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APPROXIMATING SYMMETRIC CAPILLARY SURFACES

DAVID SIEGEL

An iterative method is introduced for approximating symmetric capillary
surfaces which makes use of the known exact volume. For the interior and
annular problems this leads to upper and lower bounds at the center or
inner boundary and at the outer boundary, and to an asymptotic expansion
in powers of the Bond number. For the exterior problem we determine the
leading order asymptotics of the boundary height as the Bond number tends
to zero, obtaining a result first proved by B. Turkington.

1. Introduction

The study of capillary surfaces goes back to Laplace [1805–1806]. The canonical
modern reference is [Finn 1986]. We will consider symmetric capillary surfaces
with gravity in one of three cases: interior, annular and exterior. A vertical circular
cylindrical tube immersed in an infinite reservoir of fluid will create an interior and
an exterior capillary surface. Two concentric circular tubes will create an annular
capillary surface between them.

Let r be the radial variable and let ψ be the inclination angle of the surface
z = u(r). Then sinψ = ur/

√
1 + u2

r and Nu = (1/r)(r sinψ)r is twice the mean
curvature of the surface. A capillary surface is determined by the capillary equation
Nu = Bu, where B is a positive constant, the Bond number, and by specifying the
contact angle γ ∈[0, π] on the boundary. The contact angle is the angle between the
interface cross–section and vertical, measured inside the fluid. Thus, the inclination
angle will be prescribed on the boundary. In order for the annular problem to be
similar to the interior problem we take the contact angle to be π/2 on the inner
boundary and γ on the outer boundary.

The interior and annular problems can be written

(1) Nu = Bu, a < r < 1, sinψ(a)= 0, sinψ(1)= cos γ,

where a = 0 for the interior problem and 0< a < 1 for the annular problem.
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The exterior problem is

(2) Nu = Bu, r > 1, sinψ(1)= −cos γ , u → 0 as r → ∞.

For all three problems we take

(3) 0 ≤ γ < π/2.

If γ =π/2 then u = 0. If π/2<γ ≤π then ū =−u satisfies Nū = Bū with contact
angle γ̄ =π−γ , so 0 ≤ γ̄ < π/2. Scaling allows us to take one boundary at r = 1.
It is known [Siegel 1980] that for a solution to (2), u and ur decay exponentially
fast as r → ∞. Also, under (3), the solution u is positive in every case by the
Comparison Principle [Finn 1986, Theorem 5.1; Siegel 1980, Theorem 1].

The volume lifted can be determined for all three problems:

B
∫

I
ru(r) dr = cos γ,

where I = [a, 1] for (1) and I = [1,∞) for (2).
We wish to employ approximate solutions that have the correct volume. The key

observation is that if v1 is a nonnegative function with the correct volume then we
may define v2 by Nv2 = Bv1 and v2 will satisfy the correct boundary conditions.

Theorem 1.1. Let v1 be a nonnegative continuous function on I which satisfies
B

∫
I rv1(r) dr =cos γ where I is [a, 1] or [1,∞). Assume that v1 is nondecreasing

when I is [a, 1] and v1(r)= O( 1
r3 ) as r → ∞ when I = [1,∞). Here B > 0, 0 ≤

γ < π
2 and 0 ≤ a < 1. Then there is a function v2 defined and continuous on I ,

satisfying Nv2 = Bv1, given as a quadrature of v1, which satisfies the boundary
conditions of problem (1) or (2). Let ψ2 be the inclination angle of v2 and let

h2 =
sinψ2√

1 − sin2ψ2
.

For I =[a, 1], let sinψ2(r)= (B/r)
∫ r

a sv1(s) ds and v2(r)=v2(a)+
∫ r

a h2(s) ds.
Then v2 is nondecreasing, sinψ(a)= 0 and sinψ(1)= cos γ .

For I =[1,∞), let sinψ2(r)=−(B/r)
∫

∞

r sv1(s) ds and v2(r)=−
∫

∞

r h2(s) ds.
Then v2 is nonincreasing, sinψ2(1) = − cos γ and v2(r) = O(r−1) and v2 r (r) =

O(r−2) as r → ∞.
For I = [a, 1], by choosing

(4) v2(a)=
1

1 − a2

(
2 cos γ

B
−

∫ 1

a
(1 − r2)

sinψ2(r)√
1 − sin2ψ2(r)

dr
)
,

v2 will satisfy the volume condition B
∫

I rv2 dr = cos γ . With this choice v2 will
be nonnegative when B ≤ 6.
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Proof. First consider I = [a, 1]. Since v1 is nonnegative we have sinψ2 ≥ 0, which
implies that v2 is nondecreasing. Since v1 is nondecreasing we have

sinψ2 ≤
Bv1(r2

− a2)

2r
≤

Brv1

2
.

