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We prove an optimal systolic inequality for CAT(0) metrics on a genus 2
surface. We use a Voronoi cell technique, introduced by C. Bavard in the
hyperbolic context. The equality is saturated by a flat singular metric in
the conformal class defined by the smooth completion of the curve y2 =

x5 − x. Thus, among all CAT(0) metrics, the one with the best systolic ratio
is composed of six flat regular octagons centered at the Weierstrass points
of the Bolza surface.

1. Hyperelliptic surfaces of nonpositive curvature

Over half a century ago, a student of C. Loewner’s named P. Pu [1952] presented
in this journal the first two optimal systolic inequalities, which came to be known
as the Loewner inequality for the torus and Pu’s inequality for the real projective
plane. (See (5–2) on page 104 for the latter.)

The last couple of years have seen the discovery of a number of new systolic
inequalities [Ammann 2004; Bangert and Katz 2003; 2004; Bangert et al. 2005;
2006a; 2006b; Ivanov and Katz 2004; Katz 2006; Katz and Lescop 2005; Katz
and Sabourau 2006; Katz et al. 2006; Sabourau 2004], as well as near-optimal
asymptotic bounds [Hamilton 2005; Katz 2003; Katz and Sabourau 2005; Katz
et al. 2005; Rudyak and Sabourau ≥ 2006; Sabourau 2006; ≥ 2006]. A number
of questions posed in [Croke and Katz 2003] have thus been answered. A general
framework for systolic geometry in a topological context is proposed in [Katz and
Rudyak 2005; 2006]. See [Katz ≥ 2006] for an overview of systolic problems.
The homotopy 1-systole, denoted sysπ1(X), of a compact metric space X is the
least length of a noncontractible loop of X .

Given a metric G on a surface, let SR(G) denote its systolic ratio

SR(G) =
sysπ1(G)2

area(G)
.
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The optimal systolic ratio of a compact Riemann surface 6 is defined as SR(6) =

supG SR(G), where the supremum is over all metrics in the conformal type of 6.
Finally, given a smooth compact surface M , its optimal systolic ratio is defined by
setting SR(M) = sup6 SR(6), where the supremum is over all conformal struc-
tures 6 on M . The latter ratio is known for the Klein bottle — see the bound (5–1)
on page 104 — in addition to the torus and real projective plane already mentioned.

In the class of all metrics without any curvature restrictions, no singular flat
metric on a surface of genus 2 can give the optimal systolic ratio in this genus
[Sabourau 2004]. The best available upper bound for the systolic ratio of an arbi-
trary genus 2 surface is γ2 ' 1.1547 [Katz and Sabourau 2006].

The precise value of SR for the genus 2 surface has so far eluded researchers
[Calabi 1996; Bryant 1996]. We propose an answer in the framework of negatively
curved, or more generally, CAT(0) metrics.

The term “CAT(0) space” evokes an extension of the notion of a manifold of
nonpositive curvature to encompass singular spaces. We will use the term to refer
to surfaces with metrics with only mild quotient singularities, defined below. Here
the condition of nonpositive curvature translates into a lower bound of 2π for the
total angle at the singularity. We need such an extension so as to encompass the
metric that saturates our optimal inequality (1–1).

A mild quotient singularity is defined as follows. Consider a smooth metric
on R2. Let q ≥ 1 be an integer. Consider the q-fold cover Xq of R2

\ {0} with the
induced metric. We compactify Xq in the neighborhood of the origin to obtain a
complete metric space X c

q = Xq ∪ {0}.

Definition 1.1. Suppose X c
q admits an isometric action of Zp fixing the origin.

Then we can form the orbit space Yp,q = X c
q/Zp. The space Yp,q is then called

mildly singular at the origin.

The total angle at the singularity is then 2πq/p, and the CAT(0) condition is
q/p ≥ 1.

Remark 1.2. Alternatively, a point is singular of total angle 2π(1+β) if the metric
is of the form eh(z)

|z|2β
|dz|2 in its neighborhood, where |dz|2 = dx2

+ dy2. See
[Troyanov 1990, p. 915].

