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We construct a covering of the spine of the Culler–Vogtmann outer space
Out(Fn) by complexes of ribbon graphs. By considering the equivariant
homology for the action of Out(Fn) on this covering, we construct a spectral
sequence converging to the homology of Out(Fn) that has its E1 terms given
by the homology of mapping class groups and their subgroups. This spectral
sequence can be seen as encoding all of the information of how the homology
of Out(Fn) is related to the homology of mapping class groups and their
subgroups

1. Introduction

Much is known about the cohomology of mapping class groups of surfaces. (All
surfaces considered in this work are assumed orientable.) Let 6 be a surface with
boundary, and let P0(6) be the group of isotopy classes, relative to the boundary,
of homeomorphisms of6 that fix the boundary pointwise. We call P0(6) the pure
mapping class group of 6. Harer [1985] proved that the k-th integral homology
group of P0(6) is independent of the genus and number of boundary components
of 6 if the genus of 6 is at least 3k. Later, Ivanov [1989] and Harer [1993]
improved these bounds, and Harer was able to find the exact location at which
the rational homology stabilizes. He also computed in [Harer 1986] the virtual
cohomological dimension (VCD) of P0(6) and showed that this group has no ra-
tional homology at its VCD. Madsen and Weiss [2002] have determined the entire
stable integral cohomology algebra of pure mapping class groups. In particular,
their result verifies the conjecture of Mumford that the stable rational cohomology
algebra is a polynomial algebra with a single generator in each even dimension.

For outer automorphism groups of free groups, much less is known. Culler and
Vogtmann [1986] have compute the VCD of Out(Fn) by considering the action
of this group on a contractible simplicial complex known as the spine of outer
space. Recently, Hatcher and Vogtmann [2004] have shown that the k-th integral
homology of Out(Fn) is independent of n if n ≥ 2k + 5, but the exact stability
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range remains unknown. Indeed, there are no nontrivial stable rational homology
or cohomology classes known for Out(Fn). For a good survey of current knowledge
about Out(Fn) and Aut(Fn), see [Vogtmann 2002].

Since the mapping class groups of surfaces appear as subgroups of Out(Fn), it is
natural to try to understand the homology of Out(Fn) in terms of the homology of
mapping class groups. This paper represents an attempt to clarify this relationship.
For a punctured surface, the mapping class group is simply the group of isotopy
classes of orientation preserving homeomorphisms of the surface. The group of all
isotopy classes of homeomorphisms of a punctured surface will be called the ex-
tended mapping class group of that surface, so that extended mapping class groups
contain orientation reversing homeomorphisms.

We construct a first quadrant spectral sequence that converges to H∗(Out(Fn)),
many of whose terms consist of the homology of mapping class groups. The spec-
tral sequence arises from a covering of the spine of outer space by a collection of
subcomplexes called ribbon graph subcomplexes. We prove that the nerve of this
covering is contractible. The spectral sequence mentioned above is the equivariant
homology spectral sequence of the action of Out(Fn) on this nerve.

All of the terms on the E1 page of this spectral sequence are given by the homol-
ogy simplex stabilizers. For a 0-simplex, the stabilizer is simply the extended map-
ping class group of a punctured surface 6, or equivalently the stabilizer of the set
conjugacy classes in Fn ∼=π16 that correspond to positively and negatively oriented
curves about the punctures of 6. For higher-dimensional simplices, stabilizers are
given by the generalized stabilizers AU,G of m-tuples of conjugacy classes, which
are studied in [McCool 1975]. (These groups are finite-index subgroups of the
ordinary stabilizers of certain sets of conjugacy classes in Fn .) We prove:

Theorem. For any Out(Fn)-module M there is a spectral sequence of the form

E1
pq =

⊕
σ∈1p

Hq(Gσ ; Mσ )⇒ Hp+q(Out(Fn); M),

where 10 is the set of homeomorphism classes of punctured orientable surfaces
with fundamental group Fn and where for a vertex v ∈10 corresponding to surface
6, the stabilizer Gv is the extended mapping class group MCG±(6). Moreover,
for p > 0, each Gσ is a generalized stabilizer of the form AUσ ,Hσ .

The rest of this paper is organized as follows. In Sections 2 and 3 we review
the definitions of outer space, the spine of outer space, ribbon graphs and some
related objects. In Section 4, we construct a covering of the spine of outer space by
subcomplexes of ribbon graphs. Section 5 is devoted to the proof of the fact that the
nerve of this covering is contractible. In Section 6 we determine simplex stabilizers
for the action of Out(Fn) on the nerve. The analysis of the equivariant homology
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spectral sequence for this action appears in final two sections where we prove the
above theorem and use Harer’s stability theorems to find rough upper bounds on
the dimensions of some portions of the E∞ page of the spectral sequence. These
bounds limit the possible contribution that the mapping class subgroups of Out(Fn)

can make to the homology of Out(Fn).

2. Outer space

For convenience and to set notation, we briefly review the construction in [Culler
and Vogtmann 1986] of outer space and its spine. A graph is a connected, one-
dimensional CW-complex. We will consider only finite graphs with all vertices
having valence at least 3. A subforest of a graph 0 is a subgraph of 0 that contains
no circuits; a forest is a disjoint union of trees.

Fix an integer n ≥ 2. Denote by R0 the standard n-petal rose; R0 has one
vertex and n edges. Fix an identification π1(R0)= Fn . A marking on a graph is a
homotopy equivalence, g : R0 → 0. We define an equivalence relation on the set
of markings by setting (01, g1)∼ (02, g2) if

there is a graph isomorphism h : 01 → 02 such that g2 ' h ◦ g1, that is, such
that the diagram

(1)

01

R0

g1 -

02

h

?g2
-

commutes up to free homotopy. An equivalence class of markings is called a
marked graph and can be denoted by (0, g). The marking g identifies π1(0) with
Fn up to composition with an inner automorphism.

The marked graph (0, g) is usually represented by a labeled graph as follows.
Fix an identification of π1(R0) with Fn . Choose a spanning tree T in 0 and a
homotopy inverse to g that collapses T to the vertex of R0 and maps each edge of
0 − T to a reduced edge path in R0. A directed edge Ee in the complement of T
corresponds, via this homotopy equivalence, to an of element in Fn . Label e with
a direction and the corresponding element of Fn . Note that the same marked graph
can be represented by many different labeled graphs, depending on the choice of
T and the particular representative of (0, g). For a marked rose, the spanning tree
must consist of the single vertex, so we get a label for each directed edge. The set
of labels on a marked rose is a basis of Fn , which is determined up to conjugacy.
Two labeled roses correspond to equivalent marked roses if and only if their edges
are labeled by conjugate bases of Fn .
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If 8 is a forest in the marked graph (0, g), then collapsing each component of
8 to a point produces another marked graph, denoted by (0/8, q ◦ g), where q is
the quotient map collapsing each component of 8 to a point. Passing from (0, g)
to (0/8, q ◦ g) is called a forest collapse. There is a partial order on the set of
marked graphs with fundamental group Fn defined by (01, g1) ≤ (02, g2) if there
is a forest collapse taking (02, g2) to (01, g1). The geometric realization of the
poset of marked graphs is the spine of outer space and is denoted by Kn .

The group Out(Fn) acts on Kn by changing the markings of the underlying
graphs. Explicitly, for ψ ∈ Out(Fn),

(2) (0, g) ·ψ := (0, g ◦ |ψ |),

where |ψ | : R0 → R0 is a homotopy equivalence inducing an automorphism of
Fn =π1(R0) that represents the outer automorphism class ψ . Culler and Vogtmann
observe that this action is cocompact and that vertex stabilizers are finite.

Culler and Vogtmann also define a larger space, called outer space, consisting of
metric marked graphs. This space has the disadvantages of not being a simplicial
complex and the Out(Fn) action not being cocompact. The complex Kn can be
constructed as a simplicial spine onto which of outer space deformation retracts.

3. Ribbon graphs

There are similar constructions for mapping class groups that use marked ribbon
graphs rather than ordinary marked graphs. A ribbon graph is a graph 0 together
with, at each vertex v, a cyclic ordering of the set h(v) of half-edges incident to v.
The collection of cyclic orderings at the vertices is called a ribbon structure for 0,
and is denoted by O. The term “ribbon graph” is used because one can construct a
bounded surface from a ribbon graph (0,O) by fattening its edges to ribbons. We
give a formal construction of this surface after Definition 3.1, but informally, the
surface is constructed from (0,O) by replacing each edge by a ribbon and gluing
the ribbons together at their ends according to the cyclic order of the corresponding
half-edges. The gluing is done in such a way as to produce an oriented surface.
Figure 1 shows this process for two different ribbon structures on a rose with 2
edges. In these figures, ribbon structures are specified by the given embeddings of
a neighborhood of the vertices into the plane. The ribbon graph (0,O1) produces
a pair of pants while (0,O2) produces a torus with one boundary component.

