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We construct examples of nonparametric surfaces z = h(x, y) of zero mean
curvature which satisfy contact angle boundary conditions in a cylinder in
R3 over a convex domain � with corners. When the contact angles for two
adjacent walls of the cylinder differ by more than π−2α, where 2α is the
opening angle between the walls, the (bounded) solution h is shown to be
discontinuous at the corresponding corner. This is exactly the behavior
predicted by the Concus–Finn conjecture. These examples currently con-
stitute the largest collection of capillary surfaces for which the validity of
the Concus–Finn conjecture is known and, in particular, provide examples
for all contact angle data satisfying the condition above for opening angles
2α ∈ (π/2, π).

1. Introduction

Let � be an open set in the plane whose boundary is smooth except at a number
of corner points. Assume that near each such corner point P ∈ ∂�, the boundary
consists of two curves, ω+ and ω−, meeting at P at an angle 2α ∈ (0, π); this
condition characterizes a convex corner. Let γ : ∂� → [0, π] be continuous on
each smooth piece of ∂�, and assume that at each corner the limits

lim
Q∈ω+

Q→P

γ (Q) =: γ1 and lim
Q∈ω−

Q→P

γ (Q) =: γ2

both exist. Also let 3 = �×R be the cylinder over �. We ask about the existence
of a capillary graph over � with contact angle data γ ; that is, does there exist a
surface z = h(x, y) defined over � \ {corners}, satisfying the physical conditions
that characterize a liquid interface for prescribed values of gravity and density, and
meeting the walls of 3 at the prescribed angle γ ? (See Equation (2) for a formal
statement.)

This question has received considerable interest. The local question of the ex-
istence and boundedness of a capillary graph near a corner P has been solved by
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Figure 1. The Concus–Finn rectangle

Paul Concus and Robert Finn in all but one case. The current state of knowledge
[Concus and Finn 1991; 1994; 1996; Finn 1986; 1996; Simon 1980; Tam 1986]
is summarized by referring to Figure 1, in which the horizontal variable is γ1, the
vertical variable is γ2 and the corner opening angle is 2α:

(i) A solution z = h(x, y) will be continuous at P if (γ1, γ2) ∈ R(2α).

(ii) There is no solution if κ = 0 and (γ1, γ2) ∈ D±

1 (2α).

(iii) There is no solution which is bounded at P if (γ1, γ2) ∈ D±

1 (2α).

(iv) There can exist a bounded solution z = h(x, y) if (γ1, γ2) ∈ D±

2 (2α).

In case (iv), the continuity of the solution at P is unknown, but we have:

Conjecture [Concus and Finn 1996; Finn 1996]. A local capillary graph at a
corner P with data from a D2(2α) domain has a jump discontinuity at P, whether
in zero gravity or not.

Fix δ ∈ (0, π/4) and consider the diamond-shaped region � ⊂ R2 symmetric
with respect to the coordinate axes and having vertices (0, ±1) and (± tan δ, 0).
Label the vertices as in Figure 2, so the convex angle O AB has measure δ and the
convex angle ABC has measure 2α = π−2δ. As before, set 3 = � × R.

Let γ1, γ2 ∈ (0, π) satisfy

(1) |γ1 + γ2 − π | ≤ 2α and |γ1 − γ2| > π−2α;
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A = (0, 1)

C

D = (tan δ, 0)OB

Figure 2. The quadrilateral domain � with O AB = δ.

this is equivalent to saying that (γ1, γ2) ∈ D+

2 (2α)∪ D−

2 (2α). Define the function
γ : ∂� → R by

γ (x, y) =


γ1 if (x, y) ∈ AB,
γ2 if (x, y) ∈ BC ,

π−γ2 if (x, y) ∈ C D,
π−γ1 if (x, y) ∈ D A.

We now formally define the capillary problem in the cylinder 3 with contact
angle boundary data γ , gravitational constant κ ≥ 0 and Lagrange multiplier λ. By
a solution of this problem, we mean a function h : � → R with

h ∈ C2(�) ∩ C1(� \ {A, B, C, D})

which satisfies

(2)
div(T h) = κh + λ in � ,

T h · ν = cos γ on ∂� \ {A, B, C, D},

where ν is the outer unit normal to ∂� and

T h =
∇h√

1 + |∇h|2
,

as in [Finn 1986]. We are interested in the behavior of the solution in zero gravity,
κ = 0. In this case the divergence theorem together with (2) implies

λ|�| =

∫
�

div(T h) d A =

∫
∂�

cos γ ds.
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Since cos γ (x, y) is an odd function of x , we see that λ = 0. This means a solution
h will be a minimal surface. The contact angles from each side at B are γ1 and γ2

and at D are π−γ2 and π−γ1. Our principal interest is in the behavior of solutions
at B and D and our proof will focus on the behavior of solutions at B.

