L2(G, E). We also remark that standard mollification arguments show that
for any k, Diffk is supportingly dense; it follows that Bk and Dk are, as well.

Consider the operator

Wt = cos
(
t
√

∆
)
.

By the spectral theorem this can be viewed as an operator on L2(G, E) whose
norm is bounded by 1. We know by Proposition 4.8 that Wt restricted to
D2 ∩ L2(G, E) has propagation speed at most 1. Since D2 is supportingly
dense in L2(G, E) we see that Wt has speed of propagation ≤ 1.

Next for any a ∈ R consider the operator:

Wt,a = h
(
t2(∆− a)

)
,

where

h(x) = 1− x

2!
+
x2

4!
− x3

6!
+ · · · =

{
cos

√
x if x ≥ 0,

cosh
√
−x if x < 0.

So Wt,0 is just Wt as above. Since ∆ is positive semidefinite, ‖Wt,a‖ ≤
cosh

(
t
√
a
)
. The analogue of Proposition 4.8 for the wave equation utt =

−∆u + au is easily verified, and we conclude (using Subsection 4.3) as we
did for Wt that:

Proposition 4.13. For fixed a, the propagation speed of Wt,a is ≤ 1.

5. Applications

In this section we give examples of how to apply our edge-based approach
to get graph theoretic results from analysis results. We give a new bound
on eigenvalues based on set distances in graph theory; the bound it gives
on diameters can be better or worse than the well-known bound of Chung,
Faber, and Manteuffel (in [CFM94]); our technique is very simple and works
in analysis (to give the result of Friedman and Tillich in [FT]). We also show,
for example, that the graph diameter inequalities of Chung, Grigor’yan, and
Yau in [CGY96, CGY97], which mildly generalize that of Chung, Faber,
and Manteuffel (in [CFM94]), is optimal to first-order, in a certain sense, for
small Laplacian eigenvalue. We give other results that illustrate our ability
to translate from analysis to graph theory, although these other results do
not improve the best known graph theory results.
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5.1. Distances and diameter: using old results. A number of arti-
cles have inequalities relating distances to sets or diameters of a space to
Laplacian eigenvalues, both for manifolds and graphs (see [AM85, Moh91,
LPS88, CFM94, CGY96, BL97, CGY97]). In [FT] the philosophy that
I −∆G “acts like” cos

√
∆E of the preceding section is used to apply graph

theoretic techniques (namely those of [CGY97]) to analysis and get an im-
proved eigenvalue bound based. Here we go the other way, taking analysis
results or more general results, and apply them to get graph theoretic re-
sults. The result we obtained is not the best known, but it is better than
some results, especially one that can be derived from the same technique
using the vertex-based Laplacian. However, in the next subsection we give
a distances/eigenvalues technique that yields new results in graph theory.

Consider the result of Bobkov and Ledoux, which states that for any
metric probability space, (M,ρ, µ), and disjoint Borel sets X,Y we have

√
λ ρ(X,Y ) ≤ − log(µX µY )(5.1)

where ρ(X,Y ) is the distance from X to Y and λ is the optimal constant
in the Poincaré inequality (in other words, λ is the first nonzero Neumann
eigenvalue in the case of a compact manifold or finite graph). Let us apply
this to bounding the diameter of a graph.

One way is to directly apply Equation (5.1) to the vertex-based situations,
with λ = λV , the vertex-based Laplacian eigenvalue. We get µX = |X|/n,
and we take X,Y to consist of single points of distance D where D is the
diameter. We conclude that

√
λV D ≤ log(n2) = 2 log n, or

D ≤ 2 log n√
λV

.

Here λV is the first nonzero eigenvalue of the Laplacian I − Ã where Ã is
the normalized adjacency matrix. Notice that if our graph is d-regular, then
λV = λT /d where λT is the first nonzero eigenvalue of the traditional graph
theoretic Laplacian. We conclude:

D ≤ 2 log n
√
d/λT .

Alternatively we may apply Equation (5.1) to the edge-based Lapla-
cian. Notice that the similar and slightly weaker inequalities of [CGY96,
CGY97] require the Laplacian, ∆, to have cos

(
t
√
−∆

)
extend supports of

functions by a distance at most t. So our edge-based Laplacian could be
used with these earlier results, whereas the vertex-based Laplacian could
not. We take X,Y to be balls of size 1/2 about two points of distance D,
the diameter. We conclude:√

λE (D − 1) ≤ log(n2) = 2 log n.
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Seeing as
√
λE = cos−1(1− λV ), we have

D − 1 ≤ 2 log n
cos−1(1− λV )

.

But it is easy to see that cos−1(1− a) ≥
√

2a for any a. Hence we have

D − 1 ≤
√

2/λV log n.

In the d-regular case this gives

D − 1 ≤
√

(2d)/λT log n.(5.2)

We conclude:
(1) With the same technology, i.e., using Equation (5.1), the edge-based

technique does better than the vertex-based technique by roughly a
factor of

√
2.

(2) In previous Laplacian bounds (e.g., [CGY96, CGY97]) the edge-
based technique can be applied whereas the vertex-based technique
cannot (by support extending restrictions that are equivalent to the
wave equation having propagation speed 1).

It is interesting to note that the edge-based diameter bound we derived
(in Equation (5.2)) improves the original Alon–Milman bound6 of

D ≤ 2b
√

(2d/λT ) log2 nc
(see [AM85]), in the case where d/λT and n are large. Similarly we have
improved Mohar’s improvement (see [Moh91]) of the Alon–Milman result,
taking λ∞ ≤ 2d (the highest Laplacian eigenvalue)7 ). But the result of
Chung, Faber, and Manteuffel (see [CFM94]) improves on our edge-based
result by a factor of 2. In fact, it is precisely this factor of 2 that we gain
in applying the result in Chung, Faber, and Manteuffel to analysis, in [FT],
using the relation in this paper between graph Laplacians and analysis-like
(e.g., edge-based) Laplacians.

5.2. Distances and diameters: new results. In this subsection we give
a new way of proving distance/eigenvalues or diameter/eigenvalue results.
Graph theoretically this yields a new result, which is an edge-based analogue
of the Chung, Faber, and Manteuffel (see [CFM94]) result; our new results
cannot be compared to that of Chung, Faber, and Manteuffel— it can yield
better or worse results. This proof also carries over to analysis, where it
gives a different (and in some sense shorter) proof of the Friedman–Tillich
result in [FT]. But however different our proofs or results are, they can be

6It is interesting that this bound is often misquoted, as the authors use [a] to denote
bac (the greatest integer ≤ a) without ever explicitly saying so in the paper. Many authors
incorrectly guess the meaning of [a].

7Since we are thinking of d/λT as being large, it seems reasonable to expect that λ∞
should not be far from 2d.
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viewed as variants of older results stemming from the same basic technique
used in [CGY97] and [FT].

Let X0 denote the constants in L2(G, E), and X1 the orthogonal comple-
ment of X0; for i = 0, 1 let πi denote the projection onto Xi (so π0 + π1 is
the identity). Let Wt,a be the operators defined at the end of Section 4, and
fix a = λE to be the first nonzero eigenvalue of ∆.

Proposition 5.1. If f, g are two functions whose supports are at a distance
of at least d, we have

cosh
(
d
√
λE
)
≥ ‖π1f‖‖π1g‖
‖π0f‖‖π0g‖

.

Proof. By Proposition 4.13 we have

0 = (Wd,af, g) = (Wd,aπ0f, π0g) + (Wd,aπ1f, π1g).

Now
(Wd,aπ0f, π0g) = ± cosh

(
d
√
λE
)
‖π0f‖‖π0g‖

since π0f, π0g are both constants. Since Wd,a restricted to X1 has norm at
most one, we have ∣∣(Wd,aπ1f, π1g)

∣∣ ≤ ‖π1f‖‖π1g‖,
and the proposition follows. �

Corollary 5.2. Let X,Y be disjoint measurable subsets of distance ≥ d.
Then

d
√
λE ≤ cosh−1

(√
E(Xc)E(Y c)
E(X)E(Y )

)
.

Proof. Take f, g to be the respective characteristic functions of X,Y . �

We finish this subsection with a discussion of the above proposition and
its corollary.

First of all, these proofs carry right over to analysis, where they yield the
results of Friedman and Tillich (in [FT]) with a considerably simpler proof;
however, the basic idea that (Wd,af, g) = 0 based on the supports of f, g the
the speed of propagation of W appears before.

Second, the above proposition and corollary can be generalized to k func-
tions or k sets for any k ≥ 2, with the same technique that appears in
[CGY96], also used in [CGY97, FT]. In the analysis case we recover the
results for k functions or sets that appear in [FT]. For graphs, our corollary
would read that if X1, . . . , Xk were disjoint measurable subsets any two of
which had supports of distance ≥ d, then

d
√
λE ≤ min

i6=j
cosh−1

√E(Xc
i )E(Xc

j )
E(Xi)E(Xj)

 .
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Our proposition would read similarly.
Finally, we remark that the above corollary yields a diameter result that

can be better (or worse) than that of Chung, Faber, and Manteuffel (see
[CFM94]). Similarly our corollary can be better or worse than the compa-
rable theorem in [CGY97]. For example, the Chung, Faber, and Manteuffel
result states that in a regular graph

(D − 1) cosh−1

(
1 +

2λV
λn − λV

)
≤ cosh−1(n− 1),

where D is the diameter, n = |V |, and λV , λn are respectively the smallest
and largest positive ∆V eigenvalues. Taking balls of radius δ/2 about two
points of distance D and applying Corollary 5.2 we get

(D − δ)
√
λE ≤ cosh−1(2n/δ − 1)

for any δ ≤ 2. It follows that the result obtained here, taking δ = 2, is
better than the result in [CGY97], provided that λV and 2 − λn are both
≤ c/ log n for a constant, c (using cos

√
λE = 1− λV ).

5.3. Invariants. A typical spectral invariant studied in the analysis liter-
ature is the wave invariant

W (t) = Trace
(
cos t

√
∆E

)
=
∑
j

(
cos t

√
λj
)
,

with λj running through all Laplacian eigenvalues. This sum can be under-
stood in several ways; here we think of

W̃ (t) =
∑
j

(
eit
√
λj
)

as a complex analytic function defined on the subset of complex numbers
with positive imaginary part, and then we extend W̃ analytically to the
whole complex plane; W is just the real part of W̃ .

It is well-known that in analysis the real singularities of W are at t = 0
and t being (plus or minus) the length of a closed geodesic. If all edges
of a graph have length one, then we know we have α1, . . . , α2|E| such that
the edge-based eigenvalues (with their respective multiplicities) are precisely
those squares of αj + 2πZ≥0. We have

W̃ (t) =
1

1− e2πit

2|E|∑
j=1

eitαj .

This has a pole at tR precisely when t = 0 or t is an integer with
∑
eitαj 6= 0.

To understand the vanishing or not of
∑
eitαj , consider that the αj ’s are

of two types; one type is a (π, 2π) pair coming from an edge and interior
vertex count, and such αj ’s cancel in the sum

∑
cos(itαj) for t an odd
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integer and contribute 2 when t is even; the other type is a α, 2π − α pair
with

eitα + eit(2π−α) = 2 cos(tα)
for t an integer. Hence this sum is essentially the trace of the t-th Chebyshev
polynomial in Ã.

It follows that the first odd t > 0 for which W̃ has a pole is the length of
the smallest odd cycle. However it doesn’t seem like such a simple statement
holds for higher odd values of t or even values, and so the invariant W̃ is
not entirely analogous to its analysis counterpart.

It is natural to ask if any spectral, edge-based invariants (such as those
whose analysis analogues are interesting, for example) yield new and inter-
esting graph invariants. Such invariants would, in particular, include traces
of Chebyshev polynomials of Ã when the edge lengths are one.

5.4. Cheeger’s inequality. In this section we mention that Cheeger’s in-
equality holds for the edge-based Laplacian as well as the vertex-based, but
the second one, at least for r-regular graphs yields the first one. We will
require some notions from [FT99].

Consider an open subset of A ⊂ G whose boundary contains no vertices,
and let A(∂A) be the “area” of A’s boundary (see [FT99]); this is just the
sum of ae for each boundary point of A lying on e. Also E(A) is just the
total E measure of A, and we set

hE = min
E(A)≤E(G)/2

A(∂A)
E(A)

.

The co-area formula of [FT99] and the arguments to prove Cheeger’s in-
equality immediately carry over here to yield:

λE ≥ h2
E/4.(5.3)

We can compare this to Cheeger’s inequality for the vertex-based case (i.e.,
Dodziuk’s inequality, see [Dod84, FT99]),

λV ≥ h2
V /2(5.4)

for the 1-regular graphs (see Section 2), where

hV = min
B⊂V, V(B)≤ V(V )/2

E(E(B,Bc))
V(B)

,

where E(B,Bc) denotes the set of edges with one endpoint in B and one in
Bc.

Let us compare these two Cheeger’s inequalities, in case the graph is d-
regular in the traditional sense (each vertex is the endpoint of d edges) with
unit edge lengths and weights. We consider now the graph G derived from
it, where V at any vertex is taken to be d so as to make the graph 1-regular.

We shall need a simple lemma:
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Lemma 5.3. For a 1-regular graph hV ≥ hE/2.

Proof. Let B be the subset of vertices of size smaller than V(V )/2 for which

hV =
E(E(B,Bc))

V(B)
.

For a subset X of vertices we denote by Xt the set of points lying on edges
that have both endpoints on B or are within a distance t from X. Note that

E(B1/2) + E(Bc
1/2) = E(G).

It follows that the measure of one of these two sets is smaller than or equal
to V(G)/2.

Case 1: E(B1/2) ≤ V(G)/2. Here A(∂B1/2)

E(B1/2) ≥ hE . Since E(E(B,Bc)) =
A(∂B1/2) and V(B)≤2E(B1/2), we obtain

hV =
E(E(B,Bc))

V(B)
≥
A(∂B1/2)
2E(B1/2)

≥ hE/2.

Case 2: V(Bc
1/2) ≤ E(G)/2. This implies that

V(V )/4 = E(G)/2 ≥ V(Bc
1/2) ≥ V(Bc)/2,

so Bc is also of measure smaller than or equal to V(V )/2, and therefore
V(B) = V(Bc) = V(V )/2. This means that

hV =
E(E(B,Bc))
V(Bc)

.

By using the same arguments as in the previous case (with Bc replacing B)
we also get hV ≥ hE/2. �

Now notice that

λE = (cos−1(1− λV ))2 ≥ 2λV .

Hence
λE ≥ 2λV ≥ h2

V ≥ h2
E/4.

In other words: for 1-regular graphs Cheeger’s inequality for vertices, (5.4),
implies the Cheeger inequality for edges, (5.3).

5.5. Optimal distance bounds. In this section we prove the following
theorem:

Theorem 5.4. Let C,C1, C2 be constants such that the following holds: for
any graph with edge lengths one, whose diameter D is realized by two ver-
tices, u, v, we have

D − 1 ≤ C√
2λV + C1λV

log
(
C2V(V )2

V(u)V(v)

)
.(5.5)

Then C ≥ 1/2. The same is true if we insist that the graph is 1-regular.
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The bound of Chung, Faber, and Manteuffel (in [CFM94]) implies Equa-
tion (5.5) with C = 1/2 assuming V is constant; the generalization to general
V is implied by the results in [CGY96, CGY97] (with different constants
C2 in the two articles). Actually, there they assume the edge weights are in-
tegral; but this assumption clearly implies the same for rational edge weights,
and therefore arbitrary real edge weights. So regarding λV as small, these
inequalities are optimal to first-order.

Our proof is based on a standard metric probability space, the “expo-
nential distribution on the nonnegative reals,” or on a standard Riemannian
manifold, the surface of revolution of y = e−x with x nonnegative. We model
this on a graph by taking a sequence of edges with edge weight exponentially
decreasing. These analysis examples (the exponential distribution and the
surface of revolution of y = e−x) prove a bound in analysis that is analogous
to the bound C ≥ 1/2 in the theorem above (see [FT]).

Proof. Fix a small η ∈ (0, 1), and let r = 1 − η. Fix an integer D > 0.
Consider the graph, G, whose vertices are the integers, V = {0, 1, . . . , D},
with an edge from i to i+ 1 of weight ri for all nonnegative integers i < D.

Making G into a 1-regular graph is done by taking V(i) = ri−1 + ri for
i 6= 0, D, dropping one of these summands when i = 0 or i = D. Here the
vertices furthest from each other are 0 and D, and therefore

log
(

V(V )2

V(u)V(v)

)
= log

(
4
(

1−rD+1

1−r
)2

1 · rD

)
≤ K(r)−D log r.

We obtain a lower bound on λV by using Cheeger’s inequality (5.4). Ob-
viously to find Cheeger’s constant hV we just need to consider vertex sets
that are connected, i.e., of the form B = {a, a+ 1, . . . , b}.

We have to distinguish between two cases: a > 0 and a = 0. In the first
case

E(E(B,Bc))
V(B)

=
ra−1 +1{b6=D}rb

ra−1 +2
∑b−1

i=a r
i +1{b6=D}rb

≥ 1
2(1 + r+ r2 + · · · )

=
1− r

2
.

In the second case we get the same lower bound with a slightly more tedious
calculation. First we note that in this case b 6= D (since V(B) ≤ V(V )/2)
and therefore

V(B) = rb + 2
b−1∑
i=0

ri ≤ V(V )/2 =
1− rD+1

1− r
.(5.6)

This implies that

rb ≥ 1 + rD+1

1 + r
.(5.7)
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We use the previous upper bound on V(B), and this lower bound on rb to
obtain

E(E(B,Bc))
V(B)

=
rb

V(B)
≥ (1 + rD+1)(1− r)

(1 + r)(1− rD+1)
≥ 1− r

2
.

By using (5.4) it follows that

λV ≥ (1− r)2/8 = η2/8,
and therefore

D − 1 ≤ C

η/2 + C1η2/8
(K(r)−D log r) .

Taking D →∞ we conclude

1 ≤ − C

η/2 + C1η2/8
log(1− η).

Taking η → 0+ yields 1 ≤ 2C. �
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GEOMETRY OF THE UNIT BALL AND
REPRESENTATION THEORY FOR OPERATOR

ALGEBRAS

Elias G. Katsoulis

We investigate the relationship between the facial structure
of the unit ball of an operator algebra A and its algebraic
structure, including the hereditary subalgebras and the socle
of A. Many questions about the facial structure of A are stud-
ied with the aid of representation theory. For that purpose
we establish the existence of reduced atomic type representa-
tions for certain nonselfadjoint operator algebras. Our results
are applicable to C∗-algebras, strongly maximal TAF algebras,
free semigroup algebras and various semicrossed products.

The study of geometric problems in operator algebra theory goes back to
the beginnings of the subject. The theory of Gelfand–Naimark and Segal
identified the extreme points of the state space of a C∗-algebra as function-
als (pure states) that produce irreducible representations under the GNS
machinery. Kadison’s characterization of the isometric linear maps between
C∗-algebras [29] depended heavily on the identification of the extreme points
for the unit ball. Crucial information about the algebraic structure of a C∗-
algebra is encoded in the geometry of its unit ball. The ideal structure of the
algebra coincides with the M-structure [4] and the density of the invertibles
is reflected in the richness of the convex hull of the unitary operators [45].

A subset F of a convex set K is said to be a face of K if it is convex and
has the property that, if an interior point of a line segment in K belongs to
F , the entire line segment belongs to F . The extreme points of a convex
set, together with the empty set, form the trivial faces of K. A face F
is said to be finite-dimensional if the (real) linear space generated by F is
finite-dimensional. If K is contained in a normed linear space, then F is said
to be compact if its norm closure is a norm compact set. A comprehensive
study of the facial structure for the unit ball of a C∗-algebra was conducted
by Akemann and Pedersen [2], following related work by Edwards and Rut-
timann [22, 23]. Beyond selfadjoint operator algebras, there has not been
a systematic work addressing the nontrivial faces of the unit ball.

In this paper we begin a study of the nontrivial compact faces of the unit
ball of an arbitrary operator algebra. (All operator algebras are assumed to
be norm closed and contain the identity operator.) The existence of such

267
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faces has a significant impact on the structure of the algebra. In Theorem 1.6
we show that if the unit ball of an operator algebra A has a nontrivial
compact face F , then S(F), and therefore A, contains a nonscalar operator
A whose spectrum has at most one limit point. (Here S(F) denotes the
unique real subspace of A that is a translate of the affine hull of F .) For a
finite-dimensional face F we can offer a more definitive result. Theorem 1.8
shows that S(F) is a (real) finite-dimensional hereditary subalgebra of A
consisting of multiples of elements with finite geometric rank. Moreover,
if A happens to be semisimple then S(F) is contained in the socle of A;
this makes an important connection between the facial structure of the unit
ball and the general theory of Banach Algebras. As a consequence, if the
unit ball of a semisimple operator algebra A contains a nontrivial finite-
dimensional face then A contains a minimal idempotent (Corollary 1.10).
We also relate the existence of nontrivial compact faces with the concept
of geometric compactness, which was first introduced by Anoussis and the
author in [5, 6]. Theorem 1.3 shows that the existence of nontrivial compact
faces implies the existence of geometrically compact elements. Actually, we
observe that just the presence of nonzero geometrically compact elements
suffices for the existence of nonscalars with discrete spectrum.

The general results of the first section are complemented with several
applications. In the second section of the paper we investigate the facial
structure of various operator algebras with the aid of representation theory.
Motivated by our earlier work in [5], we introduce the class of operator
semisimple algebras; these are algebras that can be isometrically represented
as a strongly dense subalgebra of the diagonal algebra

⊕
a∈A B(Ha). We

prove that for an operator semisimple algebra A the existence of nontrivial
compact faces, the existence of nonzero geometrically compact elements and
the existence of atoms are all equivalent conditions. Moreover, we relate the
concept of geometric compactness to the representation theory of A. In
Theorem 2.4 we show that an element A ∈ A1 is geometrically compact if
and only if there exists an isometric representation ϕ of A such that ϕ(A) is
a compact operator. This generalizes our earlier selfadjoint work [5] to the
nonselfadjoint setting.

The rest of the second section is occupied with identifying various classes
of operator semisimple algebras. Clearly, any operator algebra containing
the compacts acts irreducibly on the Hilbert space and hence is operator
semisimple. By an old result of Gardner, all C∗-algebras are also operator
semisimple. Therefore, the unit ball of a unital C∗-algebra A has nontrivial
compact faces if and only if it has finite-dimensional faces if and only if A
has an atom. This result was implicit in [5].

It turns out that the concept of operator semisimplicity is also applica-
ble to TAF algebras, a class of nonselfadjoint algebras that has received a
great deal of attention in recent years; cf. Power’s monograph [44]. Here
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we use the representation theory of Davidson and the author [13]. In [13]
we characterized the operator primitive TAF algebras as the semisimple
ones whose enveloping C∗-algebra is primitive. Here we add to this result
and in Theorem 2.6 we show that all semisimple TAF algebras are opera-
tor semisimple. As an immediate corollary of our theory, the unit balls of
the familiar standard, alternation and A(Q, ν) algebras do not contain any
nontrivial compact faces.

The list of operator semisimple algebras also includes various function
algebras. Indeed, in Theorem 2.9 we show that if the unitary functions in a
uniform algebra A separate points, A is operator semisimple. In particular,
H∞ and the disc algebra A(D) are operator semisimple. The methods of
the second section are also applicable to semicrossed products of the form
C(T)×αZ+, where α is an irrational rotation of the circle T. Indeed, in [14]
it is shown that such algebras are operator primitive. Therefore, the unit
ball of such an algebra does not contain any nontrivial compact faces.

In the third section, we study the presence of compact faces in the unit
ball of a free semigroup algebra. In [15, Theorem 4.5] it is shown that
every operator in the open unit ball of a free semigroup algebra A is a
mean of isometries from A. This generalizes a classical result of Marshall
and shows that there is an abundance of extreme points in the unit ball of
these algebras. Theorem 3.1 shows now that, once again, the unit ball of
a free semigroup algebra A contains nontrivial compact faces if and only if
A has atoms. In particular, the unit ball of the “noncommutative Toeplitz
algebra” Ln has no nontrivial compact faces, a result that seems to be new
even for H∞. We note that the representation techniques of the second
section are not applicable here since a free semigroup algebra may not be
semisimple. Instead we use the spectral properties of Ln together with the
structure theorem of Davidson, Katsoulis and Pitts [15]. Similar spectral
considerations also show that the unit ball of A(D) ×α Z+ and H∞×αZ+

do not contain any nontrivial finite-dimensional faces. These algebras were
studied in [27, 28].

The last section of the paper contains several remarks and observations,
including a generalization of Kadison’s characterization for the extreme
points of the unit ball of a C∗-algebra.

1. Structure for the faces of the unit ball

If K ⊆ X is a convex subset of a complex normed space X , then [K]R denotes
the real subspace of X generated by K:

[K]R ≡
{ n∑
i=1

λixi

∣∣∣ λi ∈ R, xi ∈ K, 1 ≤ i ≤ n, n ∈ N
}
.
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(The complex subspace generated by K will be denoted as [K].) For any
x ∈ K, the subspace [x − K]R does not depend on the choice of x ∈ K and
is denoted as S(K). The translation of S(K) by any element of K equals the
affine hull of K.

If x and y belong to K, the line segment joining x and y is denoted by
[x, y]. Thus

[x, y] =
{
λx+ (1− λ)y | λ ∈ [0, 1]

}
.

If x and y are in K and x 6= y, then an element v ∈ [x, y] is said to be an
internal point of [x, y] if v 6= x and v 6= y. Given v ∈ K, we write F(K, v)
for the union of all line segments in K that contain v as an internal point,
provided that v is not an extreme point of K. Otherwise, F(K, v) = {v}.
If K is the unit ball of X , then F(K, v) is simply denoted as F(v). It is an
important fact in elementary convexity theory that for each v ∈ K, the set
F(K, v) is a face of K that is minimal with the property of containing v.
(The proof of this is an entertaining exercise in plane geometry; or see [1,
Theorem 1.2] for a detailed proof.)

If S is a nonempty subset of the unit ball of X , then the contractive
perturbations of S are defined as

cp(S) =
{
x ∈ X

∣∣ ‖x± s‖ ≤ 1 for all s ∈ S
}
.

It is clear that S1 ⊆ S2 implies cp(S1) ⊇ cp(S2). Also, an element of the
unit ball of X is an extreme point if and only if cp({x}) = {0}.

The following result relates contractive perturbations with the facial struc-
ture of the unit ball:

Lemma 1.1. Let F be a face of the unit ball of a normed space X . If x ∈ F ,
then,

cp({x}) ⊆ 1
2 (F − F) .

Proof. Let m ∈ cp({x}). Then x = 1
2

(
(x + m) + (x − m)

)
, and therefore

x±m ∈ F . Hence m = 1
2

(
x+m− (x−m)

)
belongs to 1

2(F − F) and this
proves the lemma. �

We now compute S (F(x)) in terms of contractive perturbations for x.

Lemma 1.2. Let X be a normed space and let x ∈ X1. Then

[x−F(x)]R = [cp({x})]R.

Proof. Assume x+m ∈ F(x). There exists λ > 0 such that x±λm ∈ F(x),
so λm ∈ cp({x}). Conversely, if m ∈ cp({x}), then [x−m,x+m] ⊆ X1 and
so by the definition of F(x) we have that x±m ∈ F(x). �

One may define contractive perturbations of higher-order by using the
recursive formula cp(n+1)(S) = cp

(
cp(n)(S)

)
, n ∈ N. These higher-order

contractive perturbations satisfy the Galois duality cp(n+2)(S) = cp(n)(S),
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n ∈ N. The second contractive perturbations were introduced by Anoussis
and the author in [5, 6]. In [5] we defined a contraction x in a normed
space space X to be geometrically compact if cp(2)({x}) is norm compact.
If cp(2)({x}) happens to span a finite-dimensional subspace of X , then x is
said to have finite geometric rank. In [5, Theorem 2.2] we proved that a
nonzero element A of a C∗-algebra A is geometrically compact (resp. has
finite geometric rank) if and only if there exists a faithful representation
ϕ of A such that ϕ(A) is a compact operator (resp. ϕ(A) is a finite rank
operator).

Theorem 1.3. Let X be a normed space and assume that the unit ball of
X has a nontrivial compact face F . Then S(F) contains a nonzero geomet-
rically compact element.

Proof. Let x1, x2 be distinct elements of F and let x = 1
2(x1 + x2). Since x

is not an extreme point, cp({x}) contains a nonzero element, say m. Then
{m} ⊆ cp({x}) and so

cp(2)({m}) ⊆ cp(3)({x}) = cp({x}).

By Lemma 1.1, cp(2)(m) is contained in 1
2(F − F), which is a norm com-

pact set; thus m is geometrically compact. Hence cp({x}) contains nonzero
geometrically compact elements and by Lemma 1.2 the same is true for
[x−F(x)]R ⊆ [x−F ]R. �

It is instructive to observe that some geometrically compact elements may
be located outside translates of affine hulls for compact faces. Actually, there
exists a Banach space X containing elements with finite geometric rank but
its unit ball has no compact faces. Indeed, by [5, Theorem 2.2], c0 contains
an abundance of elements with finite geometric rank. However, given any
element x in the unit ball of c0, it is easy to see that F(x) does not have a
compact closure and so the unit ball of c0 has no compact faces.

The following mild generalization of [5, Proposition 1.2] is necessary for
deriving Theorem 1.8. Compare with [34, Theorem 3] and [46, Theorem 2],
where the calculations below originate.

Proposition 1.4. Let A be an operator algebra, let ∅ 6= S ⊆ A1 and assume
that S1, S2 ∈ S. If X ∈ A satisfies ‖X‖ ≤ 1/2, then S1XS2 ∈ cp(2)(S).

Proof. Let B ∈ cp(S). Since ‖Si ±B‖ ≤ 1 we have

S∗i Si +B∗B − S∗iB −B∗Si ≤ I,

S∗i Si +B∗B + S∗iB +B∗Si ≤ I,

so S∗i Si ≤ I −B∗B. Douglas’ majorization theorem implies the existence of
a contraction Qi such that Si = Qi(I −B∗B)1/2. A similar argument shows
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that Si = (I −BB∗)1/2Pi for some contraction Pi. Hence,

S1XS2 = (I −BB∗)1/2P1XQ2(I −B∗B)1/2,(1)

= (I − |B∗|)1/2Y (I − |B|)1/2,

where Y = (I + |B∗|)1/2P1XQ2(I + |B|)1/2; thus ‖Y ‖ ≤ 1. The Heinz–Kato
inequality [32] now asserts that for any vectors e, f ∈ H we have∣∣〈Be, f〉∣∣ ≤ ∥∥|B|1/2e∥∥∥∥|B∗|1/2f∥∥.(2)

Combining (1) and (2), we obtain ‖B ± S1XS2‖ ≤ 1 and so S1XS2 ∈
cp(2)(S), as desired. �

Corollary 1.5. Let A be an operator algebra, A ∈ A1 and assume that
C1, C2 ∈ cp({A}). If X ∈ A satisfies ‖X‖ ≤ 1/2, then C1XC2 ∈ cp({A}).

Proof. Apply Proposition 1.4 with S = cp({A}). Then

C1XC2 ∈ cp(3)({A}) = cp({A}). �

If a is an element of a Banach algebra A, let σA(a) denote the spectrum
of a as an element of A. The left multiplier La is defined as Lab = ab, b ∈ A.
The collection Ml(A) of all left multipliers on A is isometrically isomorphic
as an algebra to A. Therefore, the map a −→ La is spectrum preserving,
i.e., σA(a) = σMl(A)(La).

Theorem 1.6. Let A be an operator algebra, let F be a nontrivial face of
its unit ball and let S(F) be the unique real subspace of A that is a translate
of the affine hull of F . Then the following three conditions are successively
weaker:

(i) F is a compact face.
(ii) S(F) contains a nonzero geometrically compact element.
(iii) S(F) contains a nonscalar operator A whose spectrum has at most one

limit point.
If A is commutative and semisimple, then condition (ii) also implies:
(iii′) A contains a minimal idempotent, i.e., a nonzero idempotent Q such

that QAQ = CQ.

Proof. (i) ⇒ (ii): Theorem 1.3 shows that this is valid for any normed space.

(ii) ⇒ (iii): Assume that S(F) contains such an element A, so the norm
closure of cp(2)({A}) is a nonzero compact set. Proposition 1.4 shows that

AA1/2A ⊆ cp(2)({A}),
so the norm closure of AA1A is norm compact.

Consider the elementary operator LA2 acting on the operator algebra A
generated by the polynomials of A. Since the closure of AA1A is norm
compact, the norm closure of A2A1 is also compact, so the operator LA2
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is a compact operator on A. According to the Riesz theory for compact
operators, σB(A)(LA2) is a countable set with 0 as its only limit point
(see Theorem VII.7.1 in [11]). Clearly the same is true for σB(A)(LA).
Since Ml(A) ⊆ B(A), Theorem VII.5.4 in [11] shows that σB(A)(LA) and
σMl(A)(LA) differ only by holes, and so are equal. Hence, σMl(A)(LA) is
countable with one limit point. Our remarks above show that the same is
true for σA(A). Another application of [11, Theorem VII.5.4] for the Ba-
nach algebras A ⊆ B(H) shows that σB(H)(A) has at most one limit point,
as desired.

(ii) ⇒ (iii′): Arguing as above, let A ∈ A, so that the closure of AA1A
is norm compact and so, by commutativity, the norm closure of A2A1 is a
compact set. Therefore, the left multiplier LA2 is a compact operator on A.
Since A is semisimple, the left multiplier algebra Ml(A) is also semisimple.
Hence LA2 is a nonquasinilpotent compact operator. Let λ be a nonzero
eigenvalue of LA and let E(λ) be the corresponding Riesz idempotent (see
VII.6.9 in [11]). Since LA ∈ Ml(A), we have E(λ) ∈ Ml(A), so there
exists an idempotent Q ∈ A such that E(λ) = LQ. By [11, Corollary
VII.7.8] the idempotent E(λ) = LQ has finite-dimensional range, i.e., QA is
finite-dimensional. By [38, Proposition 4.3.12], QA is semisimple, so by the
Wedderburn-Artin Theorem, QA is isomorphic to a direct sum of full matrix
algebras. The existence of the minimal idempotent in A now follows. �

Corollary 1.7. The unit ball of H∞ has no compact faces apart from sin-
gletons.

A (real or complex) subalgebra B of an operator algebra A is said to be
hereditary if B1, B2 ∈ B implies B1AB2 ⊆ B. For complex selfadjoint sub-
algebras of C∗-algebras this definition coincides with the familiar definition
of a hereditary subalgebra, as it appears in [36, 40]. It is easy to see that
if B is a real hereditary subalgebra of A, then [B] is a complex hereditary
subalgebra of A.

Theorem 1.8. Let A be an operator algebra, let F be a finite-dimensional
face of the unit ball of A and let S(F) be the unique real subspace of A that
is a translate of the affine hull of F . Then S(F) is a finite-dimensional
hereditary subalgebra of A consisting of multiples of elements with finite
geometric rank. Moreover,

F = (A+ S(F)) ∩ A1(3)

for any A ∈ F .

Proof. If A,B ∈ F , then [A−F ]R = [B −F ]R and so

A+ [A−F ]R = B + (A−B) + [B −F ]R = B + [B −F ]R.
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Therefore it suffices to prove (3) for a specific A ∈ F . Since F is a finite-
dimensional convex set, it has nonempty relative interior. Therefore, there
exists A ∈ F and ε > 0 such that B ∈ F implies

[A− ε(B −A), B] ⊆ F .(4)

We claim that F = F(A). Indeed, F(A) ⊆ F . Conversely, let B ∈ F .
The definition of F(A) and (4) imply that

[A− ε(B −A), B] ⊆ F(A),

and so B ∈ F(A), which proves the claim.
Since F = F(A), Lemma 1.2 shows that

S(F) = [A−F ]R = [cp(A)]R.

By Corollary 1.5, S(F) is a finite-dimensional hereditary subalgebra of A.
Since cp({A}) is convex and cp({A}) = − cp({A}), a moment’s reflection

shows that [cp({A})]R consists of multiples of cp({A}). Hence S(F) consists
of multiples of elements in cp({A}). However, if X ∈ cp({A}), then

cp(2)({X}) ⊆ cp(3)({A}) = cp({A}).
Therefore X has finite geometric rank and so S(F) consists of multiples of
elements with finite geometric rank.

It remains to verify (3). Let B ∈ S(F) be such that ‖A + B‖ = 1.
Then there exists λ > 0 such that λB ∈ cp(A), and so ‖A − λB‖ ≤ 1.
Hence [A−λB, A+B] ⊆ A1. Since A is contained in the interior of the line
segment, we conclude that A+B ∈ F , as desired. �

Recall that the socle of a semisimple Banach algebra A is defined as the
sum of all minimal left ideals of A. It coincides with the sum of all minimal
right ideals [38, Proposition 8.2.8] and therefore it is a (not necessarily
closed) two-sided ideal of A. The study of the socle has been a central
theme in the theory of Banach algebras. Our next result shows that the
socle is also important for the geometry of the unit ball.

Corollary 1.9. Let A be an operator algebra and let F be a finite-dimen-
sional face of the unit ball of A. If A is semisimple then S(F) is contained
in the socle of A.

Proof. Let A ∈ S(F). By Theorem 1.8, S(F) is hereditary, so the operator
X −→ AXA, X ∈ A, has finite-dimensional range. By [3, Theorem 7.2], A
belongs to the socle of A. �

Corollary 1.10. Let A be a semisimple operator algebra. If the unit ball
of A has a nontrivial finite-dimensional face then A contains a minimal
idempotent.

Proof. The socle of a semisimple Banach algebra A is generated by the set
of minimal idempotents of A [38, Proposition 8.2.8]. �
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In particular, the unit ball of a simple operator algebra has no finite-
dimensional faces apart from singletons.

2. Representation theorems for operator algebras

Recall that Theorem 1.8 asserts that if F is a finite-dimensional face of the
unit ball of an operator algebra then S(F) consists of scalar multiples of
elements with finite geometric rank. So far the elements with finite geo-
metric rank have been characterized for two classes of operator algebras:
nest algebras [6] and C∗-algebras [5]. Using representation theory, we now
characterize the elements with finite geometric rank and the geometrically
compact elements for a variety of nonselfadjoint algebras.

Our selfadjoint work in [5] suggests the following definition. (Also com-
pare with [47].)

Definition 2.1. An operator algebra A is said to be operator semisimple if
there exists a family of Hilbert space representations (τa,Ha) of A, a ∈ A,
such that their direct sum τ =

⊕
a∈A τa is an isometric isomorphism of A

that maps the (1+ε)-ball of A onto a strongly dense subset of
⊕

a∈A B(Ha)1,
for some ε > 0. The family (τa,Ha), a ∈ A is said to implement the operator
semisimplicity.

By Lemma 2.1 in [25], each of the representations τa, a ∈ A, is alge-
braically irreducible. Since τ =

⊕
a∈A τa is faithful for A we conclude that

the intersection of all kernels of algebraically irreducible representations for
A equals zero, i.e., an operator semisimple algebra is indeed semisimple.

The next result provides additional information for the operator A ap-
pearing in Theorem 1.6 (iii).

Lemma 2.2. Let A be an operator semisimple algebra and let (τa,Ha),
a ∈ A, be the family of representations of A implementing the operator
semisimplicity. If A is a geometrically compact element of A then τ(A) is
a compact operator.

Proof. Proposition 1.4 shows that the norm closure of AA1/2A is contained
in cp(2)({A}), which is a norm compact set. Therefore, the norm closure
of τ(A)τ(A1+ε)τ(A) is also compact. However, the weak closure of τ(A1+ε)
contains B(H)1 and so the norm closure of

τ(A)B(H)1τ(A)

is norm compact.
We now prove that τa(A) is a compact operator, for any a ∈ A. Let e ∈ Ha

be such that τa(A)∗e 6= 0 and let {fk}∞k=1 be an arbitrary sequence of unit
vectors from Ha. By what we saw the previous paragraph, the sequence{
τa(A)(e⊗ fk)τa(A)

}∞
k=1

has a norm convergent subsequence. However,

τa(A) (e⊗ fk) τa(A) = (τa(A)∗e)⊗ (τa(A)fk) ,
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so the sequence {τa(A)fk}∞k=1 has a norm convergent subsequence. This
proves that τa(A) is a compact operator.

It remains to show that τ(A) is a compact operator. Let B be the col-
lection of all finite subsets of A. For each b ∈ B, let Tb be the diagonal
operator satisfying Tb|Ha = τa(A), for all a ∈ b, and Tb|Ha = 0 otherwise.
The previous paragraph shows that Tb is a compact operator, for any b ∈ B.
It suffices to show that the net {Tb}b∈B converges in norm to τ(A).

