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PREFACE

The present issue of the Pacific Journal consists of invited research articles on
mathematical problems of capillarity.

A capillary surface is the interface separating two fluids that lie adjacent to each
other and do not mix. In conjunction with boundary conditions imposed by rigid
“supporting walls”, such interfaces can exhibit remarkable geometric properties
and seemingly strange behavior, occasionally confounding intuition. The earli-
est known writing on the topic, due to Aristoteles, comains basic misconceptions
that apparently went unchallenged for almost 2000 years, when Galileo addressed
them in his Discorsi. Quantitative progress had to await the later discovery of the
Calculus. The characterization of rise height in a circular cylindrical glass “cap-
illary tube” dipped into a reservoir of liquid became a major scientific challenge
of the eighteenth century, and was not achieved during that period. Initial break-
throughs came in 1805 and 1806 with insights of Thomas Young and Pierre-Simon
de Laplace. Young professed to scorn the mathematical method but nevertheless
introduced the mathematical concept of mean curvature that now underlies the en-
tire theory. The framework for the theory achieved a clear definitive form with the
1830 paper of Gauss, who gained conceptual advantage by basing his study on an
energy principle, in preference to the force balance conceived by his predecessors.
Even so, the Gauss framework still leaves room for more inclusive discussion, as
is pointed out in the initial article of the present volume.

During almost a century and a half following the Gauss paper interest for the
topic declined, although the physical foundations continued to be studied on a
molecular level by van der Waals and by his successors. With regard to global
macroscopic problems, those studies led to no changes in the equations or bound-
ary conditions, which present nonlinearities that initially defied analysis. Achieve-
ments during that time period were limited to some isolated striking insights due
to Kelvin, Rayleigh and a few others, and some of the explicit unsolved problems
of the time served as an impetus toward development of modern numerical meth-
ods. For the equations that apply in a gravity field, only a single nontrivial closed
form solution has as yet been discovered, and classical linearizing procedures have
provided little substantive information.

Inspired perhaps by the needs of space technology and of medicine, and utilizing
new insights appearing in geometric measure theory, an explosion of activity has
occurred during the past thirty-five years, in many directions. New problems have
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been attacked, new methods introduced, and discoveries of basically new nature
have appeared. Already during the initial ten years of that explosion, enough sub-
stantive new material had appeared to justify an entire issue (88:2) of this journal
devoted exclusively to capillarity theory and related problems. The present issue,
about a quarter century later and somewhat more restrictive as to topics addressed,
is intended as a sequel to that initial one. It will be apparent to those familiar
with the earlier collection that some perspectives and also some participants have
changed, but that the level of activity and the interest in the problems and in the
methods have not lessened. Nor have the individual results and the new insights
become less striking. That point is of course best made by the papers themselves,
which present their own messages. Unfortunately space and time limitations have
forced us to restrict the number of papers included here; the present collection
should be regarded as an effort to make accessible in a single location a represen-
tative section of the (considerable) current activity, in the context of its varying
methods and perspectives.

Much of the impetus for this volume developed at the First International Sum-
mer School on Capillarity, held at the Max-Planck-Institut für Mathematik in den
Naturwissenschaften, in Leipzig, Germany, 2003. A number of the papers that
follow had their origins in intense discussions held during that gathering, as did
early scientific training for several students who have since continued to successful
graduate degrees.

The reader will perceive that the fortress guarding the inner mysteries of capil-
larity is under heavy siege but has not yet succumbed. We trust that the materials
joined together here will serve as a stimulus leading ultimately to completion of
the conquest.

Robert Finn
V. S. Varadarajan
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COMPRESSIBLE FLUIDS IN A CAPILLARY TUBE

MARIA ATHANASSENAS AND ROBERT FINN

We study a mathematical model for a compressible liquid in a capillary
tube. We establish necessary and sufficient conditions for existence and for
uniqueness or near uniqueness of solutions, and we provide general height
estimates for solutions, depending on the geometrical structure of the def-
inition domain. We show that solutions exhibit discontinuous dependence
properties in domains with corners, analogous to those that are known for
the classical capillarity equation.

1. Introduction

The mathematical theory of capillary surfaces was founded by Young [1805], by
Laplace [1805–1806] and by Gauss [1830]. The profound investigations of these
authors led to the equation

(1) div T u = κu + λ, T u =
Du√

1 + |Du|2

for the rise height u(x, y) in a vertical cylindrical capillary tube of general section
�⊂ R2. Here κ = ρg/σ , with ρ the density change across the surface, g the grav-
itational acceleration, σ the interfacial tension, and λ a constant to be determined
by an eventual volume constraint. On the boundary 6 = ∂�, and with ν the outer
unit normal to 6, the condition

(2) ν · T u = cos γ

is imposed, which asserts that the free surface S meets the bounding cylinder sur-
face in the (prescribed) angle γ . These relations were established by Young and
by Laplace using force balance reasoning that was not clearly defined and in some
respects incorrect (see [Finn 2006]), then later obtained independently by Gauss
using Johann Bernoulli’s “principle of virtual work”, under the hypothesis that
position variations internal to the bulk fluid do not affect the mechanical energy of
the system. That was certainly reasonable to suppose at the time, but nevertheless
may now be appropriate to question.

MSC2000: 76B45, 35J20, 53A10.
Keywords: capillary surfaces, capillary tube, mean curvature, compressible fluid, elliptic nonlinear

second-order PDE.
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202 MARIA ATHANASSENAS AND ROBERT FINN

Figure 1. Profiles of static equilibrium surfaces in an “exotic container”.

The equations (1)+(2) have served for two centuries, though perhaps not as
well as might initially have been hoped, in view of their seemingly intractable
nonlinearities. During the initial century, some isolated particular solutions were
found by essentially numerical procedures [Bashforth and Adams 1883], and many
attempts were made to obtain general information via linearization procedures;
these latter attempts led to little information of substantive interest, and in fact to
some misconceptions as to the behavior of the solutions. (See also [Finn 1986;
1999] for an overview.)

During the past half century, the problems were attacked anew on the basis of
the full nonlinearity of the equations, yielding unexpected predictions of discontin-
uous behavior; some of these predictions were since verified by experiment; see,
for example, [Concus et al. 2000; 1999; Finn 1999, p. 773]. The first existence
proofs for (1)+(2) appeared in [Emmer 1973; Ural’tseva 1973; 1975], followed by
a number of others under varying conditions.

In this sense, the qualitative validity of (1)+(2) as descriptions of reality was
clearly established. Nevertheless, there remain significant questions as to their
correctness in quantitative detail. Figure 1 displays profile curves of seven of the
continuum of rotationally symmetric equilibrium surfaces in an “exotic container”
[Concus et al. 1999]; all of these surfaces bound the same volume of fluid below
them, all provide identical mechanical energies in the sense of Gauss, and all of
them meet the boundary walls in the same contact angle γ .

Neither the system (1)+(2) nor the variational procedure of Gauss can distin-
guish among these formal solutions. Nevertheless, there are significant distinctions
among the surfaces relative to the physical criteria that underlie those procedures.
According to a discovery of Young, there is a pressure jump across each surface
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S of magnitude δp = 2σH , where H is the scalar mean curvature of S. We may
assume vacuum (p = 0) above each surface in the family. Since H varies widely
among the surfaces, so will the fluid pressures, and one must expect corresponding
changes in the internal energy of the fluid.

Finn [2001] took an initial step to account for such energy changes, by assuming
a slightly compressible fluid, with a phenomenological pressure/density relation
ρ = ρ0 + χ(p − p0). By taking account of the thus induced effects of gravity on
density, he was led to the equation

(3) div T u =
ρ0g
σ

u −χg cosω+ λ,

where ω is the angle between the upward directed surface normal and the vertical,
and λ is a Lagrange parameter, depending on an eventual mass constraint. For
the problem of a prescribed mass M in a tube closed at the bottom, Finn found a
necessary condition

(4) M< ρ0|�|/χg

on M for existence of a solution, and he showed that for a circular tube (4) also
suffices for existence of a uniquely determined solution.

In the present work we study (3) for domains � of general shape in the absence
of a mass constraint, and we also consider the equation that arises on taking account
of the expansion energy in fluid elements, resulting from density changes. In both
cases, although mass is not prescribed, (4) will appear as a general bound for the
mass lifted above the rest level u ≡ 0; see the discussion in [Finn 2001], which
applies to all cases considered here.

The energy released in the expansion of a unit mass of compressible liquid on
being raised from the base level 0 to level h is

(5) δ1 Ee = −

∫ p(h)

p0

pd(1/ρ)=
p0

ρ0
−

p(h)
ρ(h)

+

∫ p(h)

p0

dp
ρ
.

We consider a thin tube of sectional area δ� extending from the base level to
the surface u(x). At the height h we focus attention on an element of the tube of
height δh. If this element is to be in equilibrium, the pressure change from the
bottom to the top must be

δp = −ρg δh,

and thus

(6)
∫ p(h)

p0

dp
ρ

= −gh.
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We assume a relation ρ = φ(p; p0) > 0. We can then solve (6) for p = P(h; p0).
From this we obtain ρ = φ(P(h; p0); p0) = 8(h; p0). Note that the expansion
energy doesn’t enter here.

Returning to (5) and using (6), we find that the energy released by the indicated
element of mass ρ δh δ� is

δEe = ρ δh δ� δ1Ee =

( p0
ρ0
8− P −8gh

)
δh δ�,

and thus

Ee =

∫
�

d�
∫ u

0

( p0
ρ0
8− P −8gh

)
dh.

We add this energy to those previously introduced in [Finn 2001]. From established
procedures of the calculus of variations, we obtain the equation

(7) div T u =
8u

8
cosω−

P
8

ρ0

σ
+ λ

ρ0

σ
+

p0

σ

in �, with the boundary condition (2) unchanged.
In the special case ρ= ρ0 +χ(p− p0), (6) yields ρ= ρ0e−χgu , and (7) becomes

(8) div T u =
ρ0 −χp0

χσ

(
eχgu

− 1
)
−χg cosω+ λ

ρ0

σ
.

We address here the classical problem of a cylindrical tube open at both ends,
dipped into an unbounded reservoir of liquid. In this case, λ= 0, and (8) becomes

(9) div T u =
ρ0 −χp0

χσ

(
eχgu

− 1
)
−χg cosω

in �. We seek conditions under which there will be a solution of (9) in � subject
to (2) on 6. In the interest of obtaining well behaved solutions, we are driven to
the further hypothesis

ρ0 −χp0 > 0.

In the limit as χ → 0, we obtain the classical Young–Laplace–Gauss equation
(1), as is to be expected. However, the limiting procedure is not uniform in the
height u. Note that despite the absence of mass constraint, (9) is not satisfied by
the function u ≡ 0 when γ = π/2. That is a consequence of the imposed variation
of density with height. The fluid rises in the tube as consequence of the decreasing
density, until the effect is compensated by the weight of the lifted fluid. The rest
level for this trivial solution is the constant height

(10) uc =
χσ

ρ0
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for (3) with λ= 0, or

(11) uc =
1
χg

ln
(

1 +
χ2σg
ρ0 −χp0

)
for (9). This reference value will appear in Theorem 2.8 as a universal upper bound
when π/2 ≤ γ ≤ π , and also implicitly in other contexts.

We will establish varying existence and uniqueness properties, for solutions of
(3)+(2) or of (8)+(2), in domains of general shape; additionally we will establish
a priori bounds on solutions of (3) or (8), irrespective of boundary conditions.
Some of these bounds are idiosyncratic to the particular kinds of nonlinearities
considered, and have no counterparts in classical theory of elliptic equations. In
configurations for which uniqueness cannot be established by methods at our dis-
posal, we obtain instead comparison theorems, estimating a priori the difference
between possible solutions. We will establish growth and comparison properties
and discontinuous behavior of solutions in particular domains, depending on in-
equalities for boundary data. The remainder of the paper is organized as follows:

In Section 2 we present a priori estimates on solution heights, in a somewhat
more general context than the particular cases (3) and (8).

In Section 3 we give the gradient estimates up to the boundary for C2,µ domains
�, adapting a procedure introduced by Ural’tseva [1973; 1975].

In Section 4 we provide the existence and uniqueness assertions, for C2,µ do-
mains.

In Section 5 we adapt a procedure used in [Finn and Gerhardt 1977] to prove
the existence of “variational solutions” in piecewise smooth domains. Limited
knowledge of boundary behavior at corner points is available for such solutions;
however, boundedness or growth properties can be established, depending on local
geometry, and “near-uniqueness” properties are obtained.

Finally, we note that the height estimates obtained by comparison to hemispheres
trivially extend to hold for domains in any dimension,�⊂ Rn . We prove the gradi-
ent estimates in n dimensions. Our results for domains with corners are formulated
for n = 2.

2. A priori height estimates

We consider generally solutions u(x) of

(12) div T u = −
a2√

1 + |Du|2
+F(u), T u =

Du√
1 + |Du|2

,

in a bounded, piecewise smooth domain �. It is assumed that F(u) is monotone
increasing, with F(0)= 0, and that a is a constant.
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For the following definition, let us note that every f ∈ H 1,1(�) has a trace
f t

∈ L1(∂�), which we will denote by f . We call u(x) a variational solution of
(12) in �, corresponding to a boundary contact angle γ , if u ∈ C2(�), if F(u) is
integrable over �, and if

(13)
∫
�

[Dη · T u + ηF(u)] dx =

∫
�

η
a2√

1 + |Du|2
dx +

∫
∂�

η cos γ ds,

for every η ∈ Q(�) := L∞
∩ H 1,1(�). We note in (13) that even though the

nominal boundary condition involves derivatives of u, neither the derivatives nor
the function itself occurs in the boundary integral. We assume γ to be piecewise
continuous on ∂�, with 0 ≤ γ ≤ π .

The following lemma extends slightly Lemma 3 in [Finn and Gerhardt 1977].

Lemma 2.1. Let F(u) be nondecreasing. Let � be a piecewise smooth domain
exhausted by smooth domains � j

⊂�. Let u, v be functions in H 1,1
loc (�), such that

(14) lim sup
j→∞

∫
� j

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx ≥ 0

for every η ∈Qloc(�) := L∞
∩ H 1,1

loc (�) with η ≥ 0. If F(u) is strictly increasing,
there follows v ≥ u almost everywhere in �. Otherwise either v ≥ u in � or else
v ≡ u + c, c constant, throughout �. If strict inequality holds in (14), then the
inequalities v ≥ u can be replaced by v > u.

We will apply this lemma in varying contexts to the particular cases

F(u)=
ρ0g
σ

u, a2
= χg,(15)

F(u)=
ρ0 −χp0

χσ
(eχgu

−1), a2
= χg, 0< χ <

ρ0

p0
.(16)

The first case corresponds to the situation studied in [Finn 2001], with uncon-
strained total mass, with κ = ρ0g/σ , and with a2

= χg; the case of prescribed
mass, subject to the (necessary) condition χgM < ρ0|�|, is retrieved by adding a
constant to u, see the discussion in [Finn 2001, p. 147]. The second case yields
the more exact equation introduced in this paper, again with unconstrained mass.
The same necessary condition applies; however a prescribed mass can no longer
be achieved by a rigid vertical translation of the surface.

In view of the first term on the right in (12), it is not immediately clear whether
the solutions are unique or satisfy a maximum principle. We do obtain that the
difference of two solutions satisfies an elliptic equation for which a maximum
principle holds, and we can use that information for the following result:
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Theorem 2.2. Suppose that � is a C1 domain, satisfying an internal sphere con-
dition, and that u, v are C2 solutions of (12) in �, both C1 on �. If T u ·ν ≤ T v ·ν

on 6 = ∂�, then either u < v in �, or else u ≡ v in �.

By an internal sphere condition (ISC) we mean that every boundary point can
be contacted from within � by a disk contained in �.

Proof. Let w= u −v denote the difference of the two solutions, and assume w has
a maximum M at a point p ∈�. If p ∈6, then at p the tangential derivative along
6 vanishes, ws = 0. Thus the exterior normal derivative wν = ∂w/∂ν satisfies
wν ≥ 0. In view of the internal sphere condition, we may apply the boundary
point lemma, obtaining that either w ≡ M or else wν > 0. In the former case we
conclude M = 0 since F(u) is strictly increasing; the latter case conflicts with the
hypothesis, and we may thus assume that p ∈�.

We can exclude an interior positive maximum for w by using the maximum
principle as noted; however, we present here a geometric argument.

Since w attains a maximum at p, we remark that the values of the angle ω are
equal for both surfaces at the point. Were u(p)>v(p), we would have div T u(p)>
div T v(p) by (12). Since these expressions are twice the mean curvature of the
respective surfaces, we conclude that at least one of the principal curvatures of the
surface Su = graph u would exceed that for the surface Sv = graph v, contradicting
that w has a maximum at p. �

If less smoothness is known for � or for the solution, one nevertheless has:

Theorem 2.3. Let u1, u2 be variational solutions in a piecewise smooth � of
(12)+(15), corresponding to data β1

= cos γ 1
≤ β2

= cos γ 2 on 6 = ∂�. Then

u1 < u2
+
χσ

ρ0
.

If instead u1, u2 are variational solutions of (12)+(16), for which u1, u2 > −A >
−∞, then

u1 < u2
+

χσ

ρ0 −χp0
eχg A.

Proof. To prove the first assertion, we observe that in view of (13) we have, for
positive η,∫
� j

(
Dη · (T u2

− T u1)+ η
ρ0g
σ
(u2

− u1)
)

dx

> χg
∫
�

η

(
1√

1 + |Du2|2
−

1√
1 + |Du1|2

)
dx

>−χg
∫
�

η dx .
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Writing u1
= w1

+χσ/ρ0, we find∫
�

(
Dη · (T u2

− Tw1)+ η
ρ0g
σ
(u2

−w1)
)

dx > 0,

for all η ∈Qloc(�), η ≥ 0. By Lemma 2.1 we have u2 >w1
= u1

−χσ/ρ0, which
completes the proof of the initial assertion. The second assertion follows similarly,
using the estimate

eχgw1
+c

− eχgw1
= χg

∫ w1
+c

w1
eχgt dt > χgeχgw1

c if c > 0. �

We may apply a variant of the method to obtain universal bounds, above and
below, on solutions of (12)+(15) interior to a given domain �; with regard to
(12)+(16) we find a universal bound above, and a universal bound below for solu-
tions over a sufficiently large disk:

Theorem 2.4. Let u be a variational solution of (12)+(15) interior to a ball Bδ.
Then

(17) −
2σ
ρ0gδ

− δ < u <
χσ

ρ0
+

2σ
ρ0gδ

+ δ

throughout Bδ. If u is a variational solution of (12)+(16) in Bδ, then

(18) u < δ+
1
χg

ln
(

1 +
χσ

ρ0 −χp0

(
χg +

2
δ

))
throughout Bδ. In this case, if in addition δ > 2χσ/(ρ0 −χp0), then

(19) u >
1
χg

ln
(

1 −
2χσ

(ρ0−χp0)δ

)
− δ.

Proof. We compare the given solution u of (12) with a lower hemisphere v(x) of
radius δ and projecting into Bδ. This function has constant mean curvature 1/δ and
thus satisfies the auxiliary equation

div T v = 2/δ

over Bδ. We verify the relation

(20)
∫

Bδ

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx

=

∫
∂Bδ
η(1 − cos γδ) ds +

∫
Bδ
η

(
F(v)−

χg√
1 + |Du|2

−
2
δ

)
dx .

Here cos γδ = ν · T u evaluated on ∂Bδ, and we have used that ν · T v = 1 on ∂Bδ,
since the hemisphere is vertical on that arc.
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We position the hemisphere so that F(v) = χg + 2/δ at its lowest point. By
the monotonicity of F , the right side of (20) will then be positive for any positive
η ∈ Qloc(Bδ). Thus, the left side will also be positive, and we conclude from
Lemma 2.1 that u < v in Bδ. Since the total height change of v from the center to
the edge of Bδ is δ, this inequality establishes (18) and the right-hand side of (17).

The left side of (17) and also (19) follow similarly, using an upper hemisphere
as comparison surface. The restriction δ > 2χσ/(ρ0 − χp0) must be imposed, as
the inverse function for F(u) in (16) is not defined for F <−(ρ0 −χp0)/σχ . �

This result can be sharpened significantly in the particular case where Bδ is the
definition domain �, with a constant contact angle γδ achieved in the variational
sense on ∂Bδ. Then we may choose v to be a spherical cap meeting the cylinder
wall r = δ in the angle γδ. The boundary integral in (20) then vanishes, and we find

(21)
∫

Bδ

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx =∫

Bδ
η

(
F(v)−

χg√
1 + |Du|2

−
2
δ

cos γδ

)
dx .

We distinguish four cases, according to whether γδ < π/2 or γδ > π/2, and
whether we seek upper or lower bounds. If γδ <π/2 and we seek an upper bound,
we position the cap so that F(v) = χg + 2(cos γδ)/δ at the point of symmetry.
Then both sides of (21) will be positive for all positive η, and we conclude u < v.
If we seek a lower bound, we position the cap so that F(v) = 2(cos γδ)/δ at the
point r = δ. Then both sides of (21) will be negative for positive η, from which
follows u > v. Analogous reasoning applies when γδ > π/2. We are led to:

Corollary 2.5. Suppose �= Bδ and 0 ≤ γ ≤ π .

(a) If u(x) is a variational solution of (12)+(15) in �, there holds

(22)
2σ
ρ0g

cos γ
δ

−

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣δ < u <
2σ
ρ0g

cos γ
δ

+
χσ

ρ0
+

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣ δ.
(b) If u(x) is a variational solution of (12)+(16) in � then

(23)
1
χg

ln
(

1 +
2χσ

(ρ0 −χp0)

cos γ
δ

)
−

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣ δ
< u <

1
χg

ln
(

1 +
χσ

(ρ0 −χp0)

(2 cos γ
δ

+χg
))

+

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣ δ.
In these last relations, the logarithmic terms must be replaced by −∞ if the

arguments are nonpositive. This is not an accident of the method; we return to
this point below, where we will show that if the argument on the right side is
nonpositive, then no solution of (12)+(16) can exist in the disk. (See also the
remark on nonexistence on page 221.)
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These bounds can be improved in some respects by relaxing the boundary con-
dition for v; compare the proof of Theorem 2.8.

The hypotheses of Theorem 2.4 clearly apply to configurations in which u(x)
is defined as a solution in a domain � containing Bδ; more generally if Bδ does
not lie entirely interior to � but if u assumes (in a variational sense) data γ on
Bδ∩6, it suffices to focus attention on a component of Bδ∩� for which the hemi-
spheres introduced in the proof meet the vertical walls of 6 in angles majorizing
γ . Specifically, we obtain:

Theorem 2.6. Let u be a variational solution of (12)+(15) or of (12)+(16) interior
to a component Zδ of Bδ ∩�. If on Zδ ∩6 the lower hemisphere under Bδ meets
the vertical walls under 6 in angles γ δ ≤ γ , then the right side of (22) holds in Zδ
for the system (12)+(15) and the right side of (23) holds for (12)+(16). If γ δ ≥ γ ,
then the remaining inequalities apply in the respective cases.

Further, using the definition for an internal sphere condition ISCδ,γ δ as given in
[Finn and Gerhardt 1977, pp. 15–16], we may state:

Corollary 2.7. If � can be covered by disks of radius δ for some fixed δ > 0, then
(17) and (18) hold throughout �. If that can be done with δ > 2χσ/(ρ0 − χp0),
then (19) also holds throughout�. More generally, if� satisfies an internal sphere
condition ISCδ,γ δ , with γ δ ≤ γ , then the right sides of (22) and (23) hold in the
respective cases. If a condition ISCδ,π−γ δ holds, with π − γ δ ≥ π − γ , then the
remaining statements of Corollary 2.5 apply.

In general, if some a priori information is known on boundary behavior of the
solution u, then the bounds in (17) and (18) can to some extent be sharpened.
Assume first that γ < γ0 < π/2. We take as comparison surface v a lower hemi-
sphere whose center projects to a point of �, and of radius R large enough that the
projection covers � and such that the contact angle γ v ≥ γ0. We obtain now the
relation∫
�

(
Dη · (T u − T v)+ η (F(u)−F(v))

)
dx

=

∫
∂�

η(cos γ − cos γ v) ds +

∫
�

η

(
2
R

+
χg√

1 + |Du|2
−F(v)

)
dx,

and it thus suffices to choose v such that F(v) < 2/R. R will in general not be
known explicitly, however a universal choice, suitable both for (15) and for (16),
is provided by the function v = 0; that yields F(v)= 0 in both cases, from which
u > 0 follows by Lemma 2.1. In the other direction, we introduce for v an upper
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hemisphere, and are led to the relation∫
�

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx

=

∫
∂�

η(cos γ v − cos γ ) ds +

∫
�

η

(
2
R

−
χg√

1 + |Du|2
+F(v)

)
dx,

and we see that it suffices in general to haveF(v)>χg. Again we may let R →∞,
leading to the choice

v ≡
χσ

ρ0
for (15) and v ≡ const =

1
χg

ln
(

1 +
χ2σg
ρ0 −χp0

)
for (16).

We have proved:

Theorem 2.8. Let u be a variational solution of either (12)+(15) or (12)+(16) in a
piecewise smooth domain �. If 0 ≤ γ < π/2, there holds u > 0 in � in both cases
(15) and (16). If π/2< γ ≤ π , there holds in �

u <
χσ

ρ0
in case (15) and u <

1
χg

ln
(

1 +
χ2σg
ρ0 −χp0

)
in case (16).

The material above provides global estimates for solutions over a prescribed
domain �. We turn our attention now to behavior near corner points of �. For
simplicity, we assume that the boundary consists locally at the corner P of two
line segments, intersecting in an angle 2α <π , measured interior to�. We assume
that |γ −π/2|>α – and thus that |cos γ |> sinα – in a neighborhood of P on ∂�.
(If |γ − π/2| ≤ α in such a neighborhood, the bounds indicated in Theorem 2.6
apply.) We assume first that 0 ≤ γ < π/2, and observe that then any point p ∈ �

of (sufficiently small) distance r from P lies in a disk of radius r sinα/cos γ that
meets the boundary segments 6 at an angle γ , as in the figure:

r

P
α

γ kr

Figure 2. Construction for bounding solution below, in a wedge domain.
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The lower hemisphere v(x) with 6 as equatorial circle meets the vertical walls
through 6 in that same angle γ . By Theorem 2.6, we find in the case of (12)+(15),
setting k = sinα/cos γ ,

(24) u(x) <
2σ
ρ0g

1
kr

+
χσ

ρ0
+ kr

and in the case (12)+(16)

(25) u(x) <
1
χg

ln
(

1 +
2χσ

ρ0 −χp0

1
kr

+
χ2σg
ρ0 −χp0

)
+ kr.

To obtain appropriate lower bounds, we adapt a procedure introduced by Ko-
revaar [1980], and use the upper inner side of a torus as a comparison surface.
Corresponding to points at distance not exceeding r from the vertex, we consider
the torus v(x), x = (x, y, z) defined in terms of parameters φ, ψ relative to the
vertex as coordinate origin by

x = (A − a cosψ) cosφ, y = a sinψ, z = (A − a cosψ) sinφ,

with a = r sinα /(cos γ − sinα). Here A > a, and the parameters satisfy −ψ0 <

ψ <ψ0, 0<φ<φ0, with φ0, ψ0<π/2 fixed but arbitrary. The general appearance
is that of a Japanese footbridge, drawn here in perspective:

A − a

Figure 3. Construction for bounding solution above at a corner point.

The crucial observation is that ν · T v = −1 on the curve C = {φ = 0}, ν being
the exterior unit normal, and thus the boundary condition on that curve minorizes
that of any solution u in a common domain of definition.

For small a, the torus cuts off a small piece of the corner, as indicated in the
figure, with the curve C meeting the bounding segments at an angle γ . We observe
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that v satisfies

div T v = 2H(x) >
1
a

−
1

A − a
=

1 − k
k

(
1
r

−
k

(1 − k)A − kr

)
.

If r is small enough, this expression will be positive. Since the unit normal to the
torus is continuous and is directed horizontally toward the vertex at the symmetry
point of C, there will hold for small enough r that ν · T v < sinα+ ε on both the
segments cut off at the corner, with sinα+ ε < cos γ on these segments.

Following the procedure of Theorem 2.6, we find for the case (12)+(15) that
u > v in the domain cut off at the vertex, provided that v can be chosen so that

ρ0g
σ
v < χg +

1 − k
k

(
1
r

−
k

(1 − k)A − kr

)
.

We may translate v vertically so that this inequality holds at a particular point of
the domain; we then find on the basis of the construction that

ρ0g
σ
v > χg +

1 − k
k

(
1
r

−
k

(1 − k)A − kr

)
−ω(ε)

with limε→0 ω(ε)= 0.

We now wish to let r → 0. A convenient way to do that is by a similarity
transformation, which leaves all boundary angles and the geometric configuration
unchanged. We obtain the result that for sufficiently small r , there holds at all
points (x, y) of distance r from the vertex the inequality

(26) u(x, y) >
σ

ρ0g
1 − k

kr
+ C,

for a fixed constant C independent of r . Together with (24), this result implies that
every solution of (12)+(15) in a wedge domain with α+γ < π/2 is unbounded at
the corner, with a growth rate O(1/r).

In the case (12)+(16) an analogous reasoning yields, observing that the choice
of A > a is arbitrary,

(27) u(x, y) >
1
χg

ln
(

1 +
χσ

ρ0 −χp0

1 − k
k

1 − ε

r
− C(ε)

)
asymptotically as r → 0, for any ε > 0 and fixed C(ε) independent of r .

We turn our attention now to the case π/2< γ ≤ π . A procedure analogous to
that yielding (24) (and resuming the notation x ∈ �) leads now, for solutions of
(12)+(15), to

(28) u(x) >−
2σ
ρ0g

1
kr

− kr



214 MARIA ATHANASSENAS AND ROBERT FINN

and a procedure analogous to that yielding (26) now yields

(29) u(x) <−
σ

ρ0g
1 − k

kr
+ C

in the case (12)+(15).
With regard to solutions of (12)+(16) the situation is now simpler. We investigate

(12) over a wedge triangle:

Figure 4. Wedge domain.

In view of the boundary condition, we obtain

2|6| cos γ +

∫
0

ν · T u ds =

∫
�

(
−

χg√
1 + |Du|2

+
ρ0 −χp0

χσ
(e2χu

− 1)
)

dx,

from which, since |ν · T u|< 1, we conclude that

2|6| cos γ + |0|>−

(
χg +

ρ0 −χp0

χσ

)
|�|.

Thus, since γ > π/2 and |γ −π/2|> α so that |cos γ |> sinα, we find

(30) 0< 2(|cos γ | − sinα) <
(
χg +

ρ0 −χp0

χσ

)
|6| cosα sinα,

and we obtain a contradiction by letting 0 move in parallel translation toward the
vertex.

Gathering the material above, we have proved:

Theorem 2.9. Suppose that γ is constant in a neighborhood of a corner point of
opening 2α. If |γ−π/2|≤α then the estimates of Theorem 2.6 apply. If α+γ <π/2
then the estimates (24) and (26) hold for the case (12)+(15), and the estimates (25)
and (27) hold for the case (12)+(16). If γ > α+π/2 then (28) and (29) apply for
the case (12)+(15); however for the case of (12)+(16) no solution can exist in such
a wedge.

If the boundary of � is not rectilinear at the corner point, we still obtain the
same results as above, but under the stronger condition |γ −π/2|< α.

Finally, we remark an immediate consequence of Theorem 2.4:
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Theorem 2.10. Any solution of (12)+(15) is bounded at any isolated singular
point. Any solution of (12)+(16) is bounded above at an isolated singular point.

In [Finn 1963] it is proved that the “classical” capillary equation

div T u =
ρg
σ

u

admits only removable isolated singularities. We do not know to what extent that
theorem extends to the more general configurations considered in this paper.

3. Gradient estimates

We study the case of equation (8). We derive the gradient estimate following tech-
niques introduced by Ural’tseva [1973; 1975] and used in [Gerhardt 1976; Huisken
1985].

We follow closely the procedure in [Huisken 1985]. For the convenience of the
reader we state here the results of that paper which we use.

We consider the equation

(31)
div

Du√
1 + |Du|2

= F(u)−
a2√

1 + |Du|2
in �,

T u · ν = β on 6,

with a2
= χσ/ρ0 and the function F(u) defined either as in (15) or as in (16). The

main assumption on F needed for the gradient estimate is that F ′ > 0. For the
present considerations we assume β ∈ C0,1(6) to satisfy

(32) |β| ≤ 1 − α̃, α̃ > 0.

As above, we denote by T the operator defined by

T u =
Du√

1 + |Du|2
.

We also introduce the notations

ai (p)=
pi√

1 + |p|2
, ai j

=
∂ai

∂p j
,

for p ∈ Rn , and denote by H(x, u, Du) the right-hand side of (31):

(33) H(x, u, Du)= F(u)−
a2√

1 + |Du|2
.

Given 6 ∈ C2,µ, we can extend β and ν to the interior of �, in such a way that
β ∈ C0,1(�) still satisfies (32) and ν is uniformly Lipschitz continuous in �, with
|ν|< 1.
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We denote by S = graph u the liquid-air interface and by ∇
S f the tangential

gradient on S of a function f ∈ C1(�):

∇
S f = D f − (D f · νS) νS,

with νS the unit normal to the interface S.
The main idea is to work with the function

v =

√
1 + |Du|2 + β (Du · ν)≡ W + β (Du · ν)

as in [Ural’tseva 1973; Gerhardt 1976], and to prove that v is uniformly bounded
in �. This in turn gives the gradient estimate, since

|Du| ≤

√
1 + |Du|2 = W ≤

1
α̃
v.

We will bound the function
w = log v

instead of v; we can follow all the steps as in [Huisken 1985, (2.12)–(2.30)], with
the first real difference being the derivative Dk H needed in (2.25) of that paper,
which is computed in (2.31). In our case, we find

(34)
∫
�

ai j (D jv− D j (βν
k) Dku

)
Diη+

1
2n

|H |
2 η dx

≤ −

∫
�

Dk H (ak
+βνk) η dx + cε

∫
�

(
1 +

∇
Sv

W

)
η dx + c3

∫
6

η dHn−1.

Inequality (34) is almost identical with [Huisken 1985, (2.32)], except that we
want to explicitly calculate the first term on the right-hand side, since our problem
only differs in the form of the prescribed mean curvature function H . In view of
(33) we have

(35) −

∫
�

Dk H(ak
+βνk) η dx

= −

∫
�

(
F ′(u)Dku +

µ

W 3 Dlu Dk Dlu
)
(ak

+βνk) η dx .

The first term on the right-hand side of (35) is negative, since F ′(u) > 0 and

Dku (ak
+βνk)= v− W −1 > 0.

Therefore it can be ignored. For the second term on the right in (35), we can use
the equality

Dlu
(
Dk Dlu (ak

+βνk)
)
= Dlu

(
Dlv− Dl(βν

k) Dku
)
,
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which follows from [Huisken 1985, (2.26)]. In view of this equality, (35) becomes

−

∫
�

Dk H (ak
+βνk) η dx

≤ −a2
∫
�

1
W 3 Dlu Dlv η dx + a2

∫
�

1
W 3 Dl(βν

k) Dlu Dku η dx .

Denote the integrals on the right-hand side by I1 and I2. They can be estimated by

I2 ≤ a2 c4

∫
�

|Du|
2

W 3 η dx ≤ µ c4

∫
�

η dx,(36)

I1 ≤
1
2ε̃

a4
∫
�

|Du|
2

W 3 η dx +
ε̃

2

∫
�

|Dv|2

W 3 η dx(37)

≤
1
2ε̃

a4
∫
�

η dx +
ε̃

2

∫
�

|∇
Sv|2

W
η dx .

Here c4 depends on the Lipschitz constant of βν and we have used the inequalities
|Du|

2/W 2
≤ 1 and |Dv|2/W 2

≤ |∇
Sv|2, the latter being proved as follows:

|Dv|2 ≤ |∇
n+1

|
2
= |∇

S
|
2
+ |(∇n+1

· νS) νS|
2

= |∇
Sv|2 +

∣∣∣∣(Dv, 0) · (−Du, 1)
W

∣∣∣∣2 |νS|
2
= |∇

Sv|2 +
|Dv|2 |Du|

2

W 2 .

Both the first term on the right-hand side of (37) and the estimate (36) for I2 are
of the same form and can be incorporated into the second term on the right-hand
side of (34) with a new constant c5 = cε + µc4 + a4/ε̃ replacing cε. Using the
above considerations, we conclude that (34) gives

(38)
∫
�

ai j (D jv− D j (βν
k) Dku

)
Diη+

1
2n

|H |
2 η dx

≤
ε̃

2

∫
�

|∇
Sv|2

W
η dx + c5

∫
�

(
1 +

∇
Sv

W

)
η dx + c3

∫
6

η dHn−1.

As a test function η we choose

η = v max(w− k, 0) ≡ v z

for positive k, and define

A(k)=
{

p = (x, u(x)) ∈ S : w(x) > k
}
, |A(k)| =Hn(A(k)).

For the first term on the right-hand side of (38) we note that ηW −1
≤ 2z, since

v ≤ 2W and we have

(39)
ε̃

2

∫
�

|∇
Sv|2

W
η dx ≤ ε̃

∫
�

|∇
Sv|2 z dx .



218 MARIA ATHANASSENAS AND ROBERT FINN

This term will then be taken to the left-hand side of the inequality (38).
We next show that (38) is equivalent to

(40)
∫

A(k)
|∇

Sv|2 dHn
+

1
n

∫
A(k)

|H |
2 z dHn

≤ c |A(k)| + c
∫

A(k)
z dHn,

where c = c
(
α̃, n, |Dν|�, |Dβ|�

)
. For this, we estimate each term separately,

starting with the first term on the left; we use [Huisken 1985, (2.27)–(2.30)] and
the equalities w = log v, Diη = (z + 1) Div. Setting �η =� ∩ supp η, we get∫
�η

ai j(D jv− D j (βν
k) Dku

)
Diη dx

≥

∫
�η

(
ai j D jv Div−

∣∣ai j (D j (βν
k) Dku) Div

∣∣) (z + 1) dx

≥

∫
�η

W −1
|∇

Sv|2 (z + 1) dx

−

∫
�η

∣∣∣∣ 1
2ε

ai j (D j (βν
k)Dku)(Di (βν

k)Dku)+
ε

2
ai j DivD jv

∣∣∣∣ (z+1) dx

≥

(
1−

ε

2

) ∫
�η

W −1
|∇

Sv|2 (z +1) dx −
1
2ε

∫
�η

W −1
|∇

S(βν)|2|Du|
2(z +1) dx

≥

(
1 −

ε

2

) ∫
�η

W −1 v2
|∇

Sz|2 dx −
1
2ε

|D(βν)|2�

∫
�η

(z + 1)W dx

≥ α̃2
(

1 −
ε

2

) ∫
A(k)

|∇
Sz|2 dHn

−
1
2ε

|D(βν)|2�

∫
A(k)

(z + 1) dHn.

For the second term on the left-hand side of (38), we find using [Huisken 1985,
(2.29)] that

1
2n

∫
�η

|H |
2 η dx ≥

α̃

2n

∫
A(k)

|H |
2 z dHn.

For the second term on the right-hand side of (38), and again by [Huisken 1985,
(2.29)], we estimate∫
�η

(
1 +

|∇
Sv|

W

)
η dx ≤

∫
A(k)

vz W −1 dHn
+

∫
�η

|∇
Sv|

W
vz dx

≤ 2
∫

A(k)
z dHn

+

˜̃ε

2

∫
�η

|∇
Sv|2

W
z dx +

1

2 ˜̃ε

∫
�η

v2

W
z dx

≤ 2
∫

A(k)
z dHn

+

˜̃ε

2

∫
�η

|∇
Sv|2

W
z dx +

1

2 ˜̃ε

∫
A(k)

z dHn.
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For the third term on the right-hand side of (38), and in view of [Huisken 1985,
(2.20)], we have∫

6

η dHn−1
=

∫
6

vz dHn−1

≤

∫
A(k)

|∇
Sz| dHn

+

∫
A(k)

(|H | + |∇
Sν|) z dHn

≤
ε̃

2

∫
A(k)

|∇
Sz|2 dHn

+
1
2ε̃

∫
A(k)

dHn
+ c6

∫
A(k)

z dHn,

with c6 = c6(|H |�, |Dν|�).
Taking into consideration all the estimates following (40), we can easiliy obtain

(40) from (38).

Inequality (40) is exactly of the same form as [Huisken 1985, (2.34)], and the
subsequent procedure in that paper is independent of the choice of the function H
prescribing the mean curvature of the surface S. Therefore, we can conclude in the
same manner that

w = log v ≤ k0 + c |A(k0)|,

where k0 = k0(α̃, n) and c = c
(
n, α̃, �, |Dβ|�, |Dν|�

)
.

This concludes the gradient estimate in a neighborhood of the boundary6=∂�,
which we state in Theorem 3.1 below.

Definition. We call a domain admissible if it is open, bounded, simply connected,
and of class C2,µ.

This definition is such that we are able to obtain uniform height bounds as in
Section 2. The following theorem would still be true if we just assumed these
uniform bounds instead. (For the notation ISCδ,π−γ see [Finn and Gerhardt 1977,
pp. 15–16].)

Theorem 3.1. Let� be an admissible domain. Assume u to be a C2(�) solution of
(31), with the function F(u) defined either as in (15), or as in (16), in which case
we also require an internal sphere condition ISCδ,π−γ with δ > 2χσ/(ρ0 − χp0)

when γ > π/2 (for the uniform height estimates to hold). We denote by β, ν the
Lipschitz extensions into the interior of � of β and ν6 , and assume β to satisfy
(32); that is, |β| ≤ 1 − α̃ with α̃ > 0, and |ν| ≤ 1. Then there exists a constant
C = C

(
n, α̃, �, |Dβ|�, |Dν|�

)
such that

|Du| ≤ C

in a neighborhood of the boundary 6.
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The interior gradient estimate in admissible domains can be obtained by means
of the maximum principle:

Theorem 3.2. Assume � and u satisfy the assumptions of Theorem 3.1. Then

|Du| ≤ C

in �, with C the constant of Theorem 3.1.

Proof. We rearrange the equation (31), satisfied by u in �, to find

(41) ai j Di D j u −F(u)
√

1 + |Du|2 + a2
= 0,

where

ai j = δi j −
Di u D j u

1 + |Du|2
.

By general elliptic theory we can assume the local existence of derivatives of all
orders for u. We differentiate (41) with respect to xk , for any k ∈ {1, . . . , n}, and
set Dku = v to obtain

ai j Di D jv+ bi Div+ cv = 0

in �, with c = −F ′(u)
√

1 + |Du|2 ≤ 0. The equation satisfied by v is elliptic, and
we can apply the maximum or minimum principle to deduce the claimed interior
gradient bound. �

With Theorems 3.1 and 3.2, we have the main result of this section:

Theorem 3.3. Under the assumptions of Theorem 3.1, there is a constant M > 0,
such that for any solution u of (31) we have

|Du| ≤ M.

4. Existence in smooth domains, uniqueness of solutions
and nonexistence results

The following result is contained in Theorem 2.2.

Theorem 4.1 (Uniqueness). Suppose F ′ > 0, and let u(x), v(x) be solutions of
(12) in a domain � with boundary 6 = ∂� of class C1, which satisfies an internal
sphere condition. We suppose u, v ∈ C2(�)∩ C1(�). We suppose further that on
6 there holds ν · T u = ν · T v. Then u(x)≡ v(x) in �.

For the case of domains with corner points, we refer to Theorem 2.9 above.

The gradient estimates enable us now to prove existence in domains with C2,µ

boundary using a continuity method.
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Theorem 4.2. Assume � to be an admissible domain, and consider the problem
(31), with H defined as in (33), F given by either (15) or (16), 0 < γ < π and β
taken to be C1,µ in its arguments. If F is as in (16), and if γ > π/2, we assume in
addition an internal sphere condition ISCδ,π−γ with δ > 2χσ/(ρ0 −χp0).

Then the problem (31) has a unique solution u ∈ C2,µ(�), where the exponent
µ, 0< µ< 1 depends on the above quantities.

Remark. If 0 < γ < π/2 we have uniform height estimates from above and
below for both cases (15) and (16), as shown by Corollary 2.7 and Theorem 2.8.
For π/2 < γ < π and for F is as in (15), the height estimates also hold, but for
case (16) an additional internal sphere condition is needed in the statement of the
theorem in order for the uniform lower height estimate to hold. The condition on
δ is optimal as discussed in the remark on nonexistence following the proof.

The cases γ = 0 and γ = π are not considered due to assumption (32), which
is essential for the gradient estimate.

Proof of Theorem 4.2. The proof follows exactly the steps in [Gerhardt 1976, proof
of Theorem 2.1]; we only outline it here.

For τ ∈ R, 0< τ < 1, consider the problem

(42)
− div

Duτ√
1 + |Duτ |2

+ τH(x, uτ , Duτ )= 0 in �,

T uτ · ν = τβ on 6.

One then proves that the set

T = {τ : there exists a solution uτ ∈ C2(�)}

is open and closed.
The idea is to look at a uniformly elliptic operator that coincides with the given

one in (42) whenever |Duτ |� ≤ K for some constant K . This allows us to apply
[Ladyzhenskaya and Ural’tseva 1968, Chapter 10, Theorem 2.2]; the change from
the equation considered in [Gerhardt 1976], namely that the H term is different,
does not interfere. Everything else follows verbatim. �

Remark on nonexistence. If γ > π/2, then in the case (16) existence can fail if
δ < 2χσ/ρ0 −χp0 . To see that, we integrate (12) over �, obtaining∫

�

(
ρ0 −χp0

χσ
(eχgu

− 1)+χg(1 − cosω)
)

dx = 2π |6| cos γ

from which it follows that

ρ0 −χp0

χσ
|�|>−|6| cos γ,
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which leads to a contradiction if the domain is scaled to be small enough. For the
special case of a disk Bδ, we obtain

δ >−
2χσ

ρ0 −χp0
cos γ

providing a slight improvement over the criterion yielded by Theorem 2.3.
This last result applies to the “unconstrained” case of an open circular tube

dipped into an infinite reservoir of fluid. Physically, it signifies that if the tube is
too narrow, the fluid will disappear down the tube to negative infinity. Finn and
Luli [≥ 2007] studied the “constrained” case of a circular tube closed at the bottom
and filled with a prescribed mass of fluid. For that problem they were able to show
that for any γ with 0 ≤γ <π , and for any prescribed total massM, there is at least
one symmetric solution of the problem, and that the height for this solution will
lie over any prescribed level if M is sufficiently large. If γ ≤ π/2, the solution is
unique among symmetric solutions with the prescribed mass. From Theorem 2.2
then follows that the solution is unique among all solutions with the same Lagrange
parameter.