It follows that (sinψ2
r

)
r
=

2
r2

( Brv1
2

− sinψ2

)
≥ 0.

Thus, (sinψ2)/r ≤ cos γ or sinψ2 ≤ r cos γ ≤ r . Since p/
√

1 − p2 is increasing
on [0, 1), we have

sinψ2√
1 − sin2ψ2

≤
r

√
1 − r2

,

so v2(r) ≤ v2(a)+
√

1 − a2 −
√

1 − r2. Thus v2 is defined and continuous on I .
Requiring B

∫
I rv2 dr = cos γ , after changing the order of integration, results in

(4). Now for B ≤ 6, use

sinψ2√
1 − sin2ψ2

≤
r cos γ√

1 − r2 cos2 γ
≤

r cos γ
√

1 − r2

in (4) to see that

v2(a)≥
cos γ
1 − a2

(
2
B

−

∫ 1

0
r
√

1 − r2 dr
)

=
cos γ
1 − a2

(
2
B

−
1
3

)
≥ 0.

Thus v2 is nonnegative.
Next consider I =[1,∞). Since v1 is nonnegative, sinψ2 ≤0, which implies that

v2 is nonincreasing. From the volume condition on v1, sinψ2(1)= − cos γ . From
(sinψ2)r = Bv1 − (sinψ2)/r ≥ 0, we get sinψ2 ≥ − cos γ . Since v1 = O(r−3),
sinψ2 = O(r−2), giving v2 r = O(r−2) as r → ∞. Since v2 is nonincreasing and
tends to zero, v2 is nonnegative. From the formula for v2, we see that v2 = O(r−1)

as r → ∞. As (sinψ2)r (1) = Bv1(1)+ cos γ > 0, the integral for v2(1) is finite.
Thus v2 is continuous on I .

Finally, by the defining formulas, in all cases, Nv2 = Bv1 in the interior of I . �

For interior or annular capillary surfaces and B ≤ 6, Theorem 1.1 provides a
sequence of iterates {vn}, where Nvn+1 = Bvn for n ≥ 0. The simplest initial
function is the constant function satisfying the volume condition

(5) v0 =
2 cos γ

B(1 − a2)
.

The properties of this sequence are explored in Section 2. An asymptotic expan-
sion in powers of B is obtained. The theory is then applied to the interior problem
and a formula of Rayleigh for measuring surface tension is proved.
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The exterior problem is considered in Section 3. Two approximations are used
to prove a result of Bruce Turkington [1980] on the asymptotic boundary height as
B tends to zero.

An attractive feature of the method employed in this paper is its applicability to
capillary problems with γ =0. The general asymptotic series result in [Miersemann
1993] excludes the case γ = 0. However, for the interior problem, Miersemann
[1994] has established an asymptotic expansion with 0 ≤ γ < π/2.

The annular problem certainly merits further work. A start on this has been
made by Alan Elcrat, Tae-Eun Kim and Ray Treinen [Elcrat et al. 2004].

2. Interior and annular capillary surfaces

The sequence of iterates {vn} for the interior and annular capillary problem (1)
introduced after Theorem 1.1 has the properties listed in Theorem 2.3 below. The
proof will make use of two lemmas whose proof is straightforward. Denote the
inclination angles of two functions v and w defined on [a, 1] by ψv and ψw, re-
spectively.

Lemma 2.1. Let a < b < 1. If Nv < Nw for a < r < b and ψv(a) = ψw(a) then
ψv < ψw, for a < r ≤ b. If Nv < Nu for b < r < 1 and ψv(1) = ψw(1), then
ψw <ψv, for b ≤ r < 1.

Lemma 2.2. If ψv < ψw on (a, 1) and
∫ 1

a rv dr =
∫ 1

a rw dr then there exists
b ∈ (a, 1) such that v(b) = w(b) and w(r) < v(r) for r < b and v(r) < w(r) for
r > b.