Theorem 1.3. Every CAT(0) metric G on a surface 62 of genus 2 satisfies the
optimal inequality

(1–1) SR(62, G) ≤
1
3

cot π

8
=

1
3
(√

2 + 1
)
= 0.8047 . . .

The inequality is saturated by a singular flat metric, with 16 conical singularities,
in the conformal class of the Bolza surface.
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The Bolza surface is described in Section 2. The optimal metric is described
in more detail in Section 3. Theorem 1.3 is proved in Section 4 based on the
octahedral triangulation of S2.

Remark 1.4. A similar optimal inequality can be proved for hyperelliptic surfaces
of genus 5 based on the icosahedral triangulation [Bavard 1986].

2. Distinguishing 16 points on the Bolza surface

The Bolza surface B is the smooth completion of the affine algebraic curve

(2–1) y2
= x5

− x .

It is the unique Riemann surface of genus 2 with a group of holomorphic automor-
phisms of order 48. (A way of passing from an affine hyperelliptic surface to its
smooth completion is described in [Miranda 1995, p. 60–61].)

Definition 2.1. A conformal involution J of a compact Riemann surface 6 of
genus g is called hyperelliptic if J has precisely 2g + 2 fixed points. The fixed
points of J are called the Weierstrass points of 6.

The quotient Riemann surface 6/J is then necessarily the Riemann sphere,
denoted henceforth S2. Let Q : 6 → S2 be the conformal ramified double cover,
with 2g + 2 branch points. Thus, J acts on 6 by sheet interchange. Recall that
every surface of genus 2 is hyperelliptic, that is, admits a hyperelliptic involution
[Farkas and Kra 1992, Proposition III.7.2].

We make note of 16 special points on B. We call a point special if it is a fixed
point of an order 3 automorphism of B.

Consider the regular octahedral triangulation of S2
= C ∪∞. Its set of vertices

is conformal to the set of roots of the polynomial x5
−x of formula (2–1), together

with the unique point at infinity. Thus the six points in question can be thought of as
the ramification points of the ramified conformal double cover Q : B → S2, while
the 16 special points of B project to the eight vertices of the cubic subdivision dual
to the octahedral triangulation.

In other words, the x-coordinates of the ramification points are

{0, ∞, 1, −1, i, −i} ,

which stereographically correspond to the vertices of a regular inscribed octahe-
dron. The conformal type therefore admits the symmetries of the cube. If one
includes both the hyperelliptic involution and the real (antiholomorphic) involution
of B corresponding to the complex conjugation (x, y) → (x̄, ȳ) of C2, one obtains
the full symmetry group Aut(B), of order

(2–2) |Aut(B)| = 96;
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see [Kuusalo and Näätänen 1995, p. 404] for more details.

Lemma 2.2. The hyperbolic metric of B admits 12 systolic loops. The 12 loops
are in one-to-one correspondence with the edges of the octahedral decomposition
of S2. The correspondence is given by taking the inverse image under Q of an edge.
The 12 systolic loops cut the surface into 16 hyperbolic triangles. The centers of
the triangles are the 16 special points.

See [Schmutz 1993, §5] for further details. The Bolza surface is extremal for
two distinct problems:

• systole of hyperbolic surfaces [Bavard 1992; Schmutz 1993, Theorem 5.2];

• conformal systole of Riemann surfaces [Buser and Sarnak 1994].

The square of the conformal systole of a Riemann surface is also known as its Se-
shadri constant [Kong 2003]. The Bolza surface is also conjectured to be extremal
for the first eigenvalue of the Laplacian. Such extremality has been verified nu-
merically [Jakobson et al. 2005]. The evidence above suggests that the systolically
extremal surface may lie in the conformal class of B, as well. Meanwhile, we have
the following result, proved in Section 5.

Theorem 2.3. The Bolza surface B satisfies SR(B) ≤
π
3 .

