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A liquid bridge between two balls will have a free surface which has constant
mean curvature, and the angles of contact between the free surface and the
fixed surfaces of the balls will be constant (although there might be two
different contact angles: one for each ball). If we consider rotationally sym-
metric bridges, the free surface must be a Delaunay surface, which may be
classified as a unduloid, a nodoid, or a catenoid, with spheres and cylinders
as special cases. In this paper, it is shown that a convex unduloidal bridge
between two balls is a constrained local energy minimum for the capillary
problem, and a convex nodoidal bridge between two balls is unstable.

1. Introduction

The stability and energy minimality of a liquid bridge between parallel planes has
been well studied [Finn and Vogel 1992; Vogel 1987; 1989; 2002; Zhou 1997].
That of the related problem of a liquid bridge between fixed balls, as in the figure,

B2 B1

6

has been studied less (but see [Basa et al. 1994; Vogel 2005; Vogel 1999]). We give
a simple way of determining if a convex, rotationally symmetric bridge between
fixed balls is an energy minimum. Namely, if a convex bridge between spheres is
a section of an unduloid, it is a constrained local energy minimum, and if it is a
section of a nodoid, it is unstable, and in particular not an energy minimum. (For
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rotationally symmetric bridges, we will use “convex” to mean that the profile curve
of the free surface is a convex function.)

Someone familiar with [Vogel 1989] might be suspicious of this claim, because
it is shown there that convex bridges between planes are always stable. How could
reducing the radius of the spheres from infinity to a finite amount change the be-
havior so drastically? The resolution of this apparent paradox is that in looking
at bridges between parallel planes, one deals with stability or energy minimality
modulo translations parallel to the planes: there are perturbations which are au-
tomatically energy neutral. Changing the fixed surfaces from planes to spheres
will change the boundary contribution of the relevant quadratic form M, defined in
(1–2), and in particular the value of the quadratic form as applied to the perturba-
tions which were energy neutral for the bridge between planes. This is in fact the
key point of the paper. If the bridge is a section of a nodoid, then in changing the
fixed surfaces from planes to spheres, the energy neutral perturbations change to
energy reducing perturbations, causing instability. On the other hand, if the bridge
is a section of an unduloid, then in changing the fixed surfaces from planes to
spheres, the energy neutral perturbations change to energy increasing ones, which
we will show implies that the bridge is a constrained local energy minimum.

Definitions. In considering the stability and energy minimality of a liquid bridge
between solid balls, some concepts from the general theory of capillary surfaces
must be recalled [Finn 1986; Vogel 2000; Vogel 2002]. Suppose that 0 is the
boundary of a fixed solid region in space, and that we put a drop of liquid in
contact with 0. Let � be the region in space occupied by the liquid, and 6 the
free boundary of � (the part of ∂� not contained in 0). In the absence of gravity
or other external potentials, the shape of the drop results from minimizing the
functional

(1–1) E(�)= |6| − c|61|,

where |6| is the area of the free surface of the drop, |61| is the area of the region on
0 wetted by the drop, and c ∈ [−1, 1] is a material constant. The minimization is
under the constraint that the volume of the drop is fixed. The first-order necessary
conditions for a drop to minimize (1–1) are that the mean curvature of 6 be a
constant H (this is a Lagrange multiplier arising from the volume constraint) and
that the angle between the normals to 6 and to 0 along the curve of contact be
constantly γ = arccos c (see [Finn 1986]).

A capillary surface 6 is a constrained local energy minimum if it is the free
boundary of a drop � such that E(�) < E(�′) for any comparison drop �′ near
(but not equal to) � in an appropriate sense, and containing the same volume of
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liquid. The question of what sense of “nearness” is appropriate is a complex one,
but one approach is based on curvilinear coordinates [Vogel 2000].

In the common special case that there is a group of symmetries taking 0 to
itself, we say that 6 is a constrained local energy minimum modulo symmetries
if E(�) ≤ E(�′) for comparison drops �′ that are near �, and if E(�) = E(�′)

implies that �′ is obtained by applying an element of the symmetry group to �.
The specific example that we will deal with in this paper is that of a liquid bridge
between parallel planes. No bridge could be a constrained local energy minimum,
since translations parallel to the planes leave energy unchanged. However, in
certain circumstances one can show that a given bridge is a minimum modulo
these translations: any nearby bridge with the same energy (and volume) will be a
translation of the original one [Vogel 2002].