The boundary curves of the surface produced from (0,O) correspond to reduced
edge paths in 0 that follow the cyclic ordering at the vertices in the sense of the
following definition. Following [Mulase and Penkava 1998], we view a directed
edge Ee as an ordering (e+, e−) of the half-edges e+ and e− comprising e.
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→

→

≈

≈

(0,O1)

(0,O2)

Figure 1. Fattenings of ribbon graphs.

Definition 3.1. A boundary cycle in the ribbon graph (0,O) is a directed reduced
edge cycle,

(Ee1, Ee2, . . . , Eel−1, Eel = Ee1)

such that for each i the half-edges e+

i and e−

i+1 are incident to the same vertex, and
in the cyclic ordering at that vertex, e−

i+1 directly follows e+

i .

For our purposes, it will be more convenient to work with punctured surfaces,
so we now give a precise construction of a punctured surface |0,O| from a ribbon
graph (0,O). First note that each edge of 0 is traversed exactly once in each
direction by the set of boundary cycles of (0,O). Construct a space |0,O| by
gluing a once punctured disk to 0 along each boundary cycle γ of (0,O). By
verifying that a small neighborhood of each vertex in |0,O| is indeed a disk, one
can verify that |0,O| is a surface that deformation retracts onto 0. One can also
verify that |0,O| is orientable and we orient it such that a small positively oriented
simple closed curve around a vertex v of 0 intersects the half-edges in h(v) in the
cyclic order determined by O.

If 0 is marked by the homotopy equivalence g : R0 → 0, then the composition
of g with the inclusion i : 0 ↪→ |(0,O)| is a homotopy equivalence that identifies
π1(6) with Fn up to inner automorphism, just as in the case of marked graphs.
This gives the notion of a homotopy marked surface.

Definition 3.2. A homotopy marked surface is an equivalence class of pairs (6, s),
where 6 is a punctured, orientable surface with π1(6) ∼= Fn and s : R0 → 6 is a
homotopy equivalence. The equivalence relation on pairs is given by (61, s1) ∼

(62, s2) if there is an orientation preserving homeomorphism h : 61 → 62 with
h ◦ s1 ' s2.

Recall that we have fixed an integer n ≥ 2. Often we drop the word “homotopy”
and simply use “marked surface” for a homotopy marked surface. Unless otherwise
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stated, marked surfaces will always be punctured surfaces without boundary and
with fundamental group Fn . In Section 4, the equivalence relation defined by home-
omorphisms that do not necessarily preserve orientation will be useful. We will
denote this equivalence relation by ∼±, and use brackets to denote its equivalence
classes: [6, s]. We say that the marked graph (0, g) can be drawn in the marked
surface (6, s) is there is a ribbon structure O on 0 such that |(0, g,O)| ∼ (6, s).
In this case, there is an embedding i : 0 ↪→6 such that s ' i ◦ g.

Definition 3.3. The ribbon graph complex for the marked surface (6, s) is the
subcomplex of Kn spanned by graphs that can be drawn in (6, s). This complex
is denoted by R(6,s).

We will often identify a marked graph or ribbon graph with the corresponding
vertex of Kn or R(6,s). Thus for example, if ρ is a marked rose in R(6,s) then
lnkR(6,s)(ρ) will be the link in R(6,s) of the vertex corresponding to ρ.

The ribbon graph complex R(6,s) and related complexes have been important
tools in the study of mapping class groups surfaces. In particular, R(6,s) is a
subcomplex of the first barycentric subdivision of the arc complex that Harer uses
compute the VCD of the pure mapping class group of a surface with boundary
[Harer 1986]. Also, for a punctured surface 6, Bowditch and Epstein [1988] and
Penner [1987] use arc systems on 6 to give an open cell decomposition of a space
they call the decorated Teichmüller space of 6. By taking the dual graph of an
arc system in 6, this decomposition may be interpreted in terms of metric ribbon
graphs. In the same way that Kn is a simplicial spine of outer space, R6 is a
simplicial spine of the decorated Teichmüller space of 6.

4. The ribbon cover of Kn

The ribbon subcomplex of Kn associated to a marked surface does not depend on
the surface’s orientation. This is because if the ribbon structure O draws (0, g) in
(6, s), then Oop draws (0, g) in (6, s)op, where Oop is the ribbon structure obtained
by reversing all cyclic ordering of O and (6, s)op the marked surface obtained by
reversing the orientation of (6, s). Therefore there is a well-defined subcomplex
R[6,s] of Kn .

Proposition 4.1. Kn is covered by its ribbon graph subcomplexes.

Proof. Recall that Kn is the geometric realization of the poset of marked graphs
with fundamental group Fn , so the vertices of Kn are partially ordered. For a
vertex v of Kn , let st(v) be the star of v and let st+(v) be the subcomplex of st(v)
spanned by v together with vertices of st(v) that are greater than v in the partial
order. Similarly let st−(v) be the subcomplex of st(v) spanned by v and vertices
less than v. Thus if v corresponds to the marked graph (0, g), then st+(v) consists
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of the vertices of Kn corresponding to graphs that may be collapsed to (0, g) and
st−(v) consists of vertices corresponding to graphs to which (0, g) collapses.

Suppose that v ∈ R[6,s] corresponds to the marked graph (0, g). Then 0 has
a ribbon structure O that draws (0, g) in (6, s). If e is any edge in 0 that is not
a loop, the marked graph (0/e, q ◦ g) inherits a ribbon structure O/e from O that
draws (0/e, q ◦ g) in (6, s). Therefore st−(v)⊂ R[6,s].

To see that every simplex of Kn belongs to some ribbon graph subcomplex, let
σ be a simplex of Kn . If w is the vertex of σ that is the greatest in the partial
ordering of the vertices, then σ is contained in the complex st−(w). Suppose that
w corresponds to the marked graph (00, g0) Choose any ribbon structure O0 on 00

and set (6, s) := |(00, g0,O0)|. Then w ∈ R[6,s] so that st−(w) is contained in
R[6,s]. Since σ has w as its greatest vertex, σ is a simplex of st−(w)⊆ R[6,s]. �

We begin our study of the nerve of this cover with definitions and lemmas.

Definition 4.2. Suppose that the homotopy-marked, oriented surface (6, s) has k
punctures p1, . . . , pk . Let γ j be a simple closed curve in 6 that disconnects 6 by
cutting off a disk punctured at p j . By virtue of the marking and orientation of 6,
the curve γ j corresponds to a conjugacy class in Fn . The set of such conjugacy
classes is called the set of boundary classes of6 and is denoted by W(6,s) or simply
W6 . Similarly, the set of conjugacy classes in Fn represented by the boundary
cycles of the marked ribbon graph (0, g,O) is called the set of boundary classes
of (0, g,O).

The boundary classes carry a lot of information about the surface. For exam-
ple, if (6, s) = |(0, g,O)| then the boundary classes of (6, s) and the boundary
classes of (0, g,O) are the same. Another important observation about the bound-
ary classes is that if two (necessarily homeomorphic) marked surfaces have the
same boundary classes, they are equivalent marked surfaces. This is proved by
using a theorem of Zieschang [1980, Theorem 5.15.3] that states that an element
of Out(π16) is induced by a mapping class of 6 if and only if it stabilizes the
boundary classes of 6. The boundary classes are also used to prove the following:

Lemma 4.3. If the marked graph (0, g) can be drawn in (6, s), then (0, g) has
exactly one ribbon structure giving (6, s).