5. Existence of solutions in domains with corners

For this section we need Theorem 4 of [Ladyzhenskaya and Ural’tseva 1970],
which adapted to our situation yields:

Theorem 5.1. Let u be a classical solution of

div
Du√

1 + |Du|2
= F(u)−

a2√
1 + |Du|2

,

in a bounded domain �, with F as defined in (15) or (16). Assume sup� |u| ≤ M.
Then for any strictly interior subdomain �′ of � with d := dist(�′, ∂�),

max
�′

|Du(x)| ≤ C,

with C = C(n,M, d). (Compare also [Simon 1977, Theorem 2′′].)

For the existence result in this section, we assume the domain � to be open and
bounded, with piecewise C1,µ boundary 6 and to have a finite number of “well-
behaved” corners. By this we mean that if a corner is located at the point O , we
can parametrize the arcs on either side of O by smooth functions ci (s), 0< s < s0,
i = 1, 2, such that lim ci (s) = O , as s → 0, with an angle 0 < 2α < π formed by
lim c′

i (s) as s → 0.
� can be exhausted by an expanding sequence of admissible domains � j

⊂�,
whose boundaries 6 j converge uniformly in C1 in any neighborhood Ux0 of a
boundary point x0 ∈6, whose closure U x0 ∩6 lies in the smooth portion of 6.
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With similar arguments as in [Finn and Gerhardt 1977, Theorem 1], we can
prove the following existence result:

Theorem 5.2. Let � be as described above. Let γ be constant and 0 < γ < π .
In the case of F being given by (16) and if γ > π/2 we also require an internal
sphere condition ISCδ,π−γ with δ > 2χσ/(ρ0 −χp0) to hold for � j .

Then there exists a variational solution u of (13). If |γ−π/2|<α then u ∈Q(�).
If u, v are two variational solutions of (12)+(15), there holds

|u − v|<
χσ

ρ0
;

for variational solutions of (12)+(16) such that u, v >−A >−∞, there holds

|u − v|<
χσ

ρ0 −χp0
eχg A.

Proof. In view of the conditions on � j , we can obtain a solution u j
∈ C2,α(� j ) of

(43) div T u j
= F(u j )−

a2

W j

in each� j , with fixed boundary data γ on6 j , as in Theorem 4.2 above. They will
satisfy the corresponding weak form; i.e., they will be variational solutions, each
u j satisfying (13) in � j :

(44)
∫
6 j
η cos γ ds =

∫
� j

(
Dη · T u j

+ ηF(u j )− η
a2√

1 + |Du j |2

)
dx,

for every η ∈Q(� j ).
In view of the assumption on the contact angle γ and the additional ISCδ,π−γ

condition on � j in case (16), the height and gradient estimates (Theorems 2.6 and
3.3) and the existence results hold for u j in � j without any additional restrictions
being needed. As the height estimates depend on the distance of 6 j to a corner,
and the gradient estimates depend on the Lipschitz extension of the normal to the
boundary, these estimates are not uniform in j . To overcome this obstacle, for any
fixed j0 we consider a fixed j1, and solutions u j in� j , where j ≥ N ( j1)> j1> j0,
such that the distance from � j0 to ∂� j1 and from � j1 to ∂� j is strictly positive.
These u j will satisfy (43) in� j1 and� j0 . The height bounds in� j1 are uniform, as
shown in Theorems 2.6 and 2.9, and by Theorem 5.1 we obtain uniform gradient
bounds in � j0 . Therefore, in � j0 we have uniform height and gradient bounds.

Using general results on elliptic equations [Ladyzhenskaya and Ural’tseva 1968,
Chapter 10, Theorem 2.2], we can extend the uniform height and gradient estimates
to higher regularity of the solutions u j ( j ≥ N ( j0)) of (43) in � j0 , for every j0.
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Using the Arzelà–Ascoli theorem we can find a subsequence (not relabeled), con-
verging uniformly together with all its derivatives in any � j0 , to a solution u(x) of
(43).

We choose η ∈ Q(�), so that in particular η ∈ Q(� j ). We remark that η ∈

H 1,1(�) has a well-defined trace function in L1(∂�), which we denote again by η.
We also note that η∈ H 1,1(�) can be approximated in the H 1,1 norm by uniformly
continuous functions in �. Their boundary values approximate the trace of η on
∂� in the L1(∂�) norm; see [Giusti 1984, Theorem 2.11].

We consider (44). Regarding the convergence of the right-hand side of (44), we
again fix j0, and note that |T u j

|< 1 and a2/
√

1 + |Du j |2 ≤ a2 in �. We have∣∣∣∣∫
� j0

(
Dη · T u j

− η
a2√

1 + |Du j |2

)
dx
∣∣∣∣ ≤ c,

with c depending on |η|L1(�), |Dη|L1(�), and the size of �, but independent of j0.
Also, given the uniform convergence of u j and Du j in � j0 , we have

(45) lim
j→∞

∫
� j0

(
Dη · T u j

− η
a2√

1 + |Du j |2

)
dx

=

∫
� j0

(
Dη · T u − η

a2√
1 + |Du|2

)
dx .

Now we can let j0 vary, and conclude that the first and third terms on the right-
hand side of (44) converge to∫

�

(
Dη · T u − η

a2√
1 + |Du|2

)
dx .

To see this we consider∣∣∣∣∣
∫
� j

(
Dη·T u j

−η
a2√

1+|Du j |2

)
dx−

∫
�

(
Dη·T u−η

a2√
1+|Du|2

)
dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
� j0

(
Dη·T u j

−η
a2√

1+|Du j |2

)
dx−

∫
� j0

(
Dη·T u−η

a2√
1+|Du|2

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
� j −� j0

(
Dη·T u j

−η
a2√

1+|Du j |2

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
�−� j0

(
Dη · T u − η

a2√
1 + |Du|2

)
dx

∣∣∣∣∣ .
By (45) the first term on the right-hand side is less than ε/3 for j > J , for large

enough J . The second and third terms on the right-hand side can be estimated by
c
(
|η|L1(�), |Dη|L1(�)

)
|� j

−� j0 |<ε/3 and c
(
|η|L1(�), |Dη|L1(�)

)
|�−� j0 |<ε/3,
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respectively, due to the convergence of � j to �, for j > J and appropriately large
j0.

For the left-hand side of (44), we remark that |η cos γ | is bounded. Therefore

(46)
∫
6 j ∩Br (O)

η cos γ ds → 0 for r → 0, uniformly in j,

where Br (O) denotes a ball of small radius r centered at a corner O . We also have

(47)
∫
6∩Br (O)

η cos γ ds → 0 for r → 0.

In what follows it suffices to assume � to have only one corner, O .
In the following estimate we split integrals into their parts over Br (O) and its

complement, Bc
r (O).

(48)
∣∣∣∣∫
6 j ∩BR(O)

η cos γ ds −

∫
6∩BR(O)

η cos γ ds
∣∣∣∣

≤

∣∣∣∣∫
6 j ∩Br (O)

η cos γ ds
∣∣∣∣ +

∣∣∣∣∫
6∩Br (O)

η cos γ ds
∣∣∣∣

+

∣∣∣∣∫
6 j ∩Bc

r (O)
η cos γ ds −

∫
6∩Bc

r (O)
η cos γ ds

∣∣∣∣.
We choose r sufficiently small to ensure that the first and second summands on the
right are each less than ε/3, by (46) and (47) respectively.

By the assumptions on the convergence of 6 j in neighborhoods of 6 not con-
taining corners, the last summand

∣∣∫
6 j ∩Bc

r (O)
η cos γ ds −

∫
6∩Bc

r (O)
η cos γ ds

∣∣ is
also less than ε/3 for any j > J , with J large enough. We thus obtain from (48)∣∣∣∣∫

6 j ∩BR(O)
η cos γ ds −

∫
6∩BR(O)

η cos γ ds
∣∣∣∣< ε,

and the convergence of the boundary integral in (44) to
∫
6
η cos γ ds is proved.

Having shown the convergence of all terms of (44) except
∫
� j ηF(u j ) dx , we

conclude that this term converges too. We will show it converges to
∫
�
ηF(u) dx .

We know that u j satisfies (44) in � j , which we rewrite as∫
� j
ηF(u j ) dx =

∫
� j

[Dη · T u j
− η

a2√
1 + |Du j |2

] dx −

∫
6 j
η cos γ ds.

The right-hand side here converges; therefore∣∣∣∣∫
� j
ηF(u j ) dx

∣∣∣∣≤ c,

with a constant c depending on η, but independent of j .
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We consider two cases:
(i) The angle γ satisfies |γ−π/2|<α. In view of Theorem 2.9 we have uniform

height bounds on u j , independent of j , since they are independent of the distance
of 6 j to the corner O , and the same bounds hold for the limit function u. We fix
j0 as before, and with the continuity of F , we have F(u j ) converging to F(u) in
any � j0 , and the corresponding uniform bounds for F(u). So

lim
j→∞

∫
� j0
ηF(u j ) dx =

∫
� j0
ηF(u) dx

and, using the uniform bounds on F(u) over all of �, we can let j0 → ∞ and
obtain the result as in the previous considerations.

(ii) The angle γ satisfies |γ − π/2| > α. In this case the height estimates will
depend on the distance of6 j to the corner, u j becoming unbounded as we approach
O . However the growth of |u j

| means that |F(u j )| is proportional to r−1, as proved
in Theorem 2.9.

Again, it suffices to assume � to have only one corner, O . We estimate, after
adding and subtracting the terms

∫
� j0 ηF(u j ) dx and

∫
� j0 ηF(u) dx ,

(49)
∣∣∣∣∫
� j
ηF(u j ) dx −

∫
�

ηF(u) dx
∣∣∣∣

≤

∣∣∣∣∫
� j −� j0

ηF(u j ) dx
∣∣∣∣+ ∣∣∣∣∫

�−� j0
ηF(u) dx

∣∣∣∣
+

∣∣∣∣∫
� j0

(
ηF(u j )− ηF(u)

)
dx
∣∣∣∣ .

The last summand on the right is less than ε/4 for all j> J , with J large enough;
to see this, use the continuity of F and the uniform bounds in � j0 .

The second summand on the right can be estimated by∫
�−� j0

|ηF(u)| dx

≤ sup |η|

∫
�−� j0

|F(u)| dx

≤ sup |η|

(∫
(�−� j0 )∩Br (O)

|F(u)| dx +

∫
(�−� j0 )∩Bc

r (O)
|F(u)| dx

)
,

where Bc
r (O) denotes the complement in R2 of the disk Br (O).

In (�−� j0)∩ Bc
r (O), we are at a positive distance from O , and have bounds

for F(u), so

sup |η|

∫
(�−� j0 )∩Bc

r (O)
|F(u)| dx < ε/4,



COMPRESSIBLE FLUIDS IN A CAPILLARY TUBE 227

due to the convergence of� j to�, for large j0, after possibly adjusting the previous
choice of J .

For the integral over (�−� j0)∩ Br (O) we introduce polar coordinates and can
show, using the inequality |F(u)|< Cr−1, that

sup |η|

∫
(�−� j0 )∩Br (O)

|F(u)| dx ≤ sup |η|

∫
Br (O)

|F(u)| dx

≤ sup |η|

∫ r

0

∫ 2π

0
C cos θ dθ dr ≤ ε/4,

after choosing r appropriately small.
The first summand on the right in (49) can be dealt with in a similar way, but

more easily, since � j
∩ Br (O)= ∅ for small r .

Returning to (49), we have shown that
∫
� j ηF(u j ) dx converges to

∫
�
ηF(u) dx

as j → ∞.

We had approximated η∈ H 1,1(�) and worked with uniformly continuous func-
tions. We have shown that u satisfies∫

�

(
Dη · T u + ηF(u)− η

a2√
1 + |Du|2

)
dx =

∫
6

η cos γ ds

for such η. Going over to η∈Q(�), we conclude in both cases that u is a variational
solution in �.

By Theorem 2.9, u is bounded if |γ −π/2|< α and therefore u ∈Q(�).
We also remark that if we have different limits u and v obtained by two different

subsequences, we still know that they are not “too far apart”, in the sense of the
estimate given in Theorem 2.3. We emphasize that this is true even though the
solution might become unbounded when approaching a corner. �

Remark 1. Theorem 5.2 is the best possible result one can obtain for this problem.
As observed in Section 4, existence fails in small domains in the case (16) and
γ > π/2. This is taken care of by the internal sphere condition ISCδ,π−γ with
δ > 2χσ/(ρ0 −χp0) for � j .

Remark 2. We obtain a variational solution for our problem in both cases (15) and
(16) after imposing the additional ISCδ,π−γ , for general 0 < γ < π , despite the
fact that the values for any solution become unbounded in a narrow corner, when
|γ −π/2|> α, as stated in Theorem 2.9.
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BEHAVIOR OF SOME CMC CAPILLARY SURFACES
AT CONVEX CORNERS

JULIE CRENSHAW AND KIRK LANCASTER

We construct examples of nonparametric surfaces z = h(x, y) of zero mean
curvature which satisfy contact angle boundary conditions in a cylinder in
R3 over a convex domain � with corners. When the contact angles for two
adjacent walls of the cylinder differ by more than π−2α, where 2α is the
opening angle between the walls, the (bounded) solution h is shown to be
discontinuous at the corresponding corner. This is exactly the behavior
predicted by the Concus–Finn conjecture. These examples currently con-
stitute the largest collection of capillary surfaces for which the validity of
the Concus–Finn conjecture is known and, in particular, provide examples
for all contact angle data satisfying the condition above for opening angles
2α ∈ (π/2, π).

1. Introduction

Let � be an open set in the plane whose boundary is smooth except at a number
of corner points. Assume that near each such corner point P ∈ ∂�, the boundary
consists of two curves, ω+ and ω−, meeting at P at an angle 2α ∈ (0, π); this
condition characterizes a convex corner. Let γ : ∂� → [0, π] be continuous on
each smooth piece of ∂�, and assume that at each corner the limits

lim
Q∈ω+

Q→P

γ (Q)=: γ1 and lim
Q∈ω−

Q→P

γ (Q)=: γ2

both exist. Also let 3=�×R be the cylinder over �. We ask about the existence
of a capillary graph over � with contact angle data γ ; that is, does there exist a
surface z = h(x, y) defined over � \ {corners}, satisfying the physical conditions
that characterize a liquid interface for prescribed values of gravity and density, and
meeting the walls of 3 at the prescribed angle γ ? (See Equation (2) for a formal
statement.)

This question has received considerable interest. The local question of the ex-
istence and boundedness of a capillary graph near a corner P has been solved by

MSC2000: primary 76D45; secondary 35J67, 53A10.
Keywords: capillary graph, minimal surface, Concus–Finn conjecture, Riemann–Hilbert problem.
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Figure 1. The Concus–Finn rectangle

Paul Concus and Robert Finn in all but one case. The current state of knowledge
[Concus and Finn 1991; 1994; 1996; Finn 1986; 1996; Simon 1980; Tam 1986]
is summarized by referring to Figure 1, in which the horizontal variable is γ1, the
vertical variable is γ2 and the corner opening angle is 2α:

(i) A solution z = h(x, y) will be continuous at P if (γ1, γ2) ∈ R(2α).

(ii) There is no solution if κ = 0 and (γ1, γ2) ∈ D±

1 (2α).

(iii) There is no solution which is bounded at P if (γ1, γ2) ∈ D±

1 (2α).

(iv) There can exist a bounded solution z = h(x, y) if (γ1, γ2) ∈ D±

2 (2α).

In case (iv), the continuity of the solution at P is unknown, but we have:

Conjecture [Concus and Finn 1996; Finn 1996]. A local capillary graph at a
corner P with data from a D2(2α) domain has a jump discontinuity at P, whether
in zero gravity or not.

Fix δ ∈ (0, π/4) and consider the diamond-shaped region � ⊂ R2 symmetric
with respect to the coordinate axes and having vertices (0,±1) and (± tan δ, 0).
Label the vertices as in Figure 2, so the convex angle O AB has measure δ and the
convex angle ABC has measure 2α = π−2δ. As before, set 3=�× R.

Let γ1, γ2 ∈ (0, π) satisfy

(1) |γ1 + γ2 −π | ≤ 2α and |γ1 − γ2|> π−2α;
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A = (0, 1)

C

D = (tan δ, 0)OB

Figure 2. The quadrilateral domain � with O AB = δ.

this is equivalent to saying that (γ1, γ2) ∈ D+

2 (2α)∪ D−

2 (2α). Define the function
γ : ∂�→ R by

γ (x, y)=


γ1 if (x, y) ∈ AB,
γ2 if (x, y) ∈ BC ,

π−γ2 if (x, y) ∈ C D,
π−γ1 if (x, y) ∈ D A.

We now formally define the capillary problem in the cylinder 3 with contact
angle boundary data γ , gravitational constant κ ≥ 0 and Lagrange multiplier λ. By
a solution of this problem, we mean a function h :�→ R with

h ∈ C2(�)∩ C1(� \ {A, B,C, D})

which satisfies

(2)
div(T h)= κh + λ in � ,

T h · ν = cos γ on ∂� \ {A, B,C, D},

where ν is the outer unit normal to ∂� and

T h =
∇h√

1 + |∇h|2
,

as in [Finn 1986]. We are interested in the behavior of the solution in zero gravity,
κ = 0. In this case the divergence theorem together with (2) implies

λ|�| =

∫
�

div(T h) d A =

∫
∂�

cos γ ds.
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Since cos γ (x, y) is an odd function of x , we see that λ= 0. This means a solution
h will be a minimal surface. The contact angles from each side at B are γ1 and γ2

and at D are π−γ2 and π−γ1. Our principal interest is in the behavior of solutions
at B and D and our proof will focus on the behavior of solutions at B.

Theorem 1.1. Suppose γ1, γ2 ∈ (0, π) satisfy (1). Let� and γ be as defined above.
There exists a unique solution h ∈ C2(�)∩ C0(� \ {A, B,C, D}) of the boundary
value problem (2) with κ = λ = 0 which satisfies h(0, 0) = 0. This solution is
discontinuous at B and D, continuous at A if and only if |γ1 −π/2| ≤π/2−δ, and
continuous at C if and only if |γ2 −π/2| ≤ π/2 − δ.

To prove this theorem, we first isolate and prove the most difficult case:

Lemma 1.2. Suppose γ1 ∈ [δ, π/2] and γ2 ∈ [π/2, π−δ] satisfy (1). Let � and γ
be as above. There exists a unique solution

h ∈ C2(�)∩ C0(� \ {B, D})

of the boundary value problem (2) with κ = λ= 0 which satisfies h(0, 0)= 0. This
solution h is discontinuous at B and D.

One accomplishment in this paper is that it provides an example of a capillary
surface for each corner angle 2α=π−2δ∈ (π/2, π) and each pair of contact angles
in the regions D±

2 (π−2δ) in which the validity of the Concus–Finn conjecture is
unknown. The Concus–Finn conjecture is the principal outstanding open problem
in the mathematical theory of capillarity. To the best of our knowledge, there is only
one paper [Huff and McCuan 2006] that provides examples of capillary surfaces
with data in the D±

2 regions and in which the continuity of the nonparametric
capillary surface at the corner is determined; it considers contact angle data only
along the line γ1 + γ2 = π . We give here, then, the first collection of examples
corresponding to all of the contact angle pairs in D±

2 (π−2δ) in which the continuity
at the corner is determined, and in these examples the Concus–Finn conjecture
correctly predicts the behavior at B and D of these capillary surfaces.

2. Proof of Lemma 1.2

Assume the hypotheses of Lemma 1.2 hold. We then know from (1) that γ2 −γ1 >

2δ. We begin by assuming

γ1 < π/2< γ2, that is, γ1, γ2 6= π/2.

Let�0 be the portion of� in {x < 0}, so that ∂�0 is the triangle with successive
vertices A, B and C . Let B1 = {w ∈ C : |w|< 1} and set

E0 = {w ∈ B1 : Imw > 0, |w−w1|> tan γ1, |w−w3|> tan(π−γ2)},
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where
w1 = u1 + iv1 = −cos δ sec γ1 + i sin δ sec γ1,

w3 = u3 + iv3 = cos δ sec(π−γ2)+ i sin δ sec(π−γ2).

Also set r1 = tan γ1 and r3 = tan(π−γ2). Let E = E0 (Figure 3). We remark that
E will eventually be shown to be the image of the stereographic projection of the
Gauss map to the (closure of the) graph of the nonparametric solution h over �0

when this graph is given a downward orientation. Now E is a connected, simply
connected subset of the closed unit disk which is star-like with respect to the origin.
The boundary of E consists of portions of the circles

C1 =
{
w : |w−w1| = tan γ1

}
and C3 =

{
w : |w−w3| = tan(π−γ2)

}
(which are orthogonal to the unit circle ∂B1), the real axis (v = 0) and the unit
half-circle {w ∈ ∂B1 : Imw ≥ 0}. The condition γ2 − γ1 > 2δ implies (and is
actually equivalent to) C1 ∩ C3 = ∅.

Write
σ1 = ∂E ∩ C1, σ2 = {w ∈ ∂E : Im(w)= 0},

σ3 = ∂E ∩ C3, σ4 = ∂E ∩ ∂B1.

We denote the corners of ∂E (in counterclockwise order) as t1, t2, t3 and t4, with
t1, t2 ∈ σ1, t3, t4 ∈ σ3, t1, t4 ∈ ∂B1 and Im t2 = Im t3 = 0. Notice that t1 = e(π−δ−γ1)i

and t4 = e(δ+π−γ2)i .
Our numbering scheme, associating center w3 and circle C3 with the cylinder

side BC whose prescribed contact angle is γ2, is chosen because it provides a
clearer and more consistent notation for the Riemann–Hilbert problem we will
consider later. There is no “second” circle C2 (unless one wishes to consider the
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Figure 3. The region E .
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line v = 0 to be a circle with infinite radius) and no “second” center w2. If we
wished to introduce a fourth circle, we would set C4 = ∂B1 and w4 = 0.

Define g : E → E by g(w) = w. Our goal is to find f ∈ C0(E \ {t1, . . . , t4})
with, at worst, integrable singularities at t1, t2, t3, and t4 which is analytic in E0

and to define X ∈ C0(E : R3)∩ C2(E0 : R3) with

(3) X (u + iv)= (x(u, v), y(u, v), z(u, v))

and K (u + iv)= (x(u, v), y(u, v)) for u + iv ∈ E , satisfying certain conditions:

(i) The analytic functions ( f, g) form the Weierstrass representation of X (see
[Osserman 1969], for instance, or [Huff 2006] in this volume).

(ii) K is a homeomorphism between σ1 and the line segment AB, between σ2 and
AC , and between σ3 and BC .

(iii) K is constant on σ4.

Here we say f has an integrable singularity at tk if and only if | f (w)| ≤ C |w−tk |s

with −1 < s < 0 and C ≥ 0 for w near tk . Notice that f ≡ 0 corresponds to a
“surface” consisting of a single point, as in (5) below, and therefore does not yield
a solution of (2).

We now formulate the Riemann–Hilbert problem which we will solve by tem-
porarily assuming the existence of a suitable function f .

The boundary requirements (ii) imply

(4)


y(u, v)= cot δ x(u, v)+ 1 for u + iv ∈ σ1,

x(u, v)= 0 and 0 ≤ y(u, v)≤ 1 for u + iv ∈ σ2,

y(u, v)= − cot δ x(u, v)− 1 for u + iv ∈ σ3.

Write f (u + iv)= f1(u, v)+ i f2(u, v), where f1 and f2 are real-valued.
Now (i) implies

(5)


xw = f (w)(1 −w2)/2,

yw = i f (w)(1 +w2)/2,

zw = w f (w);

for w ∈ E ; see [Elcrat and Lancaster 1989, p. 1061], for example. Since d/dw =
1
2(∂/∂u − i∂/∂v), the equations above yield

xu(u, v)= Re( f (w)(1 −w2))= (1 − u2
+ v2) f1 + 2uv f2,

xv(u, v)= − Im( f (w)(1 −w2))= 2uv f1 − (1 − u2
+ v2) f2,

(6)
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yu(u, v)= Re(i f (w)(1 +w2))= −2uv f1 − (1 + u2
− v2) f2,

yv(u, v)= − Im(i f (w)(1 +w2))= −(1 + u2
− v2) f1 + 2uv f2,

(7)

and

(8)
zu(u, v)= Re(2w f (w))= 2(u f1 − v f2),

zv(u, v)= − Im(2w f (w))= 2(−v f1 − u f2),

where we use the notation w = u + iv. If we parametrize σk , k = 1, . . . , 4, as

σk = {wk(t)= uk(t)+ ivk(t)},

we find that the equalities (4) imply, respectively,

yuu′

1 + yvv′

1 = cot δ (xuu′

1 + xvv′

1),

xu(u2(t), 0)= 0,

yuu′

3 + yvv′

3 = − cot δ (xuu′

3 + xvv′

3),

and that condition (iii) of the previous page implies

xuu′

4 + xvv′

4 = 0.

Now (u1(t)− u1)
2
+ (v1(t)− v1)

2
= r2

1 implies

u′

1(t)
v′

1(t)
= −

v1(t)− v1

u1(t)− u1
= −

Im(w1(t)−w1)

Re(w1(t)−w1)

and similarly for u′

3(t)/v
′

3(t). Recall that

cot δ = −
Rew1

Imw1
= −

u1

v1
and cot δ =

Rew3

Imw3
=

u3

v3
.

If we rewrite xu, . . . , zv in terms of f , u and v, we obtain

(9) Re
(
(ak(u, v)+ ibk(u, v)) f (u + iv)

)
= 0

when (u, v) ∈ σk , which we could also write as

ak(u, v) f1(u, v)− bk(u, v) f2(u, v)= 0,

for k = 1, . . . , 4, where

a1(u, v)+ ib1(u, v)= ieiδ(w−w1)(e−2δi
−w2) if w = u + iv ∈ σ1,

a2(u, v)+ ib2(u, v)= −1 if u + iv ∈ σ2,

a3(u, v)+ ib3(u, v)= ie−iδ(w−w3)(e2δi
−w2) if w = u + iv ∈ σ3,

a4(u, v)+ ib4(u, v)= (u + iv)2 if w = u + iv ∈ σ4.
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We now define a, b : ∂E → R by a(u + iv)= ak(u, v) and b(u + iv)= bk(u, v) if
u + iv ∈ σk , for k ∈ {1, . . . , 4}, and define G : ∂E → C by

G(w)= a(w)+ ib(w).

We wish to find a function f ∈ C0(E \ {t1, . . . , t4}) which is analytic in E0 and
satisfies

Re(G(w) f (w))= 0 for w ∈ ∂E \ {t1, . . . , t4}.

This is a Riemann–Hilbert problem with discontinuous coefficients G; in the
notation of [Monakhov 1983, Chapter 1, §4], this is a “Hilbert problem with
piecewise Hölder coefficients” (see also [Athanassenas and Lancaster 2004]). In
order to use the results in [Monakhov 1983], we need to compute the index of this
Hilbert problem in an appropriate function class O(m)= O(tk1, . . . , tkm ) for some
m ∈ {0, . . . , 4}. Define G1 : ∂E → C by

G1(w)= −
G(w)
G(w)

.

Notice that G1(w)= −1 for w ∈ σ2 and G1(w)= −
(
w/|w|

)4
= −w4 for w ∈ σ4.

Set ω = eiδ. Moreover

G1(w)= |G(w)|−2e−2δi (w−w1)
2(ω2

−w2)2

= |G(w)|−2e−2δi (w−w1)
2(ω−w

)2(
ω+w

)2 for w ∈ σ1,

G1(w)= |G(w)|−2e2δi (w−w3)
2(ω−w

)2(
ω+w

)2 for w ∈ σ3.

For k ∈ {1, . . . , 4}, set

θk =
1

2π

(
arg G1(tk − 0)− arg G1(tk + 0)

)
,

where arg G1(tk −0)means the limit at tk of the argument of G1 along the arc σk−1

(with σ0 here being σ4) and arg G1(tk +0) means the limit at tk of the argument of
G1 along the arc σk . The argument is taken to be continuous along each component
of each set σk . We have

arg G1(t1 − 0)= −π + 4γ1 + 4δ,

arg G1(t2 − 0)= −2
(
δ+ τ1B + λ1B

)
,

arg G1(t3 − 0)= π,

arg G1(t4 − 0)= 4π−4γ2 − 4δ,

arg G1(t1 + 0)= 4γ1 + 4δ− 2π,

arg G1(t2 + 0)= π,

arg G1(t3 + 0)= 2δ− 2
(
τ2B + λ2B

)
,

arg G1(t4 + 0)= 3π−4γ2 − 4δ.

Here t2 = w1 + r1eiτ1B for some τ1B ∈ [−π/2,−δ), t3 = w2 + r2eiτ2B for some
τ2B ∈ (δ− π,−π/2], ω2

− t2
2 =

∣∣ω2
− t2

2

∣∣ eiλ1B for some λ1B ∈ [−π/2 − δ,−2δ)
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and ω2
+ t2

3 = |ω2
+ t2

3 | eiλ2B for some λ2B ∈ (2δ, π/2 + δ]. This implies

θ1 =
1
2
, θ4 =

1
2
,

2δ
π

−
1
2
< θ2 ≤

1
2

and
2δ
π

−
1
2
< θ3 ≤

1
2
.

We set ν1 = ν2 = ν3 = ν4 = 0. Consider k ∈ {2, 3}. If θk ∈ (−1, 0), the solution
f of our Hilbert problem will be unbounded and have an integrable singularity at
tk while if θk ∈ (0, 1), f will be continuous and vanish at tk; if θk = 0, f will be
continuous and nonzero at tk . Let n ∈ {0, 1, 2} be the sum of the greatest integer
function of θ2 and of θ3 and set m = 4−n. A function in the function class O(m) is
an analytic function in E0 which is continuous at each point of E except possibly at
the corners {t1, . . . , t4} of ∂E , does not vanish on E \ {t1, . . . , t4}, is continuous at
m of the corners and vanishes at some or all of these corners and has an integrable
singularity at the remaining 4 − m corners. The index of our Hilbert problem in
O(m) is κ = ν1 + · · · + ν4 = 0 [Monakhov 1983, page 49] and our problem has a
“canonical” solution F in O(m) which is continuous at t1 and t4 and possibly at
t2 or t3 [Monakhov 1983, pp. 42–53]. The general form of any solution (in O(m))
is c0 F(w) for any c0 ∈ R. Equation (9) with k = 2 implies Re F = 0 on σ2; since
F is nonvanishing on E \ {t1, t2, t3, t4}, Im F is either strictly positive or strictly
negative on the entire open interval σ2 \ {t2, t3}. Let us select c1 by requiring

(10) c1

∫ t3

t2
(1 + u2) Im F(u) du = −2

(recall that Im t2 = Im t3 = 0). We now define f (u + iv)= f1(u, v)+ i f2(u, v) to
be c1 F(u + iv).

Any two (complex) functions analytic on and without common zeros in the same
simply connected domain in C can be used to form a (parametric) minimal surface
whose components will satisfy (5). Let X ∈ C0(E) ∩ C2(E0) be the minimal
surface with Weierstrass representation ( f, g) which satisfies X (0)= (0, y0, 0) for
some y0 to be determined. Let us use the notation in (3) and define K (u + iv) =

(x(u, v), y(u, v)). Recall that the image E of g is star-like with respect to the
origin. Using, for example, [Nitsche 1989], we see that X is strictly monotonic on
∂E .

If u + iv ∈ σ2, then v = 0 and u ∈ [t2, t3]. For u ∈ [t2, t3], (7) implies

y(u, 0)− y0 =

∫ u

0
(1 + s2) f2(s) ds

and (10) yields y(t3, 0)− y(t2, 0)= −2. Now set y0 = −1 −
∫ t3

0 (1 + s2) f2(s) ds,
so that y(t3, 0) = −1 and therefore y(t2, 0) = 1. From (9) with k = 2, we have
(−1) f1(u, v) + (0) f2(u, v) = 0 and so f1(u, v) = 0 for u + iv ∈ σ2. Now (6)
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and (8) imply xu(u, 0)= 0 and zu(u, 0)= 0, so x and z are constant on σ2. Since
x(0, 0)= z(0, 0)= 0, we see that X and K map σ2 strictly monotonically onto AC .

If u + iv ∈ σ4, then u + iv = eiθ for some θ ∈ (0, π). Writing u = u(θ)= cos θ
and v = v(θ)= cos θ , we have

d
dθ

(
x(u(θ), v(θ))

)
= −vxu(u, v)+ uxv(u, v)

= 2v
(
(u2

− v2) f1(u, v)− 2uv f2(u, v)
)
= 0,

d
dθ

(
y(u(θ), v(θ))

)
= −vyu(u, v)+ uyv(u, v)

= −2u
(
(u2

− v2) f1(u, v)− 2uv f2(u, v)
)
= 0,

since a4 f1 − b4 f2 = 0 on σ4. This implies x and y are constant on σ4. Thus K is
constant on σ4.

Consider the behavior of K on σ1. Writing u = u1(t) and v = v1(t), we have

d
dt

(
y(u1(t), v1(t))− cot δ x(u1(t), v1(t))

)
= yuu′

1(t)+ yvv′

1(t)− cot δ
(
xuu′

1(t)+ xvv′

1(t)
)
=
v′

1(t)
u−u1

(
a1 f1 − b1 f2

)
= 0,

so y − cot δ x is constant on σ1. Since y(t2, 0) = 1 and x(t2, 0) = 0, we see that
y − cot δ x = 1 on σ1 and K (t2)= A.

Now consider the behavior of K on σ3. Writing u = u3(t) and v= v3(t), we get

d
dt

(
y(u3(t), v3(t))+ cot δ x(u3(t), v3(t))

)
= yuu′

3(t)+ yvv′

3(t)− cot δ
(
xuu′

3(t)+ xvv′

3(t)
)
=

v′

3(t)
u − u3

(
a3 f1 − b3 f2

)
= 0,

so y + cot δ x is constant on σ3. Since y(t3, 0)= −1 and x(t3, 0)= 0, we see that
y + cot δ x = −1 on σ3 and K (t3)= C .

Since K ∈ C0(∂E) and K is constant on σ4, K (t1) = K (t4). Now K (t1) lies
on the line y = cot δ x + 1 and K (t4) lies on the line y = −cot δ x − 1; hence
K (t1) = K (t4) must lie on the intersection of these lines, which is the point B.
Therefore K (t1)= K (t4)= B, K maps σ1 onto AB, and K maps σ3 onto BC . Set

0 =
{
(x(u, v), y(u, v), z(u, v)) : u + iv ∈ ∂E

}
.

Since 0 projects onto the convex triangle ABC and this projection is a bijection
from X (∂E \ σ4) onto ∂�0 \ {B}, X (E \ σ4) is the graph of a function

h ∈ C2(�0)∩ C0(�0 \ {B}),

K maps E onto �0 and h(x(u, v), y(u, v)) = z(u, v) for u + iv ∈ E \ σ4; in fact,
h ∈ C1(�0\{B}); see, for example, [Nitsche 1989, §400, p. 349; Finn 1986]. Since
z(u, v)= 0 if u + iv ∈ σ2, h = 0 on AC .



BEHAVIOR OF SOME CMC CAPILLARY SURFACES AT CONVEX CORNERS 241

We wish to demonstrate that the contact angle condition T h ·ν = cos γ from (2)
is satisfied on AB; the demonstration that it is satisfied on BC is similar. Now the
exterior unit normal ν ∈ R2 to AB is (− cos δ, sin δ) and the corresponding hori-
zontal unit normal in R3 is η = (− cos δ, sin δ, 0). Set S = X (E). The downward
unit normal (in R3) to S at (x, y, h(x, y)) is

EN (x, y)=
(hx(x, y), h y(x, y),−1)√

1 + |∇h(x, y)|2

and the Gauss map EG : E → S of X is given by EG(u + iv) = EN (x(u, v), y(u, v))
for u + iv ∈ E \ σ4 and EG(eiθ )= (cos θ, sin θ, 0) for eiθ

∈ σ4. Recall that g is the
stereographic projection of EG and C1 is the stereographic projection of the circle
{(u, v, t) ∈ S2

: (u − u1)
2
+ (v− v1)

2
+ t2

= r2
1 }, which can also be described as

the intersection of the unit sphere with the cone {Y ∈ R3
: Y ·η= |Y | cos γ1}. We

see therefore that EG(w) · η = cos γ1 for w ∈ σ1 and so

T h(x, y) · ν = EN (x, y) · η = EG(w) · η = cos γ1,

where w= u + iv ∈ σ1 satisfies (x(u, v), y(u, v))= (x, y). Thus the contact angle
condition is satisfied on the (open) interval AB.

We claim that h is discontinuous at B and, in fact, has a jump discontinuity at
B. Using either [Lancaster and Siegel 1996] or the general maximum principle for
minimal surfaces together with standard comparison surfaces, such as planes, we
see that

min{z(t1), z(t4)} ≤ lim inf
(x,y)→B

h(x, y)≤ lim sup
(x,y)→B

h(x, y)≤ max{z(t1), z(t4)},

where we have abused notation by, for example, writing z(t1) for z(Re t1, Im t1).
Since

lim
(x,y)→B+

h(x, y)= z(t1) and lim
(x,y)→B−

h(x, y)= z(t4),

where the first limit means approaching B along AB and the second limit means
approaching B along BC , establishing this claim only requires us to prove that
z(t1) 6= z(t4). Now

d
dθ

z(cos θ, sin θ)= −2 Im(w2 f (w)),

and, from (9) with k = 4, we have Re
(
w2 f (w)

)
= 0, where u = cos θ , v= sin θ and

w = u + iv. Since f does not vanish on σ4 \ {t1, t4} and w does not vanish on σ4,
the derivative (d/dθ)z(cos θ, sin θ) cannot vanish for any θ ∈ (δ+ γ2, π−δ− γ1).
Therefore z(cos θ, sin θ) is either strictly increasing or strictly decreasing in θ for
θ ∈ [δ+γ2, π−δ− γ1], so z(t1) 6= z(t4).
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We now define h on� by extending the minimal surface z =h(x, y) by reflection
across the line segment {(0, y, 0) : |y|≤ 1}, so that h ∈ C0(�\{B, D}) and h(x, y)
is an odd function of x . Then the condition T h ·ν = cos γ is satisfied at each point
of ∂� \ {A, B,C, D}. Since h is discontinuous at B, it is also discontinuous at D.

Suppose that z =h1(x, y) is any solution of the capillary problem with h1(0, 0)=
0. Using the comparison principle for capillary surfaces [Finn 1986; Finn and
Hwang 1989], we see that h1 = h + C for some constant C . Since h1(0, 0)= 0 =

h(0, 0), we see that h1 = h. Notice that h has the boundary behavior described in
Theorem 1.1.

Suppose that γ1 < π/2 and γ2 = π/2. The arguments above continue to hold,
but now E = E0, with

E0 = {w ∈ B1 : Imw > 0, |w−w1|> tan γ1, Reωw < 0},

as in Figure 4; recall that ω = eδi . The case in which γ1 = π/2 and γ2 > π/2 is
similar.

3. Proof of Theorem 1.1

Consider γ1 ∈ (0, π/2] and γ2 ∈ [π/2, π) satisfying (1) and such that one of the
following cases holds:

γ1 ∈ (0, δ) and γ2 ∈ [π/2, π−δ];(11)

γ1 ∈ [δ, π/2] and γ2 ∈ (π−δ, π);(12)

γ1 ∈ (0, δ) and γ2 ∈ (π−δ, π).(13)

Together with the results of Lemma 1.2, the proof that our stated conclusions hold
in these three cases will complete the proof of Theorem 1.1 when γ1 ∈ (0, π/2]
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Figure 4. The domain E in the case γ2 = π/2.



BEHAVIOR OF SOME CMC CAPILLARY SURFACES AT CONVEX CORNERS 243

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

t3

t4

t1

t2

t5

Figure 5. The domain E in the case γ1 ∈ (0, δ), γ2 ∈ [π/2, π−δ].

and γ2 ∈ [π/2, π). By reflecting� about the y−axis (or by considering the contact
angles near D), we see that the situation where γ2 ∈ (0, π/2] and γ1 ∈ [π/2, π)
will also be covered.

We begin by assuming that (11) holds. Then σ4 has two components and E ,
which is illustrated in Figure 5, has an extra corner at t5 = −1. We will continue
to use the notation introduced in the proof of Lemma 1.2. Then

t1 = e(π−δ−γ1)i , t2 = e(π−δ+γ1)i ,

and t3 and t4 are the same as in the previous section (see Figure 3). That we know
t2 explicitly makes our work here easier. The functions G(w) and G1(w) remain
the same and we wish to find f ∈ C0(E \{t1, . . . , t5}) analytic in E0 and satisfying
Re(G(w) f (w)) = 0 for w ∈ {t1, . . . , t5}. A little work shows that θ1, θ3 and θ4

remain as before and

arg G1(t2 − 0)= 2π + 4δ− 4γ1, arg G1(t2 + 0)= −3π + 4δ− 4γ1,

arg G1(t5 − 0)= −3π, arg G1(t5 + 0)= π,

so θ2 =
5
2 and θ5 = −2. Set ν1 = 0, ν2 = 2, ν3 = 0, ν4 = 0 ν5 = −2 and αk = θk −νk ,

1 ≤ k ≤ 5. If we select c1 ∈ R such that

c1

∫ t3

−1
(1 + u2) Im F(u) du = −2,

where F(w) is a “canonical solution” as in Section 2, the argument used there
shows that there is a unique solution h ∈ C2(�) ∩ C0(� \ {A, B, D}) of (2) and
this solution is discontinuous at A, B and D. If γ2 = π/2, then E is modified as
in the previous section (see Figure 4) and this conclusion continues to be valid.
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Case (12) is similar to case (11), with corners at t1, t2, t3, t4 and t6 = 1. Here θ1,
θ2 and θ4 are as in Section 2 and θ3 =

1
2 , θ6 =

1
2 . We leave this case as an exercise

for the reader.
Suppose case (13) holds. Then E has six corners (with t5 = −1 and t6 = 1) and

θ1 =
1
2 , θ2 =

5
2 , θ3 =

1
2 , θ4 =

1
2 , θ5 = −2, θ6 =

1
2 .

If we set ν1 = 0, ν2 = 2, ν3 = 0, ν4 = 0, ν5 = −2 and ν6 = 0, then our conclusions
follow as in case (a).

It remains to show that our claims are true when (1) hold and γ1 and γ2 are both
in (0, π/2) (or both are in (π/2, π) ). Let us assume γ1, γ2 ∈ (0, π/2) satisfy (1)
with γ1 − γ2 > 2δ. We redefine w3 and r3 by

w3 = u3 + iv3 = − cos δ sec γ2 − i sin δ sec γ2 and r3 = tan γ3.

We set E = E0, where

E0 =
{
w ∈ B1 : Imw < 0, |w−w1|< r1, |w−w3|< r3

}
.

Let C3 denote the circle |w−w3| = r3 and set

σ1 = ∂E ∩ C1,

σ3 = ∂E ∩ C2,

σ2 = {w ∈ ∂E : Imw = 0},

σ4 = ∂E ∩ ∂B1.

We have two cases to consider: γ2 < δ and γ2 ≥ δ. The situation can then be
taken to be as in the left and right panels, respectively, of Figure 6. For if we can
obtain our desired conclusions in these two situations, we will have proved that
Theorem 1.1 is valid in one of the four triangular regions remaining where (1) is
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Figure 6. The domain E in the case γ1 ∈ (0, δ), γ2 ∈ (π−δ, π).
Left: γ2 < δ; right: γ2 ≥ δ.
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satisfied. The validity of Theorem 1.1 in the other three regions will then follow
by symmetry and/or the interchange of γ1 and γ2.

Suppose γ2<δ, and refer to Figure 6, left. Denote the corners of E by t1, . . . , t5,
where

t1 = e(π−δ+γ1)i , t3 = e(π+δ−γ2)i , t4 = e(π+δ+γ2)i , t5 = −1

and t2 ∈ σ1 with Im t2 = 0. The functions G(w) and G1(w) remain the same as in
Section 2 (using our redefined w3 and r3). Then

arg G1(t1 − 0)= −3π + 4(δ− γ1),

arg G1(t2 − 0)= −2(δ+ τ1B + λ1B),

arg G1(t3 − 0)= −3π − 4(δ− γ2),

arg G1(t4 − 0)= 2π − 4(γ2 + δ),

arg G1(t5 − 0)= π,

arg G1(t1 + 0)= 3π + 4(δ− γ1),

arg G1(t2 + 0)= π,

arg G1(t3 + 0)= 4(γ2 − δ),

arg G1(t4 + 0)= −3π − 4(γ2 + δ),

arg G1(t5 + 0)= −3π,

where t2 = w1 + r1eiτ1B for some τ1B ∈ [−π/2,−δ) and ω2
− t2

2 = |ω2
− t2

2 |eiλ1B

for some λ1B ∈ [−π/2 − δ,−2δ) as in Section 2. Then

θ1 = −3, θ2 = −
1
2

−
δ+ τ1B + λ1B

π
, θ3 = −

3
2
, θ4 =

5
2
, θ4 = 2.

Set ν1 = −3, ν2 = 0, ν3 = −1, ν4 = 2, ν5 = 2 and αk = θk − νk , 1 ≤ k ≤ 5. Since
ν1 + ν2 + ν3 + ν4 + ν5 = 0, we may argue as before and obtain a unique solution
h ∈ C2(�)∩ C0(� \ {B,C, D}) of (2); this solution is discontinuous at B,C, D.

Suppose γ2 ≥ δ, and refer to Figure 6, right. Let the corners of E be denoted by
t1, . . . , t4, where t1, t2 and t4 are as in the previous case and t3 ∈ σ3 with Im t3 = 0.
If we write t3 =w3 + r3eiτ2B for some τ2B ∈ (δ, π/2] and ω2

− t2
3 = |ω2

− t2
3 |eiλ2B

for some λ2B ∈ (2δ, π/2 + δ], then we find

θ1 = −3, θ2 = −
1
2

−
δ+ τ1B + λ1B

π
, θ3 =

1
2

+
τ2B + λ2B − δ

π
, θ4 =

5
2
.

Set ν1 = −3, ν2 = 0, ν3 = 1, ν4 = 2 and αk = θk − νk , 1 ≤ k ≤ 4. Then there is a
unique solution h ∈C2(�)∩C0(�\{B, D}) of (2) and this solution is discontinuous
at B and D.
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MINIMAL SOLUTIONS TO THE LOCAL
CAPILLARY WEDGE PROBLEM

ROBERT HUFF

We give sufficient conditions for the existence of minimal capillary graphs
over quadrilaterals symmetric with respect to a diagonal. The proof is con-
structive, making use of the Weierstrass representation theorem for mini-
mal surfaces. In the process, we construct minimal solutions to the local
capillary wedge problem for any wedge angle 0 < φ < π and contact angles
γ1, γ2 ∈ (0, π) such that |γ1 − γ2| ≤ π − φ. When |γ1 − γ2| < π − φ, the
solution presented here has a jump discontinuity at the wedge corner.

1. Introduction and statement of results

Given a convex quadrilateral Q (each interior angle strictly less than π ) with edges
{sk}

4
k=1, and given contact angles {γk}

4
k=1, we ask under what conditions there

exists a corresponding capillary graph, that is, a minimal surface that is a graph
over Q (except perhaps at the vertices) and that meets each wall sk ×R at a constant
angle γk . We will give sufficient conditions in the case where Q is symmetric with
respect to a diagonal.