Theorem 1.1. Suppose γ1, γ2 ∈ (0, π) satisfy (1). Let � and γ be as defined above.
There exists a unique solution h ∈ C2(�)∩ C0(� \ {A, B, C, D}) of the boundary
value problem (2) with κ = λ = 0 which satisfies h(0, 0) = 0. This solution is
discontinuous at B and D, continuous at A if and only if |γ1 −π/2| ≤ π/2−δ, and
continuous at C if and only if |γ2 − π/2| ≤ π/2 − δ.

To prove this theorem, we first isolate and prove the most difficult case:

Lemma 1.2. Suppose γ1 ∈ [δ, π/2] and γ2 ∈ [π/2, π−δ] satisfy (1). Let � and γ

be as above. There exists a unique solution

h ∈ C2(�) ∩ C0(� \ {B, D})

of the boundary value problem (2) with κ = λ = 0 which satisfies h(0, 0) = 0. This
solution h is discontinuous at B and D.

One accomplishment in this paper is that it provides an example of a capillary
surface for each corner angle 2α=π−2δ∈ (π/2, π) and each pair of contact angles
in the regions D±

2 (π−2δ) in which the validity of the Concus–Finn conjecture is
unknown. The Concus–Finn conjecture is the principal outstanding open problem
in the mathematical theory of capillarity. To the best of our knowledge, there is only
one paper [Huff and McCuan 2006] that provides examples of capillary surfaces
with data in the D±

2 regions and in which the continuity of the nonparametric
capillary surface at the corner is determined; it considers contact angle data only
along the line γ1 + γ2 = π . We give here, then, the first collection of examples
corresponding to all of the contact angle pairs in D±

2 (π−2δ) in which the continuity
at the corner is determined, and in these examples the Concus–Finn conjecture
correctly predicts the behavior at B and D of these capillary surfaces.

2. Proof of Lemma 1.2

Assume the hypotheses of Lemma 1.2 hold. We then know from (1) that γ2 −γ1 >

2δ. We begin by assuming

γ1 < π/2 < γ2, that is, γ1, γ2 6= π/2.

Let �0 be the portion of � in {x < 0}, so that ∂�0 is the triangle with successive
vertices A, B and C . Let B1 = {w ∈ C : |w| < 1} and set

E0 = {w ∈ B1 : Im w > 0, |w − w1| > tan γ1, |w − w3| > tan(π−γ2)},
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where
w1 = u1 + iv1 = −cos δ sec γ1 + i sin δ sec γ1,

w3 = u3 + iv3 = cos δ sec(π−γ2) + i sin δ sec(π−γ2).

Also set r1 = tan γ1 and r3 = tan(π−γ2). Let E = E0 (Figure 3). We remark that
E will eventually be shown to be the image of the stereographic projection of the
Gauss map to the (closure of the) graph of the nonparametric solution h over �0

when this graph is given a downward orientation. Now E is a connected, simply
connected subset of the closed unit disk which is star-like with respect to the origin.
The boundary of E consists of portions of the circles

C1 =
{
w : |w − w1| = tan γ1

}
and C3 =

{
w : |w − w3| = tan(π−γ2)

}
(which are orthogonal to the unit circle ∂ B1), the real axis (v = 0) and the unit
half-circle {w ∈ ∂ B1 : Im w ≥ 0}. The condition γ2 − γ1 > 2δ implies (and is
actually equivalent to) C1 ∩ C3 = ∅.

Write
σ1 = ∂ E ∩ C1, σ2 = {w ∈ ∂ E : Im(w) = 0},

σ3 = ∂ E ∩ C3, σ4 = ∂ E ∩ ∂ B1.