By way of contradiction assume that the net {Tb}b∈B does not converge
in norm to τ(A). This is easily seen to imply the existence of an ε > 0 and
a sequence {an}n∈N ⊆ A such that ‖τan(A)‖ ≥ ε, for all n ∈ N. Therefore
there exist unit vectors fn ∈ Han such that ‖τan(A)fn‖ ≥ ε, for all n ∈ N.
However, the sequence {fn}n∈N converges weakly to zero and so an argument
similar to that of the second paragraph of the proof shows that the sequence
‖τan(A)fn‖ converges to zero, a contradiction. �

Lemma 2.3. Let A be an operator semisimple algebra, let (τa,Ha), a ∈ A,
be the family of representations of A implementing the operator semisim-
plicity and let τ =

⊕
a∈A τa. Then the set of compact operators in τ(A)

forms a C∗-algebra.

Proof. Let T =
⊕

a∈A Ta be a compact operator in τ(A). Fix an a0 ∈ A and
let {Ai}i∈I be a bounded net in τ(A) converging strongly to the operator
that equals T ?a0

on Ha0 and 0 everywhere else. Then {AiT}i∈I converges in
norm to a positive compact operator supported on Ha0 . An application of
the Spectral Theorem shows now that τ(A) contains a finite rank projection
P supported on Ha0 .

We claim that τ(A) contains all rank one operators supported on Ha0 .
(This will imply that τ(A) contains all compact operators supported on
Ha0 and in particular T ∗a0

.) Indeed, fix a unit vector g ∈ P (H) and let
e ⊗ f be any rank one operator supported on Ha0 . Since τ implements an
operator semisimplicity, there exists a bounded net {Bi}i∈I in τ(A) con-
verging strongly to g ⊗ f . Hence, the net {BiP}i∈I converges in norm to
(g ⊗ f)P = g ⊗ f and so g ⊗ f ∈ τ(A). Similarly, there exists a bounded
net {Ci}i∈I in τ(A) converging strongly to e ⊗ g and so {C∗i }i∈I converges
weakly to g⊗e. By [11, Corollary IX.5.2], there exists a net {Dj}j∈J ⊆ τ(A)
consisting of convex combinations from {Ci}i∈I and such that {D∗

j}j∈J con-
verges strongly to g ⊗ e. Hence, the net {D∗

jP}j∈J converges in norm to
(g ⊗ e)P = g ⊗ e and so g ⊗ e ∈ (τ(A))∗. Hence, e⊗ g ∈ τ(A) and so

e⊗ f = (g ⊗ f)(e⊗ g) ∈ τ(A),

as desired.
Finally, an approximation argument similar to that of the last paragraphs

of the proof of Lemma 2.1, combined with the above claim, shows that
T ∗ ∈ τ(A). �
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The next result clarifies the nature of the geometrically compact elements
in operator semisimple algebras and generalizes the main result in [5].

Theorem 2.4. Let A be an operator semisimple algebra and let A ∈ A.
Then A is geometrically compact if and only if there exists an isometric
representation ϕ of A such that ϕ(A) is a compact operator.

Proof. If A is geometrically compact then Lemma 2.2 shows that τ(A) is a
compact operator.

Conversely, assume that there exists an isometric representation ϕ of A
such that ϕ(A) is a compact operator. Then ϕ(A)ϕ(A1)ϕ(A) is a compact
set, so τ(A)τ(A1)τ(A) is a compact set contained in a C∗-algebra consisting
of compact operators (Lemma 2.3). The rest of the proof now follows from
our selfadjoint arguments in [5, Theorem 2.2]. �

Corollary 2.5. The geometrically compact elements of an operator semi-
simple algebra A form a C∗-algebra.

Proof. In light of Lemma 2.3 and Theorem 2.4, it suffices to show that τ−1

is a ∗-homomorphism when restricted to the set of compact operators in
τ(A). However, τ−1 is an isometry and therefore it preserves selfadjoint
projections. By the spectral theorem it preserves all selfadjoint compact
operators and the conclusion follows. �

A minor modification of Lemma 2.2 shows that the socle of an opera-
tor semisimple algebra coincides with the set of all operators that can be
isometrically represented as finite rank operators. Therefore Theorem 2.4
identifies the socle of such an algebra as the set of all elements with finite
geometric rank.

We are now able to give a criterion for when the unit ball of an operator
semisimple algebra contains nonzero geometrically compact elements.

Theorem 2.6. If A is an operator semisimple algebra, then the following
statements are equivalent:

(i) The unit ball of A has nontrivial compact faces.
(ii) The unit ball of A has nontrivial finite-dimensional faces.
(iii) A contains nonzero geometrically compact elements.
(iv) A contains a nonzero atom P , i.e., a nonzero selfadjoint projection

P ∈ A such that dimPAP <∞.

Proof. (ii) ⇒ (i): trivial.

(i) ⇒ (iii): this follows from Theorem 1.3.

(iii) ⇒ (iv): let A contain a nonzero geometrically compact element A.
By Corollary 2.5 the geometrically compact elements form a C∗-subalgebra
J ⊆ A consisting of compact operators. Hence J contains an atom; since
J ⊆ A is an ideal, so does A.



278 ELIAS G. KATSOULIS

(iv) ⇒ (ii): we claim that

F(I − P ) =
{
(I − P ) +X | X = PXP ∈ A1

}
is a face. By a standard argument, it suffices to show that if F(I − P )
contains the midpoint of a line segment in the unit ball of A, then the
endpoints of the line segment also lie in F(I − P ). Take A,B ∈ A with
A = (I − P ) +X and X = PXP , and assume that ‖A±B‖ ≤ 1. We need
to show that A±B ∈ F(I − P ).

Indeed, arguing as in the proof of Proposition 1.4, we produce bounded
operators S and T such that

B = S(I −A∗A)
1
2 = (I −AA∗)

1
2T.

However, A∗A = (I − P ) + PX∗XP and so

I −A∗A = P − PX∗XP = (I −A∗A)P.

Therefore, (I −A∗A)
1
2 = (I −A∗A)

1
2P and so

BP = S(I −A∗A)
1
2P = B.

A similar argument shows that (I−AA∗)
1
2 = P (I−AA∗)

1
2 and so B = PB.

Hence B = PBP , as desired. �

Every operator algebra that contains the compact operators acts irre-
ducibly and is therefore operator semisimple. The existence of finite-dimen-
sional faces is not an issue here since any such algebra contains atoms. A
later result, Theorem 4.3, is relevant.

By the reduced atomic representation of a C∗-algebra A we mean a rep-
resentation τ =

⊕
a∈A τa, where {τa}a∈A is a maximal family of pairwise in-

equivalent irreducible representations of A. It is an old result in C∗-algebra
theory (see Proposition 13.10.13 in [30]) that the reduced atomic represen-
tation satisfies the properties of Definition 2.1. Therefore all C∗-algebras are
operator semisimple and so Theorem 2.6 applies here. (This was implicit in
our earlier work in [5].)

A norm closed subalgebra A of an AF C∗-algebra is a (strongly maximal)
TAF algebra if and only if it is the limit lim−→(Ai, ϕi) of a directed system

A1
ϕ1−−−→ A2

ϕ2−−−→ A3
ϕ3−−−→ A4

ϕ4−−−→ · · ·(5)

where for each i ≥ 1, the subalgebra Ai satisfies:
(i) Ai is a direct sum of upper triangular matrix algebras.
(ii) ϕi extends to a ∗-monomorphism from C∗(Ai) ≡ Ai +A∗i to C∗(Ai+1).
(iii) The extension of ϕi maps matrix units to sums of matrix units.
We call (5) a presentation for the algebra; clearly it is not unique. TAF
algebras have received much attention in recent years. A good reference for
these and more general limit algebras is Power’s monograph [44].
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Two well-known examples of TAF algebras are the standard and refine-
ment algebras. Define the standard embedding σk by

σk(A) = A⊕A⊕ · · · ⊕A (k factors)

and the refinement embedding ρk by

ρk([as,t]) = [as,tIk],

where Ik is the k× k identity matrix. If all the embeddings ϕi in the direct
limit A = lim−→(Ai, ϕi) are standard embeddings, A is said to be a standard
algebra. If all the ϕi are refinement embeddings, A is said to be a refinement
algebra. An alternation algebra is a TAF algebra A = lim−→(Ai, ϕi), where
the ϕi alternate between the standard and the refinement embeddings.

The embeddings ϕi are said to be mixing if for every matrix unit e(i)s,t we
have ϕi(e

(i)
s,t)Ai+1ϕi(e

(i)
s,t) 6= 0. The property of an embedding being mixing

was introduced by Donsig in his study of semisimplicity [19] and was further
exploited in [13]. It turns out that a TAF algebraA is semisimple if it admits
a presentation A = lim−→(Ai, ϕi), where all the embeddings ϕi are mixing. All
standard embeddings are mixing, so the standard and alternation algebras
are semisimple.

Let A = lim−→(Ai, ϕi) be an AF C∗-algebra and assume each Ai decomposes
as a direct sum Ai =

⊕
j Aij of finite-dimensional full matrix algebras Ai j .

A path Γ for A = lim−→(Ai, ϕi) is a sequence {Aiji}∞i=1 such that for each pair
of nodes

(
(i, ji), (i+ 1, ji+1)

)
there exists an arrow in the Bratteli diagram

for A = lim−→(Ai, ϕi) joining them.
For each path Γ consider a subsystem of the directed limit lim−→(Ai, ϕi) con-

sisting of all the summands of A that are never mapped into some Aiji ∈ Γ.
Evidently this system is hereditary and directed upwards; therefore it deter-
mines an ideal JΓ of A. The quotient A/JΓ is the AF algebra corresponding
to the remaining summands and the remaining embeddings. The summands
that eventually get mapped into some Aiji ∈ Γ are denoted by summ(Γ).
Two paths Γ = {Aiji}∞i=1 and Γ′ = {Aij′i

}∞i=1 are said to be disjoint if for all
but finitely many i ∈ N, the nodes (iji) and (ij′i) are distinct.

Lemma 2.7. Let Γ = {Aiji}∞i=1 and Γ′ = {Aij′i
}∞i=1 be two disjoint paths for

an AF C∗-algebra A = lim−→(Ai, ϕi) and let ω = lim−→ωi and ω′ = lim−→ω′i be pure
states such that the ωi and ω′i are supported on Ai ji and Aij′i

respectively.
Then the states ω and ω′ induce inequivalent GNS representations.

Proof. Assume that the states ω and ω′ produce equivalent irreducible rep-
resentations π and π′. Then by [30, Theorem 10.2.6], there exists a unitary
u ∈ A such that ω = ω′ adu, where adu(a) = uau∗. Every unitary in an AF
algebra is a limit of unitaries in its finite-dimensional subalgebras. Hence
there is a unitary v in some Bi such that ‖ω − ω′ adv ‖ < 1. However the
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disjointness of the paths Γ and Γ′ shows that this cannot occur and the
conclusion follows. �

In [13] it was shown that the quotient A/J of a TAF algebra A by a prime
ideal J is operator primitive, i.e., it admits an isometric representation on
a Hilbert space H such that the 2-ball of A/J is weakly dense in the unit
ball of B(H). In particular, a semisimple TAF subalgebra A of a primitive
C∗-algebra is operator primitive. We now generalize this to an arbitrary
semisimple TAF algebra.

Theorem 2.8. A semisimple TAF algebra A= lim−→(Ai, ϕi) is operator semi-
simple.

Proof. Before embarking on the proof we establish some terminology. If e1
and e2 are matrix units in Ai1 and Ai2 , i1 < i2, then we say that e2 is a
subordinate of e1 if there exists a diagonal matrix unit p ∈ Ai2 such that
e2 = pe1. If e2 and f2 are subordinates of e1 and f1, then we say that e2
majorizes f2 if there exist matrix units s, t ∈ Ai2 such that e2 = sf2t.

For the proof, start with any direct summand A
(1)
1,j1

of A1. Let e(1)1 be
the characteristic vector of A

(1)
1,j1

, i.e., the vector at the top right corner of
A

(1)
1,j1

. Since A is semisimple there exist a link f
(1)
2 for e(1)1 in some later

summand of A. For notational convenience we assume that f (1)
2 belongs to

some summand A
(1)
2,j2

of A2 and ϕ
(1)
1,j1

is the mixing embedding from A
(1)
1,j1

into A
(1)
2,j2

that maps e(1)
1 onto two copies, say e

(1)
(1,1) and e

(1)
(1,2), linked by

f
(1)
2 . Now let e(1)

2 be the characteristic matrix unit of A
(1)
2,j2

and let f (1)
3 be

a link for e(1)
2 in A

(1)
3,j3

and ϕ
(1)
2,j2

the corresponding linking mapping. This
way we construct a path Γ(1) for lim−→(Ai, ϕi). If summ(Γ(1)) contains all the
summands for all the finite-dimensional algebras Ai we stop. Otherwise we
chose a direct summand of A not in summ(Γ(1)) and we repeat the process
described earlier. This way we define inductively a sequence {Γ(a)}a∈N of
paths such that all maps involved with the nodes of the path are mixing and
the union ⋃

a∈N
summ(Γ(a))

contains all direct summands of A.
Given any path Γ(a) defined above, we now construct a pure state ωa as

follows: start with any unit vector, i.e., normalized sum of diagonal matrix
units, ξ(a)1 in the central projection determined by A

(a)
1,j1

. Let ω(a)
1 be the

vector state on A1 determined by ξ
(a)
1 , i.e., ω(a)

1 (A) = 〈Aξ(a)1 , ξ
(a)
1 〉. Notice

that ξ(a)1 , being a sum of diagonal matrix units, it is mapped by ϕ(1)
1,j1

onto
several copies in A2. Two of them, say ζ(a)

1 and ζ(a)
2 , are majorized by e(a)(1,1)
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and e(a)(1,2), respectively. Let

ξ
(a)
2 =

1√
2

(
ζ
(a)
1 + ζ

(a)
2

)
and let ω(a)

2 be the vector state on A2 determined by ξ
(a)
2 . Consequently,

find two copies ζ(a)
1 and ζ(a)

2 of the image of ξ(a)2 in A3 subordinated by e(a)(2,1)
and e

(a)
(2,2), etc. This way we construct inductively a sequence {ωa}a∈N of

vector states. Since the states ωa are supported in single summands of A,
they are pure states and hence their direct limit ωa is also pure.

Let (τa,Ha, ga) be the GNS representation induced by ωa, a ∈ N, i.e.,
ωa(A) = 〈τa(A)ga, ga〉, A ∈ A. By Lemma 2.7 the representations τa are
mutually inequivalent. Therefore, Corollary 10.3.9 in [30] shows that the
representation τ =

⊕
a∈N τa maps A onto a weakly dense subalgebra of⊕

a∈N B(Ha). Since
⋃
a∈N summ(Γ(a)) contains all the direct summands from

A, an easy argument shows that τ is faithful and so isometric. Therefore,
Kaplansky’s Theorem shows that τ satisfy the requirements of Definition 2.1
for A. It only remains to show that τ satisfies the same requirements for A.

For each i ∈ N we construct a contractive map Φi : Ai → Ai+1 as follows:
let u be a matrix unit in Ai. If u does not belong to any of the nodes A

(a)
i,ji

associated with the paths Γ(a), we set Φi(u) = 0. If u ∈ A
(a)
i,ji

for some a ∈ N,
we consider the subordinates u1 and u2 of u majorized by e

(a)
(i,1) and e

(a)
(i,2)

respectively. Define Φi(u) to be the matrix unit with initial projection the
initial projection of u2 and final projection that of u1. Since the matrix units
e
(a)
(i,1) and e(a)(i,2) are linked in Ai+1, we have that Φi(u) ∈ Ai+1. Moreover,

ωa
(
B (A− 2Φi(A))C

)
= 0

for anyA,B,C ∈ Ai. The weak density of the 2-ball of τ(A) in
⊕

a∈N B(Ha)1
now follows from the above equation and the fact that the collection of all
vectors of the form ⊕

a∈N τa(Aa)ga, Aa ∈
⋃
i∈N Ai,

where all but finitely many Aa equal 0, is a dense subset of the space⊕
a∈N Ha. �

The techniques of the previous theorem are also applicable to induc-
tive limits of block upper triangular matrices with mixing embeddings, thus
showing that such algebras are operator semisimple.

A function f : X −→ C is said to be unitary if |f(x)| = 1, for all x ∈ X .

Theorem 2.9. Let X be a compact Hausdorff space and let A ⊆ C(X )
be a norm closed algebra of continuous functions containing the constant
functions. If the unitary functions in A separate the points of X , then A is
an operator semisimple algebra.
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Proof. Let X = {xi | i ∈ I} and for each i ∈ I, consider the one-dimensional
representation (Hi, τi, zi) such that f(xi) = 〈τi(f)zi, zi〉, f ∈ A. Clearly, the
representation τ =

⊕
i∈I τi is the reduced atomic representation of C(X ).

Hence, the strong closure of τ(C(X )) equals the algebra D of all diagonal
matrices on

⊕
i∈I Hi, i.e., D = l∞(I). We are to show that the strong closure

of τ(A)1 equals D1.

Claim. Given xi1 , xi2 , . . . xin ∈ X and a unimodular number w, there exists
F in the strong closure of τ(A)1 such that 〈Fzi1 , zi1〉 = w and 〈Fzik , zik〉 = 1,
k = 2, 3, . . . , n.

In order to prove the claim we make use of Möbius maps; if g ∈ A has
norm 1 and m is a Möbius transformation, then the composite function
m ◦ g also belongs to A1. For the proof, for each 2 ≤ l ≤ n we choose a
unitary function gl that separates xi1 from xil . We apply a Möbius map to
each gl to get g′l such that g′l(xi1) = 1 and either g′l(xik) = 1 or eiπαkl with
αkl ∈ [1/n, 2/n]. If g =

∏
l g
′
l then g(xi1) = 1 and g(xil) = eπiαl , where

αl ∈ [1/n, 2−2/n]. Now another application of a Möbius map produces a
function fs ∈ A such that fs(xi1) = w and |fs(xil)− 1| ≤ 1/s, l = 2, . . . , n.
Any weak limit of {τ(fs)}s∈N proves the claim.

Since the strong closure of τ(A)1 is closed under multiplication, repeated
use of the claim shows that given xi1 , xi2 , . . . xin ∈ X and a unimodular n-
tuple (w1, w2, . . . , wn), there exists F in the strong closure of τ(A)1 such that
〈Fzij , zij 〉 = wj . A convexity argument now shows the desired equality. �

Corollary 2.10. The Hardy space H∞ and the disc algebra A(D) are oper-
ator semisimple.

Proof. Both satisfy the requirements of Theorem 2.9 [24, page 174]. �

One of the pleasing features of the representations τ in the proofs of Theo-
rems 2.8 and 2.9 is that they extend to a ∗-representation of their enveloping
C∗-algebra. (We coin the term C∗-semisimple for an operator semisimple
algebra admitting such a representation.) Using the fact that the spatial
norm on the tensor product of two C∗-algebras is minimal, one can eas-
ily conclude that the spatial tensor product of C∗-semisimple algebras is
also C∗-semisimple. Hence tensor products between C∗-algebras, semisim-
ple TAF algebras, Douglas algebras and irreducible algebras are operator
semisimple thus providing additional examples of such algebras.

A subalgebra A of a C∗-algebra A is said to be Dirichlet if it satisfies
A+A∗ = A. The prototypical example of a Dirichlet algebra is the disc
algebra, as a subalgebra of the continuous functions on the circle. The term
originates from the theory of functions. It has also been studied in the
context of nonselfadjoint operator algebras by Arveson [9], Muhly and Solel
[35] and others. All strongly maximal TAF algebras are easily seen to be
Dirichlet.
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Proposition 2.11. Suppose that A is a Dirichlet subalgebra of an infinite-
dimensional simple C∗-algebra A. If A is operator semisimple, the unit ball
of A does not have any nontrivial compact faces.

Proof. Assume that the unit ball of A has a nontrivial compact face. Then
Theorem 2.6 shows that A contains a nonzero atom P . Hence,

PAP = P
(
A+A∗

)
P ⊆ PAP + (PAP )∗ = CP

and so A contains a nonzero atom. But then, Theorem 2.6 contradicts the
simplicity of A. �

Combining Proposition 2.11 with Theorem 2.8 we obtain that the unit
ball of the familiar standard, alternation and A(Q, ν) algebras contain no
nontrivial compact faces. (We do not know if the same is true for the unit
ball of the refinement algebra.) Proposition 2.11 also applies to semicrossed
products C(X ) ×α Z+ corresponding to minimal actions α on a compact
metric space X . In [14] it is shown that such semicrossed products are op-
erator primitive. Since these are Dirichlet subalgebras of simple C∗-algebras
their unit ball contains no nontrivial compact faces.

3. Spectral obstructions for the existence of compact faces

In this section we obtain noncommutative analogs of Corollary 1.7. A free
semigroup algebra is the weakly closed algebra generated by n isometries
with orthogonal ranges. The central example for these algebras is the “non-
commutative Toeplitz algebra” Ln generated by the left regular representa-
tion of the free semigroup on n letters. The study of Ln was initiated by
Popescu [41, 42, 43] in the context of dilation theory. A detailed analysis
of Ln is contained in the papers of Davidson and Pitts [16, 17], Kribbs [33]
and Arias and Popescu [7, 8], which develop the analytic structure. Apart
from being a good example, it turns out that Ln is also a model for free
semigroup algebras: the Structure Theorem in [15] shows that every free
semigroup algebra has a 2× 2 lower triangular form where the first column
is a slice of a von Neumann algebra and the 22 entry is an algebra isomor-
phic to Ln. Special classes of free semigroup algebras are important in the
classification of certain representations of the Cuntz–Toeplitz algebra [16]
and the construction of wavelets [10]

A continuous factor representation of the Cuntz algebra induces a non-
atomic free semigroup algebra. Moreover, Ln is also nonatomic. Our next
result shows that the unit ball of such free semigroup algebras contains no
nontrivial geometrically compact elements. Specifically:

Theorem 3.1. If A is a free semigroup algebra, the following statements
are equivalent:

(i) The unit ball of A has nontrivial compact faces.
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(ii) The unit ball of A has nontrivial finite-dimensional faces.
(iii) A contains nonzero geometrically compact elements.
(iv) A contains an atom.

Proof. As in the proof of Theorem 2.6, we only need to verify that (iii)
implies (iv). Let A be a free semigroup algebra with no atoms. By Theorem
2.6 in [15], A decomposes via a projection P in A as A = MP + P⊥AP⊥,
where M is the von Neumann algebra generated by A and P⊥A|P⊥H is
isomorphic to Ln. Let π be the isomorphism from P⊥A|P⊥H onto Ln.

By way of contradiction assume that A is a nontrivial geometrically com-
pact element of A. Then Proposition 1.4 shows that

(AB(H)1/2A) ∩ A ⊆ cp({B});(6)

and so the norm closure of AA1A is norm compact.
We now claim that P⊥AP⊥ = 0. Indeed, notice that

P⊥AP⊥(P⊥AP⊥)1P⊥AP⊥ ⊆ P⊥ (AA1A)P⊥

is norm compact. Therefore, by applying π, we obtain a nonzero element
Â := π(P⊥AP⊥) of Ln such that the closure of Â(Ln)1Â is norm compact.
Then either A = 0 or, arguing as in the proof of Theorem 1.6, we conclude
that the spectrum of Â is countable. However, [16, Corollary 1.8] asserts
that the spectrum of every nonscalar element of Ln is connected and contains
more than one point. Since Ln is infinite-dimensional, Â = 0.

The claim above, combined with the first paragraph of the proof, shows
that A = AP . Now let I−Q be the span of all atoms in M. It is well-known
that Q is a central projection in M and that QMQ is nonatomic. Since A
contains no atoms, PMP is nonatomic and so P ⊆ Q. Hence

AM1A = APM1A = A(QMQ)1A.

At the same time,

AMA = AMAP ⊆MP ⊆ A;

therefore, by (6), A is a geometrically compact element of the nonatomic
algebra QMQ. Hence Theorem 2.6 implies A = 0, a contradiction. �

In spite of Theorem 3.1, the unit ball of a free semigroup algebra A always
contains nontrivial faces. Indeed, if A contains a slice of a von Neumann
algebra, this follows from Theorem 2.6. So it suffices to consider only the
case where A = Ln.

Proposition 3.2. The unit ball of Ln contains nontrivial faces.

Proof. It is enough to prove that the boundary of the unit ball of Ln contains
composite points. Indeed, for any such point A, the face F(A) is not a
singleton or else A is an extreme point.
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The wandering subspaces for any of the left creation operators Li span
the Fock space H. We therefore define an H∞ functional calculus for Li,
which is well-defined, linear and isometric, as follows: if ϕ ∈ H∞ then
ϕ(Li) := lim pn(Li), where {pn}n∈N is any bounded sequence of polynomials
converging to ϕ.

Let ϕ be a composite point on the boundary of the unit ball of H∞ (the
existence of such a ϕ follows from the description of the extreme points of
H∞ in [24]). Then ϕ(Li) is the desired composite point. �

The lack of nontrivial compact faces for the unit ball of Ln is due to
the fact that the spectrum of any nonscalar operator in Ln is infinite and
connected. In [28], Hoover, Peters and Wogen study the spectral properties
of algebras that contain no zero divisors. The spectrum of any operator in
such an algebraA is necessarily connected. However, Amay contain nonzero
quasinilpotents, so the arguments in the proof of Theorem 3.1 do not apply
in this generality. Nevertheless, the unit ball of such an algebra A does not
contain any nontrivial finite-dimensional faces. Indeed, A does not contain
any nonzero nilpotent operators, so no finite-dimensional subalgebras apart
from the trivial one. The conclusion now follows from Theorem 1.8.

If A is a Banach algebra and α an automorphism of A, the semicrossed
product A×α Z+ is the enveloping Banach algebra of l1(A,Z+, α) with re-
spect to the class of contractive Hilbert space representations. An interesting
feature of the class of algebras studied by Hoover, Peters and Wogen in [28]
is that it is closed under semicrossed products by Z+. (If A×α Z+ contains
x and y such that xy = 0, then the lowest Fourier coefficients of x and y are
necessarily zero divisors in A.) Hence:

Theorem 3.3. Let A be an algebra that contains no zero divisors and let α
be an automorphism of A. Then the unit ball of A×α Z+ does not contain
any nontrivial finite-dimensional faces.

The theorem above applies in particular to the algebras A(D)×α Z+ and
H∞×αZ+, studied in [27].

Notice that C(X ), X compact metric space, contains zero divisors and
so Theorem 3.3 does not apply in this case. Crossed products of the form
C(X ) ×α Z+ were studied in the previous section with the use of represen-
tation theory. They can also be studied with the use of Corollary 1.10 as
follows:

Theorem 3.4. Let X be a compact connected metric space and let ϕ be a
homeomorphism of X with a dense set of recurrent points. Then the unit
ball of C(X )×ϕ Z+ has no finite-dimensional faces.

Proof. By [20], the algebra C(X ) ×ϕ Z+ is semisimple. We claim that
C(X )×ϕ Z+ contains no nontrivial idempotents.
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Indeed, let Q ∈ C(X ) ×ϕ Z+ be an idempotent and let Q =
∑∞

i=0 fit
i,

fi ∈ C(X ) be its Fourier expansion. Since Q is an idempotent, f0 is an
idempotent. But X is connected and so f0 is either 0 or I.

If f0 = 0 then the lowest Fourier coefficient in the expansion of Q2 is of
order 2 and so f1 = 0. Consequently, the lowest Fourier coefficient in the
expansion of Q2 is of order 4, so f2 = f3 = 0. Repeated applications of this
argument show that fn = 0, n ≥ 0 and so Q = 0.

If f0 = I then the second Fourier coefficient of Q2 is 2f1. Hence f1 = 0.
Repeated applications of this argument show that the rest of the Fourier
coefficients are equal to 0 and so Q = I in this case. This proves the claim.

Since C(X ) ×ϕ Z+ contains no nontrivial idempotents, the conclusion
follows from Corollary 1.10. �

4. Concluding remarks

The operator semisimple and C∗-semisimple algebras can be thought as spe-
cial cases of diagonal algebras. An operator algebra A is said to be block
diagonalizable if there exists a bicontinuous (but not necessarily isomet-
ric) representation τ , satisfying the rest of the properties in Definition 2.1.
Several results of Section 2, such as Lemmas 2.2, 2.3 and one direction in
Theorem 2.4, are valid in this more general context.

By the Wedderburn–Artin Theorem, all finite-dimensional semisimple al-
gebras are block diagonalizable. However, there are semisimple operator
algebras that fail that property, as the following example shows:

Example 4.1. A semisimple operator algebra that is not block diagonaliz-
able.

Let L = {0,M,N, I}, where M,N are closed subspaces satisfying

M ∩N = M⊥ ∩N⊥ = 0,

so that the sum M +N is not closed. Let A = AlgL be the algebra of all
operators leaving both M and N invariant. By an old result of Longstaff,
a rank one operator A ∈ A is of the form R = e⊗ f , where either e ∈ M⊥

and f ∈ N or e ∈ N⊥ and f ∈M . The rank one subalgebra R(L) of AlgL
consists of all sums of rank one operators in AlgL. In [39] it is shown that
R(L) is weakly dense in AlgL (rank one density).

The semisimplicity of A follows from [31]. We are to show that A is not
block diagonalizable.

By way of contradiction assume that (τa,Ha), a ∈ A, is the family of
representations of A implementing the operator semisimplicity and let τ =⊕

a∈A τa. Notice that RAR is one-dimensional, for any rank one operator
R ∈ A, and so τ(R) is also a rank one operator. SinceR(L) is dense in AlgL,
τ(A) contains the set K of all compact operators in the diagonal algebra
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a∈A B(Ha). The restriction of τ−1 on K is similar to a ∗-representation.

Therefore there exists an invertible operator S such that

R(SL) ⊆ Sτ−1(K)S−1 ⊆ AlgSL.
However, Sτ−1(K)S−1 is selfadjoint and so the density of R(SL) in AlgSL
implies that AlgSL is selfadjoint. Hence SL is orthocomplemented and so
the sum M +N is closed, a contradiction.

In this paper we addressed the problem of existence for nontrivial finite-
dimensional faces. The problem of characterizing which operators belong
to such faces is much harder. Indeed, by the Krein-Milman Theorem such
faces are the closed convex hull of their extreme points and therefore one
needs to have a good understanding of the extreme points for the unit ball.
This is also corroborated by the following:

Proposition 4.2. Let X be a normed space and let x be an element of its
unit ball. If x belongs to a finite-dimensional face, there exists an extreme
point e for the unit ball of X and an element f with finite geometric rank
such that x = e+ λf , for some λ ∈ R.

Proof. Since F is finite-dimensional, F(x) is also finite-dimensional and by
the Krein-Milman Theorem it contains an extreme point e. Moreover there
exists an element f in the affine hull of F(x) such that x = e + f ′. By
Lemma 1.2, the affine hull of F(x) equals [cp({x})]. Since cp({x}) is convex,
a moment’s reflection shows that [cp({x})] consists of multiples of cp({x})
and so there exists an element f ∈ cp({x}) such that f ′ = λf , for some
λ ∈ R. However,

cp(2)({f}) ⊆ cp(3)({x}) = cp({x}),
which shows that f has finite geometric rank, as desired. �

Even though we have a complete understanding of the elements with
finite geometric rank, we are far from characterizing the extreme points for
operator semisimple algebras. For instance, the problem of characterizing
the extreme points of the standard algebra is open [26]. Also compare the
nature of extreme points in the unit ball of a C∗-algebra with that of H∞

[24, page 138]. However, the situation in operator primitive algebras is much
better.

Theorem 4.3. Let A be an operator algebra containing the compact op-
erators and let A ∈ A with ‖A‖ = 1. Then the operator A belongs to a
finite-dimensional face of A1 if and only if

dim
(
(I −AA∗)A(I −A∗A)

)
<∞.

Proof. Assume first that dim
(
(I−AA∗)A(I−A∗A)

)
<∞, so both I−AA∗

and I − A∗A are finite rank operators. Hence if P and Q are the range
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projections of (I − A∗A)1/2 and (I − AA∗)1/2 respectively, then PAQ ⊆ A
is finite-dimensional.

Let B ∈ cp({A}). Then [34, Lemma 1] shows that there exist bounded
operators S and T such that

B = S(I −A∗A)1/2 = (I −AA∗)1/2T

and so B = QBP . Therefore cp({A}) is a finite-dimensional, and Lemma 1.2
shows that A belongs to the finite-dimensional face F(A).

Conversely, assume that F(A) is finite-dimensional face and so, by The-
orem 1.8, S (F(A)) = cp({A}) is a finite-dimensional hereditary subalgebra
of A. A moment’s reflection shows that there exist finite-dimensional pro-
jections P,Q such that cp({A}) = PAQ.

We now claim that

(I − P ) ∩ (I −A∗A)1/2 (H) = (I −Q) ∩ (I −AA∗)1/2 (H) = {0}.
Indeed, by way of contradiction assume that one of the above intersections,
say the first one, is nontrivial. Consider a unit vector (I −AA∗)1/2 f ∈ I−P
and let e be a vector of norm 1/2 such that (I −A∗A)1/2 e 6= 0. Then [34,
Corollary 1] shows that the rank one operator

R = (I −A∗A)1/2e⊗ (I −AA∗)1/2f = (I −AA∗)1/2(e⊗ f)(I −A∗A)1/2

belongs to cp({A}) and so our earlier observations show that R = PRQ, a
contradiction that proves the claim.

From the claim above it follows that

(I − P ) ∩ (I −A∗A) (H) = (I −Q) ∩ (I −AA∗) (H) = {0}.
Since both I − P and I −Q are of finite codimension, we conclude that the
ranges of both I−A∗A and I−AA∗ are finite-dimensional, as promised. �

Arguments similar to the ones above lead to a generalization of Kadison’s
characterization of the extreme points of the unit ball of a C∗-algebra [29].
Indeed one can show that a contraction A belongs to a finite-dimensional
face of a C∗-algebra A if and only if dim

(
(I−AA∗)A(I−A∗A)

)
<∞. (This

was first shown to us by Anoussis with a different proof.)
Another example that illustrates the complexities associated with extreme

points in nonselfadjoint operator algebras is the following: let A be an oper-
ator algebra acting on a Hilbert space H and consider the operator algebra

T (A) =
{(

λ 0
f A

) ∣∣∣ A ∈ A, f ∈ H, λ ∈ C
}

with the obvious multiplications.

Proposition 4.4. The rank one operator R = (1, 0)⊗ (0, f) is an extreme
point for the unit ball of T (A) if and only if f is a separating unit vector
for A∗.
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Proof. First assume f is a separating unit vector for A∗, and let X ∈ T (A)
be such that ‖R±X‖ = 1. Then

X∗X ≤ I − (1, 0)⊗ (1, 0)

and

XX∗ ≤ I − (0, f)⊗ (0, f).

The first inequality shows that X ∈ A. The second one shows that the range
of X is orthogonal to f and so 〈Xg, f〉 = 0, ∀g ∈ H. Hence, 〈g,X∗f〉 = 0,
∀g ∈ H, and so X∗f = 0. Since f is separating for A∗, X = 0 and so R is
an extreme point.

Reversing the arguments above we obtain the other direction in the The-
orem. �

The identification of separating vectors for an operator algebra A, i.e., the
cyclic vectors for A′, is an important and difficult problem. Most notable is
the work in [21] for the adjoint of the unilateral shift.

Note that the algebras of the form T (A), when A∗ admits separating vec-
tors, show that Theorem 2.4 fails for algebras that are not operator semisim-
ple. Indeed, by way of contradiction assume that an operator T ∈ T (A) is
geometrically compact if and only if there exists an isometric representation
ϕ of T (A) such that ϕ(T ) is a compact operator. This applies in particular
to any operator of the form T = (e, 0) ⊗ (0, f) and so such an operator is
geometrically compact. This contradicts however Proposition 4.4.
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GENERALIZED SKEW DERIVATIONS CHARACTERIZED
BY ACTING ON ZERO PRODUCTS

Tsiu-Kwen Lee

Let A be a prime ring whose symmetric Martindale quo-
tient ring contains a nontrivial idempotent. Generalized skew
derivations of A are characterized by acting on zero prod-
ucts. Precisely, if g, δ : A → A are additive maps such that
σ(x)g(y) + δ(x)y = 0 for all x, y ∈ A with xy = 0, where σ is
an automorphism of A, then both g and δ are characterized
as specific generalized σ-derivations on a nonzero ideal of A.

1. Results

Let B be a ring with a subring A. An additive map δ : A → B is called a
derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A. In a recent paper Jing,
Lu and Li proved the following result [6, Theorem 6]:

Let B be a standard operator algebra in a Banach space X containing the
identity operator I and let δ : B → B be a linear map such that δ(AB) =
δ(A)B + Aδ(B) for any pair A,B ∈ B with AB = 0. Then δ(AB) =
δ(A)B + Aδ(B)− Aδ(I)B for all A,B ∈ B. If in addition δ(I) = 0, then δ
is a derivation.

The result says that an additive map on a standard operator algebra
is almost a derivation if it satisfies the expansion formula of derivations
on pairs of elements with zero product. Since standard operator algebras
involve many idempotents, from this point of view Chebotar, Ke and P.-H.
Lee studied maps acting on zero products in the context of prime rings [2].
To state their results precisely we must first fix some notation.

Throughout, unless specially stated, A will denote a prime ring with cen-
ter Z, extended centroid C and symmetric Martindale quotient ring Q. The
maximal right and left quotient rings of A will be denoted by Qmr and Qml,
respectively. See [1] for details. Theorem 2 of [2] says this:

Let δ : A → A be an additive map such that δ(x)y + xδ(y) = 0 for x, y ∈ A
with xy = 0. Suppose that Q contains a nontrivial idempotent e such that
eA ∪Ae ⊆ A.

(I) If 1 ∈ A, then δ(xy) = δ(x)y + xδ(y) − λxy for all x, y ∈ A, where
λ = δ(1) ∈ Z. In particular, if δ(1) = 0, then δ is a derivation of A.

293
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(II) If degA ≥ 3, there exists λ ∈ C such that δ(xy) = δ(x)y+xδ(y)−λxy
for all x, y ∈ A.

Generalized derivations and σ-derivations (or skew derivations) are two
natural generalizations of derivations, and are defined as follows. Let σ be an
automorphism of A. An additive map δ : A → Qml is called a σ-derivation
if δ(xy) = σ(x)δ(y) + δ(x)y for all x, y ∈ A. Basic examples are derivations
and σ − 1. Given b ∈ A, the map δ : x ∈ A 7→ σ(x)b − bx obviously defines
a σ-derivation, called the inner σ-derivation defined by b.

An additive mapping g : A → Qml is a generalized derivation if there
exists a derivation d : A → Qml such that g(xy) = xg(y) + d(x)y for all
x, y ∈ A. As basic examples we mention derivations, generalized inner
derivations (maps x 7→ ax + xb for a, b ∈ A) and left A-module mappings
from A into itself. From this one easily sees that a map δ as in Theorem 2
of [2] (see bottom of previous page) is indeed a generalized derivation. In
this paper we will generalize that theorem from a different point of view.
We start with a definition of generalized skew derivations, generalizing both
skew derivations and generalized derivations.

An additive map g : A→ Qml is called a generalized σ-derivation, where
σ be an automorphism of A, if there exists an additive map δ : A → Qml

such that g(xy) = σ(x)g(y) + δ(x)y for all x, y ∈ A. It is clear that δ is
uniquely determined by g, which is called the associated additive map of g.
It is easy to check that δ is always a σ-derivation (see [10]). We are now in
a position to state our main result:

Theorem 1.1. Let A be a prime ring with symmetric Martindale quotient
ring Q. Suppose that Q contains a nontrivial idempotent and that g, δ : A→
A are additive maps. If σ(x)g(y) + δ(x)y = 0 for all x, y ∈ A with xy = 0,
where σ is an automorphism of A, there exist a nonzero ideal N of A and a
σ-derivation d : A→ Q such that

g(x) = d(x) + σ(x)b and δ(x) = d(x) + ax

for all x ∈ N , where b ∈ Qml and a ∈ Qmr. In addition, we can take N = A
if eA ∪Ae ⊆ A for some nontrivial idempotent e ∈ Q.

The proof of the theorem depends on both the Lie structure of rings and
the theory of functional identities, and will be given in the next section. As
an immediate consequence of Theorem 1.1 we have the following generaliza-
tion of Chebotar, Ke and P.-H. Lee’s theorem [2, Theorem 2]:

Corollary 1.2. Let A be a prime ring with extended centroid C and sym-
metric Martindale quotient ring Q. Suppose that Q contains a nontrivial
idempotent. If δ : A → A is an additive map such that xδ(y) + δ(x)y = 0
for x, y ∈ A with xy = 0, then there exists a nonzero ideal N of A such that
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δ(x) = d(x) + λx for all x ∈ N , where λ ∈ C and d : A → Q is a deriva-
tion. In addition, we can take N = A if eA ∪ Ae ⊆ A for some nontrivial
idempotent e ∈ Q.

The following corollary gives Jing, Lu and Li’s theorem [6, Theorem 6] in
the context of prime rings:

Corollary 1.3. Let A be a prime ring with extended centroid C and c ∈ A.
Suppose that A possesses a nontrivial idempotent. If δ : A→ A is an additive
map such that xδ(y) + δ(x)y + xcy = 0 for x, y ∈ A with xy = 0, then there
exist a derivation d : A → AC and µ ∈ C such that δ(x) = d(x) + (µ − c)x
for all x ∈ A.