Suppose that 6 = 6(0) is embedded in a smoothly parameterized family of
drops 6(ε), all of which contain the same volume. If (d2/dε2)E(6(ε)) is negative
at ε = 0 for that family, 6 is said to be unstable. Otherwise, 6 is stable.

The quadratic form related to stability and energy minimality is

(1–2) M(φ, φ)=

∫∫
6

|∇φ|
2
− |S|

2φ2 d6+

∮
σ

ρφ2 dσ.

Here |S|
2 is the square of the norm of the second fundamental form of6. (In terms

of mean curvature H and Gaussian curvature K we have |S|
2
= 2(2H 2

− K ), and
in terms of the principal curvatures, |S|

2
= k2

1 + k2
2 .) We write σ for ∂6. The

coefficient ρ is given by

(1–3) ρ = κ6 cot γ − κ0 csc γ,

where κ6 is the curvature of the curve 6 ∩5 and κ0 is the curvature of 0 ∩5, if
5 is a plane normal to the contact curve ∂6. These planar curvatures are signed:
in Figure 2, left, both κ6 and κ0n are negative.

We will denote the subspace of H 1(6) of all φ for which
∫∫
6
φd6 = 0 by

1⊥, since this subspace is the collection of functions which are perpendicular to
the constant function 1 in the H 1 inner product. The relationship between M and
stability is that 6 is stable if and only if M(φ, φ)≥ 0 for all φ ∈ 1⊥. If 6 is a local
energy minimum or a local energy minimum mod symmetries, then 6 is stable.
However, stability does not imply that 6 is any sort of local energy minimum. It
is not known whether the stronger condition M(φ, φ) > 0 for all nontrivial φ ∈ 1⊥

is enough to imply that a capillary surface is some sort of energy minimum. (See
[Zhou 1997, Editorial comment] and [Vogel 2000] for a discussion of this point. If
the contact curves are “pinned” rather than free to move on 0, the strengthened con-
dition will imply energy minimality; see [Grosse-Brauckmann 1996].) In [Vogel
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2000], it was shown that if for some ε > 0, we have M(φ, φ)≥ ε ‖φ‖
2 holding on

1⊥, where ‖·‖ is the H 1(6) norm, then 6 is a volume constrained local minimum
for energy. If M(φ, φ)≥ ε ‖φ‖

2 on a subspace for an ε > 0, M is said to be strongly
positive on that subspace.

The quadratic form M is analyzed in [Vogel 2000; 2002] by considering an
eigenvalue problem arising from integration by parts. Define the differential oper-
ator L by

L(ψ)= −1ψ − |S|
2ψ,

where1 is the Laplace–Beltrami operator on6. The eigenvalue problem we study
is given by

(1–4)
L(ψ)= λψ on 6,

b(ψ)≡ ψ1 + ρψ = 0 on ∂6,

where ψ1 is the outward normal derivative of ψ . If the eigenvalue problem has
no nonpositive eigenvalues, the bridge is stable, and in fact a constrained local
energy minimum. If there are two or more negative eigenvalues, then the bridge is
unstable. If there is one negative eigenvalue, and the rest are positive, then there
is a further condition which must be checked to see if the bridge is stable (see
[Vogel 2005; Vogel 1987]). In [Vogel 2002] it is shown that a bridge between
parallel planes must always have zero as a double eigenvalue, corresponding to
energy neutral translations. The relationship between the bilinear form M and the
operator L is that

(1–5) M(φ, ψ)=

∫∫
6

φL(ψ) d6+

∮
σ

φb(ψ) dσ,

after an integration by parts.
This general theory must be modified when we consider bridges between fixed

balls, at least when we want to allow for different contact angles on the different
balls B1 and B2. In that case, there will be two material constants c1 and c2, and
the energy functional will be

E(�)= |6| − c1|61| − c2|62|,

where61 and62 are the wetted regions on B1 and B2 respectively. The contact an-
gles with the Bi will be γi = arccos ci . The bilinear form M must also be modified.
If we write σi for the curve of contact of 6 with Bi , we have

(1–6) M(φ, φ)=

∫∫
6

|∇φ|
2
− |S|

2φ2 d6+

∮
σ1

ρ1φ
2 dσ +

∮
σ2

ρ2φ
2 dσ.

The boundary conditions for the eigenvalue problem for the operator L must sim-
ilarly be adjusted.



