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We introduce a general method for obtaining the main zeta invariants for a
class of double series of Dirichlet type and we apply it to the case of homo-
geneous quadratic and linear double series.

1. Introduction and statement of the problem

Let n ∈ N2
0, where N0 = {1, 2, 3, . . . }, and let A be a (real) symmetric matrix of

rank 2 whose associated quadratic form is positive definite on N0. Then, consider
the zeta function of the complex variable s defined by the series of Dirichlet type

ζ2(s; A) =

∑
n∈N2

0

(nT An)−s,

when Re(s) > s0, for some s0 (depending on the matrix A), and by analytic con-
tinuation elsewhere. The aim of this work is to obtain the first coefficients in the
Kronecker limit formula for ζ2(s; A) near s = 0. Our result is stated in Theorem 1
(page 197), where we show that the analytic continuation of ζ2(s; A) is regular
at s = 0, and we give the values of ζ2(0; A) and ζ ′

2(0; A). The proof of Theo-
rem 1 is based on the more general Spectral Decomposition Lemma (page 188),
which provides the first coefficients in the Kronecker limit formula at s = 0 for
the zeta function associated to a more general class of double series of Dirichlet
type, whenever some coefficients in the asymptotic expansions of some associated
spectral functions are known. We conclude this section with a brief overview on
this subject and on the motivations for our analysis.

Let S = {λn}n∈N0 be a sequence of nonvanishing complex numbers with unique
accumulation point at infinity and with finite exponent s0. Then we define the
associated zeta function by the sum

ζ(s; S) =

∞∑
n=1

λ−s
n ,
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for Re(s) > s0, and by analytic extension elsewhere [Atiyah et al. 1973]. Informa-
tion on the analytic properties of this function, usually called zeta invariants, like
poles, residues and particular values, are important in many fields, from number
theory to mathematical physics, and different techniques have been defined and
applied in different contexts in order to compute such invariants. In particular, we
are interested in the value of the derivative of the zeta function at s = 0, that is, in
the coefficient of the linear term in the Kronecker first limit formula at s = 0 [Weil
1976; Lang 1987]. By a Mellin transform, the zeta function can be immediately
associated to a series of theta type

∑
e−λn t , and many properties of the zeta function

can be easily deduced from the properties of the theta series. Poles, residues and
particular values can be obtained whenever the asymptotic expansion of the theta
series for small t is available [Gilkey 1995; Rosenberg 1997]; unfortunately, this
approach fails when the coefficients of the positive powers of s are involved, as
for ζ ′(0; S). A particularly interesting case is when λn is quadratic in one or more
integer variables λn = nT An, where n is an integer vector in Zk , and A a k-square
real symmetric matrix (zeta functions of this type are called Epstein zeta functions
since they were first considered in [Epstein 1903; 1906]). Multidimensional theta
series have been deeply studied in the literature. In particular, the Poisson sum-
mation formula, namely the Fourier expansion of the theta function, has suitable
generalizations to the multidimensional case (see [Chandrasekharan 1985, XI.2,
3], for example). Using these formulas and properties of special functions, it is
possible to compute the main zeta invariants for multiple series of Epstein type, also
called multiple Eisenstein zeta functions (see [Weil 1976; Ortenzi and Spreafico
2004; Elizalde et al. 1994; Cassou-Noguès 1990] and references therein). Moving
up to the zeta functions associated to series of Dirichlet type (namely when the
sums are over Nk

0), the main difficulty is precisely the lack of a formula of Poisson
type. Consequently, it is hard to find general results, and different techniques have
been introduced to deal with the specific cases. See, for example, [Bombieri and
Perelli 2001; Carletti and Monti Bragadin 1994a; 1994b; Quine and Choi 1996;
Eie 1990; Spreafico 2003; 2004] for simple series or series that can be reduced
to simple series. For what concerns multiple series, homogeneous linear series of
Dirichlet type, defined (for Re(s) > k) by the sum

ζ(s; a) =

∑
n∈Nk

0

(a1n1 + · · · + aknk)
−s,

were first introduced by Barnes in his work on multiple gamma functions (see
[Cassou-Noguès 1990] for a good review), where he gives formulas for the values
at negative integers and relations with the multiple gamma functions that extend the
classical Lerch formula (see also [Spreafico 2006]). Notice also the work of Actor
[1990], which gives a formula for ζ(s; a) as a power series whose coefficients
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are (infinite) sums of Riemann zeta functions and elementary functions and the
related works of Matsumoto [1998], where asymptotic expansions are given for
nonhomogeneous linear series ζ1(s; a, 1, q) =