Proof. By assumption, we have x(δ(y)+cy)+δ(x)y = 0 for all x, y ∈ A with
xy = 0. In view of Theorem 1.1, there exist a derivation d : A→ Q, a ∈ Qmr

and µ ∈ Qml such that δ(x) = d(x) + ax and δ(x) + cx = d(x) + xµ for all
x ∈ A. Choose a dense right ideal ρ and a dense left ideal λ of A such that
aρ ⊆ A and λµ ⊆ A. Let x ∈ ρ, z ∈ A and y ∈ λ. Then xzy ∈ ρAλ ⊆ ρ∩ λ.
Thus (a+ c)x, yµ ∈ A and ((a+ c)x)zy = xz(yµ). By Martindale’s Lemma
[11], y and yµ are C-dependent for y ∈ λ. It is now easy to prove that
µ ∈ C. Thus a = µ− c follows and so δ(x) = d(x) + (µ− c)x for all x ∈ A.
In particular, we have d(A) ⊆ AC, proving the corollary.

The next application is to generalized polynomial identities. An additive
map f : A→ A is called an elementary operator if there exist finitely many
ai, bi ∈ AC such that f(x) =

∑
i aixbi for all x ∈ A.

Corollary 1.4. Let A be a prime ring with extended centroid C. Sup-
pose that its symmetric Martindale quotient ring Q contains a nontriv-
ial idempotent. If f and g are two elementary operators of A satisfying
xf(y) + g(x)y = 0 for x, y ∈ A with xy = 0, then there exist a, b, q ∈ AC
and such that f(y) = [q, y] + yb and g(x) = [q, x] + ax for all x, y ∈ A.

Proof. Since f, g are elementary operators, there exist finitely many ai, bi,
ci, di ∈ AC such that f(x) =

∑
i aixbi and g(x) =

∑
j cjxdj for all x ∈ A.

In view of Theorem 1.1, there exist a nonzero ideal N of A, a derivation
d : A→ Q and elements a ∈ Qmr, b ∈ Qml such that∑

i aiybi = d(y) + yb and
∑

j cjxdj = d(x) + ax

for all x, y ∈ N . It is well-known that d can be uniquely extended to a
derivation of Qml into Qml and

∑
i aiybi = d(y) + yb for all y ∈ Qml (see,

for instance, [9, Theorem 2]). In particular, we set y = 1, implying that
b =

∑
i aibi ∈ AC. An analogous argument proves a ∈ AC, so d(AC) ⊆ AC.

Applying Kharchenko’s Theorem ([7, Lemma 1] or [8, Theorem 2]), we
conclude that d is X-inner; that is, there exists q ∈ Q such that d(y) = [q, y]
for all y ∈ A. Thus qy − yq =

∑
i aiybi − yb for all y ∈ A. Applying
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Martindale’s Lemma [11], q lies in the C-linear span of the elements bi’s, b
and 1. Thus q ∈ AC + C. Since, for β ∈ C, [q + β, y] = [q, y] for all y ∈ A,
we may take q ∈ AC, proving the corollary.

The following example shows that the existence of nontrivial idempotents
in Q is essential to Theorem 1.1.

Example 1.5. Let A be a prime ring, not a domain, with center Z and let

MA = {a ∈ A | xay = 0 whenever x, y ∈ A with xy = 0}.

Suppose that MA is noncentral. Choose an element c ∈ MA \ Z. Let
f, g : A → A be additive maps defined by f(x) = cxc and g(x) = x for all
x ∈ A. Then xf(y) + g(x)y = 0 for x, y ∈ A with xy = 0. We claim that
f, g cannot assume the forms given in Theorem 1.1. Indeed, suppose there
exist a derivation d : A→ Q and a nonzero ideal N of A such that

f(x) = d(x) + xb and g(x) = d(x) + ax

for all x ∈ N , where a ∈ Qmr and b ∈ Qml. Then d(x) = (1 − a)x for all
x ∈ A, implying d = 0. Thus xb = cxc for all x ∈ A. Applying Martindale’s
Lemma [11], we see that c ∈ C, the extended centroid of A, and so c ∈ Z, a
contradiction.

Such prime rings do exist. One example is due to Dubrovin [3]. Another
is A = K{x, y}/(x2) [5, pp. 105–108], where K{x, y} is the free algebra over
a field K in two noncommuting indeterminates x and y. In this example,
A is a prime ring and Kx + xAx + (x2)/(x2) coincides with the set of all
elements of A with square zero. Let x = x + (x2) ∈ A. Then axb = 0
whenever a, b ∈ A with ab = 0. Thus x lies in MA and is noncentral.

2. Proof of Theorem 1.1

Lemma 2.1. Let I be a nonzero ideal of A and let f : I → Qml be a left
I-module map. Then there exists q ∈ Qml such that f(x) = xq for all x ∈ I.

Proof. Notice that QmlI is a dense left ideal of Qml. We define the map
f̃ : QmlI → Qml by

∑
i xiai 7→

∑
i xif(ai), where xi ∈ Qml, ai ∈ I. Then f̃

is well-defined. Indeed, let
∑

i xiai = 0, where xi ∈ Qml, ai ∈ I. Choose a
dense left ideal J of A such that Jxi ⊆ I for each i. Then, for y ∈ J , we
have

0 = f
(
y
∑

i xiai

)
= f

(∑
i(yxi)ai

)
=
∑

i yxif(ai) = y
(∑

i xif(ai)
)
,

implying
∑

i xif(ai) = 0. Thus f̃ is well-defined. It is clear that f̃ is a left
Qml-module map extending f . We remark that the maximal left quotient
ring of Qml coincides with itself. Thus there exists a q ∈ Qml such that
f̃(z) = zq for all z ∈ QmlI. In particular, f(x) = xq for all x ∈ I. This
proves the lemma.
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Lemma 2.2. Let I be a nonzero ideal of A and let f, g : I → Qml be two
additive maps. Suppose that f(x)y + σ(x)g(y) = 0 for all x, y ∈ I, where σ
is an automorphism of A. Then there exists a ∈ Qml such that f(x) = σ(x)a
and g(y) = −ay for all x, y ∈ I.
Proof. Let x, y, z ∈ I. By assumption,

f(zx)y + σ(zx)g(y) = 0 and σ(z)(f(x)y + σ(x)g(y)) = 0.

Thus (f(zx) − σ(z)f(x))y = 0 and so f(zx) = σ(z)f(x) since A is prime.
Note that σ can be uniquely extended to an automorphism of Qml. Consider
the map φ : I → Qml defined by φ(x) = σ−1(f(x)) for x ∈ I. Then φ is a left
I-module map. By Lemma 2.1, there exists b ∈ Qml such that φ(x) = xb
for all x ∈ I. That is, f(x) = σ(x)a for all x ∈ I, where a = σ(b) ∈ Qml. It
is clear that g(y) = −ay for all y ∈ I. This proves the lemma.

Although the next lemma has a more general version, for our purposes
we need only the following special form:

Lemma 2.3. Let d : M → Q be a σ-derivation, where M is a nonzero ideal
of A and σ is an automorphism of A. Assume that there exists a nonzero
ideal J of A such that d(m)J + Jd(m) ⊆ A for all m ∈ M . Then d can be
uniquely extended to a σ-derivation from A into Q.

Proof. Replacing J by M ∩ J , we may assume from the start that J ⊆ M .
Let a ∈ A. Define a map ψa : MJ → A by the rule

ψa

(∑
imixi

)
=
∑

i d(ami)xi −
∑

i σ(a)d(mi)xi ∈ A,
where mi ∈ M and xi ∈ J . We claim that ψa is well-defined. Indeed,∑

imixi = 0 implies
∑

i(ami)xi = 0, so

0 =
∑

i d((ami)xi) =
∑

i(σ(ami)d(xi) + d(ami)xi)

=
∑

i d(ami)xi −
∑

i σ(a)d(mi)xi,

since ∑
i σ(ami)d(xi) =

∑
i σ(a)σ(mi)d(xi)

=
∑

i σ(a)(d(mixi)− d(mi)xi)

= σ(a)d (
∑

imixi)−
∑

i σ(a)d(mi)xi

= −
∑

i σ(a)d(mi)xi.

The claim is proved. It is clear that ψa is a right A-module map. Thus ψa

is defined by an element d̃(a) ∈ Qr, the right Martindale quotient ring of A.
That is, d̃ : A→ Qr has the following property: d̃(a)m = d(am)− σ(a)d(m)
for a ∈ A and m ∈ M . Let a, b ∈ A and m ∈ M . Then d̃(ab)m =
d(abm)− σ(ab)d(m). On the other hand, since bm ∈M we have

(σ(a)d̃(b) + d̃(a)b)m = σ(a)(d(bm)− σ(b)d(m)) + d(abm)− σ(a)d(bm)

= d(abm)− σ(ab)d(m).
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Thus d̃(ab) = σ(a)d̃(b) + d̃(a)b, proving that d̃ is a σ-derivation. Clearly,
d̃(m) = d(m) for allm ∈M , so d̃ is an extension of d. Notice that Jσ(M) is a
nonzero ideal of A. Let a ∈ A and m ∈M . Then d(ma) = σ(m)d̃(a)+d(m)a
and so

Jσ(M)d̃(a) ⊆ Jd(M) + Jd(M)A ⊆ A,

implying that d̃(a) ∈ Q. Hence, d̃ : A→ Q and the lemma is proved.

We are now ready to prove the main theorem stated in §1.

Theorem 1.1. Let A be a prime ring with symmetric Martindale quotient
ring Q. Suppose that Q contains a nontrivial idempotent and that g, δ : A→
A are additive maps. If σ(x)g(y) + δ(x)y = 0 for all x, y ∈ A with xy = 0,
where σ is an automorphism of A, there exist a nonzero ideal N of A and a
σ-derivation d : A→ Q such that

g(x) = d(x) + σ(x)b and δ(x) = d(x) + ax

for all x ∈ N , where b ∈ Qml and a ∈ Qmr. In addition, we can take N = A
if eA ∪Ae ⊆ A for some nontrivial idempotent e ∈ Q.

Proof. Let e be a nontrivial idempotent of Q. Choose a nonzero ideal I of A
such that Ie+eI ⊆ A. We consider the additive subgroup E of Q generated
by the set {f ∈ Q | If + fI ⊆ A and f2 = f}. Then e ∈ E. We claim that
0 6= I2[E,E]I2 ⊆ E + E2.

We follow Herstein’s argument [4, Proof of Lemma 1.3]. Let f ∈ E and
x ∈ I. Then f + fx(1− f), f + (1− f)xf ∈ E and so

[f, x] = (f + fx(1− f))− (f + (1− f)xf) ∈ E.
Thus [E, I] ⊆ E. Indeed, [E,E]I2 ⊆ [E,EI2] + E[E, I2] ⊆ E + E2, and so

I2[E,E]I2 ⊆ [I2, [E,E]I2] + [E,E]I4 ⊆ [I2, E + E2] + E + E2.

Since [I2, E + E2] ⊆ E + E2, we see that I2[E,E]I2 ⊆ E + E2. Finally,
0 6= [e, e+ eI2(1− e)] ⊆ [E,E], proving our claim.

Let x, y ∈ I and f = f2 ∈ E. Then xf , (1−f)y, x(1−f), fy belong to A.
By assumption,

δ(xf)(1− f)y + σ(xf)g((1− f)y) = 0 and(1)

δ(x(1− f))fy + σ(x(1− f))g(fy) = 0.

Solve the two equations by Lemma 2.2: there exist two unique elements
u, v ∈ Qml, depending on f , such that

δ(xf)(1− f) = σ(x)u, σ(f)g((1− f)y) = −uy and(2)

δ(x(1− f))f = σ(x)v, σ(1− f)g(fy) = −vy.
Thus, by (2), we see that

δ(x)f − δ(xf) = σ(x)(v − u) and σ(f)g(y)− g(fy) = (v − u)y.(3)
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By (3) and the definition of E, there exists an additive map d : E → Qml

such that

δ(x)m− δ(xm) = −σ(x)d(m) and σ(m)g(y)− g(my) = −d(m)y(4)

for all x, y ∈ I and all m ∈ E. Let m1,m2 ∈ E; then

δ(x)m2 − δ(xm2) = −σ(x)d(m2) and δ(x)m1 − δ(xm1) = −σ(x)d(m1)
(5)

for all x ∈ I. Let x ∈ I2; then xm1 ∈ I. By (5) we have

δ(xm1)m2 − δ(xm1m2) = −σ(xm1)d(m2) and

−δ(xm1)m2 + δ(x)m1m2 = −σ(x)d(m1)m2.

Thus

δ(x)m1m2 − δ(x(m1m2)) = −σ(x)(σ(m1)d(m2) + d(m1)m2).(6)

On the other hand, let y ∈ I2; then m2y ∈ I. By (4) we have

σ(m1)g(m2y)− g(m1m2y) = −d(m1)m2y,

σ(m1)σ(m2)g(y)− σ(m1)g(m2y) = −σ(m1)d(m2)y,

implying that

σ(m1m2)g(y)− g((m1m2)y) = −(d(m1)m2 + σ(m1)d(m2))y.(7)

This means that d can be extended to E + E2 in such a way that

δ(x)m− δ(xm) = −σ(x)d(m) and σ(m)g(y)− g(my) = −d(m)y

for all x, y ∈ I2 and all m ∈ E + E2. Moreover, d(m1m2) = σ(m1)d(m2) +
d(m1)m2 for all m1,m2 ∈ E. Repeating the argument above, we can extend
d to E + E2 + E3 + E4 in such a way that

δ(x)m− δ(xm) = −σ(x)d(m) and σ(m)g(y)− g(my) = −d(m)y(8)

for all x ∈ I4 and all m ∈ E + E2 + E3 + E4. Moreover,

d(uv) = σ(u)d(v) + d(u)v(9)

for all u, v ∈ E + E2. Let M = I2[E,E]I2 6= 0. Then M is a nonzero ideal
of A contained in E + E2.

Let m ∈ M . By (8) we see that σ(I4)d(m) ⊆ A and d(m)I4 ⊆ A. Thus
d(m) ∈ Q follows, showing that d : M → Q is a σ-derivation satisfying

δ(x)m− δ(xm) = −σ(x)d(m) and σ(m)g(y)− g(my) = −d(m)y(10)

for all x, y ∈ I4 and all m ∈ M . Set J = σ(I4) ∩ I4. Then J is a nonzero
ideal of A and, moreover, d(m)J + Jd(m) ⊆ A for all m ∈ M . In view of
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Lemma 2.3, d can be uniquely extended to a σ-derivation from A into Q.
Thus we can rewrite (10) as

δ(xm)− d(xm) = (δ(x)− d(x))m,(11)

σ(m)(g(y)− d(y)) = g(my)− d(my)

for all x, y ∈ I4 and all m ∈M . Consider the map φ : I4 → Q defined by

x ∈ I4 7→ φ(x) = δ(x)− d(x).

By (11), φ is a right M -module map. Thus it is a right A-module map by the
primeness of A. By Lemma 2.1, there exists a ∈ Qmr such that φ(x) = ax
and so δ(x) = d(x) + ax for all x ∈ I4. By an analogous argument, there
exists b ∈ Qml such that g(x) = d(x) + σ(x)b for all x ∈ I4. We are now
done by setting N = I4.

Suppose, in addition, that eA ∪ Ae ⊆ A for some nontrivial idempotent
e ∈ Q. Then I = A in our construction. Moreover, EA + AE ⊆ A.
Therefore, (11) remains true for all x ∈ A. So the map φ : I4 → Q can be
replaced by φ : A→ Q. Now our conclusion holds trivially. This proves the
theorem.
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AN INVERSE PROBLEM FOR THE TRANSPORT
EQUATION IN THE PRESENCE OF A RIEMANNIAN

METRIC

Stephen R. McDowall

The stationary linear transport equation models the scat-
tering and absorption of a low-density beam of neutrons as
it passes through a body. In Euclidean space, to a first ap-
proximation, particles travel in straight lines. Here we study
the analogous transport equation for particles in an ambient
field described by a Riemannian metric where, again to first
approximation, particles follow geodesics of the metric. We
consider the problem of determining the scattering and ab-
sorption coefficients from knowledge of the albedo operator
on the boundary of the domain. Under certain restrictions,
the albedo operator is shown to determine the geodesic ray
transform of the absorption coefficient; for “simple” manifolds
this transform is invertible and so the coefficient itself is de-
termined. In dimensions 3 or greater, we show that one may
then obtain the collision (or scattering) kernel.

1. Introduction

The stationary linear transport equation models the time-independent scat-
tering of a low-density beam of particles off a higher-density material. The
term “linear” refers to the fact that the equation models only scattering of
particles from the material and assumes that the density of particles is low
enough that particle-to-particle interaction may be neglected. If (x, v) is a
point in phase space we denote by f(x, v) the density of particles at position
x with velocity v. While f is strictly speaking a density, for large numbers
of particles it is reasonable to represent f as an L1 function. In free-space,
f satisfies the transport equation

−v · ∇xf(x, v)− σa(x, v)f(x, v) +
∫
V
k(x, v′, v)f(x, v′) dv′ = 0.(1)

The first term describes the straight-line motion of a particle that does not
interact with the material. The second term represents the loss of a particle
at (x, v) due to scattering to another velocity or due to absorption, quantified
by the function σa(x, v). The final term accounts for the production of a
particle at (x, v) due to scattering from other directions; the kernel k(x, v′, v)
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represents the probability of a particle at (x, v′) scattering to (x, v). The
reader is referred to [RS] for a detailed explanation.

We are concerned here with the situation of particles moving in an ambient
field represented by a Riemannian metric. The principal departure from (1)
is that in the absence of interaction, a particle will follow the geodesics of the
metric. We shall study the problem of determining the absorption coefficient
σa(x, v) and the collision kernel k(x, v′, v) from knowledge of the positions
and velocities of particles entering and leaving a bounded body.

Let M ⊂ Rn, n ≥ 2, be a bounded domain with C∞ boundary; let g be a
Riemannian metric on M . We shall put restrictions on the metric g in due
course. Define the incoming and outgoing bundles on ∂M as

Γ± =
{
(x, v) ∈ TM | x ∈ ∂M, ±〈v, ν〉gx > 0

}
,

where ν is the outward unit normal vector to ∂M and 〈 · , · 〉gx is the inner
product with respect to the metric g. We shall also use ‖ · ‖gx to denote
the norm with respect to g. If (x, v) ∈ TM we shall denote by γ(x,v)(t)
the geodesic satisfying γ(x,v)(0) = x and γ̇(x,v)(0) = v; we introduce the
compressed notation

~γ(x,v)(t) = (γ(x,v)(t), γ̇(x,v)(t)).

For v 6= 0, define the time-to-boundary functions τ± : TM → R+ by

τ±(x, v) = min
{
t > 0 | γ(x,v)(±t) ∈ ∂M

}
and set τ(x, v) = τ−(x, v) + τ+(x, v). While in general τ± might be infinite,
we will place restrictions on the metric that ensure that τ± are well-defined
and finite.

With these preparations we are able to generalize Equation (1) and state
the results of the paper. Denote by D the derivative along the geodesic flow,

Df(x, v) =
∂

∂t

∣∣∣
t=0

f(γ(x,v)(t), γ̇(x,v)(t)).

If (xi, yi)ni=1 are local coordinates for TM with the (yi) with respect to the
natural basis

(
∂
∂xi

)
, we have in these coordinates

Df =
∂f

∂xi
yi +

∂f

∂yi
(−yjykΓijk),

where Γijk are the Christoffel symbols of the Levi-Civita connection of g.
The transport equation (1) is replaced in our setting by

−Df(x, v)− σa(x, v)f(x, v) +
∫
TxM

k(x, v′, v)f(x, v′) dv′x = 0.(2)

The measure dvx is the Euclidean volume form on TxM determined by the
metric gx at x (see Definition 2.1). Given a function f−(x, v) on Γ− let f be
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the solution to (2) with boundary condition f
∣∣
Γ−

= f−, assuming it exists.
One may then define the albedo operator

A : f− 7→ f
∣∣
Γ+
.

The inverse problem addressed here is the unique determination of σa(x, v)
and k(x, v′, v) for all x ∈ M and v, v′ ∈ TxM , from the knowledge of A.
The main results are the content of Theorems 4.2 and 4.4, which state that
under the assumption of simplicity of the metric (see below) and a priori
assumptions (3), (4) on the coefficients themselves, we can determine σa in
dimensions n ≥ 2 and k in dimensions n ≥ 3.

We remark that if we assume that k(x, v′, v) = 0 for all ‖v′‖gx 6= ‖v‖gx —
that is, that all scattering occurrences preserve speed — then we may con-
sider the problem on the unit sphere bundle ΩM of M . We replace Γ±
by their equivalents restricted to unit tangent vectors, and the integration
in (2) is taken over ΩxM , the unit sphere in TxM . The analysis and re-
sults of this paper remain valid in this setting. Indeed, under this assump-
tion on k we may consider Γ± defined to include tangent vectors of lengths
0 < a ≤ ‖v‖ ≤ b < ∞ and in (2) integrate over the corresponding annular
region in TxM . Once again the results remain valid in this setting.

When the ambient metric is Euclidean, the inverse problem for (1) was
considered in [CS2] and we shall approach the problem here in the same
manner. In [CS2] it is shown that the most singular part of the distribu-
tional kernel of the albedo operator determines the x-ray transform of the
absorption coefficient. The next most singular part determines the collision
kernel k in dimensions 3 and greater. Here we shall show that the first term
determines the geodesic ray transform of σa, namely the integrals of σa along
geodesics of g. In order to recover σa we make the restrictive assumption that
the metric g be “simple.” This means that M is strictly convex with respect
to g and that for any x ∈M the exponential map Expx : Exp−1

x (M) →M is
a diffeomorphism. This assumption, together with the full set of geodesics
joining boundary points, ensures that the ray transform is invertible (see
[BG] and [M], and [Sh1] for an extensive treatment of the ray transform).

In the Riemannian setting, an inverse source problem for the stationary
transport equation is addressed in [Sh2] (see also [Sh1]), where k(x, v, v′) =
k(x, 〈v, v′〉) is assumed to depend on the angle between v and v′ and the
object of interest is the reconstruction of an isotropic source term. In [F] the
(time-dependent) radiative transfer equation is derived for a medium with
spatially varying refractive index and with scattering kernel k independent
of position. Such a refractive index is represented by a Riemannian metric.

More is known when the metric is assumed to be Euclidean. The time-
dependent inverse problem was treated in [CS1] and the stationary case in
[CS2]. Stability estimates based on this work were obtained under certain
restrictions in [W].
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The stationary transport equation is used to model the absorption and
scattering of near-infrared light; the determination of the absorption and
scattering properties of a medium from the measurement of the response to
such transmitted light is known as optical tomography and has been applied
to the problems of medical imaging ([A]). For two-dimensional domains,
recent works include [T2], where a homogeneous collision kernel k that is a
function of two independent directions was shown to be uniquely determined;
[SU], in which the assumption on homogeneity is dropped and k is assumed
to be small relative to σa, with an explicit constant given; and [T1], where
the smallness is removed in the case of weakly anisotropic scattering. In
[SU] the authors prove also a stability estimate; further stability results
may be found in [R]. Note that some kind of smallness does need to be
assumed on k, to ensure that the production rate is in some sense less than
the absorption rate, thus keeping the energy of the system bounded.

This paper is organized as follows: in Section 2 we state our assumptions
precisely, prove solvability of the forward problem given these assumptions,
and demonstrate well-definedness of the boundary albedo operator. In Sec-
tion 3 we construct distribution solutions to (2) with delta-type boundary
conditions. This facilitates determination of the distribution kernel of the
albedo operator as the sum of three terms of differing singularity strengths.
In Section 4 we prove that it is possible to extract from the kernel each of
the singular terms and that these determine the absorption coefficient (in
all dimensions) and the collision kernel (in dimensions 3 and greater).

2. The forward problem and the albedo operator

We begin by defining the volume form on TM :

Definition 2.1. The Liouville volume form is the canonical 2n-form defined
on TM that is preserved under the geodesic flow of g. It is the product of
the Riemannian volume form dω(x) on the manifold M and the Euclidean
volume form dvx defined in the tangent space TxM by the metric gx at
x ∈M (see [KH], for example).

The sense in which the definition above holds is the following: given an
orthonormal basis Y1, . . . , Yn for TxM , extend it to an adapted basis of vector
fields in a neighborhood of x by parallel transport with respect to the Levi-
Civita connection of g. If dyj are the forms dual to Yj , the Liouville form is
given by

√
det g dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn. For a fixed chart one can

in principle express this form in terms of the natural basis ∂
∂x1 , · · · ∂

∂xn , and
to do so one must solve the system of differential equations describing the
evolution of the Yj in terms of the ∂

∂xj as the basepoint x for TxM varies.
The interested reader can consult Equations (6) and (7) on page 47 of [H]. It
is not possible to express the Liouville form at an arbitrary point in a chart
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without reference to a basepoint. We set L1(TM) = L1(TM, dvx dω(x))
and L1(TxM) = L1(TxM,dvx).

We assume that the pair (σa, k) is admissible (see [RS]), namely that
0 ≤ σa ∈ L∞(TM),
0 ≤ k(x, v′, ·) ∈ L1(TxM) for a.e. (x, v′) ∈ TM,

σp(x, v′) =
∫
TxM

k(x, v′, v) dvx ∈ L∞(TM).
(3)

Notice that the operators f 7→ σaf and f 7→
∫
TxM

k(x, v′, v)f(x, v′) dv′x are
bounded on L1(TM).

Equation (2) may not be uniquely solvable, so we shall make the following
subcriticality assumptions (see [RS]), which ensure that the problem is well-
posed:

‖τσa‖L∞(TM) <∞ and ‖τσp‖L∞(TM) < 1.(4)

Furthermore, even in the Euclidean setting, without further restriction on σa
the albedo operator does not uniquely determine σa (see [CS2]). To remove
this lack of uniqueness, we assume that σa depends only on the speed ‖v‖gx ,
not on the direction:

σa(x, v) = σa(x, ‖v‖gx).(5)

In order to pose the boundary value problem we must specify the volume
form on {(x, v) | x ∈ ∂M, v ∈ TxM}, in particular on Γ±. If (x, v) ∈ TM ,
define (x′, v′) ∈ Γ− and t ≥ 0 by

x′ = γ(x,v)(−τ−(x, v)), v′ = γ̇(x,v)(−τ−(x, v)), t = τ−(x, v),

and define F : Γ− × R → TM by

F (x′, v′, t) = (γ(x′,v′)(t), γ̇(x′,v′)(t)).

Define the product measure dµ(x′, v′) dt on Γ− × R by

dµ(x′, v′) dt = F ∗(dvx dω(x)),

where F ∗ is the pullback map defined by F . This measure is similarly defined
on Γ+. We denote L1(Γ±) = L1(Γ±, dµ(x′, v′)). The following lemma is
immediate.

Lemma 2.2. If f ∈ L1(TM) then∫
M

∫
TxM

f(x, v)dvxdω =
∫

Γ±

∫ τ∓(x′,v′)

0
f(γ(x′,v′)(t), γ̇(x′,v′)(t)) dt dµ(x′, v′).

We define the function space W in which we shall prove solvability of (2)
for boundary functions f− ∈ L1(Γ−). We shall see below that functions f
in W have a well-defined trace in L1(Γ+). Let

W = {f | Df ∈ L1(TM), τ−1f ∈ L1(TM)},
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with norm

‖f‖W = ‖Df‖L1(TM) + ‖τ−1f‖L1(TM).

The following trace theorem is proven in [CS2] for the Euclidean metric and
we repeat a sketch of the proof in our setting.

Theorem 2.3. If f(x, v) ∈ W then

‖f |Γ±‖L1(Γ±,dµ) ≤ ‖Df‖L1(TM) + ‖τ−1f‖L1(TM).

Proof. Observe that if h, h′ ∈ L1([0, a]), for some a > 0, then

|h(0)| ≤ ‖h′‖L1([0,a]) +
1
a
‖h‖L1([0,a]).

Let f be as in the hypothesis of the theorem and define

h(t, x′, v′) = f(~γ(x′,v′)(t)), (x′, v′) ∈ Γ−, 0 ≤ t ≤ τ+(x′, v′).

Then

Df(~γ(x′,v′)(t)) =
∂

∂s

∣∣∣
s=0

f(~γ(~γ(x′,v′)(t))
(s))

=
∂

∂s

∣∣∣
s=0

f(~γ(x′,v′)(t+ s))

= ∂th(t, x′, v′),

so ∂th ∈ L1(TM); therefore, by Fubini’s theorem, ∂th ∈ L1
(
[0, τ+(x′, v′)]

)
for a.e. (x′, v′). Next,∫ τ+(x′,v′)

0
|h(s, x′, v′)| ds ≤

∫ τ+(x′,v′)

0

∫ s

0
|∂th(t, x′, v′)| dt ds

≤ τ+(x′, v′)‖∂th‖L1([0,τ+(x′,v′)]),

so that h(t, x′, v′) is also in L1
(
[0, τ+(x′, v′)]

)
for a.e. (x′, v′). Thus

|f(x′, v′)| = |f(~γ(x′,v′)(0)|

≤
∫ τ+(x′,v′)

0
|Df(~γ(x′,v′)(t))| dt

+
1

τ+(x′, v′)

∫ τ+(x′,v′)

0
|f(~γ(x′,v′)(t))| dt.

Integrating this inequality over Γ− gives the result. The proof for Γ+ is
similar. �

Theorem 2.3 gives that the trace operator, f 7→ f |Γ± , is continuous from
W into L1(Γ±, dµ).



TRANSPORT WITH A RIEMANNIAN METRIC 309

We proceed now to solve the boundary value problem (2) with f |Γ− =
f− ∈ L1(Γ−, dµ) and shall do so by reformulating the problem as an integral
equation. First,

Df(x, v) = g(x, v)

f |Γ− = 0

has solution

f(x, v) =
∫ τ−(x,v)

0
g(~γ(x,v)(s− τ−(x, v))) ds.

To see this, we must calculate the seemingly intractable

Df(x, v) =
∂

∂t

∣∣∣
t=0

∫ τ−(~γ(x,v)(t))

0
g
(
~γ(~γ(x,v)(t))

(
s− τ−(~γ(x,v)(t))

))
ds.

This simplifies considerably when one observes that

~γ(~γ(x,v)(t))(s) = ~γ(x,v)(s+ t)(6)

and

τ−(~γ(x,v)(t)) = t+ τ−(x, v).(7)

Thus

Df =
∂

∂t

∣∣∣
t=0

∫ t+τ−(x,v)

0
g
(
~γ(x,v)(s− τ−(x, v))

)
ds

= g(~γ(x,v)(0)) = g(x, v).

Lemma 2.4. Let f− be a function on Γ−. Then

Df(x, v) + σa(x, v)f(x, v) = 0 in TM

f |Γ− = f−

has solution Jf−, where

Jf−(x, v) = E(x, v, 0,−τ−(x, v))f−
(
~γ(x,v)(−τ−(x, v))

)
,

and where

E(x, v, s, t) = exp
(∫ t

s
σa(~γ(x,v)(p)) dp

)
.

Proof. We compute

DE(x, v, 0,−τ−(x, v)) =
∂

∂t

∣∣∣
t=0

E
(
~γ(x,v)(t), 0,−τ−(~γ(x,v)(t))

)
=

∂

∂t

∣∣∣
t=0

exp
(∫ −t−τ−(x,v)

0
σa(~γ(x,v)(p+ t) dp

)
= −E(x, v, 0,−τ−(x, v))σa(x, v)



310 STEPHEN R. MCDOWALL

and

Df−(~γ(x,v)(−τ−(x, v))) =
∂

∂t

∣∣∣
t=0

f−
(
~γ(~γ(x,v)(t))

(
−τ−(~γ(x,v)(t))

))
=

∂

∂t

∣∣∣
t=0

f−
(
~γ(x,v)(−τ−(x, v))

)
= 0. �

Proposition 2.5. If ‖τσa‖L∞ <∞ then J : L1(Γ−, dµ) →W with

‖Jf−‖W ≤ (1 + ‖τσa‖L∞)‖f−‖L1(Γ−,dµ).

The proof is carried out as in [CS2]. Set

T0f = −Df − σaf, T1f(x, v) =
∫
TxM

k(x, v′, v)f(x, v′) dv′,

and put T = T0 + T1. We wish to solve T0f + T1f = 0 with f |Γ− = f−. To
this end, multiply T0f = −T1f by E(x, v,−τ−(x, v), 0). Then

D(E(x, v,−τ−(x, v), 0)f(x, v)) = −E(x, v,−τ−(x, v), 0)T0f(x, v)

= E(x, v,−τ−(x, v), 0)T1f(x, v)

has solution

E(x, v,−τ−(x, v), 0)f(x, v)

=
∫ τ−(x,v)

0
E(~γ(x,v)(t− τ−(x, v)),−t, 0)(T1f)

(
~γ(x,v)(t− τ−(x, v))

)
dt

=
∫ τ−(x,v)

0
E(x, v,−τ−(x, v), t− τ−(x, v))(T1f)

(
~γ(x,v)(t− τ−(x, v))

)
dt,

where we have used the identities (6) and (7). Define K by

Kf(x, v) = −E−1(x, v,−τ−(x, v), 0)
∫ τ−(x,v)

0
E(x, v,−τ−(x, v), t− τ−(x, v))

· (T1f)
(
~γ(x,v)(t− τ−(x, v))

)
dt

= −
∫ τ−(x,v)

0
E(x, v, 0, t− τ−(x, v))(T1f)

(
~γ(x,v)(t− τ−(x, v))

)
dt.

Taking into account the boundary condition f |Γ− = f−,

f(x, v) = −Kf(x, v) + E(x, v, 0,−τ−(x, v))f−
(
~γ(x,v)(−τ−(x, v))

)
,

that is,

(I +K)f = Jf−.(8)

Consider the unbounded operators T0f = T0f and Tf = Tf with domains

D(T0) =
{
f ∈ L1(TM) | T0f ∈ L1(TM), f |Γ− = 0

}
,

D(T) =
{
f ∈ L1(TM) | Tf ∈ L1(TM), f |Γ− = 0

}
.
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Formally,

T−1
0 f(x, v) = −

∫ τ−(x,v)

0
E(x, v, 0, t− τ−(x, v))f

(
~γ(x,v)(t− τ−(x, v))

)
dt

and, again formally, K = T−1
0 T1. In the following proposition we show that

on the appropriate spaces these formal statements are precise. Once again,
the arguments mirror those in [CS2].

Proposition 2.6.

(i) The operators τ−1T−1
0 and T1τ are bounded on L1(TM).

(ii) K = T−1
0 T1 is bounded on L1(TM, τ−1dvx dω(x)), the operator norm

of K is bounded by ‖τσp‖L∞ < 1, and so I + K is invertible on this
space.

(iii) Equation (8) and hence (2) is uniquely solvable for f− ∈ L1(Γ−, dµ)
with solution f ∈ W.

(iv) The albedo operator A : L1(Γ−, dµ) → L1(Γ+, dµ) is a bounded map.
(v) The operator τ−1T−1 is bounded on L1(TM).

Proof. First, if f ∈ L1(TM) then

‖τ−1T−1
0 f‖L1(TM)

≤
∫

Γ−

∫ τ+(x′,v′)

0

1
τ

∣∣∣∣∫ τ−(~γ(x′,v′)(t))

0
f
(
~γ(~γ(x′,v′)(t))

(
s− τ−(~γ(x′,v′)(t))

))
ds

∣∣∣∣ dt dµ
≤
∫

Γ−

∫ τ+(x′,v′)

0

1
τ+(x′, v′)

∫ τ+(x′,v′)

0

∣∣f(~γ(x′,v′)(s))
∣∣ ds dt dµ

=
∫

Γ−

∫ τ+(x′,v′)

0

∣∣f(~γ(x′,v′)(s))
∣∣ ds dµ = ‖f‖L1(TM).

Next,

‖T1τf‖L1(TM) ≤
∥∥∥∥1
τ
σp

∥∥∥∥
L∞(TM)

‖f‖L1(TM),(9)

by (4). It follows that K = T−1
0 T1 and

‖τ−1Kf‖L1(TM) = ‖τ−1T−1
0 T1f‖L1(TM) ≤ ‖T1f‖L1(TM)(10)

≤ ‖τσp‖L∞(TM)‖τ−1f‖L1(TM)

< ‖τ−1f‖L1(TM),

by (4). Thus (I + K) is invertible on L1(TM, τ−1dvx dω(x)) and (8) has
solution f = (I + K)−1Jf−. We now show that f ∈ W and so has a
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well-defined trace. We have

‖τ−f‖L1(TM) ≤
(
1− ‖τσp‖L∞(TM)

)−1‖τ−1Jf−‖L1(TM)

≤
(
1− ‖τσp‖L∞(TM)

)−1‖f−‖L1(Γ−,dµ),

where the last inequality follows from

‖τ−1Jf‖L1(TM) ≤
∫
M

∫
TxM

τ−1(x, v)
∣∣f−(~γ(x,v)(−τ−(x, v))

)∣∣ dvx dω(x)(11)

=
∫

Γ−

∫ τ+(x′,v′)

0
τ−1
+ (x′, v′)|f−(x′, v′)| dt dµ(x′, v′)

= ‖f−‖L1(Γ−,dµ).

Since Tf = 0 and Df = −σaf + T1f , we have

‖Df‖L1(TM) ≤
(
‖τσa‖L∞(TM) + ‖τσp‖L∞(TM)

)
‖τ−1f‖L1(TM) <∞

from the previous estimate. Thus f ∈ W, and applying Theorem 2.3 we
have f |Γ+ = Af− ∈ L1(Γ+, dµ) with

‖Af‖L1(Γ+,dµ) ≤ ‖Df‖L1(TM) + ‖τ−1f‖L1(TM)

≤
(
1 + ‖τσa‖L∞(TM) + ‖τσp‖L∞(TM)

)
‖τ−1f‖L1(TM)

≤
(
1 + ‖τσa‖L∞ + ‖τσp‖L∞

)(
1− ‖τσp‖L∞

)−1‖f−‖L1(Γ−,dµ).

Finally, (v) follows by setting

T−1 = (I +K)−1T−1
0 : L1(TM) → L1(TM, τ−1dvx dω(x)). �

3. Singular solutions and the kernel of A

We now solve (2) in the sense of distributions with a singular boundary
condition:

−Df(x, v)− σa(x, v)f(x, v) +
∫
TxM

k(x, v′′, v)f(x, v′′) dv′′x = 0,(12)

f |Γ− = δ{x̂,v̂}(x
′, v′),

with (x̂, v̂) ∈ Γ−. Here, δ{x̂,v̂}(x′, v′) is a distribution on Γ− defined by

(δ{x̂,v̂}, ϕ) =
∫

Γ−

δ{x̂,v̂}(x
′, v′)ϕ(x′, v′) dµ(x′, v′) = ϕ(x̂, v̂).

Let ϕ− ∈ C∞0 (Γ−) and ϕ be the solution to

−Dϕ(x, v)− σa(x, v)ϕ(x, v) +
∫
TxM

k(x, v, v′)ϕ(x, v′) dv′x = 0,(13)

ϕ|Γ− = ϕ−.
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Then

ϕ = (I +K)−1Jϕ− = Jϕ− −KJϕ− + T−1T1KJϕ−.(14)

We shall analyze the three terms in this expression for ϕ, determining the
distribution kernel of the solution operator ϕ− 7→ ϕ of (13), which solves
(12) in the sense of distributions. This is the content of the following three
propositions:

Proposition 3.1. For the first term in (14) we have

Jϕ−(x, v) =
∫

Γ−

f0(x, v, x′, v′)ϕ−(x′, v′) dµ(x′, v′),(15)

with

f0(x, v, x′, v′) =
∫ τ+(x′,v′)

0
E(x, v, 0,−τ−(x, v)) δ(x,v)(~γ(x′,v′)(t)) dt.

Proof. If ψ ∈ C∞0 (TM) then

(Jϕ−, ψ)

=
∫

Γ−

∫ τ+(x′,v′)

0
Jϕ−(~γ(x′,v′)(t))ψ(~γ(x′,v′)(t)) dt dµ(x′, v′)

=
∫

Γ−

ϕ−(x′, v′)
∫ τ+(x′,v′)

0
E(~γ(x′,v′)(t), 0,−t)ψ(~γ(x′,v′)(t)) dt dµ(x′, v′)

(since −τ−(~γ(x′,v′)(t)) = −t),

=
∫
M

∫
TxM

∫
Γ−

ϕ−(x′, v′)
∫ τ+(x′,v′)

0
E(x, v, 0,−τ−(x, v))

· δ(x,v)(~γ(x′,v′)(t)) dt dµ(x′, v′)ψ(x, v) dvx dω(x),

where δ(x,v) is the distribution on TM defined by

(δ(x,v), ϕ) =
∫
M

∫
TxM

δ(x,v)(x, v)ϕ(x, v) dvx dω = ϕ(x, v).