We denote the corners of ∂ E (in counterclockwise order) as t1, t2, t3 and t4, with
t1, t2 ∈ σ1, t3, t4 ∈ σ3, t1, t4 ∈ ∂ B1 and Im t2 = Im t3 = 0. Notice that t1 = e(π−δ−γ1)i

and t4 = e(δ+π−γ2)i .
Our numbering scheme, associating center w3 and circle C3 with the cylinder

side BC whose prescribed contact angle is γ2, is chosen because it provides a
clearer and more consistent notation for the Riemann–Hilbert problem we will
consider later. There is no “second” circle C2 (unless one wishes to consider the
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Figure 3. The region E .
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line v = 0 to be a circle with infinite radius) and no “second” center w2. If we
wished to introduce a fourth circle, we would set C4 = ∂ B1 and w4 = 0.

Define g : E → E by g(w) = w. Our goal is to find f ∈ C0(E \ {t1, . . . , t4})
with, at worst, integrable singularities at t1, t2, t3, and t4 which is analytic in E0

and to define X ∈ C0(E : R3) ∩ C2(E0 : R3) with

(3) X (u + iv) = (x(u, v), y(u, v), z(u, v))

and K (u + iv) = (x(u, v), y(u, v)) for u + iv ∈ E , satisfying certain conditions:

(i) The analytic functions ( f, g) form the Weierstrass representation of X (see
[Osserman 1969], for instance, or [Huff 2006] in this volume).

(ii) K is a homeomorphism between σ1 and the line segment AB, between σ2 and
AC , and between σ3 and BC .

(iii) K is constant on σ4.

Here we say f has an integrable singularity at tk if and only if | f (w)| ≤ C |w−tk |s

with −1 < s < 0 and C ≥ 0 for w near tk . Notice that f ≡ 0 corresponds to a
“surface” consisting of a single point, as in (5) below, and therefore does not yield
a solution of (2).

We now formulate the Riemann–Hilbert problem which we will solve by tem-
porarily assuming the existence of a suitable function f .

The boundary requirements (ii) imply

(4)


y(u, v) = cot δ x(u, v)+ 1 for u + iv ∈ σ1,

x(u, v) = 0 and 0 ≤ y(u, v) ≤ 1 for u + iv ∈ σ2,

y(u, v) = − cot δ x(u, v)− 1 for u + iv ∈ σ3.

Write f (u + iv) = f1(u, v)+ i f2(u, v), where f1 and f2 are real-valued.
Now (i) implies

(5)


xw = f (w)(1 − w2)/2,

yw = i f (w)(1 + w2)/2,

zw = w f (w);

for w ∈ E ; see [Elcrat and Lancaster 1989, p. 1061], for example. Since d/dw =
1
2(∂/∂u − i∂/∂v), the equations above yield

xu(u, v) = Re( f (w)(1 − w2)) = (1 − u2
+ v2) f1 + 2uv f2,

xv(u, v) = − Im( f (w)(1 − w2)) = 2uv f1 − (1 − u2
+ v2) f2,

(6)
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yu(u, v) = Re(i f (w)(1 + w2)) = −2uv f1 − (1 + u2
− v2) f2,

yv(u, v) = − Im(i f (w)(1 + w2)) = −(1 + u2
− v2) f1 + 2uv f2,

(7)

and

(8)
zu(u, v) = Re(2w f (w)) = 2(u f1 − v f2),

zv(u, v) = − Im(2w f (w)) = 2(−v f1 − u f2),

where we use the notation w = u + iv. If we parametrize σk , k = 1, . . . , 4, as

σk = {wk(t) = uk(t) + ivk(t)},

we find that the equalities (4) imply, respectively,

yuu′

1 + yvv
′

1 = cot δ (xuu′

1 + xvv
′

1),

xu(u2(t), 0) = 0,

yuu′

3 + yvv
′

3 = − cot δ (xuu′

3 + xvv
′

3),

and that condition (iii) of the previous page implies

xuu′

4 + xvv
′

4 = 0.

Now (u1(t) − u1)
2
+ (v1(t) − v1)

2
= r2

1 implies

u′

1(t)
v′

1(t)
= −

v1(t) − v1

u1(t) − u1
= −

Im(w1(t) − w1)

Re(w1(t) − w1)

and similarly for u′

3(t)/v
′

3(t). Recall that

cot δ = −
Re w1

Im w1
= −

u1

v1
and cot δ =

Re w3

Im w3
=

u3

v3
.