∑
∞

n,k=1(an + k + q)−s , for large
a, and observe that a formula for ζ ′

1(0; a, 1) was given in [Spreafico 2004], using
the Plana Theorem. Next, the case of the double homogeneous quadratic series of
Dirichlet type, defined (for Re(s) > 1) by the sum

ζ2(s; a, b, c) =

∞∑
n,k=1

(an2
+ 2cnk + bk2)−s,

is much harder. These zeta functions (with integer coefficients) appear when deal-
ing with the zeta functions of a narrow ideal class for a real quadratic field, as
shown by Zagier [1975; 1977], where he also computes the values at nonpositive
integers. The same result was obtained by Shitani [1976] by different methods,
while the values at negative half-integers were computed in [Eie 1989]. See also
the works of Cassou-Noguès [1979; 1990], who, besides the values at negative
integers, gave interesting relations with the multiple gamma functions and analyze
the p-adic analogous of the multiple zeta and gamma functions. In contrast, no
results for the derivative ζ ′

2(0; a, b, c) are known, and this is the main motivation
for this work.

The technique we develop in order to obtain ζ ′

2(0; a, b, c) is to find a suitable
representation of ζ2(s; a, b, c), in terms of some complex integral, that allows us
to use known information, contained in the asymptotic expansion of some spectral
functions associated to ζ2(s; a, b, c), to compute ζ ′

2(0; a, b, c) (Theorem 1). This
method automatically gives the value of ζ2(0; a, b, c) for all real positive values
of the constants a, b and c, thus extending one of the results of [Zagier 1977] and
also covers the linear case ζ1(s; a, b) (see page 197 for details) for all real positive
a and b. Furthermore, our technique is not defined ad hoc for the case under
study in this paper, but can be applied to a larger class of series of Dirichlet type
with polynomial general term or even generalized without much effort to series
whose general term is not polynomial, and there are works in progress in different
directions.

The lemma we are going to prove is a general version of a technique introduced
in [Spreafico 2005] to treat the zeta function associated to the Laplacian on a cone.
Let P(x, y) be a polynomial in two variables with real coefficients. Consider the
double sequence S ={λn,k = P(n p, kq)}, n, k ∈N0, where p and q are some positive
real numbers. (For convenience, also assume the numbers λn,k to be ordered in the
sequence λ1,1 ≤ λ1,2 ≤ λ2,1 ≤ λ1,3 ≤ . . . .) Assume that S is positive definite
(namely λn,k > 0 for all n, k), has the unique accumulation point at infinity and is
a sequence of finite exponent s0; see [Copson 1935, 7.43]. Then there exist finite
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α and β such that λn,k behaves like nα for fixed k, and like kβ for fixed n, and the
series

ζ(s) =

∞∑
n,k=1

λ−s
n,k,

converges absolutely and locally uniformly when Re(s) > s0. In this situation, we
can prove the following lemma.

Spectral Decomposition Lemma (SDL). Let {λn,k}n,k∈N0 and ζ(s) be as above.
We have for ζ(s) the analytic representation

ζ(s) =
s

0(s)

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
T (λ, s) dλ dt,

where the contour is defined below, and

T (λ, s) =

∞∑
n=1

n−αs tn(λ), tn(λ) = − log
∞∏

k=1

(
1 +

nα(−λ)

λn,k

)
e
∑[1/β]

j=1 nα j λ j /( jλ j
n,k).

Assume there exist an asymptotic expansion of tn(λ) for large n, uniformly in λ

for λ in some (unbounded) domain D of the complex plane, disjoint from S and
containing the origin λ = 0, and an asymptotic expansion of tn(λ), for each fixed
n, in powers of −λ and powers of −λ times log(−λ) (like the one considered
in [Brüning and Seeley 1987]) for large λ in D. Then ζ(s) can be analytically
extended to the whole complex plane up to a set of poles. Moreover, s = 0 is a
regular point and we can compute the main zeta invariants as follows. Let f (λ) be
the coefficient of the 1/n term in the asymptotic expansion of tn(λ) for large n, and
define

pn(λ) = tn(λ) −
1
n

f (λ), P(λ, s) =

∞∑
n=1

n−αs pn(λ).

