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A VOLUMISH THEOREM FOR THE JONES POLYNOMIAL
OF ALTERNATING KNOTS

OLIVER T. DASBACH AND XIAO-SONG LIN

The Volume Conjecture claims that the hyperbolic volume of a knot is de-
termined by the colored Jones polynomial.

Here we prove a “Volumish Theorem” for alternating knots in terms of
the Jones polynomial, rather than the colored Jones polynomial: The ratio
of the volume and certain sums of coefficients of the Jones polynomial is
bounded from above and from below by constants.

Furthermore, we give experimental data on the relation of the growths
of the hyperbolic volume and the coefficients of the Jones polynomial, both
for alternating and nonalternating knots.

1. Introduction

Since the introduction of the Jones polynomial, there has been a strong desire to
have a geometrical or topological interpretation for it rather than a combinatorial
definition.

The first major success in this direction was arguably the proof of the Melvin–
Morton Conjecture by Bar-Natan and Garoufalidis [1996] (see [Vaintrob 1997;
Chmutov 1998; Lin and Wang 2001; Rozansky 1997] for different proofs): The
Alexander polynomial is determined by the so-called colored Jones polynomial.
For a knot K the colored Jones polynomial is given by the Jones polynomial and
the Jones polynomials of cablings of K .

The next major conjecture that relates the Jones polynomial and its offsprings
to classical topology and geometry was the Volume Conjecture of Kashaev, Mu-
rakami and Murakami (see [Murakami and Murakami 2001], for instance). This
conjecture states that the colored Jones polynomial determines the Gromov norm
of the knot complement. For hyperbolic knots the Gromov norm is proportional to
the hyperbolic volume.
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A proof of the Volume Conjecture for all knots would also imply that the colored
Jones polynomial detects the unknot [Murakami and Murakami 2001]. This prob-
lem is still wide open; even for the Jones polynomial there is no counterexample
known (see [Dasbach and Hougardy 1997], for example).

The purpose of this paper is to show a relation of the coefficients of the Jones
polynomial and the hyperbolic volume of alternating knot complements. More
specifically we prove:

Volumish Theorem. For an alternating, prime, nontorus knot K let

VK (t)= antn
+ · · ·+ am tm

be the Jones polynomial of K . Then

v8(max(|am−1|, |an+1|)− 1)≤ Vol(S3
− K )≤ 10v3(|an+1| + |am−1| − 1).

Here, v3 ≈ 1.01494 is the volume of an ideal regular hyperbolic tetrahedron and
v8 ≈ 3.66386 is the volume of an ideal regular hyperbolic octahedron.

For the proof of this theorem we make use of a result from [Lackenby 2004]
(with its proof), stating that the hyperbolic volume is linearly bounded from above
and below by the twist number. Lackenby’s upper bound was improved by Ian
Agol and Dylan Thurston and his lower bound by Ian Agol, Peter Storm and Bill
Thurston [Agol et al. 2005].

In an appendix we give some numerical data on the relation between other coef-
ficients and the hyperbolic volume, for both alternating and nonalternating knots.
These data gives some hope for a Volumish Theorem for nonalternating knots as
well.

2. The Jones polynomial evaluation of the Tutte polynomial

Our goal is to relate the hyperbolic volume of alternating knot complements to the
coefficients of the Jones polynomial. We make use of the computation of the Jones
polynomial of alternating links via the Tutte polynomial.

Notation. Our objects are multigraphs, that is, graphs where parallel edges are
allowed. Two edges are called parallel if they connect the same two vertices.

(a) A multigraph G = (V, E) has a set V of vertices and a set E of edges.

(b) We denote by G̃ = (V, Ẽ) a spanning subgraph of G where parallel edges are
deleted. See Figure 1. The set of vertices V is the same.