Theorem 2.3. Let u be the solution to (1) and ψ its inclination angle. For B ≤

6, the iterates provided by Theorem 1.1 with v0 given by (5) have the following
properties:

ψ0 <ψ2 < · · ·<ψ < · · ·ψ3 <ψ1;

v1(a) < v3(a) < · · ·< u(a) < · · ·< v2(a) < v0 for a < r < 1;

v0 < v2(1) < · · ·< u(1) < · · ·< v3(1) < v1(1),

|u − vn|< C(γ, a)
(

B

√
1 − a2

1 + a2

)n

, where C(γ, a)=

√
1 − a2 cos2 γ − sin γ

cos γ
.

Proof. From the defining equations, ψ1 > 0 and v1 > 0 on (a, 1] and so sinψ2 > 0
on (a, 1].

Since u is positive, it follows that sinψ =
B
r

∫ r
a su(s) ds > 0 for r > a. Since

v0 is constant, ψ0 = 0. Thus, ψ0 <ψ .
We proceed to prove a number of statements of a recursive nature, using Lemmas

2.1 and 2.2. First we show that ψ2k < ψ implies that ψ < ψ2k+1 for k ≥ 0. By
Lemma 2.2 there exists b2k ∈ (a, 1) with v2k(b2k) = u(b2k), u < v2k for r < b2k
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and u > v2k for r > b2k . Since Nv2k+1 = Bv2k and Nu = Bu, we conclude that
ψ < ψ2k+1 by Lemma 2.1 by arguing on the intervals [a, b2k] and [b2k, 1].

In a similar fashion, one proves that ψ < ψ2k+1 implies that ψ2k+2 < ψ for
k ≥ 0. Combining statements, we have ψ2k <ψ < ψ2k+1 for k ≥ 0.

We know that ψ0 < ψ2 for r > a. Next we show that ψ2k < ψ2k+2 implies that
ψ2k+3 < ψ2k+1 for k ≥ 0. By Lemma 2.2 there exists ck ∈ (a, 1) with v2k(ck) =

v2k+2(ck), v2k+2>v2k for r < ck and v2k+2<v2k for r > ck . Using Nv2k+3 = Bv2k

and Nv2k+1 = Bv2k , we get ψ2k+3 <ψ2k+1 by Lemma 2.1.
Likewise, one proves that ψ2k+3 <ψ2k+1 implies that ψ2k+4 >ψ2k+2 for k ≥ 0.

Combing statements gives that {ψ2k} is increasing and {ψ2k+1} is decreasing.
From ψ2k < ψ it follows that u(a) < v2k(a) and v2k(1) < u(1) by Lemma 2.2.

From ψ < ψ2k+1 it follows that v2k+1(a) < u(a) and u(1) < v2k+1(1) again by
Lemma 2.2.

Similarly, ψ2k <ψ2k+2 implies that v2k+2(a)< v2k(a) and v2k(1)< v2k+2(1) for
k ≥0; andψ2k+3<ψ2k+1 implies that v2k+1(a)<v2k+3(a) and v2k+3(1)<v2k+1(1)
for k ≥ 0. Thus {v2k+1(a)} is increasing, {v2k+1(1)} is decreasing, {v2k(a)} is
decreasing and {v2k(1)} is increasing. The proof of the interleaving properties is
complete.

Finally, we establish the error bound. Since u(a) < v0 and v0 < u(1), and u is
increasing, we have |u − v0|< u(1)− u(a) < v1(1)− v1(a). The latter expression
can be estimated. By the defining equations we have

sinψ1 =
cos γ
1 − a2

(r2
− a2)

r
and v1(1)− v1(a)=

∫ 1

a

sinψ1√
1 − sin2ψ1

dr.

Using the inequality sinψ1 ≤ r cos γ to estimate the integral, we get

v1(1)− v1(a)≤

∫ 1

a

r cos γ√
1 − r2 cos2 γ

dr = C(γ, a).

Thus, |u −v0|<C(γ, a). This is the case n = 0 of the bound to be established and
we proceed by induction. Assume

|u − vn|<Bn := C(γ, a)
(

B

√
1 − a2

1 + a2

)n

.

From the defining equations for {vn} and the equation for u we have

sinψ − sinψn+1 =
B
r

∫ r

a
s(u(s)− vn(s)) ds or −

B
r

∫ 1

r
s(u(s)− vn(s)) ds .