If we rewrite xu, . . . , zv in terms of f , u and v, we obtain

(9) Re
(
(ak(u, v)+ ibk(u, v)) f (u + iv)

)
= 0

when (u, v) ∈ σk , which we could also write as

ak(u, v) f1(u, v)− bk(u, v) f2(u, v) = 0,

for k = 1, . . . , 4, where

a1(u, v)+ ib1(u, v) = ieiδ(w − w1)(e−2δi
− w2) if w = u + iv ∈ σ1,

a2(u, v)+ ib2(u, v) = −1 if u + iv ∈ σ2,

a3(u, v)+ ib3(u, v) = ie−iδ(w − w3)(e2δi
− w2) if w = u + iv ∈ σ3,

a4(u, v)+ ib4(u, v) = (u + iv)2 if w = u + iv ∈ σ4.
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We now define a, b : ∂ E → R by a(u + iv) = ak(u, v) and b(u + iv) = bk(u, v) if
u + iv ∈ σk , for k ∈ {1, . . . , 4}, and define G : ∂ E → C by

G(w) = a(w) + ib(w).

We wish to find a function f ∈ C0(E \ {t1, . . . , t4}) which is analytic in E0 and
satisfies

Re(G(w) f (w)) = 0 for w ∈ ∂ E \ {t1, . . . , t4}.

This is a Riemann–Hilbert problem with discontinuous coefficients G; in the
notation of [Monakhov 1983, Chapter 1, §4], this is a “Hilbert problem with
piecewise Hölder coefficients” (see also [Athanassenas and Lancaster 2004]). In
order to use the results in [Monakhov 1983], we need to compute the index of this
Hilbert problem in an appropriate function class O(m) = O(tk1, . . . , tkm ) for some
m ∈ {0, . . . , 4}. Define G1 : ∂ E → C by

G1(w) = −
G(w)

G(w)
.

Notice that G1(w) = −1 for w ∈ σ2 and G1(w) = −
(
w/|w|

)4
= −w4 for w ∈ σ4.

Set ω = eiδ. Moreover

G1(w) = |G(w)|−2e−2δi (w − w1)
2(ω2

− w2)2

= |G(w)|−2e−2δi (w − w1)
2(ω − w

)2(
ω + w

)2 for w ∈ σ1,

G1(w) = |G(w)|−2e2δi (w − w3)
2(ω − w

)2(
ω + w

)2 for w ∈ σ3.

For k ∈ {1, . . . , 4}, set

θk =
1

2π

(
arg G1(tk − 0) − arg G1(tk + 0)

)
,

where arg G1(tk −0) means the limit at tk of the argument of G1 along the arc σk−1

(with σ0 here being σ4) and arg G1(tk +0) means the limit at tk of the argument of
G1 along the arc σk . The argument is taken to be continuous along each component
of each set σk . We have

arg G1(t1 − 0) = −π + 4γ1 + 4δ,

arg G1(t2 − 0) = −2
(
δ + τ1B + λ1B

)
,

arg G1(t3 − 0) = π,

arg G1(t4 − 0) = 4π−4γ2 − 4δ,

arg G1(t1 + 0) = 4γ1 + 4δ − 2π,

arg G1(t2 + 0) = π,

arg G1(t3 + 0) = 2δ − 2
(
τ2B + λ2B

)
,

arg G1(t4 + 0) = 3π−4γ2 − 4δ.

Here t2 = w1 + r1eiτ1B for some τ1B ∈ [−π/2, −δ), t3 = w2 + r2eiτ2B for some
τ2B ∈ (δ − π, −π/2], ω2

− t2
2 =

∣∣ω2
− t2

2

∣∣ eiλ1B for some λ1B ∈ [−π/2 − δ, −2δ)
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and ω2
+ t2

3 = |ω2
+ t2

3 | eiλ2B for some λ2B ∈ (2δ, π/2 + δ]. This implies

θ1 =
1
2
, θ4 =

1
2
,

2δ

π
−

1
2

< θ2 ≤
1
2

and
2δ

π
−

1
2

< θ3 ≤
1
2
.