Proof. Since 0 can be drawn in (6, s), there is a ribbon structure O on (0, g)
with |(0, g,O)| = (6, s). Suppose that O′ is a different ribbon structure on 0. We
may choose a vertex v and half-edges e+, e−

1 and e−

2 of 0 with e−

1 6= e−

2 , with
e−

1 following e+ in the cyclic ordering O but with e−

2 following e+ in the cyclic
ordering O′. This means that the sequence EeEe1 appears in the boundary cycles of
(0,O) while the sequence EeEe2 appears in the boundary classes of (0,O′). Since
each directed edge of 0 appears exactly once in the set of boundary cycles for any
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given ribbon structure, the set of boundary cycles of (0, g,O′) must differ from
those of (0, g,O). Therefore the set of boundary classes of (0, g,O′) differ from
those of (0, g,O). Hence |(0, g,O′)| is different from (6, s), because equivalent
marked surfaces have the same boundary classes. �

Each of the two orientations of 6 gives a unique ribbon structure to (0, g).
These two ribbon structures are opposite of each other. We now prove that (6, s)
and (61, s1) give the same ribbon graph subcomplexes of Kn if and only if [6, s]=
[61, s1]. The main step is this:

Lemma 4.4. Let (6, s) be a marked surface and let R = R[6,s] be the corre-
sponding ribbon graph subcomplex of Kn . The ribbon structure given by (6, s) to
a marked rose ρ in R can be reconstructed, up to reversal of the cyclic order, by
the (nonribbon) marked graphs in lnkR(ρ).

Proof. Choose a direction for each edge in ρ. The marking of ρ determines a
labeling of the directed edges by a basis X = {a1, a2, . . . , an} of Fn . The basis X
and this labeling are determined up to composition with an inner automorphism
of Fn .

Consider the marked graphs in lnkKn (ρ) with exactly two vertices, one of which
is trivalent. These graphs are constructed from ρ as follows. Let e+ and f + be
any two half-edges of ρ. Construct a new marked graph ρ(e+, f +) by deleting the
vertex of ρ and replacing it with two new vertices v0 and v1 joined by a new edge
ẽ. Attach the half-edges e+ and f + to v0 and attach the rest of the half-edges of
ρ to v1. Mark ρ(e+, f +) so that collapsing ẽ to a point gives the original marking
on ρ.

By Lemma 4.3, ρ has exactly one ribbon structure giving (6, s). This means
that if we allow for orientation reversing homeomorphisms of the surface, ρ has
two ribbon structures giving [6, s], and these ribbon structures are opposite of each
other. A marked graph of the form ρ(e+, f +) lies in lnkR(ρ) if and only if e+

and f + are adjacent in these ribbon structures. Thus, given a half-edge a+

i in ρ,
exactly two graphs of the form ρ(a+

i , aε j
j ) and ρ(a+

i , aεk
k ) will lie in lnkR(ρ) and

they will be the graphs for which a+

i is adjacent to the half-edges aε j
j and aεk

k in
the ribbon structure on ρ. Therefore, for each i , the nonribbon graphs in lnkR(ρ)

determine the half-edges adjacent to a+

i and a−

i in the ribbon structure on ρ. There
are only two cyclic orderings of the half-edges that satisfy these adjacency data,
and they are opposites of each other. Example 4.5 works this out for a ribbon rose
with n = 3. �

Example 4.5. Figure 2 shows the graphs of the form ρ(e+, f +) in the link of a
marked ribbon rose in R6 . The fact that graphs (1) and (6) have the half-edges
a+ and c+, respectively, adjacent to the edge a− implies that the half-edges in
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a

ρ
b c

a

b c

(1)

a b

c

(2)

b

c a

(3)

b c

a

(4)

c

a b

(5)

c a

b

(6)

Figure 2. Some graphs in lnk+

R6
(ρ).

ρ adjacent to a− are a+ and c+. Similarly, the half-edges adjacent to any other
half-edge can be determined by some pair of the graphs in Figure 2.

Proposition 4.6. R[61,s1] = R[62,s2] if and only if [61, s1] = [62, s2].

Proof. First suppose that (61, s1) and (62, s2) are equivalent via the (possibly
orientation-reversing) homeomorphism h :61 →62. Then h can be used to draw
in (62, s2) any graph that can be drawn in (61, s1) and h−1 can be used to draw
in (61, s1) any graph that can be drawn in (62, s2), so R[61,s1] = R[62,s2].

Now suppose that R[61,s1] =R[62,s2]. Set R :=R[61,s1] =R[62,s2]. Fix a marked
rose ρ ∈R; it inherits a ribbon structure from R[61,s1] giving (61, s1), and a ribbon
structure from R[62,s2] giving (62, s2). By Lemma 4.4, these structures are deter-
mined up to reversal by the nonribbon graphs in lnkR[61,s1]

(ρ) and lnkR[62,s2]
(ρ),

respectively. But R[61,s1] = R[62,s2] ,so lnkR[61,s1]
(ρ) = lnkR[62,s2]

(ρ). There-
fore the ribbon structures must coincide or be opposites of each other. In the
first case, (61, s1) ∼ (62, s2), and in the second, (61, s1) ∼ (62, s2)

op. Thus
[61, s1] = [62, s2]. �
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This proposition gives a convenient description of the covering of Kn by its
ribbon graph subcomplexes. The covering is locally finite because each different
homotopy marked surface that contains a specific graph endows that graph with a
different ribbon structure. A graph has only finitely many different ribbon struc-
tures so a given marked graph can be drawn in only finitely many marked surfaces
and hence lies in only finitely many different ribbon graph subcomplexes.

Let Nn denote the nerve of the ribbon cover of Kn . That is, Nn is the sim-
plicial complex containing a k-simplex 〈R[60,s0], . . . ,R[6k ,sk ]〉 for every collec-
tion {R[60,s0], . . . ,R[6k ,sk ]} of ribbon graph complexes such that the intersection⋂k

i=0 R[6i ,si ] is nonempty. By Proposition 4.6, the vertex set of Nn is the set of
unoriented equivalence classes, [6, s].

The action of Out(Fn) on Kn permutes the ribbon graph subcomplexes because
if (0, g) can be drawn in (6, s), then (0, g) · ψ = (0, g ◦ |ψ |) can be drawn in
(6, s ◦ |ψ |). Therefore Out(Fn) maps intersections of ribbon graph subcomplexes
to intersections of ribbon graph subcomplexes, so it acts on Nn . The equivariant
homology of this action provides the spectral sequence, which we will study, that
relates the homology of Out(Fn) to that of mapping class groups.

Although it will not be necessary for the development here, we remark briefly
on the compactness properties of Nn and the Out(Fn) action. In general (n ≥ 3),
all vertices of Nn have infinite valence:

Proposition 4.7. For n ≥ 3, the ribbon complex for any homotopy marked surface
intersects the ribbon complexes of infinitely many other homotopy marked surfaces.

Proof. We first show that the ribbon graph subcomplex of a marked surface [6, s]
with fundamental group of rank at least 3, contains infinitely many different marked
roses. Choose a marked rose (ρ, r) ∈ R[6,s] and an automorphism ψ ∈ Out(Fn)

representing a Dehn twist about a nonboundary curve in6. Since vertex stabilizers
in the spine of outer space are finite and ψ has infinite order, there are infinitely
many different equivalence classes of marked roses of the form ψn

· (ρ, r). All of
these marked roses lie in R[6,s].

Recall from Section 2 that a marking of a rose is equivalent to a choice of
conjugacy class of basis labeling its directed edges. If ρ is a marked rose with
edges labeled by the basis X = {a1, . . . , an}, then ρ can be drawn in a marked
(n + 1)-times punctures sphere 61 with boundary classes

W61 = {a1, . . . , an, a−1
n , · · · , a−1

1 }.

By the discussion following Definition 4.2, two marked spheres with different
boundary classes cannot be equivalent. Therefore the infinitely many different
marked roses in R[6,s] give rise to infinitely many different marked spheres all of
whose ribbon complexes intersect R[6,s]. �
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Proposition 4.8. Out(Fn) acts cocompactly on Nn .

Proof. Fix a marked rose ρ. For each p-simplex 〈60, . . . , 6p〉, the subcomplex⋂p
i=0 R6i contains a rose. This rose may be taken to ρ by an element of Out(Fn),

so each orbit of p-simplex has a representative all of whose surfaces contain ρ.
Since a marked rose can be drawn in only finitely many different marked surfaces,
there are only finitely many orbits of p-simplices. �

5. Contractibility of Nn

To show that Nn is contractible, we will need the following result from Čech theory.

Lemma 5.1 [Hatcher 2002, Section 4.G]. Let U be a cover of the CW-complex
X by a family of subcomplexes. If every nonempty intersection of finitely many
complexes in U is contractible, then the nerve of the cover is homotopy equivalent
to X.