This gives |sinψ − sinψn+1| < (Bn B)/(2r)min{r2
−a2, 1−r2

}. Using the fact
that

min{r2
− a2, 1 − r2

} ≤
2(r2

− a2)(1 − r2)

1 + a2 ,
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we have

(6) |sinψ − sinψn+1|<
Bn B

1 + a2 r(1 − r2).

If m := n + 1 is even, then since ψm <ψ and vm(a) > u(a), vm(1) < u(1),

|u − vm | ≤ max{vm(a)− u(a), u(1)− vm(1)}< (u(1)− vm(1))− (u(a)− vm(a)).

Similarly, if m is odd, then |u − vm | < (vm(1)− u(1))− (vm(a)− u(a)). Thus
|u −vm |<

∣∣∫ 1
a (ur −vm r ) dr

∣∣ ≤
∫ 1

a |ur −vm r | dr . We use the Mean Value Theorem
to estimate the integrand, noting that

ur =
sinψ√

1 − sin2ψ
and vm r =

sinψm√
1 − sin2 ψm

, ur − vm r =
sinψ − sinψm

(1 − ξ 2)3/2
,

where ξ is between sinψ and sinψm . Using ξ < sinψ1 ≤ r , we have |ur −vm r |<

| sinψ− sinψm |/(1 − r2)3/2. Combining this with previous bound (6), we have

|u − vn+1|<
Bn B

a2 + 1

∫ 1

a

r
√

1 − r2
dr = Bn B

√
1 − a2

1 + a2 = Bn+1.

This completes the induction argument. �

The upper bound Bn = C(γ, a)
(
B

√
1 − a2/(1 + a2)

)n is at most Bn , so we
have an upper bound independent of γ and a. For the interior problem, the result
v1(0)<u(0) and u(1)<v1(1)was first proved in [Finn 1981] and the resultψ <ψ1

was first proved in [Siegel 1989]. For the interior problem with γ =0, Theorem 2.3
gives |u − v1|< B, whereas [Siegel 1989] has the better estimate |u − v1|< B/3.

The iterates {vn} can be used to establish an asymptotic expansion for u in pow-
ers of B. Denote differentiation with respect to B by DB .

Theorem 2.4. Let 0 ≤ γ < π/2 and 0< B ≤ 6. The solution u(r, B) to (1) has an
asymptotic expansion in powers of B,

u(r, B)= v0 + u0(r)+ u1(r)B + u2(r)B2
+ · · · ,

where un(r)= Dn
Bwk(r, 0)/n! with wk = vk −v0 for k> n ≥ 0. There are constants

Cn such that
∣∣u −

(
v0 + u0(r)+ · · · + un(r)Bn

)∣∣ ≤ Cn Bn+1 for n ≥ 0.

Proof. The idea is to show that the wn’s have Taylor expansions in powers of B
and combine that with Theorem 2.3. To do this we need to show that D`

Bwk exists
and is continuous for 0 ≤ B ≤ 6, 0 ≤ γ ≤

π
2 and ` ≥ 0, k ≥ 0. The inclination

angle for wk is ψk since wk differs by a constant from vk . The wk’s are generated
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recursively by

(7)



sinψk+1 = sinψ1 +
B
r

∫ r

a
swk(s) ds,

wk+1(r)= wk+1(a)+
∫ r

a

sinψk+1√
1 − sin2ψk+1

ds,

wk+1(a)= −

∫ 1

a
(1 − s2)

sinψk+1√
1 − sin2ψk+1

ds,

for k ≥ 0. We have w0 = 0 and

sinψ1 =
cos γ
1 − a2

r2
− a2

r
.

From the volume condition for vk it follows that

(8)
∫ 1

a
rwk dr = 0 .

We will show by induction on k that D`
Bwk and D`

B sinψk are continuous for
`≥ 0 and D`

B sinψk = O(1 − r) for `≥ 1.
We will differentiate the recursion relation (7) repeatedly with respect to B, so

we need the equality

(9) D`
B

sinψk√
1 − sin2ψk

=

∑̀
j=0

h`, j

(1 − sin2 ψk)(2 j+1)/2
,

where each h`, j , for ` ≥ 0, is a homogeneous polynomial of degree 2 j + 1 in
sinψk , DB sinψk , . . . , D`

B sinψk which is of degree at least j in DB sinψk , . . . ,
D`

B sinψk . This is seen by induction on `. Statement (9) is true for `= 0. Assume
it is true for `; differentiation gives