Physically, a capillary graph models the behavior of a surface formed by a liquid
in a container, which in our case is a cylinder with quadrilateral cross section. In
the absence of gravity any such graph given by u satisfies

div
grad u√

1 + |grad u|2
= H in Q,

〈
grad u√

1 + |grad u|2
, νk

〉
= cos γk along sk,

where νk is the outward pointing unit normal to sk and H is a constant. The first
equation means the graph has constant mean curvature H , and the second is just
the contact angle condition along the edges.

MSC2000: primary 76B45; secondary 53A10.
Keywords: capillary graph, contact angle, minimal surface, Weierstrass representation,

quadrilateral.
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The wedge problem. A necessary condition for the existence of a capillary graph
over a convex quadrilateral comes from the local capillary wedge problem, which
deals with the existence of capillary graphs defined locally in a neighborhood of
a wedge vertex. In this setting, Concus and Finn [1996] have shown it is not
possible for a capillary graph with constant mean curvature to exist if the contact
angles (γ1, γ2) along the two sides of the wedge are such that

|γ1 + γ2 −π |> φ.

where φ ∈ (0, π) is the wedge angle. The forbidden region thus defined is the union
D+

1 ∪ D−

1 in Figure 1. Thus, a minimal capillary graph over a convex quadrilateral
can exist only if

(γk, γk+1) 6∈ D+

1 ∪ D−

1 with respect to αk, k = 1, 2, 3, 4,

where αk is the interior angle between sk and sk+1 and k = 4 implies k + 1 = 1.
Also labeled in Figure 1 are the regions

R = {(γ1, γ2) : |γ1 + γ2 −π |< φ and |γ1 − γ2|< π −φ},

D+

2 ∪ D−

2 = {(γ1, γ2) : |γ1 − γ2|> π −φ}.

By considering portions of planes and spheres over linear wedges, one can see that
a solution to the local capillary problem (in zero gravity) exists for any (γ1, γ2)∈ R

and any mean curvature value H . According to a conjecture by Concus and Finn
[1996], existence for any H should also hold in the closure of D±

2 . Here, we make
progress towards this conjecture by proving the following theorem, establishing

γ2

γ1

R

φ

φ

π −φ

π −φ

π

π

D+

1

D−

1

D+

2

D−

2

Figure 1. Contact angle diagram.
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existence in the closure of D±

2 minus the points where either γ1 or γ2 equals 0
or π . Because of the geometric nature of our construction, we are also able to
determine the behavior of the solutions at the wedge corner.

Theorem 1. There is a minimal solution to the local capillary wedge problem for
any wedge angle 0< φ < π and contact angle pair

(γ1, γ2) ∈ D±

2

with respect to φ such that 0< γ1, γ2 <π . Moreover, if (γ1, γ2) lies in the interior
D̊±

2 of D±

2 , a solution exists with a finite jump discontinuity.

Finn [1996] showed existence for any H 6= 0 in D±

2 − D±

1 so long as the wedge
angle is less than 31.5◦. Combining this with the theorem, we obtain:

Corollary. There is a solution to the local capillary wedge problem for any mean
curvature value H and any (γ1, γ2) ∈ D±

2 such that 0 < γ1, γ2 < π so long as the
wedge angle is less than 31.5◦.

Note. Crenshaw and Lancaster [2006] have proved Theorem 1 for wedge angles
π/2<φ<π and contact angles (γ1, γ2)∈ D̊±

2 , by solving an appropriate Riemann–
Hilbert problem.

Statement of the global existence theorem. Theorem 1 will arise as a corollary of
Theorem 2 below, concerning the global existence of minimal capillary graphs over
convex quadrilaterals. Unfortunately, it is too ambitious at this point to consider
general convex quadrilaterals; instead, we restrict our attention to those that are
symmetric with respect to a diagonal. To prove Theorem 2, we use the Weierstrass
representation theorem for minimal surfaces to construct the graph; the sufficient
conditions we derive for global existence result from studying the Gauss map on
the graph.

Let Q be a convex quadrilateral that is symmetric with respect to a diagonal.
Orient Q in the xy-plane so that the line of symmetry is the x-axis, and label the
edges s1, s2, s3, s4 along with the wedge angle φ between s1 and s2 as shown in
Figure 2. Next, assume the existence of a minimal capillary graph over Q having
contact angle γk along the edge sk . Furthermore, assume that the portion of the
x-axis contained in Q, labeled b in Figure 2, is contained in the graph. By the
Schwarz reflection principle for minimal surfaces, this last assumption implies the
graph is symmetric with respect to 180◦ rotation around b, and this symmetry of
the graph results in a symmetry of the contact angles:

(1) γ3 = π − γ1 and γ4 = π − γ2.
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x

y

s1s2

s4 s3

b

Qu

α1α2

φ

φ

Figure 2. The quadrilateral Q oriented in the xy-plane.

Theorem 2. Let Q, oriented and labeled as in Figure 2, be any convex quadrilat-
eral symmetric with respect to the x-axis. Let 0< γ1, γ2 < π and set γ3 = π − γ1,
γ4 = π − γ2. Suppose further that

(γ1, γ2) ∈ D±

2

with respect to the wedge angle φ between s1 and s2. Then there exists a mini-
mal capillary graph over Q with contact angle γk on the edge sk , k = 1, 2, 3, 4.
Furthermore, if

(γ1, γ2) ∈ D̊±

2 ,

a solution exists with a finite jump discontinuity at the vertices s1 ∩ s2 and s3 ∩ s4.

Note that under the hypotheses of the theorem, we also have (γ3, γ4) ∈ D±

2 with
respect to φ, by symmetry.

Before proving Theorem 2, we recall the Weierstrass representation theorem for
minimal surfaces.

2. Background

The Weierstrass representation. Given a domain�⊂ C, the Weierstrass represen-
tation theorem says that any (orientation preserving) conformal minimal immersion

X = (X1, X2, X3) :�→ R3

can be expressed, up to translation, in terms of a meromorphic function g and a
holomorphic one-form dh by the formula

(2) X (z)= Re
∫ z

.

(
1
2
(g−1

− g)dh,
i
2
(g−1

+ g)dh, dh
)
,
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where g is the stereographic projection of the Gauss map and

dh =

(
∂X3

∂x
− i

∂X3

∂y

)
dz

is called the complex height differential (note that Re dh = d X3). Conversely, the
theorem states that if g is a meromorphic function and dh a holomorphic one-
form on � such that dh has a zero of order n at z if and only if g has a zero or
pole of order n at z, then (2) gives an (orientation preserving) conformal minimal
immersion on � that is well-defined provided that

Re
∫

c

(
1
2
(g−1

− g)dh,
i
2
(g−1

+ g)dh, dh
)

= 0

for every simple closed curve c ⊂ �. (This condition is satisfied automatically if
� is simply connected.)

Determining dh via the second fundamental form. For a minimal surface given
by Weierstrass data g and dh, we have, for tangent vectors v and w,

dg(v) dh(w)
g

= II(v,w)− i II(v, iw),

where II is the second fundamental form on the surface (see [Hoffman and Karcher
1997] for details). Therefore:

c is a principal curve ⇐⇒
dg(ċ) dh(ċ)

g
∈ R;(3)

c is an asymptotic curve ⇐⇒
dg(ċ) dh(ċ)

g
∈ iR.(4)

We see from (3) and (4) that the function ζ given by

(5) ζ(z)=

∫ z

.

√
dg dh

g

maps principal curves into vertical or horizontal lines and asymptotic curves into
lines of slope ±1. The map ζ is called the developing map of the one-form
√

dg dh/g. It is a local isometry between the minimal surface equipped with the
conformal cone metric |dg dh/g| and the Euclidean plane.

Each surface considered will have boundary consisting of principal and asymp-
totic curves, which will allow us to determine the function ζ . Once this is done,
we can use (5) to conclude that

dh =
g(dζ )2

dg
.
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3. Proof of Theorem 2

Determining the image of the Gauss map. To construct the desired capillary graph
in R3, we will find a parametrization of its image� under the Gauss map. Because
of symmetry it is sufficient to consider the graph over the triangle Qu with base b
and base angles α1 and α2 (see Figure 2). From now on we assume without loss
of generality, thanks to (1), that γ1 ≤ γ2 and γ1 ≤ π/2. It will be convenient to
distinguish two cases:

0< γ1 ≤ π/2 ≤ γ2 < π,(C1)

0< γ1 ≤ γ2 ≤ π/2.(C2)

We can also exclude the situation γ1 = γ2 = π/2, since then the desired graph is
just part of a horizontal plane.

Because of the contact angle conditions, the Gauss map takes the interior of an
edge sk into (part of) a circle Ck on the sphere. Under stereographic projection, Ck

is described as follows:
If γk 6= π/2, the circle Ck is the boundary of the disk

(7) Dk = D(sec γk eiθk , |tan γk |)

of radius |tan γk | and center sec γk eiθk , where

(8) θ1 = π/2 −α1, θ2 = π/2 +α2.

If γk = π/2, then Ck is the line through the origin in the direction of sk and we
define Dk as one of the half-planes bounded by this line: in case (C1),

D1 =
⋃

0<γ<π/2
D(sec γ eiθ1, | tan γ |)

or

D2 =
⋃

π/2<γ<π
D(sec γ eiθ2, | tan γ |);

in case (C2),

D2 =
⋃

0<γ<π/2
D(sec γ eiθ2, | tan γ |).

Finally, we note that the Gauss map takes the edge b into a segment of the imaginary
axis, which we again label b.

In case (C1) we take the Gauss image � to be the region common to C − D1,
C − D2, the half-plane {x > 0}, and the unit disk D(0, 1), while in case (C2) we
take � to be the region common to the exterior of the smaller disk D1, the interior
of the larger disk D2, the half-plane {x > 0}, and the unit disk. We now show that
these descriptions make sense under the hypotheses of Theorem 2. The circle Ck ,
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C1

ei(θ1+γ1)

ei(θ1−γ1)

ei(θ2−γ2)

ei(θ2−γ2)

ei(θ2+γ2)

C2

C2

ei(θ2+γ2)

Figure 3. Intersections of C1 and C2 with the unit circle. The
solid-line C2 corresponds to case (C1), while the dashed-line C2

corresponds to case (C2).

k = 1, 2, intersects the unit circle at ei(θk±γk). Referring to Figure 3, we see that

(γ1, γ2) ∈ D±

2 with respect to φ ⇐⇒ γ2 − γ1 ≥ α1 +α2 = π −φ

⇐⇒ π/2 +α2 − γ2 ≤ π/2 −α1 − γ1

⇐⇒ θ2 − γ2 ≤ θ1 − γ1

⇐⇒

{
D1 ∩ D2 = ∅ in case (C1),

C1 ⊂ D2 in case (C2),

as required. Thus the Gauss image � is the stated intersection. More explicitly,
� is the region bounded by a curvilinear polygon consisting of the contact-angle
arcs C1, C2, the segment b of the imaginary axis, and up to three arcs of the unit
circle, labeled a1, a2, a3 in the order shown in Figure 4, left. Each ak present on
∂� comes from a finite jump discontinuity (a vertical line segment) over a vertex.
Arc a2 is present if and only if (γ1, γ2) ∈ D̊±

2 with respect to φ; the arc (a1 or a3)
connecting Ck to b is present if and only if (γk, π−γk) ∈ D̊±

2 with respect to 2αk .
Note that from now on we use C1 and C2 to refer to arcs on the boundary of �,
rather than whole circles.

Since� only depends on the contact angles and the interior angles of the triangle
Qu , we will construct graphs over one triangle per similarity class. To deal with
other triangles in a congruence class, we simply apply a homothety of R3 to the
graph, which changes the edge lengths of the triangle but preserves minimality and
contact angles.
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b

�α,0

C1

C2

a1

a2

a3

ζα,0 Pα,0C1

a1

a2

b

C2
a3

case (C1)

b �α,0

C1

C2

a1

a2 ζα,0 Pα,0
C1

a1

a2

b

C2

case (C2)

Figure 4. The developing map ζα,0.

We now seek to parametrize the capillary graph via the inverse of its Gauss map.
The stereographic projection of the Gauss map of a minimal surface is conformal
and orientation preserving, so its inverse can be expressed in terms of Weierstrass
data g and dh using formula (2) above, where in our case g(z)= z by construction.
Hence, it remains to determine dh, which we will do in terms of the developing
map of the complexified second fundamental form. Thus we need to investigate
what properties this map should satisfy. It will sometimes be convenient to write
�α,0 instead of �, where we have set

0 = (γ1, γ2) and α = (α1, α2).

Existence of the developing map. Consider the function ζ = ζα,0 on �α,0 given
by (5). Each edge ak corresponds to an asymptotic curve, because ζ maps it into
a vertical line over a vertex of Qu . It follows from (4) that the image of each such
edge under ζ is a segment of slope ±1. Edges C1 and C2 correspond to the contact
curves, which are planar curves along which the graph meets the plane of the curve
at a constant angle. By Joachimstahl’s Theorem, these are principal curves, so it
follows from (3) that they are mapped by ζ into horizontal or vertical lines. We
conclude that ζ maps �α,0 conformally onto a Euclidean polygon Pα,0. Diagrams
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of this map when �α,0 contains the maximum number of edges — six in case (C1)
and five in case (C2) — are shown in Figure 4. Thus we have reduced our task to
proving that such a map always exists, for an appropriate choice of the Euclidean
polygon Pα,0.

We do this using a continuity argument and certain properties of extremal length,
which we record here in the context of interest; for more generality and proofs, see
[Ahlfors 1973]. Given a curvilinear polygon1, a Borel-measurable function ρ > 0
on 1 defines a conformal metric ρ(dx2

+ dy2). The extremal length between two
edges A and B of 1, or (A, B)-extremal length, is defined as

ExtA,B(1) := sup
ρ

(infγ ρ-length of γ )2

ρ-area of 1
,

where the infimum is over all curves γ : [0, 1] →1 such that γ (0) ∈ A, γ (1) ∈ B,
and γ (t) ⊂ 1̊ for t ∈ (0, 1). Extremal length is invariant under biholomorphisms
and has the following properties:

(i) If A and B are adjacent, ExtA,B(1)= 0.

(ii) If B is degenerate (a point) and dist(A, B) > 0, then ExtA,B(1)= ∞.

(iii) If 1 is a Euclidean rectangle with edges {Bk}, k = 1, 2, 3, 4,

ExtB1,B3(1)=
1

ExtB2,B4(1)
=

|B2|

|B1|
,

where the bars denote Euclidean length.

(iv) If 11 ⊂ 12 are such that edges Ak, Bk ⊂ 1k , k = 1, 2, satisfy A1 ⊂ A2 and
B1 ⊂ B2, then

ExtA2,B2(12)≤ ExtA1,B1(11),

and the inequality is strict if A1 6= A2 or B1 6= B2.

(v) ExtA,B(1) depends continuously on the edge lengths of 1.

We will prove the existence of Pα,0 and the required biholomorphic map ζ in
case (C1), assuming that a1, a2, a3 are nondegenerate, as in Figure 4 (top). The
proofs of the remaining cases are similar and simpler.

Consider the space P6 of Euclidean hexagons P as in Figure 4, normalized so
that C1 ∩a1 = 0 ∈ C and |C1| = 1. Any polygon P ∈ P6 is uniquely determined by
the three (Euclidean) edge lengths |a1|, |a2|, |C2|. This allows us to parametrize
P6 using (|a1|, |a2|, |C2|) as coordinates:

P = P(|a1|, |a2|, |C2|).

Choose any |a1|, |a2| that are the first two coordinates of some P ∈P6. Allowing
|C2| to vary, we see that as |C2| approaches its lower limit (which is zero), the
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edges a3 and a2 become adjacent. By property (i) above, the (a2, a3)-extremal
length tends to 0. Inversely, as |C2| approaches its upper limit, a3 degenerates to a
point and property (ii) says that Exta2,a3(P)→ ∞. By the continuity property (v),
there exists an intermediate |Ĉ2| = f1(|a1|, |a2|) such that

(9) Exta2,a3(�α,0)= Exta2,a3

(
P(|a1|, |a2|, f1(|a1|, |a2|))

)
.

Claim 1. The function f1 is continuous.

Proof. Suppose f1 is not continuous at some point a = (|a1|, |a2|). Then we can
find a subsequence ak → a such that f1(ak) converges to some |C ′

2| 6= f1(a).
Since extremal length depends continuously on edge lengths (property (v) above),
it follows that Exta2,a3

(
P(ak, f1(ak))

)
converges to Exta2,a3

(
P(a, |C ′

2|)
)
, and equa-

tion (9) tells us that Exta2,a3

(
P(a, |C ′

2|)
)
= Exta2,a3(�a,0)= Exta2,a3

(
P(a, f1(a))

)
.

However, since |C ′

2| 6= f1(a), property (iv) implies that Exta2,a3

(
P(a, |C ′

2|)
)

6=

Exta2,a3

(
P(a, f1(a))

)
, a contradiction. �

Continuing, fix a length |a1| and consider P = P(|a1|, |a2|, f1(|a1|, |a2|)). As
|a2| approaches its lower limit of zero, property (ii) on the previous page says that

Exta2,b(P)→ ∞.

As |a2| approaches its upper limit of infinity, it is also true that |b| approaches
infinity. Therefore, consider a rectangle R = R(|a1|, |a2|) with opposite sides e1 ⊂

a2 and e2 ⊂ b such that |ek | → ∞ (k = 1, 2) as |a2| → ∞. Then property (iii)
implies that Exte1,e2(R) → 0 as |a2| approaches infinity, and property (iv) shows
that

Exta2,b(P)→ 0

as |a2| approaches infinity. By the continuity of f1, there exists an intermediate
|â2| = f2(|a1|) such that

(10) Exta2,b(�α,0)= Exta2,b
(
P(|a1|, f2(|a1|), f1(|a1|, f2(|a1|)))

)
.

The continuity of f2 is crucial to the remainder of the proof, and we prove it now.

Claim 2. The function f2 is continuous.

Proof. As in the proof of Claim 1, we assume f2 is discontinuous at some point
|a1|. We can find a subsequence |ak

1 | → |a1| such that f2(|ak
1 |) converges to some

|a′

2| 6= f2(|a1|).
Let P and P ′ be the hexagons corresponding to f2(|a1|) and |a′

2|, respectively.
If the jump from f2(|a1|) to |a′

2| is a decrease, there are two possibilities: Either
P ′ is strictly contained in P , or P ′ is such that there is a jump increase in |b|.

In the first case, it follows from property (iv) that Exta2,b(P
′) > Exta2,b(P), so

that equation (10) does not hold at P ′, a contradiction.
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In the second case, we first decrease P ′ to a hexagon P ′′ by shortening the edges
C2 and b so that the edge a3 of P ′′ is contained in the edge a3 of P . By property
(iv), we have Exta2,a3(P

′) > Exta2,a3(P
′′). Another application of (iv) shows that

Exta2,a3(P
′′)>Exta2,a3(P), and hence that Exta2,a3(P

′)>Exta2,a3(P). This implies
that (9) is not satisfied at P ′, a contradiction.

Similarly, we reach contradictions if the jump from f2(|a1|) to a′

2 is an increase.
Thus, we have shown that f2 is continuous. �

Finally, we let |a1| vary within the family of polygons

P = P
(
|a1|, f2(|a1|), f1(|a1|, f2(|a1|))

)
.

As |a1| approaches its lower limit of zero, it follows from (9) and (10) that P
approaches a pentagon with |a1| = 0 and all other lengths nonzero. Thus,

Extb,C1(P)→ 0

as |a1| approaches zero.
As |a1| approaches infinity, consider the renormalized hexagon

P ′
= |a1|

−1 P
(
|a1|, f2(|a1|), f1(|a1|, f2(|a1|))

)
,

which has the properties that |a1| = 1 and |C1| approaches zero as |a1| approaches
infinity. Since extremal length is a conformal invariant, equations (9) and (10) also
hold in P ′. Now, if |b| in P ′ approaches infinity as |a1| approaches infinity, it
follows from the geometry of the hexagons that |a2| must also approach infinity.
In such a case, we can apply properties (iii) and (iv) from page 255 to show that
Exta2,b(P

′) approaches zero as |a1| approaches infinity, violating the condition that
equation (10) be satisfied. Thus, |b| must be bounded in the family {P ′

}, and hence

Extb,C1(P
′)= Extb,C1

(
P(|a1|, f2(|a1|), f1(|a1|, f2(|a1|)))

)
→ ∞

as |a1| approaches infinity. By the continuity of f1 and f2, there is an intermediate
|â1| such that P̂ := P(|â1|, f2(|â1|), f1(|â1|, f2(|â1|))) satisfies

(11) Extb,C1(�α,0)= Extb,C1(P̂) .

From the Riemann mapping theorem and the fact that ∂�α,0 and ∂ P̂ are simple
closed curves, it follows that there is a biholomorphic map ζ between �α,0 and P̂ ,
and we can normalize so that

(12) ζ(a2 ∩ C1)= a2 ∩ C1, ζ(a2 ∩ C2)= a2 ∩ C2 and ζ(a3 ∩ C2)= a3 ∩ C2.

Since (9) is satisfied and extremal length is invariant under biholomorphisms, prop-
erty (iv) implies that

ζ(a3 ∩ b)= a3 ∩ b.
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Given this and the equality Exta2,b(�α,0)= Exta2,b(P̂) arising from (10), we get

ζ(a1 ∩ b)= a1 ∩ b,

which in turn, together with Exta2,a3(�α,0)= Exta2,a3(P̂) from (11), shows that

ζ(a1 ∩ C1)= a1 ∩ C1.

Thus, the function ζ is the desired ζα,0 and the polygon P̂ is the desired Pα,0.

Verification of the parametrizations. With the existence of the map ζ = ζα,0, we
obtain a parametrization on � = �α,0 of a minimal surface given by Weierstrass
data

g(z)= z and dh =
g(dζ )2

dg
.

It now needs to be checked this surface is indeed a graph with the desired properties.
Choosing a base point z0 ∈ � and using the formulas immediately above, the

parametrization (2) takes the form

X (z)= Re
∫ z

z0

(1 − z2, i(1 + z2), 2z)
(dζ )2

2 dz
.

So that the resulting quadrilateral will be oriented and labeled as in Figure 2, we
choose z0 = a1 ∩ b or z0 = C1 ∩ b if a1 is not present in �.

Now, the map X is continuous on�. To see this, take a vertex v of� and denote
the angle at v, ζ(v), by ϕ, ψ , respectively. Then, near v we have

ζ(z)= ζ(v)+ (z − v)ψ/ϕζ0(z),

where ζ0 is holomorphic and nonzero at v. Thus, ζ ′(z)2 = (z − v)2(ψ/ϕ−1)ζ1(z),
where ζ1 is holomorphic and nonzero at v. It is easily verified thatψ/ϕ> 1

2 . Hence,

2
(
ψ

ϕ
− 1

)
>−1,

and it follows that
(dζ )2

dz
= (ζ ′)2 dz

is integrable on �0. Therefore,

X is continuous on �.

To analyze X on ∂�, we parametrize Ck counterclockwise by

zk(t)= sec(γk)eiθk + |tan γk |ei t if γk 6= π/2,

and by
zk(t)= ±ei(θk−π/2)t if γk 6= π/2,
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where the sign factor is negative if k = 2 in case (C1), and positive otherwise
(compare the definition of Dk on page 252). Since ζ maps C1 into a vertical line
and C2 into a horizontal line, we have

(13) (−1)kdζ(żk)
2 > 0.

If γk 6= π/2, then dz(żk)= i |tan γk |ei t and we have

|tan γk | = (−1)k−1 tan γk in case (C1).

Thus, in this case we compute

(14)

d X1(żk)= Re
(
(1 − z2

k)
dζ(żk)

2

2 dz(żk)

)
=

dζ(żk)
2

2
Re
(

1 − sec2(γk)ei2θk − 2 sec γk |tan γk |ei(θk+t)
− tan2 γk ei2t

i |tan γk |ei t

)
= −

dζ(żk)
2

2 |tan γk |
Re(ie−i t

− i sec2 γk ei(2θk−t)
− i2 sec γk |tan γk |eiθk − i tan2 γk ei t)

= −
dζ(żk)

2

2 |tan γk |
(sin t + sec2 γk sin(2θk−t)+ 2 sec γk |tan γk | sin θk + tan2 γk sin t)

=
(−1)kdζ(żk)

2

2 sin γk cos γk

(
sin t + sin(2θk − t)+ (−1)k−12 sin γk sin θk

)
=
(−1)kdζ(żk)

2

sin γk cos γk
sin θk

(
cos(θk − t)+ (−1)k−1 cos

(
γk −

π

2

))
.

Similarly, we have

d X2(żk)=
(−1)k−1dζ(żk)

2

sin γk cos γk
cos θk

(
cos(θk − t)+ (−1)k−1 cos

(
γk −

π

2

))
.

In case (C2), we have

| tan γk | = tan γk .

Hence, we compute as above to obtain

(15)

d X1(żk)= −
dζ(żk)

2

sin γk cos γk
sin θk

(
cos(θk − t)+ cos

(
γk −

π

2

))
,

d X2(żk)=
dζ(żk)

2

sin γk cos γk
cos θk

(
cos(θk − t)+ cos

(
γk −

π

2

))
.
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Thus, in both cases we have

(16)
d X2(żk)

d X1(żk)
= − cot θk .

Hence, the curve X (Ck) is contained in a plane parallel to the vertical plane Vk =

{(x1, x2, x3) | x2 = −x1 cot θk}. That X (Ck) is a contact curve of contact angle γk

follows immediately from the fact that g(z)= z.
Moreover, we will show that

(17)

d X1(ż1) < 0 on C̊1 in both cases,

d X1(ż2) < 0 on C̊2 in case (C1),

d X1(ż2) > 0 on C̊2 in case (C2).

To see this, consider again the points ei(θk+γk) and ei(θk−γk) on the unit circle (see
Figure 3), assume for the moment that γ1, γ2 6= π/2, and define εk = +1 or −1
according to whether tan γk is positive or negative — explicitly, εk = 1 except for
k = 2 in case (C1). Then

ei(θk±γk) = sec γk eiθk + |tan γk |ei(θk±γk±εkπ/2),

so that zk is defined for t in an interval [ak, bk], where

ak ≥ θk + εkγk +π/2, bk ≤ θk − εkγk + 3π/2.

Hence, for zk we have π/2 + εkγk ≤ t − θk ≤ 3π/2 − εkγk , so that

(18) cos(θk − t)+ εk cos (π/2 − γk) < 0 on C̊k .

The inequalities (17) follow from (13), (14), (15), and (18). The computations
when γk = π/2 for some k are similar to those above and are therefore omitted.

If some ak is present as an edge of �, we parametrize it counterclockwise by
wk(t)= ei t , so that dz(ẇk)= iei t . Recall that ζ maps ak into a line of slope −1 for
k = 1, 3 and slope 1 for k = 2 (see Figure 4). Thus, dζ(ẇk)

2
= (−1)ki |dζ(ẇk)|

2,
so that

d X1(ẇk)= (−1)k |dζ(ẇk)|
2 1

2 Re(e−i t
− ei t)= 0,

d X2(ẇk)= (−1)k |dζ(ẇk)|
2 1

2 Re(i(e−i t
+ ei t))= 0,

d X3(ẇk)= (−1)k |dζ(ẇk)|
2.

Thus X maps ak monotonically onto a vertical line segment in R3.
Finally, parametrize b from bottom to top by zb(t) = i t . Then dz(żb) ≡ i , and

since ζ maps b into a line of slope 1, we have dζ(żb)
2
= i |dζ(żb)|

2. Computing,
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we have
d X1(żb)= |dζ(żb)|

2 1
2 (1 + t2) > 0,

d X2(żb)= |dζ(żb)|
2 1

2 (1 − t2)Re(i)= 0,

d X3(żb)= |dζ(żb)|
2 t Re(i)= 0.

Thus, b is mapped monotonically by ζ onto a line segment in the x-direction.
Summing up, we see that X (∂�) projects onto the boundary of a triangle with

interior angles α1, α2, φ = π − α1 − α2 and edges s1, s2, b such that αk is the
interior angle of the triangle between sk and b. The projection is one-to-one except
for vertical line segments that may lie over the vertices. A sharpened version of
Radó’s Theorem (see [Dierkes et al. 1992]) then implies that X (�̊) is a graph over
the interior of the triangle, and we have finished the proof of Theorem 2.
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MINIMAL CAPILLARY GRAPHS OVER REGULAR 2n-GONS

ROBERT HUFF

This paper follows previous work by Huff and McCuan, who provided for
0 < γ < π a geometric construction of minimal capillary graphs over a
square with constant contact angles on the edges alternating between γ and
π − γ . Here the result is extended to regular 2n-gons. Regularity results
are obtained for these graphs, and explicit, conformal parametrizations are
given for the Jenkins–Serrin graphs corresponding to γ ∈ {0, π}.

Introduction

In this paper, we prove the following theorem, where the uniqueness statement
follows from [Finn and Lu 1998, Theorem 3.1].

Theorem 1. Let Qn be a regular 2n-gon and 0 ≤ γ ≤ π . There is a unique (up
to vertical translation) minimal graph over Qn with constant contact angles on the
edges alternating between γ and π − γ . If

0< γ <
(n − 1)π

2n
or

(n + 1)π
2n

< γ < π,

then there is a finite jump discontinuity over each vertex. If γ ∈ {0, π}, then the
corresponding graph is a Jenkins–Serrin graph.

The case n = 2 and 0<γ <π has previously been studied in [Huff and McCuan
2006], and by Concus, Finn, and McCuan in [Concus et al. 2001]. Existence was
proved in the latter paper, while regularity and existence of the jump discontinuity
was shown in the former. To prove existence here, we assume symmetries and
then determine the image under the Gauss map, which is conformal on a min-
imal surface, of our fundamental piece. Next, we determine the image of the
conformal map developing the (square root of) the complexified second funda-
mental form on the graph. As a result, we obtain conformal parametrizations of
the graphs, and those corresponding to γ ∈ {0, π} (Jenkins–Serrin graphs [1966])
and (n−1)π/(2n)≤γ ≤ (n+1)π/(2n) can be made explicit. Another consequence
of the construction is that Sobolev embedding theorems can be used to compute
appropriate regularity properties of the graphs.

MSC2000: primary 76B45; secondary 53A10.
Keywords: capillarity, contact angle, minimal surface, Weierstrass representation.
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1. Background

The Weierstrass representation. Given a domain�⊂ C, the Weierstrass represen-
tation theorem says that any orientation-preserving conformal minimal immersion

X = (X1, X2, X3) :�→ R3

can be expressed, up to translation, in terms of a meromorphic function g and a
holomorphic one-form dh by the formula

(1) X (z)= Re
∫ z

.

( 1
2
(g−1

− g) dh, i
2
(g−1

+ g) dh, dh
)
,

where g is the stereographic projection of the Gauss map and

dh =

(
∂X3

∂x
− i

∂X3

∂y

)
dz

is called the complex height differential (note that Re dh = d X3). Conversely, the
theorem states that if g is a meromorphic function and dh a holomorphic one-form
on � such that dh has a zero of order n at z if and only if g has a zero or pole of
order n at z, then (1) gives an orientation-preserving conformal minimal immersion
on � that is well-defined, provided that

Re
∫

c

( 1
2
(g−1

− g) dh, i
2
(g−1

+ g) dh, dh
)

= 0

for every simple closed curve c ⊂�; this condition is satisfied automatically if �
is simply connected.

Determining dh via the second fundamental form. For a minimal surface given
by Weierstrass data g and dh, we have, for tangent vectors v and w,

dg(v) dh(w)
g

= II (v,w)− i II (v, iw),

where II is the second fundamental form on the surface (for details, see [Hoffman
and Karcher 1997]). It follows that

(2) c is a principal curve ⇐⇒
dg(ċ) dh(ċ)

g
∈ R

and

(3) c is an asymptotic curve ⇐⇒
dg(ċ) dh(ċ)

g
∈ iR.
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We see from these two equivalences that the function ζ given by

(4) ζ(z)=

∫ z

.

√
dg dh

g

maps principal curves into vertical or horizontal lines and asymptotic curves into
lines in one of the directions e±iπ/4.

The map ζ is called the developing map of the one-form
√

dg dh/g. It is a local
isometry between the minimal surface equipped with the conformal cone metric
|dg dh/g| and R2 equipped with the Euclidean metric.

Each surface considered in this paper will have boundary consisting of principal
and asymptotic curves, which will allow us to determine the function ζ . Once this
is done, we can use (4) to conclude that

(5) dh =
g(dζ )2

dg
.

Extremal length. To prove the existence of an appropriate ζ , we will need to show
the existence of a biholomorphic, edge-preserving map between two curvilinear
polygons (polygons whose edges are arcs of circles or Euclidean line segments).
To do this, we will need some properties of the conformal invariant extremal length.
We will restrict our attention to curvilinear polygons, although in general extremal
length is defined on arbitrary domains.

Given a curvilinear polygon1, a Borel measurable function ρ > 0 on1 defines
a conformal metric ρ(dx2

+ dy2). The length of a curve γ ⊂ 1 with respect to
ρ is denoted `ρ(γ ) (with |γ | denoting Euclidean length), and the ρ-area of 1 is
denoted by Aρ . With this notation, we define the extremal length between edges
A and B by

Ext1(A, B)= sup
ρ

infγ `2
ρ(γ )

Aρ
,

where the infimum is taken over all curves γ : [0, 1]→1 such that γ (0)∈ A, γ (1)∈
B, and γ (t)⊂ 1̊ for t ∈ (0, 1). Extremal length is invariant under biholomorphisms
and has the following properties, which we record here (see [Ahlfors 1973] for
details).

Proposition. (i) If A and B are adjacent, then Ext1(A, B)= 0.

(ii) If B is degenerate (a point) and dist(A, B) > 0, then Ext1(A, B)= ∞.

(iii) If 11 ⊂ 12 are such that edges Ak, Bk ⊂ 1k , k = 1, 2, satisfy A1 ⊂ A2 and
B1 ⊂ B2, then

Ext12(A2, B2)≤ Ext11(A1, B1),

where the inequality is strict if A1 6= A2 or B1 6= B2.
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2. Construction

Determining the image of the Gauss map. Given 0 ≤ γ ≤ π and a regular 2n-
gon Qn centered at the origin, let’s assume the existence of a minimal graph Mγ,n

over Qn with constant contact angles on the edges alternating between γ and π −

γ . Such a graph, should it exist, is unique up to vertical translation, and so we
normalize so that 0 ∈ Mγ,n .

By the symmetry of the contact angle condition, it is sufficient to consider only
0 ≤ γ < π/2 (Note that Mπ/2,n = Qn), and we can simplify the problem further if
we assume the following additional symmetries:

(S1) Mγ,n is symmetric with respect to reflection through any vertical plane con-
taining a bisector of two opposite edges of Qn .

(S2) Mγ,n is symmetric with respect to 180 degree rotation around any line con-
necting two opposite vertices of Qn .

If we take the quotient by the symmetries (S1) and (S2), we are left with a
fundamental piece M̂γ,n that is a graph over a triangle Tn (see Figure 1) which
is the quotient of Qn by its symmetry group. For computational purposes, we
rotate Qn if necessary so that the edge s1 of Tn connecting the center of Qn to the
midpoint of one of its edges lies on the positive x1-axis (again, see Figure 1).

x1

x2

v

s3
Tn

s2

s1

θn

Figure 1. The fundamental triangle Tn .

We now wish to determine the image of the (downward pointing) Gauss map N
on ∂ M̂γ,n under the stereographic projection σ that takes the south pole (0, 0,−1)
of S2 to 0 ∈ C, the north pole to ∞, and the equator to the unit circle. Beginning
with s1, we assume the corresponding curve of ∂ M̂γ,n given by f (x1) is such that
f ′′ > 0. Then it follows from the symmetries (S1) that the image of σ ◦ N along
this curve is contained in the positive x-axis. Continuing, from the symmetries
(S2) we have

s2 ⊂ ∂ M̂γ,n,

and hence it follows that σ ◦ N (s2) is contained in the line

Ln = Reiθn ,
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where

θn =
(n − 1)π

2n
.

For s3, we have from the contact angle condition that σ ◦ N is contained in the
circle

Cγ = ∂B(sec γ, tan γ ),

where B(sec γ, tan γ ) is the disk centered at sec γ with radius tan γ . Note that if
γ = 0, then Cγ is just a point. In this case, as we will see below, the (Jenkins–
Serrin) graph M0,n is infinite over the edges of Qn .

To conclude our analysis of N on ∂ M̂γ,n , we consider the behavior of the graph
at the vertex v labeled in Figure 1. This behavior, which depends on the relation of
the contact angle γ to the wedge angle 2θn , falls into one of the three cases below,
as illustrated by Figure 2. (In the first two cases, we denote both the vertex and the
jump discontinuity over the vertex by v.)

(C1) γ = 0: We assume there is an infinite jump discontinuity at v. That is, the
vertical line in R3 passing through v is contained in ∂M0,n . Since σ ◦ N
along a vertical line is contained in the unit circle S1, we conclude �0,n is the
curvilinear triangle shown in Figure 2 bounded by a segment of the positive
real axis, a segment of Ln , and an arc of S1.

(C2) 0 < γ < θn: We assume there is a finite jump discontinuity at v. That is, a
vertical line segment passing through v is contained in ∂Mγ,n . Here �γ,n is a
curvilinear quadrilateral, as shown in Figure 2, bounded by a segment of the
positive real axis, a segment of Ln , an arc of Cγ , and an arc of S1.

(C3) θn ≤ γ < π/2: In this case, Concus and Finn [Concus and Finn 1996] have
shown uγ,n must be continuous at v if γ 6= θn , where Graph(uγ,n) = Mγ,n ,
and we assume continuity for the case γ = θn . Thus, we conclude �γ,n is a
curvilinear triangle as shown in Figure 2 bounded by a segment of the positive
real axis, a segment of Ln , and an arc of Cγ .

Determining the developed image of
√

dg dh/g. We wish to parametrize M̂γ,n

on �γ,n by finding the appropriate Weierstrass data g and dh. Since �γ,n is the
image of M̂γ,n under stereographic projection of the Gauss map, we take

g(z)= z

for our first piece of data. For the second piece of data, we determine the conformal
map ζ = ζγ,n on�γ,n given by (4). Then we solve for dh in terms of ζγ,n and obtain
equation (5).

To determine ζγ,n , we first note that each curve in ∂ M̂γ,n is either an asymptotic
curve or a principal curve. Indeed, since s2 and v are straight lines or straight
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s3 = C0,n

x

y

s1

s2

θn

v

�0,n

(C1)

s3

Cγ,n

x

y

s1

s2

θn

v

�γ,n

(C2)

x

y

Cγ,n

s3

s1

s2

θn
�γ,n

(C3)

Figure 2. The image �γ,n corresponding to cases (C1)–(C3).

segments, it follows immediately that they are asymptotic. For s1 and s3, we have
that each is a planar curve along which the surface meets the plane of the curve
at a constant angle. By Joachimstahl’s theorem, such curves are principal. Thus,
by (3), the curves s2 and v are mapped by ζ into lines in one of the directions
e±iπ/4, while s1 and s3 are mapped into horizontal or vertical lines. Based on this
information, we conclude the image of ζ is a Euclidean polygon Pγ,n with edges
oriented and labeled as in Figure 3, where the number of edges and the labeling of
the edges depend on the cases (C1), (C2), and (C3). Now, scaling Pγ,n by a real
number λ> 0 results in scaling dh, and thus M̂γ,n , by λ2. Therefore, we can select
one graph from each homothety class by normalizing Pγ,n so that |s1| = 1. Note
that with this normalization, there is only one Pγ,n corresponding to case (C1) and
only one Pγ,n corresponding to case (C3). In case (C2), the space {Pγ,n} is one-
dimensional. This space can be parametrized by the length of the edge s3, where
0< |s3|< 1.
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Pγ,n

(C3)
s1

s3
s2

Pγ,n

(C2)
s1

s3

s2

v

Pγ,n

(C1)
s1

s2v

Figure 3. The developed image of ζ corresponding to cases (C1)–(C3).

Therefore, the map ζγ,n is an edge-preserving biholomorphism between �γ,n
and some Pγ,n . Since each of the two domains is simply connected and bounded
by a simple closed curve, it follows that there exists a biholomorphism between
them. Furthermore, we are allowed to specify the images of three points on the
boundary. Thus, if in cases (C1) and (C3) we specify that the vertices of �γ,n are
mapped to the corresponding vertices of Pγ,n , then the edge-preserving property
follows immediately.

For case (C2), the two domains are quadrilaterals, and so the result is not im-
mediate. Here we normalize by specifying the images of three vertices of �γ,n so
that the edges s1 and s2 are preserved. What remains is a one-parameter family of
biholomorphisms, and we aim to show there exists a map within this family that
preserves all four edges. To prove this, we consider the quantity

ExtPγ,n (s2, s3).

First of all, it follows from part (i) of the Proposition (page 265) that

ExtPγ,n (s2, s3)→ 0 as |s3| → 1.

Then, by part (ii), it follows that

ExtPγ,n (s2, s3)→ ∞ as |s3| → 0.

Hence, it follows by continuity that there is some intermediate |ŝ3| and correspond-
ing P̂γ,n such that

Ext�γ,n (s2, s3)= ExtP̂γ,n
(s2, s3).

Using part (iii) of the Proposition and the conformal invariance of extremal length,
we see that the fourth vertex v ∩ s3 must also be preserved. Thus, the normalized
conformal biholomorphism

ζγ,n :�γ,n → P̂γ,n

is the desired edge-preserving map.
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3. Verification of parametrizations

Let Xγ,n on �γ,n have the form (1), where

g(z)= z and dh =
g(dζγ,n)2

dz
.

Here we choose the base point of integration to be 0 = s1 ∩ s2 so that

Xγ,n(0)= 0.

We seek to verify that the image of Xγ,n gives a surface in R3 that can be extended
by symmetry to the desired capillary graph over a regular 2n-gon Qn . By con-
struction, we know Xγ,n is a minimal immersion. What remains is to verify its
image is also a graph over Tn that has the desired properties. To accomplish this,
we investigate Xγ,n along ∂�γ,n , and we separate this investigation into the three
cases (C1)–(C3).

Case (C3). The first observation is that

(6) Xγ,n is continuous on �γ,n.

To see this, let φ j denote the angle between any two adjacent edges e1 and e2 on
�γ,n , and let ψ j denote the angle between the corresponding edges on Pγ,n . Then
we have

ζγ,n(z)= ζγ,n(e1∩e2)+ (z − e1∩e2)
ψ j/φ j ζ0(z)

in an�γ,n-neighborhood of e1∩e2, where ζ0 is holomorphic and nonzero at e1∩e2.
Hence, it follows that

ζ ′

γ,n(z)
2
= (z − e1 ∩ e2)

2(ψ j/φ j −1)ζ̃0(z),

where ζ̃0 is holomorphic and nonzero at e1 ∩ e2. Clearly, from the geometry of
�γ,n and P̂γ,n we have ψ j/φ j >

1
2 , so

2
(
ψ j

φ j
− 1

)
>−1.

Thus, it follows that

dh =
g(dζγ,n)2

dg
= zζ ′(z)2 dz

is integrable on �γ,n , proving (6).
Beginning our analysis on ∂�γ,n , we parametrize s1 from 0 to sec γ− tan γ by

z1(t)= t, 0< t < sec γ − tan γ.

Then
dz(ż1)= 1,
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and from the geometry of ζγ,n it follows that

dζγ,n(ż1)
2 > 0.

Using this information, we compute

(7)

d
(
Xγ,n

)
1 (ż1)= Re

( 1
2(1 − t2) dζγ,n(ż1)

2)> 0,

d
(
Xγ,n

)
2 (ż1)= Re

( i
2(1 + t2) dζγ,n(ż1)

2)
= 0,

d
(
Xγ,n

)
3 (ż1)= Re(tdζγ,n(ż1)

2) > 0.

Thus, the computations above show that

(8) Xγ,n(s1)⊂ {x2 = 0} is a curve of mirror symmetry,

where the statement about mirror symmetry follows from the fact that g(z) = z.
Moreover, the equations (7) yield(

Xγ,n
)

1 and
(
Xγ,n

)
3 increase as t increases,

so that

(9) Xγ,n(s1) is a graph over it projection into the x1x2-plane.

Continuing, we parametrize s2 from 0 to eiθn by

z2(t)= teiθn , 0< t < ρ, where ρ < 1.

Hence, it follows that
dz(ż2)= eiθn ,

and since
1
i

dζγ,n(ż2)
2 > 0,

we have

d
(
Xγ,n

)
1 (ż2)= Re

(
1
2
(1−t2ei2θn )

dζγ,n(ż2)
2

eiθn

)
=

dζγ,n(ż2)
2

2i
Re(i(e−iθn−t2eiθn ))=

dζγ,n(ż2)
2

2i
(1+t2) sin θn > 0,

d
(
Xγ,n

)
2 (ż2)= Re

(
i
2
(1+t2ei2θn )

dζγ,n(ż2)
2

eiθn

)
=

dζγ,n(ż2)
2

2i
Re(−(e−iθn+t2eiθn ))= −

dζγ,n(ż2)
2

2i
(1+t2) cos θn < 0,

d
(
Xγ,n

)
3 (ż2)= Re(tdζγ,n(ż2)

2)= 0.
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It follows that
d(Xγ,n)2(ż2)

d(Xγ,n)1(ż2)
= − cot θn,

and since d
(
Xγ,n

)
3 (ż2)= 0,

(10) Xγ,n maps s2 monotonically onto a straight segment contained
in the ray Rθn = {(x1, x2, 0) | x1 > 0 and x2 = −(cot θn)x1}.

Finally, we parametrize the contact curve s3 from s2 ∩ s3 to s1 ∩ s3 by

z3(t)= sec γ + tan γ ei t , Tγ,n < t < π.

Now, the value Tγ,n is greatest in the borderline case γ = θn . Here the circle Cγ
intersects the line Ln tangentially at z = eiθn , and a simple calculation yields

Tθn,n =
π

2
− γ.

Thus, we have

Tγ,n ≤
π

2
− γ, θn ≤ γ <

π

2
,

so that

(11) cos Tγ,n ≤ − sin γ, θn ≤ γ <
π

2
.