We set ν1 = ν2 = ν3 = ν4 = 0. Consider k ∈ {2, 3}. If θk ∈ (−1, 0), the solution
f of our Hilbert problem will be unbounded and have an integrable singularity at
tk while if θk ∈ (0, 1), f will be continuous and vanish at tk; if θk = 0, f will be
continuous and nonzero at tk . Let n ∈ {0, 1, 2} be the sum of the greatest integer
function of θ2 and of θ3 and set m = 4−n. A function in the function class O(m) is
an analytic function in E0 which is continuous at each point of E except possibly at
the corners {t1, . . . , t4} of ∂ E , does not vanish on E \ {t1, . . . , t4}, is continuous at
m of the corners and vanishes at some or all of these corners and has an integrable
singularity at the remaining 4 − m corners. The index of our Hilbert problem in
O(m) is κ = ν1 + · · · + ν4 = 0 [Monakhov 1983, page 49] and our problem has a
“canonical” solution F in O(m) which is continuous at t1 and t4 and possibly at
t2 or t3 [Monakhov 1983, pp. 42–53]. The general form of any solution (in O(m))
is c0 F(w) for any c0 ∈ R. Equation (9) with k = 2 implies Re F = 0 on σ2; since
F is nonvanishing on E \ {t1, t2, t3, t4}, Im F is either strictly positive or strictly
negative on the entire open interval σ2 \ {t2, t3}. Let us select c1 by requiring

(10) c1

∫ t3

t2
(1 + u2) Im F(u) du = −2

(recall that Im t2 = Im t3 = 0). We now define f (u + iv) = f1(u, v)+ i f2(u, v) to
be c1 F(u + iv).

Any two (complex) functions analytic on and without common zeros in the same
simply connected domain in C can be used to form a (parametric) minimal surface
whose components will satisfy (5). Let X ∈ C0(E) ∩ C2(E0) be the minimal
surface with Weierstrass representation ( f, g) which satisfies X (0) = (0, y0, 0) for
some y0 to be determined. Let us use the notation in (3) and define K (u + iv) =

(x(u, v), y(u, v)). Recall that the image E of g is star-like with respect to the
origin. Using, for example, [Nitsche 1989], we see that X is strictly monotonic on
∂ E .

If u + iv ∈ σ2, then v = 0 and u ∈ [t2, t3]. For u ∈ [t2, t3], (7) implies

y(u, 0) − y0 =

∫ u

0
(1 + s2) f2(s) ds

and (10) yields y(t3, 0) − y(t2, 0) = −2. Now set y0 = −1 −
∫ t3

0 (1 + s2) f2(s) ds,
so that y(t3, 0) = −1 and therefore y(t2, 0) = 1. From (9) with k = 2, we have
(−1) f1(u, v) + (0) f2(u, v) = 0 and so f1(u, v) = 0 for u + iv ∈ σ2. Now (6)
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and (8) imply xu(u, 0) = 0 and zu(u, 0) = 0, so x and z are constant on σ2. Since
x(0, 0)= z(0, 0)= 0, we see that X and K map σ2 strictly monotonically onto AC .

If u + iv ∈ σ4, then u + iv = eiθ for some θ ∈ (0, π). Writing u = u(θ) = cos θ

and v = v(θ) = cos θ , we have

d
dθ

(
x(u(θ), v(θ))

)
= −vxu(u, v)+ uxv(u, v)

= 2v
(
(u2

− v2) f1(u, v)− 2uv f2(u, v)
)
= 0,

d
dθ

(
y(u(θ), v(θ))

)
= −vyu(u, v)+ uyv(u, v)

= −2u
(
(u2

− v2) f1(u, v)− 2uv f2(u, v)
)
= 0,

since a4 f1 − b4 f2 = 0 on σ4. This implies x and y are constant on σ4. Thus K is
constant on σ4.

Consider the behavior of K on σ1. Writing u = u1(t) and v = v1(t), we have

d
dt

(
y(u1(t), v1(t)) − cot δ x(u1(t), v1(t))

)
= yuu′

1(t) + yvv
′

1(t) − cot δ
(
xuu′

1(t) + xvv
′

1(t)
)
=

v′

1(t)
u−u1

(
a1 f1 − b1 f2

)
= 0,

so y − cot δ x is constant on σ1. Since y(t2, 0) = 1 and x(t2, 0) = 0, we see that
y − cot δ x = 1 on σ1 and K (t2) = A.