(c) Each edge e∈ Ẽ in G̃ can be assigned a multiplicity µ(e), namely, the number
of edges in G that are parallel to e. For example, the graph in Figure 1 has one
edge with multiplicity 2, one with multiplicity 3, and one with multiplicity 4.
All other edges have multiplicity 1.
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Figure 1. A multigraph G and its spanning subgraph G̃.

(d) We define n( j) to be the number of edges e ∈ Ẽ with µ( j)≥ j . In particular
n(1)= |Ẽ |. Thus the graph in Figure 1 has n(2)= 3, n(3)= 2, n(4)= 1.

(e) The number of components of a graph G is k(G). If V is apparent from the
context and G = (V, E), we set k(E) := k(G).

(f) The Tutte polynomial of a multigraph G (see [Bollobás 1998], for example)
is

TG(x, y) :=
∑
F⊆E

(x − 1)k(F)−k(E)(y− 1)|F |−|V |+k(F).

The Tutte polynomial and the Jones polynomial for alternating links. Let K be
an alternating link with an alternating plane projection P(K ). The region of the
projection can be colored with two colors, say, purple and gold, such that two
adjacent faces have different colors.

Two graphs are assigned to the projection, one corresponding to the purple re-
gions and one to the golden regions. Every region gives rise to a vertex in the
graph and two vertices are connected by an edge if the corresponding regions are
adjacent to a common crossing. Such graphs are called checkerboard graphs.

Each edge comes with a sign as in Figure 2.
For an alternating link K all edges are either positive or negative. Thus we have a

positive checkerboard graph and a negative checkerboard graph. These two graphs

+

������ ������
−

Figure 2. A positive and a negative sign for the shaded region in
the checkerboard graph.
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are dual to each other. Let G be the positive checkerboard graph, a be the number
of vertices in G and b be the number of vertices in the negative checkerboard graph.

The Jones Polynomial of an alternating link K with positive checkerboard graph
G satisfies

VK (t)= (−1)wt (b−a+3w)/4TG(−t,−1/t);

see [Bollobás 1998], for instance. Here w is the writhe number, that is, the alge-
braic crossing number of the link projection.

Since we are interested in the absolute values of the Jones coefficients, all in-
formation relevant to us is contained in the evaluation TG(−t,−1/t) of the Tutte
polynomial.

Reduction of multiple edges to simple edges. Our first step is to reduce the com-
putation of the Tutte polynomial of a multigraph to the computation of a weighted
Tutte polynomial of a spanning simple graph.

If G= (V, E) is a connected graph without vertices of valence 1 (that is, without
loops) and G̃ = (V, Ẽ) is a spanning simple graph for it, we have

TG

(
−t,−1

t

)
=

∑
F⊆E

(−t − 1)k(F)−1
(
−

1
t
− 1

)|F |−|V |+k(F)

=

∑
F̃⊆Ẽ

(−t − 1)k(F̃)−1
(
−

1
t
− 1

)−|V |+k(F̃)

×

( µ(e1),...,µ(e j )∑
r(e1)=1,...,r(e j )=1

e1,...,e j∈F̃

(
µ(e1)

r(e1)

)
· · ·

(µ(e j )

r(e j )

)(
−

1
t
− 1

)r(e1)+···+r(e j )
)

=

∑
F̃⊆Ẽ

(
(−t − 1)k(F̃)−1

(
−

1
t
− 1

)−|V |+k(F̃)∏
e∈F̃

((
−

1
t

)µ(e)
− 1

))
.

Setting P(m) :=
(−1/t)m − 1
−1/t − 1

= 1− t−1
+ t−2

− · · ·± t−m+1, we have

(1) TG

(
−t,−1

t

)
=

∑
F̃⊆Ẽ

(
(−t − 1)k(F̃)−1

(
−

1
t
− 1

)|F̃ |−|V |+k(F̃)∏
e∈F̃

P(µ(e))
)
.