Continuing, we have dz(ż3)= i tan γ ei t and dζγ,n(ż3)
2 < 0, so that

(12)

d
(
Xγ,n

)
1 (ż3)= Re

(
1
2
(1 − sec2 γ − 2 sec γ tan γ ei t

− tan2 γ ei2t)
dζγ,n(ż3)

2

i tan γ ei t

)
=

1
2 dζγ,n(ż3)

2 Re(ie−i t(tan γ + 2 sec γ ei t
+ tan γ ei2t))= 0,

d
(
Xγ,n

)
2 (ż3)= Re

(
i
2
(1 + sec2 γ + 2 sec γ tan γ ei t

+ tan2 γ ei2t)
dζγ,n(ż3)

2

i tan γ ei t

)
=

dζγ,n(ż3)
2

2 tan γ
Re
(
e−i t(1 + sec2 γ + 2 sec γ tan γ ei t

+ tan2 γ ei2t)
)

=
dζγ,n(ż3)

2

sin γ cos γ
(cos t + sin γ ) > 0

— the inequality being due to (11) — and

d
(
Xγ,n

)
3 (ż3)= Re

(
(sec γ + tan γ ei t)

dζγ,n(ż3)
2

i tan γ ei t

)
= −

dζγ,n(ż3)
2

tan γ
Re(ie−i t(sec γ+ tan γ ei t))= −

dζγ,n(ż3)
2

sin γ
sin t > 0.
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Therefore, from our computations on s3 and the fact that g(z) = z, we conclude
that

(13) Xγ,n maps s3 onto a contact curve of angle γ
contained in a plane parallel to the x2x3-plane.

Moreover, from (12) we get that

(14) Xγ,n(s3) is a graph over its projection into the x1x2-plane.

So, from (6), (8), (9), (10), (13) and (14) it follows that Xγ,n(�γ,n) is com-
pact and Xγ,n(∂�γ,n) projects into the x1x2-plane in a one-to-one fashion onto
the boundary of Tn . Using a theorem of Radó, it then follows that X (�γ,n) is a
projection over Tn .

Case (C2). This case differs from case (C3) by the addition of the edge v into
�γ,n and P̂γ,n . Clearly, statements (6), (8), (9), (10) and (13) still hold. To show
(14) is also true, we write

Tγ,n =
π

2
− γ, 0< γ < θn.

Thus, inequality (11) holds, and this implies (14). So, it remains to check Xγ,n
along v.

Parameterizing v from s3 ∩ v to s2 ∩ v by

zv = ei t , γ < t < θn,

we have
dz(żv)= iei t

and
dζγ,n(żv)2

i
< 0.

Computing, we obtain

d
(
Xγ,n

)
1 (żv)= Re

(
1
2
(1 − ei2t)

dζγ,n(żv)2

iei t

)
=

dζγ,n(żv)2

2i
Re(e−i t

− ei t)= 0,

d
(
Xγ,n

)
2 (żv)= Re

(
i
2
(1 + ei2t)

dζγ,n(żv)2

iei t

)
=

dζγ,n(żv)2

2i
Re(i(e−i t

+ ei t))= 0,

d
(
Xγ,n

)
3 (żv)= Re

(
ei t dζγ,n(żv)2

iei t

)
< 0.

Thus, it follows that Xγ,n maps v monotonically onto a vertical line segment.
Fortunately, the theorem of Radó used in case (C3) can be generalized to allow
for vertical line segments in the boundary. Hence, it follows that in case (C2)
Xγ,n(�γ,n) is also a graph over Tn .
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Case (C1). If γ = 0, we cannot use Radó’s theorem to show X0,n(�0,n) is a graph
over some Tn because X0,n(�0,n) may no longer be compact. In particular, we
can argue as above to show that X0,n is continuous on �0,n\{s1 ∩ v}, so that only
neighborhoods of s1 ∩ v may fail to be compact.

To show the surface X0,n(�0,n) is a graph over some Tn , we consider it as
a limit of graphs Xγ,n(�γ,n) corresponding to (C2). Indeed, in �γ,n it follows
immediately that

(15) s1 ∩ s3, s3 ∩ v → s1 ∩ v as γ → 0.

Furthermore, we have

Ext�γ,n (s2, s3)→ ∞ as γ → 0,

which implies

(16) |ŝ3| → 0 as γ → 0.

At this point, we consider the map 2Xγ,n obtained by extending the parametriza-
tion through reflection across s1. From (15) and (16) it follows that the domains
2�γ,n and 2P̂γ,n converge to 2�0,n and 2P0,n , respectively, as γ approaches 0.
Thus, we can use results from [Pommerenke 1992] to conclude that

(2ζγ,n) ◦ (2 fγ,n)→ 2ζ0,n as γ → 0,

where fγ,n maps �0,n conformally onto �γ,n in such a way that

fγ,n(0)= 0, fγ,n(s2 ∩ v)= s2 ∩ v and fγ,n(s1 ∩ v)= s1 ∩ s3.

Moreover, the convergence is uniform on compact subsets of

2�0,n\{s1 ∩ v},

and so we have that on this set (2Xγ,n) ◦ (2 fγ,n) converges to 2X0,n .
Because of the convergence we can compute

X0,n(s2 ∩ v)− X0,n(s̃2 ∩ ṽ)

|X0,n(s2 ∩ v)− X0,n(s̃2 ∩ ṽ)|
= lim
γ→0

Xγ,n(s2 ∩ v)− Xγ,n(s̃2 ∩ ṽ)

|Xγ,n(s2 ∩ v)− Xγ,n(s̃2 ∩ ṽ)|
= (0, 1, 0),

where, for example, the notation s̃2 refers to the image of s2 under reflection across
s1. Therefore, we know the projection of 2X0,n(2�0,n) into the x1x2-plane is con-
tained in some triangle 2Tn . To show that this surface is actually a graph over 2Tn ,
assume the contrary. That is, suppose there is a vertical line L x over some point
x ∈ 2Tn such that L x intersects 2X0,n(2�0,n) more than once or not at all. Then
there must be some point y ∈ 2Tn such that L y is tangent to the surface. At such
a point, the Gauss map must be horizontal, and this is a contradiction since no
interior points of 2�0,n lie in the unit circle S1.
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4. Explicit parametrizations and regularity

The parametrizations of the Jenkins–Serrin graphs of case (C1) can be made ex-
plicit. To see this, we first conformally change coordinates to the upper half-plane
H via the conformal map

8=8n : H →�γ,n,

normalized so that

8(−1)= 0, 8(0)= 1, 8(∞)= eiθn .

Then the Weierstrass data on H is given by

(17) g =8 dh =
8(d9)2

d8
,

where
9 : H → P̂γ,n

is the conformal map normalized so that

9(−1)= 0, 9(0)= 1, 9(∞)=
1

√
2

eiπ/4.

To determine8 explicitly, we map H to the first quadrant by the map
√

z, where
we assume here and in what follows that any map zq for q ∈ R is defined for
0 ≤ θ < 2π by

reiθ
7→ rqeiqθ .

Then we compose with the Möbius transformation

z →
−z + i
z + i

,

taking the first quadrant onto the upper hemisphere of the unit disk. Finally, we
map this upper hemisphere onto �γ,n via the map zθn/π = z(n−1)/(2n). Thus

(18) g(z)=8(z)=

(
−

√
z + i

√
z + i

)(n−1)/(2n)

.

For 9, we can use the Schwarz–Christoffel formula to conclude that

9(z)= C

∫ z

−1
(w+ 1)−3/4w−3/4dz,

where C is determined by the fact that 9(0)= 1. In particular, we have

C =
1∫ 0

−1(w+ 1)−3/4w−3/4dz
,
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and if we parametrize the interval (−1, 0) by w = t − 1, this expression takes the
form

C =
ei(3π/4)

3
,

where

3=

∫ 1

0

1
(t − t2)3/4

dt.

Thus

(d9)2 = C2(z + 1)−3/2z−3/2dz = −
i
32 (z + 1)−3/2z−3/2,

and from (18) we can compute

8

d8
= −

i2n
n − 1

(z + 1)
√

z.

Therefore, it follows from (17) that

dh = −

(
2n

32(n − 1)

)
1

z
√

z + 1
.

Similarly, one can find explicit parametrizations for the graphs of case (C3).
Here the map 9 is a Schwarz–Christoffel map to the triangle Pγ,n corresponding
to (C3), and the Gauss map 8 = 8γ,n is given in terms of hypergeometric func-
tions. The procedure for finding the parametrization is similar for each n, and the
interested reader is referred to [Huff and McCuan 2006] to see the result when
n = 2. Also, the reference [Carathéodory 1954] will prove useful in calculating the
constants appearing in the hypergeometric functions. For the case (C2), the map
9 =9γ,n is again a Schwarz–Christoffel map onto the quadrilateral P̂γ,n , and the
Gauss map 8γ,n is given in terms of hypergeometric functions. However, we can
not determine 9 explicitly as the exact locations of the vertices s3 ∩ v and s2 ∩ v

are unknown. Additionally, the fact that �γ,n is four-sided makes it difficult to
determine the coefficients of 8 explicitly.

We can investigate the regularity of the graphs in the cases (C2) and (C3). The
proofs are similar for each n; for the case n = 2, see [Huff and McCuan 2006]
(where the notation for our Q2 is�). To begin with, we have a statement about the
subcase of (C3) defined by θn <γ <π/2. The dependency of the Hölder exponent
on γ and n comes from the changing value of the angle between s2 and s3 of �γ,n
and the fact that ζγ,n always maps this angle to an angle of π/4 on P̂γ,n .

Theorem 2. For θn < γ < π/2, the graphing function uγ,n satisfies

uγ,n ∈ C1,β−ε(Qn)\C1,β+ε(Qn)

for small ε, where 0< β < 1 depends on γ and n.
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In the boundary case γ = θn , the unit normal is horizontal at v, and so uγ,n
cannot be C1. However, we can measure the continuity of uγ,n as recorded in the
following theorem. In the conformal category, this case is distinguished by the fact
that �γ,n has an outward pointing cusp at s2 ∩ s3. This means ζγ,n vanishes to all
orders at this vertex, and it is this property that determines the range of the Hölder
exponent.

Theorem 3. If γ = θn , then uγ,n ∈ C0,β(Qn) for any 0 ≤ β < 1.

Functions uγ,n corresponding to (C2) are discontinuous at the vertices of Qn ,
but we can investigate the regularity of the trace of uγ,n over an edge of Qn . The
crucial property from which the theorem below follows is that the function ζγ,n can
be expressed in a neighborhood U of the vertex v2 = v∩ s3 of �γ,n by the formula

ζγ,n(z)= ζγ,n(v2)+ (z − v2)
3/2ζ0(z),

where ζ0 is holomorphic and nonzero on U.

Theorem 4. If 0 < γ < θn , and fγ,n is the restriction of uγ,n to the interior of an
edge S of Qn , then

fγ,n ∈ C2/3(S̄) \ C2/3+ε(S̊).
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ON TOROIDAL ROTATING DROPS

RYAN HYND AND JOHN MCCUAN

The existence of toroidal rotating drops was observed experimentally by
Plateau in 1841. In 1983 Gulliver rigorously showed that toroidal solutions
of the governing equilibrium equations do indeed exist. In this short note,
we settle two questions posed by Gulliver concerning the existence of addi-
tional toroidal solutions. We use a general assertion concerning rotationally
symmetric surfaces whose meridian curves have inclination angle given as a
function of distance from the axis along with explicit estimates for rotating
drops.

In 1843 Joseph Plateau challenged geometricians to find rotationally symmetric
tori whose mean curvature is an even quadratic function of distance to the axis of
rotation:

I think it very probable that if calculation could approach the general
solution of this great problem, and lead directly to the determination of all
the possible figures of equilibrium, the annular figure would be included
among them.

The figures of equilibrium to which Plateau refers are those of rotationally sym-
metric rotating liquid drops removed from the influence of gravity. Elementary
considerations lead one to ordinary differential equations for the meridian curve of
such an equilibrium, and solutions of these equations may be understood by con-
sidering only portions of meridian which are expressible as graphs u = u(r) with
respect to the radial variable r . For these portions, the prescribed mean curvature
equation becomes

(1)
u′′

(1 + u′ 2)3/2
+

1
r

u′

√
1 + u′ 2

= −4ar2
+ 2λ,

where a = ρω2/(8σ) and λ are constants depending on the physical parameters
density, angular velocity, surface tension, and enclosed volume. It follows that the
solutions form a two-parameter family (up to scaling and rigid motion). Scaling
so that a = 1, we will take λ and c as the two parameters where c is a constant

MSC2000: 49J05, 76B45.
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of integration appearing below. For a more detailed discussion, see [Elms et al.
2003].

Except for certain well defined curves in the (λ, c) parameter space, solutions
of equation (1) may be expressed, up to a constant of integration, as

u(r)=

∫ r

r∗

−at4
+ λt2

+ c√
t2 − (−at4 + λt2 + c)2

dt

on a suitable interval [r∗, R∗], and the question of existence of toroidal solutions is
reduced to finding λ and c for which u(R∗)= 0. (If this condition holds, the merid-
ian of the torus is described by joining the graphs of u and −u. We are assuming
here, of course, that the constant of integration u(r∗) = 0; this normalization will
be employed throughout this paper, though we note that, due to nonintegrability at
r∗, the same normalization is not always possible in [Elms et al. 2003].)

R. Gulliver [1984] showed:

For each c ≥
3
16 , there is some λ = λ(c) for which the corresponding

solution is a torus with convex cross section.
There is some interval c ∈ (0, ε) and a smooth function λ = λ(c) for

which the corresponding solution is a (nonconvex) torus.

He went on to conjecture that there were toroidal parameter values (λ, c) for every
c> 0. He also pointed out that only immersed toroidal solutions were possible for
c < 0 but was unable to verify their existence. We prove the existence of toroidal
solutions in both cases, that is, for all c 6= 0. In order to state our result precisely
(and prove it), we must first discuss the limits of integration r∗ and R∗ and their
dependence on the parameters λ and c.

Remark. Gulliver, in his paper, formulates equation (1) as

a + br2
= 2H =

dv
dr

+
v

r
,

where v = sinψ = du/ds, ψ is the inclination angle of the meridian, and s is
an arclength parameter along the meridian. He does not explicitly specify the
orientation of his arclength parameterization nor his choice of normal (into the
drop or out of it) with respect to which he calculates the mean curvature, but by
his specification b > 0, one can deduce that his formulation is consistent only if
the mean curvature is calculated with respect to the inward normal and, hence, if
the parameterization is “counterclockwise.”

Since some formal solutions of the equations do not enclose a volume, and
hence their meridians do not enclose an area, the notion of “counter-clockwise”
does not always make sense. In order to avoid this ambiguity, we have formulated
our equation for portions of the meridian on which the normal points upward and,
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hence, the rotating drop is formally below the meridian locally. It is easily verified
that any portions of meridian for which the rotating drop is formally above the
meridian are geometric reflections across the line u = 0 of those we consider.

For convenience of the reader, a loose translation between Gulliver’s parameter
notation and ours is as follows:

(1) Due to the reversal of the normal, Gulliver’s H is our −H .

(2) Gulliver’s rotation parameter b > 0 is for us 4a.

(3) Gulliver’s Lagrange parameter a ∈ R is our −2λ.

(4) Gulliver’s constant of integration C is the same as −c.

(5) Having made these replacements and setting, without loss of generality, v =

u′/
√

1 + u′2, Gulliver’s equation (1) translates directly into our equation (1).

(6) Gulliver subsequently rescales his rotation parameter b to 4/3 and gives C the
new name −γ 4 (in harmony with his restriction C < 0). We rescale so that
the rotation parameter a takes the value 1. Comparison leads to the translation
formulae {

λ= −a 3√3,

c = −C/ 3√3 = −γ 4/
3√3,

with our scaled parameters on the left and Gulliver’s on the right. In particular,
one sees that the γ ≥

(3
8

)1/3 of Gulliver’s Theorem 2 corresponds precisely to
our c > 3

16 .

(7) The λ, c (or a,C) parameter space has been antipodally reflected through the
origin and scaled according to the formulas in the previous item.

Inclination angle and the other toroidal solutions. We may rewrite (1) as(
ru′

√
1 + u′ 2

)′

= −4r3
+ 2λr

and integrate once to obtain

v = sinψ =
u′

√
1 + u′ 2

= −r3
+ λr +

c
r
,

whereψ is the inclination angle of the graph of u with respect to the positive r -axis.
For c 6= 0, the values r∗ and R∗ are solutions of the algebraic equations

(2)
∣∣sinψ(r)

∣∣= ∣∣∣∣−r3
+ λr +

c
r

∣∣∣∣= 1

(r∗ = 0 for c = 0).
In general, if we think of λ and c as fixed, we may consider the algebraic ex-

pression v(r) = −r3
+ λr + c/r also for values of r for which |v(r)| > 1. In this
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λ

c

λ= λ1(c)

λ= λ−1(c)

( 3
2 ,

3
16

)

Figure 1. Left: Locus in parameter space where |sinψ | = 1 has a
double root. Right: Numerically computed torus curve and region
of parameter values possibly corresponding to tori (see page 288).

way, the equation |v(r)| = 1 appearing in (2) is evidently equivalent to a pair of
(quartic) polynomial equations. This guarantees that there are only finitely many
cases to consider. One must take into account however that the resulting intervals
of definition (determined by roots r∗ = r∗(λ, c) and R∗ = R∗(λ, c)) may depend
discontinuously on λ and c. Let us begin, however, with the assumption that λ and
c are fixed, and denote by R = Rλ,c the collection of positive roots of |v(r)| = 1,
counted with multiplicities.

Lemma 1. Given r∗ ≤ R∗ in R such that |v(r)| < 1 for r∗ < r < R∗, there is a
rotationally symmetric surface whose inclination angle ψ(r) satisfies

(3) sinψ(r)= v(r)= −r3
+ λr +

c
r

for r∗ ≤ r ≤ R∗. The surface is unique up to translation in the u direction.
Conversely, each complete rotationally symmetric surface that does not intersect

r = 0 and whose inclination angle satisfies (3) projects onto an annulus r∗ ≤ r ≤ R∗

with |sinψ(r)|< 1 for r∗ < r < R∗.

Each double root r∗ = R∗ corresponds to a cylinder. The parameter values
for which this is possible lie along three curves in the (λ, c) parameter plane as
depicted in Figure 1, left.

One can verify the following behavior in the neighborhood of the real roots of
|v(r)| = 1:
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Lemma 2. Let r∗ be a real number. If v ∈ C2
[r∗, r∗ + ε] with |v(r∗)| = 1 and

|v(r)|< 1 for r∗ < r ≤ r∗ + ε, the improper integral∣∣∣∣∫ r∗+ε

r∗

v
√

1 − v2
dr
∣∣∣∣

is finite if and only if v′(r∗) 6= 0. A similar statement holds on intervals of the form
[R∗ − ε, R∗].

Remark. In this result, v may be any function satisfying the hypotheses of the
lemma, though we are only interested in applications in which v= −r3

+λr +c/r
as in (2).

The full significance of the curves in Figure 1, left, is explained in [Elms et al.
2003], but for our present purposes we need only verify some isolated facts about
two of them. We start with a continuity assertion that was already observed by
Gulliver as important for the case c > 3

16 .

Lemma 3. For each λ ∈ R and c > 3
16 , the set R = Rλ,c consists of exactly two

positive roots r∗ = r∗(λ, c) and R∗ = R∗(λ, c) with r∗ < R∗. In this region of the
(λ, c)-plane r∗ and R∗ depend smoothly on λ and c. Consequently, we find that the
quantity

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr

depends smoothly on λ and c > 3
16 . In particular, u(R∗) is a continuous function

of λ for fixed c > 3
16 .

Proof. We consider
v(r)= −r3

+ λr +
c
r

for r > 0 and fixed c > 3
16 . The assertion of the lemma follows from the fact that

the equations

(4) v(r∗)= −r3
∗
+ λr∗ +

c
r∗

= 1

and

(5) v(R∗)= −R3
∗
+ λR∗ +

c
R∗

= −1

have unique solutions r∗ < R∗ with v′ < 0 on [r∗, R∗].
First note that limr→0 v(r) = +∞ and limr→+∞ v(r) = −∞. Therefore, (4)

and (5) have at least one solution each. It will be observed that v has a unique
inflection point (and v′ a unique maximum) at tmax =

4
√

c/3. If λ ≤ 2
√

3c, then
v′

≤ 0 with equality only possible at r = tmax when λ = 2
√

3c. In this case,
v(tmax)= 8(c/3)3/4 > 1. Therefore, our assertions concerning (4) and (5) hold.
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If λ > 2
√

3c, then v′ has two zeros; the smaller, which corresponds to a local
minimum of v, is given by

rmin =

√
λ−

√
λ2−12c
6

.

Elementary computations show that

drmin

dλ
= −

rmin

2
√
λ2 − 12c

< 0

and

(6)
d

dλ
v(rmin)= rmin > 0.

In this case,
lim

λ↘2
√

3c
v(rmin)= 8(c/3)3/4 > 1.

In light of (6), we see that v(r) > 1 for r ≤ rmax, where

(7) rmax =

√
λ+

√
λ2−12c
6

is the larger zero of v′. In this case too, therefore, our assertions concerning (4)
and (5) hold. �

The situation for c ≤
3

16 is somewhat more complicated. Nevertheless, we find:

Lemma 4. For each fixed c ≤
3

16 , there is a unique value λ= λ1(c) determined by
the equation

v(rmax)= 1,

where rmax is given by (7) (see Figure 1, left).
For c ∈

(
0, 3

16

]
and λ < λ1, the equation

(8) |v(r)| = 1

has exactly two positive solutions r∗ < R∗. For c = 0, there is one solution R∗, and
we may take r∗ = 0.

For c< 0, there is a unique value λ−1 =λ−1(c)<λ1 determined by the equation

v(rmax)= −1

(considered as an equation for λ = λ−1). For c < 0 and λ−1 < λ < λ1 there are
again exactly two positive solutions r∗ < R∗ of (8).

For c ∈
[
0, 3

16

]
, the expression

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr
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defines is a continuous function of λ on (−∞, λ1); the same function is continuous
on λ−1 < λ < λ1 for c < 0. In all cases,

(9) lim
λ↗λ1

u(R∗)= +∞.

Proof. We observe that (7) is only real-valued for 0 ≤ c ≤
3

16 if λ≥ 2
√

3c. For this
range of parameters, a calculation similar to that leading to (6) yields

(10)
d

dλ
v(rmax)= rmax > 0.

Furthermore,
lim

λ↘2
√

3c
v(rmax)= 8(c/3)3/4 ≤ 1

and

(11) lim
λ↗+∞

v(rmax)= +∞.

Therefore λ1 is well defined for 0 ≤ c ≤
3
16 . For c < 0, conditions (10) and (11)

still hold. Furthermore,
lim
λ↘−∞

v(rmax)= −∞.

Therefore, both λ−1 and λ1 are well defined.
Considerations similar to those in the proof of Lemma 1 yield the uniqueness and

continuity of r∗ and R∗ as functions of λ. The continuity of u(R∗) follows as before.
It remains to establish (9). To avoid certain technicalities, we restrict to the case
c< 3

16 , but the case c =
3
16 may be handled similarly. For c< 3

16 and λ sufficiently
close to λ1, we know that rmax is well defined as described above with rmax and
v(rmax) increasing as functions of λ; see Figure 2. We set R1 = limλ↗λ1 rmax. Since

(a)

sinψ

(b) (c)

1

−1

r

Figure 2. Profiles of v = sinψ(r) for c =
3

32 (thick curves). The
values of λ are (a) 1, (b) 1.5, (c) 1.65. The corresponding anti-
nodoid solutions u(r) are superimposed (thin curves).
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v′ is nonvanishing at r∗ and R∗ (except in the case c =0 in which r∗ =0= sinψ(r∗)

which causes no problem), we find from Lemma 2, that for all ε small enough and
fixed, the integrals∫ rmax−ε

r∗

v
√

1 − v2
dr and

∫ R∗

rmax+ε

v
√

1 − v2
dr

are finite and may be bounded uniformly in λ as λ↗ λ1. Thus,

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr ≥

∫ rmax+ε

rmax−ε

v
√

1 − v2
dr − Mε

for some constant Mε .
Expanding v(r) in a power series about (λ, r)= (λ1, R1) on the other hand,

v = 1 + R1(λ− λ1)+ (λ− λ1)(r − R1)+ d(r − R1)
2
+ o(r − R1)

2

where d = v′′(R1)/2< 0. Therefore, we may fix ε small enough so that

v ≥ 1 +
1
2

(
R1(λ− λ1)+ d(r − R1)

2)> 1
2 for rmax − ε ≤ r ≤ rmax + ε

uniformly in λ. Thus,

1−v2
≤ −R1(λ−λ1)− d(r−R1)

2
− R2

1
(λ−λ1)

2

4
− R1d

(λ−λ1)(r−R1)
2

2
− d2 (r−R1)

4

4
≤ −R1(λ−λ1)− d(r−R1)

2,

and∫ rmax+ε

rmax−ε

v
√

1 − v2
dr ≥

1
2

∫ rmax+ε

rmax−ε

1√
−R1(λ− λ1)− d(r − R1)2

dr

=
1

2
√

−d

(
sinh−1

(√
d

R1(λ−λ1)
(rmax − R1 + ε)

)

− sinh−1
(√

d
R1(λ−λ1)

(rmax − R1 − ε)

))
.

Since rmax ↗ R1 as λ↗ λ1 and ε > 0, we see that

lim
λ↗λ1

∫ rmax+ε

rmax−ε

v
√

1 − v2
dr = +∞. �

It remains to obtain a value λ<λ1 (in the region of continuity) for which u(R∗)<

0. For this we use a general relation between the convexity of v = sinψ and the
height u(R∗). A special case of this result was used implicitly by Gulliver in the
case c > 3

16 .
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Lemma 5 (Convexity and height for rotational surfaces). Given 0 < r∗ < R∗ and
any v decreasing from 1 to −1 on [r∗, R∗], if v is convex, then

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr < 0.

Similarly, if v is concave (v′′ < 0), then u(R∗) > 0.

This result is true for any real numbers r∗ < R∗ and any function v satisfying
the hypotheses stated in the lemma. We have used derivatives of v up to order two
freely in the proof below, but the continuity of v resulting from convexity/concavity
is adequate to obtain the result.

Remark. In the convex case, we say that the resulting surface is of nodoid type;
in the concave case, of antinodoid type.

Proof of Lemma 5. Assume v is convex. The other case is handled similarly. There
is a unique r = rcrit ∈ (r∗, R∗) such that v(rcrit)= 0.

u(R∗)=

∫ rcrit

r∗

v
√

1 − v2
dr +

∫ R∗

rcrit

v
√

1 − v2
dr.

Again according to the monotonicity, the relation v(r) = −v(t) defines a change
of variables, and we obtain

u(R∗)=

∫ rcrit

r∗

(
1 −

v′(t)
v′(r)

)
v

√
1 − v2

dt < 0.

Notice that over the interval of integration, the second factor is positive; the first is
negative by convexity. �

Referring back to the proofs of Lemma 3 and Lemma 4, one finds that for c> 0
and λ << 0, we have v′(r) < 0 on [r∗, R∗] and v(tmax) <−1 where tmax =

4√c/3
is the unique inflection point. It follows that v = sinψ is convex on [r∗, R∗] and
u(R∗) < 0 by Lemma 5. Thus, by the intermediate value theorem, there is some λ
for which u(R∗)= 0.

For c = 0 and λ≤ 0, we have v ≤ 0 and u(R∗) < 0 so that the same conclusion
holds. Technically, the resulting surface of rotation is not a torus in this case, since
r∗ = 0. However, one does obtain a pinched spheroid which encloses a volume.

For c < 0, the function v = sinψ has a unique global maximum at the value
rmax given in (7) and

lim
λ↘−∞

v(rmax)= −∞.

As mentioned above, the monotonicity condition (10) holds, and it is clear that all
values of λ in the interval for which −1< sinψ(rmax)≤ 0 correspond to solutions
with u(R∗) < 0.
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Following through carefully the indicated calculations and applying Lemma 5
in situations similar to those above yields the following bounds for the parameters
(λ, c) corresponding to toroidal solutions; see Figure 1, right.

Theorem. For each fixed c there is at least one λ corresponding to a toroidal
solution. If c ≥

3
16 , then

−
4
√

3
c

− 2
√

c
3
< λ <

4
√

3
c

− 2
√

c
3
.

If 0< c ≤
3
16

, then

−
4
√

3
c

− 2
√

c
3
< λ < λ1(c).

If c ≤ 0, then
2
√

−c < λ < λ1(c).

No toroidal solutions can correspond to parameters outside the region defined by
these inequalities.

A useful alternative characterization of λ1 is given in [Elms et al. 2003]. We
state it here for convenience.

λ1(c)= 3r2
+

c
r2 ,

where r = r(c) is the larger positive solution of 2r4
− r + 2c = 0.

As a final remark, we conjecture that there is exactly one value λt = λt(c)
corresponding to a toroidal solution. These values form a smooth curve in the

Figure 3. Toroidal surfaces: clockwise from top left, embedded
torus (c>0), pinched spheroid (c=0), and immersed torus (c<0).
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interior of the region described in the Theorem; see Figure 1, right, where the
thick gray curve is the numerically calculated curve of toroidal solutions.
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THE ASCENT OF A LIQUID ON A CIRCULAR NEEDLE

ERICH MIERSEMANN

Dedicated to the memory of Herbert Beckert

It is shown that there exists an asymptotic expansion of the ascent of a liq-
uid on a circular needle if the radius of the cross section tends to zero. In
particular, a formula derived formally by Derjaguin in 1945 is confirmed.

1. Introduction

We consider the following nonparametric capillary problem in the presence of
gravity (see [Finn 1986, Chapter 1]). We seek a function U = U (x), x = (x1, x2),
defined over the base domain � := R2

\ Ba(0), where Ba(0) is a disk with (small)
radius a and center at x = 0, and satisfying the nonlinear elliptic boundary value
problem

div T U = κ U in �,(1)

ν · T U = cos θ on ∂�,(2)

where

T U =
∇U√

1 + |∇U |2
,

κ and θ are constants with 0≤θ≤π , and ν is the exterior unit normal on ∂� (equiv-
alently, the interior normal on ∂Ba(0)). The graph of U describes the capillarity-
driven equilibrium interface in the exterior of a vertical cylinder (the needle) with
cross section Ba(0), in the presence of a constant gravity field directed downward;
θ is the constant contact angle between the capillary surface and the tube and κ is
the (positive) capillary constant, given by κ = ρg/σ , where ρ is the density change
across the interface, g is the acceleration of gravity, and σ is the surface tension.

No explicit solution of (1)–(2) is known. It was shown by Johnson and Perko
[1968] that there exists a radially symmetric solution. From a maximum principle
of Finn and Hwang [1989] for unbounded domains it follows that this symmetric
solution is the only one.

MSC2000: primary 76B45; secondary 41A60, 35J70.
Keywords: capillarity, ascent on a needle, circular tube, asymptotic expansion.

291



292 ERICH MIERSEMANN

Set

(3) u(r)= U (x), r =

√
x2

1 + x2
2 .

We will prove that there is an asymptotic expansion for the ascent u(a) of the liquid
in this problem. More precisely:

Theorem 1.1. Set B = κa2 and let γ = 0.5772 . . . be Euler’s constant. Then the
ascent u(a) of a liquid on a circular needle with radius a satisfies

u(a)
a

= − cos θ
( 1

2 ln B + γ − 2 ln 2 + ln(1 + sin θ)+ O(B1/5 ln2 B)
)

as B → 0, uniformly in θ ∈ [0, π].

Uniformly means that the remainder satisfies |O(B1/5 ln2 B)| ≤ cB1/5
|ln2 B|

for all 0 < B ≤ B0, if B0 is sufficiently small, where the constant c depends only
on B0 and not on the contact angle θ .

It is noteworthy that the special nonlinearity of the problem implies that the
expansion is uniform with respect to θ ∈ [0, π] although |Du| tends to infinity as
θ → 0 or θ → π and therefore the differential equation (1) will be singular on ∂�.
Moreover, as a further consequence of the strong nonlinearity of the problem, we
do not need any growth assumption at infinity.

In the case of complete wetting, that is, if θ = 0, the formula

u(a)∼ −a
( 1

2 ln B − 0.809 . . .
)

as a → 0 was derived formally by Derjaguin [1946] by expansion matching. We
recall that B = κa2. Higher-order approximations where obtained formally by
James [1974] and Lo [1983], also by matching arguments.

(Matching means that some free constants which occur in two asymptotic ex-
pansions with an overlapping domain of their definition will be determined in an
appropriate way; see [Van Dyke 1964; Fraenkel 1969], for example.)

Turkington [1980] proved that u(a) ∼ −
1
2 cos θ a ln B as a → 0 under an ad-

ditional growth assumption at infinity. This assumption is superfluous because of
the comparison principle of Finn and Hwang [1989].

The proof of the existence of the asymptotic expansion is based on a construction
of an upper and a lower C1-solution of (1)–(2) and on the maximum principle of
Finn and Hwang for unbounded domains. We obtain the lower and the upper
solution by gluing together a boundary layer expansion near the needle with a
second expansion far from the needle such that the resulting function is in C1.
This method of composing of functions on different annular domains was used in
[Miersemann 1996], where a numerical method for the circular tube was proposed.

Theorem 1.1 and the calculations of the appendix, together with those of [Lo
1983], suggest:
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Conjecture. For given N ∈ N ∪ {0} the ascent u(a) satisfies

u(a)
a

= − cos θ

(
N∑

k=0

M(k)∑
l=0

ckl(θ)Bk(ln B)l + o(B N )

)

as B → 0, uniformly in θ ∈ [0, π].

2. Expansion near the needle

Since U (x) is rotationally symmetric, the boundary value problem (1)–(2) reads,
with the notation (3),

1
r

(
ru′(r)√

1 + (u′(r))2

)′

= κu(r) in a < r <∞,

lim
r→a+0

u′(r)√
1 + (u′(r))2

= −cos θ.

Set

r = as, v(s)=
1
a

u(as), B = κa2.

Then the problem becomes

1
s

(
sv′(s)√

1 + (v′(s))2

)′

= Bv(s) in 1< s <∞,(4)

lim
s→1+0

v′(s)√
1 + (v′(s))2

= − cos θ.(5)

For a fixed q , 1< q <∞, b0 := −cos θ , θ ∈ [0, π] and b1 ∈ [−1, 1] let

v1(s)≡ v1(B, q, b0, b1; s)

be the solution of

1
s

(
sv′(s)√

1 + (v′(s))2

)′

= Bv(s) for 1< s < q,(6)

lim
s→1+0

v′(s)√
1 + (v′(s))2

= b0, lim
s→q−0

v′(s)√
1 + (v′(s))2

= b1.(7)

Set

div T v =
1
r

(
rv′√

1 + (v′)2

)′

.
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It was shown in [Miersemann 1993; 1994] that for fixed q there exists a complete
asymptotic expansion of v1 as B → 0, uniformly in b0, b1 ∈ [−1, 1]:

v1 =
C
B

+

m∑
k=0

ϕk(s)Bk
+ O(Bm+1),

here ϕk(s)≡ ϕk(q, b0, b1; s) and

C ≡ C(q, b0, b1)=
2(qb1 − b0)

q2 − 1
.

The function ϕ0 is a solution of a boundary value problem for a nonlinear second
order ordinary differential equation and the ϕk , for k ≥ 1, are solutions of linear
boundary value problems.

It turns out that we have to change q if B → 0. More precisely, q = B−τ , for
τ > 0 small, will be an appropriate choice. Therefore, we need some information
about how the functions, for example ϕk , depend on q .

Set

b1 :=
b0

q
(1 + ε), 0 ≤ |ε|< ε0 < 1,

φk(s)≡ φk(q, b0, ε; s) := ϕk

(
q, b0,

a0
q
(1 + ε); s

)
and for m ≥ 0

(8) v1,m(s)≡ v1,m(B, q, b0, ε; s) :=
2εb0

B(q2 − 1)
+

m∑
k=0

φk(s)Bk .

Assume that
λ := Bq2 ln q ≤ λ0

for a sufficiently small positive λ0, independent of B and q. We will choose q =

B−τ for τ ∈
(
0, 1

2

)
.

Proposition 2.1. Suppose q ≥ 3. For a given m ∈ N ∪ {0} there exist functions
ϕk(s)≡ ϕk(q, b0, b1; s) for k = 0, 1, . . . ,m, analytic in 1< s < q and continuous
in 1 ≤ s ≤ q, as well as functions φk(s) ≡ φk(q, b0, ε; s), continuous in |ε| < 1

4 ,
such that for |ε| ≤

1
4 and s ∈ (1, q) we have

φk(s)=

N∑
l=0

φk,l(q, b0; s)εl
+ RN+1ε

N+1,

where

|φk,l(q, b0; s)| ≤ c |b0|(ln q)k+1q2k, |RN+1| ≤ c |b0|(ln q)k+1q2k
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and

(9) |div T v1,m − Bv1,m | ≤ c |b0|(ln q)m+1q2m Bm+1
;

here v1,m is the sum (8). The constants c depend only on λ0 and on k, N , m, and
not on b0 ∈ [−1, 1].

In particular,

φ0,0(q, b0; 1)= −b0

(
ln q + ln 2 −

1
2 − ln

(
1 +

√
1 − b2

0

)
+ O(q−2 ln q)

)
as q → ∞.

The proof is given in Section A.1 of the Appendix.

3. Expansion far from the needle

Let v2(s)≡ v2(B, q, b1; s) be the solution of

1
s

(
sv′(s)√

1 + (v′(s))2

)′

= Bv(s) in q < s <∞,(10)

lim
s→q+0

v′(s)√
1 + v′(s)2

= b1.(11)

In contrast to the earlier expansion with respect to B near the needle, we expand
v2 with respect to b1 for fixed Bond number 0< B < 1.

For small |b1| we have

v′(q)=
b1√

1 − b2
1

= b1

∞∑
k=0

(
−

1
2
k

) (
−b2

1
)k
.

We make the following ansatz for a solution of the differential equation (10), where
n ∈ N ∪ {0}, ρ ∈ R, |ρ| small:

(12) v2,n(s)≡ v2,n(B, q, ρ; s) :=

n∑
k=0

ψk(B, q; s) ρ2k+1

with unknown functions ψk(s) :≡ ψk(B, q; s) such that

(13) ψ ′

k(q)= (−1)k
(

−
1
2
k

)
.

Since

v′

2,n(q)= ρ

n∑
k

(
−

1
2
k

) (
−ρ2)k

,
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it follows that v2,n satisfies the boundary condition (11) at s = q if

(14)
n∑

k=0

(−1)k
(

−
1
2
k

)
ρ2k+1

=
b1√

1 − b2
1

.

Thus, since b1 = b0(1 + ε)/q ,

ρ = b1 + O(b2n+3
1 )=

b0

q
+ ε

b0

q
+ O

((b0
q

)2n+3
)

as b0/q → 0.

Definition 3.1. We write w(δ)= P(δ, ln δ), where 0< δ < δ0, if for given N ∈ N

we have

w(δ)=

N∑
α=1

M(α)∑
β=0

cαβδα(ln δ)β + RN (δ),

where cαβ ∈ R, RN (δ) is continuous in 0 ≤ δ < δ0, limN→∞ RN (δ)= 0 for fixed δ
and RN (δ)= o(δN ) as δ → 0.

Proposition 3.2. Assume that 0 < B < 1, q = B−τ , τ ∈ (0, τ1], 0 < τ1 <
1
2 and

|ρ| < ρ0, for ρ0 sufficiently small. For a given n ∈ N ∪ {0} there exist functions
ψk(s)≡ ψk(B, q; s), k = 0, . . . , n, analytic on q ≤ s <∞, such that the sum v2,n

of (12) satisfies

(15) |div T v2,n − Bv2,n| ≤ c |ρ|
2n+3

on s ∈ [q,∞), where the constant c depends only on τ1, ρ0 and n. Further, for
δ :=

√
Bq there are functions wk(δ)= P(δ, ln δ) such that

(16) ψk(B, q; q)=
1

√
B
wk(δ).

In particular,

ψ0(B, q; q)=
1

√
B

K0(δ)

K ′

0(δ)
,

where K0(δ) is a modified Bessel function of second kind and of order zero.

The proof is given in Section A.2 of the Appendix.
Siegel [1980] observed that the function ψ0 := cK0(

√
Bs), where c is a positive

constant, defines for a fixed q > 1 a supersolution of the differential equation (10)
on (q,∞). We will show that there is a positive constant A such that v2,n ± A
defines a supersolution and a subsolution, respectively, on (q,∞) if q := B−τ for
appropriate τ satisfying 0< τ ≤ τ1 <

1
2 and if ρ is defined by (14). In particular,

v2,0 =
K0(

√
Bs)

√
BK ′

0(
√

Bq)
ρ.
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4. Composing of the inner and outer solutions

By the inner solution we mean the expansion v1,m near the needle and the outer
solution is v2,n , the expansion far from the needle.

We glue together these two expansions at s = q in such a way that the composite
function is in C1(1,∞).

Set

vc,m,n(s) :=

{
v1,m(B, q, b0, ε; s) for 1 ≤ s ≤ q,

v2,n(B, q, ρ; s) for q < s <∞.

This composite function is in C1(1,∞) if and only if ρ satisfies (14) and v1,m, v2,n

coincide at s = q , that is, if

(17) v1,m(B, q, b0, ε; q)= v2,n(B, q, ρ; q),

where ρ = ρ(b0, q, ε) is defined by (14). Now set

δ :=
√

Bq.

We choose q = B−τ for a fixed τ ∈
(
0, 1

2

)
; then δ → 0 if B → 0.

Proposition 4.1. Assume that q = B−τ for a fixed τ ∈
(
0, 1

2

)
. Then there is a

solution ε of equation (17). In particular, we have

ε =
1
2δ

2 ln δ+
1
2

(
γ − ln 2 −

1
2

)
δ2

+ R(b0, B, B−τ )δ2

with
R(b0, B, B−τ )= O(B2τ (ln B)l+1)+ O(B1−2τ ln2 B)

uniformly in b0 ∈ [−1, 1] as B → 0, where l ∈ N ∪ {0} and

γ := lim
m→∞

( m∑
k=1

1
k

− ln m
)

= 0.5772 . . .

is Euler’s constant.

The proof is given in Section A.3 of the Appendix.
Assume that q := B−τ for 0< τ ≤ τ1 <

1
2 . Then, since

b1 =
b0

q

(
1 + O(B1−2τ ln B)

)
,

it follows from the three propositions above that the C1(1,∞) function vc,m,n sat-
isfies, for 0< B ≤ B0 < 1 with B0 sufficiently small,

|div T vc,m,n − Bvc,m,n| ≤

{
c |b0|(− ln B)m+1 B(1−2τ)m+1 for 1 ≤ s ≤ q,

c |b0|B(2n+3)τ for q < s <∞.

The constant c depends only on m, n, B0 and τ1.
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5. Asymptotic expansion

Let A be a positive constant. Set

v+

c,m,n := vc,m,n + A.

This function v+
c,m,n is in C1(1,∞) and satisfies the boundary condition (5) at s =1.

From the above estimate it follows

divT v+

c,m,n − Bv+

c,m,n = div T vc,m,n − Bvc,m,n − AB

≤ B

{
c |b0|(− ln B)m+1 B(1−2τ)m

− A for 1 ≤ s ≤ q,

c |b0|B(2n+3)τ−1
− A for q < s <∞.

The constant c depends only on m, n, B0 and τ1.
For τ ∈

(
0, 1

2

)
and m, n ∈ N ∪ {0}, set

p(m, n; τ) := min{(1 − 2τ)m, (2n + 3)τ − 1}

and let τ0 ≡ τ0(m, n) be the solution of (1 − 2τ)m = (2n + 3)τ − 1, that is,

τ0 =
m + 1

2(m + 1)+ 2n + 1
.

Thus τ0 is the solution of
max

0<τ<1/2
p(m, n; τ).

Set p0 ≡ p0(m, n) := p(m, n; τ0); that is,

p0 =
2mn + m

2m + 2n + 3
.

Choose

(18) A := c |b0|(− ln B)m+1 B p0;

then the preceding inequality implies

div T v+

c,m,n − Bv+

c,m,n ≤ 0

for all B such that 0 < B ≤ B0 and for all s in (1, q] ∪ (q,∞). The maximum
principle of Finn and Hwang [1989] yields

v(s)≤ v+

c,m,n(s)

on (1,∞). By the same reasoning it follows that

v−

c,m,n := vc,m,n − A,

satisfies v(s)≥ v−
c,m,n(s) on (1,∞), where A is given by (18).
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Summarizing, we have shown that |v(s)− vc,m,n(s)| ≤ c |b0|(− ln B)m+1 B p0 .

We can choose p0 arbitrarily large provided m and n are large enough; see the
definition of p0 above.

In particular, the height rise at s = 1 satisfies

|v(1)− v1,m(1)| ≤ c |b0|(− ln B)m+1 B p0 .

Thus

v(1)=
C(q, b0, b1)

B
+

m∑
k=0

ϕk(q, b0, b1; 1)Bk
+ O(b0 B p0 lnm+1 B),

where b1 = b0(1 + ε)/q , q = B−τ0 and ε is the solution of (17); see Proposition
4.1.

Thus, we consider

v1,m(1) :=
C(q, b0, b1)

B
+

m∑
k=0

ϕk(q, b0, b1; 1)Bk

as an approximation of order p0 of the value v(1).
Then, since B = κa2 and u(a)= av(1), we have

(19)
u(a)

a
= v1,m(1)+ O(b0 B p0 lnm+1 B)

as B ≡ κa2
→ 0.

Proof of Theorem 1.1. Set m =1 and n =0. Then τ0 =
2
5 , p0 =

1
5 , q ≡ B−τ0 = B−2/5

and δ ≡
√

Bq = B1/10. We obtain from Proposition 4.1

ε =
1
2δ

2 ln δ+
1
2(γ − ln 2 −

1
2)δ

2
+ O(δ2 B1/5 ln2 B)

and Proposition 2.1 yields

φ0(1)= −b0

(
ln q + ln 2 −

1
2 − ln

(
1 +

√
1 − b2

0

))
+ O(b0 B1/5 ln2 B)

and φ1(1)B = O(b0 B1/5 ln2 B).
Thus

v1,1(1)=
2εb0

B(q2 − 1)
+φ0(1)+φ1(1)B + O(b0 B1/5 ln2 B)

= b0
(
ln δ− ln 2 −

1
2 + γ + O(B1/5 ln2 B)

) (
1 −

1
q2

)−1

− b0
(
ln q + ln 2 −

1
2 − ln(1 +

√
1 − b2

0)
)
+ O(b0 B1/5 ln2 B)

= b0
(1

2 ln B − 2 ln 2 + γ + ln(1 +

√
1 − b2

0)
)
+ O(b0 B1/5 ln2 B).
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The theorem follows from formula (19) for u(a)/a. �

Appendix: Proof of the propositions

Here we prove the propositions of the previous sections. The argument concerns
mainly expansions of nonlinear expressions with respect to appropriate parameters.
In the expansion near the needle the special nonlinearity of the problem is exploited.
The expansion far from the needle ensues by linearization of the problem with
respect to the zero solution.

A.1. Expansion near the needle. Set for 0< B < B0

vm =
C
B

+

m∑
k=0

ϕk(s)Bk,

where C is a constant and ϕk are functions in C2(1, q), 1< q <∞.
The sum vm is said to be an approximate solution of (6)–(7) if vm satisfies the

boundary conditions (7) and if

|div T vm − Bvm | ≤ cBm+1

on (1, q), where c = c(m, q) and c is independent on b0, b1 ∈ [−1, 1].
In the following we will define C and ϕk so that vm is an approximate solution. It

turns out that C is given explicitely, ϕ0 is the solution of a nonlinear boundary value
problem for a second order differential equation and ϕk , for k ≥ 1, are solutions of
linear boundary value problems of second order, defined iteratively. The main idea
here is to preserve the properties of the special nonlinearity also in the expansions.