D`+1
B

sinψk√
1 − sin2ψk

=

∑̀
j=0

DBh`, j

(1 − sin2 ψk)(2 j+1)/2
−
(2 j + 1)h`, j sinψk DB sinψk

(1 − sin2 ψk)(2 j+3)/2
,

so h`+1, j = DBh`, 0,

h`+1, j = DBh`, j + (2 j − 1)h`, j−1 sinψk DB sinψk for 1 ≤ j ≤ `,

and h`+1, `+1 = (2`+ 1)h`, ` sinψk DB sinψk . Since DBh`, j is homogeneous of
degree 2 j + 1 in sinψk , DB sinψk , . . . , D`

B sinψk and of degree at least j in
DB sinψk , . . . , D`

B sinψk , statement (9) holds with ` replaced by `+ 1.
Now, back to the induction argument on k. The case for k = 0 is true since

w0 = 0, sinψ0 = 0. Assume the statement is true for k. Taking ` derivatives of (7)
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with respect to B we obtain

D`
B sinψk+1 =

B
r

∫ r

a
s D`

Bwk(s) ds +
`

r

∫ r

a
s D`−1

B wk(s) ds,

D`
Bwk+1(r)= D`

Bwk+1(a)+
∫ r

a
D`

B
sinψk+1√

1 − sin2ψk+1
ds,

D`
Bwk+1(a)= −

∫ 1

a
(1 − s2)D`

B
sinψk+1√

1 − sin2ψk+1
ds .

Differentiating the volume condition (8), we have
∫ 1

a r D`
Bwk dr = 0 for all ` ≥

0. Thus we see that D`
B sinψk+1 is continuous and D`

B sinψk+1 = O(1 − r) for
`≥ 1. It follows that the integrals defining D`

Bwk+1 are convergent, so D`
Bwk+1 is

continuous. The induction argument is complete.
Now, for a given positive n, take k > n. By Taylor’s Theorem, wk(r, B) =

wk(r, 0)+ DBwk(r, 0)B + · · · + Dn
Bwk(r, 0)Bn

+ O(Bn+1), and by Theorem 2.3,
u(r, B)= v0+wk(r, B)+O(Bk+1). Thus u = v0+wk(r, 0)+ DBwk(r, 0)B+· · ·+

Dn
Bwk(r, B)+ O(Bn+1). By the uniqueness of asymptotic expansions, this may be

written u(r, B)= v0 + u0(r)+ u1(r)B + u2(r)B2
+· · ·+ un(r)Bn

+ O(Bn+1). �

Example 2.5. As an example of Theorem 2.4, consider the interior capillary prob-
lem (1) with a = 0 and γ = 0. Then v0 = 2/B, sinψ1 = r , w1 =

2
3 −

√
1 − r2, so

u =2/B+
2
3 −

√
1 − r2+O(B). Similarly, sinψ2 = r +

1
3(B/r)

(
(1−r2)3/2+r2

−1
)

so that w2(r, 0)= 2
3 −

√
1 − r2 and DBw2(r, 0)= −

1
6 +

1
3 ln

(
1+

√
1 − r2

)
, giving

u(r, B)=
2
B

+
2
3

−

√
1 − r2 +

(
−

1
6

+
1
3

ln
(
1 +

√
1 − r2

))
B + O(B2).

Setting r = 0, we have u(0, B) = 2/B −
1
3 +

1
3

(
ln 2 −

1
2

)
B + O(B2). Inverting

this relationship and setting u0 = u(0, B), we obtain

B =
2
u0

−
2

3u2
0

+

4
3

(
ln 2 −

1
2

)
+

2
9

u3
0

+ O
(

1
u4

0

)
as u0 → ∞.

This is a formula due to Rayleigh [1915]. It is the basis for the technique of
measuring surface tension by means of the rise of liquid in a narrow tube.

3. Exterior capillary surface

In the exterior case, since the domain is unbounded, we must proceed differently
in finding an initial approximation v1.

Set v1 = AK (r), where K (r)= (1/
√

B)K0(
√

Br) (K0 being a modified Bessel
function of the second kind) and A is a positive constant. We will make use of
the fact [Siegel 1980] that v1, which satisfies v1 rr + v1 r/r = Bv1 for r > 0, is a
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supersolution: Nv1 < Bv1 for r > 0. The Bessel function K0(r) has the following
properties [Lebedev 1965]:

K0(r) > 0, K ′

0(r) < 0, K0(r)∼
e−r

√
2πr

as r → ∞, K0(r)∼ − ln r as r → 0.