CONVEX LIQUID BRIDGES BETWEEN SPHERES 371

2. Comparing bridges between planes and bridges between spheres

In the absence of gravity, a capillary surface is a surface6 of constant mean curva-
ture which makes a constant contact angle γ with a fixed surface 0. Suppose that
we have such a surface, and, while keeping6 and its boundary fixed, we replace 0
by a new surface 0′, which still contains ∂6. Suppose this new surface 0′ makes
a new constant contact angle γ ′ with 6. The general question is how this will
effect stability or energy minimality of 6. At first glance, this question may seem
artificial. However, rotationally symmetric liquid bridges between solid spheres are
the same surfaces as those between parallel planes. Since much is known about
stability of bridges between planes, our hope is that from this knowledge we can
infer some information about stability of bridges between spheres.

From (1–2), we can conclude that changing the fixed surface 0 may change
the value of ρ, but that the surface integral in M remains unchanged. It therefore
makes sense to compare ρ values for bridges between planes and bridges between
spheres. It is known (see [Vogel 1987]) that a bridge between parallel planes must
be a surface of revolution. (However, there are bridges between spheres which
are not surfaces of revolution. See Note 1.) Surfaces of revolution having constant
mean curvature are called Delaunay surfaces. Their profile curves may be obtained
by rolling a conic section along an axis and tracing the path of a focus. Rolling
an ellipse results in a curve called an undulary, and the resulting surface is an
unduloid. Rolling a hyperbola yields a nodary as a profile curve and a nodoid as
the surface. Parabolas give catenaries and catenoids, cylinders come from rolling
circles, and spheres come from “rolling” line segments. See [Kenmotsu 2003] for
more information about Delaunay surfaces.

To make things specific, consider the following situation. Suppose that we have
a Delaunay surface generated by a profile passing through the point (x0, y0), and
that the axis of rotation of the Delaunay surface is the x axis. Suppose that κ6 is
the curvature of the profile at the point (x0, y0) (this agrees with the terminology
in (1–3)). The bridge is only part of the Delaunay surface, so let’s assume that
the bridge lies to the left of the plane x = x0. The profile curves of one case is
illustrated in Figure 2, left, where the center of the sphere is to the right of 0o. The
other case, where the center is to the left of 0o, but the sphere still does not cross
the free surface 6, is in Figure 2, right. The point of the following calculation is to
determine how the value of ρ along the curve of contact will change in going from
the Delaunay surface forming a bridge between planes to the Delaunay surface
forming a bridge between spheres.

Lemma 2.1. Suppose that the fixed surface that the bridge 6 contacts is the plane
x = x0, whose profile is labeled 0o in Figure 2, and let γo be the contact angle
between the normals N and No to 6 and 0o, respectively. Let ρo be the value of ρ
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Figure 2. Changing the fixed surface.

for this configuration. Now consider replacing the plane by a sphere going through
(x0, y0), whose profile is labeled 0n in Figure 2. (The subscripts o and n stand for
“old” and “new”.) Assume that this sphere has radius a and center on the x-axis.
The contact angle has changed to γn , and the value of ρ has changed to ρn . Set
η = γo − γn . Then

(2–1) ρn − ρo =
1

(cot η− cot γo) sin2 γo

(
κ6 +

sin γo

y0

)
,

Proof. Case 1: We have ρo = κ6 cot γo, since the curvature of the fixed surface is
zero. Now replace the plane by 0n . The contact angle is now the angle between N
and Nn , and has changed to γn = γo − η, where η = arcsin(y0/a). Therefore the
new value of ρ is

ρn = κ6 cot (γo − η)+
1
a

csc (γo − η) ,

since the sectional curvature of the fixed surface has decreased from 0 to −1/a.
Trigonometric identities for cot(A − B) and csc(A − B) give, as desired,

ρn − ρo

= κ6

(
cot γo cot η+ 1
cot η− cot γo

− cot γo

)
+

1
a sin γo sin η

(
1

cot η− cot γo

)
= κ6

(
cot γo cot η+1− cot γo cot η+ cot2 γo

cot η− cot γo

)
+

1
sin γo sin η

(
1

cot η− cot γo

)
=

1
cot η− cot γo

(
κ6 csc2 γo +

1
a sin γo sin η

)
=

1

(cot η− cot γo) sin2 γo

(
κ6 +

sin γo

y0

)
.
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The calculation for case 2 is similar, except that now η = π/2 − arcsin(y0/a),
and is omitted. �

Now, suppose that we have a bridge with a convex profile. In both case 1 and
case 2, one can show that 0 < η < γo < π , so that cot η− cot γo > 0. Therefore,
the sign of κ6 + (sin γo)/y0 will determine whether the value of ρ has increased
or decreased. From this we will be able to determine stability of convex bridges
between spheres. We first need to recall some facts about the profiles of Delaunay
surfaces.

