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ON TOROIDAL ROTATING DROPS

RYAN HYND AND JOHN MCCUAN

The existence of toroidal rotating drops was observed experimentally by
Plateau in 1841. In 1983 Gulliver rigorously showed that toroidal solutions
of the governing equilibrium equations do indeed exist. In this short note,
we settle two questions posed by Gulliver concerning the existence of addi-
tional toroidal solutions. We use a general assertion concerning rotationally
symmetric surfaces whose meridian curves have inclination angle given as a
function of distance from the axis along with explicit estimates for rotating
drops.

In 1843 Joseph Plateau challenged geometricians to find rotationally symmetric
tori whose mean curvature is an even quadratic function of distance to the axis of
rotation:

I think it very probable that if calculation could approach the general
solution of this great problem, and lead directly to the determination of all
the possible figures of equilibrium, the annular figure would be included
among them.

The figures of equilibrium to which Plateau refers are those of rotationally sym-
metric rotating liquid drops removed from the influence of gravity. Elementary
considerations lead one to ordinary differential equations for the meridian curve of
such an equilibrium, and solutions of these equations may be understood by con-
sidering only portions of meridian which are expressible as graphs u = u(r) with
respect to the radial variable r . For these portions, the prescribed mean curvature
equation becomes

(1)
u′′

(1 + u′ 2)3/2
+

1
r

u′

√
1 + u′ 2

= −4ar2
+ 2λ,

where a = ρω2/(8σ) and λ are constants depending on the physical parameters
density, angular velocity, surface tension, and enclosed volume. It follows that the
solutions form a two-parameter family (up to scaling and rigid motion). Scaling
so that a = 1, we will take λ and c as the two parameters where c is a constant
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of integration appearing below. For a more detailed discussion, see [Elms et al.
2003].

Except for certain well defined curves in the (λ, c) parameter space, solutions
of equation (1) may be expressed, up to a constant of integration, as

u(r)=

∫ r

r∗

−at4
+ λt2

+ c√
t2 − (−at4 + λt2 + c)2

dt

on a suitable interval [r∗, R∗], and the question of existence of toroidal solutions is
reduced to finding λ and c for which u(R∗)= 0. (If this condition holds, the merid-
ian of the torus is described by joining the graphs of u and −u. We are assuming
here, of course, that the constant of integration u(r∗) = 0; this normalization will
be employed throughout this paper, though we note that, due to nonintegrability at
r∗, the same normalization is not always possible in [Elms et al. 2003].)

R. Gulliver [1984] showed:

For each c ≥
3
16 , there is some λ = λ(c) for which the corresponding

solution is a torus with convex cross section.
There is some interval c ∈ (0, ε) and a smooth function λ = λ(c) for

which the corresponding solution is a (nonconvex) torus.

He went on to conjecture that there were toroidal parameter values (λ, c) for every
c> 0. He also pointed out that only immersed toroidal solutions were possible for
c < 0 but was unable to verify their existence. We prove the existence of toroidal
solutions in both cases, that is, for all c 6= 0. In order to state our result precisely
(and prove it), we must first discuss the limits of integration r∗ and R∗ and their
dependence on the parameters λ and c.

Remark. Gulliver, in his paper, formulates equation (1) as

a + br2
= 2H =

dv
dr

+
v

r
,

where v = sinψ = du/ds, ψ is the inclination angle of the meridian, and s is
an arclength parameter along the meridian. He does not explicitly specify the
orientation of his arclength parameterization nor his choice of normal (into the
drop or out of it) with respect to which he calculates the mean curvature, but by
his specification b > 0, one can deduce that his formulation is consistent only if
the mean curvature is calculated with respect to the inward normal and, hence, if
the parameterization is “counterclockwise.”

Since some formal solutions of the equations do not enclose a volume, and
hence their meridians do not enclose an area, the notion of “counter-clockwise”
does not always make sense. In order to avoid this ambiguity, we have formulated
our equation for portions of the meridian on which the normal points upward and,
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hence, the rotating drop is formally below the meridian locally. It is easily verified
that any portions of meridian for which the rotating drop is formally above the
meridian are geometric reflections across the line u = 0 of those we consider.

For convenience of the reader, a loose translation between Gulliver’s parameter
notation and ours is as follows:

(1) Due to the reversal of the normal, Gulliver’s H is our −H .

(2) Gulliver’s rotation parameter b > 0 is for us 4a.

(3) Gulliver’s Lagrange parameter a ∈ R is our −2λ.

(4) Gulliver’s constant of integration C is the same as −c.

(5) Having made these replacements and setting, without loss of generality, v =

u′/
√

1 + u′2, Gulliver’s equation (1) translates directly into our equation (1).