We also need that (r K ′

0)
′
= r K0 for r > 0 and K ′

0(r) ∼ −r−1 as r → 0. Now
choose A so that B

∫
∞

1 rv1 dr = cos γ : namely, A = −(cos γ )/K ′

0(
√

B).

Theorem 3.1. Let v1(r) = AK (r) be as chosen above and let v2 be determined
according to Theorem 1.1, so that Nv2 = Bv1, v2(r), v2 r (r)→ 0 as r → ∞. Then
ψ2(r) < ψ(r) for r > 1, ψ2(1) = ψ(1) = γ − π/2 and v1(1) < u(1) < v2(1). It
follows that u(1)= − cos γ ln

√
B + O(1) as B → 0.

Proof. By Theorem 1.1, ψ2(1)=ψ(1)=γ−π/2 and v2(r), v2 r (r)→ 0 as r →∞.
If v1(1)≥ u(1), then v1(r) > u1(r) for r > 1 by the comparison principle. This

contradicts the volume condition. Thus v1(1) < u(1). Note that

(10) v1(1)= −
K0(

√
B) cos γ

√
BK ′

0(
√

B)
= − cos γ ln

√
B + O(1) as B → 0.

Also, because of the volume condition, there exists a b> 1 so that v1(b)= u(b).
Since v1 is a supersolution, v1(r) > u(r) for r > b and v1(r) < u(r) for r < b. This
implies that Nv2< Nu for r <b and Nv2> Nu for r >b. Using thatψ2(1)=ψ(1),
r sinψ2(r), r sinψ(r)→ 0 as r → ∞ and integrating on [1, b] and [b,∞] gives
that sinψ2(r) < sinψ(r) for r > 1. Thus ψ2(r) < ψ(r) for r > 1 or, equivalently,
v2 r < ur for r > 1. Using that u(r), v2(r) → 0 as r → ∞, and integrating on
[1,∞), gives that u(1) < v2(1).

Finally, we have

r sinψ2(r)= −B
∫

∞

r
sv1(s) ds = −rv1 r (r),

so sinψ2 = AK ′

0(
√

Br). Using that v2 r = sinψ2/
√

1 − sin2ψ2 and integrating on
[1,∞) gives

(11) v2(1)=
cos γ

K ′

0(
√

B)

∫
∞

1

K ′

0(
√

Br)√
1 −

(
cos γ

K ′

0(
√

B)
K ′

0(
√

Br)
)2

dr.

We will show that there is an upper bound on v2(1) which is asymptotically the
same as (10). Change variables in the integral with the substitution s =

√
Br and

write the integral as the sum of two terms, where δ is an arbitrary fixed positive
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number: v2(1)= I1 + I2, I1 =
∫ δ√

B F ds, I2 =
∫

∞

δ
F ds, where

F =
cos γ√(√

BK ′

0(
√

B)
K ′

0(s)

)2

− B cos2 γ

< F1 =
cos γ√

s2 − B cos2 γ

and

F =
cos γ

√
BK ′

0(
√

B)

K ′

0(s)√
1−

(
cos γ K ′

0(s)

K ′

0(
√

B)

)2
< F2 =

cos γ
√

BK ′

0(
√

B)

K ′

0(s)√
1−

(
cos γ K ′

0(δ)

K ′

0(
√

B)

)2
.

The upper bound F1 was obtained by using that (r K ′

0)
′
= r K0 > 0, so that∣∣√BK ′

0(
√

B)
∣∣> |sK ′

0(s)|

for s >
√

B. Using the upper bounds F1 and F2 for the integrals I1 and I2, we
obtain

I1 < cos γ
(

ln
(
δ+

√
δ2

− B cos2 γ
)
− ln

(√
B(1 + sin γ )

))
= −cos γ ln

√
B + O(1),

I2 = −
cos γ

√
BK ′

0(
√

B)

K0(δ)√
1−

(
cos γ K ′

0(δ)

K ′

0(
√

B)

)2
= O(1).

Thus u(1) < v2(1) = I1 + I2 < −cos γ ln
√

B + O(1). Combining this with the
lower bound (10), we have that u(1)= −cos γ ln

√
B + O(1) as B → 0. �

Translating [Turkington 1980, Theorem 3.3] to the notation of this paper gives
u(1)∼ − cos γ ln

√
B as B → 0. Theorem 3.1 gives a better estimate of the error.
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