Then

ζ(0) = −A(0) +
1
α

Res1
(
F(s), s = 0

)
,

ζ ′(0) = −A′(0) − B(0) +
1
α

Res0
(
F(s), s = 0

)
+ γ

(
1 +

1
α

)
Res1

(
F(s), s = 0

)
,

where

F(s) =

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
f (λ) dλ dt

and

A(s) =

∞∑
n=1

n−αsan, B(s) =

∞∑
n=1

n−αsbn,

an and bn being the logarithmic and constant terms in the asymptotic expansion of
pn(λ) for large λ and fixed n.
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Proof. The general plan is as follows. We know how to deal with a simple series
[Spreafico 2006], say the sum over k, and we can rearrange the sums so as to
decompose the double series as a sum over n of sums over k. The problem in this
decomposition is that we have to regularize also the external sum in n. For that
purpose, it is enough to collect an opportune power of n. This will give a suitable
analytic representation and will keep track of all contributions in the regularization
process.

As a first step, we provide an analytic representation for ζ(s). Notice that all the
series and the products appearing in the following calculations converge absolutely
and uniformly, due to the assumptions on the sequence {λn,k}. We can write

ζ(s) =

∞∑
n=1

n−αs
∞∑

k=1

(
λn,k

nα

)−s

=
1

0(s)

∫
∞

0
t s−1

∞∑
n=1

n−αs
∞∑

k=1

e−
λn,k
nα t dt

=
1

0(s)

∫
∞

0
t s−1

∞∑
n=1

n−αs 1
2π i

∫
3ε

e−λt
∞∑

k=1

1
λ − λn,k/nα

dλ dt,

where 3ε = ∂ D can be deformed to the contour {λ ∈ C | |arg(λ − ε)| = θ/2}, ori-
ented counterclockwise, with some nonnegative real ε < λ1,1 and 0 < θ < π . The
preceding expression in turn equals

1
0(s)

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt R(λ, s) dλ dt,

where

R(λ, s) =

∞∑
n=1

n−αsrn(λ), rn(λ) = −

∞∑
k=1

(
nα

nα(−λ) + λn,k
−

[1/β]−1∑
j=0

n jαλ j

λ
j+1
n,k

)
.

We can now introduce a primitive function for the resolvent R(λ, s); namely,
let

T (λ, s) =

∞∑
n=1

n−αs tn(λ), tn(λ) = − log
∞∏

k=1

(
1 +

nα(−λ)

λn,k

)
e
∑[1/β]

j=1 nα j λ j /( jλ j
n,k).

Then

−
d

dλ
T (λ, s) = R(λ, s),

and again the canonical product converges; moreover, the exponential factor makes
no contribution to the quantities we are going to compute, since it adds terms to
R(λ, s) that vanish after integration over λ (see [Spreafico 2005]). Also notice that,
since T (λ, s) is defined up to a constant, we can always chose it so that T (0, s)=0,
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and we do so. Integrating by parts first in λ and then in t we get

ζ(s) =
s

0(s)

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
T (λ, s) dλ dt.

We could now use this representation to compute both the value at s = 0 and
the derivative, if we could provide an expansion for T (λ, s) for large λ [Spreafico
2004]. The problem is that more care is necessary due to the possible appearance
of a singularity in the sum over n. The unique possible pole in such a sum comes
from a term behaving like 1/n in the expansion of tn for large n uniformly in λ, so
we can overcome this problem as follows. Let f (λ) be the coefficient of the term
in 1/n in the uniform expansion of tn(λ) for large n, and define

pn(λ) = tn(λ) −
1
n

f (λ), P(λ, s) =

∞∑
n=1

n−αs pn(λ).