Note that Theorems 2.3 and 1.3 imply that SR(B) ∈ [0.8, 1.05].

3. A flat singular metric in genus two

The optimal systolic ratio of a genus 2 surface (62, G) is unknown, but it satisfies
the Loewner inequality [Katz and Sabourau 2006]. Here we discuss a lower bound
for the optimal systolic ratio in genus 2, briefly described in [Croke and Katz 2003].

The example of M. Berger (see [Gromov 1983, Example 5.6.B′]) in genus 2 is
a singular flat metric with conical singularities. It has systolic ratio SR = 0.6666.
This ratio was improved by F. Jenni [Jenni 1984], who identified the hyperbolic
genus 2 surface with the optimal systolic ratio among all hyperbolic genus 2 sur-
faces (see also C. Bavard [Bavard 1992] and P. Schmutz [Schmutz 1993, The-
orem 5.2]). The surface in question is a (2,3,8) triangle surface. Its confor-
mal class is that of the Bolza surface (Section 2). It admits a regular hyper-
bolic octagon as a fundamental domain, and has 12 systolic loops of length 2x ,
where x = cosh−1(1 +

√
2). It has

sysπ1 = 2 log
(
1 +

√
2 +

√
2 + 2

√
2

)
,
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area 4π , and systolic ratio SR ' 0.7437. This ratio can be improved to 0.8047, as
we shall see. The history for genus 2 so far can be summarized as follows:

SR(G) =
sysπ1(G)2

area(G)
=


0.6666 (Berger)

0.7437 (Jenni)

0.8047 (our metric GO on Bolza surface)

Proposition 3.1. The conformal class of the Bolza surface B admits a metric,
denoted GO, with the following properties:

(1) the metric is singular flat, with conical singularities precisely at the 16 special
points of Section 2;

(2) each singularity is of total angle 9
4π , so that the metric GO is CAT(0);

(3) the metric is glued from six flat regular octagons, centered on the Weierstrass
points, while the 1-skeleton projects under Q : B → S2 to that of the dual cube
in S2;

(4) the systolic ratio equals SR(GO) =
1
3

(√
2 + 1

)
> 4

5 .

Proof. The octahedral triangulation of the sphere, discussed in Section 2, lifts
to a triangulation of B consisting of 16 triangles, which we think of as being
“equilateral”. Here eight equilateral triangles are connected cyclically around each
of the six Weierstrass vertices of the triangulation of B.

We further subdivide each equilateral triangle into three isosceles triangles, with
a common vertex at the center of the equilateral triangle. We equip each of the 48
isosceles triangles with a flat metric with obtuse angle 3

4π .
Each of the six Weierstrass vertices of the original triangulation is a smooth

point, since the total angle is eight times π/4. Each equilateral triangle possesses a
singularity at the center with total angle 9

4π > 2π . Alternatively, we can apply the
Gauss–Bonnet formula

∑
σ α(σ) = 2g−2 in genus 2, with 16 isometric singulari-

ties. Here the sum is over all singularities σ of a singular flat metric on a surface of
genus g, where the cone angle at singularity σ is 2π(1+α(σ)). Since the metric GO

is smooth at a Weierstrass point of B, the metric has only 16 singularities, precisely
at the special points of Section 2, proving items 1 and 2 of the proposition.

Let x denote the side length of the equilateral triangle. The barycentric subdivi-
sion of each equilateral triangle consists of six copies of a flat right angle triangle,
denoted R, with side x/2 and adjacent angle π/8. We thus obtain a decomposition
of the metric GO into 96 copies of the triangle R, which can be thought of as a
fundamental domain for the action of Aut(B); see (2–2).

We have sysπ1(GO) = 2x by Lemma 3.2, proving item 4 of the proposition. To
prove item 3, note that the union of the 16 triangles R with a common Weierstrass
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Figure 1. Flat regular octagon obtained as the union of 16 right
triangles R with side x/2 and adjacent angle π/8. The shaded
interior octagon represents the region with four geodesic loops
through every point.

vertex is a flat regular octagon. The latter is represented in Figure 1, together with
the systolic loops passing through it. �

Lemma 3.2. The systole of the singular flat CAT(0) metric on the Bolza surface
equals twice the distance between a pair of adjacent Weierstrass points.