(6) Gulliver subsequently rescales his rotation parameter b to 4/3 and gives C the
new name −γ 4 (in harmony with his restriction C < 0). We rescale so that
the rotation parameter a takes the value 1. Comparison leads to the translation
formulae {

λ= −a 3√3,

c = −C/ 3√3 = −γ 4/
3√3,

with our scaled parameters on the left and Gulliver’s on the right. In particular,
one sees that the γ ≥

(3
8

)1/3 of Gulliver’s Theorem 2 corresponds precisely to
our c > 3

16 .

(7) The λ, c (or a,C) parameter space has been antipodally reflected through the
origin and scaled according to the formulas in the previous item.

Inclination angle and the other toroidal solutions. We may rewrite (1) as(
ru′

√
1 + u′ 2

)′

= −4r3
+ 2λr

and integrate once to obtain

v = sinψ =
u′

√
1 + u′ 2

= −r3
+ λr +

c
r
,

whereψ is the inclination angle of the graph of u with respect to the positive r -axis.
For c 6= 0, the values r∗ and R∗ are solutions of the algebraic equations

(2)
∣∣sinψ(r)

∣∣= ∣∣∣∣−r3
+ λr +

c
r

∣∣∣∣= 1

(r∗ = 0 for c = 0).
In general, if we think of λ and c as fixed, we may consider the algebraic ex-

pression v(r) = −r3
+ λr + c/r also for values of r for which |v(r)| > 1. In this
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λ

c

λ= λ1(c)

λ= λ−1(c)

( 3
2 ,

3
16

)

Figure 1. Left: Locus in parameter space where |sinψ | = 1 has a
double root. Right: Numerically computed torus curve and region
of parameter values possibly corresponding to tori (see page 288).

way, the equation |v(r)| = 1 appearing in (2) is evidently equivalent to a pair of
(quartic) polynomial equations. This guarantees that there are only finitely many
cases to consider. One must take into account however that the resulting intervals
of definition (determined by roots r∗ = r∗(λ, c) and R∗ = R∗(λ, c)) may depend
discontinuously on λ and c. Let us begin, however, with the assumption that λ and
c are fixed, and denote by R = Rλ,c the collection of positive roots of |v(r)| = 1,
counted with multiplicities.

Lemma 1. Given r∗ ≤ R∗ in R such that |v(r)| < 1 for r∗ < r < R∗, there is a
rotationally symmetric surface whose inclination angle ψ(r) satisfies

(3) sinψ(r)= v(r)= −r3
+ λr +

c
r

for r∗ ≤ r ≤ R∗. The surface is unique up to translation in the u direction.
Conversely, each complete rotationally symmetric surface that does not intersect

r = 0 and whose inclination angle satisfies (3) projects onto an annulus r∗ ≤ r ≤ R∗

with |sinψ(r)|< 1 for r∗ < r < R∗.

Each double root r∗ = R∗ corresponds to a cylinder. The parameter values
for which this is possible lie along three curves in the (λ, c) parameter plane as
depicted in Figure 1, left.

One can verify the following behavior in the neighborhood of the real roots of
|v(r)| = 1:
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Lemma 2. Let r∗ be a real number. If v ∈ C2
[r∗, r∗ + ε] with |v(r∗)| = 1 and

|v(r)|< 1 for r∗ < r ≤ r∗ + ε, the improper integral∣∣∣∣∫ r∗+ε

r∗

v
√

1 − v2
dr
∣∣∣∣

is finite if and only if v′(r∗) 6= 0. A similar statement holds on intervals of the form
[R∗ − ε, R∗].

Remark. In this result, v may be any function satisfying the hypotheses of the
lemma, though we are only interested in applications in which v= −r3

+λr +c/r
as in (2).

The full significance of the curves in Figure 1, left, is explained in [Elms et al.
2003], but for our present purposes we need only verify some isolated facts about
two of them. We start with a continuity assertion that was already observed by
Gulliver as important for the case c > 3

16 .

Lemma 3. For each λ ∈ R and c > 3
16 , the set R = Rλ,c consists of exactly two

positive roots r∗ = r∗(λ, c) and R∗ = R∗(λ, c) with r∗ < R∗. In this region of the
(λ, c)-plane r∗ and R∗ depend smoothly on λ and c. Consequently, we find that the
quantity

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr

depends smoothly on λ and c > 3
16 . In particular, u(R∗) is a continuous function

of λ for fixed c > 3
16 .