If (x(s), y(s)) is an arclength parametrization of the profile of a Delaunay sur-
face, with inclination angle φ(s) (see Figure 2 for φ) and mean curvature H , we
have the following system of ordinary differential equations (see [Vogel 1989]):

(2–2)
dx
ds

= cosφ,
dy
ds

= sinφ,
dφ
ds

=
cosφ

y
+ 2H.

From this system, it’s easy to see that

d
ds

(
y cosφ+ H y2)

= 0,

so that y cosφ+H y2 is constant along Delaunay profiles. The value of this constant
has a geometric meaning.

Lemma 2.2. Let the constant value of y cosφ+ H y2 on the profile of a Delaunay
surface be called c. If Hc > 0, the profile is a nodary, and if Hc < 0 the profile is
an undulary.

Proof. This is already known (see [Oprea 2000], for example), but I was not able
to locate a proof in the literature, and it is not hard to present one. It is easy to
check that c = 0 for a sphere, so this case will not occur. Substitute the definition
of c into the last equation in (2–2) to see that

dφ
ds

= H +
c
y2 .

If H and c have the same signs, φ(s) is monotone on the profile. This rules out
undularies, and a catenary is not possible for H 6= 0, hence we must have a nodary.
On the other hand, suppose that H and c have different signs. From the definition
of c it is clear that φ = π/2 cannot be on the profile. The only possibility in this
case is an undulary (of which a circular cylinder is a special case). �

Lemma 2.3. Suppose that we have a rotationally symmetric bridge6 with a convex
profile contacting a plane as in Figure 2. Suppose that we replace the plane 0o with
a sphere 0n as in the figure. If 6 is a portion of an unduloid, then ρn > ρo, and
if 6 is a portion of a nodoid, then ρn < ρo. In particular, if we take a convex
bridge between parallel planes and replace the planes by spheres, both values of
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ρ in (1–6) will increase if 6 is a portion of an unduloid, and decrease if 6 is a
portion of a nodoid.

Proof. As noted before, the sign of the change of ρ is the same as the sign of
κ6 + (sin γo)/y0. But this last quantity will be equal to

dφ
ds

+
cosφo

y0
= 2

(
cosφo

y0
+ H

)
=

2
y2

0

(
y0 cosφo + H y2

0
)
,

where φo is the inclination angle of the profile at the right endpoint, so φo =π/2−

γo. Thus

κ6 +
sin γo

y0
= 2

c
y2

0
,

where c has the same meaning as in Lemma 2.2. From the last equation in (2–2),
it is clear that for a convex profile we have H < 0, so c > 0 for an undulary and
c < 0 for a nodary. �

Theorem. Suppose that 6 is a rotationally symmetric bridge between spheres,
whose profile is given as a solution to (2–2), and that dφ/ds < 0 and dx/ds > 0
on the bridge profile including the endpoints. If 6 is a section of a nodoid, it is
unstable. If 6 is a section of an unduloid or a sphere, it is stable, and is in fact a
local constrained energy minimum. (We do not assume that the spheres have equal
radius or that the contact angles are equal.)

Proof. It is known that for bridges between parallel planes, a convex bridge is
a constrained local energy minimum modulo translations in directions parallel to
the planes [Vogel 2002; [1989]]. In the proof in [Vogel 2002], we considered the
quadratic form

Mo(φ, φ)=

∫∫
6

|∇φ|
2
− |S|

2φ2 d6+

∮
σ1

ρo,1φ
2 dσ +

∮
σ2

ρo,2φ
2 dσ.