Thus,

Jϕ−(x, v) =
∫

Γ−

f0(x, v, x′, v′)ϕ(x′, v′) dµ(x′, v′),

with f0 as given in the statement of the proposition. �

Due to our assumptions on the metric, the following parallel translation
map is globally well-defined: given (x, v) ∈ TM and y ∈ M denote by
P(v;x, y) : TxM → TyM the parallel translation of v along the (unique)
geodesic joining x and y.
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Proposition 3.2. For the second term in (14) we have

KJϕ−(x, v) =
∫

Γ−

f1(x, v, x′, v′)ϕ−(x′, v′) dµ(x′, v′)(16)

with

f1(x, v, x′, v′)

=
∫ τ+(x′,v′)

0

∫ τ−(x,v)

0
E(x, v, 0, s−τ−(x, v))E(x′, v′, 0, r)

· k
(
~γ(x′,v′)(r),P(γ̇(x,v)(s−τ−(x, v)); γ(x,v)(s−τ−(x, v)), γ(x′,v′)(r))

)
· δ{γ(x,v)(s−τ−(x,v))}(γ(x′,v′)(r)) ds dr.

Proof. Consider, for ψ ∈ C∞0 (TM),

(KJϕ−, ψ) =
∫

Γ−

∫ τ+(x′,v′)

0
KJϕ−(~γ(x′,v′)(t))ψ(~γ(x′,v′)(t)) dt dµ(x′, v′).

First, using identities (6) and (7) together with the fact that τ−(x′, v′) = 0
when (x′, v′) ∈ Γ−, we get

KJϕ−(~γ(x′,v′)(t)) = −
∫ t

0
E(x′, v′, t, s)T1Jϕ−(~γ(x′,v′)(s)) ds,

T1Jϕ−(~γ(x′,v′)(s)) =
∫
Tγ(x′,v′)(s)

M
k(γ(x′,v′)(s), w, γ̇(x′,v′)(s))

· Jϕ−(γ(x′,v′)(s), w) dwγ(x′,v′)(s)
and

Jϕ−(γ(x′,v′)(s), w) = −E(γ(x′,v′)(s), w,−τ−(γ(x′,v′)(s), w), 0)

· ϕ−
(
~γ(γ(x′,v′)(s),w)(−τ−(γ(x′,v′)(s), w))

)
.

Thus,

(KJϕ−, ψ)

=
∫

Γ−

∫ τ+(x′,v′)

0

∫ t

0

∫
Tγ(x′,v′)(s)

M
E(x′, v′, t, s)

· E
(
γ(x′,v′)(s), w,−τ−(γ(x′,v′)(s), w), 0

)
k(γ(x′,v′)(s), w, γ̇(x′,v′)(s))

· ϕ−(x, v)ψ(~γ(x′,v′)(t)) dw ds dt dµ(x′, v′)

where (x, v) =
(
~γ(γ(x′,v′)(s),w)(−τ−(γ(x′,v′)(s), w))

)
; see Figure 1 on the next

page.
We now perform the change of variables from (x′, v′, t) to (x, v), where

x = γ(x′,v′)(t) and v = γ̇(x′,v′)(t). Then t = τ−(x, v),

γ(x′,v′)(s) = γ(x,v)(s− τ−(x, v)), and γ̇(x′,v′)(s) = γ̇(x,v)(s− τ−(x, v)).
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PSfrag replacements

x
′

v
′

w

x̄ v̄
γ̇(x′,v′)(s)

γ(x′,v′)(s)

Figure 1.

Using parallel translation we may now introduce a delta distribution to
obtain

(KJϕ−, ψ)

=
∫
M

∫
TxM

∫ τ−(x,v)

0

∫
M
δγ(x,v)(s−τ−(x,v))(y)

∫
TyM

E(x, v, 0, s−τ−(x, v))

· E(y, w,−τ−(y, w), 0)

· k
(
y, w,P(γ̇(x,v)(s− τ−(x, v)); γ(x,v)(s− τ−(x, v)), y)

)
· ϕ−

(
~γ(y,w)(−τ−(y, w))

)
ψ(x, v) dwy dω(y) ds dvx dω(x),

where
(δx, ϕ)M =

∫
M
δx(y)ϕ(y) dω(y) = ϕ(x).

Make another change of variables (y′, w′, r) = (~γ(y,w)(−τ−(y, w)), τ−(y, w))
and interchange the order of integration dr dµ(y′, w′) ds to ds dr dµ(y′, w′).
We obtain

(KJϕ−, ψ)

=
∫
M

∫
TxM

ψ(x, v)
∫

Γ−

ϕ−(y′, w′)
∫ τ+(y′,w′)

0

∫ τ−(x,v)

0
E(x, v, 0, s− τ−(x, v))

· E(y′, w′, 0, r)

· k
(
~γ(y′,w′)(r),P(γ̇(x,v)(s− τ−(x, v)); γ(x,v)(s− τ−(x, v)), γ(y′,w′)(r))

)
· δ(γ(x,v)(s−τ−(x,v)))(γ(y′,w′)(r)) ds dr dµ(y′, w′) dvx dω(x).

Thus we have (16). �

Proposition 3.3. For the third and final term in (14) we have

T−1T1KJϕ−(x, v) =
∫

Γ−

f2(x, v, x′, v′)ϕ−(x′, v′) dµ(x′, v′)

with f2 ∈ L∞(Γ−;W).
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Proof. We have

T1KJϕ−(x, v)(17)

=
∫
TxM

∫ τ−(x,w′)

0

∫
Tx̂M

k(x,w′, v)k
(
x̂, w, γ̇(x,w′)(t− τ−(x,w′))

)
· E(x,w′, 0, t− τ−(x,w′))E(x̂, w,−τ−(x̂, w), 0)

· ϕ−
(
~γ(x̂,w)(−τ−(x̂, w))

)
dwx̂ dt dw

′
x,

where x̂ = γ(x,w′)(t− τ−(x, w′)). Take the L1(TM) norm of T1KJϕ−(x, v).
We observe that

‖T1KJϕ−(x, v)‖L1(TM)(18)

≤ ‖T1τ‖L1(TM)→L1(TM)‖τ−1Kτ‖L1(TM)→L1(TM)‖τ−1Jϕ−‖L1(TM)

≤ ‖ϕ−‖L1(Γ−,dµ),

by (9), (4), (10) and (11). Thus by Fubini’s theorem, the integral above
defining T1KJϕ−(x, v) is absolutely convergent for a.e. (x, v) ∈ TM .

In the distributional sense, we make the following computation of the
distribution kernel of T1KJ : for x ∈ M let S(x) = {v̂ ∈ TxM | ‖v̂‖ = 1}
and extend all functions defined on TxM by zero to be defined on all of
{rv̂ | r ≥ 0, v̂ ∈ S(x)}. Let (x, v, x′, v′) ∈ Γ+ × Γ−. Then, as in (17),

(T1KJδ(x′,v′))(x, v)

=
∫
TxM

∫ τ−(x,w′)

0

∫
Tx̂M

k(x,w′, v)k
(
x̂, w, γ̇(x,w′)(t− τ−(x,w′))

)
· E(x,w′, 0, t− τ−(x,w′))E(x̂, w,−τ−(x̂, w), 0)

· δ(x′,v′)
(
~γ(x̂,w)(−τ−(x̂, w))

)
dwx̂ dt dw

′
x.

We shall cease to write out the arguments of the functions E in order to
compress the presentation. Change the integration over w′ ∈ TxM to polar
coordinates (r, ŵ′) ∈ R+ × S(x) and make the change of variables y = x̂ =
γ(x,ŵ′)(t−τ−(x, ŵ′)). Due to the assumptions on the metric g this is a global
diffeomorphism. Let J be the determinant of the Jacobian of this change of
variables. If γ is the unit speed geodesic joining γ(0) = y to γ(d) = x (for
d > 0), denote by ŵx(y) = γ̇(d) ∈ TxM the (unit) tangent vector of γ at x
and denote by ŵ(y) = γ̇(0) ∈ TyM the (unit) tangent vector of γ at y. Then

(T1KJδ(x′,v′))(x, v)

=
∫ ∞

0

∫
M

∫
V (y)

k(x, rŵx(y), v)k(y, w, rŵ(y))

· E(·)E(·)δ(x′,v′)
(
~γ(y,w)(−τ−(y, w))

)
|J | dwy dω(y) rn−2 dr.
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Change variables again setting (y, w) = ~γ(a′,b′)(s) and integrate with respect
to dµ(a′, b′):

(T1KJδ(x′,v′))(x, v)

=
∫ ∞

0

∫
Γ−

∫ τ+(a′,b′)

0
k
(
x, rŵx(γ(a′,b′)(s)), v

)
k
(
~γ(a′,b′)(s), rŵ(γ(a′,b′)(s))

)
· E( · )E( · )δ(x′,v′)(a′, b′)|J | ds dµ(a′, b′) rn−2 dr

=
∫ ∞

0

∫ τ+(x′,v′)

0
k
(
x, rŵx(γ(x′,v′)(s)), v

)
k
(
~γ(x′,v′)(s), rŵ(γ(x′,v′)(s))

)
· E( · )E( · )|J | ds rn−2 dr.

Claim 3.4. If ϕ− ∈ L1(Γ−, dµ) then for (x, v) ∈ TM

(T1KJϕ−)(x, v) =
∫

Γ−

(T1KJδ(x′,v′))(x, v)ϕ−(x′, v′) dµ(x′, v′).(19)

Proof. By the definition of T1KJ (see (17)), and manipulating the integral
as above, we obtain

(T1KJϕ−)(x, v)

=
∫
TxM

∫ τ−(x,w′)

0

∫
Tx̂M

k(x,w′, v)k
(
x̂, w, γ̇(x,w′)(t− τ−(x,w′))

)
· E( · )E( · )δ(x′,v′)

(
~γ(x̂,w)(−τ−(x̂, w))

)
dwx̂ dt dw

′
x

=
∫ ∞

0

∫
Γ−

∫ τ+(a′,b′)

0
k
(
x, rŵx(γ(a′,b′)(s)), v

)
k
(
~γ(a′,b′)(s), rŵ(γ(a′,b′)(s))

)
· E( · )E( · )ϕ−(a′, b′)|J | ds dµ(a′, b′) rn−2 dr.

Relabeling (a′, b′) as (x′, v′) and interchanging the order of integration from
ds dµ(x′, v′) dr to ds dr dµ(x′, v′) we obtain the right-hand side of (19) as
claimed.

From (18) we see that T1KJϕ− ∈ L1(TM) for all ϕ− ∈ L1(Γ−, dµ).
Thus from (19) and the Riesz representation theorem for L1(TM)-valued
functionals, the kernel T1KJδ(x′,v′)(x, v) is in L∞(Γ−(x′, v′);L1(TM)).

Define f2(·, ·, x′, v′) = T−1T1KJδ(x′,v′), where T−1 acts on the variables
(x, v) with (x′, v′) as parameters. Then

T−1T1KJϕ−(x, v) =
∫

Γ−

f2(x, v, x′, v′)ϕ−(x′, v′) dµ(x′, v′).

(The interchange of the operator T−1 and the integration is justified by the
continuity of T−1; see [DU] for example.) We show that f2 ∈ L∞(Γ−;W),
so that restriction to (x, v) ∈ Γ+ is well-defined. By Proposition 2.6, T−1 is
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bounded from L1(TM) to L1(TM, τ−1dvx dω(x)), so

f2 ∈ L∞
(
Γ−;L1(TM, τ−1dvx dω(x))

)
.(20)

Next, Df2 = −σaf2 +T1f2 +T1KJδ(x′,v′) and f2 7→ −σaf2 +T1f2 is bounded
from L1(TM, τ−1dvx dω(x)) to L1(TM) by (3) and (4), so

Df2 ∈ L∞(Γ−;L1(TM)). �(21)

To summarize our analysis of the terms in (14), we have shown that (13)
has solution

ϕ =
∫

Γ−

f(x, v, x′, v′)ϕ−(x′, v′)dµ(x′, v′)(22)

where the integral is in distributional sense and f is the sum of the three
terms given by (15), (16) and f2 above. Furthermore, f solves (12) in
the sense of distributions. In other words, f is the distribution kernel of
the solution operator ϕ− 7→ ϕ of (13). We proceed now to show that the
distribution kernel α(x, v, x′, v′) (where (x, v) ∈ Γ+, (x′, v′) ∈ Γ−) of the
albedo operator A is the restriction of f to (x, v) ∈ Γ+.

Theorem 3.5. The distribution kernel α(x, v, x′, v′) of A is expressible as
a sum α = α0 + α1 + α2, with

α0 = E(x, v,−τ−(x, v), 0)δ{~γ(x,v)(−τ−(x,v))}(x
′, v′)

= exp
(∫ 0

−τ−(x,v)
σa(~γ(x,v)(r)) dr

)
δ{~γ(x,v)(−τ−(x,v))}(x

′, v′),

α1 =
∫ τ+(x′,v′)

0

∫ τ−(x,v)

0
E(x, v, 0, s− τ−(x, v))E(x′, v′, 0, r)

· k
(
~γ(x′,v′)(r),P(γ̇(x,v)(s− τ−(x, v)); γ(x,v)(s− τ−(x, v)), γ(x′,v′)(r))

)
· δ{γ(x,v)(s−τ−(x,v))}(γ(x′,v′)(r)) ds dr,

α2 ∈ L∞(Γ−;L1(Γ+, dµ)).

Proof. We have formally αj = fj restricted to (x, v) ∈ Γ+, j = 0, 1, 2. Let
ϕ− ∈ Cm0 (Γ−) and for (x, v) ∈ Γ+ consider ϕj(x, v) =

∫
Γ−
fj ϕ− dµ(x′, v′).

From (15), changing variables to (y, w) = ~γ(x′,v′)(t), we have

ϕ0(x, v)

=
∫
M

∫
TyM

E(x, v,−τ−(x, v), 0)δ{x,v}(y, w)ϕ−
(
~γ(y,w)(−τ−(y, w))

)
dwy dω

= E(x, v,−τ−(x, v), 0)ϕ−(~γ(x,v)(−τ−(x, v)))

=
∫

Γ−

α0(x, v, x′, v′)ϕ−(x′, v′) dµ(x′, v′),
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which justifies the expression for α0. The expression for α1 is nothing more
than a restatement of (16) with (x, v) ∈ Γ+. That α2 ∈ L∞(Γ−;L1(Γ+, dµ))
follows from (20), (21) and Proposition 2.5. �

4. The solution to the inverse problem

In this section we show that from the distribution kernel α of the albedo
operator A we can isolate the terms that differ in strength of singularity.
In dimensions 3 and higher, we isolate α0 and α1 and show that this yields
the absorption coefficient σa and the scattering kernel k. We are able to do
so because α0 and α1 are delta-type singularities in Γ+ × Γ− supported on
varieties of differing dimension and α2 is an L∞ function. In dimension 2, we
isolate α0 from α, which yields σa, but are unable to determine k since in this
case α1 is in fact a locally L1 function and so not distinguishable from α2.

We shall use the following global coordinates on TM : fix p ∈ M and
let {Ei} be an orthonormal basis for TpM . Define Ep : Rn → TpM by
Ep(x1, . . . , xn) =

∑
xiEi. Let Expp : TpM → M denote the exponential

map based at p. Note that Expp provides a diffeomorphism from Exp−1
p (M)

to M due to our assumptions on the metric. Recall that P(v;x, p) : TxM →
TpM is the parallel translation of v along the unique geodesic joining x and
p. We may now define global coordinates for TM by φ : TM → Rn × Rn,

φ(x, v) =
(
φ1(x), φ2(v)

)
=
(
(E−1

p ◦ Exp−1
p )(x), (E−1

p ◦ P)(v;x, p)
)
.

We first show that one can isolate α0 from α. Let ψ ∈ C∞0 (R) satisfy
0 ≤ ψ ≤ 1, ψ(0) = 1, and

∫
ψ(x) dx = 1. Define ψε(x) = ψ

(
x/ε
)
. Now let

ϕ : Γ+ × Γ− → R be a defining function for the support of the distribution
δ{~γ(x,v)(−τ−(x,v))}(x′, v′); that is, set

ϕ(x, v, x′, v′)

=
∥∥φ1(x′)−φ1

(
γ(x,v)(−τ−(x, v))

)∥∥2 +
∥∥φ2(v′)−φ2

(
γ̇(x,v)(−τ−(x, v))

)∥∥2
,

where the norm ‖ ·‖ is the Euclidean norm in Rn. We have that the support
of δ{~γ(x,v)(−τ−(x,v))}(x′, v′) is the set {ϕ(x, v, x′, v′) = 0}.

Proposition 4.1. The following limit holds in L1
loc(Γ+, dµ(x, v)):

lim
ε→0

∫
Γ−

α(x, v, x′, v′) (ψε ◦ ϕ)(x, v, x′, v′) dµ(x′, v′)

= exp
(∫ 0

−τ−(x,v)
σa(~γ(x,v)(r)) dr

)
where the integral is meant in the sense of distributions.

Proof. When α is replaced by α0 the result is immediate. It remains to show
that when α is replaced by α1 and α2 the limit vanishes. Consider first α1.
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We shall show that the limit vanishes when considered in

L1
(
{(x, v) ∈ Γ+ | ‖v‖gx ≤M}, dµ(x, v)

)
,

for any M > 0. Let 0 ≤ χ ∈ C∞0 (R). Then

0 ≤
∫

Γ+

∫
Γ−

χ(‖v‖gx)α1(x, v, x′, v′)(ψε ◦ ϕ)(x, v, x′, v′) dµ(x′, v′) dµ(x, v)

(23)

≤
∫

Γ+

∫
Γ−

∫ τ+(x′,v′)

0

∫ τ−(x,v)

0
χ(‖v‖gx)

· k
(
~γ(x′,v′)(r),P(γ̇(x,v)(s− τ−(x, v)); γ(x,v)(s− τ−(x, v)), γ(x′,v′)(r))

)
· δ{γ(x,v)(s−τ−(x,v))}(γ(x′,v′)(r))(ψε ◦ ϕ)(x, v, x′, v′)

· ds dr dµ(x′, v′) dµ(x, v)

≤
∫
M

∫
TyM

∫
TyM

χ(‖w‖gy)k(y, w
′, w)

· (ψε ◦ ϕ)
(
~γ(y,w)(τ+(y, w)), ~γ(y,w′)(−τ−(y, w′))

)
dw′y dwy dω(y),

where (y′, w′) = ~γ(x′,v′)(r), (y, w) = ~γ(x,v)(s − τ−(x, v)) and we have used
the fact that ‖w‖gy = ‖γ̇(x,v)(s− τ−(x, v))‖gy = ‖v‖gx .

Now

(ψε ◦ ϕ)
(
~γ(y,w)(τ+(y, w)), ~γ(y,w′)(−t−(y, w′))

)
= ψε

(∥∥φ1

(
γ(y,w′)(−τ−(y, w′))

)
− φ1

(
γ(y,w)(−τ−(y, w))

)∥∥2

+ ‖φ2

(
γ̇(y,w′)(−τ−(y, w′))

)
− φ2

(
γ̇(y,w)(−τ−(y, w))

)
‖2
)

= ψε

(∥∥φ1

(
γ(y,w′)(−τ−(y, w′))

)
− φ1

(
γ(y,w)(−τ−(y, w))

)∥∥2

+ ‖φ2(w′)− φ2(w)‖2
)
,

so it follows that there is C depending on ψ such that

supp (ψε ◦ ϕ)
(
~γ(y,w)(τ+(y, w)), ~γ(y,w′)(−t−(y, w′))

)
⊂ {(y, w′, w) ∈M × TyM × TyM | ‖w′ − w‖gy < Cε}.

If we set Wε =
{
(y, w′, w)

∣∣ ‖w′ − w‖gy < Cε and ‖w‖gy ∈ suppχ
}
, then

from (23) we have

0 ≤
∫

Γ+

∫
Γ−

χ(‖v‖gx)α1(x, v, x′, v′)(ψε ◦ ϕ)(x, v, x′, v′) dµ(x′, v′) dµ(x, v)

≤
∫
Wε

χ(‖v‖gx)k(y, w′, w) dw′y dwy dω(y)

tending to 0 as λ → 0, since χ(‖v‖gx)k(y, w′, w) ∈ L1(M × TyM × TyM)
and the measure of Wε → 0 as ε→ 0.
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Finally, for α2,

0 ≤
∫

Γ+

∣∣∣∣∫
Γ−

χ(‖v‖gx)α2(x, v, x′, v′)(ψε ◦ ϕ)(x, v, x′, v′) dµ(x′, v′)
∣∣∣∣ dµ(x, v)

(24)

≤
∫
Vε

χ(‖v‖gx)|α2(x, v, x′, v′)| dµ(x′, v′) dµ(x, v),

tending to 0 as λ→ 0. Here

supp (ψε ◦ ϕ)(x, v, x′, v′)

⊂ Vε = {(x, v, x′, v′) ∈ Γ+ × Γ− | ‖P(v′;x′, p)− P(v;x, p)‖gp < Cε

and ‖v′‖gx′ , ‖v‖gx ∈ suppχ}
and the limit holds as stated since Theorem 3.5 gives

χ(‖v‖gx)α2(x, v, x′, v′) ∈ L1(Γ+ × Γ−, dµ(x, v) dµ(x′, v′))

and the measure of Vε tends to 0 as ε→ 0. �

Theorem 4.2. Suppose M ⊂ Rn, n ≥ 2, is a bounded domain with C∞

boundary, that g is a simple Riemannian metric on M , and that assump-
tions (3) and (4) hold. Then from the kernel of A we may determine the
absorption coefficient σa(x, v) = σa(x, ‖v‖gx).

Proof. From A we of course know α; taking the limit as in Proposition 4.1
we obtain∫ 0

−τ−(x,v)
σa(~γ(x,v)(r)) dr =

∫ 0

−τ−(x,v)
σa(γ(x,v)(r), ‖v0‖) dr

for all (x, v) ∈ Γ+, where ‖v0‖ = ‖γ̇(x,v)(0)‖ (= ‖γ̇(x,v)(t)‖ for all t).
That is, we know the integrals of σa along the geodesics joining (x′, v′) =
~γ(x,v)(−τ−(x, v)) ∈ Γ− and (x, v) ∈ Γ+. This is the geodesic ray transform
of the function σa and this transform is invertible. See [Sh1]. �

We work now towards determining k by isolating α1. Fix (y, w,w′) ∈
M × TyM × TyM with w and w′ linearly independent and let

Z =
{
γ(y,w)(−τ−(y, w)) | w ∈ span{w,w′}

}
⊂ ∂M.

We let h1 be a defining function for the set Z as follows: for z ∈ Z let
γz(t) be the geodesic joining z to y such that γz(0) = z and γz(1) = y,
and define π(γ̇z(1)) ∈ TyM to be the orthogonal projection of γ̇z(1) onto
(span{w,w′})⊥. Now define h1(z) = ‖π(γ̇z(1))‖gy . For z ∈ ∂M , we have
h1(z) = 0 if and only if z ∈ Z. Now let ψ1 ∈ C∞0 (R) satisfy 0 ≤ ψ1 ≤ 1,
ψ1(0) = 1,

∫
R ψ

1(x) dx = 1 and define ψ1
ρ : ∂M → R by

ψ1
ρ(z) = ψ1

(
h1(z)
ρ

)
;
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ψ1
ρ concentrates at Z as ρ approaches 0.
For 0 ≤ s ≤ τ(y, w) let ŷ(s) = γ(y,w)(s− τ−(y, w)), b̂(s) = P(w′; y, ŷ(s)) ∈

Tŷ(s)M , and denote x∗ = γ(y,w′)(−τ−(y, w′)). See Figure 2.

PSfrag replacements

x∗

y w

w′

b̂(s)

ŷ(s)

γ̇(y,w)(s− τ−(y, w))

γ̇(ŷ(s),b̂(s))(−τ−(ŷ(s), b̂(s)))

h(s) = γ(ŷ(s),b̂(s))

(

−τ−(ŷ(s), b̂(s))
)

Figure 2.

Define h(s) = γ(ŷ(s),b̂(s))

(
−τ−(ŷ(s), b̂(s))

)
∈ ∂M . Note that h(τ−(y, w)) =

x∗. It is easily seen that h(s) ∈ Z for each s, so h1(h(s)) = 0. Denote by
w∗ ∈ Tx∗∂M the tangent vector

d

ds

∣∣∣
s=τ−(y,w)

h(s);

since w and w′ are linearly independent, it is readily checked that w∗ 6= 0.
Define h2 : ∂M → R by

h2(x′) = 〈Exp−1
x∗ (x′), w∗〉gx∗ + sgn

(
〈Exp−1

x∗ (x′), w∗〉gx∗

)
‖φ1(x′)− φ1(x∗)‖Rn .

The function h2 has the property that h2 = 0 only at x′ = x∗. Furthermore,
if s0 = τ−(y, w) then

d

ds

∣∣∣
s=s0

h2(h(s)) = ‖w∗‖gx∗ 6= 0.

Now let ψ2 ∈ C∞0 (R) satisfy 0 ≤ ψ2 ≤ 1, ψ2(0) = 1,
∫

R ψ
2(x) dx = 1/‖w∗‖,

and define ψ2
ε by

ψ2
ε(x) =

1
ε
ψ2
(x
ε

)
.

We shall need one more approximate identity function. Let ψ3 ∈ C∞0 (Rn)
satisfy 0 ≤ ψ3 ≤ 0, ψ3(0) = 1,

∫
Rn ψ

3(x) dx = 1, and define

ψ3
ε (x) =

1
εn
ψ3
(x
ε

)
.

Let

W = {(y, w,w′) ∈M × TyM × TyM |w and w′ are linearly independent}.
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Proposition 4.3. If n ≥ 3 and (y, w,w′) ∈ M × TyM × TyM with w and
w′ linearly independent we have

lim
ε→0

lim
ρ→0

lim
ε→0

∫
Γ−

ψ1
ρ(x

′)ψ2
ε(f(x′))ψ3

ε

(
φ2(v′)− φ2(P(w′; y, x′))

)
· α(~γ(y,w)(τ+(y, w)), x′, v′) dµ(x′, v′)

= E(~γ(y,w)(τ+(y, w)), 0,−τ+(y, w))E(~γ(y,w′)(τ−(y, w′)), 0, τ−(y, w′))

· k(y, w,w′),

where the limit holds in L1
loc(W ).

Proof. Replacing α by α0 and integrating with respect to dµ(x′, v′) we obtain
a multiple of ψ2

ε

(
h2(γ(y,w)(−τ−(y, w)))

)
that (for all sufficiently small ε) is

zero unless w and w′ are linearly dependent.
Substituting α1 for α, changing variables (a, b) = ~γ(x′,v′)(r), and inter-

changing the order of integration from ds dba dω(a) to dba dω(a) ds we obtain∫ τ(y,w)

0

∫
M

∫
TaM

ψ1
ρ

(
γ(a,b)(−τ−(a, b))

)
ψ2
ε

(
h2

(
γ(a,b)(−τ−(a, b))

))
· ψ3

ε

(
φ2

(
γ̇(a,b)(−τ−(a, b))

)
− φ2

(
P
(
w′; y, γ(a,b)(−τ−(a, b))

)))
· E(·)E(·)k

(
a, b, γ̇(y,w)(s− τ−(y, w))

)
δŷ(s)(a) dba dω(a) ds

=
∫ τ(y,w)

0

∫
TŷM

ψ1
ρ

(
γ(ŷ,b)(−τ−(ŷ, b))

)
ψ2
ε

(
h2

(
γ(ŷ,b)(−τ−(ŷ, b))

))
· ψ3

ε

(
φ2

(
γ̇(ŷ,b)(−τ−(ŷ, b))

)
− φ2

(
P
(
w′; y, γ(ŷ,b)(−τ−(ŷ, b))

)))
· E( · )E( · )k

(
ŷ, b, γ̇(y,w)(s− τ−(y, w))

)
dbŷ ds.

Here ŷ = ŷ(s). Now φ2

(
γ̇(ŷ,b)(−τ−(ŷ, b))

)
−φ2

(
P
(
w′; y, γ(ŷ,b)(−τ−(ŷ, b))

))
equals φ2(b)−φ2

(
P(w′; y, ŷ(s))

)
since our global coordinates φ2 are obtained

by parallel translation. Set P(w′; y, ŷ(s)) = b̂(s) ∈ Tŷ(s)M . The expression
of ψ2

ε becomes ψ2
ε

(
φ2(b) − φ2(b̂(s))

)
and taking the limit as ε → 0 (in L1)

we obtain∫ τ(y,w)

0
ψ2
ε

(
h2(h(s))

)
E( · )E( · )k

(
ŷ(s), b̂(s), γ̇(y,w)(s− τ−(y, w))

)
ds.

Set s̃ = h2(h(s)); then

ds̃

ds

∣∣∣
s=τ−(y,w)

= ‖w∗‖ 6= 0,

and so for sufficiently small ε, for all s in the support of ψ2
ε

(
h2(h(s))

)
we

have des
ds 6= 0 and we may perform the change of variables from s to s̃ in the
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above integral. Since f
(
h(τ−(y, w))

)
= 0, setting s = (f ◦h)−1(s̃) we obtain

(for sufficiently small δ)∫ δ

−δ
ψ1
ε(s̃)E( · )E( · ) k(ŷ(s, b̂(s), γ̇(y,w)(s− τ−(y, w)))

ds

ds̃
ds̃

→ E( · )E( · ) k
(
ŷ(s(0)), b(s(0)), γ̇(y,w)(s(0)− τ−(y, w))

)
as ε→ 0, which in turn equals

E(~γ(y,w)(τ+(y, w)), 0,−τ+(y, w))E(~γ(y,w′)(τ−(y, w′)), 0, τ−(y, w′))k(y, w,w′).

Finally, let χ(y, w,w′) ∈ C∞0 (W ). Let

G− =
{
(x′, v′) ∈ Γ− | φ1(v′)− φ1(P(w′; y, x′)) ∈ suppψ3

ε , w
′ ∈ suppχ

}
,

G+ =
{
(x, v) = ~γ(y,w)(τ+(y, w)) ∈ Γ+ | (y, w) ∈ suppχ

}
.

Then ∫
M

∫
TyM

∫
TyM

∣∣∣∣∫
Γ−

ψ1
ρ(x

′)ψ2
ε(h2(x′))ψ3

ε

(
φ2(v′)− φ2(P(w′; y, x′))

)
(25)

· χ(y, w,w′)α2(~γ(y,w)(τ+(y, w)), x′, v′) dµ(x′, v′)
∣∣∣∣ dw′y dwy dω(y)

≤ 1
εε

∫
G+

∫ τ−(x,v)

0

∫
Tγ(x,v)(s)

M

∫
G−

ψ1
ρ(x

′)χ(~γ(x,v)(s), w
′)α2(x, v, x′, v′)

· dµ(x′, v′) dw′γ(x,v)(s)
ds dµ(x, v)

≤ 1
εε

∫
G−

∫
G+

ψ1
ρ(x

′)Cχ(x, v)τ(x, v)α2(x, v, x′, v′) dµ(x, v) dµ(x′, v′)

where

Cχ(x, v) = sup
s∈[0,τ(x,v)]

∫
Tγ(x,v)(s)

M
χ(~γ(x,v)(s), w

′) dw′γ(x,v)(s)
.

The integrand on the last line of (25) is an L1 function since τ(x, v)Cχ(x, v)
is bounded for (x, v) ∈ suppCχ, and α2 ∈ L∞(Γ−;L1(Γ+, dµ)). Since the
support of ψ1

ρ is a ρ-small neighborhood of a 3n-dimensional variety in the
4n− 2-dimensional Γ+ × Γ−, the integral (25) tends to zero as ρ→ 0. This
completes the proof of Proposition 4.3. �

Theorem 4.4. If M ⊂ Rn, n ≥ 3, is a bounded domain with C∞ boundary,
g is a simple Riemannian metric on M , and assumptions (3) and (4) hold
then from the kernel of A we may determine the collision kernel k(x, v′, v).

Proof. From Theorem 4.2 we can determine σa from A and so determine
E(x, v, s, t); taking the limit as in Proposition 4.3, we can thus determine
k(x, v′, v) for v′, v ∈ TxM linearly independent. Of course k is an L1 function
and so knowing k on such a set of v′, v is equivalent to knowing k. �



TRANSPORT WITH A RIEMANNIAN METRIC 325

Acknowledgements. The author would like to thank Gunther Uhlmann
for suggesting this problem and for several helpful discussions. We also
thank Simon Arridge for the reference [F].

References

[A] S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999),
R41–R93, MR 1684463 (2000b:78023), Zbl 0926.35155.

[BG] I.N. Bernstein and M.L. Gerver, Conditions of distinguishability of metrics by
hodographs, Methods and Algorithms of Interpretation of Seismological Informa-
tion, Computerized Seismology, 13 (1980), Nauka, Moscow, 50–73 (in Russian).

[CS1] M. Choulli and P. Stefanov, Inverse scattering and inverse boundary value problems
for the linear Boltzmann equation, Comm. Partial Differential Equations, 21(5-6)
(1996), 763–785, MR 1391523 (97f:35230), Zbl 0857.35131.

[CS2] M. Choulli and P. Stefanov, An inverse boundary value problem for the sta-
tionary transport equation, Osaka J. Math. 36(1) (1999), 87–104, MR 1670750
(2000g:35228), Zbl 0998.35064.

[DU] J. Diestel and J.J. Uhl, Jr., Vector Measures, Mathematical Surveys and Mono-
graphs, 15, American Mathematical Society, Providence, R.I., 1977, MR 0453964
(56 #12216), Zbl 0369.46039.

[F] H.A. Ferwerda, The radiative transfer equation for scattering media with a spatially
varying refractive index, J. Opt. A: Pure Appl. Opt., 1 (1999), L1–L2.

[H] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure
and Applied Mathematics, 80, Academic Press, New York, 1978, MR 0514561
(80k:53081), Zbl 0451.53038.

[KH] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Sys-
tems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University
Press, Cambridge, 1995, MR 1326374 (96c:58055), Zbl 0878.58020.

[M] R.G. Mukhometov, On a problem of reconstructing Riemannian metrics, Siberian
Math. J., 22(3) (1982), 420–433, MR 0621466 (82m:53071), Zbl 0478.53048.

[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, III: Scat-
tering Theory, Academic Press, New York, 1979, MR 0529429 (80m:81085),
Zbl 0405.47007.

[R] V.G. Romanov, Stability estimates in problems of recovering the attenuation coef-
ficient and the scattering indicatrix for the transport equation, J. Inverse Ill-Posed
Probl. 4(4) (1996), 297–305, MR 1403885 (97f:35235), Zbl 0860.35146.

[Sh1] V.A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Prob-
lems Series, VSP, The Netherlands, 1994, MR 1374572 (97h:53077), Zbl 0883.53004.

[Sh2] V.A. Sharafutdinov, The inverse problem of determining the source in the stationary
transport equation on a Riemannian manifold, J. Math. Sci. (New York), 96(4)
(1999), 3430–3433, MR 1700653 (2000g:58056), Zbl 0935.58013.

[SU] P. Stefanov and G. Uhlmann, Optical tomography in two dimensions, Methods Appl.
Anal., 10(1) (2003), 1–9, MR 2014159 (2004h:35224).

[T1] A. Tamasan, Optical tomography in weakly anisotropic scattering media, in Inverse
problems: theory and applications (Cortona/Pisa, 2002), Contemp. Math. 333,
Amer. Math. Soc., Providence, RI, 2003, 199–207, MR 2032017.



326 STEPHEN R. MCDOWALL

[T2] A. Tamasan, An inverse boundary value problem in two-dimensional transport, In-
verse Problems, 18(1) (2002), 209–219, MR 1893591 (2003h:35283), Zbl 0995.65146.

[W] J.-N. Wang, Stability estimates of an inverse problem for the stationary transport
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SUFFICIENT CONDITIONS FOR ROBUSTNESS OF
ATTRACTORS

C.A. Morales and M.J. Pacifico

A recent problem in dynamics is to determine whether an
attractor Λ of a Cr flow X is Cr robust transitive. By an
attractor we mean a transitive set to which all positive orbits
close to it converge. An attractor is Cr robust transitive (or
Cr robust for short) if it has a neighborhood U such that the
set

⋂
t>0 Yt(U) is transitive for every flow Y that is Cr close to

X. We give sufficient conditions for robustness of attractors
based on the following definitions: an attractor is singular-
hyperbolic if it has singularities, all of which are hyperbolic,
and is partially hyperbolic with volume expanding central di-
rection (Morales, Pacifico and Pujals, 1998). An attractor
is Cr critically robust if it has a neighborhood U such that⋂

t>0 Yt(U) is in the closure of the closed orbits of every flow
Y Cr close to X. We show that on compact 3-manifolds all Cr

critically robust singular-hyperbolic attractors with only one
singularity are Cr robust.

1. Introduction

A recent problem in dynamics is to determine whether an attractor Λ of a Cr

flow X is Cr robust transitive or not. By an attractor we mean a transitive
set to which all positive orbits close to it converge. An attractor is Cr robust
transitive (or Cr robust for short) if it has a neighborhood U such that the
set

⋂
t>0 Yt(U) is transitive for every flow Y that is Cr close to X. We

give sufficient conditions for robustness of attractors based on the following
definitions: an attractor is singular-hyperbolic if it has singularities, all of
which are hyperbolic, and is partially hyperbolic with volume expanding
central direction [MPP]. An attractor is Cr critically robust if it has a
neighborhood U such that

⋂
t>0 Yt(U) is in the closure of the closed orbits

is every flow Y Cr close to X. We show that, for flows on compact 3-
manifolds, all Cr critically robust singular-hyperbolic attractors with only
one singularity are Cr robust.

Let us state our result in a precise way. Hereafter Xt is a flow induced by
a Cr vector field X on a compact 3-manifold M . The ω-limit set of p ∈ M
is the accumulation point set ωX(p) of the positive orbit of p. An invariant
set is transitive if it equals ωX(p) for some point p on it.

327
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Definition 1.1. A compact set in M is an attracting set of X if it can be
written in the form

⋂
t>0Xt(U) for some neighborhood U . An attractor is

a transitive attracting set.

See [Mi] where several definitions of attractors are discussed. The central
definition of this paper is the following:

Definition 1.2. An attractor of a Cr flow X is Cr robust transitive (or
Cr robust for short) if it has a neighborhood U such that

⋂
t>0 Yt(U) is a

transitive set of Y for every flow Y that is Cr close to X.

Recently the problem of finding sufficient conditions for robustness of
attractors was introduced in [B] and [P]. To deal with it we introduce the
following definitions: a compact invariant set Λ of X is partially hyperbolic
if there are an invariant splitting TΛ = Es⊕Ec and positive constants K,λ
such that:

1. Es is contracting, namely

‖DXt/E
s
x‖ ≤ Ke−λt, ∀x ∈ Λ, ∀t > 0.

2. Es dominates Ec, namely

‖DXt/E
s
x‖ ·

∥∥DX−t/EcXt(x)

∥∥ ≤ Ke−λt, ∀x ∈ Λ, ∀t > 0.

The central direction Ec of Λ is said to be volume expanding if the addi-
tional condition ∣∣J(DXt/E

c
x)
∣∣ ≥ Keλt

holds for all x ∈ Λ and t > 0, where J( · ) means the Jacobian.

Definition 1.3 ([MPP]). An attractor is singular-hyperbolic if it has sin-
gularities, all of which are hyperbolic, and is partially hyperbolic with vol-
ume expanding central direction.

The most representative example of a Cr robust singular-hyperbolic at-
tractor is the geometric Lorenz attractor [GW]. The main result in [MPP]
claims that C1 robust nontrivial attractors on compact 3-manifolds are
singular-hyperbolic. The converse is false: there are singular-hyperbolic at-
tractors on compact 3-manifolds that are not Cr robust [MPu]. The follow-
ing definition gives a further sufficient condition for robustness of singular-
hyperbolic attractors:

Definition 1.4. An attractor of a Cr flow X is Cr critically robust if it has
a neighborhood U such that

⋂
t>0 Yt(U) is in the closure of the closed orbits

of Y , for every flow Y that is Cr close to X.

Hyperbolic attractors on compact manifolds are Cr robust and Cr criti-
cally robust for all r. The geometric Lorenz attractor [GW] is an example
of a singular-hyperbolic attractor with only one singularity which is also Cr

robust and Cr critically robust. In general singular-hyperbolic attractors
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with only one singularity may be neither Cr robust nor Cr critically robust
[MPu]. Nevertheless we shall prove that on compact 3-manifolds Cr criti-
cally robustness implies Cr robustness among singular-hyperbolic attractors
with only one singularity. More precisely:

Theorem A. A Cr critically robust singular-hyperbolic attractor with only
one singularity on compact 3-manifolds is Cr robust.

This gives explicit sufficient conditions for the robustness of attractors
but they depend on the perturbed flow. E. Pujals is interested in conditions
depending on the unperturbed flow only. It would also be interesting to
determine whether the conclusion of Theorem A holds if we interchange the
roles of robust and critically robust in the statement.

The proof of Theorem A relies on recent work [MP2]. We reproduce the
necessary results in Section 2 for completeness. The proof of Theorem A is
in Section 3.