In

div T vm ≡
1
s

(
sv′

m√
1 + v′

m
2

)′

there appears the quotient v′
m/
√

1 + v′
m

2. We now derive some expansions in B
related to this quotient.

Definition of C and ϕk . Since

1+v′

m
2
= 1 +

( m∑
l=0

ϕ′

l Bl
)2

= (1+ϕ′

0
2)

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)
,
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it follows that

v′
m√

1 + v′
m

2

=
v′

m√
1+ϕ′

0
2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−1/2

.

Set, for l = 1, . . . ,m,

dl :=
ϕ′

l√
1+ϕ′

0
2

and assume that

(A–1) sup
s∈(1,q)

|dl | ≤ c(1)l (q) <∞.

Then for M ∈ N, provided 0< B ≤ B0(q) with B0 sufficiently small, we have

(A–2)
v′

m√
1 + v′

m
2

=
ϕ′

0√
1+ϕ′

0
2

+

M∑
k=1

fm,k(ϕ
′

0, . . . , ϕ
′

m)B
k
+ f̃m,M+1 B M+1,

where fm,k and f̃m,M+1 are defined as follows. Set gm(B) := v′
m/
√

1 + v′
m

2, then

fm,k = g(k)m (0)/k! and f̃m,k = g(k)m (t B)/k! for 0< t < 1.

From assumption (A–1) on ϕ′

k we obtain

| fm,k | ≤ cm,k(q) <∞ and | f̃m,M+1| ≤ c̃m,M+1(q) <∞.

We have, from (A–2), f0,k ≡ 0 and f̃0,k ≡ 0 for all k ∈ N.
This argument exploits the special nonlinearity of the problem. More precisely,

we have used that
|ϕ′

0|√
1+ϕ′

0
2

remains bounded even if |ϕ′

0(s)| → ∞ if s → 1 or s → q .
We obtain from (A–2) the expansion

(A–3) div T vm =
1
s

(
sϕ′

0√
1+ϕ′

0
2

)′

+

M∑
k=1

1
s
(
s fm,k

)′Bk
+

1
s
(
s f̃m,M+1

)′B M+1.

We next need some information on how the derivatives ( fm,k)
′ and ( f̃m,l)

′ de-
pend on b0, b1 and q.

Since v′
m =

∑m
l=0 ϕ

′

l Bl and

(A–4) div T v ≡
1
s
v′(1 + v′2)−1/2

+ v′′(1 + v′2)−3/2
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it follows under assumption (A–1) that for 0< B ≤ B0 ≡ B0(q), with B0 sufficiently
small,

div T vm

=
1
s

v′
m√

1+ϕ′

0
2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−1/2

+
v′′

m

(1+ϕ′

0
2)3/2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−3/2

.

Thus

(A–5) div T vm =
1
s

(
sϕ′

0√
1+ϕ′

0
2

)′

+

M∑
k=1

Fm,k Bk
+ F̃m,M+1 B M+1,

where Fm,k and F̃m,M+1 are defined as follows. Set

hm(B) :=
1
s

v′
m√

1 + v′
m

2
+ v′′

m
(
1 + v′

m
2)−3/2

.

Then Fm,k = h(k)m (0)/k! and F̃m,k = h(k)m (t B)/k! for 0 < t < 1. We have F0,k ≡ 0
and F̃0,k ≡ 0 for all k ∈ N.

Set for l = 1, . . . ,m

el :=
ϕ′′

l

(1+ϕ′

0
2)3/2

and assume

(A–6) sup
s∈(1,q)

|el | ≤ c(2)(q) <∞.

Then the functions Fm,k and F̃m,M+1 are bounded.
Since

1
s
(s fm,k)

′
≡ Fm,k,

1
s
(s f̃m,k)

′
≡ F̃m,k,

it follows, under assumptions (A–1) and (A–6), that the derivatives ( fm,k)
′, ( f̃m,k)

′

are bounded.
In the following considerations we derive boundary value problems which de-

fine the functions ϕ0, ϕ1, . . . , ϕm . Then we prove that these functions ϕl satisfy
inequalities (A–1) and (A–6) uniformly in q ≥ 3 and in b0 ∈ [−1, 1], where
b1 = b0(1 + ε)/q, with |ε| ≤

1
4 .

The following lemma is useful in order to iteratively find the appropriate bound-
ary value problem which defines ϕm+1 for given ϕ0, . . . , ϕm .
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Lemma A.1.1. Let assumption (A–1) on ϕl , for l = 1, . . . ,m + 1, be satisfied.
Then

v′

m+1√
1 + v′

m+1
2

=
v′

m√
1+v′

m
2

+
ϕ′

m+1

(1 +ϕ′

0
2)3/2

Bm+1
+ R,

where |R| ≤ c(q)Bm+2, 0< B ≤ B0(q), B0 sufficiently small.

Proof.

v′

m+1√
1 + v′

m+1
2

=
(
v′

m +ϕ′

m+1 Bm+1)(1 + v′

m
2
+ 2v′

mϕ
′

m+1 Bm+1
+ϕ′

m+1
2 B2m+2)−1/2

=
(
v′

m +ϕ′

m+1 Bm+1) (1 + v′

m
2)−1/2

·

(
1 + 2

v′
m√

1+v′
m

2

ϕ′

m+1√
1+v′

m
2

Bm+1
+
(ϕ′

m+1)
2

1 + v′
m

2 B2m+2
)−1/2

=

(
v′

m√
1+v′

m
2

+
ϕ′

m+1√
1+v′

m
2

Bm+1
)(

1 −
v′

mϕ
′

m+1

1 + v′
m

2 Bm+1
+ R1

)

=
v′

m√
1+v′

m
2

+

(
−

v′
m

2ϕ′

m+1

(1 + v′
m

2)3/2
+

ϕ′

m+1√
1+v′

m
2

Bm+1
)

+ R2

=
v′

m√
1 + v′

m
2

+
ϕ′

m+1

(1 + v′
m

2)3/2
Bm+1

+ R2.

The remainders above satisfy |R1|, |R2| ≤ c(q)B2m+2. Since

ϕ′

m+1

(1 + v′
m

2)3/2

=
ϕ′

m+1

(1+ϕ′

0
2)3/2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−3/2

=
ϕ′

m+1

(1+ϕ′

0
2)3/2

+ R3,

where |R3| ≤ c(q)B, the expansion of the lemma is shown. �

Lemma A.1.2. Suppose assumptions (A–1) and (A–6) are satisfied. Then

div T vm+1 = div T vm +
1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

Bm+1
+ O(Bm+2)

as B → 0, uniformly in s ∈ (1, q).
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Proof. We conclude from (A–4) and Lemma A.1.1 that

div T vm+1 ≡
1
s

v′

m+1√
1 + v′

m
2

+
v′′

m+1

(1 + v′
m

2)3/2

=
1
s

v′
m√

1 + v′
m

2
+

1
s

ϕ′

m+1

(1+ϕ′

0
2)3/2

Bm+1
+

v′′

m+1

(1 + v′

m+1
2)3/2

+ O(Bm+2).

Since

v′′

m+1

(1 + v′

m+1
2)3/2

=
v′′

m

(1 + v′
m

2)3/2
+

(
ϕ′′

m+1

(1 +ϕ′

0
2)3/2

−
3ϕ′

0ϕ
′′

0ϕ
′

m+1

(1 +ϕ′

0
2)5/2

)
Bm+1

+O(Bm+2),

which follows by similar calculations as in the proof of Lemma A.1.1, we obtain

div T vm+1 =
1
s

v′
m√

1 + v′
m

2
+

v′′
m

(1 + v′
m

2)3/2
+

1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

Bm+1
+ O(Bm+2).

�

Lemma A.1.2 implies

div T vm+1 − Bvm+1

= div T vm +
1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

Bm+1
− (C + Bϕ0 + · · · + Bm+1ϕm)+ O(Bm+2).

Then from expansion (A–3) for div T vm , with M := m +1, and from the condition

div T vm+1 − Bvm+1 = O(Bm+2) as B → 0,

there follows for m ≥ 0 the differential equation

(A–7) 1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

+
1
s
(s fm,m+1)

′
= ϕm

on 1 < s < q. We recall that fm,m+1 = g(m+1)
m (0)/(m + 1)! , where gm(B) =

v′
m/
√

1 + v′
m

2.
We conclude from div T v0 − Bv0 = O(B) that

(A–8) div Tϕ0 ≡
1
s

(
sϕ′

0√
1+ϕ′

0
2

)′

= C

on 1< s < q .
From the assumptions

lim
s→1+0

v′
m√

1 + v′
m

2
= b0, lim

s→q−0

v′
m√

1 + v′
m

2
= b1
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for fixed q and 0< B ≤ B0(q), and from the expansion (A–2), we get

(A–9) lim
s→1+0

ϕ′

0√
1+ϕ′

0
2

= b0, lim
s→q−0

ϕ′

0√
1+ϕ′

0
2

= b1.

Further, we obtain from Lemma A.1.1 that for m ≥ 1

(A–10) lim
s→1+0

ϕ′

m+1

(1+ϕ′

0
2)3/2

= 0, lim
s→q−0

ϕ′

m+1

(1+ϕ′

0
2)3/2

= 0,

and (A–2) implies the boundary conditions

(A–11) lim
s→1+0

fm,k(ϕ
′

0, . . . , ϕ
′

m)= 0, lim
s→q−0

fm,k(ϕ
′

0, . . . , ϕ
′

m)= 0

for k ≥ 1 and m ≥ 0.
After integration of the differential equation from 1 to q it follows from the

boundary conditions (A–11) and (A–12) that, for m ≥ 0,

(A–12)
∫ q

1
sϕm(s) ds = 0.

Applying the differential equation (A–8) for ϕ0 and the boundary conditions (A–9),
we find

(A–13) C =
2(qb1 − b0)

q2 − 1
.

Set

(A–14) f (s)≡ f (q, b0, b1; s) := b0 f0 + b1 f1,

where

f0 :=
q2

− 1 − (s2
− 1)

s(q2 − 1)
, f1 :=

q(s2
− 1)

s(q2 − 1)
.

Then it follows from (A–8) and the formula (A–13) for C that

(A–15)
ϕ′

0(s)√
1 + (ϕ′

0(s))
2

= f (s)

or, equivalently,

(A–16) ϕ′

0(s)=
f (s)√

1 − f 2(s)
.

Set for 1 ≤ s ≤ q

(A–17) ϕ̃0(s) :=

∫ s

1

f (τ )√
1 − f 2(τ )

dτ,
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then ϕ0(s) = ϕ̃0(s) + K , where the constant K will be determined by the side
condition (A–12). That is, ϕ0(s)≡ ϕ0(q, b0, b1; s) is given by

(A–18) ϕ0(s)= ϕ̃0(s)−
2

q2 − 1

∫ q

1
τ ϕ̃0(τ ) dτ.

Then we obtain ϕl(s) ≡ ϕl(q, b0, b1; s) for l ≥ 1, by the iterative application of
(A–7), (A–9), (A–10) and (A–11). That is,

(A–19) ϕl+1(s)= ϕ̃l+1(s)−
2

q2 − 1

∫ q

1
τ ϕ̃l+1(τ ) dτ,

where

(A–20) ϕ̃l+1(s) :=

∫ s

1
ϕ′

l+1(τ ) dτ

and

(A–21) ϕ′

l+1(s) := (1+ϕ′

0
2)3/2

(
− fl,l+1 +

1
s

∫ s

1
τϕl(τ ) dτ

)
.

Set for the unknown b1

(A–22) b1 :=
b0

q
(1 + ε),

where

(A–23) |ε| ≤
1
4 and q ≥ 3.

We will determine ε in Section A.3 by gluing together two expansions at s = q,
where q = B−τ for τ > 0 small.

Expansions with respect to ε. In this section we expand related functions with
respect to ε.

Definition. Let h ≡ h(q, b0, ε; s), where 1 ≤ s ≤ q , q ≥ 3, |ε| ≤ 1
4 and b0 ∈ [−1, 1].

We will write h = O(ε; K ) if for any fixed M ∈ N ∪ {0}

h =

M∑
l=0

hlε
l
+ h̃M+1ε

M+1,

where hl ≡ hl(q, b0; s), h̃M+1 ≡ h̃M+1(q, b0, ε; s), and |hl |, |h̃M+1| ≤ cM |K |. The
constant cM is independent on q , b0, s, ε and K , it can depend on q , b0 and s but
not on ε.

From formula (A–14) for f and from (A–22) it follows that on 1< s ≤ q

(A–24) f =
b0

s

(
1 + ε

s2
− 1

q2 − 1

)
.
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Then

(A–25) 1 − f 2
=

(
1 −

(b0
s

)2
)
(1 + C1ε+ C2ε

2),

where

C1 ≡ C1(q, b0; s)= −2b2
0

1
q2 − 1

s2
− 1

s2 − b2
0

,

C2 ≡ C2(q, b0; s)= −b2
0

1
q2 − 1

(s2
− 1)2

s2 − b2
0

.

Using (A–23), it follows that |C1ε+ C2ε
2
| ≤

1
2 .

Set

φk(s)≡ φk(q, b0, ε; s) := ϕk

(
q, b0,

b0
q
(1 + ε); s

)
.

Then we obtain from formula (A–16) for ϕ′

0

(A–26) φ′

0 =
b0

s

(
1 + ε

s2
−1

q2−1

)(
1 −

(b0
s

)2
)−1/2

(1 + C1ε+ C2ε
2)−1/2

=
b0√

s2 − b2
0

(
1 + εO(ε; 1)

)
.

Formula (A–17) implies

φ̃0(s)= φ̃0,0(s)+ εO(ε; b0 ln s),

where

φ̃0,0(s)= b0

(
ln
(
s +

√
s2 − b2

0

)
− ln

(
1 +

√
1 − b2

0

))
.

Finally, it follows from (A–18) that

φ0(s)= φ0,0(s)+ εO(ε; b0 ln q),

where

φ0,0(s)= b0

(
ln
(
s +

√
s2 − b2

0

)
− ln

(
1 +

√
1 − b2

0

))
+

b0

q2−1

(
q
2

√
q2

−b2
0 +

b2
0

2
ln
(
q +

√
q2

−b2
0

)
−

1
2

√
1−b2

0 −
b2

0

2
ln
(
1+

√
1−b2

0

))
.
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Using (A–24), (A–25) and (A–26), we immediately obtain

1 +φ′

0
2
≡ (1 − f 2)−1

=
s2

s2 − b2 (1 + εO(ε; 1)) ,(A–27)

φ′

0√
1 +φ′

0
2

≡ f =
b0

s

(
1 + ε

s2
− 1

q2 − 1

)
,(A–28)

φ′′

0

(1 +φ′

0
2)3/2

≡ f ′
= −

b0

s2

(
1 − ε

s2
+ 1

q2 − 1

)
.(A–29)

Lemma A.1.3. The functions φl , l ≥ 1 are continuous in ε, |ε| ≤
1
4 , and satisfy

φl(s)= O
(
ε; b0(ln q)lq2l) ,(A–30)

dl ≡
φ′

l√
1 +φ′

0
2

= O
(
ε; b0(ln q)lq2l−1) ,(A–31)

el ≡
φ′′

l

(1 +φ′

0
2)3/2

= O
(
ε; b0(ln q)lq2l−2) .(A–32)

We will prove this lemma by induction based on formulas (A–15)–(A–17) and
on the next lemma.

Lemma A.1.4. Assume that equations (A–30)–(A–32) hold for 1 ≤ l ≤ m. Then

Fm,m+1 = O
(
ε; b0(ln q)m+1q2m)

and, if λ := Bq2 ln q ≤ λ0, for λ0 > 0 sufficiently small, then

|F̃m,m+1| ≤ cm |b0|(ln q)m+1q2m,

where cm = cm(λ0) is independent on b0 and q.

Proof. Set

hm(B)=
1
s
(d0 + P)F(d0, P)+ (e0 + Q)G(c0, P),

where F = (1 + 2d0 P + P2)−1/2, G = (1 + 2d0 P + P2)−3/2, P =
∑m

l=1 dl Bl ,
Q =

∑m
l=1 el Bl .

From assumption (A–1) on dl it follows |2d0 P + P2
| ≤

1
2 , provided λ0 is suffi-

ciently small. Since

Fm,m+1 =
h(m+1)

m (0)
(m + 1)!

and F̃m,m+1 =
h(m+1)

m (t B)
(m + 1)!

, for 0< t < 1,

the lemma is a consequence of the Leibniz rule and the chain rule. We find from
these rules for α = (α1, . . . , αm), αl ∈ N and t = (t1, . . . , tm), tl ∈ N ∪ {0} and
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0 ≤ k ≤ m that

(A–33) h(m+1)
m (B)=

∑
∑m

l=1 αl tl=m+1

1
s

Cm,α,t(P (α1))t1 . . . (P (αm))tm

+

∑
k+
∑m

l=1 αl tl=m+1

Dm,k,α,t Q(k)(P (α1))t1 . . . (P (αm))tm ,

where
Cm,α,t = Cm,α,t(d0, e0, P), Dm,k,α,t = Dk,α,t(d0, P)

and

Ĉm,α,t := Cm,α,t(s, d0, e0, 0)= O(ε; 1), D̂m,α,t := Dm,k,α,t(d0, 0)= O(ε; 1).

We recall that d0 = O(ε; b0/s) and e0 = O(ε; b0/s2). From (A–33) it follows that

h(m+1)
m (0)=

∑
∑m

l=1 αl tl=m+1

1
s

Ĉm,α,t(dα1)
t1 . . . (dαm )

tm

+

∑
k+
∑m

l=1 αl tl=m+1

D̂m,k,α,t ek(dα1)
t1 . . . (dαm )

tm .

Using the assumptions on dl and el (Lemma A.1.3), we have

h(m+1)
m (0)

= O
(
ε; b0(ln q)

∑m
l αi ti q

∑m
l (2αl tl−1)

)
+ O

(
ε; b0(ln q)k+

∑m
l αi ti q2k−2

∑m
l (2αl tl−1)

)
,

where in the first term on the right we have
∑m

l=1 αl tl = m+1, and k +
∑m

l=1 αl tl =

m +1 in the second term. Hence, since in the first term
∑m

l=1 tl ≥ 2 holds because
of
∑m

l=1 αl tl ≥ 2, αl ≥ 1 and tl ≥ 0, it follows that

h(m+1)
m (0)= O(ε; b0(ln q)m+1q2m).

The estimate of h(m+1)
m (t B), 0< t < 1, is a consequence of (A–33) since

|P (l)| ≤ cl
(
|dl | + |dl+1|B + · · · + |dm−l |Bm−l) . �

We recall that λ := Bq2 ln q ≤ λ0.

Corollary A.1.5. fm,m+1 = O(ε; b0(ln q)m+1q(2m)(s − 1)).

Proof. Since Fl,k ≡ (1/s)(s fl,k)
′, it follows from the boundary condition fl,k(1)=0

(see (A–11)) that

(A–34) fm,m+1 =
1
s
∫ s

1 τ Fm,m+1(τ ) dτ. �
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Proof. Proof of Lemma A.1.3 Assume that the lemma holds for 1 ≤ l ≤ m. Then

(A–35) 1
s

∫ s

1
τφm(τ ) dτ = O

(
ε; (ln q)mq2m(s − 1)

)
.

Using formula (A–21) for ϕ′

m+1, Corollary A.1.5, (A–35) and the formula (A–27)
for 1 +φ′

0
2 we conclude that

φ′

m+1√
1 +φ′

0
2

= O(ε; b0(ln q)m+1q2m+1)

and

φ′

m+1 = O

(
ε; b0(ln q)m+1q2m+1 s3/2

(s − 1)1/2

)
.

Thus, it follows from (A–19) and (A–20) that

φm+1 = O(ε; b0(ln q)m+1q2m+2).

Formula (A–17) implies

φ′′

m+1

(1 +φ′

0
2)3/2

= 3φ′

0φ
′′

0

(
− fm,m+1 +

1
s

∫ s

1
τφm(τ ) dτ

)
− ( fm,m+1)

′
−

1
s2

∫ s

1
τφm(τ ) dτ +φm .

Since, by (A–34),

f ′

m,m+1 = Fm,m+1 −
1
s

fm,m+1,

it follows from formulas (A–27)–(A–29) for φ′

0 and φ′′

0 , Lemma A.1.4, Corollary
A.1.5, (A–35) and (A–30) that

φ′′

m+1

(1 +φ′

0
2)3/2

= O(ε; b0(ln q)m+1q2(m+1)−2).

It remains to show Lemma A.1.3 in the case l = 1. Since f0,1 ≡ 0, we find from
(A–21) that

φ′

1 = (1 +φ′

0
2)3/2

1
s

∫ s

1
τφ0(τ ) dτ.

This equation implies Lemma A.1.3 in the case l = 1 by using the properties of φ0,
see the formulas (A–27)–(A–29).

The continuity of φl in ε follows from formula (A–26) for φ′

0 iteratively from
(A–21), (A–20) and (A–19). �

Proof of Proposition 2.1. Because of Lemma A.1.3 it remains to show inequality
(9) of Proposition 2.1, where v1,m ≡ vm . From Lemma A.1.4, (A–30) and the
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differential equations (A–8) for ϕ0 and (A–7) for ϕl , where m := l − 1 in (A–7), it
follows that

div T vm − Bvm =
1
s

(
sφ′

0√
1 +φ′

0
2

)′

+

m∑
k=1

Fm,k Bk
+ F̃m,m+1 Bm+1

− B
(C

B
+φ0 + · · · +φm Bm

)
= (F̃m,m+1 −φm)Bm+1

=
(
O(b0(ln q)m+1q2m)+ O(b0(ln q)mq2m)

)
Bm+1

= O(b0(ln q)m+1q2m)Bm+1. �

A.2. Expansion far from the needle. Set, for 0< B < 1, q ≥ 3 and |ρ|< ρ0,

vn =

n∑
k=0

ψk(s)ρ2k+1,

where the ψk(s) ≡ ψk(B, q; s) are twice continuously differentiable functions in
q ≤ s <∞. Suppose that ψ ′

k(q) satisfies the condition (13) and that ρ is a solution
of (14) for a given b1. We will set b1 = b0(1 + ε)/q , where |ε| is small and q is
large. Thus, ρ will be small. Then vn satisfies the boundary condition (11).

The sum vn is said to be an approximate solution of (10)–(11) if vn satisfies the
boundary condition (11) and if

|div T vn − Bvn| ≤ c |ρ|
2n+3

on [q,∞), where the constant c = c(n, ρ0) is independent on B, ρ and s. We will
see that ψk satisfies a linear second order boundary value problem, provided vn is
an approximate solution. In particular, ψ0 is a solution of the linearized equation
to (10) about the zero solution.

Definition of ψk . Assume for k ∈ N ∪ {0} that

(A–36) sup
s∈(q,∞)

|ψ ′

k(s)|<∞,

uniformly in 0< B < 1 and q ≥ 3.
Then, for given N ∈ N and |ρ|< ρ0 with ρ0 sufficiently small, we have

v′
n√

1 + v′
n

2
≡

( n∑
k=0

ψ ′

kρ
2k+1

)(
1 +

( n∑
k=0

ψ ′

kρ
2k+1

)2 )−1/2

= ρψ ′

0 +

N∑
k=1

fn,k(ψ
′

0, . . . , ψ
′

n)ρ
2k+1

+ f̃n,N+1ρ
2N+3.
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Set gn(ρ) := v′
n/
√

1 + v′
n

2. Then

fn,k = g(2k+1)
n (0)/(2k + 1)! and f̃n,k = g(2k+1)

n (tρ)/(2k + 1)! for 0< t < 1.

From assumption (A–36) on ψ ′

k it follows that

| fn,k | ≤ cn,k(q) <∞ and | f̃n,N+1| ≤ c̃n,N+1(q) <∞.

Above we have used that vn(1 + (v′
n)

2)−1/2 is an odd function in ρ.
Thus

(A–37) div T vn =
1
s
(sψ ′

0)
′ρ+

1
s

N∑
k=1

(s fn,k)
′ρ2k+1

+
1
s
(s f̃n,N+1)

′ρ2N+3.

As in the previous section we need estimates on the derivatives ( fn,k)
′ and

( f̃n,N+1)
′. Assume for k ∈ N ∪ {0} that

(A–38) sup
s∈(q,∞)

|ψ ′′

k (s)|<∞,

uniformly in 0< B < 1 and q ≥ 3.
Applying identity (A–4) and the assumptions (A–36) and (A–38) on ψ ′

k and ψ ′′

k ,
we get

div T vn =
1
s
(sψ ′

0)
′ρ+

N∑
k=1

Fn,kρ
2k+1

+ F̃n,N+1ρ
2N+3

and Fn,k , F̃n,N+1 are bounded on [q,∞). Set

hn(ρ) :=
1
s

v′
n√

1 + v′
n

2
+ v′′

n
(
1 + v′

n
2)−3/2

.

Then

Fn,k =
h(2k+1)

n (0)
(2k + 1)!

and F̃n,N+1 =
h(2N+3)

n (tρ)
(2N + 3)k!

for 0< t < 1.

Lemma A.2.6. Assume that ψ ′

l , l = 0, . . . , n + 1 satisfies (A–36). Then

v′

n+1√
1 + v′

n+1
2

=
v′

n√
1 + v′

n
2

+ψ ′

n+1ρ
2(n+1)+1

+ R,

where |R| ≤ c(q)ρ2(n+1)+3 and 0< ρ ≤ ρ0(q) for ρ0 sufficiently small.
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Proof.

v′

n+1√
1 + v′

n+1
2

= (v′

n +ψ ′

n+1ρ
2(n+1)+1)

(
1 + v′

n
2
+ 2v′

nψ
′

n+1ρ
2(n+1)+2

+ (ψ ′

n+1)
2ρ4(n+1)+2)−1/2

=
(
v′

n +ψ ′

n+1ρ
2(n+1)+1)(1 + v′

n
2)−1/2

·

(
1 + 2

v′
n√

1 + v′
n

2

ψ ′

n+1√
1 + v′

n
2
ρ2(n+1)+1

+
(ψ ′

n+1)
2

1 + v′
n

2 ρ
4(n+1)+2

)−1/2

=
v′

n√
1 + v′

n
2

+ (1 + v′

n
2)−3/2

(
(1 + v′

n
2)ψ ′

n+1 − v′

n
2ψ ′

n+1

)
ρ2(n+1)+1

+ O
(
ρ4(n+1)+2)

=
v′

n√
1 + v′

n
2

+
ψ ′

n+1

(1 + v′
n

2)3/2
ρ2(n+1)+1

+ O
(
ρ4(n+1)+2)

=
v′

n√
1 + v′

n
2

+ψ ′

n+1ρ
2(n+1)+1

+ O
(
ρ2(n+1)+3).

The last line follows since 1 + v′
n

2
= 1 + O(ρ). �

Lemma A.2.7. Suppose the assumptions (A–36) and (A–38) on ψ ′

k and ψ ′′

k are
satisfied. Then

div T vn+1 = div T vn +
1
s
(sψ ′

n+1)
′ρ2(n+1)+1

+ O
(
ρ2(n+1)+3)

as ρ → 0, uniformly in s ∈ [q,∞).

Proof. From (A–4) and Lemma A.2.6 it follows that

div T vn+1 ≡
1
s

v′

n+1√
1 + v′

n
2

+
v′′

n+1

(1 + v′
n

2)3/2

=
1
s

v′
n√

1 + v′
n

2
+

1
s
ψ ′

n+1ρ
2(n+1)+1

+
v′′

n+1

(1 + v′

n+1
2)3/2

+ O
(
ρ2(n+1)+3).

Since

v′′

n+1

(1 + v′

n+1
2)3/2

=
v′′

n

(1 + v′
n

2)3/2
+ψ ′′

n+1ρ
2(n+1)+1

+ O
(
ρ2(n+1)+3)
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(see the proof of Lemma A.2.6), we find that

div T vn+1 =
1
s

v′
n√

1 + v′
n

2
+

v′′
n

(1 + v′
n

2)3/2
+

1
s
(sψ ′

n+1)
′ρ2(n+1)+1

+ O
(
ρ2(n+1)+3)

= div T vn +
1
s
(sψ ′

n+1)
′ρ2(n+1)+1

+ O
(
ρ2(n+1)+3).

Lemma A.2.7 implies

div T vn+1 − Bvn+1

= div T vn +
1
s
(sψ ′

n+1)
′ρ2(n+1)+1

− B
(
vn +ψn+1ρ

2(n+1)+1)
+ O

(
ρ2(n+1)+3)

= div T vn − Bvn +

(1
s
(sψ ′

n+1)
′
− Bψn+1

)
ρ2(n+1)+1

+ O
(
ρ2(n+1)+3).

Then from the expansion (A–37) of div T vn , with N := n + 1, and the condition

div T vn+1 − Bvn+1 = O
(
ρ2(n+1)+3)

as ρ → 0, it follows on q < s <∞ that

(A–39) 1
s
(sψ ′

0)
′
− Bψ0 = 0

and for n ≥ 0
1
s
(sψ ′

n+1)
′
− Bψn+1 = −

1
s
(s fn,n+1)

′.

Thus (see Section 3) we defineψk , k ∈N, iteratively by the boundary value problem

1
s
(sψ ′

k)
′
− Bψk = −

1
s
(
s fk−1,k(ψ

′

0, . . . , ψ
′

k−1)
)′ on (q,∞),(A–40)

ψ ′

k(q)= (−1)k
(

−
1
2
k

)
, lim sup

s→∞

|ψk(s)|<∞. �(A–41)

Boundary value problem forψk . The solution of the homogeneous equation (A–39)
that satisfies the boundary conditions (A–41) is given by

ψ0(s)=
1

√
B

K0(
√

Bs)

K ′

0(
√

Bq)
.

We obtainψ1, ψ2, . . . iteratively from the boundary value problem (A–40)–(A–41).
The estimates (A–36), (A–38) on ψ ′

k, ψ
′′

k and formula (16) of ψk(B, q; q), see
Proposition 3.2, follow iteratively from a formula for the solution ψk by using the
properties of fk−1,k(ψ

′

0, . . . , ψ
′

k−1). Once we have shown (A–36) and (A–38), we
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arrive at the estimate (15) of Proposition 3.2, since

div T v2,n − Bv2,n =
1
s
(sψ ′

0)
′ρ+

1
s

n∑
k=1

(s fn,k)
′ρ2k+1

+ F̃n,n+1ρ
2n+3

− B(ψ0ρ+ · · · +ψnρ
2n+1)

= F̃n,n+1ρ
2n+3.

The proof of Theorem 1.1 requires Proposition 3.2 in the case n = 0 only. That
is, we have to confirm the estimates (A–36), (A–38) for ψ ′

0, ψ
′′

0 and the property
(16) of Proposition 3.2. Since

ψ0(B, q; s)=
1

√
B

K0(
√

Bs)
K ′

0(δ)
, δ =

√
Bq,

the expansion of w0(δ) (see Proposition 3.2) follows from the expansions of K0(δ)

and K ′

0(δ) as δ → 0. Since lims→∞ ψ ′

0(s) = 0, where B > 0 is fixed, and since
K ′′

0 (z) > 0 for, z > 0, it follows that |ψ ′

0(s)| ≤ 1 on [q,∞). From the differential
equation (A–39) we conclude that

|ψ ′′

0 (s)| ≤
1
q

+
√

B sup
s∈(q,∞)

K0(
√

B)
|K ′

0(δ)|
≤

1
q

+
√

B
K0(δ)

|K ′

0(δ)|
,

where we have used that K ′

0(z) < 0, where z > 0. Thus

sup
s∈(q,∞)

|ψ ′′

0 (s)| ≤
1
q

+
√

B O(δ ln δ) as δ → 0.

We will now prove iteratively the existence of ψk , the estimates (A–36) and
(A–38), and the formula (16) for ψk if k ≥ 1.

Let K0(z) and I0(z) be the modified Bessel functions of second kind of or-
der zero. Concerning properties of the Bessel functions K0(z) and I0(z), see
[Abramowitz and Stegun 1964] and the considerations in [Siegel 1980].

For k ∈ N, set

f := fk−1,k(ψ
′

0, . . . , ψ
′

k−1), F := −
1
s
(s f )′, η := (−1)k

(
−

1
2
k

)
.

Any solution of the differential equation (A–40) can be written as

(A–42) ψ(s)=

(
c1 −

∫ s

q
t I0(

√
Bt)F(t) dt

)
K0(

√
Bs)

+

(
c2 +

∫ s

q
t K0(

√
Bt)F(t) dt

)
I0(

√
Bs),
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where c1, c2 ∈ R. From the boundary conditions (A–41) it follows that

c2 = −

∫
∞

q
t K0(

√
Bt)F(t) dt,(A–43)

c1 =
1

√
BK ′

0(δ)

(
η+

√
B I ′

0(δ)

∫
∞

q
t K0(

√
Bt)F(t) dt

)
.(A–44)

Since

f0,1(ψ
′

0)=
1
2

(
ψ ′

0(t)
)3

=
1
2

(
K ′

0(δ)
)−3(K ′

0(
√

Bt)
)3
,

we expect that fk−1,k is a sum of such products too.

Definition. A function f (t) is said to be of type (SP) if

(i) there exists an M ∈ N such that f can be written as

f (t)=

M∑
l=1

Al(δ)Bl(
√

Bt),

where Al, Bl ∈ C∞(0,∞),

(ii) there is a kl ∈ N ∪{0} such that Al(δ)= δkl P(δ, ln δ), Bl(δ)= δ−kl P(δ, ln δ)
as δ → 0, where the expression P(δ, ln δ) is explained in Definition 3.1, and

(iii) Bl(u)= O(e−2u) as u → ∞.

Suppose f is of type (SP). Applying (A–42)–(A–44), we find

(A–45) ψ(s)=
1

√
B

(
F1(δ,

√
Bs)K0(

√
Bs)+ F2(δ,

√
Bs)I0(

√
Bs)

)
,

where

F1 :=
η

K ′

0(δ)
+

I ′

0(δ)

K ′

0(δ)

(∑
l

Al(δ)

∫
∞

δ

uK ′

0(u)Bl(u) du + δK0(δ)
∑

l

Al(δ)Bl(δ)

)

−

∑
l

Al(δ)

∫ √
Bs

δ

uI ′

0(u)Bl(u) du +
√

Bs I0(
√

Bs)
∑

l

Al(δ)Bl(
√

Bs)

− δ I0(δ)
∑

l

Al(δ)Bl(δ)

and

F2 := −

∑
l

Al(δ)

∫
∞

√
Bs

uK ′

0(u)Bl(u) du −
√

Bs K0(
√

Bs)
∑

l

Al(δ)Bl(
√

Bs).

The derivative ψ ′ is given by

(A–46) ψ ′(s)= F1(δ,
√

Bs)K ′

0(
√

Bs)+ F2(δ,
√

Bs)I ′

0(
√

Bs).
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We conclude from (A–46) that ψ ′

k is of type (SP), provided the function f :=

fk−1,k(ψ
′

0, . . . , ψ
′

k−1) is of type (SP). Property (i) of the definition follows imme-
diately from formula (A–46). We omit here the considerations that (ii) and (iii) are
also satisfied. Then fk,k+1(ψ

′

0, . . . ψ
′

k) is of type (SP) since

fk,k+1(ψ
′

0, . . . , ψ
′

k)=
1

(2k + 3)!
d2k+3gk

dρ2k+3 (0)

=

∑
∑k

l=0(2αl+1)tl=2k+3

rk,α,t(ψ
′

α0
)t0 . . . (ψ ′

αk
)tk ,

where α= (α0, . . . , αk), t = (t0, . . . , tk), αl, tl ∈ N∪{0} and rk,α,t ∈ R. We recall

that gk(ρ)= v′

k/

√
1 + (v′

k)
2 and v′

k =
∑k

l=0 ψ
′

lρ
2l+1.

Finally, we find iteratively from (A–45), (A–46) and the differential equation
(A–40) that the estimates (A–36), (A–38) for ψ ′

k , ψ ′′

k hold and that
√

Bψk(B, q; q)= P(δ, ln δ)

(see Proposition 3.2).

A.3. Composing of the inner and outer solutions. Set q := B−τ for some τ ∈

(0, 1
2). Then we will show that there is a solution ε ∈ (− 1

4 ,
1
4) of equation (17),

that is of G(ε)= 0, where

G(ε) :=
2εb0

B(q2 − 1)
+

m∑
k=0

φk(q, b, ε; q)Bk
−

1
√

B

n∑
k=0

wk(δ)ρ
2k+1.

Here is δ =
√

Bq , b1 = b0(1 + ε)/q and ρ = ρ(b0, q, ε) is given by (14). In
particular,

ρ = b1 + O(b2n+3
1 )=

b0(1 + ε)

q
+ O

(
b0

q2n+3

)
as q → ∞. The existence of a zero of the continuous function G(ε) follows from
the intermediate value theorem. Propositions 2.1 and 3.2 imply

G(ε)=
2εb0

B(q2 − 1)
+φ0(q, b0, ε; q)+ O(b0q2(ln q)2 B)

−
1

√
B

(
w0(δ)ρ+ O

(
b0

q3 δ(ln δ)
l
))

for some l ∈ N∪{0}. Since, by Proposition 2.1 and the formula for φ0,0 (page 307),
we have

φ0(q, b0, ε; q)= φ0,0(q, b0; q)+ O(b0ε ln q)

=
1
2 b0 + O

(
b0

ln q
q2

)
+ O(b0ε ln q)
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and

w0(δ)=
K0(δ)

K ′

0(δ)
= δ

(
ln δ+ γ − ln 2 + O(δ2(ln δ)2)

)
as δ → 0, it follows that

G(ε)=
2εb0

δ2 +
b0

2
−b0(ln δ+γ − ln 2)+ O

(
b0
ε

δ

1
q2

)
+ O

(
b0

ln q
q2

)
+ O(b0ε ln q)

+ O(b0q2(ln q)2 B)+ O(b0δ
2(ln δ)2)+ O(b0ε ln δ)+ O

(
b0(ln δ)l

1
q2

)
.

For R real, |R| ≤ 1, set

ε(R) :=
1
2δ

2 ln δ+
1
2(γ − ln 2 −

1
2)δ

2
+ Rδ2.

then |ε| < 1
4 if δ < δ0, for δ0 sufficiently small. We have G(ε(1)) > 0 and

G(ε(−1)) < 0 if 0< δ < δ0, for δ0 sufficiently small.
Finally, we obtain from G(ε(R))= 0 an estimate of R. Since

R = O
(

1
q2 ln δ

)
+ O

(
ln q
q2

)
+ O(δ2 ln δ ln q)+ O(δ2(ln δ)2)+ O

(
1
q2 (ln δ)

l
)
,

we find

R ≡ R(b0, B, B−τ )= O
(
(ln B)k+1 B2τ )

+ O
(
(ln B)2 B1−2τ )

uniformly in b0 ∈ [−1, 1]. Thus, Proposition 4.1 is shown.
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CAPILLARY SURFACES AT A REENTRANT CORNER

DANZHU SHI

A capillary surface expressible as a graph over a domain containing a pro-
truding corner can exhibit strikingly varying behavior, with discontinuous
transitions, depending on local boundary conditions. Korevaar in 1980
showed that very different kinds of behavior must be expected when the
corner opening exceeds π , and later Lancaster and Siegel extended that re-
sult to indicate a remarkable range in the kinds of behavior that can occur.
This work characterizes all possible modes of behavior for this case, subject
to a conjecture of Concus and Finn for the protruding angle case.

1. Introduction

A capillary surface S is the interface separating two immiscible fluids adjacent
to each other. In this work we discuss interfaces that are ideally thin and can be
represented as graphs f (x, y) over a base domain �. We only consider equilib-
rium configurations. As shown initially by Laplace, for incompressible fluids in
a vertical cylinder (a capillary tube), the shape of the surface is governed by the
equation

∇ · T f = κ f + λ in �,(1)

T f · ν = cos γ on ∂�,(2)

where T f is defined as ∇ f/(
√

1 + |∇ f |2) and κ=ρg/σ is the capillarity constant,
with ρ the density change across the surface, g the gravitational attraction, and
σ the surface tension of the interface. The constant λ is a Lagrange parameter
arising from a possible volume constraint, ν is the exterior normal vector on ∂�,
and γ = γ (s) is a function of position on ∂�, satisfying 0 ≤ γ (s) ≤ π . The
surface z = f (x, y) describes the shape of the static liquid-gas interface in a vertical
cylindrical tube of bounded cross-section �. In this paper, we assume κ > 0,
corresponding to the case of a vertically downward gravity field, with the denser
fluid below the surface.

MSC2000: primary 76B45; secondary 35J65, 53A10.
Keywords: capillary surfaces, reentrant corner, corner behavior, Concus–Finn conjecture.
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�O

61

62

0

Figure 1. Reentrant wedge domain.

I will address the particular case in which � is a wedge domain with a reentrant
corner. Specifically, I will assume that the corner of the wedge is the origin O of
coordinates, and ∂� consists of three smooth portions:

0 = {(cosϕ, sinϕ) : −α ≤ ϕ ≤ α},

61 = {(ρ cosα, ρ sinα) : 0< ρ < 1},

62 = {(ρ cosα,−ρ sinα) : 0< ρ < 1}.

See Figure 1. 61 and 62 can be relaxed to only asymptotic straight lines when
approaching the origin. Let γ equal γ1(s), γ2(s) along the sides 61, and 62, re-
spectively, where s = 0 corresponds to the point O .

Capillary surfaces can exhibit strikingly idiosyncratic behavior at corner points
of the domain � of definition, as a consequence of the characteristic nonlinearities
in Equation (1). This was initially observed by Concus and Finn [1974b; 1974a;
1974]. Later this behavior was further delineated in [Simon 1980; Tam 1986a;
1986b; Lieberman 1988; Miersemann 1985; Concus and Finn 1994; 1996; Finn
1986; Lancaster and Siegel 1996; Shi and Finn 2004].

We take [Lancaster and Siegel 1996] as the starting point for this work. There
the authors considered the limiting values R f of f along radial approaches within
� to the vertex O . They showed that under very general hypotheses this limit
always exists, and they delineated various possibilities for its behavior in terms of
direction of approach to O . For protruding corners (opening angle 2α < π), their
results can be considered close to definitive, subject to a conjecture of Concus and
Finn. The present work addresses the complementary case of reentrant corners
(opening angle 2α > π ), for which the behavior can be very different.

We will proceed by indirect reasoning using methods of geometric measure
theory. In Section 3 we will introduce the concept of a generalized solution of the
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γ2

γ1

R
continuous

2α

2α = 7π/12

π − 2α

π − 2α

π

π

D+

1

D−

1
D+

2

D−

2

discontinuous

discontinuous

Figure 2. The Concus–Finn rectangle: regions in parameter space
corresponding to different behaviors at a convex corner of angle
2α. In regions D±

1 there is no bounded graph.

minimal surface equations in the sense of Miranda [1964]. In Section 4 we adapt
Giusti’s minimal cone theory [1977]. These two sections, together with some other
earlier results, will play an essential role later on in the proof of the main result.

At the end of this work, we distinguish various cases, according to the contact
angles γ1, γ2 on the two sides of the wedge domain formed near O . These cases
can be characterized geometrically, using a diagram analogous to one introduced
by Concus and Finn [1996] for the protruding angle case. We show the Concus–
Finn diagram in Figure 2. The central rectangle R is uniquely determined by the
angle 2α. Its vertices along the coordinate axes have coordinate π − 2α (in the
reentrant case the corresponding value will be 2α − π ; see Figure 3). The four
triangular regions are denoted D+

1 ,D−

1 ,D+

2 ,D−

2 .
A central new result of this paper is that, assuming the truth of the Concus–Finn

conjecture for the protruding angle case, any solution arising from data outside the
rectangle R is necessarily discontinuous at O for the reentrant angle case as well,
in the sense that different limit values must occur for different radial directions of
approach. We will completely characterize the ways in which the discontinuous
behavior can be manifested. This can change according to the particular domain
of the diagram where (γ1, γ2) lies.
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For a reentrant corner, data within R can lead to a discontinuous solution; this
contrasts with the protruding angle case, for which all solutions arising from such
data are known to be not only continuous but Hölder differentiable up to O .

2. The Concus–Finn diagram

We start by reviewing results and notation from [Lancaster and Siegel 1996], and
categorizing them using the Concus–Finn diagram.

Protruding wedge domains. Solutions can exist at corners for any data (γ1, γ2);
but for any transition from R to D±

1 across a common boundary point (γ ∗

1 , γ
∗

2 ),
there is a discontinuous change in behavior, from uniform boundedness at O of the
solution for all data up to and including (γ ∗

1 , γ
∗

2 ), to unboundedness for all data in
D±

1 , with asymptotic behavior depending only on the local geometry.
The radial limits of f at the vertex of the corner will be denoted by R f (θ) =

limr→0+ f (r cos θ, r sin θ),−α < θ < α and R f (±α) = limx,y→0 f (x, y) where
(x, y) ∈61,2, which are the limits of the boundary values of f on the two sides of
the corner.

Theorem 2.1 [Lancaster and Siegel 1996]. Let f be a bounded solution to (1)
satisfying the boundary condition (2) on ∂±� \ O , discontinuous at O , with 0 <
γ0 ≤ γ±(s)≤ γ1 <π . If α≥π/2, then R f (θ) exists for all θ ∈ [−α, α]. If α <π/2
and there exist constants γ± and γ± satisfying

0< γ±
≤ π/2, π/2 ≤ γ± < π, γ+

+ γ− > π − 2α, γ±
+ γ− < 2α+π,

so that γ±
≤ γ±(s) ≤ γ± for all s ∈ (0, s0) for some s0, then again R f (θ) exists

for all θ ∈ [−α, α]. Furthermore, in either case R f (θ) is a continuous function on
[−α, α] behaving in one of the following ways:

(i) There exist α1 and α2 so that −α ≤ α1 < α2 ≤ α and R f is constant on
[−α, α1] and [α2, α] and strictly increasing or strictly decreasing on [α1, α2].
Label these cases (I) and (D), respectively.

(ii) There exist α1, αL , αR, α2 so that −α ≤ α1 < αL < αR ≤ α, αR = αL + π ,
and R f is constant on [−α, α1], [αL , αR], and [α2, α] and either increasing on
[α1, αL ] and decreasing on [αR, α2] or decreasing on [α1, αL ] and increasing
on [αR, α2]. Label these cases (ID) and (DI), respectively.

Corollary 2.2 [Lancaster and Siegel 1996]. Let f be a bounded solution to (1)
satisfying

(3)
T f · ν = cos γ1 on 61,

T f · ν = cos γ2 on 62,



CAPILLARY SURFACES AT A REENTRANT CORNER 325

with constant γ1, γ2 ∈ (0, π). For α < π/2, assume in addition

π − 2α < γ1 + γ2 < π + 2α.

Then

Case (I) cannot hold if γ1 − γ2 ≤ π − 2α.