We write ρo,i for the old value of ρi as in Lemma 2.1. It was shown that this is
strongly positive (i.e., that there is an ε > 0 so that Mo(φ, φ)≥ ε ‖φ‖

2, where ‖·‖ is
the H 1(6) norm) on the subspace of 1⊥ of φ’s which are also orthogonal in H 1(6)

to infinitesimal translations parallel to the fixed planes. This strong positivity leads
directly to the statement about energy minimality. However, if µ corresponds to a
translation parallel to the fixed planes, we must have Mo(µ,µ)= 0, since M is the
second Fréchet derivative of energy, and energy is unchanged by translations. In
fact, the eigenvalue problem (1–4) will have a single negative eigenvalue, 0 as an
eigenvalue of multiplicity two, and all other eigenvalues positive. Using the same
notation as in [Vogel 2002], we let µ1 and µ2 span the subspace of infinitesimal
translations parallel to the fixed planes. With the parametrization of 6 given in
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Section 5 of that paper, we have

µ1(u, v)=
cos v√

1 + ( f ′)2
and µ2(u, v)=

sin v√
1 + ( f ′)2

(the profile being given as the graph of r = f (u)). These functions also span the
kernel of the eigenvalue problem (1–4).

If the corresponding new values ρn,i satisfy ρn,1<ρo,1 and ρn,2<ρo,2, the bridge
is unstable for the new configuration of fixed surfaces, and hence not a constrained
local energy minimum. The reason is simple: we must have Mn(φ, φ) <Mo(φ, φ)

for any φ which is nonzero on a set of positive measure on the boundary of 6.
In particular, Mn(µ1, µ1) < 0. But translations in the original configuration also
conserve volume, so

∫∫
6
µ1 d6 = 0, i.e., µ1 ∈ 1⊥. The second variation of energy

is negative for this infinitesimally volume-conserving perturbation, so we have in-
stability in the case that ρn,i <ρo,i . From Lemma 2.3, we therefore have instability
when the bridge is a portion of a nodoid.

If ρn,i > ρo,i , so the bridge is a portion of an unduloid, we expect the new
configuration to be more stable in some sense than the old one. In fact, we will
see that in this case Mn is strongly positive on all of 1⊥. For suppose that this is
not the case. We certainly know that Mn is nonnegative on this space, since Mo

is nonnegative on this space and Mn(φ, φ) ≥ Mo(φ, φ). So, if Mn is not strongly
positive on 1⊥, there must exist a sequence {φk} in 1⊥ for which ‖φk‖ = 1 and
limk→∞ Mn(φk, φk)= 0.

Projecting this sequence onto the span of µ1 and µ2, we write

φk = akµ1 + bkµ2 +φ∗

k .

Note that since
∫∫
6
µi d6 = 0, we have φ∗

k ∈ 1⊥. By going to a subsequence, we
may assume that {ak} and {bk} converge to a and b, respectively. Now,

Mn (φk, φk)

≥ Mo (φk, φk)

= Mo
(
akµ1 + bkµ2 +φ∗

k , akµ1 + bkµ2 +φ∗

k
)

= Mo (akµ1 + bkµ2, akµ1 + bkµ2)+ 2Mo
(
akµ1 + bkµ2, φ

∗

k
)
+ Mo

(
φ∗

k , φ
∗

k
)

= Mo
(
φ∗

k , φ
∗

k
)
≥ ε

∥∥φ∗

k

∥∥2
,

where the terms Mo (akµ1 + bkµ2, akµ1 + bkµ2) and Mo
(
akµ1 + bkµ2, φ

∗

k

)
van-

ish by (1–5) and the fact that L(µi )= 0 on 6, b(µi )= 0 on σ .
From the inequality above and because Mn(φk, φk) converges to 0, we conclude

that limk→∞{φ∗

k } = 0 in H 1(6); thus

lim
k→∞

φk = aµ1 + bµ2
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in H 1(6). An immediate consequence is that a and b cannot both be zero, since all
of the φk’s have length 1 in H 1(6). This leads to a contradiction. Since Mn(φ, φ)

is continuous on H 1(6),

Mn(aµ1 + bµ2, aµ1 + bµ2)= lim
k→∞

Mn(φk, φk)= 0.