2. Singular-hyperbolic attracting sets

In this section we describe the results in [MP2], omitting some proofs; see
[MP2] for details. Hereafter X is a Cr flow on a closed 3-manifold M .
The closure of B will be denoted by Cl(B). If A is a compact invariant
set of X we denote by SingX(A) the set of singularities of X in A, and by
PerX(A) the union of the periodic orbits of X in A. A compact invariant
set H of X is hyperbolic if the tangent bundle over H has an invariant
decomposition Es ⊕EX ⊕Eu such that Es is contracting, Eu is expanding
and EX is generated by the direction of X [PT]. Stable Manifold Theory
[HPS] asserts the existence of the stable manifold W s

X(p) and the unstable
manifold W u

X(p) associated to p ∈ H. These manifolds are respectively
tangent to the subspaces Esp ⊕ EXp and EXp ⊕ Eup of TpM . In particular,
W s
X(p) and W u

X(p) are well-defined if p belongs to a hyperbolic periodic
orbit of X. If O is an orbit of X we write W s

X(O) = W s
X(p) and W u

X(O) =
W u
X(p) for some p ∈ O. We observe that W s(u)

X (O) does not depend on
p ∈ O. When dimEs = dimEu = 1 we say that H is of saddle type. In
this case W s

X(p) and W u
X(p) are two-dimensional submanifolds of M . The

maps p ∈ H → W s
X(p) and p ∈ H → W u

X(p) are continuous (on compact
parts). Moreover, a compact, singular, invariant set Λ of X is singular-
hyperbolic if all its singularities are hyperbolic and the tangent bundle over
Λ has an invariant decomposition Es ⊕ Ec such that Es is contracting, Es

dominates Ec and Ec is volume expanding (i.e., the Jacobian of DXt/E
c

grows exponentially as t→∞). Again, Stable Manifold Theory asserts the
existence of the strong stable manifold W ss

X (p) associated to p ∈ Λ. This
manifold is tangent to the subspace Esp of TpM . For all p ∈ Λ we define
W s
X(p) =

⋃
t∈RW

ss
X (Xt(p)). If p is regular (i.e., X(p) 6= 0) then W s

X(p) is a
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well-defined two-dimensional submanifold of M . The map p ∈ Λ → W s
X(p)

is continuous (on compact parts) at the regular points p of Λ. A singularity
σ of X is Lorenz-like if its eigenvalues λ1, λ2, λ3 are real and satisfy

λ2 < λ3 < 0 < −λ3 < λ1

up to some reordering of the eigenvalues. A Lorenz-like singularity σ is
hyperbolic, so W s

X(σ) and W u
X(σ) do exist. Moreover, the eigenspace of λ2

is tangent to a one-dimensional invariant manifold W ss
X (σ). This manifold

is called the strong stable manifold of σ. Clearly W ss
X (σ) splits W s

X(σ) into
two connected components. We denote by W s,+

X (σ) and W s,−
X (σ) the two

connected components of W s
X(σ) \W ss

X (σ).
Let Λ be a singular-hyperbolic set with dense periodic orbits of a three-

dimensional flow. It follows from [MPP] that every σ ∈ SingX(Λ) is Lorenz-
like and satisfies Λ ∩ W ss

X (σ) = {σ}. It follows also from [MPP] that
any compact invariant subset without singularities of Λ is hyperbolic of
saddle type. If in addition Λ is attracting, there is for every p ∈ PerX(Λ) a
σ ∈ SingX(Λ) such that

W u
X(p) ∩W s

X(σ) 6= ∅.
This follows from the methods in [MP1].

For every singular-hyperbolic set Λ of a three-dimensional flow X and
every Lorenz-like singularity σ ∈ SingX(Λ) we define

P+ = {p ∈ PerX(Λ) : W u
X(p) ∩W s,+

X (σ) 6= ∅},
P− = {p ∈ PerX(Λ) : W u

X(p) ∩W s,−
X (σ) 6= ∅},

H+
X = Cl(P+),

H−
X = Cl(P−).

These sets will play an important role.

Lemma 2.1. Let Λ be a connected, singular-hyperbolic, attracting set with
dense periodic orbits and only one singularity σ. Then Λ = H+

X ∪H
−
X .

Next we state a technical lemma to be used later. If S is a submanifold we
denote by TxS the tangent space at x ∈ S. A cross-section of X is a compact
submanifold Σ transverse to X and diffeomorphic to the two-dimensional
square [0, 1]2. If Λ is a singular-hyperbolic set of X and x ∈ Σ ∩ Λ, then x
is regular and so W s

X(x) is a two-dimensional submanifold transverse to Σ.
In this case we denote by W s

X(x,Σ) the connected component of W s
X(x)∩Σ

containing x. We shall be interested in a special cross-section described as
follows: let Λ be a singular-hyperbolic set of a three-dimensional flow X
and let σ ∈ SingX(Λ). Suppose that the closed orbits contained in Λ are
dense in Λ. Then σ is Lorenz-like [MPP], and therefore one can describe
the flow using the Grobman–Hartman Theorem [dMP]. Indeed, we can
assume that the flow of X around σ is the linear flow λ1∂x1 +λ2∂x2 +λ3∂x3
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in a suitable coordinate system (x1, x2, x3) ∈ [−1, 1]3 around σ = (0, 0, 0).
A cross-section Σ of X is singular if it corresponds to the submanifolds
Σ+ = {x3 = 1} or Σ− = {x3 = −1} in the coordinate system (x1, x2, x3).
We denote by l+ and l− the curves obtained by intersecting {x2 = 0} with
Σ+ and Σ−, respectively; these curves are contained inW s,+

X (σ) andW s,−
X (σ)

respectively. We state without proof the following straightforward lemma:

Lemma 2.2. Let Λ a singular-hyperbolic set with dense periodic orbits of
a three-dimensional flow X, and fix σ ∈ SingX(Λ). There are singular
cross-sections Σ+,Σ− as above such that every orbit of Λ passing close to
some point in W s,+

X (σ) (resp. W s,−
X (σ)) intersects Σ+ (resp. Σ−). If p ∈

Λ ∩ Σ+ is close to l+, then W s
X(p,Σ+) is a vertical curve crossing Σ+. If

p ∈ PerX(Λ) and W u
X(p) ∩W s,+

X (σ) 6= ∅, then W u
X(p) contains an interval

J = Jp intersecting l+ transversally; and the same is true if we replace +
by −.

To prove transitivity we shall use two lemmas:

Lemma 2.3 (Birkhoff’s criterion). Let T be a compact, invariant set of X
such that for all open sets U, V intersecting T there is s > 0 such that
Xs(U ∩ T ) ∩ V 6= ∅. Then T is transitive.

Lemma 2.4. Let Λ be a connected, singular-hyperbolic, attracting set with
dense periodic orbits and only one singularity σ. Let U, V be open sets,
p ∈ U ∩ PerX(Λ) and q ∈ V ∩ PerX(Λ). If W u

X(p) ∩ W s,+
X (σ) 6= ∅ and

W u
X(q) ∩W s,+

X (σ) 6= ∅, there exist t > 0 and z ∈ W u
X(p) arbitrarily close to

W u
X(p)∩W s,+

X (σ) such that Xt(z) ∈ V . The same is true if we replace + by
−.

Let Λ be a singular-hyperbolic set of X ∈ X r satisfying:
1. Λ is connected.
2. Λ is attracting.
3. The closed orbits contained in Λ are dense in Λ.
4. Λ has only one singularity σ.
We note that condition 3 implies

(H1) Λ = Cl(PerX(Λ)).

Proposition 2.5. Suppose that, for any given p, q ∈ PerX(Λ), either
1. W u

X(p) ∩W s,+
X (σ) 6= ∅ and W u

X(q) ∩W s,+
X (σ) 6= ∅, or

2. W u
X(p) ∩W s,−

X (σ) 6= ∅ and W u
X(q) ∩W s,−

X (σ) 6= ∅.
Then Λ is transitive.

Proof. By Birkhoff’s criterion we only need prove that for all open sets U, V
intersecting Λ there exists s > 0 such that Xs(U ∩ Λ) ∩ V 6= ∅. For this we
proceed as follows: by (H1) there are p ∈ PerX(Λ)∩U and q ∈ PerX(Λ)∩V .
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First suppose that alternative 1 holds. By Lemma 2.4, there are z ∈W u
X(p)

and t > 0 such that Xt(z) ∈ V . Since z ∈W u
X(p), we have w = X−t′(z) ∈ U

for some t′ > 0. Since Λ is an attracting set, w ∈ Λ. If s = t + t′ > 0 we
conclude that w ∈ (U∩Λ)∩X−s(V ) and soXs(U∩Λ)∩V 6= ∅. If alternative 2
of the corollary holds we can find s > 0 such that Xs(U ∩ Λ) ∩ V 6= ∅ in a
similar way (replacing + by −). The result follows. �

Proposition 2.6. If there is a sequence pn ∈ PerX(Λ) converging to some
point in W s,+

X (σ) such that W u
X(pn) ∩ W s,−

X (σ) 6= ∅ for all n, then Λ is
transitive. The same is true interchanging + and −.

Proof. Let p, q ∈ PerX(Λ) be fixed. Suppose that W u
X(p)∩W s,+

X (σ) 6= ∅ and
W u
X(q) ∩W u,−

X (σ) 6= ∅. By Lemma 2.2 we can fix a cross-section Σ = Σ+

through W s,+
X (σ) and an open arc J ⊂ Σ ∩ W u

X(p) intersecting W s,+
X (σ)

transversally. Again by Lemma 2.2 we can assume that pn ∈ Σ for every
n. Because the direction Es of Λ is contracting, the size of W s

X(pn) is
uniformly bounded away from zero. It follows that there is n large so that J
intersects W s

X(pn) transversally. Applying the Inclination Lemma [dMP] to
the saturation of J ⊂ W u

X(p), and the assumption W u
X(pn) ∩W s,−

X (σ) 6= ∅,
we conclude that W u

X(p)∩W s,−
X (σ) 6= ∅. So alternative 2 of Proposition 2.5

holds; it follows from that proposition that Λ is transitive. �

Proposition 2.7. If there is a ∈ W u
X(σ) \ {σ} such that σ ∈ ωX(a), then

Λ is transitive.

Proof. Without loss of generality we can assume that there exists z in
ωX(a) ∩ W+

X (σ). If W u
X(q) ∩ W s,−

X (σ) = ∅ for all q ∈ PerX(Λ), then
W u
X(q) ∩ W s,+

X (σ) 6= ∅ for all q ∈ PerX(Λ); see [MP1]. Then Λ is tran-
sitive by Proposition 2.5 since alternative 1 holds for all p, q ∈ PerX(Λ). So
we can assume that there is q ∈ PerX(Λ) such that W u

X(q) ∩W s,−
X (σ) 6= ∅.

It follows from the dominating condition of the singular-hyperbolic split-
ting of Λ that the intersection W u

X(q) ∩W s,−
X (σ) is transversal. This allows

us to choose a point in W u
X(q) arbitrarily close to W s,−

X (σ) on the side of
W u
X(q) ∩W s,−

X (σ) accumulating a. Since Λ is attracting and satisfies (H1),
one can find a sequence pn ∈ PerX(Λ) converging to z ∈W s,+

X (σ) such that
for all n there is p′n in the orbit of pn such that the sequence p′n converges
to some point in W s,−

X (σ). Now suppose for a contradiction that Λ is not
transitive. Then Proposition 2.6 implies

W u
X(p′n) ∩W

s,+
X (σ) = ∅ and W u

X(pn) ∩W s,−
X (σ) = ∅

for n large. But W u
X(pn) = W u

X(p′n) since p′n and pn are in the same orbit
of X. So W u

X(pn) ∩ (W s,+
X (σ) ∪W s,−

X (σ)) = ∅. However

W u
X(pn) ∩W s

X(σ) = ∅,
a contradiction since SingX(Λ) = {σ}. We conclude that Λ is transitive. �
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Theorem 2.8. If Λ is not transitive, there is for all a ∈W u
X(σ)\{σ} a per-

iodic orbit O of X with positive expanding eigenvalues such that a ∈W s
X(O).

Proof. Fix a ∈W u
X(σ) \ {σ}, and assume that ωX(a) is not a periodic orbit.

We will obtain a contradiction once we prove that if p, q ∈ PerX(Λ) then
p, q satisfy one of the two alternatives in Proposition 2.5. To prove this
we proceed as follows: as noted before, both W u

X(p) and W u
X(q) intersect

W s
X(σ) (see [MP1]). Then we can assume

W u
X(p) ∩W s,+

X (σ) 6= ∅ and W u
X(q) ∩W s,−

X (σ) 6= ∅.
By using this and the linear coordinate around σ, it is easy to construct

an open interval I = Ia, contained in a suitable cross-section Σ = Σa of X
containing a, and such that I \ {a} is formed by two intervals I+ ⊂ W u

X(p)
and I− ⊂ W u

X(q). Observe that the tangent vector of I is contained in
Ec ∩TΣa. Proposition 2.7 implies that σ /∈ ωX(a), since Λ is not transitive.
It follows that H = ωX(a) is a hyperbolic set of saddle type; see [MPP].
As in [M] one proves that H is one-dimensional, so Bowen’s Theory of
hyperbolic one-dimensional sets [Bw] applies. In particular we can choose
a family of cross-sections S = {S1, . . . , Sr} of small diameter such that H is
the flow-saturate of H ∩ intS ′, where S ′ =

⋃
Si and intS ′ is the interior of

S ′. Also, I ⊂ Λ since Λ is attracting. Recall that the tangent direction of
I is contained in Ec. Since Ec is volume expanding and H is nonsingular,
the Poincaré map induced by X on S ′ is expanding along I. As in [MP1,
p. 371] we can find δ > 0 and a open arc sequence Jn ⊂ S ′ in the positive
orbit of I with length bounded away from 0 such that there is an in the
positive orbit of a contained in the interior of Jn. We can fix S = Si ∈ S
in order to assume that Jn ⊂ S for every n. Let x ∈ S be a limit point of
an. Then x ∈ H ∩ intS ′. Because I is tangent to Ec, the interval sequence
Jn converges to an interval J ⊂ W u

X(x) in the C1 topology (W u
X(x) exists

since x ∈ H and H is hyperbolic). J is not trivial since the length of Jn is
bounded away from 0. If an were in W s

X(x) for n large we would conclude
that x is periodic by [MP1, Lemma 5.6], a contradiction since ωX(a) is not
periodic. We conclude that for infinitely many values of n, an /∈ W s

X(x).
Since Jn → J and Λ has strong stable manifolds of uniformly size, there
exists

zn ∈
(
W s
X(an+1) ∩ S

)
∩
(
Jn \ {an}

)
for all n large. For every n let J+

n and J−n be the two connected components
of Jn \{an}, with J+

n in the positive orbit of I+ and J−n in the positive orbit
of I−. Clearly, either zn ∈ J+

n or zn ∈ J−n .
If zn ∈ J+

n there is vn+1 ∈ PerX(Λ) ∩ S close to an+1 such that

W s
X(vn+1) ∩ J+

n 6= ∅ and W s
X(vn+1) ∩ J−n+1 6= ∅.

Since vn+1 is periodic, it follows from [MPP] that W u
X(vn+1) intersects

W s,+
X (σ) or W s,−

X (σ). The choice of vn+1 implies that its orbit passes close
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to a point in W s,−
X (σ). Since Λ is not transitive we conclude that W u

X(vn+1)
intersects W s,−

X (σ). Since W s
X(vn+1) ∩ J+

n is transversal, the Inclination
Lemma then implies W u

X(p) ∩W s,−
X (σ) 6= ∅. Hence

W u
X(p) ∩W s,−

X (σ) 6= ∅ and W u
X(q) ∩W s,−

X (σ) 6= ∅.
If zn ∈ J−n we can prove by similar arguments that

W u
X(p) ∩W s,+

X (σ) 6= ∅ and W u
X(q) ∩W s,+

X (σ) 6= ∅.
These alternatives yield the desired contradiction. Therefore ωX(a) = O for
some periodic orbit O ofX. To finish we prove that the expanding eigenvalue
of O is positive. Suppose by contradiction that it is not. Fix a cross-section
Σ intersecting O in a single point p0. This section defines a Poincaré map
Π : Dom Π ⊂ Σ → Σ of which p0 is a hyperbolic fixed-point. The as-
sumption implies that DΠ(p0) has negative expanding eigenvalue. Because
p0 ∈ PerX(Λ), it follows from [MPP] that W u

X(p0) intersects W s,+
X (σ) or

W s,−
X (σ). We shall assume the former case since the proof in the latter is

similar. We claim that W u
X(p) ∩W s,+

X (σ) 6= ∅ for all p ∈ PerX(Λ). Indeed,
let p ∈ PerX(Λ) be fixed. Again W u

X(p) intersects W s,+
X (σ) or W s,−

X (σ). In
the first case we are done. So we can assume that W u

X(p) ∩W s,−
X (σ) 6= ∅.

By flow-saturating this intersection we obtain an interval K ⊂ W u
X(p) ∩ Σ

intersecting W s
X(p0,Σ) transversally. At the same time, there is an interval

J ⊂W s,+
X (σ)∩Σ intersecting W u

X(p0,Σ) transversally. Since the expanding
eigenvalue of DΠ(p0) is negative the Inclination Lemma implies that the
backward iterates Π−n(J) of J accumulate on W s

X(p0,Σ) in both sides. Be-
cause K has transversal intersection with W s

X(p0Σ) we conclude that one
such backward iterate intersects K, and this yields W u

X(p)∩W s,+
X (σ) 6= ∅ as

desired, proving the claim. The claim together with Proposition 2.5 implies
that Λ is transitive, yielding the contradiction needed to complete the proof
of theorem. �

Hereafter we shall assume that Λ is not transitive. Let a ∈W s
X(σ)\{σ} be

fixed. By Theorem 2.8, a ∈W s
X(O) for some periodic orbit O with positive

expanding eigenvalue. This last property implies that the unstable manifold
W u
X(O) of O is a cylinder with generating curve O. Then O separates

W u
X(O) into two connected components, which we denote by W u,+,W u,−

according to the following convention (see Figure 1): there is an interval
I = Ia, contained in a suitable cross-section of X and containing a, such
that if I+, I− are the connected components of I \ {a} then I+ ⊂ W u

X(p)
and I− ⊂ W u

X(q) for some periodic points p, q ∈ Λ (recall that Λ is not
transitive). In addition I is tangent to the central direction Ec of Λ (see
Figure 1). Since a ∈ W s

X(O) and I is tangent to Ec, the flow of X carries
I to an interval I ′ transverse to W s

X(O) at a. Note that the flow carries I+

and I− into I+
0 and I−0 respectively.
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Definition 2.9. We denote by W u,+ the connected component of W u \ O
that is accumulated (via the Inclination Lemma and the Strong λ Lemma
[dMP, D]) by the positive orbit of I+

0 . We denote W u,− the connected
component of W u

X(O) \O accumulated by the positive orbit of I−0 .

W
s,+

W s,-

σ I

I

+

-
a

O

I

I+0

0
-

a0

u,-
W

u,+
W

p

p

q

Figure 1. Definition of W u,+ and W u,−.

It can easily be proved using the Strong λ Lemma [D] that this definition
does not depend on p, q, Jp, Jq.

Proposition 2.10. W u,+ ∩W s,−
X (σ) = ∅ and W u,+ ∩W s,+

X (σ) 6= ∅. The
same is true interchanging + and −.

Proof. For simplicity set W = W u,+. First we prove that W ∩W s,−
X (σ) = ∅.

Suppose for a contradiction that W ∩ W s,−
X (σ) 6= ∅. Since this last in-

tersection is transversal, there is an interval J ⊂ W s,−
X (σ) intersecting W

transversally. Now, fix a cross-section Σ = Σ+ as in Lemma 2.2 and let
p ∈ PerX(Λ) be such that W u

X(p) ∩W s,+
X (σ) 6= ∅. Then there is an small

interval I ⊂ W u
X(p) ∩ Σ transversal to Σ ∩W s,+

X (σ). By the definition of
W = W u,+ (Definition 2.9), the positive orbit of I accumulates on W . Since
J is transversal to W the Inclination Lemma implies that the positive orbit
of I intersects J . This proves W u

X(p) ∩W s,−
X (σ) 6= ∅ for all p ∈ PerX(Λ).

It follows that alternative 2 of Proposition 2.5 holds for all p, q, which con-
tradicts the nontransitivity of Λ and proves that W ∩ W s,−

X (σ) = ∅, as
desired. Now suppose for a contradiction that W ∩ W s,+

X (σ) = ∅. Since
W∩W s,−

X (σ) = ∅ we obtainW∩W s
X(σ) = ∅ (see [MPP]). But the denseness

of periodic orbits and the Inclination Lemma imply that W ∩W s
X(σ) 6= ∅.
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This is a contradiction, which proves that W ∩W s,+
X (σ) 6= ∅. The result

follows. �

Proposition 2.11. H+ = Cl(W u,+) and H− = Cl(W u,−).

Proof. Fix q ∈ P+, i.e., W u
X(q) ∩W s,+

X (σ) 6= ∅. Note that W u,+ ∩W s,+
X (σ)

is nonempty by Lemma 2.10. Using (H1) and the Inclination Lemma it is
not hard to prove that W u,+ accumulates on q; therefore H+ ⊂ Cl(W u,+).
Conversely let x ∈ W u,+ be fixed. By (H1) and W u,+ ⊂ Λ there is z in
PerX(Λ) near x. Choosing z close to x we ensure that W s

X(z) ∩W u,+ 6= ∅,
because stable manifolds have size uniformly bounded away from zero. If
W u
X(z) ∩ W s,−

X (σ) 6= ∅, the Inclination Lemma and the fact that W s
X(z)

intersects W u,+ imply that W u ∩W s,−
X (σ) 6= ∅. This contradicts Proposi-

tion 2.10, so W u
X(z) ∩W s,−

X (σ) = ∅. By [MP1] we obtain z ∈ P+, proving
that x ∈ H+ and the lemma. �

Proposition 2.12. If z ∈ PerX(Λ) and W s
X(z) ∩W u,+ 6= ∅, then

Cl(W s
X(z) ∩W u,+) = Cl(W u,+).

The same is true if we replace + by −.

Proof. We have shown that Cl(W s,+
X (σ) ∩ W u,+) = Cl(W u,+). Fix x ∈

W u,+. By (H1) there is w ∈ PerX(Λ) close to x. In particular W s
X(w)

intersects W u,+. If W u
X(w) ∩W s,+

X (σ) = ∅ then W u
X(w) ∩W s,−

X (σ) 6= ∅ by
[MP1]. It follows from the Inclination Lemma that W u,+ ∩W s,−

X (σ) 6= ∅,
contradicting Proposition 2.10. We conclude that W u

X(w) ∩W s,+
X (σ) 6= ∅.

Note thatW s
X(w)∩W u,+ 6= ∅ gets close to x as w → x. Since the intersection

W u
X(w) ∩W s,+

X (σ) 6= ∅ is transversal we can apply the Inclination Lemma
to find a transverse intersection W u,+ ∩ W s,+

X (σ) close to x. This proves
Cl(W s,+

X (σ) ∩W u,+) = Cl(W u,+). Finally we prove Cl(W s
X(z) ∩W u,+) =

Cl(W u,+). Choose x ∈W u,+. Since Cl(W s,+
X (σ) ∩W u,+) = Cl(W u,+) there

is an interval Ix ⊂ W u,+ arbitrarily close to x such that Ix ∩W s,+
X (σ) 6= ∅.

The positive orbit of Ix first passes through a and then accumulates onW u,+.
But W s

X(z)∩W u,+ 6= ∅ by assumption. Since this intersection is transversal
the Inclination Lemma implies that the positive orbit of Ix intersects W s

X(z).
By taking the backward flow of the last intersection we get W s

X(z)∩ Ix 6= ∅.
This proves the lemma. �

Given z ∈ PerX(Λ), let HX(z) be the homoclinic class associated to z.

Proposition 2.13. If z ∈ PerX(Λ) is close to a point in W u,+, then

HX(z) = Cl(W u,+).

The same is true if we replace + by −.
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Proof. Let z ∈ PerX(Λ) be a point close to one in W u,+. It follows from the
continuity of the stable manifolds that W s

X(z) ∩W u,+ 6= ∅. We claim that
HX(z) = Cl(W u,+). Indeed W u,+ ∩W s,−

X (σ) = ∅ by Proposition 2.10. This
equality and the Inclination Lemma imply that W u

X(z)∩W s
X(σ) ⊂W s,+

X (σ).
By Proposition 2.12, W s

X(z)∩W u,+ is dense in W u,+ since W s
X(z)∩W u,+ 6=

∅. Let Σ be a cross-section containing p0 and fix x ∈W u,+. We can assume
x, z ∈ Σ. Since W u

X(z) ∩W s
X(σ) 6= ∅ and W u

X(z) ∩W s
X(σ) ⊂ W s,+

X (σ) there
is an interval I ⊂ W u

X(z) intersecting W s,+
X (σ). Then the positive orbit

of I yields an interval J close to σ intersecting W s,+
X (σ). In addition, the

positive orbit of J yields an interval K whose positive orbit accumulates
W u,+ (recall Definition 2.9). Since W s

X(z) ∩ W u,+ is dense in W u,+ and
x ∈ W u,+, the orbit W s

X(z) passes close to x. The Inclination Lemma
applied to the positive orbit of K yields a homoclinic point z′ associated to
z which is close to x. This proves that x ∈ HX(z), so Cl(W u,+) ⊂ HX(z).
The opposite inclusion is a direct consequence of the Inclination Lemma
applied to W s

X(z) ∩W u,+ 6= ∅. We conclude that Cl(W u,+) = HX(z) as
desired. �

Theorem 2.14. Let Λ be a singular-hyperbolic set of a Cr flow X on a
closed three-manifold, where r ≥ 1. Suppose that the following properties
hold:

1. Λ is connected.
2. Λ is attracting.
3. The closed orbits contained in Λ are dense in Λ.
4. Λ has a unique singularity σ.
5. Λ is not transitive.

Then H+ and H− are homoclinic classes of X.

Proof. Let Λ be a singular-hyperbolic set of X satisfying the theorem’s con-
ditions. To prove thatH+ is a homoclinic class it suffices by Proposition 2.11
to prove that Cl(W u,+) is a homoclinic class. By condition 3 of the Theo-
rem we can choose z ∈ PerX(Λ) arbitrarily close to a point in W u,+. Then
Cl(W u,+) = HX(z) by Proposition 2.13 and the result follows. �

3. Proof of Theorem A

First we introduce some notations. HereafterM is a compact 3-manifold and
X r is the space of Cr flows in M equipped with the Cr topology, r ≥ 1. The
nonwandering set of X ∈ X r is the set Ω(X) of points p ∈M such that for
all neighborhood U of p and T > 0 there is t > T such that Xt(U)∩U 6= ∅.
An attracting Λ with isolating block U has a continuation Λ(Y ) for Y Cr

close to X defined by Λ(Y ) =
⋂
t>0 Yt(U). This continuation is then defined

when Λ is an attractor. A compact invariant set is nontrivial if it is not a
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closed orbit of X. Transitive sets for flows are always connected. The proof
of Theorem A is based on the following result:

Theorem 3.1. Let Λ be a singular-hyperbolic set of X ∈ X r, r ≥ 1. Sup-
pose that the following properties hold:

1. Λ is connected.
2. Λ is attracting.
3. The closed orbits contained in Λ are dense in Λ.
4. Λ has only one singularity.
5. Λ is not transitive.

Then for every neighborhood U of Λ there is a flow Y that is Cr close to X
and such that

Λ(Y ) 6⊂ Ω(Y ).

To prove this theorem we shall use the following definitions and facts: let
X ∈ X r and let Λ be a singular-hyperbolic set of X satisfying the conditions
of the theorem. Let σ be the unique singularity of Λ. As mentioned on
page 330, σ is Lorenz-like. As in Section 2, W ss

X (σ) divides W s
X(σ) into

two connected components, which we denote by W s,+
X (σ) and W s,−

X (σ), or
W s,+,W s,− for short. Recall that PerX(Λ) denotes the union of the periodic
orbits of X in Λ. Fix such a ∈W u

X(σ)\{σ}. By Theorem 2.8, ωX(a) = O for
some periodic orbit with positive expanding eigenvalues of X. In particular,
W u,+ and W u,− are defined (Definition 2.9).

Lemma 3.2. Cl(W u,+) ∩W s,− = ∅.
Proof. Suppose for a contradiction that Cl(W u,+)∩W s,− 6= ∅. By Lemma 2.2
there is a singular cross-section Σ− such that every orbit of Λ passing
close to some point in W s,−

X (σ) intersects Σ−. Let q ∈ Λ be periodic
such that W u

X(q) ∩ W s,−
X (σ) 6= ∅. Since Cl(W u,+) ∩ W s,− 6= ∅, we have

Cl(W u,+) ∩ Σ− 6= ∅. Because closed orbits are dense we can prove that
q ∈ Cl(W u,+). It follows that H− ⊂ Cl(W u,+), so Λ = Cl(W u,+) by Lemma
2.1. Also, since Λ is not transitive, H+ = Cl(W u,+) (Proposition 2.11) and
H+ is a homoclinic class (Theorem 2.14). Since homoclinic classes are tran-
sitive sets we conclude that Λ is transitive, a contradiction. This proves the
result. �

Lemma 3.3. Let D be a fundamental domain of W uu
X (p0) contained in

W u,+. There exist a neighborhood V of D and a cross-section Σ− of X
intersecting W s,− satisfying the following properties:

1. Every X-orbit’s sequence in Λ converging to a point in W s,− intersects
Σ−.

2. No positive X-orbit with initial point in V intersects Σ−.

Proof. Fix a fundamental domain F of W s
X(σ) and define F− = F ∩W s,−

X (σ)
Then there is a compact interval F ′ ⊂ F− such that Λ ∩ F− ⊂ F ′. By
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Lemma 3.2 there is ε > 0 such that Bε(Cl(W u,+))∩Bε(F ′) = ∅. Clearly we
can choose a cross-section Σ− of X inside Bε(F ′) such that every X-orbit’s
sequence in Λ converging to some point in W s,− intersects Σ−. Since W u,+

is invariant and Cl(W u,+) ∩ Bε(F ′) = ∅, every positive orbit with initial
point in D cannot intersect Σ−. By using the contracting foliation of Λ we
have the same property for every positive trajectory with initial point in a
neighborhood V of D. This proves the result. �

Now we define a perturbation (pushing) close to a point a ∈W u
X(σ)\{σ}.

To this end we fix the following cross-sections:
1. Σa, containing a in its interior.
2. Σ′ = X1(Σ).
3. Σ0, intersecting O in a single interior point.
4. Σ+,Σ−, which intersect W s,+,W s,−, respectively, and point toward

the side of a.
Every X-orbit intersecting Σ+ ∪Σ− will intersect Σ. Note that there is a

well-defined neighborhood O given by

O = X[0,1](Σa).

This neighborhood will be the support of the pushing described in the Fig-
ures 2 and 3. The pushing in O yielding the perturbed flow Y of X is
obtained in the standard way (see [dMP]).

a Σ

a

a
’

l s l s
’

X1
(   )a

O0

σ

Σ

Σ

+

-

Σ

Wu,+

Figure 2. Unperturbed flow X.

We have to prove that Λ(Y ) 6⊂ Ω(Y ) for the perturbed flow Y . For
this purpose we observe that by 5 of Theorem 3.1 and Proposition 2.5 we
can assume that there q periodic in U such that W u

X(q) ∩ W s,−
X (σ) 6= ∅.

We obtain in this way an interval K in Σ− ∩ W u
X(q) crossing Σ− as in
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a Σ

a

a
’

l s
O0

σ

Σ

Σ

+

-

Σ

Wu,+

K

K

’’

’’’

K’
a’

K

V

Figure 3. Perturbed flow Y .

Figure 3. The Y -flow carries K to an interval K ′′ as in Figure 3. Let
q(Y ),W u

Y (q(Y )),K ′′(Y ), σ(Y ) denote the continuation of these objects for
the perturbed flow Y . We observe that K(Y ) ⊂ Λ(Y ) since Λ(Y ) is an
attracting set, q(Y ) ∈ Λ(Y ) and K ⊂ W u

Y (q(Y )). Then Theorem 3.1 will
follow from the lemma below:

Lemma 3.4. K(Y ) 6⊂ Ω(Y ).

Proof. Suppose for a contradiction thatK(Y )⊂Ω(Y ) and pick x∈ IntK(Y ),
the interior of the interval K(Y ). The flow of Y carries the points near x
to the neighborhood V depicted in Figure 3. This neighborhood is obtained
by saturating a fundamental domain in W u,+ by the strong stable manifolds
[HPS]. Note that there are points x′ near x that back up close to x under
the forward flow of Y (x ∈ K(Y ) ⊂ Ω(Y )). In particular, the positive Y -
orbit of x′ returns to Σ−. At the same time, Lemma 3.3-2 implies that no
X-orbit starting in V intersects Σ−. Since X = Y outside O we conclude
that the positive Y -orbit of x′ intersects Σ+. Afterward this positive orbit
passes through the box O and arrives to V . By repeating the argument we
conclude that the positive Y -orbit of x′ never returns to Σ−, a contradiction.
The lemma is proved. �

Proof of Theorem A. Let Λ be a singular-hyperbolic attractor of a Cr flow
X on a compact 3-manifold M . Assume that Λ is Cr critically robust and
has a unique singularity σ. Denote by Λ(Y ) =

⋂
t>0 Yt(U) the continuation

of Λ in a neighborhood U of Λ for Y close to X. Denote by C(Y ) the union
of the closed orbits of a flow Y . Since Λ is Cr critically robust, there is a
neighborhood U of Λ such that Λ(Y )∩C(Y ) is dense in Λ(Y ) for every flow
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Y that is Cr close to X. Clearly Λ(Y ) is a singular-hyperbolic set of Y for all
Y close to X. Because Λ has a unique singularity, so does Λ(Y ). Now recall
that Λ is an attractor by assumption. In particular, Λ is transitive (recall
Definition 1.1). It follows that Λ is connected and so the neighborhood U
above can be arranged to be connected. Then Λ(Y ) is connected as well.
Summarizing, Λ(Y ) is a singular-hyperbolic set of Y satisfying conditions
1–4 of Theorem 3.1. If Λ is not Cr robust, we can find a Y that is is Cr close
to X and such that Λ(Y ) is not transitive. Then Λ(Y ) satisfies all conditions
of Theorem 3.1, and we can find a Y ′ that is Cr close to Y and such that
Λ(Y ′) 6⊂ Ω(Y ′). This is a contradiction, since Λ(Y ′) ⊂ Ω(Y ′) (recall that
Λ(Y ′) ∩ C(Y ′) is dense in Λ(Y ′)). This contradiction proves the result. �
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ALGEBRAIC D-GROUPS AND DIFFERENTIAL GALOIS
THEORY

Anand Pillay

We discuss various relationships between the algebraic D-
groups of Buium, 1992, and differential Galois theory. In
the first part we give another exposition of our general dif-
ferential Galois theory, which is somewhat more explicit than
Pillay, 1998, and where generalized logarithmic derivatives on
algebraic groups play a central role. In the second part we
prove some results with a “constrained Galois cohomological
flavor”. For example, if G and H are connected algebraic
D-groups over an algebraically closed differential field F , and
G and H are isomorphic over some differential field exten-
sion of F , then they are isomorphic over some Picard–Vessiot
extension of F . Suitable generalizations to isomorphisms of
algebraic D-varieties are also given.

1. Introduction

We work throughout with (differential) fields of characteristic zero. In
[8] the notion of a generalized differential Galois extension (or generalized
strongly normal extension) of a differential field was introduced, generalizing
Kolchin’s theory of strongly normal extensions, which in turn generalized
the Picard–Vessiot theory. The idea was to systematically replace alge-
braic groups over the constants by “finite-dimensional differential algebraic
groups”, to obtain new classes of extensions of differential fields with a good
Galois theory. This idea (almost obvious from the model-theoretic point of
view) was implicit in Poizat [11] who gave a model-theoretic treatment of
the strongly normal theory. However the “correct” definition of a generalized
differential Galois extension needed some additional fine-tuning. Neverthe-
less, our exposition of this general theory in [8] was overly model-theoretic,
and possibly remained somewhat obscure to differential algebraists. We try
to remedy this in the current paper by concentrating on the differential equa-
tions that have a good Galois theory, very much in the spirit of Section 7,
Chapter IV of Kolchin’s book [4]. The key notion is that of a generalized
logarithmic derivative on an algebraic group G over a differential field K
(a certain kind of differential rational map from G to its Lie algebra). We
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will see that such a generalized logarithmic derivative is essentially equiv-
alent to an algebraic D-group structure on G (in the sense of Buium [3]).
Our resulting exposition of the generalized differential Galois theory will be
equivalent to that in [8] when the base field K is algebraically closed. The
general situation (K not necessarily algebraically closed) can be treated us-
ing analogues of the V -primitives from [4, IV.10], and we leave the details
to others.

Let me now say a little more about the generalized logarithmic derivatives,
and how they tie up with the Picard–Vessiot/strongly normal theory. Let us
fix a differential field K, and assume for now that the field CK of constants
of K is algebraically closed. A linear differential equation over K, in vector
form, is ∂y = Ay, where y is a n × 1 column vector of unknowns and A is
an n × n matrix over K. Looking for a fundamental matrix of solutions,
one is led to the equation on GLn: ∂Y = AY , where Y is a n × n matrix
of unknowns ranging over GLn, which we can write as ∂(Y )Y −1 = A. Now
the map Y → ∂(Y )Y −1 is the classical logarithmic derivative, a first-order
differential crossed homomorphism from GLn into its Lie algebra, which is
surjective when viewed in a differentially closed overfield of K. A Picard–
Vessiot extension of K for the original equation is then a differential field
extension L = K(g), where g ∈ GLn is a solution of ∂(Y )Y −1 = A, and
CL = CK . Such an extension exists, and is unique up to K-isomorphism.
The group of (differential) automorphisms of L over K has the structure of
an algebraic subgroup of GLn(CK), and there is a Galois correspondence.

In place of GLn one can consider an arbitrary algebraic group G defined
over K (not necessarily linear and not necessarily defined over the constants
ofK). By a generalized logarithmic derivative onG we will mean a first-order
differential rational crossed homomorphism µ from G to L(G), defined over
K, such that µ is geometrically surjective (that is, surjective when viewed in
a differentially closed overfield) and such that Ker (µ), a finite-dimensional
differential algebraic subgroup of G, is Zariski-dense in G. The analogue of
a linear differential equation over K will then be an equation

(∗) µ(x) = a,

where x ranges over G and a ∈ L(G)(K).
Under an additional technical condition on the data, analogous to the

requirement that the field of constants of K be algebraically closed, we can
define the notion of a differential Galois extension L of K for the equation
(∗), prove its existence and uniqueness, identify the Galois group, and obtain
a Galois correspondence. In the case where G is defined over the constant
field CK and µ is the standard logarithmic derivative of Kolchin, we recover
Kolchin’s strongly normal extensions (see Theorem 6, Section 7, Chapter IV
of [4]).
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For G an algebraic group over the differential field K, an algebraic D-
group structure on G is precisely an extension of the derivation ∂ on K to
a derivation on the structure sheaf of G, respecting the group operation.
Algebraic D-groups belong entirely to algebraic geometry, and Buium [3]
points out that there is an equivalence of categories between the category of
algebraic D-groups and the category of ∂0-groups, finite-dimensional differ-
ential algebraic groups. The latter category belongs to Kolchin’s differential
algebraic geometry. On the other hand, there is essentially a one-to-one
correspondence between algebraic D-group structures on G and generalized
logarithmic derivatives on G. So our general differential Galois theory is in
a sense subsumed by the very concept of an algebraic D-group.

Details of the above will be given in Sections 2 and 3, including a “Tan-
nakian” approach and an examination of different manifestations of the dif-
ferential Galois group.

In Section 4 we will give another relation between algebraic D-groups and
the Picard–Vessiot theory: if two algebraic D-groups over an algebraically
closed differential field are isomorphic (as D-groups) over some differential
field extension of K, then such an isomorphism can be found defined over a
Picard–Vessiot extension of K. This uses Kolchin’s differential Lie algebra,
and strengthens the somewhat artificial results from [9]. We will also give
some related results on isomorphisms between algebraic D-varieties, using
differential jets (higher-dimensional versions of differential tangent spaces).

2. Algebraic D-groups

We will briefly describe the algebraicD-groups of Buium in a matter suitable
for our purposes. We also introduce the generalized logarithmic derivative
on an algebraic group induced by a given D-group structure. We refer to
[6] for a discussion of related themes.

Let us fix an ordinary differential field (K, ∂). For convenience we also
give ourselves a differential field extension (U , ∂) of (K, ∂) that is “universal”
with respect to (K, ∂). Namely, U has cardinality κ > |K|, and for any
differential subfield F < U of cardinality < κ and differential extension L
of K of cardinality ≤ κ there is an embedding (as differential fields) of L
into U over K. CK denotes the field of constants of K, and C the field of
constants of U .

We begin by recalling the tangent bundle of an algebraic variety or group
over K (in which the derivation on K plays no role).