Proof. Consider the smooth closed geodesic γ ⊂ B that is the inverse image under
the map Q : B → S2 of an edge of the octahedron; see Lemma 2.2. Let x be
the distance between a pair of opposite sides of the regular flat octagon in B, or
equivalently, the distance between a pair of adjacent Weierstrass points. Thus,
length(γ ) = 2x . Consider a loop α ⊂ B whose length satisfies

(3–1) length(α) < 2x .

We will prove that there are two possibilities for α: it is either contractible, or
freely homotopic to one of the 12 geodesics γ of the type described above. On the
other hand, γ is necessarily length minimizing in its free homotopy class, by the
CAT(0) property of the metric [Bridson and Haefliger 1999, Theorem 6.8]. This
will rule out the second possibility, and prove the lemma.

Denote by B(1) the graph on B given by the inverse image under Q of the 1-
skeleton of the cubic subdivision of S2. The graph B(1) partitions the surface into
six regular octagons, denoted �k :

(3–2) B =

6⋃
k=1

�k .

We will deform α to a loop β ⊂ B(1) as follows. The partition (3–2) induces a
partition of the loop α into arcs αi , each lying in its respective octagon �ki . We
deform each αi , without increasing length, to the line segment [pi , qi ] ⊂ �ki . The
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boundary points pi , qi of αi split the boundary closed curve ∂�ki ⊂ B(1) into a pair
of paths. Let βi ⊂ ∂�ki be the shorter of the two paths. Denote by y the distance
between adjacent vertices of the octagon. Then clearly

(3–3) length(βi ) ≤
4y
x

length(αi ).

We first deform the loop α into the graph B(1). The deformation fixes the intersec-
tion points α ∩ B(1). Inside �ki we deform the arc αi to the path βi . The length of
the resulting loop is at most

4y
x

length(α) < 8y

by (3–1) and (3–3). Therefore, its homotopy class in B(1) can be represented by
an imbedded loop β ⊂ B(1) of length at most 8y. Thus, β contains fewer than
eight edges of B(1). Since the number of edges must be even, its image under Q
must retract to a circuit with at most six edges in the 1-skeleton of the cubical
subdivision of S2. If the number is four, then the circuit lies in the boundary of a
square face of the cube in S2. But the boundary of a face does not lift to B, since
it surrounds a single ramification point, namely the center of the square face.

Hence there must be six edges in the circuit. There are two types of circuits
with six edges in the 1-skeleton of the cubical subdivision of S2:

(a) the boundary of the union of a pair of adjacent squares;

(b) a path consisting of the edges meeting a suitable great circle.

However, a path of type (b) surrounds an odd number, namely 3, of ramification
points, and hence does not lift to the genus 2 surface. Meanwhile, a path of type
(a) surrounds two ramification points, and hence does lift to the surface. Such a
path is freely homotopic in B to one of the 12 geodesics of type γ (Lemma 2.2),
completing the proof. �

4. Voronoi cells and Euler characteristic

The following proposition provides a preliminary lower bound on the area of hy-
perelliptic surfaces with nonpositive curvature.

Proposition 4.1. Every J -invariant CAT(0) metric G on a closed hyperelliptic
surface 6g of genus g satisfies the bound

SR(6g, G) ≤ 8((g + 1)π)−1.

Proof. To prove this scale-invariant inequality, we normalize the metric on 6 = 6g

to unit systole, that is, sysπ1(6, G) = 1. The preimage by Q : 6 → S2 of an arc
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of S2 joining two distinct branch points forms a noncontractible loop on 6. There-
fore the distance between two Weierstrass points is at least 1

2 sysπ1(6, G) =
1
2 .

Thus we obtain 2g+2 disjoint disks of radius 1
4 , centered at the Weierstrass points.