Case (D) cannot hold if γ2 − γ1 ≤ π − 2α.

For α > π/2, case (ID) cannot hold if γ1 + γ2 ≤ 3π − 2α.

For α > π/2, case (DI) cannot hold if γ1 + γ2 ≥ 2α−π .

Corollary 2.3 [Lancaster and Siegel 1996]. Let f be a bounded solution to (1)
satisfying (3), with γ1, γ2 ∈ (0, π), α < π/2, and (γ1, γ2) ∈ R, then f must be
continuous at O.

Concus and Finn have conjectured that for data from D±

2 , there could only be
discontinuous solutions.

Conjecture 2.4 (Concus–Finn). Suppose α < π/2, and (γ1, γ2) ∈ D±

2 (2α), then
the solution f has a discontinuity at the vertex O.

In this paper, everything is based on the assumption that Conjecture 2.4 is true.
First, as indicated in Figure 2, we can summarize the situation for a protruding

wedge domain in terms of the regions R, D±

1 , D±

2 :

• The pair (γ1, γ2) lies in R(2α) if and only if both f and its outward unit
normal are continuous up to O .

• For (γ1, γ2) ∈ D+

2 (2α), f must be a (D) case.

• For (γ1, γ2) ∈ D−

2 (2α), f must be an (I) case.

• For (γ1, γ2) ∈ D±

1 (2α), f is no longer a bounded graph near O .

Hence with this conjecture, we have completed categorizing the continuity of
the solutions at the corner of the domain in terms of the Concus–Finn diagram.

Reentrant wedge domains. We now develop parallel results for reentrant wedge
domains. When 2α = π , the boundary is smooth, which is not a case considered
in this paper.

Theorem 2.5. Assume α > π/2. Let f be a solution to (1) satisfying (3), with
γ1, γ2 ∈ (0, π).

(i) For (γ1, γ2) ∈ R(2α), f can be continuous at O or in one of the cases (I) or
(D).

(ii) For (γ1, γ2) ∈ D+

1 (2α), f can be in one of the cases (DI), (I), or (D).

(iii) For (γ1, γ2) ∈ D−

1 (2α), f can be in one of the cases (ID), (I), or (D).
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γ2

γ1

R
continuous, (D), (I)

2(π −α)

2(π −α)

π − 2α

π − 2α

π

π

D+

1

(DI), (I), (D)

D−

1

(ID), (I), (D)

D+

2

(D)

D−

2

(I)

Figure 3. Analogue of the Concus–Finn rectangle for reentrant wedges.

(iv) For (γ1, γ2) ∈ D+

2 (2α), f must be in case (D).

(v) For (γ1, γ2) ∈ D−

2 (2α), f must be in case (I).

In Section 6 we construct examples showing that each of these cases actually
occurs.

By Corollaries 2.2 and 2.3 we deduce:

(i′) For γ1, γ2 ∈ R(2α), f can only be continuous up to O , or be in case (I) or
(D).

(ii′) For γ1, γ2 ∈ D+

1 (2α), f cannot be in case (ID).

(iii′) For γ1, γ2 ∈ D−

1 (2α), f cannot be in case (DI).

(iv′) For γ1, γ2 ∈ D+

2 (2α), f can be continuous up to O , or be in case (D).

(v′) For γ1, γ2 ∈ D−

2 (2α), f can be continuous up to O , or be in case (I).

In other words, all that is left to prove is that continuity is excluded from the
D±

1 ,D±

2 regions, and that each of the cases can occur.

3. Generalized solutions

To discuss discontinuous capillary surfaces further, we introduce the definition
of generalized (or weak) solution of the minimal surface equations in the sense
of Miranda, and prove some results for capillary surfaces over a reentrant wedge
domain.
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�∞O

61

62

Figure 4. The infinite domain.

Set �∞ = {(ρ cosϕ, ρ sinϕ) : −α < ϕ < α, ρ > 0}. We redefine the symbols
for the boundary pieces (see Figure 4):

61 = {ρ > 0, ϕ = α},

62 = {ρ > 0, ϕ = −α}

Definition 3.1. A function u :�∞ → [−∞,∞] is called a generalized solution of
the equations

(4)

∇ · T u = 0 in �∞,

T u · ν = cos γ1 on 61,

T u · ν = cos γ2 on 62

if the subgraph of u defined by

U = {(x, y, z) : (x, y) ∈�∞, z < u(x, y)}

minimizes the functional∫
�∞×R

|DϕU | − cos γ1

∫
61×R

ϕU dH2 − cos γ2

∫
62×R

ϕU dH2,

where ϕU is the characteristic function of U and H2 is 2-dimensional Hausdorff
measure in R3. That means that for every Caccioppoli set (set of locally finite
perimeter) E ⊂�∞ × R coinciding with U outside some compact set K ⊂ R3 we
have

(5) W (K ,U )≤ W (K , E),

where

W (K ,U )=
∫
(�∞×R)∩K

|DϕU |−cos γ1

∫
(61×R)∩K

ϕU dH2−cos γ2

∫
(62×R)∩K

ϕU dH2

and likewise for W (K , E).
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A sequence of functions vn is said to converge locally to a function v in a domain
� if the characteristic functions of the subgraphs of vn converge almost everywhere
to the characteristic function of the subgraph of v in �× R.

The function u is allowed to take the values ±∞. It follows from [Miranda 1964]
that every classical solution of equations (4) is a generalized solution; conversely,
every locally bounded generalized solution is a classical solution of equations (4).

We introduce the sets

P(u)= {(x, y) ∈�∞ : u(x, y)= +∞},

N (u)= {(x, y) ∈�∞ : u(x, y)= −∞},

G(u)=�∞ − (P(u)∪ N (u)).

It follows that P minimizes the functional

8(A)=

∫∫
�∞

|DχA| − cos γ1

∫
61

χA dH1 − cos γ2

∫
62

χA dH1

= H1(�∞ ∩ ∂A)− cos γ1 H1(61 ∩ ∂A)− cos γ2 H1(62 ∩ ∂A)

in �∞, where H1 is 1-dimensional Hausdorff measure in R2.
Similarly, N minimizes the functional

9(A)=

∫∫
�∞

|DχA| + cos γ1

∫
61

χA dH1 + cos γ2

∫
62

χA dH1

= H1(�∞ ∩ ∂A)+ cos γ1 H1(61 ∩ ∂A)+ cos γ2 H1(62 ∩ ∂A)

After modification by a set of measure zero, the two sets

∂P ∩�∞ and ∂N ∩�∞

consist of straight lines that do not intersect inside of �∞. Moreover:

Lemma 3.2. (i) Let L be the portion of ∂P which lies inside �∞. Suppose L
is not empty, then L is a straight line which either meets 6i in an angle γi ,
or passes through the point O meeting the sides in angles βi with βi ≥ γi ,
i = 1, 2. Here the angles βi are measured inside P.

(ii) Let L ′ be the portion of ∂N which lies inside �∞. Suppose L ′ is not empty,
then L ′ is a straight line which either meets 6i in an angle π − γi provided
that6i ∩∂N 6= ∅, or passes point O in an angle ϑi with ϑi ≥ π−γi , i = 1, 2.
Here the angles ϑi are measured inside N.

From now on consider specifically the reentrant corner domain. For this case
we can also say:
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Theorem 3.3. Suppose v is a generalized solution of (4) on �∞ with α > π/2.
The P, N ,G regions of v are as defined at the beginning of this section. Assume P
and N are nonempty.

(i) Each component of ∂P ∩�∞ and ∂N ∩�∞ is infinite.

(ii) Suppose a component of P or N has two boundary lines inside�∞. The lines
either meet on ∂�∞, or their extensions meet outside �∞, with an angle η,
measured from the side containing P , or N respectively. Then η ≥ π .

(iii) There are at most two components of ∂P ∩�∞, or ∂N ∩�∞.

Proof. (i) No line segment inside �∞ can meet both sides of a reentrant corner
domain.

(ii) We work by contradiction. Suppose there is a component of P which has two
boundary lines inside �∞. Their extension lines meet with an angle η < π . See
Figure 5. Comparing P with P − O AC DB, we get AC − O A cos γ1 + B D −

O B cos γ2 ≤ C D. Hence, successively,

AC + AE + B D + B E ≤ C D + O A cos γ1 + O B cos γ2 + AE + B E,

C E + DE − C D ≤ AE + B E + O A cos γ1 + O B cos γ2.

Move C D to infinity, parallel to itself. Then C E + DE − C D → ∞, while
AE + B E + O A cos γ1 + O B cos γ2 remains fixed. Contradiction.

(iii) If ∂P∩�∞ has a whole line as a component, there must be no other component.
Because of (ii), it is easy to see ∂P ∩�∞ cannot contain three or more half-lines.

�

O

P

B

A

D

E

C

η

Figure 5. Proof of Theorem 3.3. Impossible case for P .
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The following theorem describes the structure of the infinite sets P and N , the
proof of the theorem is similar to [Tam 1986a, Theorem 2.4].

Corollary 3.4. Under the assumptions of Theorem 3.3, the only possibilities for P
other than ∅, �∞ are the ones shown in Figure 6, namely:

(i) P consists of a single component, which is bounded between 61 and a line
L1 with an opening angle β1. L1 meets 61 at point A. Either A ∈ 61 and
β1 = γ1, or A = O and β1 ≥ γ1.

O

P

O
P

γ1

γ2

A

B

(i)

(iii)

O

P

O

P

P

γ1

γ2

A

B

(ii)

(iv)

L

Figure 6. All possibilities for the region P .



CAPILLARY SURFACES AT A REENTRANT CORNER 331

C

A

P

D

B

P
A

C
D

B

P

A

C
D

B

Figure 7. Impossible cases for the region P .

(ii) P consists of two components. On is bounded between 61 and a line L1 with
an opening angle β1 and the other is bounded between 62 and a line L2 with
an opening angle β2. For i = 1, 2, suppose L i meets 6i at point Ai . Either
Ai ∈6i and βi = γi , or Ai = O and βi ≥ γi .

(iii) P consists of a single component, which is bounded by 61, O B ⊂ 62, and
line L2 which meets 62 at point B with an opening angle γ2.

(iv) There is a whole line L which lies inside �∞ and P is either the region
bounded by ∂�∞ and L , or the half plane bounded by L.

Proof. Again we work by contradiction.
From Theorem 3.3 we obtain that P has at most two components. All the pos-

sibilities for the structure of P are indicated in Figures 6 and 7.
Next we prove that those cases in Figure 7 are impossible. Compare P with

P − AB DC in that figure. By definition,

8(P)≤8(P − AB DC) and 2|AC | ≤ 2|AB|.

Moving C D to infinity, parallel to itself, we get ∞ ≤ |AB|. Contradiction. �

4. Radial linearity

In this section, we extend Giusti’s work on minimal graphs [1977] to general H-
graphs. We use the “blow-up” procedure to expand the capillary surface about 0
and show that the limit set C exists and that C is a minimal cone. Furthermore,
this limit cone is unique.

The results in this section apply for any n-dimensional space. However, for our
specific problem (1), we only need to consider n = 3.



332 DANZHU SHI

Definition 4.1. Suppose �∞ is the wedge domain in R2 defined as before. Define

Q =�∞ × R, δQ = ∂�∞ × R.

Now suppose K is any open set in R3. Define

δK = δQ ∩ K , δ∗K = Q ∩ ∂K .

Denote by BV(K ) the space of functions of bounded variation on K .

Definition 4.2. If f ∈ BV(K ), set

FK ( f )=

∫
Q∩K

|D f | −

∫
δK

cos γ · f dH2

ζ( f, K )= inf{FK (g) : g ∈ BV(K ), supp(g − f )⊂ K },

ψ( f, K )= FK ( f )− ζ( f, K ).

If f is the characteristic function of some set E with finite perimeter, we shall
write FK (E), ν(E, K ) and ψ(E, K ) instead of FK (ϕE), ν(ϕE , K ) and ψ(ϕE , K ).

Definition 4.3. A set E is a minimal in K if ψ(E, K )= 0.

Definition 4.4. We call C a cone in R3 if

C = {t (x, y, z) : t ≥ 0, (x, y, z) ∈ A},

for some set A ∈ R3.

This is the main theorem of this section.

Theorem 4.5. Suppose that E minimizes the functional

FB1(W )+

∫
Q∩B1

HϕW ,

for some H uniformly bounded on B1, such that 0 ∈ ∂E. For t > 0, let

Et = {x ∈ R3
: t x ∈ E}.

Then as t → 0, Et converges locally in R3 to a set C. Moreover, C is a minimal
cone.

In the rest of this section, we adopt the notation of trace in the sense of [Giusti
1977, Chapter 2]: f − is the trace of f from above z = 0, and f + is the trace from
below.

To prove Theorem 4.5 we need some lemmas. The first is an adaptation of
[Giusti 1977, Lemma 5.3].



CAPILLARY SURFACES AT A REENTRANT CORNER 333

Lemma 4.6. Let f ∈ BV(BR) and let 0< ρ < r < R. Then∫
δ∗ B1

| f −(r x)− f −(ρx)| dH2 ≤

∫
Q∩(Br −Bρ)

∣∣∣〈 x
|x |3

, D f
〉∣∣∣.

Proof. If g ∈ C1(A; R3), then
∫

A |〈g, D f 〉| is the total variation in A of the measure
〈g, D f 〉; that is ,∫

A |〈g, D f 〉| = sup
{∫

f ∇ · (µg) dx : µ ∈ C1
0(A), |µ| ≤ 1

}
.

Now set g(x)= x/|x |
3 and let h be any C1 function. Define α by

α(x)= h(x/|x |).

Then (∇ ·αg)= 0 in R3
− {0}, so from [Giusti 1977, 2.14] we have∫

Q∩(Br −Bρ)
α〈g, D f 〉 =

∫
δ∗ Br

α f −

〈
g,

x
|x |

〉
dH2 −

∫
δ∗ Bρ

α f +

〈
g,

x
|x |

〉
dH2

+

∫
δ(Br −Bρ)

α f −
〈g, En〉 dH2

= r−2
∫
δ∗ Br

α f − dH2 − ρ−2
∫
δ∗ Bρ

α f + dH2

=

∫
δ∗ B1

h(x)
(

f (r x)− f (ρx)
)

dH2,

where En is the outward unit normal of δ(Br −Bρ). (Recall that 〈x, En〉= 0 anywhere
on δK .)

Next we restrict h so that |h(x)| ≤ 1 and hence |α(x)| ≤ 1. By the definition of∫
A |〈g, D f 〉|, we have∫

δ∗ B1

h(x)[ f −(r x)− f +(ρx)] dH2 ≤

∫
Q∩(Br −Bρ)

|〈g, D f 〉|

for any function h such that h is C1 and |h| ≤ 1.
Now for almost all ρ < r we have

∫
δ∗ Bρ

|D f | = 0 and f +
= f −

= f , by [Giusti
1977, Remark 2.13], so that

(6)
∫
δ∗ B1

h(x)[ f −(r x)− f −(ρx)] dH2 ≤

∫
Q∩(Br −Bρ)

|〈g, D f 〉|

for almost all ρ < r . Thus if we take any ρ < r , we can choose a sequence {ρ j } such
that ρ j → ρ, (6) holds for each ρ j and f −(ρ j x)→ f −(ρx) in L1(∂B1). Taking
the limit as j → ∞ we obtain (6) for every ρ < r . Now on taking the supremum
over all h with |h| ≤ 1 we arrive at the desired inequality. �

The next three results correspond to [Giusti 1977, Lemmas 5.5, 5.6, 5.8].



334 DANZHU SHI

Lemma 4.7. Suppose f ∈ BV(BR) and ρ < R. If {ρ j } is a sequence such that
ρ j ≤ ρ and ρ j → ρ, then

lim
j→∞

ζ( f, Bρ j )= ζ( f, Bρ) and lim
j→∞

ψ( f, Bρ j )= ψ( f, Bρ).

Proof. Given ε > 0, by the definition of ζ( f, Bρ) we can choose a function g ∈

BV(Bρ) such that supp(g − f )⊂ Bρ and

FBρ (g)≤ ζ( f, Bρ)+ ε.

For j large enough we have supp(g − f )⊂ Bρ j and hence

FBρ (g)≥ FBρ j
(g)−

∫
δ(Bρ−Bρ j )

cos γ ·g dH2 ≥ ζ( f, Bρ j )−

∫
δ(Bρ−Bρ j )

cos γ ·g dH2.

Since ε > 0 is arbitrary,

ζ( f, Bρ)≥ lim sup
j→∞

ζ( f, Bρ j ).

On the other hand, for j ∈ N , we can choose g j ∈ BV(Bρ) such that g j − f is
supported in Bρ j and

ζ( f, Bρ j )+
1
j

≥ FBρ j
(g j ).

Also notice that
FBρ j

(g j )= FBρ (g)− FBρ−Bρ j
( f ),

so we have
ζ( f, Bρ j )+

1
j

≥ ζ( f, Bρ)− FBρ−Bρ j
( f )

and therefore
lim sup

j→∞

ζ( f, Bρ j )≥ ζ( f, Bρ).

Thus we have proved the first equation. The second follows immediately from

lim
j→∞

FBρ j
( f )= FBρ ( f ). �

Lemma 4.8. Suppose f, g ∈ BV(BR) and ρ < R. Then

|ζ( f, Bρ)− ζ(g, Bρ)| ≤

∫
δ∗ Bρ

| f −
− g−

| dH2.

Proof. Since the equality to be proved is symmetric in f and g, it is sufficient to
show that

ζ( f, Bρ)− ζ(g, Bρ)≤

∫
δ∗ Bρ

| f −
− g−

| dH2.

Given ε > 0, we can choose ϕ ∈ BV(BR) such that supp(ϕ− f )⊂ Bρ and

FBρ (ϕ)≤ ζ( f, Bρ)+ ε.
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Let {ρ j } be a sequence such that ρ j ≤ ρ, ρ j → ρ,∫
∂Bρ j

|D f | =

∫
∂Bρ j

|Dg| = 0

and supp( f −ϕ)⊂ Bρ j . For every j , define

g j =

{
ϕ in Bρ j ,

g in BR − Bρ j .

Then, by [Giusti 1977, Proposition 2.8], we have g j ∈ BV(BR) and

ζ(g, Bρ)

≤ FBρ (g j )

=

∫
Q∩Bρ

|Dg j | −

∫
δBρ

cos γ · g j dH2

=

∫
Q∩Bρ j

|Dϕ| +

∫
Q∩(Bρ−Bρ j )

|Dg| +

∫
δ∗ Bρ j

|ϕ−g| dH2 −

∫
δBρ

cos γ · g j dH2

≤

(∫
Q∩Bρ

|Dϕ| −

∫
δBρ

cos γ ·ϕd N2

)
+

∫
Q∩(Bρ−Bρ j )

|Dg| +

∫
δ∗ Bρ j

|ϕ−g| dH2

+

∫
δBρ

cos γ (ϕ−g j ) dH2

= FBρ (ϕ)+

∫
Q∩(Bρ−Bρ j )

|Dg| +

∫
δ∗ Bρ j

| f −g| dH2 +

∫
δBρ

cos γ (ϕ−g j ) dH2

≤ ζ( f, Bρ)+ε+

∫
Q∩(Bρ−Bρ j )

|Dg|+

∫
δ∗ Bρ j

| f −g| dH2 +

∫
δBρ

cos γ (ϕ−g j ) dH2.

As ε > 0 is arbitrary and the terms
∫

Q∩(Bρ−Bρ j )
|Dg| and

∫
δBρ

cos γ (ϕ−g j ) dH2

vanish as j → ∞, the lemma follows by taking the limit. �

Lemma 4.9. Suppose f ∈ BV(BR) and 0< ρ < r < R. Then

(7)
(∫

Qr
ρ

∣∣∣〈 x
|x |3

, D f
〉∣∣∣)2

≤

(
r−2 FBr ( f )− ρ−2 FBρ ( f )+ 2

∫ r

ρ

t−3ψ( f, Bt) dt
)

×2
∫

Qr
ρ

|x |
−2

|D f |,

where Qr
ρ = Q ∩ (Br − Bρ).

Proof. Suppose first that f ∈ C1(BR) and then, for 0< t < R, define

ft(x)=

{
f (x) for t < |x |< R,

f (t x/|x |) for |x |< t.
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Then we have∫
Q∩Bt

|D ft | dx =
t
2

∫
δ∗ Bt

|D f |

(
1 −

〈x, D f 〉
2

|x |2|D f |2

)1/2

dH2,∫
δBt

cos γ · ft dH2 =
t
2

∫
δ(∂Bt )

cos γ · f d H1

which is to say

FBt ( ft)=
t
2

(∫
δ∗ Bt

|D f |

(
1 −

〈x, D f 〉
2

|x |2|D f |2

)1/2

dH2 −

∫
δ(∂Bt )

cos γ · f d H1

)
,

and hence

ζ( f, Bt)= FBt ( f )−ψ( f, Bt)

≤ FBt ( ft)

≤
t
2

(∫
δ∗ Bt

|D f | dH2 −
1
2

∫
δ∗ Bt

〈x, D f 〉
2

|x |2|D f |
dH2 −

∫
δ(∂Bt )

cos γ · f d H1

)
and

1
2 t−2

∫
δ∗ Bt

〈x, D f 〉
2

|x |2|D f |
dH2 ≤

d
dt

(
t−2 FBt ( f )

)
+ 2t−3ψ( f, Bt).

Now integrating with respect to t between ρ and r , we have

1
2

∫
Q∩(Br −Bρ)

〈x, D f 〉
2

|x |4|D f |
dx ≤ r−2 FBr ( f )− ρ−2 FBρ ( f )+ 2

∫ r

ρ

t−3ψ( f, Bt) dt.

On the other hand, from the Schwarz inequality we have(∫
Q∩(Br −Bρ)

∣∣∣〈 x
|x |3

, D f
〉∣∣∣ dx

)2

≤

∫
Q∩(Br −Bρ)

|D f |

|x |2
dx

∫
Q∩(Br −Bρ)

〈x, D f 〉
2

|x |4|D f |
dx,

so Equation (7) holds for f ∈ C1(BR).
Now suppose that f ∈ BV(BR). By [Giusti 1977, Remarks 2.12 and 2.13] we

can approximate f by C1 functions fk such that∫
Q∩Bt

|D fk | →

∫
Q∩Bt

|D f | and
∫
∂(Q∩Bt )

| f − fk | dH2 → 0

for almost all t . If we write (7) for fk and observe that, by Lemma 4.8,ψ( fk, Bt)→

ψ( f, Bt), we see that (7) holds for f ∈ BV(BR) and almost all ρ, r . Finally we
obtain (7) for every ρ and r by approximating with increasing sequences {ρ j } → ρ

and {r j } → r for which (7) holds. �

Remark 4.10. By approximating at the final step with sequences decreasing to r
and ρ we obtain (7) with Br , Bρ instead of Br and Bρ .
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Remark 4.11. From (7) it follows that, for every ρ < r ,

(8) ρ−2 FBρ ( f )≤ r−2 FBr ( f )+ 2
∫ r

ρ

t−3ψ( f, Bt) dt.

In particular, ψ( f, Br )= 0 implies ρ−2 FBρ ( f )≤ r−2 FBr ( f ). Hence ρ−2 FBρ is an
increasing function of ρ.

The next result is adapted from [Giusti 1977, Lemma 9.1].

Lemma 4.12. Let K be an open set in R3, and let {E j } be a sequence of Cacciop-
poli sets such that

lim
j→∞

ψ(E j , A)= 0 for all A b K .

Suppose that there exists a set E such that

ϕE j → ϕE in L1
loc(K ).

Then E is a minimal set in K , that is,

ψ(E, A)= 0 for all A b K .

Moreover, if L b K is such that
∫
δ∗L |DϕE | = 0, we have

lim
j→∞

FL(E j )= FL(E).

Proof. Let A b K . We may suppose that ∂A is smooth, so that for every j ,

FA(E j )= ζ(E j , A)+ψ(E j , A)≤ FA(E j − A◦)+ψ(E j , A)

≤ H2((δ
∗ A)∩ E j )+ψ(E j , A)≤ H2(δ

∗ A)+ψ(E j , A).

By [Giusti 1977, Theorem 9.1],

FA(E)≤ lim inf
j→∞

FA(E j )≤ H2(δ
∗ A).

For t > 0, set
At = {x ∈ K : dist(x, A) < t}.

We have

lim
j→∞

∫
Q∩At

|ϕE j −ϕE | dx = 0

so there exists a subsequence {Ek j } such that, for almost every t close to 0,

lim
j→∞

∫
δ∗ At

|ϕEk j
−ϕE | dH2 = 0.
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From Lemma 4.8 we have lim j→∞ ζ(Ek j , At)= ζ(E, At) for these values of t ,
and therefore from [Giusti 1977, Theorem 1.9] we get

ψ(E, At)= 0.

Now let L b K be such that ∫
δ∗L

|DϕE | = 0,

and let A be a smooth open set with L b A b K . Let {F j } be any subsequence of
{E j }. Reasoning as above we can find a set At and a subsequence {Fk j } such that

lim
j→∞

ζ(Fk j , At)= ζ(E, At).

Since lim j→∞ ψ(Fk j , At)= ψ(E, At)= 0 we have

lim
j→∞

FAt (Fk j )= FAt (E),

and hence from [Giusti 1977, Proposition 1.13]:

lim
j→∞

FL(Fk j )= FL(E). �

Proof of Theorem 4.5. We first prove the conclusion for every sequence {t j } tending
to zero; that is, for every sequence {t j } tending to zero there exists a subsequence
{s j } such that Es j converges locally in R3 to a set C . Moreover C is a minimal
cone.

Then we will prove that this limit cone C does not depend on the specific se-
quence {s j }, and hence is the limit for Et .

Suppose t j → 0. We show that for every R > 0 there exists a subsequence {σ j }

such that Eσ j converges in BR . We have

FBR (Et)=
1
t2 FBt R (E),

so choosing t sufficiently small (so that t R < 1 and t < 1), we guarantee that Et

minimizes

FBR (Et)+ t
∫

Q∩BR

HϕEt ≤ H2(δ
∗BR)+ t M · H3(Q ∩ BR)= 4αR2

+ t M ·
4
3αR3,

where |H |< M .
Hence, by [Giusti 1977, Theorem 1.19] on compactness, a subsequence Eσ j will

converge to a set CR in BR . Taking a sequence Ri → ∞ we obtain, by means of
a diagonal process, a set C ⊂ R3 and a sequence {s j } such that Es j → C locally.
Now applying Lemma 4.12, we see that C is minimal and it remains only to show
that C is a cone.
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Also by Lemma 4.12 we have

FBR (Es j )→ FBR (C) for almost all R > 0.

Hence if we define

p(t)=
1
t2 FBt (E)+

16
3
αt M = FB1(Et)+

16
3
αt M,

we have, for almost all R > 0,

lim
j→∞

p(s j R)=
1
R2 FBR (C).

Moreover,

ψ(E, Bt)= FBt (E)− ζ(E, Bt)= FBt (E)+
∫

Q∩Bt

HϕE −

∫
Q∩Bt

HϕE − ζ(E, Bt).

By the definition of ζ , we can say for all ε > 0, there is a Caccioppoli set Eε
satisfying supp(ϕEε −ϕE)⊂ Bt and 0< FBt (Eε)− ζ(E, Bt) < ε. Hence,

ψ(E, Bt)≤ FBt (Eε)+
∫

Q∩Bt

HϕEε −

∫
Q∩Bt

HϕE − ζ(E, Bt)

≤

∫
Q∩Bt

H(ϕEε −ϕE)+ ε ≤
8
3
αMt3

+ ε.

Then, by (8) and letting ε→ 0, we get

ρ−2 FBρ (E)+
16
3 αMρ ≤ r−2 FBr (E)+

16
3 αMr,

so that p(t) is increasing in t .
If ρ < R, there exists for every j an m j > 0 such that s jρ > s j+m j R. Thus

p(s j+m j R)≤ p(s jρ)≤ p(s j R), so that

lim
j→∞

p(s jρ)= lim
j→∞

p(s j R)=
1
R2 FBR (C).

Thus we have proved that
1
ρ2 FBρ (C)

is independent of ρ and so, from Lemmas 4.6, 4.8 and 4.9, we conclude that∫
δ∗ B1

∣∣ϕC(ρx)−ϕC(r x)
∣∣ dH2 = 0

for almost all ρ, r > 0. Hence the set C differs only on a set of measure zero from
a cone with vertex at the origin.
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Now suppose we have two sequences {s j } and {s ′

j } that give us two minimal cones
in the limit, C and C ′. Recall that p(t) is increasing in t . Therefore R−2 FBR (C)
is independent of both R and C ; that is, for almost all R,

lim
t→0

p(t)=
1
R2 FBR (C)=

1
R2 FBR (C

′).

As on the previous page, we apply Lemmas 4.6, 4.8 and 4.9 to the set E and
get, for s j > s ′

k ,(∫
δ∗ B1

|ϕE(s j x)−ϕE(s ′

k x)| dH2

)2

≤ 2
∫

Q∩(Bs j −Bs′k
)

|DϕE |

|x |2

(
s−2

j FBs j
(E)− s ′

k
−2 FBs′k

(E)+ 2
∫ s j

s′

k

t−3ψ(ϕE , Bt) dt
)

≤ 2
∫

Q∩(Bs j −Bs′k
)

|DϕE |

|x |2

(
FB1(Es j )− FB1(Es′

k
)+

16
3
αM(s j − s ′

k)

)
.

Suppose j, k → ∞. We have∫
δ∗ B1

|ϕE(s j x)−ϕE(s ′

k x)| dH2 → 0;

that is, ∫
δ∗ B1

|ϕEs j
(x)−ϕEs′k

(x)| dH2 → 0,

which implies ∫
δ∗ B1

|ϕC(x)−ϕC ′(x)| dH2 = 0.

Hence C and C ′ are almost equal, completing the proof of the theorem. �

5. Continuity at a reentrant wedge

We now prove the well-definedness of a new boundary condition and we subdivide
the reentrant wedge domain along the new boundary to get two protruding wedge
domains, which enables us to apply Concus–Finn conjecture to prove the main
theorem.

First we introduce a uniformity lemma for P , N :

Lemma 5.1 [Finn 1986, Lemma 7.1]. Suppose we have a wedge domain �∞ with
2α≥π . A sequence of functions { f j } converges locally to a generalized solution of
the corresponding minimal surface problem, f . Denote their subgraphs as V j and
V , respectively. Then for some point (x0, y0) ∈ �, there exists r0 > 0 and C > 0
not depending on j such that for all t ∈ R, the following is true:
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If
∣∣V ′

j,r (x0, y0, t)
∣∣> 0 and

∣∣V j,r (x0, y0, t)
∣∣> 0 for all r > 0, then

|V j,r (x0, y0, t)| ≥ Cr3 and |V ′

j,r (x0, y0, t)| ≥ Cr3

for all 0< r ≤ r0, where

Cr (x0, y0, t0)=
{
(x, y, t) ∈ R3

: dist((x, y), (x0, y0)) < r, |t − t0|< r
}
,

V ′

j,r (x0, y0, t)= Cr (x0, y0, t)− V j .

Lemma 5.2 [Chen et al. 1998, Lemma 6.1]. If f is a classical minimal surface
over R2 and is linear in every radial direction (that is, its restriction to each radial
direction is a linear function), then f is either a plane or a helicoid.

Lemma 5.3 [Chen et al. 1998, Lemma 6.2]. If G is a nonempty domain, the only
possibility that there is a classical minimal surface f defined on G which is linear
in every radial direction is that G =�∞ and (γ1, γ2)∈ R. Moreover, f is a plane.

Proof. It follows from Lemma 5.2 that f is a plane or a helicoid defined on G, say,
f = a tan−1(y/x) for some constant a.

If P or N 6= ∅, then either ∂P ∩ ∂G 6= ∅ or ∂N ∩ ∂G 6= ∅. Without loss of
generality, we may assume that L = ∂P ∩ ∂G 6= ∅. It follows from Corollary 3.4
that L is either a line or a half-line in �∞.

Let f , defined over G, be a helicoid or a plane and take x0 ∈ L distinct from
O . Then f ∈ C1 in G ∩ Bρ(x0), where Bρ(x0) is a small open disk with radius ρ
and center x0 such that the disk belongs to the sector �∞. The subgraph F of f
can not be a minimal surface in a small neighborhood of (x0, f (x0)) since F will
violate the inequality (5) if K is small enough so that K ∩ (∂�∞ ×R)= ∅; hence
P = N = ∅. To see that F violates (5) we will construct a “better” comparison set
as follows.

Let T0 be the tangential plane to the surface S : z = f (x), x ∈ G, at the point
(x0, f (x0)). Take a plane E0 parallel to the edge T0 ∩ (L ×R) which intersects the
vertical plane L × R and the plane T0 in a distance h from the edge T0 ∩ (L × R).

Choose the plane that lies above of T0 ∩ (L × R). Take two further planes
perpendicular to the edge T0 ∩ (L × R) and with distances ±a from (x0, f (x0)).

This construction defines a prismatic set W . Set V = F ∪W and h = a2, and let
ω be the opening angle of the edge T0 ∩ (L × R) as indicated in the figure. Then∫

(�∞×R)∩K
|DϕF | −

∫
(�∞×R)∩K

|DϕV | = 4a3(1 − sin 1
2ω)+ o(a3) as a → 0.

Thus G =�∞ and f satisfies equations (4). Since a helicoid f = a tan−1(y/x)
cannot make constant contact angles on 61 and 62, the only possibility is that f
is a plane. The conclusion that π+ (γ2 −γ1) < θ < π+ (γ2 +γ1) then follows. �
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Lemma 5.4. Suppose f ∈ C2(�∞) solves the problem

∇ · T f = κ f + λ in �∞,

T f · ν1 = cos γ1 on 61,

T f · ν2 = cos γ2 on 62,

where (γ1, γ2) 6∈ R, κ ≥ 0 and f is bounded on �∞. Then there is a radial line L
and some curve C, such that C is tangent to L when approaching the vertex and

lim
(x,y)∈C

(x,y)→(0,0)

T f (x, y)= νL ,

where νL is the unit normal vector of L pointing toward P.

Proof. Denote by E the subgraph of f , and set

Et = {x ∈ R3
: t x ∈ E}.

By Theorem 4.5 we see that as t → 0, Et converges locally in R3 to a minimal
cone C .

It is well known that the only minimal cone in R3 is a plane. Thus C is a plane.
By the assumption that (γ1, γ2) 6∈ R we see that C has to be a vertical plane

passing through z-axis. Let the line L be the projection of C onto the xy-plane.
To complete the proof of the lemma we just need to show the following:

Claim. There is a level curve C of f (0, 0) that reaches (0, 0) and is tangent to L.

Proof. The level set of f (0, 0) must lie within a cusp region with (0, 0) as its tip.
For assume to the contrary that there exists a sequence {(xk, yk)} in the level set
with the property that

(9) (x∗, y∗) := lim
k→∞

(
xk

√

x2
k + y2

k

,
yk

√

x2
k + y2

k

)
6∈ L .

Take the blow-up sequence

fk(x, y)=
1
εk

(
f (εk x, εk y)− f (0, 0)

)
,

where εk =

√

x2
k + y2

k . Then

fk

( xk
εk
,

yk
εk

)
= 0 for all k.

By Lemma 5.1, then, the limit minimal cone must go through (x∗, y∗, 0), which
is impossible.
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Next we check that, in some neighborhood of the origin, there is no point of the
level set of (0, 0) where the gradient of f vanishes. For suppose to the contrary
that there exists a sequence {(xk, yk)} → (0, 0) of points in the level set satisfying

∇ f (xk, yk)= 0 for all k.

(Recall that f is C2 in �∞ and satisfies the problem in Lemma 5.4.) Construct
another blow-up sequence as above and let

fk(x, y)=
1
εk

(
f (εk x, εk y)− f (0, 0)

)
,

where εk =

√

x2
k + y2

k . Then ∇ fk(xk/εk, yk/εk)= ∇ f (xk, yk)= 0 for all k. In the
notation of (9), we have

(x∗, y∗)= lim
k→∞

(
xk

√

x2
k + y2

k

,
yk

√

x2
k + y2

k

)
∈ L;

therefore [Massari and Pepe 1975, Theorem 3] yields

Eνk

(
xk

√

x2
k + y2

k

,
yk

√

x2
k + y2

k

, 0
)

→ EνC(x∗, y∗, 0)= EνL ,

contradicting the equality

Eνk

(
xk

√

x2
k + y2

k

,
yk

√

x2
k + y2

k

, 0
)

= Eν f (xk, yk, 0)= (0, 0, 1).

Thus we see that the level set of f (0, 0) is locally a union of unbranched level
curves, which do not stop at any interior point of �∞; moreover (0, 0) is an ac-
cumulation point of this level set. To conclude the proof of the claim, assume to
the contrary that no one level curve approaches (0, 0); in other words, there is a
sequence of distinct level curves approaching the vertex. On each of them, choose
a point (xk, yk) nearest to (0, 0). Then Eν f (xk, yk) · EνL → 0, which again contradicts
Massari’s theorem, which says that Eν f (xk, yk) · EνL → 1. �

Now we exclude continuity from D-regions for reentrant corner domains, as-
suming Conjecture 2.4.

Theorem 5.5. Let f be a bounded solution to (1) satisfying (3), with (γ1, γ2) 6∈ R

and α > π/2. Under the assumption that Conjecture 2.4 is true, f must have
discontinuous radial limits at O.

Proof. Assume to the contrary that γ1, γ2 6∈ R and f has continuous radial limits
at (0, 0).

Denote by 6′

1, 6
′

2 the lines extending 6′

1, 6
′

2. Consider, for t → 0, the blow-up
functions

ft(x, y)=
1
t

(
f (t x, t y)− f (0, 0)

)
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which converge locally to a generalized solution v(x, y) to the corresponding min-
imal surface problem defined in �∞.

By Lemma 5.3, the G region of v(x, y) must be empty. Hence v defines a
vertical plane, whose projection L onto the xy-plane equals ∂P ∩ ∂N . By the
conclusion of the previous section, L must be either a half-line or a whole line
passing through the origin.

Assume L is a half-line; we claim that it must lie between 6′

1 and 6′

2, inclusive
(Figure 8, left). Otherwise either the P or the N region will cover a subdomain
which is again a reentrant wedge. This leads to a contradiction with Lemma 5.1
on uniformity.

By Lemma 5.4 we know that along any radial half-line approaching the origin,
lim T f · ν is well defined. Therefore we can split the domain �∞ from L , and get
two subproblems:

∇ · T f = κ f + λ between 61 and L ,
T f · ν = cos γ1 on 61,

T f · ν = ±1 on L

and

∇ · T f = κ f + λ between L and 62,

T f · ν = ∓1 on L ,
T f · ν = cos γ2 on 62.

Both of them admit a continuous solution.

O

61

62 6′

1

6′

2

L

γ1

γ2

0
π O

L

0 π

γ1

γ2

61

62

Figure 8. Proof of Theorem 5.5. Left: case where L is a half-line.
Right: case where L is a whole line.
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By the Concus–Finn conjecture, the angle between 61 and L is either π−γ1 or
γ1, while the angle between L and 62 is correspondingly either γ2 or π−γ2. This
leads to |γ1 − γ2| = 2α−π , which is impossible.

Now assume instead that L is a whole line passing through the origin. Then
the region between 6′

1 and 6′

2 must lie on one side of L (see Figure 8, right). We
again split into two subproblems:

∇ · T f = κ f + λbetween 61 and L1,

T f · ν = cos γ1 on 61,

T f · ν = ±1 on L1

and
∇ · T f = κ f + λbetween L2 and 62,

T f · ν = ±1 on L2,

T f · ν = cos γ2 on 62.

Using a similar reasoning as in the previous case, we see that

γ1 + γ2 = 2α−π, or γ1 + γ2 = 3π − 2α,

which is again impossible. �

6. Examples

We now construct explicit examples for some of the discontinuous cases given in
Theorem 2.5. The notation (D), (I), (DI) and (ID) is defined in Section 3.

Example 6.1. For any (γ1, γ2) ∈ R(2α)∪ D+

2 ∪ D−

1 , we have case (D).
Referring to Figures 9–11, consider the region �1 ∈ � bounded by two (close)

parallel sides 61, 6̃1 and two circular arcs C , C̃ which are symmetric about a line
orthogonal to 61 6̃1.

The arcs are constrained to meet 61 in the angle γ1, and 6̃1 in the (fixed) angle
γ̃1, which is chosen in the interval (0, π − γ1). Thus each arc is part of a circle,
with radius ε/a1, and with a1 = cos γ1 + cos γ̃1.

We distinguish two cases, according as γ1 < 2α − π

or γ1 > 2α − π ; they are indicated in Figures 9 and 10,
respectively. In the former case, we can position a disk of
radius δ (independent of ε) in � and tangent to 62 at O .
Following a construction initiated by Korevaar [1980], we
next construct an upper half of the inner side of a torus
containing the (horizontal) arcs C, C̃ (see figure on the
right). This has the appearance of a Japanese footbridge.
It can be represented as a function g(x, y) over �1, with
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.

ε

Ω

Σ1
~

Σ1

O

δ

C

C
~

Σ 2

γ1

γ
1

~

2(π–α)

 2R

Ω1

Figure 9. Construction of example of case (D), with (γ1, γ2) ∈

R ∪ D+

2 ∪ D−

1 and γ1 < 2α−π .

.

ε

Ω

Σ1
~

Σ 1

. O

δ

C

C
~

Σ 2 γ1

γ1
~

2(π–α)
 

γ2

Figure 10. Construction of example of case (D), with (γ1, γ2) ∈

R ∪ D+

2 ∪ D−

1 and γ1 > 2α−π .
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Σ1

Σ1
~

Σ2

ε

γ1

γ1
~

.
δ

O

2(π – α)
τ

C 

M

Figure 11. Detail of construction.

ν · T g = −1 on C and C̃ , ν being unit exterior normal.On 61 and 6̃1, the torus
meets vertical walls over the sides in the constant angles γ1, γ̃1, so ν · T g = cos γ1

on 61, ν · T g = cos γ̃1 on 6̃1.
We extend γ1, γ̃1 smoothly to the remaining boundary of �. By theorems of

Emmer [1973] and of Finn and Gerhardt [1977], a (unique) solution f (x, y) of
(1)+(3) exists in �, with ν · T f = cos γ1 on 61, ν · T f = cos γ̃1 on 6̃1. On C , C̃
there holds ν · T f >−1, since |T f |< 1 for any function f .

We adjust f by an additive constant so that max g = (1/K )(a1/ε− 1/R − λ),
where R (the inner radius of the torus) is half the distance between C and C̃ . The
mean curvature of the torus is given by 1

2∇ · (T g), and is minimized at the upper
symmetry point, at which ∇ · (T g) = (a1/ε − 1/R). We thus find ∇ · (T g) ≥

κg + λ. By the comparison principle of Concus and Finn [1996, Theorem 5.1],
we then obtain f ≥ g > max g − (R + ε/a1) in �1, and thus limε→0 f = ∞,
uniformly over �1, and in particular for any radial approach to O from within
�1. On the other hand, we find using [Concus and Finn 1996, Theorem 5.2] that
f < 2/(κδ)+δ+λ/κ throughout the interior of the disk of radius δ, and hence also
for any radial approach to O within that disk. We conclude that for small enough
ε, the behavior at O must be either (D) or else (DI). However, (DI) is excluded by
[Lancaster and Siegel 1996, Corollary 3].

If γ1 > 2α− π the construction above does not work, because with decreasing
ε the segment 6̃1 would enter the δ-disk. We start instead by constructing that
disk to be tangent to C at O (Figure 10). We then have τ = π − 2α + γ1. But
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γ1 − γ2 < 2α−π by assumption, and thus τ < γ2. We now rotate the disk slightly
about O , so that its circumference meets C at a positive angle, but still maintaining
the condition τ < γ2 (see Figure 11). From [Concus and Finn 1996, Theorem 5.3]
we now derive that again f < 2/(κδ)+ δ+λ/κ in the intersection of the disk with
�. It remains to narrow the �1 region in a way ensuring that 6̃1 does not enter the
δ-disk; but that again elevates the solution height unboundedly within that �1.

We can do that simply by introducing a tangent line M to the δ-disk at O . For
each choice of ε (tending to zero) we choose C to be the unique circular arc meeting
61 at O in the angle γ1 and meeting 6̃1 at the intersection of 6̃1 with M . The angle
γ̃1 will not remain constant in this construction, but the radius of C tends to zero
with ε, and thus the comparison principle can again be applied to show that the
solutions then uniformly to infinity throughout the domains �1(ε). We are done.

Example 6.2. For any (γ1, γ2) ∈ R(2α)∪ D+

1 ∪ D−

2 , we are in case (I).
Use the same construction of Example 6.1, interchanging the sides 61 and 62.

Example 6.3. For any (γ1, γ2)∈ R(2α), we have a capillary surface continuous up
to the vertex.

First we introduce a lemma on the general existence of a continuous solution of
the capillary equation

(10) ∇ · T f = κ f + λ in �,

which, for rotationally symmetric solutions, becomes

(11) (r sinψ)r = κru, ur = tanψ,

where ψ is the inclination angle of the vertical surface section u(r) with the r -axis.

Lemma 6.4 [Johnson and Perko 1968]. Given u0 > 0, there exists a unique
R0(u0) > 0 and solution u(r; u0) of (11) in 0< r < R0 such that

(1) u and ψ extend continuously to the closed interval 0 ≤ r ≤ R0,

(2) u(0; u0)= u0, ψ(0; u0)= 0, ψ(R0;ψ)= π , and

(3) the functions u and ψ both are monotone increasing on 0 ≤ r ≤ R0.

This guarantees the existence of a convex rotation surface S with a single “bot-
tom” point, that become vertical on a horizontal circular ring, and for which the
height u(x, y) is a solution of (10).

Lemma 6.5 [Finn 1986, pp. 67–69]. Let u0 > 0 and let 5 be any nonvertical
plane. There is a (unique) plane parallel to 5 and tangent to the solution surface
of Lemma 6.4.

Proof. First move 5 parallel to itself in a direction orthogonal to itself until it
doesn’t meet S. Then move 5 parallel to itself toward S. If the first point of
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O

P2π − 2α

γ1

γ2 62

61

Figure 12. Projection of the continuous capillary surface on the
xy-plane.

contact with S is an interior point of the surface, that gives us the plane we want.
If the first contact point is with the ring on which S is vertical, continue moving 5
until there is a last point of contact with S. That is then the plane we want. �

So any nonvertical plane can be realized up to rigid motion preserving the nor-
mal, as a tangent plane of S. But [Concus and Finn 1996, Theorem 1] characterizes
the interior of R as exactly the set of intersection angles (γ1, γ2) with the wedge
planes, that arise from all possible nonvertical planes. Since we can get any non-
vertical plane as a tangent to S, we can get any point of R.

Now, by [Concus and Finn 1996, Theorem 1], starting from any point (γ1, γ2)

in R, a unique nonvertical plane is determined. There is a unique point p of the
plane that lies above the vertex of the wedge. Position S to be tangent to the plane
at p.