We will apply Lemma 5.1 to the covering of Kn by ribbon graph complexes.
Thus the remainder of this section is devoted to the proof of,

Proposition 5.2. For any finite collection {R60, . . . ,R6k } of ribbon graph sub-
complexes of Kn , the subcomplex

k⋂
i=0

R6i

of Kn is either empty or contractible.

The main tool in analyzing these intersections is the Kmin subcomplexes of Kn ,
which are used by Culler and Vogtmann [1986] to show that Kn is contractible.
The definition of the Kmin complexes involves the following norm defined for each
finite set of conjugacy classes of Fn . Let C denote the set of all conjugacy classes
of Fn . For a marked rose ρ, an element w ∈ C can be represented by a unique
reduced edge path in ρ.

Definition 5.3. Let W be a finite set of conjugacy classes of Fn and ρ a marked
rose in Kn . The norm ‖ρ‖W of ρ with respect to W is the sum of the number of
edges in each reduced edge path in ρ that corresponds to an element of W .

If X is a basis labeling the edges of ρ, then ‖ρ‖W is sometimes written ‖X‖W .
The Kmin subcomplex for W is defined as the union of the stars of the roses ρ
for which ‖ρ‖W is minimal over all marked roses. In [Vogtmann 2002] these
complexes are denoted KW , and we will follow that notation here. To prove that
the entire complex Kn is contractible, Culler and Vogtmann prove that KW ' Kn

for any finite set W . They then find a set of conjugacy classes such that KW is
the star of a single marked rose and therefore contractible. Putting these two facts
together we have:
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Lemma 5.4 [Culler and Vogtmann 1986]. KW is contractible for any finite set
W ⊆ C.

Proposition 5.2 is proved by finding a deformation retraction from a suitable
KW to

⋂
R6i . We begin by studying of the behavior of the norm with respect

to Whitehead automorphisms. For us, the traditional Whitehead automorphisms
are less convenient to work with than a slightly modified version, given in [Hoare
1979]. This is because the effect of an automorphism on the star graph of a set of
conjugacy classes (defined below), is easier to describe using this definition rather
than the classical definition of Whitehead automorphism.

Definition 5.5. For a basis X and a subset A ⊆ X ∪ X−1 for which there is a letter
a ∈ X ∪ X−1 such that a ∈ A but a−1 /∈ A, the automorphism mapping a to a−1

whose action on X ∪ X−1
− {a, a−1

} is given by

(3)


x 7→ axa−1 if x ∈ A and x−1

∈ A;

x 7→ xa−1 if x ∈ A and x−1 /∈ A;

x 7→ ax if x /∈ A and x−1
∈ A;

x 7→ x if x /∈ A and x−1 /∈ A

will be called a Whitehead automorphism and will be denoted by (A, a).

Warning. This definition differs from the classical Whitehead automorphism in
that the latter fix a. This is the only difference, but it allows us to prove the next
result.

Lemma 5.6. The totality of Whitehead automorphisms obtained as in the preceding
definition generate the group Aut(Fn).

Proof. The Neilson automorphisms generate Aut(Fn) [Magnus et al. 1966, Theo-
rem 3.2]. It is straightforward to write any Neilson automorphism as a product of
the Whitehead automorphisms of Definition 5.5. �

Another important fact about Whitehead automorphisms of this type is the peak
reduction lemma (for Whitehead automorphisms as defined here).

Peak reduction lemma [Hoare 1979, Lemma 3]. Fix a basis X of Fn and finite set
W ⊆ C. If there is an automorphism ψ ∈ Aut(Fn) such that ‖X‖W ≥ ‖X‖ψW then
ψ can be written as a product ψ = τ1τ2 · · · τk of Whitehead automorphisms such
that

(4) ‖X‖W > ‖X‖τk W > ‖X‖τk−1τk W > · · ·> ‖X‖τlτl+1···τk W

= ‖X‖τl−1τlτl+1···τk W = · · · = ‖X‖ψW .
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a � b

b−1

�

a−1

�

c−1 -

-

c

-

Figure 3. SW (X) for X = {a, b, c},W = {aba−1b−1c, c−1
}.

The star graph of W with respect to X will allow us to study the behavior of
‖ · ‖W with respect to Whitehead automorphisms. Recall that star graph of W ⊆ C

with respect to the basis X is the graph with vertex set X ∪ X−1 and with a directed
edge from x to y−1 for every time the subword xy appears among the conjugacy
classes in W , viewed as cyclic words in the alphabet X ∪ X−1; see Figure 3. The
star graph of W with respect to X will be denoted by SW (X), or by SW (ρ) if we
are thinking of X as a set of labels on the marked rose ρ.

To prove the peak reduction lemma, Hoare describes a three-step process for
constructing SτW (X) from SW (X) for a Whitehead automorphism τ . If τ = (A, a),
the steps are:

(1) Add two new vertices α, ᾱ. Replace every edge going from a vertex in A to
a vertex in A′ (the complement of A) by a pair of edges, one from the vertex
in A to α and another from ᾱ to the vertex in A′. Replace every edge going
from a vertex in A′ to a vertex in A by a pair of edges, one from the vertex in
A′ to ᾱ and another from α to the vertex in A.

(2) Switch the letter a with α, and a−1 with ᾱ.

(3) Do the reverse of (1), reconnecting edges incident to α and ᾱ according to the
cyclic words in W that produced them.

Because ‖X‖W is the number of edges in SW (X), this process gives the follow-
ing procedure for calculating the effect of a Whitehead automorphism on the norm.
Consider the Whitehead automorphism τ = (A, a). Draw a circle C in the plane
and immerse SW (X) in the plane in such a way that each vertex of A lies inside the
circle, each vertex of A′ lies outside the circle, no pair of edges of SW (X) intersect
each other at a point of C , and #(SW (X)∩C) is minimal over all such immersions.
Then

(5) ‖X‖W − ‖X‖τW = val(a)− #(SW (X)∩ C),

where val(a) is the valence of the vertex of SW (X) corresponding to a.
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When W = W6 is the set of boundary classes of a marked surface, we will be
more concerned with ‖X‖W −‖τ−1 X‖W than with ‖X‖W −‖X‖τW , because if X
is the set of labels on the edges of a marked rose ρ, then τ−1 X is the set of labels
on ρ · τ . (5) will suffice because

‖τ−1 X‖W = ‖X‖τW ;

the latter equality can be seen from the observation that if τ(a)= x1x2 · · · xk is an
expression for τ(a) in terms of the basis X , then a = τ−1(x1)τ

−1(x2) · · · τ
−1(xk)

is an expression for a in terms of the basis τ−1 X . The interpretation of this obser-
vation in terms of star graphs is

(6) SW (τ
−1 X)≈ SτW (X).

Lemma 5.7. Let W be a finite set of conjugacy classes of Fn . Suppose that for
some basis X , the graph SW (X) is a cycle. Then ‖X‖W is minimal over all bases
of Fn , and if Y is another basis with ‖Y‖W = ‖X‖W , then SW (Y ) is also a cycle.

Proof. Since SW (X) is a cycle, any circle separating some generator from its inverse
must intersect at least two edges of the graph. Since all vertices have valence 2,
Equations (5) and (6) imply that no Whitehead automorphism can take X to a
basis that reduces the sum of the lengths of the minimal representatives for the
classes in W . But if there is any automorphism reducing the sum of the lengths of
the conjugacy classes in W , the peak reduction lemma implies that a Whitehead
automorphism reduces the length. Thus ‖X‖W must be minimal over all bases
for Fn .

Now suppose that Y is another basis with ‖Y‖W = ‖X‖W . Since Aut(Fn) acts
transitively on bases of Fn , we may choose ψ ∈ Aut(Fn) with Y = ψ−1 X . By the
peak reduction lemma and Equation (6), there is a sequence τ1, . . . , τl of White-
head automorphisms such that ψ = τ1, . . . , τl and ‖τ−1

l τ−1
l−1 · · · τ−1

i X‖W = ‖X‖W

for i = 1, . . . , l. Thus without loss of generality, we may assume that ψ = τ is a
Whitehead automorphism.

We now use Hoare’s method to construct the star graph SτW (X)≈ SW (τ
−1 X).