Then

ζ(s) =
s

0(s)

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
P(λ, s) dλ dt

+
s

0(s)
ζR(αs + 1)

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
f (λ) dλ dt

= z1(s) + z2(s),

and the singular contribution is isolated in the second term. We can deal with the
two terms as follows. For the first, the assumed expansion of tn(λ) for large λ in
D and fixed n, gives the following expansion of pn(λ),

pn(λ) = tn(λ) −
1
n

f (λ) =

∑
γ

cγ,n(−λ)γ0−γ
+

∑
δ

dδ,n(−λ)δ0−δ log(−λ) + un(λ),

where γ and δ run through some finite sets of real positive numbers with γ − γ0,
δ − δ0 < M , for some positive M , γ0 and δ0 [Brüning and Seeley 1987], and the
reminder is such that for λ ∈ D,

lim
λ→∞

un(λ)

(−λ)−M = 0.

Moreover, because the expansion of tn(λ) is uniform for large n, we know that
the coefficients cγ,n , dδ,n and the function un(λ) have an expansion for large n
without terms of the form 1/n and such that the series

∞∑
n=1

cγ,nn−αs,

∞∑
n=1

dδ,nn−αs,

∞∑
n=1

un(λ)n−αs
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converge uniformly for Re(s) > s0 and λ ∈ D, and have analytic extensions regular
at s = 0. This means that we can use classical methods to deal with the analytic
extension of functional zeta functions (see [Gilkey 1995] or [Rosenberg 1997]). In
particular we need the constant and logarithmic terms. Hence let’s write

pn(λ) = · · ·+ an log(−λ) + bn + · · · ,

thus obtaining

P(λ, s) = · · ·+ A(s) log(−λ) + B(s) + · · · ,

with

A(s) =

∞∑
n=1

n−αsan, B(s) =

∞∑
n=1

n−αsbn.

Following the standard approach (see for example [Gilkey 1995]), we split the
t integral at t = 1. The t > 1 part defines a regular function of s near s = 0, while
in the t < 1 part we must change the contour of the λ integral (here Cε is a circle
around the origin of ray ε) and then we can rescale λ by t and use the expansion
above to obtain (see [Spreafico 2006])

z1(s)

=
s

0(s)

∫ 1

0
t s−1

(
1

2π i

∫
3−ε

e−λ

−λ
P(λ/t, s) dλ −

1
2π i

∫
Cε

e−λt

−λ
P(λ, s) dλ

)
dt

+ s2h1(s)

=
s

0(s)

∫ 1

0
t s−1

(
1

2π i

∫
3−ε

e−λ

−λ

(
A(s) log

−λ

t
+ B(s)

)
dλ + P(0, s)

)
dt

+ s2h2(s),

where the hi (s) are regular functions of s near s = 0. At this point notice that
P(0, s) = 0 for all s, since λ = 0 is assumed to belong to the domain D. After
some computations we obtain

z1(s) =
s

0(s + 1)

(
γ A(s) −

A(s)
s

− B(s)
)

+ s2h2(s).

This expression allows us to deal with both ζ(0) and ζ ′(0). In fact,

z1(0) = −A(0),

while, by taking the derivative near s = 0 and using the known expansion for the
inverse of the gamma function, we obtain

z′

1(0) = −A′(0) − B(0).
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The second term, z2(s), can be treated by using the expansions for the different
factors as functions of s. Writing

z2(s) =
s

0(s)
ζR(αs + 1)F(s),

with

F(s) =

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
f (λ) dλ dt,

we obtain

z2(s) =
F1

α
+

1
α

(
F0 + (α + 1)γ F1

)
s + O(s2),

and hence

z2(0) =
1
α

Res1(F(s), s = 0),

and

z′

2(0) =
1
α

(
Res0(F(s), s = 0) + γ (α + 1)Res1(F(s), s = 0)

)
. �

The Spectral Decomposition Lemma is a theoretical result that becomes effec-
tive when a concrete expansion for tn(λ) is available; this is actually the case in
many interesting examples, such as the ones we will deal with in the next sections
or the one studied in [Spreafico 2005].