Proof. We consider
v(r)= −r3

+ λr +
c
r

for r > 0 and fixed c > 3
16 . The assertion of the lemma follows from the fact that

the equations

(4) v(r∗)= −r3
∗
+ λr∗ +

c
r∗

= 1

and

(5) v(R∗)= −R3
∗
+ λR∗ +

c
R∗

= −1

have unique solutions r∗ < R∗ with v′ < 0 on [r∗, R∗].
First note that limr→0 v(r) = +∞ and limr→+∞ v(r) = −∞. Therefore, (4)

and (5) have at least one solution each. It will be observed that v has a unique
inflection point (and v′ a unique maximum) at tmax =

4
√

c/3. If λ ≤ 2
√

3c, then
v′

≤ 0 with equality only possible at r = tmax when λ = 2
√

3c. In this case,
v(tmax)= 8(c/3)3/4 > 1. Therefore, our assertions concerning (4) and (5) hold.
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If λ > 2
√

3c, then v′ has two zeros; the smaller, which corresponds to a local
minimum of v, is given by

rmin =

√
λ−

√
λ2−12c
6

.

Elementary computations show that

drmin

dλ
= −

rmin

2
√
λ2 − 12c

< 0

and

(6)
d

dλ
v(rmin)= rmin > 0.

In this case,
lim

λ↘2
√

3c
v(rmin)= 8(c/3)3/4 > 1.

In light of (6), we see that v(r) > 1 for r ≤ rmax, where

(7) rmax =

√
λ+

√
λ2−12c
6

is the larger zero of v′. In this case too, therefore, our assertions concerning (4)
and (5) hold. �

The situation for c ≤
3

16 is somewhat more complicated. Nevertheless, we find:

Lemma 4. For each fixed c ≤
3

16 , there is a unique value λ= λ1(c) determined by
the equation

v(rmax)= 1,

where rmax is given by (7) (see Figure 1, left).
For c ∈

(
0, 3

16

]
and λ < λ1, the equation

(8) |v(r)| = 1

has exactly two positive solutions r∗ < R∗. For c = 0, there is one solution R∗, and
we may take r∗ = 0.

For c< 0, there is a unique value λ−1 =λ−1(c)<λ1 determined by the equation

v(rmax)= −1

(considered as an equation for λ = λ−1). For c < 0 and λ−1 < λ < λ1 there are
again exactly two positive solutions r∗ < R∗ of (8).

For c ∈
[
0, 3

16

]
, the expression

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr
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defines is a continuous function of λ on (−∞, λ1); the same function is continuous
on λ−1 < λ < λ1 for c < 0. In all cases,

(9) lim
λ↗λ1

u(R∗)= +∞.

Proof. We observe that (7) is only real-valued for 0 ≤ c ≤
3

16 if λ≥ 2
√

3c. For this
range of parameters, a calculation similar to that leading to (6) yields

(10)
d

dλ
v(rmax)= rmax > 0.

Furthermore,
lim

λ↘2
√

3c
v(rmax)= 8(c/3)3/4 ≤ 1

and

(11) lim
λ↗+∞

v(rmax)= +∞.

Therefore λ1 is well defined for 0 ≤ c ≤
3
16 . For c < 0, conditions (10) and (11)

still hold. Furthermore,
lim
λ↘−∞

v(rmax)= −∞.

Therefore, both λ−1 and λ1 are well defined.
Considerations similar to those in the proof of Lemma 1 yield the uniqueness and

continuity of r∗ and R∗ as functions of λ. The continuity of u(R∗) follows as before.
It remains to establish (9). To avoid certain technicalities, we restrict to the case
c< 3

16 , but the case c =
3
16 may be handled similarly. For c< 3

16 and λ sufficiently
close to λ1, we know that rmax is well defined as described above with rmax and
v(rmax) increasing as functions of λ; see Figure 2. We set R1 = limλ↗λ1 rmax. Since

(a)

sinψ

(b) (c)

1

−1

r

Figure 2. Profiles of v = sinψ(r) for c =
3

32 (thick curves). The
values of λ are (a) 1, (b) 1.5, (c) 1.65. The corresponding anti-
nodoid solutions u(r) are superimposed (thin curves).
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v′ is nonvanishing at r∗ and R∗ (except in the case c =0 in which r∗ =0= sinψ(r∗)

which causes no problem), we find from Lemma 2, that for all ε small enough and
fixed, the integrals∫ rmax−ε

r∗

v
√

1 − v2
dr and

∫ R∗

rmax+ε

v
√

1 − v2
dr

are finite and may be bounded uniformly in λ as λ↗ λ1. Thus,

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr ≥

∫ rmax+ε

rmax−ε

v
√

1 − v2
dr − Mε

for some constant Mε .
Expanding v(r) in a power series about (λ, r)= (λ1, R1) on the other hand,

v = 1 + R1(λ− λ1)+ (λ− λ1)(r − R1)+ d(r − R1)
2
+ o(r − R1)

2

where d = v′′(R1)/2< 0. Therefore, we may fix ε small enough so that

v ≥ 1 +
1
2

(
R1(λ− λ1)+ d(r − R1)

2)> 1
2 for rmax − ε ≤ r ≤ rmax + ε

uniformly in λ. Thus,

1−v2
≤ −R1(λ−λ1)− d(r−R1)

2
− R2

1
(λ−λ1)

2

4
− R1d

(λ−λ1)(r−R1)
2

2
− d2 (r−R1)

4

4
≤ −R1(λ−λ1)− d(r−R1)

2,

and∫ rmax+ε

rmax−ε

v
√

1 − v2
dr ≥

1
2

∫ rmax+ε

rmax−ε

1√
−R1(λ− λ1)− d(r − R1)2

dr

=
1

2
√

−d

(
sinh−1

(√
d

R1(λ−λ1)
(rmax − R1 + ε)

)

− sinh−1
(√

d
R1(λ−λ1)

(rmax − R1 − ε)

))
.