Since ‖τ−1 X‖W = ‖X‖W , the circle separating A from A′ in the star graph must
intersect only two edges of the graph; otherwise the norm would increase. There-
fore, the subgraph spanned by the vertices of A is a simple path, and the same is
true for the subgraph spanned by A′. Step (1) of Hoare’s procedure produces a
graph consisting of two disjoint cycles, one containing α and the other containing
ᾱ. Step (2) keeps α and ᾱ in separate cycles, but they may switch cycles. Step (3)
breaks these two cycles at α and ᾱ, and reconnects the ends of the resulting line
segments to form a cycle, which is SτW (X). Since SW (Y )= SW (τ

−1 X)≈ SτW (X),
SW (Y ) is a cycle. �
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We will use Lemma 5.7 to analyze which marked graphs can be drawn in a
particular surface (6, s). If 6 has genus g and s punctures, and if

X = {a1, b1, a2, b2, . . . , a2g, b2g, c1, . . . , cs−1}

is a standard, geometric basis of Fn = π1(6), we have

W(6,s) = {[a1, b1][a2, b2] · · · [a2g, b2g]c1 · · · cs−1, c−1
1 , c−1

2 , . . . , c−1
s−1}.

Thus SW (X) is a cycle, and as a consequence of Lemma 5.7 we have:

Corollary 5.8. If W is the set of boundary classes of a surface 6, then

min
ρ

‖ρ‖W = 2n

and SW (ρ
′) is a cycle for any rose ρ ′ minimizing ‖ · ‖W .

The next two lemmas characterize the marked graphs that lie in R[6,s].

Lemma 5.9. The marked graph 0= (0, g) can be drawn in (6, s) if and only if the
set of reduced edge cycles of 0 representing W6 traverses each edge of 0 exactly
once in each direction.

Proof. Suppose that (0, g) can be drawn in (6, s). Cutting 6 along 0 produces a
collection of punctured disks, one for each puncture. The oriented boundaries of
these disks correspond to the conjugacy classes of the boundary of 6. Together
they traverse each edge of 0 once in each direction. Thus, if (0, g) can be drawn
in (6, s), the set of reduced edge cycles of 0 representing the boundary classes of
(6, s) traverses each edge exactly once in each direction.

For the converse, we first construct another marked surface 6′ whose set of
oriented boundary classes is also W6 , by showing that the boundary cycles in 0
induce a ribbon structure. We then use this surface to draw 0 in 6. Let v be a
vertex of 0 and define a polycyclic order on the half-edges at v by declaring that
b− follows a+ if ab appears in the reduced boundary cycles in W6 . This definition
may give more than one cycle of half-edges at some vertices, so it may not provide
a cyclic order at each vertex. To show that it is indeed a cyclic order, we work by
induction on the number of vertices in 0.

If 0 has one vertex, then 0 is a rose and ‖0‖W6
= 2n. Since W6 is the set of

boundary classes for a surface, Corollary 5.8 implies that the star graph SW6
(0) is

a single connected cycle, which means that there is only one cycle of half-edges
at the vertex of 0, and our definition gives a cyclic ordering. Now, suppose that 0
has k vertices and assume by induction that any graph with fewer than k vertices
and with the boundary classes traversing each edge exactly once in each direction
has a single cycle at each vertex. Choose an edge e of 0 that is not a loop, and
collapse it to obtain the marked graph 0′

= 0/e. The reduced edge cycles of 0′
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representing the elements of W6 traverse each edge exactly once in each direction,
and 0′ has k − 1 vertices. Therefore 0′ has one cycle at each vertex. If v1 and v2

are the two vertices coalesced to the vertex v ∈ 0′ during the collapse of edge e,
then there is a single cycle at every vertex of 0 other than v1 and v2. A priori, the
cycles at v can be formed by taking the cycles v1 and v2 and combining the one
containing e+ with the one containing e−. Since there is only one cycle at v, each
of v1 and v2 must possess only one cycle, which finishes the induction step that we
have a cyclic ordering of the half-edges at each vertex.

Let O be the ribbon structure just constructed. Both 6 and the marked surface
6′

= |(0, g,O)| are orientable surfaces with the same number of punctures and the
same fundamental group; hence they are homeomorphic. By the construction of O,
the set of boundary classes of 6′ is W6 . Label each puncture of 6 and 6′ with the
corresponding conjugacy class of W6 and choose a homeomorphism f :6′

→6

that preserves the labels of the punctures. Now, f ◦ i embeds 0 into 6 as a strong
deformation retract, but this embedding may not induce the same marking as g.
That is to say, the diagram

0 ⊂
i- 6′

R0

g
6

s
- 6

f
?

may not commute up to homotopy. However, the outer automorphism given by
f∗ ◦ i∗ ◦ g∗ ◦ (s∗)

−1 stabilizes W6 . By [Zieschang et al. 1980, Theorem 5.15.3], it
is induced by an element θ in the orientation-preserving mapping class group of
6. Embedding 0 into 6 by θ−1

◦ f ◦ i gives the same marking as g. Thus 0 can
be drawn in 6. �

Lemma 5.10. Let (6, s) be a homotopy marked surface and ρ a marked rose.
Then ρ ∈ KW6

if and only if ρ ∈ R6 .

Proof. By Corollary 5.8, the minimal value of ‖ · ‖W6
is 2n. Any ρ ∈ R6 can be

drawn in 6. By cutting 6 along ρ, we see that ‖ρ‖W6
= 2n, so ρ ∈ KW6

.
Conversely, suppose that ρ ∈ KW6

. Since ρ minimizes ‖ · ‖W6
, Corollary 5.8

implies that the star graph SW6
(ρ) must be a cycle. Therefore each label in ρ

appears exactly once with exponent +1 and once with exponent −1 in the minimal
expressions for conjugacy classes of W6 in terms of a set of labels of ρ. This means
that the set of reduced edge cycles in ρ that represents W6 traverses each edge of
ρ exactly once in each direction. By Lemma 5.9, ρ can be drawn in (6, s). �

This lemma implies that the roses in R6 coincide with those in KW6
. Since

KW6
is the union of the stars of its roses, R6 ⊆ KW6

. To find a graph in R6 lying
near a particular graph in KW6

− R6 , we use the following lemma.
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Lemma 5.11. If 0 = (0, g) ∈ KW6
, there exists a (possibly empty) forest 86(0)

such that for any forest 8⊆ 0,

0/8 ∈ R6 ⇐⇒ 8⊇86(0).

Proof. Let 86(0) be the subgraph of 0 consisting of all the edges of 0 that
are not traversed exactly once in each direction by the set of reduced edge paths
representing the boundary classes of 6. Since 0 ∈ KW6

, and KW6
is the union

of the stars of its roses, there is a maximal tree T in 0 such that 0/T is a rose in
KW6

. By Lemma 5.10 this rose is in R6 , so it can be drawn in 6. Therefore every
edge of 0− T is traversed exactly once in each direction by the set of conjugacy
classes in W6 . This means that 86(0)⊆ T , so that 86(0) is a forest.

Given any forest8 in 0, Lemma 5.9 implies that 0/8 can be drawn in6 exactly
when the boundary cycles traverse each edge of 0/8 once in each direction. This
happens exactly when 86(0)⊆8. �

These lemmas would allow us, at this time, to define a retraction from KW6
to

R6 by taking a graph 0 ∈ KW to 0/86(0) proving the following well-known
proposition without having to appeal to the contractibility of Teichmüller space
or the identification of the ribbon graph complex with the decorated Teichmüller
space.

Proposition 5.12. For any marked surface [6, s], the ribbon graph complex R[6,s]

is contractible.

We postpone this proof until it is covered by the proof of contractibility for
arbitrary simplices of the nerve. For higher-dimensional simplices, we need a set
of conjugacy classes that captures the properties of a graph that can be drawn in
several different surfaces. This set emphasizes a conjugacy class according to the
number of the surfaces in question of which it is a boundary. We start by describing
some general properties of collections of finite sets of conjugacy classes of Fn . For
the proof of Proposition 5.2, we will specialize to the case that the sets of conjugacy
classes are actually the boundary classes of marked surfaces.

Definition 5.13. For a collection σ = {W0, . . . ,Wk} of finite sets of conjugacy
classes of Fn , define

Wσ :=
{
[α1]

n1, . . . , [αl]
nl

}
,

where
⋃k

i=0 Wi ={[α1], . . . , [αl]}, and n j is the number of times that the conjugacy
class [α j ] appears in the Wi .

Note that [α] and [α−1
] both may appear in Wσ . We use the letter σ for the set

{W0, . . . ,Wk} because this definition will be applied to a simplex σ =〈60, . . . , 6k〉

of N, with Wi = W6i . We will use the notation Wσ in this situation as well.
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Lemma 5.14. For σ and Wσ as above, let

A = min
ρ

‖ρ‖Wσ
and Ai = min

ρ
‖ρ‖Wi .