Let X be an algebraic variety over K (maybe reducible). The tangent
bundle T (X) of X is another algebraic variety over K, with a canonical
surjective morphism π (over K) to X, and is defined locally by equations:∑

i ∂P/∂xi(x1, . . . , xn)vi = 0 for P polynomials over K generating the ideal
of X over K. If X = G is an algebraic group over K, then T (G) has the
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structure of an algebraic group over K such that the canonical projection to
G is an (algebraic) group homomorphism. The group operation on T (G) is
obtained by differentiating the group operation of G. That is, if f(−,−) is
the group operation on G and (g, u) and (h, v) are in T (G) then the product
(g, u) · (h, v) equals (g · h, dfg,h(u, v)). Note that if λg, ρg denote left and
right multiplication by g in G, then we have:

(∗) In T (G), (g, u) · (h, v) = (g · h, d(λg)h(v) + d(ρh)g(u)).

We will denote T (G)e, the tangent space of G at the identity, by L(G)
(for the Lie algebra of G). Then L(G), with its usual vector space group
structure, is a normal subgroup of T (G), and we have the exact sequence
0 → L(G) → T (G) → G→ {e} of algebraic groups (over K). We denote by
i : L(G) → T (G) the natural inclusion, and by π : T (G) → G the canonical
surjection above.

Note that G acts on L(G) (denoted (g, a) → ag) by the adjoint map
(differentiating conjugation by g ∈ G at the identity). And this “coincides”
with the action of T (G) on the normal subgroup L(G) by conjugation: for
a ∈ L(G) and g ∈ G, ag = xax−1 for any x ∈ T (G) such that π(x) = g.

For a ∈ L(G), we let la and ra denote the left and right invariant vector
fields on G determined by a. Namely for g ∈ G, la(g) = d(λg)e(a) and
ra(g) = d(ρg)e(a).

A K-rational splitting of T (G) as a semidirect product of G and L(G) is
given by either of the equivalent pieces of data:

(a) a K-rational homomorphic section s : G→ T (G) (that is π ◦ s = id);
(b) a K-rational crossed homomorphism h from T (G) onto L(G) such that

h◦i = id. (By definition α : T (G) → L(G) is a crossed homomorphism
if α(xy) = α(x) + xα(y)x−1.)

Note that the set of these K-rational splittings has the structure of a
commutative group. For example, using the data in (a), if s1, s2 are K-
rational homomorphic sections of the tangent bundle, and si(g) = (g, ui) for
i = 1, 2 then (s1 + s2)(g) = (g, u1,+u2). The identity element is just the
0-section s0(g) = (g, 0), which is a K-rational homomorphic section. Let
PK(G) denote this commutative group of K-rational splittings of T (G). We
denote the crossed homomorphism from T (G) onto L(G) corresponding to
the identity of PK(G) by h0 : T (G) → L(G), and the crossed homomorphism
corresponding to the homomorphic section s by hs.

Remark 2.1.
(i) h0(g, u) = d(ρg

−1
)g(u).

(ii) More generally, if s is a K-rational homomorphic section of T (G) → G,

then hs(g, u) = d(ρg
−1

)g(u− s(g)).

Proof. This follows directly from formula (∗) for multiplication in T (G). �
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Let us now bring in the differential structure. Assume for now that the
algebraic variety X is defined over CK the field of constants of K. Then it is
easy to see that if a ∈ X(U) then working in local coordinates with respect
to a given covering of X by affine varieties over CK , (a, ∂(a)) ∈ T (X). If
in addition X = G is an algebraic group defined over CK , then the map
∇ : G(U) → T (G)(U) taking g to (g, ∂(g)) is a group embedding. Let
lD : G(U) → L(G)(U) be defined by lD(g) = h0(g, ∂(g)). Then lD is
a “differential rational” crossed homomorphism defined over K, which is
precisely Kolchin’s logarithmic derivative. The map lD depends on h0, and
clearly any other h ∈ PK(G) gives rise to another differential rational crossed
homomorphism (over K) from G(U) onto L(G)(U).

Remark 2.2. Suppose G is defined over CK . Then:

(i) The (standard) logarithmic derivative lD : G(U) → L(G)(U) is given
by lD(g) = d(ρg

−1
)g(∂(g)).

(ii) lD is surjective.
(iii) Ker (lD) is precisely G(C).

Proof. (i) follows from Remark 2.1.
(ii) Let a ∈ L(G)(U). Then a determines the right invariant vector field

ra : G(U) → T (G)(U). As U is differentially closed, the main result of [7]
gives g ∈ G(U) such that ∂(g) = ra(g), hence (by (i)), lD(g) = a.

(iii) is obvious from (i). �

Let us now work in a more general context, dropping our assumption
that the variety X is defined over CK . Then for a ∈ X(U), (a, ∂(a)) may
no longer be a point of T (X) but rather a point of another bundle τ(X)
over X, which we now describe. For P (x1, . . . , xn) a polynomial over K, let
P ∂ denote the polynomial obtained from P by applying ∂ to its coefficients.
(So P ∂ = 0 if P is over CK .) Then τ(X) is defined locally by equations:∑

i

∂P/∂xi(x1, . . . , xn)vi + P ∂(x1, . . . , xn) = 0,

where P again ranges over polynomials in the ideal of X over K. (That
is, these affine pieces fit together to give an algebraic variety τ(X) over K,
together with a canonical projection from τ(X) to X.) It is immediate that
(a, ∂a) ∈ τ(X) for a ∈ X(U). It is also immediate that for each a ∈ X,
τ(X)a is a principal homogeneous space for the tangent space T (X)a, where
the action is addition (with respect to local coordinates above). Moreover
this happens uniformly, making τ(X) a torsor for the tangent bundle T (X).
In any case, if X is defined over CK , then τ(X) coincides with T (X). By an
algebraic D-variety over K we mean a pair (X, s) such that X is an algebraic
variety over K and s : X → τ(X) is a regular section defined over K.
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Now assume again that X = G is an algebraic group over K. Then
τ(G) has the structure of an algebraic group over K such that the canon-
ical projection τ(G) → G is a homomorphism. In local coordinates, as-
suming that multiplication in G is given by the sequence of polynomials
f = (fi(x1, . . . , xn, y1, . . . , yn))i=1,...,n over K, then for (g, u), (h, v) ∈ τ(G),
the product of (g, u) and (h, v) in τ(G) is given by(

g · h, df(g,h)(u, v) + (f∂1 (g, h), . . . , f∂n (g, h))
)
.

We again have the map ∇ : G(U) → τ(G)(U), given (in local coordinates)
by ∇(g) = (g, ∂(g)) and this is a group embedding.

So we have two K-algebraic groups T (G) and τ(G). Although these
need not be isomorphic as algebraic groups, they are “differential rationally”
isomorphic. The following is left to the reader.

Lemma 2.3. The map that takes (g, u) to (g, ∂(g) − u) is a (differential
rational) isomorphism of groups between τ(G)(U) and T (G)(U). Although
not necessarily rational, it is rational when restricted to the fibers over G.
In particular, the above map defines a K-rational isomorphism between the
vector groups τ(G)e and T (G)e = L(G).

Note that we have again an exact sequence

0 → τ(G)e → τ(G) → G→ e

of algebraic groups over K, which by virtue of the (canonical) isomorphism
between τ(G)e and L(G) given by Lemma 2.3 can be rewritten as:

0 → L(G) → τ(G) → G→ e.

Let us again write i for the (canonical) injection of L(G) in τ(G), and π for
the canonical surjection τ(G) → G. So if G is defined over CK this agrees
with our earlier notation: i : L(G) → T (G) and π : T (G) → G.

We can consider splittings (as algebraic groups over K) of τ(G) as a
semidirect product of G and L(G). Again each such splitting is determined
either by a K-rational homomorphic section s : G→ τ(G), or a K-rational
crossed homomorphism h : τ(G) → L(G) such that h ◦ i = id on L(G). We
will write hs for the crossed homomorphism corresponding to the homomor-
phic section s, and give explicit formulas below.

In any case, we can now define an algebraic D-group.

Definition 2.4. Let G an algebraic group over K. Then an algebraic D-
group structure on G over K is precisely a K-rational homomorphic section
s : G→ τ(G). We write the corresponding algebraic D-group as (G, s).

Given an algebraic D-group (G, s) we obtain a generalized logarithmic
derivative that we call lDs, a crossed homomorphism (in the obvious sense)
from G(U) to L(G)(U): lDs = hs ◦ ∇. Here is the analogue to Remarks 2.1
and 2.2.
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Remark 2.5. Let (G, s) be an algebraic D-group over K.

(i) For (g, u) ∈ τ(G), hs(g, u) = d(ρg
−1

)g(u− s(g)).
(ii) For g ∈ G(U), lDs(g) = d(ρg

−1
)g(∂(g)− s(g)) ∈ L(G)(U).

(iii) lDs : G(U) → L(G)(U) is surjective.
(iv) Ker (lDs) is precisely {g ∈ G(U) : ∂(g) = s(g)}, and is a Zariski-dense

subgroup of G(U).

Proof. (i) follows from the formula for multiplication in τ(G), and (ii) is an
immediate consequence of (i).

(iii) Let a ∈ L(G)(U). Again we obtain the right invariant vector field
ra : G(U) → T (G)(U). Then ra + s : G(U) → τ(G)(U) is also a rational
section of τ(G) → G. By [7] there is g ∈ G(U) such that ∂(g) = ra(g)+s(g),
hence lDs(g) = a by (i).

(iv) Ker (lDs) is a subgroup of G(U) as lDs is a crossed homomorphism.
As d(ρg

−1
)g is an isomorphism between T (G)g and T (G)e, we see that

Ker (lDs) is as described in (iii). By [7] for any proper subvariety X of
G(U) there is g ∈ G(U) such that ∂(g) = s(g). Hence by (i) Ker (lDs) is
Zariski dense in G. �

In the context of Remark 2.5, we denote Ker (lDs) by (G, s)]. This is a
finite-dimensional differential algebraic group, or ∂0-group in the sense of
[3], and is an object belonging to Kolchin’s differential algebraic geometry.
Just for the record, here are some key properties: (G, s)](U) is Zariski-dense
in G, the ∂0-subvarieties of (G, s)] are precisely of the form X ∩ (G, s)] for
X a D-subvariety of (G, s), and for any other algebraic D-group (H, t) the
∂0-homomorphisms between (G, s)] and (H, t)] are precisely those induced
by algebraic D-group homomorphisms between (G, s) and (H, t).

In any case, we have seen that an algebraic D-group structure (G, s) on
an algebraic group G over K determines a generalized logarithmic deriva-
tive lDs on G. We point out now, just for completeness, that conversely
any suitable differential rational crossed homomorphism map (over K) from
G(U) to L(G)(U) determines an algebraic D-group structure on G.

Some notation: Let X and Y be algebraic varieties defined over K. By
a first-order differential rational map h : X(U) → Y (U), defined over K,
we mean a map h from X(U) to Y (U) such that for, for each x ∈ X(U),
h(x) ∈ K(x, ∂(x)).

Lemma 2.6. Suppose that G is a connected algebraic group over K. Let
l : G(U) → L(G)(U) be a first-order differential rational crossed homo-
morphism, defined over K, which is surjective, and is such that Ker (l) is
Zariski-dense in G(U). Then, there are a unique K-rational automorphism
σ of L(G), and a unique algebraic D-group structure (G, s) on G (defined
over K), such that l = σ ◦ lDs.
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Proof. By [7], for example, ∇(G(U)) is Zariski-dense in τ(G)(U). Define
l1 on ∇(G(U)) by l1(x, ∂(x)) = l(x). So by Zariski-denseness, and the
properties of l, l1 extends uniquely to a K-rational surjective crossed homo-
morphism f from τ(G) to L(G).

By the Zariski-denseness of Ker (l) in G and the definition of f , we have
π(Ker (f)) = G. On the other hand, dim(τ(G)) = 2 dim(G) and dim(G) =
dim(L(G)). Hence dim(Ker (f)) = dim(G). Now π|Ker (f) : Ker (f) → G
is a group homomorphism so it has finite kernel. But this finite kernel is
a subgroup of the vector group τ(G)e so has to be trivial. It follows that
f |τ(G)e is an isomorphism (over K) with L(G). So there is a unique K-
automorphism σ of L(G) such that (σ ◦ f) ◦ i is the identity on L(G). Put
f1 = σ◦f . Then f1 gives an algebraic D-group structure (G, s) on G defined
over K. For g ∈ G(U), σ ◦ l(g) = f1(g, ∂(g)) = lDs(g). �

There is a natural notion of a D-morphism between algebraic D-varieties
(X, s) and (Y, t). First note that τ(−) is a functor, so if f : X → Y is a
morphism between the algebraic varieties X and Y with everything defined
over K then τ(f) is a morphism, over K, between τ(X) and τ(Y ), again
defined over f . (If X,Y, f are defined over the constants, then τ(f) is just
the differential of f .) In any case, a morphism between algebraic D-varieties
X and Y is by definition a morphism f of algebraic varieties, such that
t ◦ f = τ(f) ◦ s.

In particular we extract the notion of an algebraic D-subvariety of (X, s):
so an algebraic subvariety Y of X will be the underlying variety of an alge-
braic D-subvariety of (X, s) if s|Y maps Y to τ(Y ).

A homomorphism of algebraic D-groups is a D-morphism that is also a
homomorphism of algebraic groups.

We call an algebraic D-group (G, s) isotrivial if it is isomorphic over U to
a trivial algebraic D-group (H, s0), where H is defined over C and s0 is the
0-section of T (G).

The interest of the category of algebraic D-groups is that there exist
nonisotrivial algebraic D-groups. If A is an abelian variety over U and
p : G → A is the universal extension of A by a vector group then G has a
D-group structure (defined over the field over which A is defined). Moreover
any such D-group structure on G is nonisotrivial if A is not isomorphic (as
an algebraic group) to an abelian variety defined over C. Given such a D-
group structure (G, s) on G, p((G, s)]) < A is precisely the Manin kernel of
A. This example is worked out in detail in [6].

Let us repeat from [9] the discussion of a nonisotrivial algebraic D-group
structure on the commutative algebraic group Gm×Ga. So let G = Gm×Ga.
Then T (G) = τ(G) can be identified with {(x, y, u, v) : x 6= 0} with group
structure (x1, y1, u1, v1) ·(x2, y2, u2, v2) = (x1x2, y1+y2, u1x2+u2x1, v1+v2).
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Let s : G→ T (G) be the homomorphic section s(x, y) = (x, y, xy, 0). Then
(G, s) is an algebraic D-group known to be nonisotrivial.

Note that if g = (x, y) ∈ G, then the differential of multiplication by
g−1 at g takes (u, v) ∈ T (G)g to (u/x, v) ∈ L(G). Hence by 2.5, the
generalized logarithmic derivative lDs corresponding to s is: lDs(x, y) =
((∂(x)− xy)/x, ∂(y)) = (∂(x)/x− y, ∂(y)).

In particular (G, s)] = Ker (lDs) = {(x, y) ∈ G : ∂(x)/x = y, ∂(y) = 0},
which can be identified with the subgroup of Gm defined by the second-order
equation ∂(∂(x)/x) = 0.

3. Differential Galois theory

The conventions of the previous section are in force. In particular (K, ∂) is
a differential field of characteristic 0, and we may refer also to the universal
differential field extension (U , ∂) of K.

By a logarithmic differential equation over a differential field (K, ∂) we
mean something of the form

(∗) lDs(x) = a,

where (G, s) is an algebraic D-group defined over K and a ∈ L(G)(K). (So
the indeterminate x ranges over G.) As remarked in the introduction, a
special case is the equation ∂(X) = AX, where X ranges over GLn and A
is an n× n matrix over K.

In order to give the right notion of a differential Galois extension of K
for (∗), we need to place a further restriction on K,G and s.

Definition 3.1. Suppose (G, s) is an algebraic D-group over K. We say
that (G, s) is K-large, if for every (maybe reducible) algebraic D-subvariety
X of G, which is defined over K, X(K) ∩ (G, s)] is Zariski-dense in X.

Remark 3.2.
(i) The intuitive meaning of (G, s) beingK-large is that (G, s)] has enough

points with coordinates in K.
(ii) Suppose that G is defined over CK and that s = s0, the 0-section of

T (G). Then, if CK is algebraically closed, (G, s) is K-large.

In the next remark, we refer to differential closures of K. A differential
closure of K is a differential field extension of K that embeds over K into
any differentially closed field containing K. The differential closure of K
is unique up to K-isomorphism, and is written as K̂. Kolchin calls K̂ the
constrained closure of K.

Remark 3.3. (G, s) is K-large if and only (G, s)](K) = (G, s)](K̂) for
some (any) differential closure K̂ of K.
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Proof. Assume first that (G, s)](K) = (G, s)](K̂). Let X be a D-subvariety
of (G, s) defined over K. The irreducible components X1, . . . , Xr of X are
defined over K so also K̂ and are also D-subvarieties of (G, s). By [7] for
example for any nonempty Zariski open subset of any Xi defined over K̂,
there is a ∈ U(K̂ such that ∂(a) = s(a). By our assumptions a ∈ (G, s)](K).
So X ∩ (G, s)](K) is Zariski-dense in X.

Conversely, suppose (G, s) is K-large. Let a ∈ (G, s)](K̂), and suppose
for a contradiction that a /∈ G(K). Now a is constrained over K in the sense
of Section 10, Chapter III of [4]. This means that there is some differential
polynomial P (x) over K such that P (a) 6= 0, and whenever b is a differential
specialization of a over K and P (b) 6= 0 then b is a “generic” specialization
of a over K (in model-theoretic language tp(b/K) = tp(a/K)). Let X be
the irreducible K-subvariety of G whose generic point is a. Then (as ∂(a) =
s(a)), X is a D-subvariety of (G, s). Moreover the differential specializations
of a over K are precisely those b such that b ∈ X and ∂(b) = s(b). Now
subject to the conditions “x ∈ X and ∂(x) = s(x)”, the condition P (x) 6= 0
is clearly equivalent to x 6∈ Y for Y some proper subvariety of X defined
over K. By our assumptions there is b ∈ G(K) such that b ∈ X \ Y and
∂(b) = s(b). This is a contradiction. �

We call a differential ring (R, ∂) simple if it has no proper nontrivial
differential ideals. We refer to [12] for a discussion of simple differential
rings.

Lemma 3.4. Suppose that R is a simple differential ring over K that is
finitely generated over K. Then R embeds over K into some differential
closure of K.

Proof. As R has no zero-divisors, R embeds in U over K. Let R = K[a]∂ be
differentially generated over K by the finite tuple a. Suppose that π(a) = b
is a differential specialization over K. Then π extends to a surjective ring
homomorphism π : R→ K[b]∂ . The kernel is a differential ideal, so must be
trivial. Thus b is a generic specialization of a over K. It follows that a is
constrained over K so lives in some differential closure of K, as does R. �

We can now give the main definition.

Definition 3.5. Let (G, s) be a K-large algebraic D-group defined over K,
and lDs(x) = a be a logarithmic differential equation over K for (G, s). By
a differential Galois extension of K for the equation lDs = a we mean a
differential field extension L of K of the form K(α) for some solution α of
the equation such that K[α], the (differential) ring generated by K and the
coordinates of α, is a simple differential ring.

Lemma 3.6 (Existence and uniqueness of differential Galois extensions).
If (G, s) is a K-large algebraic D-group defined over K, and a ∈ L(G)(K),
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then there exists a differential Galois extension L of K for the equation
lDs(x) = a. Moreover, any two such extensions are isomorphic over K as
differential fields.

Proof. By Remark 2.5 (iii) there is a solution β ∈ G(U) of lDs(x) = a. Let α
be a maximal differential specialization of β over K. Then K[α] is a simple
differential ring and α is also a solution of lDs = a, so we get existence. Let
L = K(α).

Suppose L1 is another differential Galois extension of K for the equation,
generated by the solution γ say. By Lemma 3.4 we may assume that both L
and L1 are contained in some differential closure K̂ of K. By Remark 3.3,
(G, s)](K̂) = (G, s)](K). As both α and γ are solutions of lDs(x) = a, it
follows that α−1 · γ ∈ (G, s)](K̂) = (G, s)](K). Thus clearly L = L1. �

Here are some alternative characterizations of differential Galois exten-
sions:

Lemma 3.7. Let (G, s) be a K-large algebraic D-group over K, and L =
K(α) a differential field extension of K, where α is a solution of lDs(x) = a
(with a ∈ L(G)(K)). Then the following are equivalent:

(i) L and α satisfy Definition 3.5.
(ii) L is contained in some differential closure of K.
(iii) (G, s)](K) = (G, s)](L) and (G, s) is L-large.

Proof. (i) implies (ii) is given by Lemmas 3.4 and 3.6 and (ii) implies (iii)
follows from Remark 3.3.

(iii) implies (i). Assume L satisfies (iii). Then using Remark 3.3, we
have that (G, s)](L̂) = (G, s)](K). Now K̂ embeds in L̂ over K, hence by
Lemmas 3.4 and 3.6, there is a solution β ∈ G(L̂) of lDs(x) = a, such that
K[β] is a simple differential ring. Now α = β · g for some g ∈ (G, s)](K), so
clearly K[α] is also a simple differential ring. �

Condition (iii) is the analogue of “no new constants” in the strongly
normal case.

Remark 3.8. Suppose K is algebraically closed. Then the differential Ga-
lois extensions of K in the sense of Definition 3.5 coincide with the gener-
alized strongly normal extensions of K in the sense of [8]. In particular,
L is a strongly normal extension of K (in the sense of Kolchin) just if L
is a differential Galois extension of K for an equation lDs(x) = a, on an
algebraic D-group (G, s), where G is defined over CK and s = s0.

Proof. This follows from Proposition 3.4 of [8]. �

We now point out that given L as above, Aut∂(L/K) has the structure of a
differential algebraic group (over K) in two different ways. One corresponds
to the usual differential Galois group in the linear case, and is simply of the
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form (H, s)](K), where H is an algebraic D-subgroup of (G, s). The other,
corresponding to the “intrinsic” Galois group introduced by Katz, is of the
form (H1, s1)](L) for s1 another algebraic D-group structure on G (defined
over K), and H1 a D-subgroup of (G, s1) defined over K. The algebraic
D-groups (H, s) and (H1, s1) will be isomorphic, but not necessarily over
K, unless they are commutative. (But of course if K is algebraically closed,
H and H1 will be isomorphic over K as algebraic groups.)

So fix L = K(α) as in Definition 3.5. By 3.7 we have L < K̂ for some
fixed copy of the differential closure of K. Aut∂(L/K) denotes the group
of differential field automorphisms of L over K. Note that for any σ ∈
Aut∂(L/K), σ(α) is also a solution of lDs = a, hence σ(α) = b · c(σ) for a
unique c(σ) ∈ (G, s)](L) = (G, s)](K) (= (G, s)](K̂)).

Lemma 3.9. The map c above is a group isomorphism between Aut∂(L/K)
and (H, s)](K) for some algebraic D-subgroup H of G defined over K.

Proof. As an automorphism σ of L over K is determined by its action on α,
clearly the map is a group isomorphism with its image. So all that we need
is that the image is of the required form. The model-theoretic proof of this
goes through showing that the image is a definable subgroup of (G, s)](K̂),
and then using quantifier-elimination for differentially closed fields. We will
give an algebraic proof, after first discussing the second incarnation of the
Galois group.

First, the equation lDs(x) = a equips G with another structure of an
algebraic D-variety (but not in general an algebraic D-group). Let ra be
the right invariant vector field on G determined by a on G. So s + ra is
a K-rational section of τ(G) → G, which we denote by s′. Note that the
equation lDs(x) = a on G is equivalent to the equation ∂(x) = s′(x).

Now G acts on itself by left translation. Let S < G be the intersection
of the stabilizers of the algebraic D-subvarieties of the algebraic D-variety
(G, s′) that are defined overK: namely (working in some algebraically closed
field containing K), S = {g ∈ G : g · X = X for all D-subvarieties X of
(G, s′) defined over K}. S is an algebraic subgroup of G defined over K. S is
precisely the analogue in our context of the intrinsic differential Galois group
introduced by Katz in the Picard–Vessiot case and discussed by Bertrand
in [1].

In fact G can be naturally equipped with another structure of an algebraic
D-group, (G, s1). Define the section s1 : G→ τ(G) by

s1(g) = s(g) + ra(g)− la(g).

Lemma 3.10. (G, s1) is an algebraic D-group, and the action of G on it-
self by left multiplication is an action of the algebraic D-group (G, s1) on
the algebraic D-variety (G, s′). Moreover S is an algebraic D-subgroup of
(G, s1).
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Proof. An easy computation. Note that it follows that (G, s1)](U) acts on
(G, s′)](U). �

Let Z be the set of solutions of lDs(x) = a in G(L). Note that Z is
precisely (G, s′)](L). In any case, Z is a principal homogeneous space for
(G, s)](K) (acting on the right). As (G, s)](K) = (G, s)](K̂), and L < K̂,
X is also the solution set of lDs(x) = a in G(K̂). Clearly Aut ∂(L/K) acts
on Z and any σ ∈ Aut ∂(L/K) is determined by its action on Z. In fact,
as L = K(β) for any β ∈ Z, σ ∈ Aut ∂(L/K) is determined by any pair
(β, σ(β)) for β ∈ Z.

Lemma 3.11. The action of Aut ∂(L/K) on Z is isomorphic to the action
(by left multiplication) of (S, s1)](L) on Z: The isomorphism d say takes σ
to σ(β) · β−1 for some (any) β ∈ Z.

Proof. We know that (S, s1)] acts on Z by left multiplication (by Lem-
ma 3.10). Suppose σ ∈ Aut ∂(L/K). Let d(σ) ∈ G(L) be such that σ(α) =
d(σ) · α. As σ(α) ∈ Z, we have by Lemma 3.10 that d(σ) ∈ (G, s1)](L). As
any β ∈ Z is of the form α · c for c ∈ (G, s)](L) = (G, s)](K) and σ fixes K
pointwise, we see that

(∗) σ(β) = d(σ) · β for all β ∈ Z.
We only have to see that d(σ) ∈ S. Let X be any D-subvariety of (G, s′)
defined over K. As K̂ is differentially closed and Z = (G, s′)](K̂), it follows
that Z ∩X is Zariski-dense in X. For β ∈ Z ∩X, σ(β) ∈ Z ∩X too. By (∗)
and Zariski-denseness, d(σ) ·X = X. Thus d(σ) ∈ S.

Conversely, suppose that g ∈ (S, s1)](L). Then g · α ∈ Z. Let X be
the algebraic variety defined over K whose K-generic point is α. Then,
X is a D-subvariety of (G, s′). Thus g · X = X and so g · α ∈ X, and
∂(g · α) = s′(g · α). Hence g · α is a differential specialization of α over
K. By simplicity of K[α], α and g · α satisfy exactly the same differential
polynomial equations over K. As both α and g · α generate L it follows
that there is an automorphism σ of L over K such that σ(α) = g · α. So
g = d(σ). �

Conclusion of proof of Lemma 3.9. Let H be the image of S under conju-
gation by α−1 in G (g → α−1 · g · α). Then H is an algebraic D-subgroup
of (G, s). By 3.11 and what we already know about 3.9, the image of the
embedding c : Aut ∂(L/K) → (G, s)](K) is precisely (H, s)](K). As the
latter is Zariski-dense in H, H is also defined over K. �

Let us fix the isomorphism c between Aut ∂(L/K) and (H, s)](K) =
(H, s)](K̂).

Lemma 3.12. There is a Galois correspondence between the set of differ-
ential fields in between K and L and the set of algebraic D-subgroups of
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(H, s) defined over K (equivalently defined over K̂): given K < F < L the
corresponding group is HF the Zariski closure of the set of h ∈ (H, s)](K)
such that c−1(h) is the identity on F .

Proof. This is Theorem 2.12 of [8] after making the translation between
definable subgroups and D-subgroups. �

Let us complete this section with an example. We will consider the non-
isotrivial algebraic D-group structure (G, s) on Gm × Ga discussed at the
end of Section 2, and exhibit a (natural) differential Galois extension K < L
whose differential Galois group is (G, s) (or rather (G, s)](K)). In fact there
will be an intermediary differential field K < F < L such that each of
K < F and F < K are Picard–Vessiot extensions, but K < L is not a
Picard–Vessiot extension.

Recall that s : G → T (G) is given by s(x, y) = (x, y, xy, 0), and lDs :
G→ L(G) is lDs(x, y) = (∂(x)/x−y, ∂(y)), and so a logarithmic differential
equation on (G, s) has the form {∂(x)/x− y = a1, ∂(y) = a2}. If we restrict
our attention to equations where a1 = 0, we obtain equations of the form
∂(∂(x)/x) = a on Gm.

Also (G, s)] can be identified with {x ∈ Gm : ∂(∂(x)/x)) = 0}.
Note that the embedding x→ (x, 0) of Gm in G and surjection (x, y) → y

of G onto Ga induces an exact sequence

0 → (Gm, (s0)Gm) → (G, s) → (Ga, (s0)Ga) → 0

of algebraic D-groups, where s0 denotes the 0-sections for the corresponding
groups. The important fact is that (G, s) is not a product (as a D-group)
of the two groups, which is the reason that (G, s) is nonisotrivial.

We will take the ground field of constants to be C. LetK = C(ect : c ∈ C)
and L = K(t, et

2
). So L is a subfield of a fixed differential closure Ĉ = K̂ = L̂

of C.

Lemma 3.13. (G, s) is K-large.

Proof. It is enough to show that all solutions of ∂(∂(x)/x) = 0 in K̂ are in
K, that is all solutions of ∂(d)/d = c for c ∈ C that are in K̂ are in K.
But this is clear, because ect is one such such solution and the others are
obtained by multiplying by a constant. �

Lemma 3.14. L is a differential Galois extension of K for the equation
∂(∂(x)) = 2 . The Galois group is (G, s)](K).

Proof. Note that L is generated over K as a differential field by et
2
, which

is a solution of ∂(∂(x)) = 2. To show that the Galois group is as stated, it
is enough to show that tr.deg(L/K) = 2, which is well-known. �

Note that K(t) is a Picard–Vessiot extension of K, and L is a Picard–
Vessiot extension of K(t), but L is not a Picard–Vessiot extension of K.
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4. Isomorphisms of algebraic D-groups and algebraic D-varieties

We will prove:

Proposition 4.1. Suppose (K, ∂) is an algebraically closed differential field,
(G, s) and (H, t) are connected algebraic D-groups over K and there is an
isomorphism f between (G, s) and (H, t) defined over some differential field
extension of K. Then there is such an isomorphism defined over a Picard–
Vessiot extension of K.

Here is a restatement of the theorem in the language of Kolchin’s con-
strained cohomology (see [5]).

Corollary 4.2. Suppose (K, ∂) has no proper Picard–Vessiot extensions.
Then for any connected ∂0-group G defined over K, H1

c (Aut ∂(K̂/K), G(K̂))
is trivial.

In Proposition 3.11 of [9], Corollary 4.2 was stated in the special case that
H(K) = H(K̂) (which amounts to saying that the corresponding algebraic
D-group is K-large).

Kolchin’s differential tangent space and its properties (see Chapter 8 of
[5]) play an important role in the proof of Proposition 4.1. We will sum-
marize the key properties (in the language of algebraic D-groups). Recall
first that if V is a finite-dimensional vector space over U , then a ∂-module
structure on V is an additive map DV : V → V such that DV (av) =
∂(a)v + aDV (v) for all a ∈ U and v ∈ V . V ∂ denotes {v ∈ V : DV (v) = 0},
a vector space over C with C-dimension the same as the U-dimension of V

Fact 4.3. Suppose (G, s) is a connected algebraic D-group defined over K,
and V = L(G) is its Lie algebra (tangent space at the identity). Then:

(i) s equips V with a canonical ∂-module structure DV , defined over K.
(ii) For any automorphism f of (G, s), dfe ∈ GL(V ) restricts to a C-linear

automorphism of V ∂ , and moreover f is determined by dfe|V ∂ .

Proof of Proposition 4.1. First (G, s) and (H, t) will be isomorphic over K̂.
Let f be such an isomorphism. Let c be a finite tuple from K̂ generating
the smallest field of definition of f . Write f as fc. Let (V,DV ) be as in Fact
4.3 for (G, s). Let d be a C-basis for V ∂ contained in K̂. Let L = K〈c, d〉
be the differential field generated by c and d over K.

Claim I. L is a strongly normal extension of K.

Proof. As L < K̂, CL = CK . We have to show that for any automorphism
σ of the differential field U fixing K pointwise, σ(L) is contained in the
differential field generated by L and C. First σ(d) is another basis of V ∂ , so
with respect to the basis d we may write σ(d) as a n×n nonsingular matrix
B ∈ GLn(C). On the other hand fσ(c) = fc · h for a unique automorphism
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h of (G, s). By Fact 4.3(ii), h is determined by dhe|V ∂ , which by in terms
of the basis d, is another nonsingular n × n matrix A over C. It follows
that (σ(c), σ(d)) is in the differential field generated by K, c, d,A and B. In
particular σ(L) ⊆ L〈C〉. �

Claim II. L is a Picard–Vessiot extension of K.

Proof. Let σ ∈ Aut ∂(L/K), and write the matrices A,B (which will be
in GLn(CK)) as Aσ, Bσ. Then it is easy to check that σ 7→ (Aσ, Bσ) is
an embedding of Aut ∂(L/K) into GLn(CK) × GLn(CK). From Kolchin’s
characterizations of Picard–Vessiot extensions, we get Claim II. �

As f is defined over L, we have proved Proposition 4.1. �

Finally let us give some additional results with a similar flavor. The first
is really just a remark and is related to the themes of Buium’s book [2].
Buium calls an algebraic D-variety (X, s) split if (X, s) is isomorphic (over
U) to a trivial algebraic D-variety, namely one of the form (Y, s0), where Y
is defined over C and s0 is the 0-section. He proves that any D-variety (X, s)
such that X is a projective variety is split. Moreover assuming Y defined
over algebraically closed K, then (Y, s) is split over some strongly normal
extension.

Remark 4.4. Let K be a differential field with algebraically closed constant
field. Suppose that (X, s) is an algebraic D-variety over K that is split.
Then (X, s) is split over some strongly normal extension K1 of K.

Proof. We can find an isomorphism f of (X, s) with some trivial (Y, s0)
defined over K̂. Let again f = fc with c the smallest field of definition of f .
Let K1 = K〈c〉. Then, as K1 is contained in K̂ and CK̂ = CK , we have that
CK1 = CK . For any (differential) automorphism σ of U , Then fσ(c) = fc ◦ g
for some automorphism g of (Y, s0). But then g must be defined over C.
Hence σ(c) is rational over K(c)(C), so σ(K1) ⊆ K1〈C〉. This shows that K1

is a strongly normal extension of K. �

The next result is a generalization of Proposition 4.1 in which the higher-
dimensional versions of differential tangent spaces from [10] enter the pic-
ture. We use freely the results from that paper.

Proposition 4.5. Suppose that K has algebraically closed constant field.
Let (X, s) and (Y, t) be algebraic D-varieties defined over K. Suppose that
a ∈ (X, s)](K), b ∈ (Y, t)](K) are nonsingular points on X, Y respectively,
and that there is some isomorphism f between (X, s) and (Y, t) such that
f(a) = b. Then there is such an isomorphism defined over a Picard–Vessiot
extension of K.
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Proof. For each m ≥ 1, let Vm the the U-vector space M/Mm+1, where
M is the maximal ideal of the local ring of X at a. Vm is defined over
K. For any automorphism h of X such that h(a) = a, h induces a linear
automorphism hm say of Vm. Moreover if h′ is another automorphism of
X fixing a, then h = h′ if and only if hm = h′m for all m. So far nothing
has been said about the D-variety structure. As a ∈ (X, s)], ∂ extends to a
derivation ∂′ on the local ring of X at a that preserves M and all its powers.
This gives Vm the structure of a ∂ module (Vm, DVm) over U , defined over
K (for all m). If h is an automorphism of the algebraic D-variety (X, s)
that fixes a then hm ∈ GL(Vm) restricts to a C-linear automorphism h∂m
of GL(V ∂

m) (where V ∂
m is the solution space of DVm = 0). Moreover hm is

determined by h∂m.
Now we may find an isomorphism f between (X, s) and (Y, t) such that

f(a) = b and f is defined over K̂. Let c generate the smallest field of
definition of f . So c is a finite tuple from K̂. Write f as fc. For any
differential automorphism σ of U that fixes K pointwise, σ(fc) = fσ(c) is
also an isomorphism of (X, s) with (Y, t) taking a to b. Hence fσ(c) ◦ f−1

c is
an automorphism of (X, s) taking a to itself. Write hσ for this map.

Claim I. There is m such that for all σ, τ ∈ Aut ∂(U/K), hσ = hτ if and
only if (hσm)∂ = (hτm)∂.

Proof. This follows from compactness and the earlier remarks as the set of
hσ is a uniformly definable family of automorphisms of (X, s). �

Now let m be as in Claim I and let d be a C-basis for (Vm)∂ .

Claim II. K1 = K〈c, d〉 is a strongly normal extension of K.

Proof. Let σ ∈ Aut ∂(U/K). As σ(d) is also a basis for (Vm)∂ , σ(d) ∈
K〈d〉 〈C〉. On the other hand, by virtue of d, (Vm)∂ can be identified with Cr
for suitable r, and thus (hσm)∂ can be identified with an element of GLr(C).
By Claim I, it follows that σ(c) ∈ K〈c, d〉 〈C〉. Thus σ(K1) ⊆ K1〈C〉. �

As in the proof of 4.1, we conclude that actually K1 is a Picard–Vessiot
extension of K. As c ∈ K1, this gives the proposition. �
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METRICAL DIOPHANTINE ANALYSIS FOR TAME
PARABOLIC ITERATED FUNCTION SYSTEMS

Bernd O. Stratmann and Mariusz Urbański

We study various aspects of tame finite parabolic iterated
function systems that satisfy a certain open set condition.
The first goal in our analysis of these systems is a detailed
investigation of the conformal measure on the associated limit
sets. We derive a formula that describes in a uniform way
the scaling of this measure at arbitrary limit points. The
second goal is to provide a metrical Diophantine analysis for
these parabolic limit sets in the spirit of theorems of Jarńık
and Khintchine in number theory. Subsequently, we show
that this Diophantine analysis gives rise to refinements of the
description of the conformal measure in terms of Hausdorff
and packing measures with respect to certain gauge functions.

1. Introduction

For a large class of fractal sets the idea of an iterated function system
has turned out to be a very convenient and efficient concept. Tradition-
ally, the development of fractal geometry was always very much inspired by
various phenomena that appear in conformal analysis and number theory.
In this paper we continue this tradition by studying metrical Diophantine
aspects of certain tame parabolic iterated function systems. This study
generalizes results for geometrically finite Kleinian groups with parabolic
elements (obtained in [S1], [S2], [S3], [SV], see also [HV], [Su]) and for
parabolic rational rational functions (obtained in [SU1], [SU2]), which rep-
resent complex analytic analogues of Jarńık’s number theoretical theorem
on well-approximable numbers ([J], [B]) and Khintchine’s on a qualitative
description of the ‘essential support’ of the 1-dimensional Lebesgue measure
([K]).

The paper is organized as follows: in Section 2 we first define the class of
tame finite parabolic iterated function systems that satisfy the Super Strong
Open Set Condition (SSOSC). We then recall a few immediate geometrical
implications of the bounded distortion properties. In Section 3 we study the
h-conformal measures arising from these parabolic systems. (Here, h denotes
the Hausdorff dimension of the limit set associated to such a system.) We
obtain a formula that describes in a uniform way the scaling of this measure

361
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at arbitrary elements of the limit set. As a by-product we obtain an estimate
on the local behaviour of the h-conformal measure at parabolic points. In
Section 4 we analyse the limit sets from a Diophantine point of view. Our
general approach here follows roughly the analysis given in [S1], [S2], [SV],
[SU1], [SU2]. Nevertheless, the construction of the main tool, namely
the measure µ on a Cantor-like subset of the limit set, is different. This
construction is simplified and its geometrical and dynamical significance is
clarified. Finally, we establish various limit laws leading up to the Khintchine
Limit Law for tame parabolic iterated function systems. Subsequently, we
show that these laws provide some efficient control on the fluctuations of
the h-conformal measure, giving rise to refinements of the description of
the h-conformal measure in terms of Hausdorff and packing measures with
respect to some gauge functions.

2. Preliminaries

We begin by giving a description of our setting. LetX be a compact subset of
some Euclidean space Rd such thatX has nonempty interior and is contained
in a bounded connected open set V . Suppose that there are countably many
conformal maps φi : X → X, i ∈ I, with I having at least two elements.
Then the system S = {φi : i ∈ I} is called a conformal iterated function
system if and only if the following eight conditions are satisfied:

(1) (Open Set Condition) φi(Int(X)) ∩ φj(Int(X)) = ∅ for all i 6= j.
(2) |φ′i(x)| < 1 everywhere except for finitely many pairs (i, xi), i ∈ I, for

which xi is the unique fixed-point of φi and |φ′i(xi)| = 1. Such pairs
and indices i will be called parabolic and the set of parabolic indices
will be denoted by Ω. All other indices will be called hyperbolic.