2. The homogeneous quadratic double case

In this section, we consider the quadratic case, namely the zeta function defined
by the series

ζ2(s; a, b, c) =

∑
n∈N2

0

(nT An)−s
=

∞∑
n,k=1

(an2
+ bk2

+ 2cnk)−s,

when Re(s) > 1, and by analytic continuation elsewhere. Here A =
(a

c
c
b

)
is a

real symmetric matrix with positive definite associated quadratic form on N0. We
introduce the notation 1 = c2

− ab = −det A, and we further assume ab 6= 0. To
compute the zeta invariants at s = 0 we apply the SDL. Since ab 6= 0, we have
α = β = 2, and

ζ2(s; a, b, c) =
s2

0(s + 1)

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ
T (λ, s)dλ,

where

T (λ, s) =

∞∑
n=1

n−2s tn(λ), tn(λ) = − log
∞∏

k=1

(
1 +

n2(−λ)

an2 + 2cnk + bk2

)
.
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Since an2
+ 2cnk + bk2

= b (k + cn/b)2
− 1n2/b, we obtain

tn(λ) = − log
∞∏

k=1

(
1 +

−λn2/b − 1n2/b2

(k + cn/b)2

)
+ log

∞∏
k=1

(
1 +

−1n2/b2

(k + cn/b)2

)
.

Using the product definition of the gamma function we get

tn(λ) = log 0

(
c +

√
1 − b(−λ)

b
n
)

+ log 0

(
c −

√
1 − b(−λ)

b
n
)

− log 0

(
c +

√
1

b
n
)

− log 0

(
c −

√
1

b
n
)

+ log
(

1 +
−λ

a

)
.

The expansion for large n is

log 0((x + y)n) + log 0((x − y)n)

=
(
(x + y)n −

1
2

)
log(x + y)n − (x + y)n +

1
2 log 2π +

1
12(x + y)n

+
(
(x−y)n−

1
2

)
log(x−y)n−(x−y)n+

1
2 log 2π+

1
12(x − y)n

+O(n−3)

= · · ·+
1

6(x2 − y2)n
+ · · · ,

with x = c/b and yλ =
√

1 − b(−λ)/b. Notice that λ = 0 belongs to the domain
where the expansion is uniform. The expansion of the whole tn(λ) will be

tn(λ) = · · ·+
x

6(x2 − y2
λ)

−
x

6(x2 − y2
0)

+ · · · ,

which gives

f (λ) =
c
6

(
1

a − λ
−

1
a

)
.

Therefore,

F(s) =
c
6

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ

(
1

a − λ
−

1
a

)
dλ dt

=
c

6a
a−s

∫
∞

0
t s−1 1

2π i

∫
3ε

e−λt

−λ

(
1

1 − λ
− 1

)
dλ dt

=
c

6a
a−s

∫
∞

0
t s−10(1, t) dt =

c
6a

a−s0(s),

where we have used the definition of the incomplete gamma function to compute
the last integral and get the last equality. Notice that in the integral defining F(s),
the constant term gives no contribution and F(s) is not regular at s = 0. Expanding
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we obtain

F(s) =
c

6a

(1
s

− γ − log a + O(s)
)

,

and hence

Res0(F(s), s = 0) = −
c

6a
(γ + log a), Res1(F(s), s = 0) =

c
6a

.

Next, we compute the expansion of pn(λ) for large λ:

tn(λ) =
(
xn −

1
2

)
log(x2

− y2
λ)n

2
+ nyλ log

x + yλ

x − yλ

+ log 2π − 2xn

− log 0((x + y0)n)0((x − y0)n) + log(−λ) − log a + O((−λ)−1),

with yλ =
√

1 − b(−λ)/b. Setting yλ = iuλ, uλ =
√

b(−λ) − 1/b ∼
√

−λ, we
can expand

nyλ log
x + yλ

x − yλ

= inuλ log
x + iuλ

x − iuλ

= −2nuλ arctan
uλ

x
n

= −πnuλ + 2xn + O(u−2
λ ) = −πn

√
−λ + 2xn + O((−λ)−1),

log(x2
− y2

λ)n
2
= log(−λ) + log

n2

b
+ O((−λ)−1),

f (λ) = −
c

6a
+ O((−λ)−1),

to obtain

pn(λ) =

(
xn −

1
2

) (
log(−λ) + log n2

b

)
− πn

√
−λ + log(−λ) − log a + log 2π

− log 0((x + y0)n)0((x − y0)n) +
c

6an
+ O((−λ)−1).

This means that

an =
c
b

n +
1
2
,

bn = − log 0

(
c +

√
1

b
n
)

0

(
c −

√
1

b
n
)

+ log 2π +

(
c
b

n −
1
2

)
log

n2

b
− log a +

c
6an

,

and gives

A(s) =

∞∑
n=1

ann−αs
=

c
b
ζR(2s − 1) +

1
2
ζR(2s),

A(0) = −
c

12b
−

1
4
, A′(0) = −

1
2

log 2π +
2c
b

ζ ′

R(−1).
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We have obtained

ζ2(0; a, b, c) =
1
4

+
c

12a
+

c
12b

.