Now consider the behavior of K on σ3. Writing u = u3(t) and v = v3(t), we get

d
dt

(
y(u3(t), v3(t)) + cot δ x(u3(t), v3(t))

)
= yuu′

3(t) + yvv
′

3(t) − cot δ
(
xuu′

3(t) + xvv
′

3(t)
)
=

v′

3(t)
u − u3

(
a3 f1 − b3 f2

)
= 0,

so y + cot δ x is constant on σ3. Since y(t3, 0) = −1 and x(t3, 0) = 0, we see that
y + cot δ x = −1 on σ3 and K (t3) = C .

Since K ∈ C0(∂ E) and K is constant on σ4, K (t1) = K (t4). Now K (t1) lies
on the line y = cot δ x + 1 and K (t4) lies on the line y = −cot δ x − 1; hence
K (t1) = K (t4) must lie on the intersection of these lines, which is the point B.
Therefore K (t1) = K (t4) = B, K maps σ1 onto AB, and K maps σ3 onto BC . Set

0 =
{
(x(u, v), y(u, v), z(u, v)) : u + iv ∈ ∂ E

}
.

Since 0 projects onto the convex triangle ABC and this projection is a bijection
from X (∂ E \ σ4) onto ∂�0 \ {B}, X (E \ σ4) is the graph of a function

h ∈ C2(�0) ∩ C0(�0 \ {B}),

K maps E onto �0 and h(x(u, v), y(u, v)) = z(u, v) for u + iv ∈ E \ σ4; in fact,
h ∈ C1(�0\{B}); see, for example, [Nitsche 1989, §400, p. 349; Finn 1986]. Since
z(u, v) = 0 if u + iv ∈ σ2, h = 0 on AC .
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We wish to demonstrate that the contact angle condition T h ·ν = cos γ from (2)
is satisfied on AB; the demonstration that it is satisfied on BC is similar. Now the
exterior unit normal ν ∈ R2 to AB is (− cos δ, sin δ) and the corresponding hori-
zontal unit normal in R3 is η = (− cos δ, sin δ, 0). Set S = X (E). The downward
unit normal (in R3) to S at (x, y, h(x, y)) is

EN (x, y) =
(hx(x, y), h y(x, y), −1)√

1 + |∇h(x, y)|2

and the Gauss map EG : E → S of X is given by EG(u + iv) = EN (x(u, v), y(u, v))

for u + iv ∈ E \ σ4 and EG(eiθ ) = (cos θ, sin θ, 0) for eiθ
∈ σ4. Recall that g is the

stereographic projection of EG and C1 is the stereographic projection of the circle
{(u, v, t) ∈ S2

: (u − u1)
2
+ (v − v1)

2
+ t2

= r2
1 }, which can also be described as

the intersection of the unit sphere with the cone {Y ∈ R3
: Y ·η = |Y | cos γ1}. We

see therefore that EG(w) · η = cos γ1 for w ∈ σ1 and so

T h(x, y) · ν = EN (x, y) · η = EG(w) · η = cos γ1,

where w = u + iv ∈ σ1 satisfies (x(u, v), y(u, v)) = (x, y). Thus the contact angle
condition is satisfied on the (open) interval AB.

We claim that h is discontinuous at B and, in fact, has a jump discontinuity at
B. Using either [Lancaster and Siegel 1996] or the general maximum principle for
minimal surfaces together with standard comparison surfaces, such as planes, we
see that

min{z(t1), z(t4)} ≤ lim inf
(x,y)→B

h(x, y) ≤ lim sup
(x,y)→B

h(x, y) ≤ max{z(t1), z(t4)},

where we have abused notation by, for example, writing z(t1) for z(Re t1, Im t1).
Since

lim
(x,y)→B+

h(x, y) = z(t1) and lim
(x,y)→B−

h(x, y) = z(t4),

where the first limit means approaching B along AB and the second limit means
approaching B along BC , establishing this claim only requires us to prove that
z(t1) 6= z(t4). Now

d
dθ

z(cos θ, sin θ) = −2 Im(w2 f (w)),

and, from (9) with k = 4, we have Re
(
w2 f (w)

)
= 0, where u = cos θ , v = sin θ and

w = u + iv. Since f does not vanish on σ4 \ {t1, t4} and w does not vanish on σ4,
the derivative (d/dθ)z(cos θ, sin θ) cannot vanish for any θ ∈ (δ + γ2, π−δ − γ1).
Therefore z(cos θ, sin θ) is either strictly increasing or strictly decreasing in θ for
θ ∈ [δ+γ2, π−δ − γ1], so z(t1) 6= z(t4).
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We now define h on � by extending the minimal surface z =h(x, y) by reflection
across the line segment {(0, y, 0) : |y|≤ 1}, so that h ∈ C0(�\{B, D}) and h(x, y)

is an odd function of x . Then the condition T h ·ν = cos γ is satisfied at each point
of ∂� \ {A, B, C, D}. Since h is discontinuous at B, it is also discontinuous at D.