Then consider a neighborhood of p on S. Recall that (γ1, γ2) ∈ R guarantees
that 2α − π < γ1 + γ2 < 3π − 2α and |γ1 − γ2| < 2α − π . Therefore we can
always find suitable positions for sides 61, 62; see Figure 12 for the projection of
the surface onto the xy-plane. Now we have constructed a continuous solution to
the equation that also satisfies the boundary condition for the given (γ1, γ2)∈ R. �

Example 6.6. For any given (γ1, γ2) ∈ D+

1 (2α), we are in case (DI).
On each of the regions �i , i = 1, 2, consider two circles which is symmetric

about the dashed line. Each circle has radius εi/ai , ai = cos γi + cos γ̃i , where
0 < γ̃i < π − γi , and meets side 6i with an angle γi and side 6̃i with an angle
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Ω
Σ 1
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Σ 1
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δ

Σ 2
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γ1
~

2(π–α) .
.

Σ 2
~

γ
2

~
γ2

C
~

1

C
~

2

ε1

ε2

Figure 13. Construction for case (DI) (Example 6.6): D+

1 and O
can be joined within � by a circle of fixed radius δ, independent
of ε1 and ε2.

γ̃i . Let g1, g2 both be the portion of a torus obtained by rotating one of the circular
arcs above the xy-plane, like g1 in Example 6.1.

Again it follows from the comparison principle that

f ≥ gi ≥
1
κ

(a1
εi

−
1

R−εi

)
− R in �i , i = 1, 2.

Since now (γ1, γ2) ∈ D+

1 , which says that γ1 + γ2 < 2α − π , we can construct
a ball �0 of radius δ which is also contained in � not overlapping with �1 or �2.
Thus

f ≤
2
κδ

+ δ in �0.

By making εi sufficiently small we can make

2
κδ

+ δ ≤
1
κ

(ai
εi

−
1

R−εi

)
− R

for i = 1, 2, forcing f to be in case (DI) at O .

Example 6.7. For any (γ1, γ2) ∈ D−

1 (2α), we are in case (ID).
Similar to Example 6.6. Consider − f .

Example 6.8. For any (γ1, γ2) ∈ D+

1 (2α), we are in case (D).
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1 . Right:
Exclusion of central fan.

When (γ1, γ2) is in this region there are more possibilities of discontinuous so-
lutions. So when constructing a (D) case there is an additional complexity: differ
case (D) from case (DI).

We use a construction very similar to that given in Example 6.1.
Referring to Figure 14, left, consider the region �1 bounded by two parallel

straight sides, 61, 6̃1, and two circular arcs which are symmetric about the dashed
line.

First choose an angle θ1 such that γ1 ≤ θ1 < 2α−π and θ1 +γ2 > 2α−π . Then
let each arc meet side 61 with an angle θ1 and side 6̃1 with an angle θ̃1. Here θ̃1is
any value in (0, π − θ1). Hence each arc is a part of a circle with radius ε1/a1,
where a1 = cos θ1 + cos θ̃1.

Region �2 contains a disk B with some radius δ. 62 is a part of the boundary
∂�2. We fix δ, and make �1 and �2 not overlap each other for any ε1 > 0. Notice
that when (γ1, γ2) ∈ D+

1 this is always possible.
Construct the torus in region�1 and the lower hemisphere in region�2 the same

way as in Example 6.1. By making ε1, and ε2 sufficiently small we can force f to
have a jump discontinuity at O .

Now the only thing to do before we can say for sure this is a (D) case is to
eliminate the possibility of a (DI) case.

Lancaster and Siegel [1996, Theorem 2] proved that in a (DI) case, there exist
fans of constant radial limits adjacent to61 and62. And the size of the fan on side
6i is no less than γi for i = 1, 2. This indicates a jump discontinuity of the radial
limits happens in radial directions away from 62 by an angle at least γ2. On the
other hand, by the above construction we know another jump discontinuity happens
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in radial directions away from 61 by an angle at least θ1. Since θ1 + γ2 > 2α−π ,
between the two discontinuities there is no enough space for a half plane constant
radial limits to happen. Therefore a (DI) case is impossible.

Finally we proved that this construction gives us a (D) case.

Example 6.9. For any given (γ1, γ2) ∈ D−

1 (2α), this is an example of case (I).
Similar configuration as in Example 6.8. Reverse the sides 61 and 62.
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APPROXIMATING SYMMETRIC CAPILLARY SURFACES

DAVID SIEGEL

An iterative method is introduced for approximating symmetric capillary
surfaces which makes use of the known exact volume. For the interior and
annular problems this leads to upper and lower bounds at the center or
inner boundary and at the outer boundary, and to an asymptotic expansion
in powers of the Bond number. For the exterior problem we determine the
leading order asymptotics of the boundary height as the Bond number tends
to zero, obtaining a result first proved by B. Turkington.

1. Introduction

The study of capillary surfaces goes back to Laplace [1805–1806]. The canonical
modern reference is [Finn 1986]. We will consider symmetric capillary surfaces
with gravity in one of three cases: interior, annular and exterior. A vertical circular
cylindrical tube immersed in an infinite reservoir of fluid will create an interior and
an exterior capillary surface. Two concentric circular tubes will create an annular
capillary surface between them.

Let r be the radial variable and let ψ be the inclination angle of the surface
z = u(r). Then sinψ = ur/

√
1 + u2

r and Nu = (1/r)(r sinψ)r is twice the mean
curvature of the surface. A capillary surface is determined by the capillary equation
Nu = Bu, where B is a positive constant, the Bond number, and by specifying the
contact angle γ ∈[0, π] on the boundary. The contact angle is the angle between the
interface cross–section and vertical, measured inside the fluid. Thus, the inclination
angle will be prescribed on the boundary. In order for the annular problem to be
similar to the interior problem we take the contact angle to be π/2 on the inner
boundary and γ on the outer boundary.

The interior and annular problems can be written

(1) Nu = Bu, a < r < 1, sinψ(a)= 0, sinψ(1)= cos γ,

where a = 0 for the interior problem and 0< a < 1 for the annular problem.

MSC2000: 76B45, 34E05, 34B15, 34B40.
Keywords: capillarity, symmetric capillary surface, exterior problem, approximation, asymptotics.
This research is supported by a Natural Sciences and Engineering Research Council of Canada Dis-
covery Grant.
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The exterior problem is

(2) Nu = Bu, r > 1, sinψ(1)= −cos γ , u → 0 as r → ∞.

For all three problems we take

(3) 0 ≤ γ < π/2.

If γ =π/2 then u = 0. If π/2<γ ≤π then ū =−u satisfies Nū = Bū with contact
angle γ̄ =π−γ , so 0 ≤ γ̄ < π/2. Scaling allows us to take one boundary at r = 1.
It is known [Siegel 1980] that for a solution to (2), u and ur decay exponentially
fast as r → ∞. Also, under (3), the solution u is positive in every case by the
Comparison Principle [Finn 1986, Theorem 5.1; Siegel 1980, Theorem 1].

The volume lifted can be determined for all three problems:

B
∫

I
ru(r) dr = cos γ,

where I = [a, 1] for (1) and I = [1,∞) for (2).
We wish to employ approximate solutions that have the correct volume. The key

observation is that if v1 is a nonnegative function with the correct volume then we
may define v2 by Nv2 = Bv1 and v2 will satisfy the correct boundary conditions.

Theorem 1.1. Let v1 be a nonnegative continuous function on I which satisfies
B
∫

I rv1(r) dr =cos γ where I is [a, 1] or [1,∞). Assume that v1 is nondecreasing
when I is [a, 1] and v1(r)= O( 1

r3 ) as r → ∞ when I = [1,∞). Here B > 0, 0 ≤

γ < π
2 and 0 ≤ a < 1. Then there is a function v2 defined and continuous on I ,

satisfying Nv2 = Bv1, given as a quadrature of v1, which satisfies the boundary
conditions of problem (1) or (2). Let ψ2 be the inclination angle of v2 and let

h2 =
sinψ2√

1 − sin2ψ2
.

For I =[a, 1], let sinψ2(r)= (B/r)
∫ r

a sv1(s) ds and v2(r)=v2(a)+
∫ r

a h2(s) ds.
Then v2 is nondecreasing, sinψ(a)= 0 and sinψ(1)= cos γ .

For I =[1,∞), let sinψ2(r)=−(B/r)
∫

∞

r sv1(s) ds and v2(r)=−
∫

∞

r h2(s) ds.
Then v2 is nonincreasing, sinψ2(1) = − cos γ and v2(r) = O(r−1) and v2 r (r) =

O(r−2) as r → ∞.
For I = [a, 1], by choosing

(4) v2(a)=
1

1 − a2

(
2 cos γ

B
−

∫ 1

a
(1 − r2)

sinψ2(r)√
1 − sin2ψ2(r)

dr
)
,

v2 will satisfy the volume condition B
∫

I rv2 dr = cos γ . With this choice v2 will
be nonnegative when B ≤ 6.
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Proof. First consider I = [a, 1]. Since v1 is nonnegative we have sinψ2 ≥ 0, which
implies that v2 is nondecreasing. Since v1 is nondecreasing we have

sinψ2 ≤
Bv1(r2

− a2)

2r
≤

Brv1

2
.

It follows that (sinψ2
r

)
r
=

2
r2

( Brv1
2

− sinψ2

)
≥ 0.

Thus, (sinψ2)/r ≤ cos γ or sinψ2 ≤ r cos γ ≤ r . Since p/
√

1 − p2 is increasing
on [0, 1), we have

sinψ2√
1 − sin2ψ2

≤
r

√
1 − r2

,

so v2(r) ≤ v2(a)+
√

1 − a2 −
√

1 − r2. Thus v2 is defined and continuous on I .
Requiring B

∫
I rv2 dr = cos γ , after changing the order of integration, results in

(4). Now for B ≤ 6, use

sinψ2√
1 − sin2ψ2

≤
r cos γ√

1 − r2 cos2 γ
≤

r cos γ
√

1 − r2

in (4) to see that

v2(a)≥
cos γ
1 − a2

(
2
B

−

∫ 1

0
r
√

1 − r2 dr
)

=
cos γ
1 − a2

(
2
B

−
1
3

)
≥ 0.

Thus v2 is nonnegative.
Next consider I =[1,∞). Since v1 is nonnegative, sinψ2 ≤0, which implies that

v2 is nonincreasing. From the volume condition on v1, sinψ2(1)= − cos γ . From
(sinψ2)r = Bv1 − (sinψ2)/r ≥ 0, we get sinψ2 ≥ − cos γ . Since v1 = O(r−3),
sinψ2 = O(r−2), giving v2 r = O(r−2) as r → ∞. Since v2 is nonincreasing and
tends to zero, v2 is nonnegative. From the formula for v2, we see that v2 = O(r−1)

as r → ∞. As (sinψ2)r (1) = Bv1(1)+ cos γ > 0, the integral for v2(1) is finite.
Thus v2 is continuous on I .

Finally, by the defining formulas, in all cases, Nv2 = Bv1 in the interior of I . �

For interior or annular capillary surfaces and B ≤ 6, Theorem 1.1 provides a
sequence of iterates {vn}, where Nvn+1 = Bvn for n ≥ 0. The simplest initial
function is the constant function satisfying the volume condition

(5) v0 =
2 cos γ

B(1 − a2)
.

The properties of this sequence are explored in Section 2. An asymptotic expan-
sion in powers of B is obtained. The theory is then applied to the interior problem
and a formula of Rayleigh for measuring surface tension is proved.
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The exterior problem is considered in Section 3. Two approximations are used
to prove a result of Bruce Turkington [1980] on the asymptotic boundary height as
B tends to zero.

An attractive feature of the method employed in this paper is its applicability to
capillary problems with γ =0. The general asymptotic series result in [Miersemann
1993] excludes the case γ = 0. However, for the interior problem, Miersemann
[1994] has established an asymptotic expansion with 0 ≤ γ < π/2.

The annular problem certainly merits further work. A start on this has been
made by Alan Elcrat, Tae-Eun Kim and Ray Treinen [Elcrat et al. 2004].

2. Interior and annular capillary surfaces

The sequence of iterates {vn} for the interior and annular capillary problem (1)
introduced after Theorem 1.1 has the properties listed in Theorem 2.3 below. The
proof will make use of two lemmas whose proof is straightforward. Denote the
inclination angles of two functions v and w defined on [a, 1] by ψv and ψw, re-
spectively.

Lemma 2.1. Let a < b < 1. If Nv < Nw for a < r < b and ψv(a) = ψw(a) then
ψv < ψw, for a < r ≤ b. If Nv < Nu for b < r < 1 and ψv(1) = ψw(1), then
ψw <ψv, for b ≤ r < 1.

Lemma 2.2. If ψv < ψw on (a, 1) and
∫ 1

a rv dr =
∫ 1

a rw dr then there exists
b ∈ (a, 1) such that v(b) = w(b) and w(r) < v(r) for r < b and v(r) < w(r) for
r > b.

Theorem 2.3. Let u be the solution to (1) and ψ its inclination angle. For B ≤

6, the iterates provided by Theorem 1.1 with v0 given by (5) have the following
properties:

ψ0 <ψ2 < · · ·<ψ < · · ·ψ3 <ψ1;

v1(a) < v3(a) < · · ·< u(a) < · · ·< v2(a) < v0 for a < r < 1;

v0 < v2(1) < · · ·< u(1) < · · ·< v3(1) < v1(1),

|u − vn|< C(γ, a)
(

B

√
1 − a2

1 + a2

)n

, where C(γ, a)=

√
1 − a2 cos2 γ − sin γ

cos γ
.

Proof. From the defining equations, ψ1 > 0 and v1 > 0 on (a, 1] and so sinψ2 > 0
on (a, 1].

Since u is positive, it follows that sinψ =
B
r

∫ r
a su(s) ds > 0 for r > a. Since

v0 is constant, ψ0 = 0. Thus, ψ0 <ψ .
We proceed to prove a number of statements of a recursive nature, using Lemmas

2.1 and 2.2. First we show that ψ2k < ψ implies that ψ < ψ2k+1 for k ≥ 0. By
Lemma 2.2 there exists b2k ∈ (a, 1) with v2k(b2k) = u(b2k), u < v2k for r < b2k
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and u > v2k for r > b2k . Since Nv2k+1 = Bv2k and Nu = Bu, we conclude that
ψ < ψ2k+1 by Lemma 2.1 by arguing on the intervals [a, b2k] and [b2k, 1].

In a similar fashion, one proves that ψ < ψ2k+1 implies that ψ2k+2 < ψ for
k ≥ 0. Combining statements, we have ψ2k <ψ < ψ2k+1 for k ≥ 0.

We know that ψ0 < ψ2 for r > a. Next we show that ψ2k < ψ2k+2 implies that
ψ2k+3 < ψ2k+1 for k ≥ 0. By Lemma 2.2 there exists ck ∈ (a, 1) with v2k(ck) =

v2k+2(ck), v2k+2>v2k for r < ck and v2k+2<v2k for r > ck . Using Nv2k+3 = Bv2k

and Nv2k+1 = Bv2k , we get ψ2k+3 <ψ2k+1 by Lemma 2.1.
Likewise, one proves that ψ2k+3 <ψ2k+1 implies that ψ2k+4 >ψ2k+2 for k ≥ 0.

Combing statements gives that {ψ2k} is increasing and {ψ2k+1} is decreasing.
From ψ2k < ψ it follows that u(a) < v2k(a) and v2k(1) < u(1) by Lemma 2.2.

From ψ < ψ2k+1 it follows that v2k+1(a) < u(a) and u(1) < v2k+1(1) again by
Lemma 2.2.

Similarly, ψ2k <ψ2k+2 implies that v2k+2(a)< v2k(a) and v2k(1)< v2k+2(1) for
k ≥0; andψ2k+3<ψ2k+1 implies that v2k+1(a)<v2k+3(a) and v2k+3(1)<v2k+1(1)
for k ≥ 0. Thus {v2k+1(a)} is increasing, {v2k+1(1)} is decreasing, {v2k(a)} is
decreasing and {v2k(1)} is increasing. The proof of the interleaving properties is
complete.

Finally, we establish the error bound. Since u(a) < v0 and v0 < u(1), and u is
increasing, we have |u − v0|< u(1)− u(a) < v1(1)− v1(a). The latter expression
can be estimated. By the defining equations we have

sinψ1 =
cos γ
1 − a2

(r2
− a2)

r
and v1(1)− v1(a)=

∫ 1

a

sinψ1√
1 − sin2ψ1

dr.

Using the inequality sinψ1 ≤ r cos γ to estimate the integral, we get

v1(1)− v1(a)≤

∫ 1

a

r cos γ√
1 − r2 cos2 γ

dr = C(γ, a).

Thus, |u −v0|<C(γ, a). This is the case n = 0 of the bound to be established and
we proceed by induction. Assume

|u − vn|<Bn := C(γ, a)
(

B

√
1 − a2

1 + a2

)n

.

From the defining equations for {vn} and the equation for u we have

sinψ − sinψn+1 =
B
r

∫ r

a
s(u(s)− vn(s)) ds or −

B
r

∫ 1

r
s(u(s)− vn(s)) ds .

This gives |sinψ − sinψn+1| < (Bn B)/(2r)min{r2
−a2, 1−r2

}. Using the fact
that

min{r2
− a2, 1 − r2

} ≤
2(r2

− a2)(1 − r2)

1 + a2 ,
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we have

(6) |sinψ − sinψn+1|<
Bn B

1 + a2 r(1 − r2).

If m := n + 1 is even, then since ψm <ψ and vm(a) > u(a), vm(1) < u(1),

|u − vm | ≤ max{vm(a)− u(a), u(1)− vm(1)}< (u(1)− vm(1))− (u(a)− vm(a)).

Similarly, if m is odd, then |u − vm | < (vm(1)− u(1))− (vm(a)− u(a)). Thus
|u −vm |<

∣∣∫ 1
a (ur −vm r ) dr

∣∣≤ ∫ 1
a |ur −vm r | dr . We use the Mean Value Theorem

to estimate the integrand, noting that

ur =
sinψ√

1 − sin2ψ
and vm r =

sinψm√
1 − sin2 ψm

, ur − vm r =
sinψ − sinψm

(1 − ξ 2)3/2
,

where ξ is between sinψ and sinψm . Using ξ < sinψ1 ≤ r , we have |ur −vm r |<

| sinψ− sinψm |/(1 − r2)3/2. Combining this with previous bound (6), we have

|u − vn+1|<
Bn B

a2 + 1

∫ 1

a

r
√

1 − r2
dr = Bn B

√
1 − a2

1 + a2 = Bn+1.

This completes the induction argument. �

The upper bound Bn = C(γ, a)
(
B

√
1 − a2/(1 + a2)

)n is at most Bn , so we
have an upper bound independent of γ and a. For the interior problem, the result
v1(0)<u(0) and u(1)<v1(1)was first proved in [Finn 1981] and the resultψ <ψ1

was first proved in [Siegel 1989]. For the interior problem with γ =0, Theorem 2.3
gives |u − v1|< B, whereas [Siegel 1989] has the better estimate |u − v1|< B/3.

The iterates {vn} can be used to establish an asymptotic expansion for u in pow-
ers of B. Denote differentiation with respect to B by DB .

Theorem 2.4. Let 0 ≤ γ < π/2 and 0< B ≤ 6. The solution u(r, B) to (1) has an
asymptotic expansion in powers of B,

u(r, B)= v0 + u0(r)+ u1(r)B + u2(r)B2
+ · · · ,

where un(r)= Dn
Bwk(r, 0)/n! with wk = vk −v0 for k> n ≥ 0. There are constants

Cn such that
∣∣u −

(
v0 + u0(r)+ · · · + un(r)Bn

)∣∣≤ Cn Bn+1 for n ≥ 0.

Proof. The idea is to show that the wn’s have Taylor expansions in powers of B
and combine that with Theorem 2.3. To do this we need to show that D`

Bwk exists
and is continuous for 0 ≤ B ≤ 6, 0 ≤ γ ≤

π
2 and ` ≥ 0, k ≥ 0. The inclination

angle for wk is ψk since wk differs by a constant from vk . The wk’s are generated
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recursively by

(7)



sinψk+1 = sinψ1 +
B
r

∫ r

a
swk(s) ds,

wk+1(r)= wk+1(a)+
∫ r

a

sinψk+1√
1 − sin2ψk+1

ds,

wk+1(a)= −

∫ 1

a
(1 − s2)

sinψk+1√
1 − sin2ψk+1

ds,

for k ≥ 0. We have w0 = 0 and

sinψ1 =
cos γ
1 − a2

r2
− a2

r
.

From the volume condition for vk it follows that

(8)
∫ 1

a
rwk dr = 0 .

We will show by induction on k that D`
Bwk and D`

B sinψk are continuous for
`≥ 0 and D`

B sinψk = O(1 − r) for `≥ 1.
We will differentiate the recursion relation (7) repeatedly with respect to B, so

we need the equality

(9) D`
B

sinψk√
1 − sin2ψk

=

∑̀
j=0

h`, j

(1 − sin2 ψk)(2 j+1)/2
,

where each h`, j , for ` ≥ 0, is a homogeneous polynomial of degree 2 j + 1 in
sinψk , DB sinψk , . . . , D`

B sinψk which is of degree at least j in DB sinψk , . . . ,
D`

B sinψk . This is seen by induction on `. Statement (9) is true for `= 0. Assume
it is true for `; differentiation gives

D`+1
B

sinψk√
1 − sin2ψk

=

∑̀
j=0

DBh`, j

(1 − sin2 ψk)(2 j+1)/2
−
(2 j + 1)h`, j sinψk DB sinψk

(1 − sin2 ψk)(2 j+3)/2
,

so h`+1, j = DBh`, 0,

h`+1, j = DBh`, j + (2 j − 1)h`, j−1 sinψk DB sinψk for 1 ≤ j ≤ `,

and h`+1, `+1 = (2`+ 1)h`, ` sinψk DB sinψk . Since DBh`, j is homogeneous of
degree 2 j + 1 in sinψk , DB sinψk , . . . , D`

B sinψk and of degree at least j in
DB sinψk , . . . , D`

B sinψk , statement (9) holds with ` replaced by `+ 1.
Now, back to the induction argument on k. The case for k = 0 is true since

w0 = 0, sinψ0 = 0. Assume the statement is true for k. Taking ` derivatives of (7)
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with respect to B we obtain

D`
B sinψk+1 =

B
r

∫ r

a
s D`

Bwk(s) ds +
`

r

∫ r

a
s D`−1

B wk(s) ds,

D`
Bwk+1(r)= D`

Bwk+1(a)+
∫ r

a
D`

B
sinψk+1√

1 − sin2ψk+1
ds,

D`
Bwk+1(a)= −

∫ 1

a
(1 − s2)D`

B
sinψk+1√

1 − sin2ψk+1
ds .

Differentiating the volume condition (8), we have
∫ 1

a r D`
Bwk dr = 0 for all ` ≥

0. Thus we see that D`
B sinψk+1 is continuous and D`

B sinψk+1 = O(1 − r) for
`≥ 1. It follows that the integrals defining D`

Bwk+1 are convergent, so D`
Bwk+1 is

continuous. The induction argument is complete.
Now, for a given positive n, take k > n. By Taylor’s Theorem, wk(r, B) =

wk(r, 0)+ DBwk(r, 0)B + · · · + Dn
Bwk(r, 0)Bn

+ O(Bn+1), and by Theorem 2.3,
u(r, B)= v0+wk(r, B)+O(Bk+1). Thus u = v0+wk(r, 0)+ DBwk(r, 0)B+· · ·+

Dn
Bwk(r, B)+ O(Bn+1). By the uniqueness of asymptotic expansions, this may be

written u(r, B)= v0 + u0(r)+ u1(r)B + u2(r)B2
+· · ·+ un(r)Bn

+ O(Bn+1). �

Example 2.5. As an example of Theorem 2.4, consider the interior capillary prob-
lem (1) with a = 0 and γ = 0. Then v0 = 2/B, sinψ1 = r , w1 =

2
3 −

√
1 − r2, so

u =2/B+
2
3 −

√
1 − r2+O(B). Similarly, sinψ2 = r +

1
3(B/r)

(
(1−r2)3/2+r2

−1
)

so that w2(r, 0)= 2
3 −

√
1 − r2 and DBw2(r, 0)= −

1
6 +

1
3 ln

(
1+

√
1 − r2

)
, giving

u(r, B)=
2
B

+
2
3

−

√
1 − r2 +

(
−

1
6

+
1
3

ln
(
1 +

√
1 − r2

))
B + O(B2).

Setting r = 0, we have u(0, B) = 2/B −
1
3 +

1
3

(
ln 2 −

1
2

)
B + O(B2). Inverting

this relationship and setting u0 = u(0, B), we obtain

B =
2
u0

−
2

3u2
0

+

4
3

(
ln 2 −

1
2

)
+

2
9

u3
0

+ O
(

1
u4

0

)
as u0 → ∞.

This is a formula due to Rayleigh [1915]. It is the basis for the technique of
measuring surface tension by means of the rise of liquid in a narrow tube.

3. Exterior capillary surface

In the exterior case, since the domain is unbounded, we must proceed differently
in finding an initial approximation v1.

Set v1 = AK (r), where K (r)= (1/
√

B)K0(
√

Br) (K0 being a modified Bessel
function of the second kind) and A is a positive constant. We will make use of
the fact [Siegel 1980] that v1, which satisfies v1 rr + v1 r/r = Bv1 for r > 0, is a
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supersolution: Nv1 < Bv1 for r > 0. The Bessel function K0(r) has the following
properties [Lebedev 1965]:

K0(r) > 0, K ′

0(r) < 0, K0(r)∼
e−r

√
2πr

as r → ∞, K0(r)∼ − ln r as r → 0.

We also need that (r K ′

0)
′
= r K0 for r > 0 and K ′

0(r) ∼ −r−1 as r → 0. Now
choose A so that B

∫
∞

1 rv1 dr = cos γ : namely, A = −(cos γ )/K ′

0(
√

B).

Theorem 3.1. Let v1(r) = AK (r) be as chosen above and let v2 be determined
according to Theorem 1.1, so that Nv2 = Bv1, v2(r), v2 r (r)→ 0 as r → ∞. Then
ψ2(r) < ψ(r) for r > 1, ψ2(1) = ψ(1) = γ − π/2 and v1(1) < u(1) < v2(1). It
follows that u(1)= − cos γ ln

√
B + O(1) as B → 0.

Proof. By Theorem 1.1, ψ2(1)=ψ(1)=γ−π/2 and v2(r), v2 r (r)→ 0 as r →∞.
If v1(1)≥ u(1), then v1(r) > u1(r) for r > 1 by the comparison principle. This

contradicts the volume condition. Thus v1(1) < u(1). Note that

(10) v1(1)= −
K0(

√
B) cos γ

√
BK ′

0(
√

B)
= − cos γ ln

√
B + O(1) as B → 0.

Also, because of the volume condition, there exists a b> 1 so that v1(b)= u(b).
Since v1 is a supersolution, v1(r) > u(r) for r > b and v1(r) < u(r) for r < b. This
implies that Nv2< Nu for r <b and Nv2> Nu for r >b. Using thatψ2(1)=ψ(1),
r sinψ2(r), r sinψ(r)→ 0 as r → ∞ and integrating on [1, b] and [b,∞] gives
that sinψ2(r) < sinψ(r) for r > 1. Thus ψ2(r) < ψ(r) for r > 1 or, equivalently,
v2 r < ur for r > 1. Using that u(r), v2(r) → 0 as r → ∞, and integrating on
[1,∞), gives that u(1) < v2(1).

Finally, we have

r sinψ2(r)= −B
∫

∞

r
sv1(s) ds = −rv1 r (r),

so sinψ2 = AK ′

0(
√

Br). Using that v2 r = sinψ2/
√

1 − sin2ψ2 and integrating on
[1,∞) gives

(11) v2(1)=
cos γ

K ′

0(
√

B)

∫
∞

1

K ′

0(
√

Br)√
1 −

(
cos γ

K ′

0(
√

B)
K ′

0(
√

Br)
)2

dr.

We will show that there is an upper bound on v2(1) which is asymptotically the
same as (10). Change variables in the integral with the substitution s =

√
Br and

write the integral as the sum of two terms, where δ is an arbitrary fixed positive
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number: v2(1)= I1 + I2, I1 =
∫ δ√

B F ds, I2 =
∫

∞

δ
F ds, where

F =
cos γ√(√

BK ′

0(
√

B)
K ′

0(s)

)2

− B cos2 γ

< F1 =
cos γ√

s2 − B cos2 γ

and

F =
cos γ

√
BK ′

0(
√

B)

K ′

0(s)√
1−

(
cos γ K ′

0(s)

K ′

0(
√

B)

)2
< F2 =

cos γ
√

BK ′

0(
√

B)

K ′

0(s)√
1−

(
cos γ K ′

0(δ)

K ′

0(
√

B)

)2
.

The upper bound F1 was obtained by using that (r K ′

0)
′
= r K0 > 0, so that∣∣√BK ′

0(
√

B)
∣∣> |sK ′

0(s)|

for s >
√

B. Using the upper bounds F1 and F2 for the integrals I1 and I2, we
obtain

I1 < cos γ
(

ln
(
δ+

√
δ2

− B cos2 γ
)
− ln

(√
B(1 + sin γ )

))
= −cos γ ln

√
B + O(1),

I2 = −
cos γ

√
BK ′

0(
√

B)

K0(δ)√
1−

(
cos γ K ′

0(δ)

K ′

0(
√

B)

)2
= O(1).

Thus u(1) < v2(1) = I1 + I2 < −cos γ ln
√

B + O(1). Combining this with the
lower bound (10), we have that u(1)= −cos γ ln

√
B + O(1) as B → 0. �

Translating [Turkington 1980, Theorem 3.3] to the notation of this paper gives
u(1)∼ − cos γ ln

√
B as B → 0. Theorem 3.1 gives a better estimate of the error.
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CONVEX, ROTATIONALLY SYMMETRIC LIQUID BRIDGES
BETWEEN SPHERES

THOMAS I. VOGEL

A liquid bridge between two balls will have a free surface which has constant
mean curvature, and the angles of contact between the free surface and the
fixed surfaces of the balls will be constant (although there might be two
different contact angles: one for each ball). If we consider rotationally sym-
metric bridges, the free surface must be a Delaunay surface, which may be
classified as a unduloid, a nodoid, or a catenoid, with spheres and cylinders
as special cases. In this paper, it is shown that a convex unduloidal bridge
between two balls is a constrained local energy minimum for the capillary
problem, and a convex nodoidal bridge between two balls is unstable.

1. Introduction

The stability and energy minimality of a liquid bridge between parallel planes has
been well studied [Finn and Vogel 1992; Vogel 1987; 1989; 2002; Zhou 1997].
That of the related problem of a liquid bridge between fixed balls, as in the figure,

B2 B1

6

has been studied less (but see [Basa et al. 1994; Vogel 2005; Vogel 1999]). We give
a simple way of determining if a convex, rotationally symmetric bridge between
fixed balls is an energy minimum. Namely, if a convex bridge between spheres is
a section of an unduloid, it is a constrained local energy minimum, and if it is a
section of a nodoid, it is unstable, and in particular not an energy minimum. (For

MSC2000: 53A10, 58E12, 76B45.
Keywords: capillarity, constant mean curvature, stability.
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rotationally symmetric bridges, we will use “convex” to mean that the profile curve
of the free surface is a convex function.)

Someone familiar with [Vogel 1989] might be suspicious of this claim, because
it is shown there that convex bridges between planes are always stable. How could
reducing the radius of the spheres from infinity to a finite amount change the be-
havior so drastically? The resolution of this apparent paradox is that in looking
at bridges between parallel planes, one deals with stability or energy minimality
modulo translations parallel to the planes: there are perturbations which are au-
tomatically energy neutral. Changing the fixed surfaces from planes to spheres
will change the boundary contribution of the relevant quadratic form M, defined in
(1–2), and in particular the value of the quadratic form as applied to the perturba-
tions which were energy neutral for the bridge between planes. This is in fact the
key point of the paper. If the bridge is a section of a nodoid, then in changing the
fixed surfaces from planes to spheres, the energy neutral perturbations change to
energy reducing perturbations, causing instability. On the other hand, if the bridge
is a section of an unduloid, then in changing the fixed surfaces from planes to
spheres, the energy neutral perturbations change to energy increasing ones, which
we will show implies that the bridge is a constrained local energy minimum.

Definitions. In considering the stability and energy minimality of a liquid bridge
between solid balls, some concepts from the general theory of capillary surfaces
must be recalled [Finn 1986; Vogel 2000; Vogel 2002]. Suppose that 0 is the
boundary of a fixed solid region in space, and that we put a drop of liquid in
contact with 0. Let � be the region in space occupied by the liquid, and 6 the
free boundary of � (the part of ∂� not contained in 0). In the absence of gravity
or other external potentials, the shape of the drop results from minimizing the
functional

(1–1) E(�)= |6| − c|61|,

where |6| is the area of the free surface of the drop, |61| is the area of the region on
0 wetted by the drop, and c ∈ [−1, 1] is a material constant. The minimization is
under the constraint that the volume of the drop is fixed. The first-order necessary
conditions for a drop to minimize (1–1) are that the mean curvature of 6 be a
constant H (this is a Lagrange multiplier arising from the volume constraint) and
that the angle between the normals to 6 and to 0 along the curve of contact be
constantly γ = arccos c (see [Finn 1986]).

A capillary surface 6 is a constrained local energy minimum if it is the free
boundary of a drop � such that E(�) < E(�′) for any comparison drop �′ near
(but not equal to) � in an appropriate sense, and containing the same volume of
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liquid. The question of what sense of “nearness” is appropriate is a complex one,
but one approach is based on curvilinear coordinates [Vogel 2000].

In the common special case that there is a group of symmetries taking 0 to
itself, we say that 6 is a constrained local energy minimum modulo symmetries
if E(�) ≤ E(�′) for comparison drops �′ that are near �, and if E(�) = E(�′)

implies that �′ is obtained by applying an element of the symmetry group to �.
The specific example that we will deal with in this paper is that of a liquid bridge
between parallel planes. No bridge could be a constrained local energy minimum,
since translations parallel to the planes leave energy unchanged. However, in
certain circumstances one can show that a given bridge is a minimum modulo
these translations: any nearby bridge with the same energy (and volume) will be a
translation of the original one [Vogel 2002].

Suppose that 6 = 6(0) is embedded in a smoothly parameterized family of
drops 6(ε), all of which contain the same volume. If (d2/dε2)E(6(ε)) is negative
at ε = 0 for that family, 6 is said to be unstable. Otherwise, 6 is stable.

The quadratic form related to stability and energy minimality is

(1–2) M(φ, φ)=

∫∫
6

|∇φ|
2
− |S|

2φ2 d6+

∮
σ

ρφ2 dσ.

Here |S|
2 is the square of the norm of the second fundamental form of6. (In terms

of mean curvature H and Gaussian curvature K we have |S|
2
= 2(2H 2

− K ), and
in terms of the principal curvatures, |S|

2
= k2

1 + k2
2 .) We write σ for ∂6. The

coefficient ρ is given by

(1–3) ρ = κ6 cot γ − κ0 csc γ,

where κ6 is the curvature of the curve 6 ∩5 and κ0 is the curvature of 0 ∩5, if
5 is a plane normal to the contact curve ∂6. These planar curvatures are signed:
in Figure 2, left, both κ6 and κ0n are negative.

We will denote the subspace of H 1(6) of all φ for which
∫∫
6
φd6 = 0 by

1⊥, since this subspace is the collection of functions which are perpendicular to
the constant function 1 in the H 1 inner product. The relationship between M and
stability is that 6 is stable if and only if M(φ, φ)≥ 0 for all φ ∈ 1⊥. If 6 is a local
energy minimum or a local energy minimum mod symmetries, then 6 is stable.
However, stability does not imply that 6 is any sort of local energy minimum. It
is not known whether the stronger condition M(φ, φ) > 0 for all nontrivial φ ∈ 1⊥

is enough to imply that a capillary surface is some sort of energy minimum. (See
[Zhou 1997, Editorial comment] and [Vogel 2000] for a discussion of this point. If
the contact curves are “pinned” rather than free to move on 0, the strengthened con-
dition will imply energy minimality; see [Grosse-Brauckmann 1996].) In [Vogel
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2000], it was shown that if for some ε > 0, we have M(φ, φ)≥ ε ‖φ‖
2 holding on

1⊥, where ‖·‖ is the H 1(6) norm, then 6 is a volume constrained local minimum
for energy. If M(φ, φ)≥ ε ‖φ‖

2 on a subspace for an ε > 0, M is said to be strongly
positive on that subspace.

The quadratic form M is analyzed in [Vogel 2000; 2002] by considering an
eigenvalue problem arising from integration by parts. Define the differential oper-
ator L by

L(ψ)= −1ψ − |S|
2ψ,

where1 is the Laplace–Beltrami operator on6. The eigenvalue problem we study
is given by

(1–4)
L(ψ)= λψ on 6,

b(ψ)≡ ψ1 + ρψ = 0 on ∂6,

where ψ1 is the outward normal derivative of ψ . If the eigenvalue problem has
no nonpositive eigenvalues, the bridge is stable, and in fact a constrained local
energy minimum. If there are two or more negative eigenvalues, then the bridge is
unstable. If there is one negative eigenvalue, and the rest are positive, then there
is a further condition which must be checked to see if the bridge is stable (see
[Vogel 2005; Vogel 1987]). In [Vogel 2002] it is shown that a bridge between
parallel planes must always have zero as a double eigenvalue, corresponding to
energy neutral translations. The relationship between the bilinear form M and the
operator L is that

(1–5) M(φ, ψ)=

∫∫
6

φL(ψ) d6+

∮
σ

φb(ψ) dσ,

after an integration by parts.
This general theory must be modified when we consider bridges between fixed

balls, at least when we want to allow for different contact angles on the different
balls B1 and B2. In that case, there will be two material constants c1 and c2, and
the energy functional will be

E(�)= |6| − c1|61| − c2|62|,

where61 and62 are the wetted regions on B1 and B2 respectively. The contact an-
gles with the Bi will be γi = arccos ci . The bilinear form M must also be modified.
If we write σi for the curve of contact of 6 with Bi , we have

(1–6) M(φ, φ)=

∫∫
6

|∇φ|
2
− |S|

2φ2 d6+

∮
σ1

ρ1φ
2 dσ +

∮
σ2

ρ2φ
2 dσ.

The boundary conditions for the eigenvalue problem for the operator L must sim-
ilarly be adjusted.
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2. Comparing bridges between planes and bridges between spheres

In the absence of gravity, a capillary surface is a surface6 of constant mean curva-
ture which makes a constant contact angle γ with a fixed surface 0. Suppose that
we have such a surface, and, while keeping6 and its boundary fixed, we replace 0
by a new surface 0′, which still contains ∂6. Suppose this new surface 0′ makes
a new constant contact angle γ ′ with 6. The general question is how this will
effect stability or energy minimality of 6. At first glance, this question may seem
artificial. However, rotationally symmetric liquid bridges between solid spheres are
the same surfaces as those between parallel planes. Since much is known about
stability of bridges between planes, our hope is that from this knowledge we can
infer some information about stability of bridges between spheres.

From (1–2), we can conclude that changing the fixed surface 0 may change
the value of ρ, but that the surface integral in M remains unchanged. It therefore
makes sense to compare ρ values for bridges between planes and bridges between
spheres. It is known (see [Vogel 1987]) that a bridge between parallel planes must
be a surface of revolution. (However, there are bridges between spheres which
are not surfaces of revolution. See Note 1.) Surfaces of revolution having constant
mean curvature are called Delaunay surfaces. Their profile curves may be obtained
by rolling a conic section along an axis and tracing the path of a focus. Rolling
an ellipse results in a curve called an undulary, and the resulting surface is an
unduloid. Rolling a hyperbola yields a nodary as a profile curve and a nodoid as
the surface. Parabolas give catenaries and catenoids, cylinders come from rolling
circles, and spheres come from “rolling” line segments. See [Kenmotsu 2003] for
more information about Delaunay surfaces.

To make things specific, consider the following situation. Suppose that we have
a Delaunay surface generated by a profile passing through the point (x0, y0), and
that the axis of rotation of the Delaunay surface is the x axis. Suppose that κ6 is
the curvature of the profile at the point (x0, y0) (this agrees with the terminology
in (1–3)). The bridge is only part of the Delaunay surface, so let’s assume that
the bridge lies to the left of the plane x = x0. The profile curves of one case is
illustrated in Figure 2, left, where the center of the sphere is to the right of 0o. The
other case, where the center is to the left of 0o, but the sphere still does not cross
the free surface 6, is in Figure 2, right. The point of the following calculation is to
determine how the value of ρ along the curve of contact will change in going from
the Delaunay surface forming a bridge between planes to the Delaunay surface
forming a bridge between spheres.

Lemma 2.1. Suppose that the fixed surface that the bridge 6 contacts is the plane
x = x0, whose profile is labeled 0o in Figure 2, and let γo be the contact angle
between the normals N and No to 6 and 0o, respectively. Let ρo be the value of ρ
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Figure 2. Changing the fixed surface.

for this configuration. Now consider replacing the plane by a sphere going through
(x0, y0), whose profile is labeled 0n in Figure 2. (The subscripts o and n stand for
“old” and “new”.) Assume that this sphere has radius a and center on the x-axis.
The contact angle has changed to γn , and the value of ρ has changed to ρn . Set
η = γo − γn . Then

(2–1) ρn − ρo =
1

(cot η− cot γo) sin2 γo

(
κ6 +

sin γo

y0

)
,

Proof. Case 1: We have ρo = κ6 cot γo, since the curvature of the fixed surface is
zero. Now replace the plane by 0n . The contact angle is now the angle between N
and Nn , and has changed to γn = γo − η, where η = arcsin(y0/a). Therefore the
new value of ρ is

ρn = κ6 cot (γo − η)+
1
a

csc (γo − η) ,

since the sectional curvature of the fixed surface has decreased from 0 to −1/a.
Trigonometric identities for cot(A − B) and csc(A − B) give, as desired,

ρn − ρo

= κ6

(
cot γo cot η+ 1
cot η− cot γo

− cot γo

)
+

1
a sin γo sin η

(
1

cot η− cot γo

)
= κ6

(
cot γo cot η+1− cot γo cot η+ cot2 γo

cot η− cot γo

)
+

1
sin γo sin η

(
1

cot η− cot γo

)
=

1
cot η− cot γo

(
κ6 csc2 γo +

1
a sin γo sin η

)
=

1

(cot η− cot γo) sin2 γo

(
κ6 +

sin γo

y0

)
.
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The calculation for case 2 is similar, except that now η = π/2 − arcsin(y0/a),
and is omitted. �

Now, suppose that we have a bridge with a convex profile. In both case 1 and
case 2, one can show that 0 < η < γo < π , so that cot η− cot γo > 0. Therefore,
the sign of κ6 + (sin γo)/y0 will determine whether the value of ρ has increased
or decreased. From this we will be able to determine stability of convex bridges
between spheres. We first need to recall some facts about the profiles of Delaunay
surfaces.

If (x(s), y(s)) is an arclength parametrization of the profile of a Delaunay sur-
face, with inclination angle φ(s) (see Figure 2 for φ) and mean curvature H , we
have the following system of ordinary differential equations (see [Vogel 1989]):

(2–2)
dx
ds

= cosφ,
dy
ds

= sinφ,
dφ
ds

=
cosφ

y
+ 2H.

From this system, it’s easy to see that

d
ds

(
y cosφ+ H y2)

= 0,

so that y cosφ+H y2 is constant along Delaunay profiles. The value of this constant
has a geometric meaning.

Lemma 2.2. Let the constant value of y cosφ+ H y2 on the profile of a Delaunay
surface be called c. If Hc > 0, the profile is a nodary, and if Hc < 0 the profile is
an undulary.

Proof. This is already known (see [Oprea 2000], for example), but I was not able
to locate a proof in the literature, and it is not hard to present one. It is easy to
check that c = 0 for a sphere, so this case will not occur. Substitute the definition
of c into the last equation in (2–2) to see that

dφ
ds

= H +
c
y2 .

If H and c have the same signs, φ(s) is monotone on the profile. This rules out
undularies, and a catenary is not possible for H 6= 0, hence we must have a nodary.
On the other hand, suppose that H and c have different signs. From the definition
of c it is clear that φ = π/2 cannot be on the profile. The only possibility in this
case is an undulary (of which a circular cylinder is a special case). �

Lemma 2.3. Suppose that we have a rotationally symmetric bridge6 with a convex
profile contacting a plane as in Figure 2. Suppose that we replace the plane 0o with
a sphere 0n as in the figure. If 6 is a portion of an unduloid, then ρn > ρo, and
if 6 is a portion of a nodoid, then ρn < ρo. In particular, if we take a convex
bridge between parallel planes and replace the planes by spheres, both values of
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ρ in (1–6) will increase if 6 is a portion of an unduloid, and decrease if 6 is a
portion of a nodoid.

Proof. As noted before, the sign of the change of ρ is the same as the sign of
κ6 + (sin γo)/y0. But this last quantity will be equal to

dφ
ds

+
cosφo

y0
= 2

(
cosφo

y0
+ H

)
=

2
y2

0

(
y0 cosφo + H y2

0
)
,

where φo is the inclination angle of the profile at the right endpoint, so φo =π/2−

γo. Thus

κ6 +
sin γo

y0
= 2

c
y2

0
,

where c has the same meaning as in Lemma 2.2. From the last equation in (2–2),
it is clear that for a convex profile we have H < 0, so c > 0 for an undulary and
c < 0 for a nodary. �

Theorem. Suppose that 6 is a rotationally symmetric bridge between spheres,
whose profile is given as a solution to (2–2), and that dφ/ds < 0 and dx/ds > 0
on the bridge profile including the endpoints. If 6 is a section of a nodoid, it is
unstable. If 6 is a section of an unduloid or a sphere, it is stable, and is in fact a
local constrained energy minimum. (We do not assume that the spheres have equal
radius or that the contact angles are equal.)

Proof. It is known that for bridges between parallel planes, a convex bridge is
a constrained local energy minimum modulo translations in directions parallel to
the planes [Vogel 2002; [1989]]. In the proof in [Vogel 2002], we considered the
quadratic form

Mo(φ, φ)=

∫∫
6

|∇φ|
2
− |S|

2φ2 d6+

∮
σ1

ρo,1φ
2 dσ +

∮
σ2

ρo,2φ
2 dσ.

We write ρo,i for the old value of ρi as in Lemma 2.1. It was shown that this is
strongly positive (i.e., that there is an ε > 0 so that Mo(φ, φ)≥ ε ‖φ‖

2, where ‖·‖ is
the H 1(6) norm) on the subspace of 1⊥ of φ’s which are also orthogonal in H 1(6)

to infinitesimal translations parallel to the fixed planes. This strong positivity leads
directly to the statement about energy minimality. However, if µ corresponds to a
translation parallel to the fixed planes, we must have Mo(µ,µ)= 0, since M is the
second Fréchet derivative of energy, and energy is unchanged by translations. In
fact, the eigenvalue problem (1–4) will have a single negative eigenvalue, 0 as an
eigenvalue of multiplicity two, and all other eigenvalues positive. Using the same
notation as in [Vogel 2002], we let µ1 and µ2 span the subspace of infinitesimal
translations parallel to the fixed planes. With the parametrization of 6 given in
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Section 5 of that paper, we have

µ1(u, v)=
cos v√

1 + ( f ′)2
and µ2(u, v)=

sin v√
1 + ( f ′)2

(the profile being given as the graph of r = f (u)). These functions also span the
kernel of the eigenvalue problem (1–4).