Next

B(s) =

∞∑
n=1

n−2sbn =

∞∑
n=1

(
− log 0

(c +
√

1

b
n
)
0
(c −

√
1

b
n
)

+ log 2π − log a +

( c
b

n −
1
2

)
log

n2

b
+

c
6an

)
n−2s .

By the SDL (page 188), B(s) has an analytic extension regular at s = 0. We
provide two different representations. Let

log 0

(
c +

√
1

b
n
)

0

(
c −

√
1

b
n
)

=

(
c
b

n −
1
2

)
log

an2

b
+

√
1

b
n log

c +
√

1

c −
√

1
+ log 2π −

2cn
b

+ K ,

where

(1)

K =
1
2

∞∑
m=1

m
(m+1)(m+2)

∞∑
k=1

(
1(

k+(c+
√

1)n/b
)m+1 +

1(
k+(c−

√
1)n/b

)m+1

)
or

(2) K = 2
∫

∞

0

(
arctan

bt
(c +

√
1)n

+ arctan
bt

(c −
√

1)n

)
dt

e2π t − 1
.

The former gives

B(s) =

(
2c
b

−
c
b

log a −

√
1

b
log

c +
√

1

c −
√

1

)
ζR(2s − 1) −

1
2 log aζR(2s)

−
1
2

∞∑
n=1

n−2s
( ∞∑

m=1

m
(
ζH (m+1, (c+

√
1)n/b)+ζH (m+1, (c−

√
1)n/b)

)
(m+1)(m+2)

−
c

3an

)
.

Thus,

B(0) = −
1

12

(
2c
b

−
c
b

log a −

√
1

b
log

c +
√

1

c −
√

1

)
+

1
4

log a

−
1
2

∞∑
n=1

( ∞∑
m=1

m
(
ζH (m+1, (c+

√
1)n/b)+ζH (m+1, (c−

√
1)n/b)

)
(m+1)(m+2)

−
c

3an

)
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and

ζ ′(0; a, b, c)

=
1
2

log 2π−

(
1
4
+

c
12a

+
c

12b

)
log a−

√
1

12b
log

c+
√

1

c−
√

1
+

c
6b

+
γ c
6a

−
2c
b

ζ ′

R(−1)

+
1
2

∞∑
n=1

( ∞∑
m=1

m
(
ζH (m+1, (c+

√
1)n/b)+ζH (m+1, (c−

√
1)n/b)

)
(m+1)(m+2)

−
c

3an

)
.

Computing the limit of these expressions as c → 0 is not easy.
Using the second representation for K , equation (2), and assuming a, b and c

positive we obtain

(3) K = 2
∫

∞

0
arctan

2cnt
an2 − bt2

dt
e2π t − 1

− log
(
1 − e−2π

√
a/b n).

Notice that this holds for real or pure imaginary
√

1, and that the assumption that
a, b, c are positive is not necessary. In general, the sign of Re(z)/(1 + Im(z)),
where z = b/(c +

√
1), will give the sign of the term −log

(
1 − e−2π

√
a/b n

)
.

Formula (3) can be used to show that the sum appearing in ζ ′

2(0; a, b, c) is
regular at s = 0, and to deal with the case c = 0, as will be done in the last section.
For the first point, consider that, for large n,∫

∞

0
arctan

2ctn
an2 − bt2

dt
e2π t − 1

=
c

12an
+ O(n−3).

The complete formula for the derivative with the representation for K given
in (3) is stated in the next theorem, which generalizes the Kronecker first limit
formula to the function ζ2(s; A).

We let

η(z) = e(π/12) i z
∞∏

n=1

(
1 − e2π inz)

be the Dedekind eta function [Chandrasekharan 1985].