Suppose that z =h1(x, y) is any solution of the capillary problem with h1(0, 0)=

0. Using the comparison principle for capillary surfaces [Finn 1986; Finn and
Hwang 1989], we see that h1 = h + C for some constant C . Since h1(0, 0) = 0 =

h(0, 0), we see that h1 = h. Notice that h has the boundary behavior described in
Theorem 1.1.

Suppose that γ1 < π/2 and γ2 = π/2. The arguments above continue to hold,
but now E = E0, with

E0 = {w ∈ B1 : Im w > 0, |w − w1| > tan γ1, Re ω w < 0},

as in Figure 4; recall that ω = eδi . The case in which γ1 = π/2 and γ2 > π/2 is
similar.

3. Proof of Theorem 1.1

Consider γ1 ∈ (0, π/2] and γ2 ∈ [π/2, π) satisfying (1) and such that one of the
following cases holds:

γ1 ∈ (0, δ) and γ2 ∈ [π/2, π−δ];(11)

γ1 ∈ [δ, π/2] and γ2 ∈ (π−δ, π);(12)

γ1 ∈ (0, δ) and γ2 ∈ (π−δ, π).(13)

Together with the results of Lemma 1.2, the proof that our stated conclusions hold
in these three cases will complete the proof of Theorem 1.1 when γ1 ∈ (0, π/2]
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Figure 4. The domain E in the case γ2 = π/2.
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Figure 5. The domain E in the case γ1 ∈ (0, δ), γ2 ∈ [π/2, π−δ].

and γ2 ∈ [π/2, π). By reflecting � about the y−axis (or by considering the contact
angles near D), we see that the situation where γ2 ∈ (0, π/2] and γ1 ∈ [π/2, π)

will also be covered.
We begin by assuming that (11) holds. Then σ4 has two components and E ,

which is illustrated in Figure 5, has an extra corner at t5 = −1. We will continue
to use the notation introduced in the proof of Lemma 1.2. Then

t1 = e(π−δ−γ1)i , t2 = e(π−δ+γ1)i ,

and t3 and t4 are the same as in the previous section (see Figure 3). That we know
t2 explicitly makes our work here easier. The functions G(w) and G1(w) remain
the same and we wish to find f ∈ C0(E \{t1, . . . , t5}) analytic in E0 and satisfying
Re(G(w) f (w)) = 0 for w ∈ {t1, . . . , t5}. A little work shows that θ1, θ3 and θ4

remain as before and

arg G1(t2 − 0) = 2π + 4δ − 4γ1, arg G1(t2 + 0) = −3π + 4δ − 4γ1,

arg G1(t5 − 0) = −3π, arg G1(t5 + 0) = π,

so θ2 =
5
2 and θ5 = −2. Set ν1 = 0, ν2 = 2, ν3 = 0, ν4 = 0 ν5 = −2 and αk = θk −νk ,

1 ≤ k ≤ 5. If we select c1 ∈ R such that

c1

∫ t3

−1
(1 + u2) Im F(u) du = −2,

where F(w) is a “canonical solution” as in Section 2, the argument used there
shows that there is a unique solution h ∈ C2(�) ∩ C0(� \ {A, B, D}) of (2) and
this solution is discontinuous at A, B and D. If γ2 = π/2, then E is modified as
in the previous section (see Figure 4) and this conclusion continues to be valid.
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Case (12) is similar to case (11), with corners at t1, t2, t3, t4 and t6 = 1. Here θ1,
θ2 and θ4 are as in Section 2 and θ3 =

1
2 , θ6 =

1
2 . We leave this case as an exercise

for the reader.
Suppose case (13) holds. Then E has six corners (with t5 = −1 and t6 = 1) and

θ1 =
1
2 , θ2 =

5
2 , θ3 =

1
2 , θ4 =

1
2 , θ5 = −2, θ6 =

1
2 .