Since the metric is CAT(0), the area of each disk is at least π
16 . Thus,

area(6, G) ≥
g + 1

8
π. �

An optimal lower bound requires a more precise estimate on the area of the
Voronoi cells. The idea is to replace area of balls by area of polygons, where
control over the number of sides is provided by the Euler characteristic [Bavard
1992].

Denote by u : 6̃ → 6 its universal cover. Let {xi | i ∈ N} be an enumeration
of the lifts of Weierstrass points on 6̃. The Voronoi cell Vi ⊂ 6̃ centered at xi is
defined as the set of points closer to xi than to any other lift of a Weierstrass point.
In formulas,

Vi =
{

x ∈ 6̃
∣∣ d(x, xi ) ≤ d(x, x j ) for every j 6= i

}
.

The Voronoi cells on 6̃ are polygons whose edges are arcs of the equidistant
curves between a pair of lifts of Weierstrass points. Note that these edges are not
necessarily geodesics. The Voronoi cells on 6̃ are topological disks, while their
projections u(Vi ) ⊂ 6 may have more complicated topology. Thus, the surface 6

decomposes into 2g+2 images of Voronoi cells, centered at the 2g+2 Weierstrass
points. By the number of sides of u(V ) we will mean the number of sides of the
polygon V .

Lemma 4.2. Let G1 and G2 be two CAT(0) metrics lying in the same conformal
class. Then, the averaged metric G =

1
2(G1 + G2) is CAT(0), as well.

Proof. Choose a point x ∈ 6 and a metric G0 in its conformal class, which is flat
in a neighborhood of x . Every metric G = H G0 conformal to it satisfies

KG H = KG0 −
1
21 log H

(see [Gallot et al. 1990, p. 265]), where KG and KG0 are the Gaussian curvatures
of G and G0, and 1 is the Laplacian of G0 with 1 f = div∇ f . Thus, the metrics Gi

can be written as Gi = ehi G0, where hi is subharmonic in the neighborhood of x ,
that is, 1hi ≥ 0. A simple computation shows that

1 log H ≥
eh11h1 + eh21h2

2H
≥ 0,

where H =
1
2(eh1 +eh2), proving the lemma if both points are regular. For singular

points with positive angle excess, the CAT(0) property for the averaged metric is
immediate from Remark 1.2. �
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Proof of Theorem 1.3. Since averaging by J can only improve the systolic ratio,
we may assume without loss of generality that our metric is already J -invariant.

There exists an extension of the notions of tangent plane and exponential map
to surfaces with singularities. Namely, let A ∈ 6. There exists a CAT(0) piecewise
flat plane TA with conical singularities and a covering expA : TA → 6 with the
following properties:

(1) expA sends the origin O of TA to A;

(2) expA takes the conical singularities of TA to the singularities of 6;

(3) expA sends every pair of geodesic arcs issuing from the origin O ∈ TA to a
pair of geodesic arcs of the same lengths and forming the same angle at their
basepoint A.

By the Rauch Comparison Theorem, the exponential map expA does not de-
crease distances.

Now assume A ∈ 6 is a Weierstrass point, and let B ∈ 6 be another Weierstrass
point. Fix a lift B0 of B to the tangent plane TA, along a minimizing arc. Consider
the equidistant line

L O,B0 ⊂ TA

between the origin O ∈ TA and the point B0. Consider a point X0 ∈ L O,B0 . Let
X = expA(X0). Since the exponential map does not decrease distances, we have

dist6(A, X) = distTA(O, X0) = distTA(B0, X0) ≤ dist6(B, X).

Now consider the polygon in the tangent plane TA, obtained as the intersection
of the half-spaces containing the origin, defined by the lines L O,B0 , as B runs over
all Weierstrass points. It follows from the preceding equality that the exponential
image of this polygon is contained in the Voronoi cell of A. Since the exponential
map does not decrease distances, the area of the polygon is a lower bound for the
area of the Voronoi cell. If k is the number of sides of V , then V is partitioned
into k triangles with angle θi at O , whose area is bounded below by

(4–1)
(sysπ1

4

)2
tan

θi

2

since dist(A, B) ≥
1
2 sysπ1.