Then A = A0 + · · · + Ak if and only if
⋂k

i=0 KWi 6= ∅.

Proof. Suppose that Wσ = {w
n1
1 , . . . , w

nl
l }. For any marked rose ρ,

(7) ‖ρ‖Wσ
=

l∑
i=0

ni‖ρ‖{wi } =

k∑
j=0

‖ρ‖W j .

Choose any marked rose ρ1 with ‖ρ1‖Wσ
= A. Now, ρ1 may not minimize every

‖ · ‖Wi , so

(8) A0 + · · · + Ak ≤

k∑
j=0

‖ρ1‖W j = ‖ρ1‖Wσ
= A,

where the first equality comes from Equation (7).
If

⋂k
i=0 KWi is nonempty, there is a single marked rose ρ2 with ‖ρ2‖Wi = Ai

for all i . Thus

A ≤ ‖ρ2‖Wσ
=

k∑
i=0

‖ρ2‖Wi = A0 + · · · + Ak .

Together with (8) this implies that A = A0 + · · · + Ak .
Conversely, if A = A0 + · · · + Ak , then using the ρ1 from above we have

(9) A0 + · · · + Ak = A = ‖ρ1‖Wσ
=

k∑
j=0

‖ρ1‖W j .

Again the last equality comes from (7). Now, ‖ρ1‖Wi ≥ Ai , so by (9) we have
‖ρ1‖Wi = Ai for each i . Hence, ρ1 ∈ KWi for each i , and

⋂
KWi 6= ∅. �

Changing the viewpoint slightly we get:

Corollary 5.15. For any finite collection of finite sets of conjugacy classes, σ =

{W0, . . . ,Wk}, KWσ
=

⋂k
i=0 KWi if the right-hand side is nonempty.

Setting k = 0 here provides a proof of Proposition 5.12. The final lemma we
need for the proof of Proposition 5.2 is this:

Poset lemma [Quillen 1973]. Let f : P → P be a poset map from the poset P to
itself such that p ≤ f (p) for all p ∈ P. Then f induces a deformation retraction
from the geometric realization of P to the geometric realization of its image f (P).
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Proof of Proposition 5.2. Let σ = 〈60, . . . , 6k〉 be a simplex of Nn . Denote by
Rσ the intersection

Rσ :=

k⋂
i=0

R[6i ,si ],

and let Wσ be the set of conjugacy classes given by Definition 5.13. Now Rσ

contains a rose, since 〈60 . . . 6k〉 is a simplex of Nn . To simplify the notation,
set Wi := W6i . Since R6i ⊆ KWi , we have Rσ ⊆

⋂
KWi . Hence,

⋂
KWi 6= ∅,

and by Corollary 5.15,
⋂

KWi = KWσ
. We will define a deformation retraction

KWσ
→ Rσ by collapsing in each graph the minimal forest that takes that graph to

a graph in Rσ .
Let 0 ∈ KWσ

. Since
⋂

KWi = KWσ
, Lemma 5.11 implies that there exists a

minimal forest 86i ⊆ 0 collapsing 0 to a graph in R6i . Set

8σ (0) :=860(0)∪ · · · ∪86k (0).

Since 0 ∈ KWσ
, there is a spanning tree T collapsing 0 to a rose: 0/T ∈ KWσ

. By
Corollary 5.15, 0/T ∈ KWi for each i . So, by Lemma 5.10, 0/T ∈ R6i for each i
and therefore 86i (0)⊆ T for each i . Hence 8σ (0)⊆ T . Since T is a tree, 8σ (0)
is a forest.

Now we define a map r from the vertex set of KWσ
to the vertex set of Rσ by

r(0)= 0/8σ (0). We claim that r induces a simplicial map

r : KWσ
→ Rσ .

It will suffice to show that r takes adjacent vertices to the same vertex or adjacent
vertices because both KWσ

and Rσ are determined by their 1-skeletons. To do this,
suppose that 01 and 02 represent adjacent vertices in KWσ

. By possibly switching
the names of the graphs, we can write 02 = 01/8 for some forest 8. If 8 ⊆

8σ (01), then r(01) = r(02). If 8 6⊆ 8σ (0) then r(01) 6= r(02). The diagram
below represents a small portion of Kn in this case, with edges represented by
arrows.

r(02) � collapse 8′′

r(01)

02

collapse 8σ (02)

6

�
collapse 8

01

collapse 8σ (01)

6
�

collapse 8 ′

To show that r takes 01 and 02 to adjacent vertices, as the diagram suggests, we
need justify that there is such a forest 8′′, as indicated in the diagram. The forest
8′′ is constructed as follows. Let8′

=8σ (01)∪8. Then8′ is the subforest of 01
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such that r(02)= 01/8
′. If 8′′ is the subgraph of r(01) consisting of the images

of the edges in 8′
−8σ (01) then 8′′ is a forest and r(01)/8

′′
= r(02). Therefore

r(01) and r(02) are adjacent, proving that r induces a simplicial map.
That r is a retraction follows from the implication 0 ∈ Rσ ⇒ 8σ (0) = ∅

and the fact that, by Lemma 5.9, the image of r is contained in R6i for each i .
Therefore r(KWσ

)= Rσ . To see that r is a deformation retraction, we will use the
poset lemma. Partially order the vertices of KWσ

by setting 01 < 02 if 01 can be
collapsed to 02. Then KWσ

is the geometric realization of the poset of its vertices
under this partial order. With respect to this partial order, r has the property that
0 ≤ r(0). The poset lemma implies that r is a deformation retraction. Since KWσ

is contractible, this finishes the proof. �

By Lemma 5.1, Proposition 5.2 proves that Nn ' Kn . Since Kn is contractible
by [Culler and Vogtmann 1986], so is Nn . We record this:

Theorem 5.16. Nn is contractible for all n.

6. Simplex stabilizers

As mentioned before, the action of Out(Fn) on Kn gives an action of Out(Fn)

on Nn . To describe stabilizers of this action, we fix some notation. Let 6 be a
surface with boundary and/or punctures and with free fundamental group. As in the
introduction, the pure mapping class group of 6 is the group of homeomorphisms
of 6 that are the identity on the boundary and fix the punctures, up to isotopy
relative to the boundary. The extended mapping class group of 6 is the group
of isotopy classes of homeomorphisms of 6. Thus the extended mapping class
group contains orientation reversing homeomorphisms, while the pure mapping
class group does not, provided that 6 has boundary. We will use P0(6) and 0(6)
to represent the pure and extended mapping class groups of 6.

If (6, s) is a homotopy marked surface then the identification of π1(6) with
Fn given by the marking s induces a homomorphism from 0(6) to Out(Fn).
This homomorphism is defined by sending a homeomorphism of 6 to the outer
automorphism of π1(6) that it represents. By [Zieschang et al. 1980, Theorem
5.15.3], this homomorphism is injective, and its image is the subgroup of Out(Fn)

consisting of outer automorphisms that take W6 to W6 or (W6)
−1. Denote this

subgroup by MCG±(6, s). Denote the image of P0(6) by PMCG(6, s) and the
image of the orientation-preserving subgroup of 0(6) by MCG(6, s). Note that
these subgroups depend on the marking s. Thus the difference between 0(6) and
MCG±((6, s)) is that MCG±(6) is viewed as a subgroup of Out(Fn), and this
subgroup depends on the marking s. The same is true for the pure mapping class
groups.



A SPECTRAL SEQUENCE DETERMINING THE HOMOLOGY OF Out(Fn) 85

Finally, let Stab(R[6,s]) be the subgroup of Out(Fn) stabilizing R[6,s] setwise,
so Stab(R[6,s]) is the stabilizer of the vertex of Nn that corresponds to [6, s].

Theorem 6.1. Stab(R[6,s])= MCG±(6, s).

Proof. Since ψ ∈ MCG±(6, s) implies (6, s) ·ψ = (6, s ◦ |ψ |) ∼± (6, s) (and
hence R[6,s] ·ψ = R[6,s]), we have Stab(R[6,s]) ⊃ MCG±(6, s). For the other
inclusion, suppose that ψ ∈ Stab(R[6,s]). Then

R[6,s] = (R[6,s]) ·ψ = R[6,s◦|ψ |].