If the corresponding new values ρn,i satisfy ρn,1<ρo,1 and ρn,2<ρo,2, the bridge
is unstable for the new configuration of fixed surfaces, and hence not a constrained
local energy minimum. The reason is simple: we must have Mn(φ, φ) <Mo(φ, φ)

for any φ which is nonzero on a set of positive measure on the boundary of 6.
In particular, Mn(µ1, µ1) < 0. But translations in the original configuration also
conserve volume, so

∫∫
6
µ1 d6 = 0, i.e., µ1 ∈ 1⊥. The second variation of energy

is negative for this infinitesimally volume-conserving perturbation, so we have in-
stability in the case that ρn,i <ρo,i . From Lemma 2.3, we therefore have instability
when the bridge is a portion of a nodoid.

If ρn,i > ρo,i , so the bridge is a portion of an unduloid, we expect the new
configuration to be more stable in some sense than the old one. In fact, we will
see that in this case Mn is strongly positive on all of 1⊥. For suppose that this is
not the case. We certainly know that Mn is nonnegative on this space, since Mo

is nonnegative on this space and Mn(φ, φ) ≥ Mo(φ, φ). So, if Mn is not strongly
positive on 1⊥, there must exist a sequence {φk} in 1⊥ for which ‖φk‖ = 1 and
limk→∞ Mn(φk, φk)= 0.

Projecting this sequence onto the span of µ1 and µ2, we write

φk = akµ1 + bkµ2 +φ∗

k .

Note that since
∫∫
6
µi d6 = 0, we have φ∗

k ∈ 1⊥. By going to a subsequence, we
may assume that {ak} and {bk} converge to a and b, respectively. Now,

Mn (φk, φk)

≥ Mo (φk, φk)

= Mo
(
akµ1 + bkµ2 +φ∗

k , akµ1 + bkµ2 +φ∗

k
)

= Mo (akµ1 + bkµ2, akµ1 + bkµ2)+ 2Mo
(
akµ1 + bkµ2, φ

∗

k
)
+ Mo

(
φ∗

k , φ
∗

k
)

= Mo
(
φ∗

k , φ
∗

k
)
≥ ε

∥∥φ∗

k

∥∥2
,

where the terms Mo (akµ1 + bkµ2, akµ1 + bkµ2) and Mo
(
akµ1 + bkµ2, φ

∗

k

)
van-

ish by (1–5) and the fact that L(µi )= 0 on 6, b(µi )= 0 on σ .
From the inequality above and because Mn(φk, φk) converges to 0, we conclude

that limk→∞{φ∗

k } = 0 in H 1(6); thus

lim
k→∞

φk = aµ1 + bµ2
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in H 1(6). An immediate consequence is that a and b cannot both be zero, since all
of the φk’s have length 1 in H 1(6). This leads to a contradiction. Since Mn(φ, φ)

is continuous on H 1(6),

Mn(aµ1 + bµ2, aµ1 + bµ2)= lim
k→∞

Mn(φk, φk)= 0.

However, aµ1 +bµ2 is not identically zero on ∂6. The reason is that it represents
the component normal to 6 of a nontrivial translation parallel to the original fixed
planes. Therefore

Mn(aµ1 + bµ2, aµ1 + bµ2) >Mo(aµ1 + bµ2, aµ1 + bµ2)= 0,

a contradiction. Thus Mn is strongly positive on all of 1⊥, proving that a bridge
between spheres which is convex and part of an unduloid must be a local energy
minimum. �

Note 1. No claim about energy minimality was made in the case that the bridge is
a section of a sphere. In this case, the spectrum of the eigenvalue problem (1–4)
remains the same as in the problem of a bridge between parallel planes, so that
0 is an eigenvalue of multiplicity two. What is happening at the symmetrically
placed spherical bridge is that there is a “wine cup” bifurcation. By shooting argu-
ments, one can show that this spherical bridge is embedded in a family of Delaunay
surfaces which form bridges between the balls. But by simple trigonometric argu-
ments, one can also construct a family of asymmetrically placed spherical bridges,
as in Figure 3. For every volume larger than the volume V0 of the symmetrically
placed spherical bridge, there is a one-parameter family of asymmetric spherical
bridges, all of which rotate into each other. As the volume decreases to V0, these
all collapse to the symmetrically placed spherical bridge, so that the symmetrically
placed spherical bridge is a limiting member of this family as well.

B1 B2

6

Figure 3. Asymmetrically placed spherical bridge.
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Note 2. A cylindrical bridge between spheres is a limiting case of unduloids.
Conditions under which the cylinder is a local energy minimum are derived in
[Vogel 1999].
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NEW EXOTIC CONTAINERS

HENRY C. WENTE

We describe the construction of new exotic containers in a gravitational
field. These are containers which, for certain volumes of fluid, possess a
continuum of noncongruent equilibrium configurations. Unlike the con-
structions of Gulliver and Hildebrandt (1986) and Concus and Finn (1991),
our containers need not be rotationally symmetric. One of their features is
that the equilibria seem likely to be local minimizers of energy, in contrast
to earlier constructions where the equilibria were always unstable.

1. Introduction

Consider a container6, partially filled with a fluid of density ρ, occupying a region
T , sitting in a gravitational field of intensity g. We denote the liquid-air interface
by 3, enabling us to write down the potential energy of the configuration,

(1–1) E = σ |3| + ρg
∫

T
z dv− στ |6′

|, |τ |< 1.

Here |3| is the area of the free surface, |6′
| is the wetted area of container wall,

and τ is the wetting energy of the fluid in contact with the wall. In equilibrium the
configuration will be such that the potential energy is an extremum with respect
to the volume constraint, |T | = V0. The case of positive g corresponds to the
gravitational force acting downward. However, the cases g = 0 and g < 0 are also
of interest to us.

The Euler–Lagrange equations determine the following conditions for equilib-
rium. First, the mean curvature of the free surface satisfies 2H = κz + λ, where
κ=ρg/σ and λ is a constant arising as a Lagrange multiplier. The sign of the mean
curvature is determined relative to the unit normal on 3 directed away from the
fluid T . Secondly, the boundary conditions stipulate that the free surface meets the
container wall at a contact angle γ where cos γ = τ . Here the angle γ is measured
interior to the fluid.

An exotic container is a vessel with a smooth wall such that for some particular
volume of fluid there will exist a continuum of geometrically distinct equilibrium

MSC2000: primary 53A10; secondary 49Q10, 35F10.
Keywords: capillarity, prescribed mean curvature, exotic containers.

379



380 HENRY C. WENTE

configurations. In the published examples the exotic containers are always taken
to be rotationally symmetric about a vertical axis. The corresponding interfaces
are also rotationally symmetric and usually contain the flat surface u ≡ 0 as one
member of the family. The first example appeared in the paper by R. Gulliver
and S. Hildebrandt [1986], who considered the case of zero gravity, g = 0, and
with wetting energy, τ = 0, so that the contact angle was γ = π/2. In this case
the free surfaces are spherical caps and the construction of the container wall is
very geometric. The remaining cases where g ≥ 0 and arbitrary contact angle γ ,
0< γ < π were studied in a series of papers by P. Concus and R. Finn.

It turns out that in all of these cases the rotationally symmetric equilibria are not
stable. This feature was first discussed in [Concus and Finn 1989]. A complete
proof was given in [Wente 1999]. This behavior was verified in a drop tower
experiment, discussed in a paper by Concus, Finn, and Weislogel [Concus et al.
1992]. The experiment was also reproduced later in gravity-free conditions in a
space lab mission.

This paper shows the construction of many new exotic containers. Consider,
first, a round spherical container containing some fluid, with the free surface being
a circular planar disk meeting the container wall with contact angle γ . This is an
equilibrium configuration in gravity-free conditions with wetting energy τ = cos γ .
It is part of a two-parameter family of congruent configurations (not geometrically
distinct). They are minimizers of the appropriate energy. What happens if we add
gravity? Can we construct exotic containers whose extrema are local minimizers
of energy? This is our goal.

Our method of construction is as follows. Start with a one-parameter family
of extremal surfaces satisfying the Euler–Lagrange equation. (For the Gulliver–
Hildebrandt construction the family consisted of spherical caps symmetric about
the z-axis. The Concus–Finn examples use the rotationally symmetric solutions to
the sessile drop equation when g > 0.) The class of admissible surfaces we shall
use are those extrema of cylindrical type. Namely, they are ruled surfaces with a
generating curve lying in the xz-plane. The rulings are straight lines parallel to the
y-axis. Since at every point one of the two principle curvatures is zero, the surfaces
are metrically flat. For g = 0, the surfaces we shall use are tilted planes. For g 6= 0
the generating curves are determined by the condition that the signed curvature of
the generating curve is a linear function of height. Such curves have an interesting
history, having first been studied by Euler, and are called elastic curves. We shall
refer to the corresponding extremal surfaces as elastic surfaces.

Start with our family, {3t }, parametrized by t . The surface 30 will be the
horizontal plane. 3t will be that elastic surface whose generating curve passes
through the origin, whose curvature k equals κz, and whose inclination angle at
(0, 0) is t . These curves will have an inflection point at the origin, bending one way
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when z is positive and the opposite way when z is negative. We must also allow
the surfaces 3t to be transported vertically by an amount h(t) to be determined.
Call this new family 3̃t . Pick a region X0 ⊂ 30 with bounding curve 00. One
now constructs the rigid bounding surface 6 by analogy with the Monge cone
construction. 6 will consist of the union of curves 0t lying in 3̃t . The requirement
is that each elastic surface 3̃t meet the rigid surface6 at a prescribed contact angle
γ . It is still necessary that the volume enclosed by 6 and 3̃t remain fixed. This is
achieved by an appropriate choice of h(t). For γ = 90◦ the construction is easier.
The volume condition is satisfied by setting h(t)≡ 0 and the surface6 is generated
by taking orthogonal trajectories emanating from the base curve, 00. Generally,
we shall assume that 00 is symmetric about the y-axis, but this is not a necessary
condition for our construction.

Consider the case g = 0, where 3t is the family of tilted planes. If 00 ⊂ 30

is a circle with center at the origin, our construction recovers the round sphere.
However, if 00 is some other closed curve, say an ellipse, we obtain some new
bounding surfaces which are not so easy to describe.

The construction of exotic containers is also of interest in one lower dimension.
This may be imagined as some fluid sitting between two vertical planes. In this
case the free surface is a narrow ribbon. We shall analyze this case as well. We
refer to this situation as the planar case.

In Section 2 we discuss elastic curves, those for which the signed curvature is a
linear function of height. Such curves will generate our elastic surfaces, 3t . They
were studied by Euler and have other potential applications to capillary theory
besides the construction of exotic containers. They determine potential sessile or
pendant drops in one lower dimension. In Section 3 we carry out the construction
of the exotic containers. We shall analyze the planar case first and then the more
physical situation in dimension three.

In Section 4 we discuss the stability question. As mentioned above, for the
gravity-free case and where our initial curve 00 is a circle, the corresponding
container wall is a sphere. Here the configurations are all energy minimizers (all
congruent as well). We would like this to be true more generally. We do show that
in the planar case our construction does produce a container for which the initial
flat surface 30 is a strong local minimizer. It seems likely that this should be true
in the three-dimensional case as well assuming that 00 is chosen properly.

2. Elastic curves

In this section we construct a particular set of solutions z = u(x, y) for the free-
surface interface, namely those that depend only on one variable x , so z = u(x).
The solutions (regarded as curves in the xz-plane) are called elastic curves; the
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corresponding ruled surfaces in R3 will be called elastic surfaces. By a vertical
translation we may set the Lagrange multiplier λ to 0. By a rescaling we may
suppose that κ = ρg/σ = 1. This gives us the differential equation

(2–1) u′′/(1 + (u′)2)3/2 = u, z = u(x).

The signed curvature is precisely u. It is a linear function of position. As noted in
the introduction, this is the governing equation for the equilibrium configuration of
a planar elastic rod. See [Giaquinta and Hildebrandt 1996] for a nice discussion.
Let the curve C be parametrized by arc length, 〈x(s), u(s)〉. If we let θ(s) be the
angle of inclination, the differential equation (2–1) can be rewritten as

(2–2) θ ′(s)= k(s)= u(s), k(s)= curvature.

Here are some elementary observations concerning solutions to (2–2).

– If 〈x(s), u(s)〉 solves (2–2) so does 〈x(s)+ x0, u(s)〉.

– If 〈x(s), u(s)〉 solves (2–2) so does 〈x(s),−u(s)〉.

– If we reverse the orientation of the curve by setting σ = −s, the new curve
satisfies the equation θ ′(σ )= −u(σ ).

– Suppose θ ′(s) = u(s). If u(s) > 0 the curve is bending counterclockwise, if
u(s) < 0 it is bending in a clockwise manner, there is an inflection point as
the curve crosses the x-axis.

– For θ ′(s)= u(s), ρg/σ = 1 the fluid is taken to be on the right in the direction
of increasing s.

– The strong touching principle: Let C1, C2 be oriented curves both satisfying
(2–2), with θ ′

1(s)=u1(s) and θ ′

2(s)=u2(s). If θ1 =θ2 at some level u = ū, then
the two curves are congruent. If they touch at some point they are identical.

Upon differentiating (2–2) we have θ ′′(s) = u′(s) = sin θ , which can be inte-
grated giving

(2–3) 1
2θ

′(s)2 + cos θ = E, u2(s)= 2(E − cos θ).

We analyze solutions to (2–3) via phase-plane analysis. Clearly the energy E is at
least −1. In fact:

(a) If E =−1, then θ =π and u(s)= 0. The solution is the horizontal line, u = 0,
being traversed right to left so that the fluid lies above the z-axis.

(b) If E = 1, there is the constant solution θ(s)= 0. Again u(s)= 0 and the curve
is traversed left to right with the fluid below the z-axis.

Now consider the case −1 < E < 1. The phase portrait of (2–3) is shown in
Figure 1. The solution θ(s) will be oscillatory with a minimum value θ(0) = θ0,
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Figure 1. Phase portrait of the solution (2–3).

where 0 < θ0 < π and E = cos θ0. We have θmin = θ0 and θmax = 2π − θ0. Since
E = cos θ0, the second equation in (2–3) becomes

u2(s)= 2(cos θ0 − cos θ).

This expresses u as a function of θ . We can use θ itself as a parameter, θ0 ≤ θ ≤

2π − θ0. Since dx/dθ = cos θ one finds

x(θ)=

∫ θ

θ0

cosϕ dϕ
√

cos θ0 − cosϕ
.

We have a parametrization 〈x(θ), y(θ)〉 valid for θ0 ≤ θ ≤ 2π − θ0 with initial
condition 〈x(θ0), u(θ0)〉 = 〈0, 0〉. Let this curve be expressed in terms of arc
length, 0 ≤ s ≤ `. It may be extended using (2–3) to the interval −` ≤ s ≤ `

with 〈x(−s), u(−s)〉 = −〈x(s), u(s)〉. Finally the solution extends for all s by
setting x(s +2`)= x(s)+ x(2`), and u(s +2`)= u(s). The complete curve bends
to the left when u is positive and to the right when u is negative. A complete picture
is obtained by observing the curve 〈x(θ), u(θ)〉, θ0 ≤ θ ≤ π .

Theorem 2.1. Consider solutions to θ ′(s)= u(s) satisfying (2–3) with −1< E <1.
By setting E = cos θ0, 0< θ0 < π we have

u2(θ)= 2(cos θ0 − cos θ).

Consider that portion of the complete curve where θ0 ≤ θ ≤π ; for θ = θ0 the curve
passes through the origin. One has three types of graphs, depending on whether
0< θ0 < π/2, θ0 = π/2, or π/2< θ0 < π (Figure 2).
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Figure 2. Qualitative appearance of elastic curves.

We set (xM , zM) = 〈x(π), u(π)〉, and also (xA, z A) = 〈x(π/2), u(π/2)〉 in the
case 0< θ0 < π/2. We identify zM with uM and z A with u A.

(1) We have u2
A = u2(π/2) = 2E ; equivalently, u A =

√
2E =

√
2 cos θ0. The

function u A is strictly increasing in E , for 0< E<1, with range 0<u A<
√

2.

(2) xA is strictly increasing in E , for 0< E < 1, with range 0< xA <∞, and xA

becomes infinite as E approaches 1.

(3) We have u2
M = 2(E +1), or equivalently, uM =

√
2(E + 1), for −1< E < 1.

Therefore uM is strictly increasing in E , for −1 < E < 1, with range 0 <
uM < 2.

(4) xM is strictly increasing in E , for −1< E < 1, with range −π < xM <∞.

Proof. We need only verify (2) and (4). Suppose C1 : 〈x1(θ), u1(θ)〉 and C2 :

〈x2(θ), u2(θ)〉 are two solutions with initial inclination angles 0< α2 < α1 ≤ π/2
so that 0 ≤ cosα1 = E1 < E2 = cosα2 < 1. It follows that u A1 < u A2 by (1).
Initially the curve C2 lies to the right of C1. I claim that it does so for 0 ≤ u ≤ u A1 .
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If this were not the case, the two curves would intersect at some smallest value ū,
with 0 < ū < u A. At this level the inclination angles would satisfy θ1 ≤ θ2. With
equality we are done, since by the touching principle we would have C1 = C2. But
θ1<θ2 is not possible either, for then at some smaller value ũ, 0< ũ< ū, we would
have θ1 = θ2. This would mean that C2 is a horizontal translate of C1, which is
impossible. It follows that xA is a strictly increasing function of E , 0 < E < 1.
The integral formula for xA is

xA =

∫ π/2

θ0

cosϕ dϕ
√

2(E − cosϕ)
=

∫ π/2

θ0

cosϕ dϕ
√

2(cos θ0 − cosϕ)
.

It follows that the range of values for xA, for 0 < θ0 < π/2, is 0 < xA < +∞.
Statement (2) follows.

We now consider statement (4).
First take the case 0< θ0 < π/2 or 0< E < 1. Here xM = x(π). We find

xM = xA +

∫ π

π/2

cosϕ dϕ
√

2(E − cosϕ)
= xA −

∫ π/2

0

cosψ dψ
√

2(E + cosψ)
.

Thus, since xA is strictly motonic in E , so is xM . Moreover, θ0 → 0 and xM →+∞

as E → 1.
We remark that xM < 0 for θ0 = π/2. There is exactly one value θc ∈ (0, π/2)

with xM = 0. The corresponding complete curve is a closed curve in a figure eight
shape.

Now consider the case π/2 ≤ θ0<π . Parametrizing by the arc length s, we have
a curve traced right to left starting at the origin with E = cos θ0, and −1< E < 0.
Consider the curve obtained by reflection about the z-axis. This will resemble a
sine curve traversed left to right satisfying the curvature equation θ ′(s) = −u(s),
with θ(0) = ψ0 = π − θ0. The curve bends clockwise and the inclination angle
decreases from ψ0 to 0. For θ = 0 the reflected curve has coördinates 〈xR, u R〉,
where u R = uM = 2(1 + E) and xR = −xM is positive. One finds

xR =

∫ ψ0

0

cosϕ dϕ
√

2(E + cosϕ)
=

∫ ψ0

0

cosϕ dϕ
√

2(cosϕ− cosψ0)
, 0<ψ0 < π/2.

We claim that xR is a strictly decreasing function of E for −1< E < 0; that is,
it is strictly increasing in ψ0, 0<ψ0 < π/2, and E = − cosψ0.

We parametrize the curve as a function of u, getting

d
du

(
x ′(u)√

1 + x ′(u)2

)
= −u.
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This gives x ′2/(1 + x ′2)= (a2
+ u2)2/4 for 0 ≤ u ≤ uM , where u2

M = 2 −a2, for a
positive constant a <

√
2. We obtain the integral formula

xR =

∫ √
2−a2

0

(a2
+ u2) du√

4 − (a2 + u2)2
.

Let u =
√

2v and a =
√

2α. Rewrite the integral and then change variables, setting
α2

+ v2
= t , to find

xR =
1

√
2

∫ 1

β

t dt
√

1 − t2
√

t −β
, 0< β = α2 < 1.

Finally, set t = (1 −β)x +β, obtaining

xR =

√
1 −β
√

2

∫ 1

0

(
(1 −β)x +β

)
dx

√
x
√

1 −
(
(1 −β)x +β

)2
.

This integral is an increasing function of β, 0 < β < 1. As one can see by differ-
entiation,

dxR

dβ
=
(1 −β)3/2

2
√

2

∫ 1

0

(1 − x)2
(
2 + ((1 −β)x +β)

)
√

x
(
1 − ((1 −β)x +β)

)3/2 dx .

This is positive for 0< β < 1.
For β = 0, one has θ0 = π/2, uM =

√
2 and

xR =
1

√
2

∫ π/2

0

√
cosϕ dϕ =

1
√

2

∫ 1

0

√
x dx

√
1 − x2

.

For β ≈ 1, θ0 ≈ π and ψ0 ≈ 0 and we see that uM → 0 and xR → π/2; hence
xM → −π/2. �

Figure 3 illustrates the family of curves just discussed: solutions 〈x(s), u(s)〉 of
θ ′(s)=u(s) going through 〈x(0), u(0)〉=〈0, 0〉 and satisfying θ(0)=θ0, 0<θ0<1,
where s ranges from 0 to sM(θ0) with u(sM)= uM =

√
2(E + 1), for −1< E < 1.

These are the generating curves of the family of elastic surfaces we shall use to
construct our exotic containers. We see from our discussion that any two curves in
this family only intersect at the origin.

The family of curves where E ≥ 1 are also interesting but are not relevant to our
discussion here. For E = 1 one also obtains the soliton solution, while for E > 1
the curves remain away from the u-axis and always turn in one direction.
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x

z

Figure 3. The family of elastic curves, g > 0.

3. Construction of exotic containers

There are two theorems in this section. The first carries out the construction of
the exotic container in the planar case. Here the free surface is a curve, as is the
container wall. Physically, this amounts to the situation of a liquid held between
two parallel vertical plates. Though somewhat easier to handle, this construction is
worth a separate discussion. The second theorem treats the three-dimensional case.

We start with a one-parameter family 3t of immersed surfaces in R3, each of
which has mean curvature 2H = κz with κ = ρg/σ . Specifically we shall choose
the family of elastic surfaces described in Section 2, although other choices would
work equally well. In the planar case we use the corresponding elastic curves.

We have a map, F0 : �× I into R3 where � = R2 and I is an open interval
centered about t = 0. Points in � are labeled (u, v), points in I by t , and the target
space is (x, y, z). We have

F0(u, v, t)= 〈 f (u, t), v, g(u, t)〉,

where the pair 〈 f (u, t), g(u, t)〉, for a given value of t , describes the generating
curve of the elastic family parametrized by arc length with f (0, 0) = g(0, 0) = 0
and such that the inclination angle at the origin is t . For each t , the map F0(u, v, t)
is a flat isometric immersion of an elastic surface with

|(F0)u| = |(F0)v| = 1 and 〈(F0)u · (F0)v〉 = 0.

We set �t0 = � × {t0} and call 3t0 = F0(�t0), our immersed surface with
prescribed mean curvature 2H = κz. For κ = 0, 3t is a tilted plane containing
the y-axis with inclination angle t , while for κ > 0 we have the elastic surfaces
described in Section 2, where the fluid lies below the surface (sessile drop case).
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For any κ ,30 is the horizontal plane and3−t is the reflection of3t in the xy-plane.
In particular, F0(u, v, 0)= (u, v, 0).

We denote by ξ(u, v, t) = (F0)u ∧ (F0)v the unit normal vector to 3t pointing
out of the fluid.

Theorem 3.1 (two-dimensional case). Suppose given a one-parameter family of
oriented curves F0(u, t)= 〈 f (u, t), g(u, t)〉 satisfying

(1) 2H = κz, where κ = ρg/σ and 2H is the signed curvature;

(2) the curves are parametrized by arc length so that |(F0)u| = 1 with F0(u, 0)=
〈u, 0〉; and

(3) F0(0, t) = 〈0, 0〉 and (F0)u(0, t) = 〈cos t, sin t〉. (For κ > 0 our curves
represent the free surface of sessile drops, for κ = 0 we have F0(u, t) =

〈u cos t, u sin t〉, while for κ < 0 we have the pendant drop situation.)

Let initial values for u1(t), u2(t) be given. We want u1(t) < u2(t). For this
reason we assume that u1(0)= u1, u2(0)= u2 with u2 = −u1 > 0. There exist two
smooth functions u1(t), u2(t) and a function h(t) with h(0) = 0, all defined in a
neighborhood of t = 0 with the following property. Let

F(u, t)= 〈 f (u, t), g(u, t)+h(t)〉

be our family of extremals, characterized by the following properties:

(a) F(R × {t})=3t , our immersed free curve.

(b) 61 is the left bounding wall, F(u1(t), t), while 62 is the right bounding wall,
F(u2(t), t).

We have F(u1(t), t) ∈3t ∩61 and F(u2(t), t) ∈3t ∩62. The curve F(u, t), with
u1(t) ≤ u ≤ u2(t), is an extremal curve for the variational problem and each such
curve,3t , will meet the container walls61,62 at an interior contact angle γ , with
0< γ < π .

Let V (t) be the “volume” enclosed by 3t and the container walls 61, 62. We
may suppose that the curves 61, 62 are connected from below to form a closed
container.

The volume enclosed by the container and any free surface, 3t , is a constant.

Proof. Given h(t), a smooth function, we shall use the contact angle condition to
determine a first-order differential equation for u1(t), u2(t) satisfying u1(0)= u1,
u2(0) = u2, where we shall assume that u2 = −u1 > 0. Then we use the fixed
volume condition to obtain an equation for h′(t) in terms of u1(t), u2(t). We
end up with a first-order system for the pair {u1(t), u2(t)} with initial conditions
〈u1(0), u2(0)〉=〈u1, u2〉. The existence theorem for ordinary differential equations
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gives us our solution 〈u1(t), u2(t)〉. We are then able to find h(t) where we set
(without loss of generality) h(0)= 0.

We have the functions

F0(u, t)= 〈 f (u, t), g(u, t)〉,

F(u, t)= 〈 f (u, t), g(u, t)+h(t)〉,

Fu = 〈 fu, gu〉 with f 2
u + g2

u = 1,

Ft = 〈 ft , gt+h′(t)〉,

ξ(u, t)= 〈−gu, fu〉,

the latter being the unit normal vector. We set e1 = Fu , the unit tangent vector
to 3t , while e2 = ξ(u, t) is the unit normal vector. We are to find u2(t) so that
F(u2(t), t) will describe the right container wall, 62. The tangent vector to this
curve is to be parallel to w = (cos γ )e1 + (sin γ )e2 = (cos γ )Fu + (sin γ )ξ . That
is: u̇2 Fu + Ft = αw for some scalar α. We write this as

Ft = −u̇Fu +αw.

Now Fu and w are linearly independent, 0 < γ < π . By taking the inner product
of the preceding equation with ξ and Fu successively we find

α = csc γ (Ft · ξ),

u̇ = cot γ (Ft · ξ)− (Ft · Fu).

The second of these equations is our differential equation for u2(t), which we can
rewrite more explicitly as

(3–1) u̇2(t)= Ft · (cot γ ξ − Fu)= cot γ ( fugt − ft gu)+ h′(t)(cot γ fu − gu).

The right-hand side is an “explicit” function of (u, t).
The differential equation for u1(t) is almost identical. The only change is that

the outward unit tangent vector to 3t is e1 = −Fu . We are led to the following
differential equation for u1(t):

(3–2) u̇1(t)= − cot γ (Ft · ξ)− (Ft · Fu).

Given h(t) and initial data for u1(t) and u2(t), there exists a unique solution
〈u1(t), u2(t)〉 such that the curves F(u1(t), t), F(u2(t), t) describing 61, 62 meet
the free surfaces 3t : F(u, t), u1(t) ≤ u ≤ u2(t), with the desired interior contact
angle γ .

We now use the conservation of volume condition to determine the function h(t).
For each t , the free surface 3t is given by the map F(u, t), u1(t)≤ u ≤ u2(t). As
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we vary our family, the normal component of the variation is ϕ = (Ft ·ξ). The first
order variation of “volume” should be zero:

V̇ (t)=

∫ u2(t)

u1(t)
(Ft · ξ) du = 0.

Substituting our formulae for F and ξ we get

(3–3) h′(t)
∫ u2(t)

u1(t)
fudu = −

∫ u2(t)

u1(t)
( fugt − ft gu) du.

(For t = 0 we have fu ≡ 1 so that the expression for h′(t) is well defined.)
Equation (3–3) determines h′(t) as a function of (u1, u2). Substitute this expres-
sion for h′(t) back into equations (3–1) and (3–2) to obtain a first order system
of differential equations for {u1(t), u2(t)}. Given initial conditions u1(0) = u1,
u2(0)= u2 with u2 = −u1 > 0 we have solutions {u1(t), u2(t)}. Setting h(0)= 0
we obtain h(t) using (3–3). �

Remark. Given symmetric initial data, the generated solutions will have the fol-
lowing properties.

(i) h(t) is an even function of t .

(ii) The boundary curves 61, 62 are symmetric about the z-axis.

(iii) The free surface 3t meet the container walls 61, 62 at an interior contact
angle γ , 0< γ < π .

(iv) The “volume” enclosed by 3t and 61, 62 is a constant independent of t .

(v) For t = 0, 3t is the horizontal line segment u1 ≤ u ≤ u2.

(vi) For γ =π/2 with cot γ =0 we have h(t)≡0 and the curves61,62 are simply
orthogonal trajectories of the family F0(u, t), assuming u1(0)= −u2(0).

We now consider the three-dimensional case. Our elastic surfaces are described
by functions F0(u, v, t) = 〈 f (u, t), v, g(u, t)〉 with F0(u, v, 0) = 〈u, v, 0〉 and
(F0)u(0, v, t)= 〈cos t, 0, sin t〉. For each t the equilibrium surface F0(�×{t}) has
mean curvature 2H = κz. Now let h(t) be a smooth function of t with h(0) = 0
and set

(3–4) F(u, v, t)= 〈 f (u, t), v, g(u, t)+h(t)〉.

For each t , F(� × {t}) = 3t is a potential equilibrium surface, where h(t) is
a Lagrange multiplier. Our parameter space has coördinates (u, v, t), while the
coördinates in the target space are labeled (x, y, z).

Our construction proceeds as follows. Start with a base curve C0 : 〈a(s), b(s), 0〉

with u = a(s), v = b(s). We assume this is a smooth curve parametrized by arc
length. Let its length be L , so a(s), b(s) are periodic functions of period L defined
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on R. Assume also that C0 is a convex curve in the u-v plane, symmetric about
the v-axis. Since F(u, v, 0)= 〈u, v, 0〉 we see that 00 = F(C0) is identical to C0.
With C0 as our base curve, we form the cylinder C0 × R.

We will consider surfaces S in the parameter space which are normal graphs
over this cylinder. The unit normal vector to C0 × R is n(s) = 〈b′(s),−a′(s), 0〉.
Let ϕ(s, t) be a smooth function that is periodic in s of period L and satisfies
ϕ(s, 0)= 0. Set

(3–5)
u(s, t)= a(s)+ϕ(s, t)b′(s)

v(s, t)= b(s)−ϕ(s, t)a′(s).

The surface, S, is then described by the map

(3–6) S : 〈u(s, t), v(s, t), t〉.

We set 6 ≡ F(S). This is a parametric surface in the target space. We need
to determine h(t), ϕ(s, t) so that 6 satisfies the contact angle condition with the
surfaces 3t . We shall determine h(t) so that the volume enclosed by the container
wall 6 and any given free surface 3t remains constant. Specifically:

Theorem 3.2 (the three-dimensional case). Let the base curve C0 : 〈a(s), b(s), 0〉

be as described above. It is convex and symmetric about the v-axis, and periodic
with period L. There exist

(a) a function ϕ(s, t) defined for t in an interval about 0 and for all s, periodic in
s of period L , satisfying ϕ(s, 0)= 0; and

(b) a smooth function h(t) that is even in t and satisfies h(0)= 0;

the whole satisfying the following property.
Let S be the surface in the parameter space given as a normal graph over the

cylinder C0 × R by (3–5), (3–6), and let 6 = F(S) be the image surface in the
target space under the map F. For each t , let 3t be the equilibrium surface
F(�× {t}). The wall 6 and the equilibrium surface 3t intersect along a curve
0t = F

(
u(s, t), v(s, t), t

)
. The two surfaces intersect transversally with a contact

angle γ , where 0< γ < π .
Finally suppose that the container 6 is closed off from below so that 6 and the

free surface 3t enclose a volume V (t). We can choose h(t) so that the volume
remains constant.

Proof. Given the convex base curve C0 as described, we have the surface S as a
normal graph over the cylinder C0 × R given by (3–5) and (3–6) for any function
ϕ(s, t). We want ϕ(s, t) to be periodic in s of period L , defined in some interval
about t = 0, and with ϕ(s, 0)= 0. We designate

6 = F(S), 00 = F(C0) (the base curve), 0t = F(Ct).
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Here 0t is a curve lying on 3t and on 6. Given a smooth function h(t) even in t
with h(0)= 0, we shall derive a first-order partial differential equation for ϕ(s, t)
that can be solved by the method of characteristics. This will produce a surface 6
satisfying the correct contact angle condition with 3t for any given contact angle
γ in the interval 0< γ < π . We then determine h(t) so that the volume condition
is satisfied.

Let

F(s, t)≡ F
(
u(s, t), v(s, t), t

)
describe 6, where u(s, t) and v(s, t) are given in (3–5). The vectors Fu and Fv
are unit tangent vectors to 3t with (Fu · Fv) = 0. Let ξ(u, v, t) = Fu ∧ Fv be the
unit normal vector on 3t . We observe that

Fs = us Fu + vs Fv and Ft = ut Fu + vt Fv

are tangent vectors to 6, and Fs is tangent to the curve 0t as well. We set

e2 =
1√

u2
s + v2

s

Fs =
1√

u2
s + v2

s

(us Fu + vs Fv),

the unit tangent vector to 0t = 6 ∩3t . With ξ as unit normal vector to 3t we
complete the orthonormal frame along 0t by setting

e1 =
1√

u2
s + v2

s

(vs Fu − us Fv).

This is a tangent vector on the surface 3t which is a conormal along the bounding
curve 0t . As in Theorem 3.1 we set

w = cos γ e1 + sin γ ξ.

This vector is to be tangent to 6. Since Fs and Ft span the tangent space we may
write

(3–7) αw = λFs + Ft

for suitable scalers α, λ. Using our expressions above for Fs and Ft we rewrite
(3–7) to obtain

Ft = −(λus + ut)Fu − (λvs + vt)Fv +αw.

We obtain three equations by taking the inner product of Ft with ξ , Fu , and Fv
respectively. First,

(Ft · ξ)= α(w · ξ)= sin γ α;
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hence α=csc γ (Ft ·ξ). For the other two equations one uses the fact that (Ft ·Fv)=
0 and (Fu · Fv)= 0. Taking the inner product of Ft with Fu leads to

(λus + ut)= −(Ft · Fu)+ cot γ
(

vs√
u2

s + v2
s

(Ft · ξ)

)
.

Taking the inner product of Ft with Fv yields

(3–8) (λvs + vt)= cot γ
(

−us√
u2

s + v2
s

(Ft · ξ)

)
.

We use these two equations to eliminate λ and find

(3–9) usvt − utvs = (Ft · Fu)vs − (Ft · ξ) cot γ
√

u2
s + v2

s .

Using the expressions for u(s, t), v(s, t) in (3–5) gives us a first order PDE for
ϕ(s, t):

(3–10)
(
1 + (a′b′′

− a′′b)ϕ
)
ϕt + (Ft · Fu)(b′

− a′ϕs − a′′ϕ)

− (Ft · ξ)(cot γ )
√

u2
s + v2

s = 0,

where u2
s + v2

s = 1 +ϕ2
s + (a′′2

+ b′′2)ϕ2
+ 2(a′b′′

− a′′b′)ϕ+ 2(a′a′′
+ b′b′′)ϕϕs .

This is a first order PDE which we can solve by the method of characteristics
subject to the initial condition ϕ(s, 0)= 0.

As in the two-dimensional case (Theorem 3.1), we use the conservation of vol-
ume condition to determine h′(t). Let V (t) be the volume enclosed by the surface
3t and the container wall 6. We may suppose that the bottom of the container is
closed off so that the computed volume is finite. The rate of change of volume is
obtained by integrating the normal variation over the part of 3t that lies inside the
container.

(3–11) V̇ (t)=

∫∫
F(At )

(Ft · ξ) d S = 0.

Here At is the domain in the parameter space whose image under F is the desired
region. Now F(u, v, t) is given by (3–4). We have Ft = 〈 ft , 0, gt+h′(t)〉 and
ξ = Fu ∧ Fv = 〈−gu, 0, fu〉. Substitute these expressions into (3–11) and we find

(3–12)
(Ft · ξ)= (− ft gu + fugt)+ h′ fu,

(Ft · Fu)= ( fu ft + gugt)+ h′gu .

We use these expressions to rewrite (3–11) as

(3–13) h′(t)
∫∫

At

fu du dv+

∫∫
At

(− ft gu + fugt) du dv = 0.
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Here F(At) lies on the surface 3t , with boundary 0t . The identity (3–13) deter-
mines h′(t) as the ratio of two integrals over the region At , with known integrands.
The region At in the parameter space is bounded by the curve 〈u(s, t), v(s, t)〉 as
given by (3–5), which is the normal graph over the base curve C0 and depends
solely on the function ϕ(s, t). We use (3–13) to substitute this integral expression
for h′(t) into the differential equations (3–9) or (3–10). This occurs in the expres-
sions for (Ft · Fu) and (Ft · ξ) as in (3–12). Our differential equation (3–10) takes
the form

(3–14) ϕt = G(s, t, ϕ, ϕs, h′),

where h′ is the ratio of two integrals depending only on ϕ(s, t). We can still use the
method of characteristics to obtain a solution ϕ(s, t), defined in a neighborhood of
t = 0, periodic in s and satisfying ϕ(s, 0)= 0.

We can show existence of a solution using the Picard iteration process. In-
sert into (3–14) the expression for h′(t) determined by the fixed volume condition
(3–13). The method of characteristics gives a system of differential equations for
s = s(σ, t), ϕ = ϕ(σ, t), p(σ, t)= ϕs(σ, t) and ϕt(σ, t)= q(σ, t), with initial data
when t =0 determined by the base curve00. One writes the differential equation, in
t , as an integral equation with the initial data built in. This allows us to set up an it-
eration process. Start with an initial function 〈s0(σ, t), ϕ0(σ, t), p0(σ, t), q0(σ, t)〉.
Use this input to calculate h′

0(t) using (3–14). The Picard process allows us to
compute 〈s1(σ, t), ϕ1(σ, t), p1(σ, t), q1(σ, t)〉. The iteration continues, and con-
vergence to a unique solution follows. Having obtained the solution to (3–14)
we use (3–13) to find h′(t) and h(t), setting h(0) = 0. Finally, we use the map
F(u, v, t) to obtain the exotic container 6.

The solution might be implemented as follows. Let P be a partition of an inter-
val, [0, T ] into 0 = t1 < t2 < · · · < tN = T . Construct a piecewise linear function
hN (t) by using (3–13) to compute h′

N (tk) and extending hN (t) linearly over the
interval [tk, tk+1]. Now use (3–10) to evolve ϕ(s, t) through this interval as well.

Our base curve 00 was symmetric about the y-axis. This implies that h′(0)= 0,
so h(t)≡ 0 on the interval [0, t1]. At t = t1 we recompute h′(t1) using (3–13) and
extend linearly onto the next subinterval, [t1, t2]. The process continues. �

Remarks. (1) If the base curve 00 is symmetric about the y-axis and if the contact
angle is γ = π/2, then the volume condition is satisfied by setting h(t) ≡ 0. The
bounding surface 6 is generated by the set of orthogonal trajectories to the elastic
surfaces, F0(u, v, t), which cut through the base curve 00.

(2) One could set up the surface S in the parameter space as a normal graph over
the round cylinder C0 × R, where C0 = 〈cos s, sin s, 0〉. This somewhat simplifies
the differential equation (3–10), but the initial data ϕ(s, 0) will no longer be zero.



NEW EXOTIC CONTAINERS 395

x

z

8
R

8
L

g>0, γ=π/2

x

z
g=0, 0<γ <π/2

x

z

8
R

8
L

g>0, 0<γ <π/2

x

y

z g>0, γ=π/2

3t

00

0t
6

Figure 4. Qualitative appearance of a few exotic containers,
showing the relationship of liquid surface and wall. Top row and
bottom left: planar case; bottom right: three-dimensional case.

(3) The surface 6 constructed in Theorem 3.2 needs to be filled out. This surface
is the union of boundary curves 0t . This set of curves 0t has an envelope that
creates an edge for 6. The curve 0t and the corresponding equilibrium surface 3t

touch the envelope at points where the normal component of the variation Ft · ξ

vanishes. The fixed volume condition (3–11) shows that 3t is divided into two
regions determined by the sign of Ft · ξ . The nodal curve on 3t will touch the
envelope in two points. Consider the case g = 0, so that the extremals are tilted
planes. Let 00 be a circle centered at (0, 0). For γ = π/2 the generated surface
is a pair of sections of a sphere resembling orange peels (as the referee astutely
remarked). In this case the envelope degenerates, becoming two points. To com-
plete the surface one must extend 6 smoothly so that each curve 0t lies inside. By
continuity the contact angle condition will prevail at the envelope. For γ 6=π/2 the
envelope is a curve with each extremal touching the envelope in two points. Again
we can extend 6 smoothly so that each extremal surface satisfies the contact angle
condition everywhere.

The same discussion applies to the case when g 6= 0, with 00 other than a circle.
How one fills out the exotic container surface could affect the stability question.
Letting the new pieces of surface bulge out increases the chance for stability.



396 HENRY C. WENTE

4. Minimization

Given our family of elastic extrema for fixed κ0 = ρg/σ and contact angle γ0, we
have shown how to construct an exotic container with the property that there exists
a one-parameter family of equilibria (including the horizontal plane, u = 0), each
of which meets the container wall at contact angle γ0 and encloses the same volume
V0. It follows that each member of this family has the same potential energy. Are
these equilibria local minimizers of energy subject to the volume constraint? I now
outline an argument which indicates that this is the case in the planar case.

4.1. If κ0 = 0 the equilibria are tilted lines and the exotic container will be a
section of a circle. These are all minimizers.

4.2. Suppose κ = κ0 = ρg/σ and τ = τ0 = cos γ0. The corresponding exotic
container consists of two curves: 6L on the left and 6R on the right. Both are
symmetric about the z-axis. Let t be a vertical coördinate. Denote by p(t) that
point on 6L at level t and by q(t) the corresponding point on 6R . For t = 0 we
set p(0)= p0, q(0)= q0 with connecting extremal, u ≡ 0. By our exotic container
construction this is part of a one-parameter family of extremal curves connecting
6L to 6R , each enclosing volume V0 and making a contact angle γ0 at each end.
They are all extremals of the energy functional

(4–1) E = |C | + κ0

∫
T

z dv− τ0|6
′
| ≡ E0 − τ0|6

′
|.

Each of these extremals connect some point p ∈6L to some point q on 6R . As p
descends the corresponding q will rise.

4.3. There is a continuous map (p, q) 7→ C(p, q) defined for p ∈ 6L , q ∈ 6R

in a neighborhood of (p0, q0), where C(p, q) is an extremal for E0 connecting p
to q , enclosing volume V0, and with C(p0, q0) being the extremal u ≡ 0. Each
C(p, q) will be a strong local minimizer of the energy E0 for the fixed endpoint
problem and subject to the volume constraint.

This is because the solution u ≡ 0, with contact angle γ0, has the property that
for the free boundary problem, the second variation is nonnegative for all volume-
preserving perturbations with a one-dimensional kernel. The kernel of the corre-
sponding variational problem is our given one-parameter family. The boundary
values are not fixed here. For fixed boundary values, the extremal u = 0 is a strong
local minimizer of energy, subject to the volume constraint. It follows that for any
pair of points p ∈ 6L , q ∈ 6R close to p0, q0 there will exist exactly one strong
local minimizer of energy for the fixed boundary problem and enclosed volume V0.
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4.4. Let p ∈ 6L be fixed and let C(t) = C(p, q(t)) be the extremal curve that
joins p to q(t). Let γ (t) be the contact angle of C(t) with 6R . We claim that
γ (t1) > γ (t2) when t1 < t2.

Recall that for the extremal u ≡ 0, the second variation of the energy was non-
negative with a one-dimensional kernel for the free endpoint problem and subject
to the volume constraint. Now fix the point p0 ∈ 6L but let q ∈ 6R vary. This is
a semifree variational problem. The energy is E = E0 − cos γ0 |6′

R|, where 6′

R is
the wetted part of 6R . Because of the fixed point restriction the second variation
of this functional is positive definite for volume preserving perturbations.

By continuity the same remains true for nearby extremals C(p, q). Let the
contact angle of C(p, q) with 6R be γq . The relevant energy functional now is

E = E0 − cos γq |6′

R|.

Let C(t) be the extremal connecting p to q(t). Each C(t) is an extremal for its
energy

d E
dt

=
d E0

dt
− cos γ (t)

d|6′

R|

dt
= 0.

Now fix q1 = q(t1) with extremal C(t1). We compute the energy

E = E0 − cos γ1 |6′

R|

along C(t). The energy functional will have a minimum for t = t1. Let

e(t)= E0 − cos γ1 |6′

R|

denote this energy. We have e′(t1) = 0, whereas e′(t) > 0 for t > t1 and e′(t) < 0
for t < t2. However,

e′(t)=
(
cos γ (t)− cos γ1

)d|6′

R|

dt
.

Since d|6′

R|/dt is positive, our assertion follows.

4.5. Let 0 be any curve connecting p ∈ 6L to q ∈ 6R that encloses volume V0

and is C0-close to the extremal u ≡ 0. We claim that the energy E of (4–1) applied
to 0 is not less than the same energy for the curve, u ≡ 0.

First, we may replace 0 by C(p, q). This decreases the energy E0, and thus
the energy E , since the wetted energy is unchanged. Now C(p, q) connects p to
q = q(t) for some t . Let t∗ be that value such that the extremal C(p, q(t∗)) meets
6R at contact angle γ0. Then the contact angle at p for C(t∗) is also γ0. We apply
the discussion in the preceding section to conclude that E(C(t∗))≤ E(C(t)), with
E given by (4–1).

But C(t∗) is part of our one-parameter family all having the same contact angle,
γ0. It follows that E(0)≥ E(C(t∗))= E(C0). This concludes the argument.
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