Consider the graph on S2 defined by the projections of the Voronoi cells to the
sphere. Thus we have f = 6 faces. Applying the formula v − e + f = 2 and the
well-known fact that 3v ≤ 2e, we obtain

e ≤ 3 f − 6 = 12.

Hence the spherical graph has at most 12 edges. Note that the maximum is attained
by the 1-skeleton of the cubical subdivision.
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The area of a flat isosceles triangle with third angle θ and with unit altitude from
the third vertex is tan(θ/2) . This formula provides a lower bound for the area of
the Voronoi cells as in (4–1). The proof is completed by Jensen’s inequality applied
to the convex function tan(x/2) when 0 < x < π . In the boundary case of equality,
we have e = 12, all angles θi as in (4–1) must be equal, curvature must be zero
because of equality in the Rauch Comparison Theorem, and we easily deduce that
each Voronoi cell is a regular octagon. To minimize the area of the octagon, we
must choose θ as small as possible. The CAT(0) hypothesis at the center of the
octagon imposes a lower bound θ ≥

π
4 . Hence the optimal systolic ratio is achieved

for the regular flat octagon with a smooth point at the center. �

5. Arbitrary metrics on the Bolza surface

The conformal class of the Bolza surface B of Section 2 is likely to contain a
systolically optimal surface in genus 2, as discussed in Section 1.

Theorem 5.1. Every metric G in the conformal class of the Bolza surface satisfies
the bound

SR(G) ≤
π

3
= 1.0471 . . . .

Remark 5.2. In particular, every metric G in the conformal class of the Bolza
surface satisfies Bavard’s inequality

(5–1) SR(G) ≤
π

23/2 ' 1.1107

for the Klein bottle [Bavard 1986]. This suggests a possible monotonicity of χ(6)

as a function of SR(6).

Lemma 5.3. Let G be an Aut(B)-invariant metric on B. Let

δ(J ) = min
x∈B(1)

dist(x, J (x))

be the displacement on the 1-skeleton B(1) of the Voronoi subdivision of B. Then

area(B, G) ≥ 6
( 2

π

)
δ(J )2.

Proof. Consider the Voronoi subdivision with respect to the set of six Weierstrass
points on B. Since each Voronoi cell � ⊂ B is J -invariant, we can identify all
pairs of opposite points of the boundary ∂�, to obtain a projective plane

RP2
= �/ ∼ .

We now apply Pu’s inequality [Pu 1952] to each of the six Voronoi cells, to obtain

(5–2) area(RP2) ≥
2
π

sysπ1(RP2)2.
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The lemma now follows from the bound sysπ1(RP2) ≥ δ(J ). �

Lemma 5.4. Every Aut(B)-invariant metric G on B satisfies the bound

2δ(J ) ≥ sysπ1(B, G).

Proof. Let p, J (p) ∈ ∂� satisfy dist(p, J (p)) = δ(J ). Let α ⊂ � be a minimizing
path joining p to J (p). Let �′

⊂B be the adjacent Voronoi cell containing this pair
of boundary points, and r : B → B the anticonformal involution that switches �

and �′, and fixes their common boundary. The loop α ∪ r(α) belongs to the free
homotopy class of the noncontractible loop γ ⊂ B obtained as the inverse image
under Q : B → S2 of the edge of the octahedral decomposition of S2 joining the
images of the centers of � and �′ (Lemma 2.2). Since the length of α ∪ r(α) is
2δ(J ), the lemma follows. �

Proof of Theorem 5.1. We may assume that the metric on B is Aut(B)-invariant,
since averaging the metric by a finite group of holomorphic and antiholomorphic
diffeomorphisms can only improve the systolic ratio. We combine the inequalities
of Lemmas 5.4 and 5.3 to prove the theorem. �
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