By Proposition 4.6, [6, s] = [6, s ◦|ψ |], so there is a homeomorphism h :6→6

that makes the diagram

R0
s - 6

R0

|ψ |

?

s
- 6

h
?

commute up to homotopy. Now, h takes the boundary classes W6 to W6 or
(W6)

−1. Thus ψ does also. By Zieschang’s theorem, ψ ∈ MCG±(6). �

To describe the stabilizer of a higher-dimensional simplex, we use a certain
kind of stabilizer of a set of conjugacy classes of Fn , as studied in [McCool 1975].
Following the definitions there, we consider ordered m-tuples

(w1, . . . , wm)

of conjugacy classes in Fn . The symmetric group Sm acts on the set of m-tuples
by permuting the coordinates. The inverting operations τ1, . . . , τm act on the set
of m-tuples by

τi (w1, . . . , wi , . . . , wm)= (w1, . . . , w
−1
i , . . . , wm).

The group Sm , together with the τi ’s, generates the subgroup �m ∼= Sm o Z2 of
permutations of the set of m-tuples of conjugacy classes of Fn known as the ex-
tended symmetric group. The group Out(Fn) also acts on the set of m-tuples of
conjugacy classes by acting individually on the coordinates. McCool [1975] makes
the following definition in the setting of Aut(Fn), but we will use it also in the
setting of Out(Fn).

Definition 6.2. For U an m-tuple of conjugacy classes and subgroup G ≤ �m ,
define the subgroup AU,G of Out(Fn) by

AU,G := {θ ∈ Out(Fn) : θU ∈ GU },

where GU = {gU : g ∈ G}.
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For a simplex σ of Nn , let Gσ denote the stabilizer of the simplex σ of Nn .
If σ = v is the vertex corresponding to the marked surface (6, s), then Gv =

MCG±(6, s)= AU,G where U is the m-tuple of boundary classes (in any order) of
a marked surface (6, s), and G ≤�m is the subgroup generated by Sm together with
the extended permutation τ1τ2 · · · τm . To describe Gσ for a higher-dimensional
simplex, we introduce some terminology.

Definition 6.3. Let σ = 〈60, . . . , 6k〉 be a simplex of Nn , and let Ui be the mi -
tuple of boundary classes of 6i (again in any order). Set m = m0 + · · · + mk and
denote by Uσ = (U0, . . . ,Uk) the m-tuple constructed by listing the conjugacy
classes from the Ui one after another, starting with those of U0. Define Hσ ≤�m

as the subgroup generated by extended permutations of the following types:

(1) α ∈ Sm such that there is a permutation λ ∈ Sk such that, for each i , α takes
Ui to Uλ(i), possibly with the entries of Uλ(i) permuted;

(2) τ ∈�m such that τUi = Ui or τUi = U−1
i for each i .

Proposition 6.4. For any simplex σ of N, Gσ has the form AUσ ,Hσ .

Proof. Formally, (1) can be written as αUi ∈ Smλ(i)Ui . An element θ ∈ Gσ permutes
the equivalence classes of the marked surfaces 6i . This means that θ takes W6i to
W6 j or W −1

6 j
for some j . Thus θUi ∈ Sm j U j or Sm j U

−1
j for some j . Since no two

surfaces are taken to the same surface by θ , this means precisely that θ ∈ AUσ ,Gσ

as defined above. �

7. Equivariant homology of the action of Out(Fn) on Nn

For a cellular action of a group G on a contractible cell complex X , the equivariant
spectral sequence for the action of G on X is a well-known spectral sequence that
converges to a grading of the homology of G; see [Brown 1982, Chapter VII.7].
To describe this spectral sequence, let M be any G-module. Consider, for each
p-cell σ of X , the Gσ -module Zσ . As an additive group, Zσ is isomorphic to Z.
The module structure of Zσ is given by having g ∈ Gσ act as multiplication by
+1 or −1, depending on whether g preserves or reverses the orientation of σ . The
module Zσ is called the orientation module of σ . Let

Mσ := Zσ ⊗Z M.

Fix a set 1p of representatives for the orbits of the p-cells of X under the action
of G. The equivariant spectral sequence for the action of G on X takes the form

(10) E1
pq =

⊕
σ∈1p

Hq(Gσ ; Mσ )⇒ Hp+q(G; M).
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Applying this to the action of Out(Fn) on Nn and any Out(Fn)-module M , we
get a spectral sequence converging to H∗(Out(Fn); M). Since vertex stabilizers
are extended mapping class groups and there is one orbit of vertex for each home-
omorphism type of surface, the p = 0 column of the spectral sequence consists of
direct sums of the homology groups of the extended mapping class groups. For
p > 0, the simplex stabilizers are given by Proposition 6.4 and we have:

Theorem 7.1. For any Out(Fn)-module M , there is a spectral sequence of the form

(11) E1
pq =

⊕
σ∈1p

Hq(Gσ ; Mσ )⇒ Hp+q(Out(Fn); M),

where 10 is the set of homeomorphism classes of punctured orientable surfaces
with fundamental group Fn , and for a vertex v ∈ 10 corresponding to surface 6
the stabilizer Gv is the extended mapping class group MCG±(6). For p> 0, each
Gσ is a generalized stabilizer of the form AUσ ,Hσ .

The map induced on homology by the inclusion MCG±(6) ↪→ Out(Fn) appears
in the spectral sequence as the left-hand edge map, which is defined for the general
spectral sequence (10) as follows. Since there is nothing but zeroes to the left of
the p = 0 column in the spectral sequence (10), E∞

pq is a quotient of E1
pq . The

spectral sequence converges to a grading of H∗(G; M), and the composition

(12)
⊕
v∈10

Hq(Gv; M)= E1
0q � E∞

0q = Gr0 Hq(G; M) ↪→ Hq(G; M)

is the left-hand edge map of this spectral sequence. The left hand edge map is
equal to the map induced on homology by the inclusion of Gv into G.

For sequence (11), if the vertex v corresponds to marked surface 6, we have
Gv = MCG±(6) and the restriction of the left-hand edge map to the subspace
Hq(Gv; M) is the map

Hq(MCG±(6); M)→ Hq(Out(Fn); M)

induced by the inclusion MCG±(6) ↪→ Out(Fn). Thus finding a bound on the
rank of the left-hand edge map gives an upper bound on the contribution that the
mapping class subgroups of Out(Fn) can make to the homology of Out(Fn). This
will be the subject of the next section.

8. Analysis of E∞

In this section, we specialize to rational coefficients and give a method for using
Harer’s homology stability theorems [1985] for mapping class groups to analyze
the E∞ page of spectral sequence (11). We continue to use MCG±(6, s) for the
image of0(6, s) in Out(Fn), but we extend this notation to surfaces with boundary.
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Hence, if 6 is a surface with boundary and s is a homotopy equivalence from the
standard rose R0 to 6, we use MCG±(6, s), PMCG(6, s), and MCG(6, s) to
denote the images in Out(Fn) of the extended, pure and orientation-preserving
mapping class groups of 6 in Out(Fn). As usual, these images depend on the
marking s. We remark that there is a natural inclusion P0(6) ↪→ 0(6), which
agrees with the inclusion of PMCG(6, s) into MCG±(6, s).

More generally, if 60 is a subsurface with boundary of the surface 6, the
inclusion 60 ↪→ 6 induces a map α : P0(60) → P0(6) defined by extending
a homeomorphism of 60 to all of 6 by the identity. Harer’s stability theorem,
quoted below, implies that α induces an isomorphism on homology in sufficiently
high dimensions.

Theorem 8.1 [Harer 1985, Theorem 0.1]. Let 60 be a subsurface of 6 such that
6 − 60 is connected, contains no punctures but is not simply connected. If the
genus of 60 is at least 3k − 1, then α∗ : Hk(P0(60); Q) → Hk(P0(6); Q) is an
isomorphism.

We will also need to analyze the effect of plugging a boundary component of 6
with a punctured disk. To this end, consider the maps 2, 2′, ϒ and 8 (between
the appropriate surfaces) defined, respectively, by plugging a boundary component
with a disk, plugging a boundary component with a punctured disk, plugging a
puncture, and sewing a pair of pants to a boundary component. In the stable range,
Theorem 8.1 applies to8. By making the appropriate identifications,2◦8 induces
the identity on homology, so in the stable range for 8, the map 2 must induce an
isomorphism. Since 2= ϒ ◦2′, we have:

Lemma 8.2. For g ≥ 3k − 2, (2′)∗ is injective and ϒ∗ is surjective on the k-th
homology.