(3) For all n ≥ 1, ω = (ω1, . . . , ωn) ∈ In we have that if ωn is a hyperbolic
index or if ωn−1 6= ωn, then φω admits a conformal extension to V ⊂ Rd

that maps V into itself.
(4) If i is a parabolic index, then

⋂
n≥0 φin(X) = {xi} (Hence in particular,

the diameter of the set φin(X) tends to 0 for n tending to infinity.)
(5) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊂ Rd

there exists an open cone Con(x, ux, α, l) ⊂ Int(X) with vertex x,
‖ux‖ = 1 and central angle α. Here, we have set Con(x, ux, α, l) :=
{y : 0 < (y − x, ux) ≤ cosα‖y − x‖ ≤ l}.

(6) There exists 0 < s < 1 such that for all n ≥ 1, ω ∈ In we have that if
ωn is a hyperbolic index or if ωn−1 6= ωn, then ‖φ′ω‖ ≤ s.

(7) (Bounded Distortion Property) There exists K ≥ 1 such that for all
n ≥ 1, ω = (ω1, . . . , ωn) ∈ In and x, y ∈ V we have that if ωn is a
hyperbolic index or if ωn−1 6= ωn, then

|φ′ω(y)| ≤ K |φ′ω(x)|.
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(8) There are constants L ≥ 1, α > 0 such that∥∥φ′i(y)| − |φ′i(x)|∣∣ ≤ L‖φ′i‖|y − x|α for all i ∈ I and x, y ∈ V.
Note that if Ω = ∅, the system S is called hyperbolic, and that if Ω 6= ∅,

then S is called parabolic. Throughout this paper we shall always assume
without further notice that the system S is parabolic and the alphabet I is
finite.

We now state a few immediate geometrical consequences of the bounded
distortion properties (7), (8) and the cone condition (5). For the proofs of
these statements we refer to [MU1] and [MU3].

For all hyperbolic words ω ∈ I∗ and all convex subsets C of V we have

diam(φω(C)) ≤ ‖φ′ω‖diam(C)(2.1)

and

diam(φω(V )) ≤ D‖φ′ω‖.(2.2)

Here, the norm ‖ · ‖ is the supremum norm on V , and D ≥ 1 denotes a
universal constant. Moreover, for every x ∈ X, 0 < r ≤ Dist(X, ∂V ), and
for every hyperbolic word ω ∈ I∗ we have

diam(φω(X)) ≥ D−1‖φ′ω‖(2.3)

and

φω(B(x, r)) ⊃ B(φω(x),K−1‖φ′ω‖r).(2.4)

Also, there exists 0 < β ≤ α such that for all x ∈ X and for all hyperbolic
words ω ∈ I∗

φω(Int(X)) ⊃ Con
(
φω(x), β,D−1‖φ′ω‖

)
⊃ Con

(
φω(x), β,D−2diamφω(V )

)
,

(2.5)

where Con
(
φω(x), β,D−1‖φ′ω‖

)
and Con

(
φω(x), β,D−2diam(φω(V ))

)
denote

some cones with vertices at φω(x), angles β, and altitudes D−1‖φ′ω‖ and
D−2diam(φω(V )) respectively. Finally, for every ω ∈ I∗ (not necessarily
hyperbolic) and every x ∈ X, there exists an altitude l(ω, x) > 0 such that

φω(Int(X)) ⊃ Con
(
φω(x), β, l(ω, x)

)
.(2.6)

We emphasize that for d ≥ 2 the conditions (7) and (8) with α = 1 can
be deduced from condition (3). For d ≥ 3, this has been shown in [U1].
For d = 2, conditions (7) and (8) follow from Koebe’s distortion theorem
combined with the observation that complex conjugation in C is an isometry.

Let I∗ denote the set of all finite words in the alphabet I, and let I∞ be
the set of all infinite sequences with entries in I. By condition (3), we have
φω(V ) ⊂ V , for every hyperbolic word ω. For each ω ∈ I∗ ∪ I∞, we define
the length of ω by the uniquely determined relation ω ∈ I |ω|. If ω ∈ I∗ ∪ I∞
and n ≤ |ω|, then we write ω|n to denote the word ω1ω2 . . . ωn. In [MU1]
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it was shown that limn→∞ sup|ω|=n{diam(φω(X))} = 0. Hence, the map
π : I∞ → X, given by π(ω) =

⋂
n≥0 φω|n(X), is uniformly continuous. Now,

the limit set J = JS of the system S can be defined as the range of the map
π, that is, we define

J = π(I∞).
In order to introduce the notion of tameness we define, for every i ∈ Ω,

Xi =
⋃

j∈I\{i}

φj(X).

We call a parabolic conformal iterated function system S = {φi : i ∈ I}
tame if xi /∈ Xi, for every i ∈ Ω and xi 6= xj if i 6= j. Also, we say that
S satisfies the Super Strong Open Set Condition (SSOSC) if the following
condition is satisfied:

∂X ∩
⋃
i∈I

φi(X) = {xi : i ∈ Ω}.(2.7)

Unless stated otherwise, for the remaining part of this section we shall as-
sume that S is a tame parabolic finite conformal iterate function system
satisfying (SSOSC). The tameness of the system S and formula (2.7) imply

B

( ⋃
i∈I\Ω

φi(X), 2R̂
)
⊂ IntX.(2.8)

Also, for each ω ∈ I∗ and every A ⊂ B(xi, 2R̂) we have that

φω(A) ∩ J = φω(A ∩ J).(2.9)

Note that in order to derive the latter formula, we have to use the fact that
the system S is tame. Furthermore, for all i ∈ Ω, ω ∈ I∗ we have

π−1(π(ωi∞)) = ωi∞.(2.10)

Following [MU1], given t ≥ 0, a Borel probability measure m is called
t-conformal for the system S if m(J) = 1 and if for every Borel set A ⊂ X
and for each i, j ∈ I with i 6= j, we have

m(φi(A)) =
∫
A
|φ′i|tdm(2.11)

and

m(φi(X) ∩ φj(X)) = 0.(2.12)

Recall that a parabolic system S is called regular if and only if there exists a
t-conformal measure (cf. [MU1]). Then t = h is the Hausdorff dimension of
the limit set (see [MU1]). Combining Theorem 1.4 in [MU2] and Corollary
5.8 in [MU1], we immediately have the following result:

Theorem 2.1. A parabolic finite iterated function system is regular.
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Hence, since the systems we consider in this paper are finite, it follows
that they are regular. The associated h-conformal measure will always be
denoted by m. We shall require the following distortion properties:

Lemma 2.2. There exists a positive constant R∗ < R̂ such that the follow-
ing holds: for each hyperbolic word τ ∈ I∗ and for every ω ∈ I∞ we have
that φτ is well-defined on B(π(ω), R∗). Moreover

|φ′τ (y)|
|φ′τ (x)|

≤ K for all x, y ∈ B(π(ω), R∗),

and

K−h|φ′τ (π(ω))|hm(B(π(ω), r)) ≤ m
(
φτ (B(π(ω), r))

)
≤ Kh|φ′τ (π(ω))|hm(B(π(ω), r))

for every r ∈ [0, R∗].

Proof. The statement that φτ : B(π(ω), R∗) → Rd is well-defined and the
first distortion property of the lemma are immediate consequences of the
fact that R∗ < R̂ < Dist(X, ∂V ) and property (7) at the beginning of this
section. In order to derive the second distortion property of the lemma,
choose 0 < R∗ < R̂ sufficiently small such that, for each i ∈ Ω,

B
(
φi(X) ∩ (Rd \B(xi, R̂)), 2R∗

)
⊂ IntX.(2.13)

If π(ω) ∈ φi(X) for some i ∈ Ω, and if ‖π(ω)−xi‖ ≥ R̂, then B(π(ω), 2R∗) ⊂
IntX. The proof in this case then follows immediately from a combination
of the conformality of the measure m and distortion property (7). In the
case that π(ω) ∈ φi(X)∩B(xi, R̂), it follows that B(π(ω), R∗) ⊂ B(xi, 2R̂).
Using (2.9) and the conformality of m, we obtain

m
(
φτ ((B(π(ω), r))

)
= m

(
φτ (B(π(ω), r)) ∩ J

)
= m

(
φτ (B(π(ω), r) ∩ J)

)
=
∫
B(π(ω),r)∩J

|φ′τ |hdm =
∫
B(π(ω),r)

|φ′τ |hdm,

and hence the first distortion property of the lemma gives the proof in this
case. Finally, if π(ω) /∈

⋃
i∈Ω φi(X), then π(ω) ∈ φj(X) for some j ∈ I\Ω. In

this case (2.8) implies that B(π(ω), 2R∗) ⊂ IntX, and hence the statement
of the lemma follows immediately from (7) and the conformality of m. This
proves the lemma. �

The following fact easily follows from the local analysis of parabolic points
done in [MU2]:
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Lemma 2.3. Assuming that R∗ > 0 is sufficiently small, there exists a
constant C1 > 0 such that for every i ∈ Ω and every r ∈ (0, R∗], the inter-
section J ∩B(xi, r) \ {xi} is contained in a central cone contained in IntX
with vertex xi and an angle ≤ C1r

pi.

As an immediate consequence of this lemma and (2.9) we get the following:

Lemma 2.4. There exists a constant C1 > 0 such that for every i ∈ Ω,
every r ∈ (0, R∗], and every hyperbolic word ω the intersection

J ∩B
(
φω(xi), r|φ′ω(xi)|

)
is contained in a central cone with vertex xi and an angle ≤ C2r

pi.

We are now in a position to prove the following distortion property:

Lemma 2.5. There exist constants ρ,R∗ > 0 such that for every i ∈ Ω,
x ∈ J ∩ B(xi, R∗), and for each ω ∈ I∗ the map φω is well-defined on
B(x, ρ‖x− xi‖) and

|φ′ω(z)|
|φ′ω(y)|

≤ K for all y, z ∈ B(x, ρ‖x− xi‖),

and furthermore, for every positive r ≤ ρ‖x− xi‖ we have

K−h|φ′ω(x)|hm(B(x, r)) ≤ m
(
φω(B(x, r))

)
≤ Kh|φ′ω(x)|hm(B(x, r)).

Proof. In view of Lemma 2.3 there exists R∗ > 0 and ρ ∈ (0, 1/2) such
that B(x, 2ρ‖x − xi‖) ⊂ IntX for all x ∈ J ∩ B(xi, R∗). Therefore, all
the maps φω : B(x, 2ρ‖x − xi‖) → IntX are well-defined, and the second
part of our lemma follows from the first part. The first part in turn in the
case when d = 1 is contained in Lemma 2.6 of [U2]. In the case d = 2 it
follows immediately from Koebe’s distortion theorem and the observation
that the complex conjugation is an isometry. In the case d ≥ 3 it follows
from the inequality following formula (4.9) in the proof of Theorem 4.13 in
[MU2] that, with Y = B(x, ρ‖x− xi‖), W = B(x, 2ρ‖x − xi‖), one gets
|φ′ω(z)|/|φ′ω(y)| ≤ 4. We are done. �

The constants R∗ and R∗ of Lemma 2.2 and Lemma 2.5 will be crucial in
the sequel. For later use we define

R := min{R∗, R∗}.

3. The geometry of conformal measures

The main result in this section is the derivation of a ‘global formula’ for the
conformal measure associated with a tame parabolic finite iterated function
system. This formula describes in a uniform way the scaling of this measure
at arbitrary points in the associated limit set. Our elaboration of this for-
mula follows closely the discussion in [SV] and [SU2], where we obtained
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this type of formula for geometrically finite Kleinian groups with parabolic
elements and for parabolic rational maps.

The section is split into two subsections. In the first we give an estimate
for the conformal measure around parabolic points. In the second we then
derive the global formula. Subsequently, as a first application of this formula,
we obtain a first rough description of how the conformal measure relates to
the geometric concepts Hausdorff measure and packing measure.

3.1. The conformal measure around parabolic points. We begin this
subsection by recalling the following estimates for tame parabolic systems.
For d ≥ 2 a proof can be found in [MU2] (Section 4). For d = 1 the
estimates are obtained immediately from the considerations in [U2].

Proposition 3.1. Let S be a tame parabolic system. Then there exists a
constant Q ≥ 1 and an integer q ≥ 0 such that for every parabolic index
i ∈ I there exists an integer pi ≥ 1 such that for every j ∈ I \ {i} and for
all n, k ≥ 1 we have

Q−1n
− pi+1

pi ≤ inf
X
{|φ′inj |}, ‖φ′inj‖,diam(φinj(X)) ≤ Qn

− pi+1

pi ,(3.1)

Q−1n
− 1

pi ≤ Dist(xi, φin(Xi)) ≤ Dist(xi, φin(Xi)) ≤ Qn
− 1

pi ,(3.2)

Dist(φin(Xi), φik(Xi)) ≤ Q n
− 1

pi − k
− 1

pi .(3.3)

Furthermore, for |n− k| ≥ q we have

Dist(φin(Xi), φik(Xi)) ≥ Q n
− 1

pi − k
− 1

pi .(3.4)

The following lemma gives the main result of this section:

Lemma 3.2. Let m denote the h-conformal measure of the finite parabolic
system S. For each κ > 0 there exists Cκ > 0 such that for every parabolic
index i and for every x ∈ J we have

C−1
κ ‖x− xi‖h+(h−1)pi ≤ m(B(x, κ‖x− xi‖)) ≤ Cκ ‖x− xi‖h+(h−1)pi .

In particular, the constant Cκ depends continuously on κ.

Proof. Since the support of m is equal to J , we may assume without loss
of generality that ‖x − xi‖ ≤ ∆ for some fixed 0 < ∆ ≤ R. Let x = π(ω)
and ω ∈ I∞ be given. Then ω = injτ , where j 6= i, n ≥ 1, and τ ∈ I∞.
Assuming ∆ to be chosen sufficiently small, (3.1) implies that

n ≥ 2Q2κ−1.(3.5)

For the proof of the first inequality in the measure estimate of the lemma,
let

T :=
{
k : Dist(φikj(X), φinj(X)) ≤ κ‖x− xi‖ − diam(φinj(X))

}
.
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Using (3.1), we deduce that

m(B(x, κ‖x− xi‖)) ≥
∑
k∈T

m(φikj(X))
∑
k∈T

inf{|φ′ikj |}
h ≥

∑
k∈T

Q−hk
− pi+1

pi
h
.

Using (3.2) and (3.1), we have that if

Q n
− 1

pi − k
− 1

pi ≤ κQ−1n
− 1

pi −Qn
− pi+1

pi ,

then it follows that k ∈ T . Hence in particular, if k ≥ n and if

Q
(
n
− 1

pi − k
− 1

pi

)
≤ κQ−1n

− 1
pi −Qn

− pi+1

pi ,(3.6)

then k ∈ T . Clearly, the statement in (3.6) is equivalent to

Qk
− 1

pi ≥ (Q− κQ−1)n−
1
pi +Qn

− pi+1

pi .

Also, (3.5) implies that Qn−
pi+1

pi ≤ κ(2Q)−1n
− 1

pi . Therefore, if k ≥ n and

Qk
− 1

pi ≥ (Q − κQ−1)n−
1
pi + κ(2Q)−1n

− 1
pi , or equivalently if k ≥ n and

k ≤
(
1 − κ

2Q

)− 1
pi , then k ∈ T . It now follows that there exists a constant

C̃κ > 0 (which depends continuously on κ) such that

m(B(x, κ‖x−xi‖)) ≥ Q−h
(1− κ

2Q
)−

1
pi∑

k=n

k
− pi+1

pi
h

≥ Q−h
(
1− pi+1

pi
h
)((

1− κ

2Q

)− 1
pi

(1− pi+1

pi
h)
−1
)
n
− pi+1

pi
h

≥ C̃κn
−h+(h−1)pi

pi .

Hence, since by (3.6) we have ‖x− xi‖ ≤ Qn
− 1

pi , it follows that

m(B(x, κ‖x− xi‖)) ≥ C̃κQ
h+(h−1)pi‖x− xi‖h+(h−1)pi .(3.7)

In order to prove the second inequality in the measure estimate of the lemma,
note that Qk−

1
pi ≤ (1+κ)‖x−xi‖ if and only if k ≥

(
Q−1(1+κ)‖x−xi‖

)−pi .
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Using this observation, (3.2) and (3.1), we obtain

m(B(x, κ‖x− xi‖)) ≤ m(B(xi, (1 + κ)‖x− xi‖)

≤
∑
j 6=i

∑
k=(Q−1(1+κ)‖x−xi‖)−pi

m(φikj(X))

≤
∑
j 6=i

∑
k=(Q−1(1+κ)‖x−xi‖)−pi

‖φ′ikj‖
h

≤
∑
j 6=i

∑
k=(Q−1(1+κ)‖x−xi‖)−pi

Qk
− pi+1

pi
h

≤ 2Q
(
k
h

pi+1

pi
−1
)−1

≤
(
Q−1(1 + κ)‖x− xi‖

)−pi

“
1− pi+1

pi
h

”
= Ĉκ‖x− xi‖h+(h−1)pi ,

where Ĉκ <∞ denotes a positive constant depending continuously on κ. �

Corollary 3.3. There exists a constant C ≥ 1 such that for each i ∈ Ω and
for all 0 < r ≤ 2diam(X) we have

C−1 rh+(h−1)pi ≤ m(B(xi, r)) ≤ C rh+(h−1)pi .

Proof. Let j 6= i, and choose n ≥ 1 to be the least integer such that
Q−1n

− 1
pi ≤ r. Let x ∈ φin−1j(X) be fixed. By (3.2) and Lemma 3.2,

we have

m(B(xi, r)) ≤ m(x, 2‖x− xi‖)

≤ C2 ‖x− xi‖h+(h−1)pi ≤ C2Q(n− 1)−
h+(h−1)pi

pi

� n
−h+(h−1)pi

pi �
(
Q

2

)h+(h−1)pi

rh+(h−1)pi .

Now, let k ≥ 1 denote the least integer such that Qk−
1
pi ≤ r/2, and let

y ∈ φikj(X) be fixed. Similar as above, (3.2) and Lemma 3.2 imply that

m(B(xi, r)) ≥ m(B(y, ‖y − xi|))

≥ C1 ‖y − xi‖h+(h−1)pi ≥ C1Q
−(h+(h−1)pi)k

−h+(h−1)pi
pi

� (k − 1)−
h+(h−1)pi

pi ≥ 2−(h+(h−1)pi)rh+(h−1)pi . �

Lemma 3.4. For every κ > 0 there exists Dκ ≥ 1 such that for each i ∈ Ω,
for every sufficiently small r > 0, and for all x ∈ J ∩B(xi, κ−1r) we have

D−1
κ rh+(h−1)pi ≤ m(B(x, r)) ≤ Dκr

h+(h−1)pi .
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Proof. Since B(x, r) ⊂ B(xi, ‖x − xi‖ + r) ⊂ B(xi, (1 + κ−1)r), it follows
from Corollary 3.3 that

m(B(x, r)) ≤ C(1 + κ−1)h+(h−1)pirh+(h−1)pi .(3.8)

Now, if r ≤ 2‖x− xi‖, then r = α‖x− xi‖ for some α such that κ ≤ α ≤ 2.
By Lemma 3.2, we have Cα ≤ C := sup {Ct : t ∈ [κ, 2]} <∞. Hence, using
Lemma 3.2 once again, it follows that

m(B(x, r)) = m(B(x, α||x− xi||) ≥ C−1
α ||x− xi||h+(h−1)pi(3.9)

≥ C
−1
( r
α

)h+(h−1)pi

≥ Cmax{κ−(h+(h−1)pi), 2−(h+(h−1)pi)}rh+(h−1)pi .

Otherwise if r ≥ 2‖x− xi‖, then Corollary 3.3 implies

m(B(x, r)) ≥ m(B(xi, r/2)) ≥ C
(r

2

)h+(h−1)pi

= C2−(h+(h−1)pi)rh+(h−1)pi .

Combining this last estimate with (3.8) and (3.9), the lemma follows. �

3.2. The global formula for the conformal measure. An element ω ∈
I∞ is called preparabolic if and only if σkω = i∞ for some k ≥ 0 and some
i ∈ Ω. The set of all preparabolic elements will be denoted by I∞p . Also, a
limit point that is not a preparabolic element will be referred to as radial,
and we write I∞r to denote the set of all radial points.

For each ω ∈ I∞ we fix an increasing sequence of integers {nj(ω)}k(ω)
j=1

as follows: assume that nj(ω) is defined, then we define nj+1(ω) to be the
smallest index greater than nj(ω) such that either ωnj+1(ω) is hyperbolic
or ωnj+1(ω) 6= ωnj+1(ω)−1 (note that n1(ω) is well-defined). In case nj+1(ω)
does not exist, then j = k(ω). Note that if nj+1(ω) ≥ nj(ω) + 2, then
there exists a unique parabolic index i = i(ω, j) such that ωl = i for all
nj(ω) ≤ l ≤ nj+1(ω). Furthermore, if nj+1(ω) = nj(ω) + 1, then i(ω, j)
denotes some arbitrary element of Ω. Observe that k(ω) = ∞ if and only if
ω ∈ I∞r . For each j, we define

rj(ω) := R
∣∣φ′ω|nj(ω)

(π(σnj(ω)ω))
∣∣,

and we refer to the sequence {rj(ω)}k(ω)
j=1 as the hyperbolic zoom of ω. Note

that by the chain rule and by property (6) of Section 2, {rj(ω)}k(ω)
j=1 is a

strictly decreasing sequence. Hence, for each ω ∈ I∞r and every positive

r ≤ R̃ = min{inf {|φ′i| : i /∈ Ω}, inf {|φ′ij | : i ∈ Ω, j 6= i}},

there exists a unique j ≥ 1 such that rj+1(ω) < r ≤ rj(ω). For a given ω and
r, the neighbours rj+1(ω) and rj(ω) thus determined in the hyperbolic zoom
of ω will be denoted by r∗(ω) and r∗(ω) respectively. Also, in this situation
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we shall write i(ω, r) to denote the parabolic element i(ω, j). Finally we
define the function ζ, given for ω ∈ I∞ and r > 0 by

ζ(ω, r) :=
m(B(x, r))

rh
.

The following theorem is the main result of this section:

Theorem 3.5 (Global formula for conformal measures). Let S be a tame
parabolic finite iterated function system satisfying the (SSOSC). Then, for
each ω ∈ I∞r and every 0 < r ≤ R̃, and setting i = i(ω, r), we have

ζ(ω, r) �


(

r

r∗(ω)

)(h−1)pi

for r∗(ω) ≥ r ≥ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

(
r∗(ω)
r

)h−1

for r∗(ω) ≤ r ≤ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

.

Proof. Let ω ∈ I∞r and 0 < r ≤ R̃ be fixed. For ease of notation, throughout
the proof we shall suppress the dependence on ω in some of the appearing
quantities. Let j be determined by the condition r∗ = rj . Hence, r∗ = rj+1.
By (3.2), we have

‖π(σnjω)− xi‖ = ‖π(φ
inj+1−nj−1ωnj+1

(π(σnj+1ω)))− xi‖ � (nj+1 − nj)
− 1

pi .

Using the chain rule and (3.1), we obtain

1 = rj+1

∣∣φ′ω|nj
(π(σnjω))

∣∣−1 ∣∣φ′σnjω|nj+1−nj−1
(π(σnj+1ω))

∣∣−1

�
(rj+1

rj

)
(nj+1 − nj)

pi+1

pi =
(r∗
r∗

)
(nj+1 − nj)

pi+1

pi .

Hence, (r∗
r∗

) 1
pi � ‖π(σnjω)− xi‖.(3.10)

This implies that if

r ≥ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

,

then ∣∣φ′ω|nj
(π(σnjω))

∣∣ · ‖π(σnjω)− xi‖ ≤ r ≤
∣∣φ′ω|nj

(π(σnjω))
∣∣,

and hence
‖π(σnjω)− xi‖ ≤

r∣∣φ′ω|nj
(π(σnjω))

∣∣ ≤ 1.
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Now, using property (7) (note that φω|nj
is hyperbolic) and Lemma 3.4, it

follows that

m(B(π(ω), r)) �
∣∣φ′ω|nj

(π(σnjω))
∣∣h m(B(π(σnjω), r

∣∣φ′ω|nj
(π(σnjω))

∣∣−1))
� rhj (rr

−1
j )h+(h−1)pi = rh

( r
rj

)(h−1)pi

= rh
( r
r∗

)(h−1)pi

.

This proves the first case in the theorem. We are now left to consider the
case in which

r ≤ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

.

Because of (3.10) (after arranging for appropriate constants), this means
that ∣∣φ′ω|nj+1

(π(σnj+1ω))
∣∣ ≤ r ≤ ρ

∣∣φ′ω|nj
(π(σnjω))

∣∣ · ‖π(σnjω)− xi‖,

where 0 < ρ < 1 is the constant obtained in Lemma 2.5. Therefore, there
exists nj ≤ u ≤ nj+1 − 1 such that

ρ
∣∣φ′ω|u+1

(π(σu+1ω))
∣∣·‖π(σu+1ω)−xi‖ ≤ r ≤ ρ

∣∣φ′ω|u(π(σuω))
∣∣·‖π(σuω)−xi‖.

In particular, this implies that

r � ρ
∣∣φ′ω|u(π(σuω))

∣∣ · ‖π(σuω)− xi‖.(3.11)

Thus, by using the conformality of m, Lemma 2.5 and Lemma 3.2, it follows
that

m(B(π(ω), r)) �
∣∣φ′ω|u(π(σuω))

∣∣hm(B(π(σuω), ρ‖π(σuω)− xi‖
))

(3.12)

�
∣∣φ′ω|u(π(σuω))

∣∣h‖π(σuω)− xi‖h+(h−1)pi

� rh‖π(σuω)− xi‖(h−1)pi .

On the other hand, the chain rule, (3.1) and (3.2) imply that

1 = rj+1

∣∣∣φ′ω|u(π(σuω))
∣∣∣−1 ∣∣∣φ′σuω|nj+1−u−1

(π(σnj+1ω))
∣∣∣−1

� r∗

∣∣∣φ′ω|u(π(σuω))
∣∣∣−1

(nj+1 − u)
pi+1

pi ,

as well as
‖π(σuω)− xi‖−(pi+1) � (nj+1 − u)

pi+1

pi .

These two latter comparabilities together with (3.11) show that

r � r∗‖π(σuω)− xi‖−(pi+1)‖π(σuω)− xi‖ = r∗‖π(σuω)− xi‖−pi .

Hence, ‖π(σuω)− xi‖ � (r∗/r)1/pi , which together with (3.12) implies that

m(B(π(ω), r)) � rh
(r∗
r

)h−1
.

This proves the second case in the theorem. �
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The following corollaries are immediate consequences of the previous the-
orem.

Corollary 3.6. If ω ∈ I∞r , then for each j ≥ 1 we have

m(B(π(ω), rj(ω))) � rj(ω)h.

Corollary 3.7. The conformal measure m is a doubling measure. This
means that for every c > 0 there exists B > 0 such that for each z ∈ J and
every r > 0 we have

m(B(z, cr)) ≤ Bm(B(z, r)).

Finally, as a first nontrivial application of Theorem 3.5 we derive an al-
ternative proof of the following geometrical fact, which was obtained under
slightly weaker assumptions in [MU2]. For this let Ht and Pt denote the
t-dimensional Hausdorff and packing measure respectively.

Theorem 3.8. If S is a tame finite parabolic system satisfying the
(SSOSC), then the following hold:

(a) If h > 1, then 0 < Hh(J) <∞ and Ph(J) = ∞.
(b) If h = 1, then 0 < Hh(J),Ph(J) <∞.
(c) If h < 1, then 0 < Ph(J) <∞ and Hh(J) = 0.

Additionally, if either measure Hh or Ph is finite and positive, then its nor-
malized version is equal to the conformal measure m.

Proof. In [MU1] (Lemma 5.6 and Theorem 5.7) it was shown that for a tame
finite parabolic system satisfying the (SSOSC) the h-conformal measure m
is atomless. This combined with Corollary 3.6 and the inverse Frostmann
lemma (see [MU3]) implies that Hh(J) <∞ and Ph(J) > 0. Now, if h ≥ 1,
then Theorem 3.5 immediately gives that, for every x ∈ π(I∞r ),

lim sup
r→0

m(B(x, r))
rh

� 1,

which implies that Hh(J) > 0. If in addition x = π(ω), for ω ∈ I∞r contain-
ing arbitrarily long blocks of i’s for some i ∈ Ω, then

lim inf
r→0

m(B(x, r))
rh

≤ lim inf
r→0

ζ

(
ω, ρr∗(ω)

(
r∗(ω)
r∗(ω)

) 1
pi+1

)

= lim inf
r→0

(
r∗(ω)
r∗(ω)

) (h−1)pi
pi+1

= 0.

Now, by ergodicity of the measure m (see [MU2], Corollary 5.11) and since
m is positive on open sets, it follows that m-almost everywhere we have

lim inf
r→0

m(B(x, r))
rh

= 0.



374 B.O. STRATMANN AND M. URBAŃSKI

We conclude that Ph(J) = ∞, which proves case (a) of the theorem. Case
(b) is an immediate consequence of Theorem 3.5. The proof of case (c) is
analogous to the proof of case (a), and we omit it. �

4. Metrical Diophantine analysis

In this section we give a metrical Diophantine analysis for tame parabolic
finite iterated function systems. In the first subsection we calculate the
Hausdorff dimensions of certain subsets of the limit set that are of zero h-
conformal measure. These sets are comprised of radial elements that under
the system have a rather rapid approach to the parabolic points. In partic-
ular, these sets are the natural analogues of the sets of well-approximable
numbers. In the second subsection we derive various limit laws that give
useful approximations of the ‘essential support’ of the h-conformal measure
associated with a tame finite parabolic iterated function system. Subse-
quently, we show that these laws lead to good estimates on the growth of
the function ζ in the global formula (Theorem 3.5), which in turn give rise
to a refined description of the conformal measure in terms of Hausdorff mea-
sures and packing measures with respect to some explicit gauge functions.
4.1. Iterated function systems in the spirit of Jarńık. We first have
to introduce the notion of a canonical ball. For i ∈ Ω, δ > 0 and a hyperbolic
word ω ∈ I∗, we define

Bω(i) = Bω = B
(
φω(xi), R|φ′ω(xi)|

)
,

Bδ
ω(i) = Bδ

ω = B
(
φω(xi), (R|φ′ω(xi)|)1+δ

)
.

The closed ball Bω will be referred to as the canonical ball associated with
the hyperbolic word ω.

Our main interest in this section will be focused on the sets

Jδi :=
⋂
q≥1

⋃
n≥q

⋃
|ω|=n

Bδ
ω(i)

and
Jδ :=

⋃
i∈Ω

Jδi .

The main result in this section is stated in the following theorem. The proof
of this theorem will occupy the remaining part of this section. It will be
given in several steps, some of which are formulated in separate lemmata.

Theorem 4.1. Let S = {φi : i ∈ I} be a tame parabolic finite iterated
function system satisfying (SSOSC). Then, for every i ∈ Ω the following
hold:

(a) If h ≤ 1, then

HD(Jδ) =
h

1 + δ
.
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(b) If h ≥ 1, then

HD(Jδi ) =


h

1 + δ
if δ ≥ h− 1,

h+ δpi
1 + δ(1 + pi)

if δ ≤ h− 1.

In particular, with pmin := min{pi : i ∈ Ω}, we have

HD(Jδ) =


h

1 + δ
if δ ≥ h− 1,

h+ δpmin

1 + δ(1 + pmin)
if δ ≤ h− 1.

The first step in the proof is to give an upper bound for HD(Jδi ).

Lemma 4.2. For each i ∈ Ω and every δ > 0 we have

HD(Jδi ) ≤ min
{

h

1 + δ
,

h+ δpi
1 + δ(1 + pi)

}
.

Proof. For n ≥ 1, let Hn denote the family of all hyperbolic words of length
n. For every ε > 0 we have

H
h

1+δ
+ε(Jδi ) ≤ lim inf

q→∞

∑
n≥q

∑
ω∈Hn

(
(R|φ′ω(xi)|)1+δ)

) h
1+δ

+ε

≤ Rh+ε(1+δ) lim inf
q→∞

∑
n≥q

∑
ω∈Hn

|φ′ω(xi)|h+ε(1+δ).

From Lemma 4.3 and Theorem 4.6 in [MU1] we deduce that there exists
an (h + ε(1 + δ))-semiconformal measure ν. We then apply Theorem 5.1
in [MU1], which gives that ν is in fact (h + ε(1 + δ))-conformal, and that
ν(xj) > 0 for some j ∈ Ω. From the definition of the limit set J it follows
that there exists a hyperbolic word τ ∈ I∗ such that φτ (xj) ∈ B(xi, R).
Hence, by Lemma 2.2, we have

|φ′ω(xi)| ≤ K|φ′ω(φτ (xj))| = K|φ′τ (xj)|−1|φ′ωτ (xj)|

for every hyperbolic word ω ∈ I∗. Combining this estimate with the confor-
mality of ν, it follows that for each q ≥ 0 and every n ≥ q we have∑
n≥q

∑
ω∈Hn

|φ′ω(xi)|h+ε(1+δ) ≤
(
K|φ′τ (xj)|−1

)h+ε(1+δ)
∑
n≥q

∑
ω∈Hn

|φ′ωτ (xj)|h+ε(1+δ)

≤
∑
n≥q

∑
|ω|=n

ν(φωτ (xj))ν(xj)−1

≤ ν(xj)−1ν
(
{φγ(xj) : |γ| ≥ q + |τ |}

)
≤ ν(xj)−1.
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Hence, H
h

1+δ
+ε(Jδi ) ≤ ν(xj)−1, and consequently HD(Jδi ) ≤ h

1+δ + ε. By
letting ε tend to 0, we derive that HD(Jδi ) ≤ h

1+δ .
In order to obtain the second upper bound, note that by Lemma 2.4

the intersection J ∩B(φω(xi), (R|φ′ω(xi)|)1+δ) is contained in a central cone
with vertex φω(xi) and angle ≤ C2R

1+δ|φ′ω(xi)|)δpi � (R|φ′ω(xi)|)δpi , or
equivalently the radius of the base � (R|φ′ω(xi) |)1+δ(pi+1). Thus J ∩
B (φω(xi), (R|φ′ω(xi)|)1+δ) can be covered by at most const (R|φ′ω(xi)|)−δpi

balls of radii (R|φ′ω(xi)|)1+δ(pi+1). Therefore, for every ε > 0 we have

H
h+δpi

1+δ(1+pi)
+ε(Jδi )

≤ lim inf
q→∞

∑
n≥q

∑
ω∈Hn

(
(R|φ′ω(xi)|)1+δ(1+pi)

) h+δpi
1+δ(1+pi)

+ε(R|φ′ω(xi)|)−δpi

� lim inf
q→∞

∑
n≥q

∑
ω∈Hn

|φ′ω(xi)|h+ε(1+δ(1+pi)).

Now the proof follows exactly in the same way as in the first part. �

As a first step towards the proof of the lower bound in Theorem 4.1, we
obtain the following lemma:

Lemma 4.3. There exists a universal constant b(d) ≥ 1 such that the fol-
lowing holds: for every open set G ⊂ IntX and each n ≥ 1, there exists a
finite set IG,n ⊂

⋃
j≥n I

j of mutually incomparable hyperbolic words, which
has the properties that m

(⋃
ω∈IG,n

Bω
)
≥ b(d)−1m(G) and that the balls in

{Bω : ω ∈ IG,n} are pairwise disjoint subsets of G.

Proof. Fix i ∈ Ω. We define

J∞ :=π
(
{ω∈ I∞ \{τi∞ : τ ∈ I∗} : ω contains arbitrarily long blocks of i’s}

)
.

Then, since the conformal measure m is positive on nonempty open subsets
of J , Corollary 5.11 in [MU1] implies that m(J∞) = 1. Now, let q ≥ 1
be sufficiently large such that φiq(X) ⊂ B(xi,K−1R). It follows from the
definition of J∞ that if x ∈ J∞, then there exists an increasing infinite
sequence {lj}j with lj ≥ n for all j ≥ 1, a sequence {qj}j with qj ≥ q + 1
for all j ≥ 1, and words ω(j) ∈ I lj+qj such that for all j ≥ 1 we have
x ∈ φω(j)(X), ω(j)

lj
6= i and σljω|qj = iqj . It now follows that

x ∈ φω(j)|lj+1
(B(x,K−1R)) ⊂ Bω(j) ,

that ω(j)|lj+1 is a hyperbolic word, and that limj→∞ diam(Bω(j)) = 0. Hence,
the set G ∩ J∞ can be covered by canonical balls Bω for which |ω| ≥ n.
Let Γ denote such a cover of G ∩ J∞. By the Besicovitch Covering Theo-
rem, there exists a universal constant b(d) ≥ 2 such that Γ contains b(d)/2
subfamilies, each consisting of pairwise disjoint elements, such that G is
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contained in the union of all balls in these subfamilies. It follows that
for at least one of these subfamilies, say Γ0, we have m

(⋃
Bω∈Γ0

Bω
)
≥

2/b(d)m(G ∩ J∞) = 2/b(d)m(G). Since there clearly exists a finite subset
Γf of Γ0 having the property that m

(⋃
Bω∈Γf

Bω
)
≥ 1

2m
(⋃

Bω∈Γ0
Bω
)
, the

conclusion of the lemma follows. �

Proof of Theorem 4.1. Our next step in the proof of the theorem is the con-
struction of a Cantor set contained in Jδi . Crucial for this will be a certain
increasing sequence {nl}l≥0 of nonnegative integers, and it will become clear
during the construction how one has to choose this sequence. We begin by
defining for l ≥ 0 the sets Il ⊂ I∗ by induction as follows: let B∅ := B(xi, R)
and I0 := {∅}. Suppose that Il has been defined, and let ω ∈ Il be fixed. By
Lemma 4.3 there exists a finite set ω∗ consisting of hyperbolic words such
that

ω∗ ⊂
⋃

k≥max{|ω|+l, nl+1}

Ik

and the family {Bτ}τ∈ω∗ consists of pairwise disjoint balls such that Bτ ⊂
IntBδ

ω for every τ ∈ ω∗ (note that τ ||ω| = ω). In addition

m

( ⋃
τ∈ω∗

Bτ

)
≥ 1
b(d)

m(IntBδ
ω) � m(Bδ

ω).(4.1)

Here, the latter inequality follows from the conformality of m, Lemma 2.2
and Corollary 3.3. Put

Il+1 =
⋃
ω∈Il

ω∗.

Now, let {Fl}l≥1 denote the family of nested nonempty compact subsets of
B∅ given by

Fl :=
⋂
ω∈Il

Bω.

Note that we have in particular that

F =
⋂
l≥1

Fl 6= ∅.

Next, for each l ≥ 1 we construct a Borel probability measure µl supported
on the set Fl−1 as follows: let µ1 := 1

m(B∅)
m|B∅ , and assume that the measure

µl has already been defined for some l ≥ 1. Recall that

ω∗ := {τ ∈ Il+1 : τ |nl
= ω}

for ω ∈ Il. Now, for each ω ∈ Il and every Borel set A ⊂ Bω we put

µl+1(A) :=
∑

τ∈ω∗m(A ∩Bτ )∑
τ∈ω∗m(Bτ )

.(4.2)
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This defines a Borel probability measure µl+1 on Fl having the property that
µl+1(Bω) = µl(Bω) for every ω ∈ Il. A straightforward inductive argument
gives that µq(Bω) = µl(Bω) for every q ≥ l. Also, since for each ω ∈

⋃
l≥0 Il

the set Bω ∩ F is an open subset of F , we conclude that the weak limit
µ := liml→∞ µl exists and is supported on F , and that µ(Bω) = µl(Bω) for
each l ≥ 1 and every ω ∈ Il. For ω ∈ Il and j ≤ l, let kj = kj(ω) ≤ |ω|
denote the unique integer determined by ω|kj

∈ Ij . Using (4.1) and (4.2),
a straightforward inductive argument gives that for every l ≥ 1 and every
ω ∈ Il we have

µ(Bω) = µl(Bω) =
l∏

j=1

m(Bω|kj
)∑

τ∈ω|∗kj−1

m(Bτ )
(4.3)

= m(Bω)
l−1∏
j=1

m(Bω|kj
)∑

τ∈ω|∗kj

m(Bτ )
1

m(B(xi, R))

= m(Bω)
l−1∏
j=1

m(Bω|kj
)

m(Bδ
ω|kj

)
exp(O(l))

= m(Bω)
l−1∏
j=1

|φ′ω|kj
(xi)|h

|φ′ω|kj
(xi)|hm

(
B(xi, (R|φ′ω|kj

(xi)|)δ)
) exp(O(l))

= m(Bω)
l−1∏
j=1

m
(
B(xi, (R|φ′ω|kj

(xi)|)δ)
)−1 exp(O(l)).

For every η ∈
⋃
j≥l−1 Ij define

∏
l−1

(η) :=
l−1∏
j=1

m
(
B(xi, (R|φ′η|kj

(xi)|)δ)
)−1

.