However, aµ1 +bµ2 is not identically zero on ∂6. The reason is that it represents
the component normal to 6 of a nontrivial translation parallel to the original fixed
planes. Therefore

Mn(aµ1 + bµ2, aµ1 + bµ2) >Mo(aµ1 + bµ2, aµ1 + bµ2)= 0,

a contradiction. Thus Mn is strongly positive on all of 1⊥, proving that a bridge
between spheres which is convex and part of an unduloid must be a local energy
minimum. �

Note 1. No claim about energy minimality was made in the case that the bridge is
a section of a sphere. In this case, the spectrum of the eigenvalue problem (1–4)
remains the same as in the problem of a bridge between parallel planes, so that
0 is an eigenvalue of multiplicity two. What is happening at the symmetrically
placed spherical bridge is that there is a “wine cup” bifurcation. By shooting argu-
ments, one can show that this spherical bridge is embedded in a family of Delaunay
surfaces which form bridges between the balls. But by simple trigonometric argu-
ments, one can also construct a family of asymmetrically placed spherical bridges,
as in Figure 3. For every volume larger than the volume V0 of the symmetrically
placed spherical bridge, there is a one-parameter family of asymmetric spherical
bridges, all of which rotate into each other. As the volume decreases to V0, these
all collapse to the symmetrically placed spherical bridge, so that the symmetrically
placed spherical bridge is a limiting member of this family as well.

B1 B2

6

Figure 3. Asymmetrically placed spherical bridge.
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Note 2. A cylindrical bridge between spheres is a limiting case of unduloids.
Conditions under which the cylinder is a local energy minimum are derived in
[Vogel 1999].

References

[Basa et al. 1994] P. Basa, J. C. Schön, and P. Salamon, “The use of Delaunay curves for the wetting
of axisymmetric bodies”, Quart. Appl. Math. 52:1 (1994), 1–22. MR 95c:53007 Zbl 0824.53007

[Finn 1986] R. Finn, Equilibrium capillary surfaces, Grundlehren der Math. Wiss. 284, Springer,
New York, 1986. MR 88f:49001 Zbl 0583.35002

[Finn and Vogel 1992] R. Finn and T. I. Vogel, “On the volume infimum for liquid bridges”, Z. Anal.
Anwendungen 11:1 (1992), 3–23. MR 95d:76021 Zbl 0760.76015

[Grosse-Brauckmann 1996] K. Grosse-Brauckmann, “Stable constant mean curvature surfaces min-
imize area”, Pacific J. Math. 175:2 (1996), 527–534. MR 98e:53007 Zbl 0878.49026

[Kenmotsu 2003] K. Kenmotsu, Surfaces with constant mean curvature, Translations of Mathemat-
ical Monographs 221, American Mathematical Society, Providence, RI, 2003. MR 2004m:53014
Zbl 1042.53001

[Oprea 2000] J. Oprea, The mathematics of soap films: explorations with Maple, Student Math-
ematical Library 10, American Mathematical Society, Providence, RI, 2000. MR 2002c:53013
Zbl 0972.53003

[Vogel 1987] T. I. Vogel, “Stability of a liquid drop trapped between two parallel planes”, SIAM J.
Appl. Math. 47:3 (1987), 516–525. MR 88e:53010 Zbl 0627.53004

[Vogel 1989] T. I. Vogel, “Stability of a liquid drop trapped between two parallel planes, II: General
contact angles”, SIAM J. Appl. Math. 49:4 (1989), 1009–1028. MR 90k:53013 Zbl 0691.53007

[Vogel 1999] T. I. Vogel, “Non-linear stability of a certain capillary surface”, Dynam. Contin. Dis-
crete Impuls. Systems 5:1-4 (1999), 1–15. MR 2000k:53009 Zbl 0959.53008

[Vogel 2000] T. I. Vogel, “Sufficient conditions for capillary surfaces to be energy minima”, Pacific
J. Math. 194:2 (2000), 469–489. MR 2001j:58023 Zbl 1021.58014

[Vogel 2002] T. I. Vogel, “Local energy minimality of capillary surfaces in the presence of symme-
try”, Pacific J. Math. 206:2 (2002), 487–509. MR 2003k:58018 Zbl 1050.58011

[Vogel 2005] T. I. Vogel, “Comments on radially symmetric liquid bridges with inflected profiles”,
Discrete Contin. Dynam. Systems Suppl. 2005 (2005), 862–867.

[Zhou 1997] L. Zhou, “On stability of a catenoidal liquid bridge”, Pacific J. Math. 178:1 (1997),
185–198. MR 98d:53015 Zbl 0868.76019

Received August 12, 2005. Revised September 19, 2005.

THOMAS I. VOGEL

DEPARTMENT OF MATHEMATICS

TEXAS A&M UNIVERSITY

COLLEGE STATION, TX 77843

tvogel@math.tamu.edu