Theorem 1. The function ζ2(s; A) has near s = 0 the expansion

ζ2(s; A) = ζ2(0; A) + ζ ′

2(0; A)s + O(s2),

where A =

( a c
c b

)
, with real a, b, c > 0, 1 = c2

− ab = −det A,

ζ2(0; A) =
1
4

+
c

12a
+

c
12b

,

and
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ζ ′

2(0; A) =
1
2

log 2π −

(
1
4

+
c

12a
+

c
12b

)
log a −

√
1

12b
log

c +
√

1

c −
√

1

+
c

6b
+

γ c
6a

−
2c
b

ζ ′

R(−1) −
π

12

√a
b

− log η
(

i
√a

b

)
+ 2

∞∑
n=1

(∫
∞

0
arctan

2cnt
an2 − bt2

dt
e2π t − 1

−
c

12an

)
.

The value of ζ2(0; A) agrees with the one given in [Zagier 1977, Section 2] for
the case 1 > 0.

In the theorem, the positivity of a, b and c need not be assumed if we use the
representation of K given in formula (1), but then we need to assume that the
quadratic from associated to the matrix A is positive definite on N0.

3. Particular cases

Case c = 0 . The case c = 0 can be dealt with directly by using the Kronecker first
limit formula [Lang 1987; Ortenzi and Spreafico 2004] or by taking the limit of the
result obtained in Section 2, and this shows that Theorem 1 reduces continuously
to the classical Kronecker formula. We get

ζ2(0; a, b, 0) =
1
4 ,

ζ ′

2(0; a, b, 0) =
1
2 log 2π −

1
4 log a − log η

(
i
√a

b

)
=

1
2 log 2π −

1
4 log a +

π

12

√a
b

− log
∞∏

n=1

(
1 − e−2π

√
a/b n).

Case 1= 0 and linear case. When 1= 0, that is, c =
√

ab, we have an2
+2cnk+

bk2
= (

√
an +

√
bk)2, and thus we reduce to the linear case, namely

ζ2
(
s; a, b,

√
ab
)
= ζ1

(
2s;

√
a,

√
b
)
,

where ζ1(s; a, b) is defined for real positive a and b by the sum

ζ1(s; a, b) =

∞∑
n,k=1

(an + bk)−s

when Re(s) > 2, and by analytic continuation elsewhere. For completeness we
give the values of ζ1(0; a, b) and ζ ′

1(0; a, b) that can be obtained from Theorem 1
or by direct application of the SDL (page 188). We give two equivalent formulas
for the derivative.

ζ1(0; a, b) =
1
4

+
a

12b
+

b
12a

,
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ζ ′

1(0; a, b)=
b

12a
(γ −log a)+

a
12b

(1−log a)+
1
4
(log 2π −log a)−

a
b
ζ ′

R(−1)

+
1
2

∞∑
n=1

( ∞∑
m=1

m
(m + 1)(m + 2)

ζH

(
m + 1,

a
b

n + 1
)

−
b

6an

)
=

b
12a

(γ −log a)+
a

12b
(1−log a)+

1
4
(log 2π −log a)−

a
b
ζ ′

R(−1)

+ 2
∞∑

n=1

( ∞∑
m=1

∫
∞

0
arctan

bt
an

dt
e2π t − 1

−
b

24an

)
.

The result for ζ1(0; a, b) is consistent with the one obtained by using the formula
in [Cassou-Noguès 1990, Section 4], and if, say, a = 1 and 0 < b < 2, then also
with the one computed by applying [Actor 1990, (19)]. As to the derivative, it
seems that a direct application of Actor’s formula has problems of convergence,
and one must use equation (8) of the same paper instead.

Case a = 0 . The semilinear case a = 0 does not reduce to any other one, and in
fact it can be checked that we have a pole at s =

3
2 . Beside, applying the SDL we

find out that the behavior at s = 0 reduces to the behavior of an appropriate linear
case. We have α = 2, β = 1, and we can choose to collect n or k when applying
the SDL. In the two cases, we get

tn(λ) = − log
∞∏

k=1

(
1 +

n(−λ)

2cnk + bk2

)
,

tk(λ) = − log
∞∏

n=1

(
1 +

k(−λ)

2cn + bk

)
.

Using the first of these formulas, we find out that the domain of validity of the
asymptotic expansion for large n does not contain the origin λ = 0, and hence we
cannot apply the SDL properly. Using the second expression, we see that this is
the same function appearing in the linear case of ζ1(s; b, 2c), and hence

ζ2(0; 0, b, c) = ζ1(0; b, 2c),

ζ ′

2(0; 0, b, c) = ζ ′

1(0; b, 2c).
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