If we set ν1 = 0, ν2 = 2, ν3 = 0, ν4 = 0, ν5 = −2 and ν6 = 0, then our conclusions
follow as in case (a).

It remains to show that our claims are true when (1) hold and γ1 and γ2 are both
in (0, π/2) (or both are in (π/2, π) ). Let us assume γ1, γ2 ∈ (0, π/2) satisfy (1)
with γ1 − γ2 > 2δ. We redefine w3 and r3 by

w3 = u3 + iv3 = − cos δ sec γ2 − i sin δ sec γ2 and r3 = tan γ3.

We set E = E0, where

E0 =
{
w ∈ B1 : Im w < 0, |w − w1| < r1, |w − w3| < r3

}
.

Let C3 denote the circle |w − w3| = r3 and set

σ1 = ∂ E ∩ C1,

σ3 = ∂ E ∩ C2,

σ2 = {w ∈ ∂ E : Im w = 0},

σ4 = ∂ E ∩ ∂ B1.

We have two cases to consider: γ2 < δ and γ2 ≥ δ. The situation can then be
taken to be as in the left and right panels, respectively, of Figure 6. For if we can
obtain our desired conclusions in these two situations, we will have proved that
Theorem 1.1 is valid in one of the four triangular regions remaining where (1) is
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Figure 6. The domain E in the case γ1 ∈ (0, δ), γ2 ∈ (π−δ, π).
Left: γ2 < δ; right: γ2 ≥ δ.
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satisfied. The validity of Theorem 1.1 in the other three regions will then follow
by symmetry and/or the interchange of γ1 and γ2.

Suppose γ2 <δ, and refer to Figure 6, left. Denote the corners of E by t1, . . . , t5,
where

t1 = e(π−δ+γ1)i , t3 = e(π+δ−γ2)i , t4 = e(π+δ+γ2)i , t5 = −1

and t2 ∈ σ1 with Im t2 = 0. The functions G(w) and G1(w) remain the same as in
Section 2 (using our redefined w3 and r3). Then

arg G1(t1 − 0) = −3π + 4(δ − γ1),

arg G1(t2 − 0) = −2(δ + τ1B + λ1B),

arg G1(t3 − 0) = −3π − 4(δ − γ2),

arg G1(t4 − 0) = 2π − 4(γ2 + δ),

arg G1(t5 − 0) = π,

arg G1(t1 + 0) = 3π + 4(δ − γ1),

arg G1(t2 + 0) = π,

arg G1(t3 + 0) = 4(γ2 − δ),

arg G1(t4 + 0) = −3π − 4(γ2 + δ),

arg G1(t5 + 0) = −3π,

where t2 = w1 + r1eiτ1B for some τ1B ∈ [−π/2, −δ) and ω2
− t2

2 = |ω2
− t2

2 |eiλ1B

for some λ1B ∈ [−π/2 − δ, −2δ) as in Section 2. Then

θ1 = −3, θ2 = −
1
2

−
δ + τ1B + λ1B

π
, θ3 = −

3
2
, θ4 =

5
2
, θ4 = 2.

Set ν1 = −3, ν2 = 0, ν3 = −1, ν4 = 2, ν5 = 2 and αk = θk − νk , 1 ≤ k ≤ 5. Since
ν1 + ν2 + ν3 + ν4 + ν5 = 0, we may argue as before and obtain a unique solution
h ∈ C2(�) ∩ C0(� \ {B, C, D}) of (2); this solution is discontinuous at B, C, D.

Suppose γ2 ≥ δ, and refer to Figure 6, right. Let the corners of E be denoted by
t1, . . . , t4, where t1, t2 and t4 are as in the previous case and t3 ∈ σ3 with Im t3 = 0.
If we write t3 = w3 + r3eiτ2B for some τ2B ∈ (δ, π/2] and ω2

− t2
3 = |ω2

− t2
3 |eiλ2B

for some λ2B ∈ (2δ, π/2 + δ], then we find

θ1 = −3, θ2 = −
1
2

−
δ + τ1B + λ1B

π
, θ3 =

1
2

+
τ2B + λ2B − δ

π
, θ4 =

5
2
.

Set ν1 = −3, ν2 = 0, ν3 = 1, ν4 = 2 and αk = θk − νk , 1 ≤ k ≤ 4. Then there is a
unique solution h ∈C2(�)∩C0(�\{B, D}) of (2) and this solution is discontinuous
at B and D.
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