Since rmax ↗ R1 as λ↗ λ1 and ε > 0, we see that

lim
λ↗λ1

∫ rmax+ε

rmax−ε

v
√

1 − v2
dr = +∞. �

It remains to obtain a value λ<λ1 (in the region of continuity) for which u(R∗)<

0. For this we use a general relation between the convexity of v = sinψ and the
height u(R∗). A special case of this result was used implicitly by Gulliver in the
case c > 3

16 .



ON TOROIDAL ROTATING DROPS 287

Lemma 5 (Convexity and height for rotational surfaces). Given 0 < r∗ < R∗ and
any v decreasing from 1 to −1 on [r∗, R∗], if v is convex, then

u(R∗)=

∫ R∗

r∗

v
√

1 − v2
dr < 0.

Similarly, if v is concave (v′′ < 0), then u(R∗) > 0.

This result is true for any real numbers r∗ < R∗ and any function v satisfying
the hypotheses stated in the lemma. We have used derivatives of v up to order two
freely in the proof below, but the continuity of v resulting from convexity/concavity
is adequate to obtain the result.

Remark. In the convex case, we say that the resulting surface is of nodoid type;
in the concave case, of antinodoid type.

Proof of Lemma 5. Assume v is convex. The other case is handled similarly. There
is a unique r = rcrit ∈ (r∗, R∗) such that v(rcrit)= 0.

u(R∗)=

∫ rcrit

r∗

v
√

1 − v2
dr +

∫ R∗

rcrit

v
√

1 − v2
dr.

Again according to the monotonicity, the relation v(r) = −v(t) defines a change
of variables, and we obtain

u(R∗)=

∫ rcrit

r∗

(
1 −

v′(t)
v′(r)

)
v

√
1 − v2

dt < 0.

Notice that over the interval of integration, the second factor is positive; the first is
negative by convexity. �

Referring back to the proofs of Lemma 3 and Lemma 4, one finds that for c> 0
and λ << 0, we have v′(r) < 0 on [r∗, R∗] and v(tmax) <−1 where tmax =

4√c/3
is the unique inflection point. It follows that v = sinψ is convex on [r∗, R∗] and
u(R∗) < 0 by Lemma 5. Thus, by the intermediate value theorem, there is some λ
for which u(R∗)= 0.

For c = 0 and λ≤ 0, we have v ≤ 0 and u(R∗) < 0 so that the same conclusion
holds. Technically, the resulting surface of rotation is not a torus in this case, since
r∗ = 0. However, one does obtain a pinched spheroid which encloses a volume.

For c < 0, the function v = sinψ has a unique global maximum at the value
rmax given in (7) and

lim
λ↘−∞

v(rmax)= −∞.

As mentioned above, the monotonicity condition (10) holds, and it is clear that all
values of λ in the interval for which −1< sinψ(rmax)≤ 0 correspond to solutions
with u(R∗) < 0.
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Following through carefully the indicated calculations and applying Lemma 5
in situations similar to those above yields the following bounds for the parameters
(λ, c) corresponding to toroidal solutions; see Figure 1, right.

Theorem. For each fixed c there is at least one λ corresponding to a toroidal
solution. If c ≥

3
16 , then

−
4
√

3
c

− 2
√

c
3
< λ <

4
√

3
c

− 2
√

c
3
.

If 0< c ≤
3
16

, then

−
4
√

3
c

− 2
√

c
3
< λ < λ1(c).

If c ≤ 0, then
2
√

−c < λ < λ1(c).

No toroidal solutions can correspond to parameters outside the region defined by
these inequalities.

A useful alternative characterization of λ1 is given in [Elms et al. 2003]. We
state it here for convenience.

λ1(c)= 3r2
+

c
r2 ,

where r = r(c) is the larger positive solution of 2r4
− r + 2c = 0.

As a final remark, we conjecture that there is exactly one value λt = λt(c)
corresponding to a toroidal solution. These values form a smooth curve in the

Figure 3. Toroidal surfaces: clockwise from top left, embedded
torus (c>0), pinched spheroid (c=0), and immersed torus (c<0).
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interior of the region described in the Theorem; see Figure 1, right, where the
thick gray curve is the numerically calculated curve of toroidal solutions.
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