Since

lim
n→∞

sup
{
|φ′ω(xi)| : ω ∈ In

}
= 0,(4.4)

it follows that there exists n0 ≥ 1 such that for each ω with |ω| ≥ n0 we
have

(R|φ′ω(xi)|)1+δ ≤ 1
3R|φ

′
ω(xi)|.(4.5)

Since the set Il is finite, it follows from (4.4) that there exists a positive
number R̃ ≤ R such that if ω ∈ Il and if R|φ′τ (xi)| ≤ R̃ for some τ ∈ ω∗,
then |ω| ≥ n0. For fixed z ∈ F and 0 < r ≤ R̃/3, consider the family F of
all words ω ∈

⋃
l≥0 Il+1 for which

Bω ∩B(z, r) ∩ J 6= ∅, R |φ′ω(xi)| < 3r, R |φ′ω|kl
(xi)| ≥ 3r.(4.6)
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We shall now see that the family F∗ = {ω|kl
: ω ∈ F} is a singleton, and

that if this is the case with {γ} = F∗, then it follows that

B(z, r) ⊂ Bγ .(4.7)

For this, fix some element γ ∈ F∗ and ω ∈ F such that γ = ω|kl
and such

that y ∈ Bω ∩ B(z, r) ∩ J . Clearly, by construction of the set J , we have
y ∈ Bδ

γ . From (4.5) and (4.6) we deduce that if x ∈ B(z, r), then

‖x− φγ(xi)‖ ≤ ‖x− z‖+ ‖z − y‖+ ‖y − φγ(xi)‖

< r + r + (R|φ′ω(xi)|)1+δ

≤ 2r + 1
3R|φ

′
ω(xi)| ≤ 2

3R|φ
′
ω|kl

(xi)|+ 1
3R|φ

′
ω|kl

(xi)|

= R|φ′ω(xi)| = R|φ′γ(xi)|.

Hence we have proved (4.7); in particular, using (4.6) and the construction
of the set F , we obtain F∗ = {γ}.

Let ε > 0 be fixed. Since T0 := sup {
∏

(τ) : τ ∈ Il−1} <∞, we obtain for
nl sufficiently large and for all η ∈ Il that

T0 exp(O(l)) ≤ |φ′η(xi)|−ε.

Combining this estimate and (4.6), it follows that∏
l−1

(γ) exp(O(l)) ≤ r−ε.(4.8)

To complete the proof of Theorem 4.1, it now suffices to show that µ(B(z, r))
can essentially be estimated from above by r−2εrθ, for

θ =
h

1 + δ
or θ =

h+ δpi
1 + δ(1 + pi)

.

We split this estimate into three cases:

Case 1: r ≥
(
R |φ′γ(xi)|

)1+δ. Using (4.7), (4.8) and the conformality of m,
we obtain

µ(B(z, r)) ≤ µ(Bγ) = µl(Bγ)

≤ m(Bγ)
∏
l−1

(γ) exp(O(l)) = |φ′γ(xi)|h
∏
l−1

(γ) exp(O(l))

� |φ′γ(xi)|hr−ε � r
h

1+δ
−ε,

which completes the discussion for this case.
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Before dealing with the remaining cases, note that, using (4.3), (4.6), (4.8)
and Corollary 3.3, we have

µ(B(z, r)) ≤
∑
ω∈F

µ(Bω) =
∑
ω∈F

m(Bω)
∏
l

(ω) exp(O(l))(4.9)

≤ m(B(z, 7r))
∏
l

(ω) exp(O(l))

= m(B(z, 7r))
∏
l−1

(ω) exp
(
O(l) (m(B(xi, (R|φ′γ(xi)|)δ))−1

)
� r−ε |φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, 7r)).

Case 2: r ≤
(
R |φ′γ(xi)|

)1+δ and r ≥ K2RQpi+2
(
R |φ′γ(xi)|

)1+δ+δpi . From
(4.7) and Lemma 2.2 we deduce that

r ≤ R |φ′γ(xi)| ≤ KR |φ′τ |n(π(σnτ))|,

where z = π(τ) and τ |n = γ. This implies that

r/K ≤ R |φ′τ |n(π(σnτ))| = R |φ′γ(π(σnτ))|.(4.10)

Now, since z ∈ Bγ ∩ J , we have z ∈ Bδ
γ , and therefore

π(σnτ) ∈ B
(
xi,K(R |φ′γ(xi)|)δ

)
.

Let σnτ = iqω, with ω1 6= i. By Proposition 3.1 (formula (3.2)), we

have ‖π(σnτ) − xi‖ ≥ Q−1q
− 1

pi . Hence, using the fact that Q−1q
− 1

pi ≤
K(R |φ′γ(xi)|)δ and Proposition 3.1 (formula (3.1)), we obtain

R
∣∣φ′τ |n+q+1

(π(σn+q+1τ))
∣∣ = R

∣∣φ′γ(π(σnτ))| · |φ′iqω1
(π(σω))

∣∣(4.11)

≤ R
∣∣φ′γ(π(σnτ))

∣∣Qq− 1
pi

≤ KRQpi+2
(
R|φ′γ(xi)|

)1+δ(pi+1)

≤ r/K.

It follows that

(r/K)∗ = R
∣∣φ′γ(π(σnτ))

∣∣, (r/K)∗ = R
∣∣φ′τ |n+q+1

(π(σn+q+1τ))
∣∣.

Choose a small κ > 0 to be specified in the course of the proof. Without
loss of generality we may assume that z /∈ Jδ+κi . Thus by choosing r > 0 to
be sufficiently small, we can assume that z /∈ Bδ+κ

γ , and hence in particular
that π(σnτ) /∈ B

(
xi,K

−1(R|φ′γ(xi)|)δ+κ
)
. Since

‖π(σnτ)− xi‖ ≤ Qq
− 1

pi
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by Proposition 3.1 (formula (3.2)), we have Qq−
1
pi ≥ K−1(R|φ′γ(xi)|)δ+κ.

Hence, using Proposition 3.1 (formula (3.1)), we obtain

R
∣∣φ′τ |n+q+1

(π(σn+q+1τ))
∣∣ = R |φ′γ(π(σnτ))| · |φ′iqω1

(π(σω))|

(4.12)

≥ K−1R |φ′γ(xi)|Q−1q
− 1

pi

≥ (R(KQ)pi+2)−1(R |φ′γ(xi)|)1+(δ+κ)(pi+1).

Write r = c(R|φ′γ(xi)|)1+δ+η, for 0 ≤ η ≤ δpi and 1 ≤ c ≤ K2RQpi+2.
Suppose first that the first part of the global formula (Theorem 3.5) holds
for the centre z and radius r/K. Using (4.12), we obtain

cK−1(R|φ′γ(xi)|)1+δ+η

≥ R|φ′γ(π(σnτ))|

(
R|φ′τ |n+q+1

(π(σn+q+1τ))|
R|φ′γ(π(σnτ))|

) 1
pi+1

≥ RK−1|φ′γ(xi)|

(
(R(KQ)pi+2)−1

(R|φ′γ(xi)|)1+(δ+κ)(pi+1)

R|φ′γ(π(σnτ))|

) 1
pi+1

� |φ′γ(xi)|1+δ+κ.

Note that if r > 0 is chosen to be sufficiently small (and hence the word
length of γ is large), we have η ≤ 2κ. Then, applying Theorem 3.5, (4.9)
and Corollary 3.7, we obtain

µ(B(z, r)) � r−ε|φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, r/K))

� r−εrh|φ′γ(xi)|−δ(h+(h−1)pi)

(
r/K

(r/K)∗

)h−1

� r−εrh|φ′γ(xi)|−δ(h+(h−1)pi)

(
r

|φ′γ(xi)|

)(h−1)pi

= r−εrh+(h−1)pi |φ′γ(xi)|−δ(h+(h−1)pi)−(h−1)pi

� r−εrh+(h−1)pir
−δ(h+(h−1)pi)−(h−1)pi

1+δ+η = r−εr
hpiη−pη+h+hη

1+δ+η .

Note that we have
hpiη − pη + h+ hη

1 + δ + η
≥ h

1 + δ
− ε(4.13)

if and only if

η(hpi − pi + hpiδ − piδ + hδ) ≥ −ε(1 + δ + η).

Clearly, since η ≤ 2κ, the latter inequality is satisfied if we choose κ > 0 to
be sufficiently small. Hence, we can assume without loss of generality that
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(4.13) holds. It then follows that

µ(B(z, r)) ≤ r
h

1+δ
−2ε,

which gives the Case 2 assuming the first part of the global formula.

Now suppose that the second part of the global formula (Theorem 3.5)
holds for the centre z = π(τ) and radius r/K. Then (4.9), Corollary 3.7 and
Theorem 3.5 imply that

µ(B(z, r)) � r−ε|φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, r/K))(4.14)

≤ r−ε|φ′γ(xi)|−δ(h+(h−1)pi)rh
(

(r/K)∗
r

)h−1

� r−εr|φ′γ(xi)|−δ(h+(h−1)pi)p|φ′τ |n+q+1
(π(σn+q+1τ))|h−1.

If h ≤ 1, then using (4.12), we can continue the estimate in this case as
follows:

µ(B(z, r)) � r−εr|φ′γ(xi)|−δ(h+(h−1)pi)pi |φ′γ(xi)|(h−1)(1+(δ+κ)(p+1))

= r−εr|φ′γ(xi)|h+hκpi+hκ−κpi−1−δ−κ

= r−εr|φ′γ(xi)|h−1−δ+aκ,

where we have set a := hpi + h− pi − 1 ≤ 0. Hence,

µ(B(z, r)) � r−εrr
h−1−δ+aκ

1+δ+η = r−εr
h+η+aκ
1+δ+η ≤ r−εr

h+aκ
1+δ ,

where in the last inequality we used the assumption that h ≤ 1. Now, by
choosing κ > 0 to be sufficiently small, it follows that

µ(B(z, r)) ≤ r
h

1+δ
−2ε.

This completes Case 2 for h ≤ 1.

If h > 1, then using (4.11), we can continue the estimate in (4.14) as
follows:

µ(B(z, r)) � r−εr|φ′γ(xi)|−δ(h+(h−1)pi)|φ′γ(xi)|(h−1)(1+δ(p+1))

= r−εr|φ′γ(xi)|h−1−δ = r−εrr
h−1−δ
1+δ+η = r−εr

h+η
1+δ+η

≤

r
h

1+δ
−ε if δ ≥ h− 1

r
h+δpi

1+δ(1+pi) if δ ≤ h− 1.

Here, the latter inequality is obtained by using the facts that η ≤ δpi and
that for δ ≤ h− 1 it holds that h+η

1+δ+η decreases if η increases.
Hence, the proof of Case 2 is complete.
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Case 3: r ≤ K2RQpi+2
(
R|φ′γ(xi)|

)1+δ+δpi . From (4.9) and Corollary 3.7
we deduce that

µ(B(z, r)) � r−ε|φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, r/K))(4.15)

= r−ε|φ′γ(xi)|−δ(h+(h−1)pi)rhζ(z, r/K)

� r−εrhr
− δ(h+(h−1)pi)

1+δ+δpi ζ(z, r/K)

= r
h+δpi

1+δ+δpi
−ε
ζ(z, r/K).

If h ≥ 1, then we can apply Theorem 3.5, and we obtain

µ(B(z, r)) � r
h+δpi

1+δ+δpi
−ε
.

If h ≤ 1, we can assume i = imax, which means pi = max{pj : j ∈ Ω}. Let
k ≥ 1 be the index in the hyperbolic zoom associated with the point z and
with the radius r/K. If nk+1 = nk+1, then we can proceed as in the previous
case to obtain the desired result. Hence, suppose that nk+1 6= nk + 1. It
follows that σnkτ = juτnk+1 for some j ∈ Ω, u ≥ 1 and τnk+1 6= j. Now, for
t ∈ [(r/K)∗, (r/K)∗] we write ζ(z, t) = tα(t). Then

α(t) =
log ζ(z, t)

log t

=


pj(h−1) + pj(1−h) log((r/K)∗)

log t for (r/K)∗≥ r≥ (r/K)∗
(

(r/K)∗
(r/K)∗

) 1
pj+1

,

1− h+ (h−1) log((r/K)∗)
log t for (r/K)∗≤ r≤ (r/K)∗

(
(r/K)∗
(r/K)∗

) 1
pj+1

.

From this we deduce that α has its minimum at t = (r/K)∗
(

(r/K)∗
(r/K)∗

) 1
pj+1 .

Therefore, we can assume without loss of generality that

(r/K) = (r/K)∗
(

(r/K)∗
(r/K)∗

) 1
pj+1

.(4.16)

Also, by choosing κ > 0 sufficiently small, we can assume that z /∈ Jδ+κ.
For r > 0 small, we then have z /∈ Bδ+κ

τ |k (pj). Now, by the same arguments
as those leading to formula (4.12) in Case 2, we have

(r/K)∗ ≥ (R(KQ)pi+2)−1((r/K)∗)1+(δ+κ)(pj+1).(4.17)

Hence, Theorem 3.5 and (4.16) imply that

ζ(z, r/K) ≤
(

(r/K)∗
(r/K)∗

)(h−1)pj
pj+1

.(4.18)
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Now write(
(r/K)∗
(r/K)∗

)(h−1)pj
pj+1

= (r/K)α = (r/K)∗
((

(r/K)∗
(r/K)∗

) 1
pj+1

)α
and for every t ∈ (0, 1) consider the number α(t) determined by the equation(

t

(r/K)∗

)(h−1)pj
pj+1

= (r/K)∗
((

t

(r/K)∗

) 1
pj+1

)α(t)

.(4.19)

We are interested in a sufficiently good lower bound on α(r/K). And indeed,
solving Equation (4.19) for α(t), one easily deduces that the function t 7→
α(t) is increasing throughout the entire interval (0, 1). Therefore, invoking
(4.17), we may assume that

(r/K)∗ = R(KQ)pi+2)−1((r/K)∗)1+(δ+κ)(pj+1)

≤ R(KQ)pi+2)−1((r/K)∗)1+δ(pj+1).

Combining this and (4.16), we obtain

(r/K) � (r/K)∗
(
(r/K)∗

)δ =
(
(r/K)∗

)1+δ
.

Then by combining this, (4.18) and (4.17), we get

ζ(z, r/K) �
(
(r/K)∗

)(δ+κ)pj(h−1) � (r/K)
pj(h−1)(δ+κ)

1+δ .

Substituting this latter inequality in (4.15), we obtain

µ(B(z, r)) � r
h+δpi

1+δ+δpi
+

δpj(h−1)

1+δ r−ε+
κpj(1−h)

1+δ .

A straightforward calculation, using the facts that pi ≥ pj and h ≥ pj
pj + 1

,
shows that

h+ δpi
1 + δ + δpi

+
δpj(h− 1)

1 + δ
≥ h

1 + δ
.

Hence, if κ is chosen sufficiently small, we finally obtain

µ(B(z, r)) � r
h

1+δ
−ε. �

4.2. Limit laws for iterated function systems. Define the set

I∗ := {inj : i ∈ Ω, j 6= i, n ≥ 1} ∪ (I \ Ω).

A word ω ∈ I∞ can be written uniquely as an infinite word in elements from
I∗ if and only if ω is not of the form τi∞ for any i ∈ Ω and τ ∈ I∗. Let

σ∗ : I∞∗ → I∞∗

denote the shift map on I∞∗ . Also, for i ∈ Ω and ω ∈ I∞∗ define

Qi(ω) :=

{
n if ω1 = inj for some n ≥ 1 and j 6= i,

0 otherwise.
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In [MU1] we proved that the iterated function system S∗ = {φω : ω ∈ I∗}
is hyperbolic, and that S∗ is regular if and only if S is regular. The shift
map σ∗ can be interpreted as the symbolic representation of the system S∗.
As in the previous section, in this section we shall always assume that S is a
tame parabolic finite iterated function system satisfying (SSOSC), and that
m is the associated conformal measure for S. Clearly, m is also conformal
for S∗. Hence, there exist Borel probability measures m̃ and µ∗ on I∞∗
that are equivalent to each other (with uniformly bounded Radon–Nikodým
derivatives) such that m = m̃ ◦ π−1 and µ∗ ◦ (σ∗)−1 = µ∗ (see [MU1]). For
ε ∈ R, i ∈ Ω and n ≥ 1, we define

Ai,n(ε) :=
{
ω ∈ I∞∗ : Qi(ω) ≥ n

pi
h+(h−1)pi

−ε}
and

Ai,∞(ε) :=
{
ω ∈ I∞∗ : σ∗n(ω) ∈ Ai,n(ε) for infinitely many n

}
.

Lemma 4.4. For i ∈ Ω and ε ∈ R we have m̃(Ai,∞(ε)) > 0 if and only if
ε ≥ 0.

Proof. Using the definition of m̃ and the conformality of m, we obtain∑
n≥1

µ∗((σ∗)−n(Ai,n(ε))) =
∑
n≥1

µ∗(Ai,n(ε)) =
∑
n≥1

m̃(Ai,n(ε))(4.20)

=
∑
n≥1

∑
k≥n

pi
h+(h−1)pi

−ε

k
− pi+1

pi
h

�
∑
n≥1

n
−1+ε

h+(h−1)pi
pi .

Since h+ (h− 1)pi > 0 (see [MU2]), it follows that the series∑
n≥1

µ∗((σ∗)−n(Ai,n(ε)))

converges for ε < 0. Thus, the “weaker part” of the Borel–Canteli lemma
gives that µ∗(Ai,∞(ε)) = 0, which then implies that m̃(Ai,∞(ε)) = 0. This
proves one direction of the equivalence in the lemma.

In order to prove the remaining part of the lemma, recall the following
well-known result from elementary analysis:

• Let (Xn)n∈N be a sequence of events in a probability space (X,P ). If∑
n∈N P (Xn) = ∞ and if P (Xn ∩Xk) � P (Xn)P (Xk) for all distinct

n, k ∈ N, then P (lim supn→∞Xn) � 1.
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By again using formula (4.20), the ‘if-part’ of the lemma follows from this
general result once we have shown that for all n, k ∈ N with n > k we have

m̃
(
(σ∗)−k(Ai,k(ε)) ∩ (σ∗)−n(Ai,n(ε))

)
� m̃

(
(σ∗)−k(Ai,k(ε))

)
m̃
(
(σ∗)−n(Ai,n(ε))

)
.

Since µ∗ and m̃ are equivalent, and since µ∗ is σ∗-invariant, it follows that
in order to obtain this latter inequality it is sufficient to show that

m̃
(
Ai,k(ε) ∩ (σ∗)−(n−k)(Ai,n(ε))

)
� m̃(Ai,k(ε)) m̃(Ai,n(ε)).

Since the set Ai,k(ε) can be written as a union of S∗-cylinders of length 1,
it can be written also as a union of cylinders of length (n− k). If Ai,k(ε) =⋃
Bk(ε) denotes such a representation by cylinders of length (n − k), then

by the σ∗-invariance of µ∗ and by the Bounded Distortion Property (7) and
the conformality of m, we have for each ω ∈ Ai,n(ε) and τ ∈ Bk(ε) that

m̃
(
(σ∗)−k(Ai,k(ε)) ∩ (σ∗)−n(Ai,n(ε))

)
� m̃

(
(σ∗)−(n−k)(Ai,n(ε)) ∩Bk(ε)

)
� |φ′τ (π(ω))|hm̃(Ai,n(ε)) ∩ (σ∗)n−k(Bk(ε))).

This implies that

m̃((σ∗)−(n−k)(Ai,n(ε)) ∩Bk(ε))
m̃(Bk(ε))

� |φ′τ (π(ω))|hm̃(Ai,n(ε))
|φ′τ (π(ω))|h

= m̃(Ai,n(ε)),

or equivalently that

m̃((σ∗)−(n−k)(Ai,n(ε)) ∩Bk(ε)) � m̃(Ai,n(ε)) m̃(Bk(ε)).

If in this latter inequality we sum up over all sets Bk(ε), we obtain

m̃((σ∗)−(n−k)(Ai,n(ε)) ∩Ai,k(ε)) � m̃(Ai,n(ε)) m̃(Ai,k(ε)),

which in particular gives the desired inequality. �

Lemma 4.5. For i ∈ Ω and ε ≥ 0 we have m̃(Ai,∞(ε)) = 1.

Proof. Let i ∈ Ω and ε > 0 be fixed. Clearly, σ∗(Ai,∞(ε)) ⊂ Ai,∞(ε). Hence,
using the ergodicity of the map σ∗ and the previous lemma, the statement
of the lemma follows. �

Theorem 4.6 (Limit Law I). For m̃-almost every ω ∈ I∞∗ and for all i ∈ Ω
we have

lim sup
n→∞

logQi((σ∗)n(ω))
log n

=
pi

h+ (h− 1)pi
.

Proof. In order to obtain the lower bound for the ‘lim sup’ in the lemma,
fix some i ∈ Ω and note that by Lemma 4.5 we have m̃(Ai,∞(0)) = 1. If
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ω ∈ Ai,∞(0), there exists by definition a sequence (kj)j∈N of natural numbers
kj , such that (σ∗)kj (ω) ∈ Ai,kj

(0) for all j ∈ N. This implies for all j that

Qi((σ∗)kj (ω)) ≥ k
pi/(h+(h−1)pi)
j ,

and hence that

lim sup
n→∞

logQi((σ∗)n(ω))
log n

≥ pi
h+ (h− 1)pi

.

In order to obtain the upper bound for the ‘lim sup’ in the lemma, let ε < 0
and i ∈ Ω. By Lemma 4.4, there exists a set Fi(ε) such that m̃(Fi(ε)) = 1,
and such that if ω ∈ Fi(ε) then there exists a number n0 = n0(ω) ∈ N with
the property that (σ∗)n(ω) /∈ Ai,n(ε) for all n ≥ n0. Hence, for ω ∈ Fi(ε) we
have for all n ≥ n0 that

lim sup
n→∞

logQi((σ∗)n(ω))
log n

≤ pi
h+ (h− 1)pi

− ε.

If we put Fi =
⋂
n≥1 Fi(−

1
n), then m̃(Fi) = 1 and for each ω ∈ Fi we have

lim sup
n→∞

logQi((σ∗)n(ω))
log n

≤ pi
h+ (h− 1)pi

.

Hence, for ω ∈ Ai,∞(0)∩Bi we obtain the equality stated in the theorem. �

Note that if Qi(ω) = n, then it follows from (3.3) that |xi − π(ω)| �
(n+ 1)−1/pi . This now leads to our second limit law.

Theorem 4.7 (Limit Law II). For m̃-almost every ω ∈ I∞∗ we have for all
i ∈ Ω that

lim sup
n→∞

− log |π((σ∗)n(ω))− xi|
log n

=
1

h+ (h− 1)pi
.

Proof. Fix ω ∈ I∞∗ and i ∈ Ω. By definition of Qi and using (3.3), we have
for n ∈ N that

|π((σ∗)n(ω))− xi| � (Qi((σ∗)n(ω)) + 1)−1/pi .

Hence, it follows that

lim
n→∞

∣∣∣∣− log |π((σ∗)n(ω))− xi|
log n

− logQi((σ∗)n(ω))
pi log n

∣∣∣∣ = 0.

Using Limit Law I, we find that, for m̃-almost all ω ∈ I∞∗ ,

lim sup
n→∞

− log |π((σ∗)n(ω))− xi|
log n

=
1
pi

lim sup
n→∞

logQi((σ∗)n(ω))
log n

=
1

h+ (h− 1)pi
. �
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Since m̃ is ergodic and positive on nonempty open sets, we have that m̃-
almost every point in I∞∗ has arbitrarily long blocks with parabolic entries
only. Taking this observation into account, we now modify on a set of
full measure the definition of the hyperbolic zoom (rj(ω))j as follows: for
a given i ∈ Ω we include only those elements in the hyperbolic zoom for
which nj(ω) ≥ nj−1(ω) + 2 and i(ω, j) = i. In other words, we consider
subsequences (rjk(ω))k and (njk(ω))k such that njk(ω) ≥ njk−1(ω) + 2 and
ωnjk−1(ω) = i. Such subsequences will be referred to as the i-restricted
hyperbolic zoom and the i-restricted optimal sequence, respectively.

Theorem 4.8 (Limit Law III). For each i ∈ Ω the i-restricted optimal se-
quence at m̃-almost every ω ∈ I∞∗ has the property that

lim sup
k→∞

log(njk+1(ω)− njk(ω))
log jk

=
pi

h+ (h− 1)pi
.

Proof. Let i ∈ Ω and ω ∈ I∞∗ . Define the function Nn : I∞∗ → N by
(σ∗)n(ω) = σNn(ω)(ω), for every n ≥ 1. Then we see by induction that
Nj(ω) = nj(ω), for all j ∈ N (this follows, since n1(ω) = N1(ω) and, as-
suming that nj(ω) = Nj(ω), since nj+1(ω) = nj(ω) + N1(ω)(σnj(ω)(ω)) =
Nj+1(ω)).

Using Limit Law II and the fact that |π(σNjk
(ω)(ω))− xi| � (Njk+1(ω)−

Njk(ω))−1/pi , it follows that for m̃-almost all ω we have

lim sup
k→∞

log(njk+1(ω)− njk(ω))
log jk

= lim sup
k→∞

log(Njk+1(ω)−Njk(ω))
log jk

= lim sup
k→∞

−pi log |π(σNjk
(ω)(ω))− xi|

log jk

= lim sup
k→∞

−pi log |π((σ∗)jk(ω))− xi|
log jk

=
pi

h+ (h− 1)pi
. �

Theorem 4.9 (Limit Law IV). For each i ∈ Ω the i-restricted hyperbolic
zoom at m̃-almost every ω ∈ I∞∗ has the property that

lim sup
k→∞

log (rjk(ω) / rjk+1(ω))
log jk

=
1 + pi

h+ (h− 1)pi
.

Proof. For i ∈ Ω and ω ∈ I∞∗ we saw in the proof of Theorem 3.5 that

rjk(ω)
rjk+1(ω)

� (njk+1(ω)− njk(ω))(1+pi)/pi
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for k ∈ N. Combining this estimate with Limit Law III, it follows for m̃-
almost all ω ∈ I∞∗ that

lim sup
k→∞

log (rjk(ω) / rjk(ω))
log jk

= lim sup
k→∞

1 + pi
pi

log(njk+1(ω)− njk(ω))
log jk

=
1 + pi

h+ (h− 1)pi
. �

The following theorem presents the main result in this section:

Theorem 4.10. (The Khintchine Limit Law for parabolic iterated function
systems). The hyperbolic zoom at m̃-almost every ω ∈ I∞∗ satisfies

lim sup
j→∞

log (rj(ω) / rj+1(ω))
log log 1

rj(ω)

=
1 + pmax

h+ (h− 1)pmax
,

where we have set pmax := max{pi : i ∈ Ω}.

Proof. For m̃-almost all ω ∈ I∞∗ we have

lim
j→∞

log rj(ω)
j

= lim
j→∞

log
∣∣φ′nj(ω)(π(σnj(ω)(ω)))

∣∣
j

= lim
j→∞

log
∣∣φ′Nj(ω)(π(σNj(ω)(ω)))

∣∣
j

= lim
j→∞

log
∣∣φ′Nj(ω)(π(σ∗)j(ω))

∣∣
j

= χ,

where the last equality follows from the Birkhoff Ergodic Theorem, using
the ergodicity of the system (I∞∗ , σ

∗, µ∗) and the definition

χ :=
∫
I∞∗

log
∣∣φ′ω1

(π(σ∗)(ω))
∣∣ dm∗(ω) > −∞.

Hence,

lim
j→∞

log log 1
rj(ω)

log j
= 1.

The theorem follows by combining this equality with Limit Law IV and
noting that

max
i∈Ω

1 + pi
h+ (h− 1)pi

=
1 + pmax

h+ (h− 1)pmax
. �

Corollary 4.11. For the function ζ of the h-conformal measure m (see
Theorem 3.5) associated with a tame parabolic finite iterated function system
satisfying (SSOSC) the following hold:

(i) For h = 1, we have for all ω ∈ I∞∗ and 0 < r < diam(I∞∗ ) that

ζ(ω, r) � 1.
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(ii) For h < 1, we have for m̃-almost every ω ∈ I∞∗ that

lim sup
r→0

log ζ(ω, r)
log log 1

r

=
(1− h)pmax

h+ (h− 1)pmax
.

(iii) For h > 1, we have for m̃-almost every ω ∈ I∞∗ that

lim inf
r→0

log ζ(ω, r)
log log 1

r

=
(1− h)pmax

h+ (h− 1)pmax
.

Proof. Statement (i) is an immediate consequence of Theorem 3.5. In order
to prove statement (ii), let ω ∈ I∞∗ and r > 0 sufficiently small be given.
Without loss of generality we may assume that rj+1(ω) ≤ r < rj(ω) and that
ωnj(ω)+1 = i, for some i ∈ Ω. For r in this range, an elementary calculation
shows that the maximal value of ζ(ω, r) is achieved if r is comparable to

rj,max(ω) := rj(ω)
(
rj+1(ω)
rj(ω)

)1/(1+pi)

.

For this value of r we have

ζ(ω, rj,max(ω)) �
(

rj(ω)
rj+1(ω)

)(1−h)pi/(1+pi)

.

As we have seen above in the proof of the Khintchine law, for m̃-almost all
ω ∈ I∞∗ it is sufficient to restrict the discussion to those indices j for which
ωnj(ω) = i, with pi = pmax. It follows that for all ε > 0 and for m-almost all
ω ∈ I∞∗ we eventually have

(1− ε) (1 + pi)
h+ (h− 1)pi

log log
1

rj(ω)
≤i.o. log

rj(ω)
rj+1(ω)

≤ (1 + ε)(1 + pi)
h+ (h− 1)pi

log log
1

rj(ω)

(where ‘≤i.o.’ indicates that the inequality holds ‘infinitely often’, i.e., for
some infinite sequence of values of j). Hence, the estimate above implies
that(

log
1

rj(ω)

)(1−ε)(1−h)pmax
h+(h−1)pmax

�i.o. ζ(ω, rj,max(ω)) �
(

log
1

rj(ω)

)(1+ε)(1−h)pmax
h+(h−1)pmax

.

This proves statement (ii) in the corollary. Statement (iii) follows from a
similar argument, and we omit its proof. �

We are now in the position to derive a refinement of the description of the
geometric nature of the h-conformal measure given in Theorem 3.8 . Namely,
using the latter corollary, we have the following statements concerning its
relationship to the packing measure Pψλ

and Hausdorff measure Hψλ
with

respect to the dimension function ψλ. Here, the function ψλ is given for
λ ∈ R and positive r by

ψλ(r) := rh
(
log

1
r

)(1+λ)(1−h)pmax/(h+(h−1)pmax)
.
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Corollary 4.12. If S is a tame finite parabolic iterated function system
satisfying (SSOSC), we have the following table:

λ vs. h h<1 h>1

λ>0 m�Hψλ
and Hψλ

(J)=∞ ∃Eλ s.t. m(Eλ)=1, Pψλ
(Eλ)=0

λ≤0 ∃Fλ s.t. m(Fλ)=1, Hψλ
(Fλ)=0 m�Pψλ

and Pψλ
(J)=∞

The symbol ‘�’ indicates absolute continuity between two measures.
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Kleinian groups; the semi-classical approach, Ark. Math., 33 (1995), 385–403,
MR 1373031 (97a:30056), Zbl 0851.30027.

[S2] B.O. Stratmann, Weak singularity spectra of the Patterson measure for geometri-
cally finite Kleinian groups with parabolic elements, Michigan Math. J., 46 (1999),
573–587, MR 1721571 (2001a:37059), Zbl 0961.30033.

[S3] B.O. Stratmann, Multiple fractal aspects of conformal measures; a survey, in
‘Workshop on Fractals and Dynamics’, eds. M. Denker, S.-M. Heinemann and
B.O. Stratmann, Math. Gottingensis, Heft 5 (1997), 65–71.
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A NOTE ON A FOURTH ORDER PDE WITH CRITICAL
NONLINEARITY

Changyou Wang

We consider the Euler–Lagrange equation of a functional
arising from conformal geometry in four dimensions, a fourth
order equation with borderline nonlinearity. We present a
short proof of the fact that any W 2,2-solution is smooth.

1. Introduction

Let (M, g) be a four-dimensional compact Riemannian manifold. Motivated
by problems in four-dimensional spectral theory and conformal geometry,
Chang and Yang [CY] (cf. also Chang [C]) introduced the functional F :
W 2,2(M) → R:

F (w) =
∫
M

{
(∆w)2 + (α∆w + β|Dw|2)2 + T (Dw,Dw) + E(w − w)

}
dv,

(1.1)

where α, β ∈ R, w = 1
volM

∫
w; E : R → R and T ∈ sym2(T ∗M) satisfy:

max
{
|E(x)|, |E′(x)|

}
≤ c1e

c2|x|, |T (v, v)| ≤ c3|v|2.(1.2)

Direct computations show that the Euler–Lagrange equation associated with
critical points of F on W 2,2(M) is

(1.3) 2(1 + α2)∆2w + 2β div
(
αD(|Dw|2)− (α∆w + β|Dw|2)Dw

)
= div(T (Dw, ·))−

(
E′(w − w)− E

′(w − w)
)

where E′(w − w) = 1
volM

∫
E′(w − w). Chang, Gursky and Yang [CGY]

proved that any F -minimizing solution u ∈ W 2,2(M) to (1.3) is actually
smooth. It was asked in [CGY] whether any weak solution u ∈ W 2,2(M)
is smooth. Indeed, Uhlenbeck and Viaclovsky [UV] confirmed this recently
and proved the smoothness for any weak solution u ∈W 2,2(M) to (1.3). The
proof in [CGY] relied on F -minimality. The idea in [UV] is based on some
uniqueness properties for small perturbations of ∆2 in various Sobolev spaces
and seems to be an indirect argument. Here we provide an alternative and
direct proof of the smoothness for weak solutions to (1.3); namely, we show
that under a smallness assumption on the W 2,2 norm, the normalized Lp-
norm of the gradient of u on a ball decays like a positive power of the radius

393
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of the ball. This, combined with Morrey’s decay lemma and the conformal
invariance of the W 2,2 norm in dimension four, implies the Hölder continuity
of u. Higher-order regularity then follows from [CGY]. This type of so-
called ε0-decay lemma is very common in the context of regularity theory
for harmonic maps (cf. Schoen–Uhlenbeck [SU]). In fact, this kind of idea
was also employed by Chang, Wang and Yang in their study of the regularity
problem of biharmonic maps into spheres [CWY].

Since regularity is a local result, we assume, for simplicity, that M = Ω ⊂
R4 is a bounded smooth domain, with the Euclidean metric g. Now we state
the decay lemma:

Lemma A. There exist ε0 > 0 and θ0 ∈ (0, 1
2) such that if u ∈ W 2,2(Ω) is

a weak solution to (1.3) and if for Br(x) ⊂ Ω we have∫
Br(x)

|Du|4 + |D2u|2 ≤ ε20(1.4)

then, for any 2 < p < 4,

(θ0r)p−4

∫
Bθ0r(x)

|Du|p ≤ 1
2r
p−4

∫
Br(x) |Du|

p + C
(
p, ‖D2u‖L2(Ω)

)
rp.(1.5)

Since u ∈ W 2,2(Ω), the absolute continuity of
∫
|Du|4 + |D2u|2 implies

that there exists an r0 > 0 such that (1.4) holds for u over any ball Br(x) ⊂
Ω with 0 < r ≤ r0. Therefore, we can apply the lemma repeatedly and
conclude that there exists a δ0 ∈ (0, 1) such that rp−4

∫
Br(x) |Du|

p behaves
like rpδ0 for all 0 < r < r0 and x ∈ Ω. This, combined with Morrey’s lemma,
implies that u ∈ Cδ0(Ω) and hence u ∈ C∞(Ω), via [CGY]. In particular,
one has (cf. also [UV]):

Theorem B. If u ∈W 2,2(M) is a weak solution to (1.3), then u ∈ C∞(M).

2. Proof of Lemma A

It follows from Fubini’s theorem that there is an s ∈ [ r2 , r] such that∫
∂Bs(x)

|Du|4 + |D2u|2 ≤ 2r−1

∫
Br(x)

|Du|4 + |D2u|2.(2.1)

Let u1 ∈W 2,2(Bs(x)) satisfy

∆2u1 = − β

1 + α2
div
(
αD(|Du|2)− (α∆u+ β|Du|2)Du

)
,(2.2)

u1 =
∂u1

∂r
= 0 on ∂Bs(x).(2.3)
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Let u2 ∈W 2,2(Bs(x)) satisfy

∆2u2 =
1

2(1 + α2)
(
div(T (Du, ·))− (E′(u− u)− E

′(u− u))
)
,(2.4)

u2 =
∂u2

∂r
= 0 on ∂Bs(x).(2.5)

Let u3 = u− u1 − u2 ∈W 2,2(Bs(x)). Then we have

∆2u3 = 0 in Bs(x),(2.6)

u3 = u and
∂u3

∂r
=
∂u

∂r
on ∂Bs(x).

For u1, it follows (see, e.g., Lemma 2.2 of [CWY]) that for any q ∈ (1, 4
3)

‖D3u1‖Lq(Bs(x)) ≤ C‖|Du||D2u|+ |Du|2|Du|‖Lq(Bs(x))

≤ C
(
‖D2u‖L2(Bs(x)) + ‖Du‖2

L4(Bs(x))

)
‖Du‖

L
2q

2−q (Bs(x))

≤ Cε0‖Du‖
L

2q
2−q (Bs(x))

.

This, combined with the Sobolev embedding theorem, implies

‖Du1‖
L

2q
2−q (B r

2
(x))

≤ ‖Du1‖
L

2q
2−q (Bs(x))

≤ Cε0‖Du‖
L

2q
2−q (Bs(x))

(2.7)

≤ Cε0‖Du‖
L

2q
2−q (Br(x))

.

Here we have used the fact that Du1 = 0 on ∂Bs(x). To estimate u2, observe
that (1.2) implies that |T (Du, ·)| ≤ C|Du| ∈ L4(Ω) and

‖T (Du, ·)‖L4(Ω) ≤ C‖u‖W 2,2(Ω).(2.8)

The Moser–Trudinger inequality and (1.2) imply E′(u − u) − E
′(u − u) ∈

Lp(Ω) for any 1 < p <∞ and∥∥E′(u− u)− E
′(u− u)

∥∥
L4(Ω)

≤ C‖u‖W 2,2(Ω).(2.9)

Multiplying (2.4) by u2 and integrating it over Bs(x), we get∫
Bs(x)

|D2u2|2 =
∫
Bs(x)

|∆u2|2

≤ C

∫
Bs(x)

(
|Du| |Du2|+ |E′(u− u)− E

′(u− u)| |u2|
)

≤ C‖u‖W 2,2(Ω)

(∫
Bs(x)

(|u2|2 + |Du2|2)
) 1

2

≤ C‖u‖W 2,2(Ω)r

(∫
Bs(x)

|D2u2|2
) 1

2

.
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Here we have applied the Poincaré inequality for u2 in the last step. Thus∫
Bs(x)

|D2u2|2 ≤ C‖u‖2
W 2,2(Ω)r

2.(2.10)

This, combined with the Sobolev embedding theorem, gives∫
Bs(x)

|Du2|4 ≤ C

(∫
Bs(x)

|D2u2|2
)2

≤ Cr4‖u‖2
W 2,2(Ω).(2.11)

In particular, for any q ∈ (1, 4
3), we have(r

2

) 2q
2−q

−4
∫
B r

2
(x)
|Du2|

2q
2−q ≤ C(‖u‖W 2,2(Ω))r

2q
2−q .(2.12)

Since u3 is a biharmonic function on Bs(x), we know that∫
Bs(x)

|D2u3|2 ≤
∫
Bs(x)

|D2u|2.

A standard Caccipolli-type argument implies that∫
B r

3
(x)
|D2u3|2 ≤ Cr−2

∫
B r

2
(x)
|Du3|2.(2.13)

This, combined with the subharmonicity of |∆u3|2, implies

r2‖Du3‖2
L∞(B r

4
(x)) ≤ C

∫
B r

3
(x)
|D2u3|2 ≤ Cr−2

∫
B r

2
(x)
|Du3|2.(2.14)

In particular, for any θ ∈ (0, 1
4) and q ∈ (1, 4

3),

(θr)
2q

2−q
−4
∫
Bθr(x)

|Du3|
2q

2−q ≤ Cθ
2q

2−q r
2q

2−q
−4
∫
B r

2
(x)
|Du3|

2q
2−q .(2.15)

Putting (2.7), (2.13), (2.15) together, we obtain, for any q ∈ (1, 4
3) and

θ ∈ (0, 1
4),

(θr)
2q

2−q
−4
∫
Bθr(x)

|Du|
2q

2−q ≤ (Cε0θ
2q

2−q
−4+Cθ

2q
2−q )r

2q
2−q

−4
∫
Br(x)

|Du|
2q

2−q(2.16)

+ C
(
θ, q, ‖u‖W 2,2(Ω)

)
r

2q
2−q .

Therefore, by choosing θ0 = (4C)
q−2
2q and then choosing ε0 sufficiently small,

we have

(θ0r)
2q

2−q
−4
∫
Bθ0r(x)

|Du|
2q

2−q ≤ 1
2
r

2q
2−q

−4
∫
Br(x)

|Du|
2q

2−q(2.17)

+ C
(
q, ‖u‖W 2,2(Ω)

)
r

2q
2−q .
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Set p = 2q
2−q . Observe that p ∈ (2, 4) for q ∈ (1, 4

3). This completes the proof
of Lemma A. �
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