In order to relate these stability maps to the d1 terms in the spectral sequence
of Theorem 7.1, consider two marked surfaces (6, s) and (6′, s ′). Let ρ and ρ ′

be the marked images in 6 and 6′ of the marking rose. Suppose that there are
separating simple closed curves γ ⊂6 and γ ′

⊂6′ cutting off subsurfaces 6̃ ⊂6

and 6̃′
⊂6′ with the following properties, illustrated in Figure 4.

(1) The basepoints of the marking roses lie on γ and γ ′.

(2) No edge of the marking roses meets γ or γ ′ anywhere but at the basepoints
of the roses.

(3) ρ ∩ 6̃ ' 6̃ and ρ ′
∩ 6̃′

' 6̃′.

(4) 6̃ and 6̃′ are homeomorphic by a homeomorphism taking each directed edge
of ρ ∩ 6̃ to a directed edge of ρ ′

∩ 6̃′ with the same labeling.
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Figure 4. Markings that agree on a subsurface.

Definition 8.3. If the marked surfaces (6, s) and (6′, s ′) satisfy conditions (1)–(4)
above, the markings are said to agree on the subsurfaces 6̃ and 6̃′.

If the marked surfaces 6 and 6′ agree on the subsurface 6̃ = 6̃′ then the cor-
responding vertices v6 and v6′ in N span an edge e. The group PMCG(6̃) can be
identified with a subgroup of the stabilizer of ve. If6 and6′ are not homeomorphic
surfaces, then the component of the d1 map in spectral sequence (11) from Stab(e)
to Stab(v6) is the map induced by inclusion of Stab(e) into Stab(v6). The same is
true for 6′. Therefore the following lemma will play the key role in determining
bounds on how much homology in the E1 page can survive until E∞.

Lemma 8.4. Let [6, s] and [6′, s ′
] be nonhomeomorphic marked surfaces such

that

(1) the markings s and s ′ agree on subsurfaces 6̃ and 6̃′ of genus 3k − 1,

(2) 6̃ contains all but one of the punctures of 6, and

(3) R[6,s] ∩ R[6′,s′] 6= ∅.

Let v and v′ be the vertices of Nn corresponding to 6 and 6′ and let e be the edge
of Nn between v and v′. Then Ge = Gv ∩ Gv′ and i∗ : Hk(Ge; Q) → Hk(Gv; Q)

has rank at least

dim Hk(Gv; Q)−
(
dim Hk(P0(6); Q)− dim Hk(P0(6̃); Q)

)
.

Proof. First, Ge = Gv ∩ Gv′ because no outer automorphism of Fn can switch
[6, s] with [6′, s ′

].
Since the Dehn twists generate P0(6̃), the map α : P0(6̃)→ P0(6) induced

by 6̃ ↪→6 is determined by its effect Dehn twists. Now, suppose that c is a simple
closed curve in 6̃ with corresponding simple closed curve c′ in 6̃′. When we use
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the maps is and is′ of Zieschang’s theorem to identify P0(6) and P0(6′) with
the subgroups PMCG(6) and PMCG(6′)⊆ Out(Fn), the Dehn twists δc ∈ P0(6̃)
and δc′ ∈ P0(6̃′) about c and c′ correspond to the same outer automorphism of
Fn . Therefore the image of the map α1 : P0(6̃) → P0(6) = PMCG(6) lies in
the intersection PMCG(6)∩ PMCG(6′)⊆ Gv ∩ Gv′ , and we have a commutative
diagram

(13)

P0(6̃)
α1- PMCG(6)

Ge

β1

?
⊂

i
- MCG±(6)= Gv

β2

?

∩

where β1 is the map α1 viewed with a different range. We claim that the composi-
tion β2 ◦α1 induces a map on homology that has rank at least

dim Hk(Gv; Q)−
(
dim Hk(P0(6); Q)− dim Hk(P0(6̃); Q)

)
.

To see this, note that β2 is the inclusion of a finite index subgroup into a super-
group. Therefore it induces a surjection on homology with rational coefficients.
By Theorem 8.1 and Lemma 8.2, the map α1 is injective, and the claim follows by
a dimension counting argument. Now, the rank of the map induced by i must be
at least the rank of the map induced by i ◦β1 = β2 ◦α1, finishing the proof. �

Our last proposition gives a bound on the rank of the restriction of the left-
hand edge map in spectral sequence (11) to surfaces of large rank. It bounds the
contribution that the homology of these surfaces’ mapping class groups can make
to the homology of Out(Fn). To simplify notation, let 0s

g,0 denote the extended
mapping class of the surface of genus g with s punctures and no boundary, and let
P0s

g,0 be the pure, orientation preserving mapping class group of this surface.

Proposition 8.5. Let k ≥ 0 and n ≥ 6k −2. For g ≥ 3k −1, let 6s
g be the punctured

surface of genus g with s punctures and with 2g+s −1 = n (so that π1(6
s
g)

∼= Fn).
By choosing particular markings of the 6s

g, we may identify the vector space

A :=

⊕
g≥3k−1

Hk(MCG(6s
g); Q)

with a subspace of the E1
0k term of spectral sequence (11) using trivial Q coeffi-

cients. The image of A in E∞

0k has dimension no larger than

dim Hk(0
t
3k−1,0; Q)+

∑
g≥3k

2g+s−1=n

(
dim Hk(P0s

g,0; Q)− dim Hk(P0s−1
g,0 ; Q)

)
,

where 2(3k − 1)+ t − 1 = n.
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Proof. Fix a marking [6t
3k−1, s3k−1] of 6t

3k−1. For each g> 3k −1 we may choose
a marking [6s

g, sg] of 6s
g satisfying the conditions of Lemma 8.4 with 6 = 6s

g
and 6′

= 6t
3k−1. For g ≥ 3k − 1 let vg denote the vertex of Nn corresponding to

[6s
g, sg] and for g ≥ 3k, let eg denote the edge between v3k−1 and vg. By choosing

the vg and eg as representatives for their Out(Fn) orbits, the vector spaces

(14) A :=

⊕
g≥3k−1

Hk(Gvg ; Qvg ) and B :=

⊕
g≥3k

Hk(Geg ; Qeg )

can be identified with subspaces of E1
0k and E1

1k respectively. Note that d1(B)⊆ A.
Now, Geg fixes eg pointwise since no outer automorphism can switch vg and
v3k . The same is true of Gvg , so the modules Qvg and Qeg are actually trivial
modules; Qvg = Q, Qeg = Q. Since Gvg = MCG(6s

g, sg), the above defini-
tion of A agrees with the definition in the statement of the proposition, A =⊕

g≥3k−1 Hk(MCG(6s
g); Q). Now, Geg = Gvg ∩ Gv3k−1 as in Lemma 8.4. With

these definitions, the (eg, vg)-component of d1 is simply the map induced by the
inclusion Geg ↪→ Gvg . By Lemma 8.4, this map has rank at least

(15) Rg = dim Hk(Gvg ; Q)−
(
dim Hk(P0s

g,0; Q)− dim Hk(P0s−1
3k−1,1; Q)

)
,

where 2g+s−1=n. Note that Rg depends on g because, even though Hk(P0s
g,0; Q)

is independent of g, it depends on s, and s depends on g.
By (15), for each g ≥3k we may choose Rg vectors {w

g
1 , . . . , w

g
Rg

} in (im d1
∩A)

such that their projections onto Hk(Gvg ; Q) are linearly independent. Let Ag be the
subspace of A spanned by {w

g
1 , . . . , w

g
Rg

}. By the first direct sum decomposition
in (14) and the choice of the vectors wg

i , the subspaces A3k, . . . , Ab
n
2 c are linearly

independent. Let A∞ denote the image of A in E∞. Since A∞ is a quotient of
A/d1(B), this means that

(16) dim(A∞)≤ dim(A)−
∑
g≥3k

Rg.

By Harer’s stability theorems, Hk(P0s−1
3k−1,1)

∼= Hk(P0s−1
g,0 ). Now, substituting

dim A =

∑
g≥3k−1

dim Hk(Gvg ; Q)

and (15) with dim Hk(P0s−1
3k−1,1)= dim Hk(P0s−1

g,0 ) into (16) gives

dim(A∞)≤

dim Hk(MCG(63k−1); Q) +

∑
g≥3k

2g+s−1=n

(
dim Hk(P0s

g,0; Q)− dim Hk(P0s−1
g,0 ; Q)

)
,

as required. �
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