Proposition 2.1 (Highest Tutte coefficients). Let G = (V, E) be a planar multi-
graph with spanning simple graph G̃=(V, Ẽ). Let the Tutte polynomial evaluate to

TG(−t,−1/t)= antn
+ an+1tn+1

+ · · ·+ am−1tm−1
+ am tm,

for suitable n and m.
Then the coefficients of the highest degree terms of TG(−t,−1/t) are:



A VOLUMISH THEOREM FOR ALTERNATING KNOTS 283

(a) The highest degree term tm of TG(−t,−1/t) in t is t |V |−1 with coefficient

am = (−1)|V |−1.

(b) The second highest degree term is t |V |−2, with coefficient

am−1 = (−1)|V |−1(
|V | − 1− |Ẽ |

)
.

Note that |am−1| = |Ẽ | + 1− |V |.

(c) The third highest degree term is t |V |−3, with coefficient

(−1)|V |
(
−

(
|V |−1

2

)
+ (|V | − 2)|Ẽ | − n(2)−

(
|Ẽ |
2

)
+ tri

)
,

where tri is the number of triangles in Ẽ. This term equals

am−2 = (−1)|V |
(
−

(
|am−1|+1

2

)
− n(2)+ tri

)
.

Proof. It is easy to see that |F̃ | − |V | + k(F)≥ 0 for all F . Therefore,

(
−

1
t
− 1

)|F̃ |−|V |+k(F)∏
e∈F̃

P(µ(e))=±1+ higher terms in t−1

This means that to determine the highest terms of TG(−t,−1/t) we have to
analyze terms where k(F̃) is large.

Case k(F̃)= |V |: this means that |F̃ | = 0. Thus the contribution in the sum in (1)
is

(−t−1)|V |−1
= (−1)|V |−1

(
t |V |−1

+(|V |−1) t |V |−2
+

(
|V |−1

2

)
t |V |−3

+· · ·+1
)
.

Case k(F̃)= |V | − 1: this means that |F̃ | = 1. Thus the contribution is

(−t − 1)|V |−2
∑
e∈Ẽ

P(µ(e)).

Recalling that n( j) is the number of edges in Ẽ of multiplicity ≥ j , we have∑
e∈Ẽ

P(µ(e))= |Ẽ | − n(2)t−1
+ n(3)t−2

− n(4)t−3
+ · · · .
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Case k(F̃) = |V | − 2: this means that |F̃ | equals 2 or that F̃ is a triangle and |F̃ |
equals 3. Thus the contribution is∑
e, f ∈Ẽ

(−t − 1)|V |−3 P(µ(e)) P(µ( f ))

+

∑
e, f,g∈Ẽ

(e, f,g) triangle

(−t − 1)|V |−3
(
−

1
t
− 1

)
P(µ(e))P(µ( f ))P(µ(g)).

By combining these computations we get the result. �

3. An algebraic point of view

It is interesting to formulate the results of Proposition 2.1 in a purely algebraic
way, as follows.

Let G be a multigraph and A its N × N adjacency matrix, so in particular n(2)
equals half the number of entries in A that exceed 1. Let Ã be the matrix obtianed
from A by replacing every nonzero entry A by 1. Thus, Ã has only 1 and 0 as
entries; further, the trace of Ã2 is twice the number of edges of G̃ and the trace of
Ã3 is six times the number edges in G̃ (see [Biggs 1993], for example). Combining
this with Proposition 2.1 immediately yields:

Corollary 3.1. Let

TG(−t,−1/t)= antn
+ an+1tn+1

+ · · ·+ am−1tm−1
+ am tm

be the Jones evaluation of the Tutte Polynomial of a planar graph G.

|am | = 1,

|am−1| =
1
2 trace Ã2

− 1− N ,

|am−2| =

(
|am−1|+1

2

)
+ n(2)− 1

6 trace Ã3.

4. The twist number and the volume of an hyperbolic alternating knot

(For information on hyperbolic structures on knot complements see [Callahan and
Reid 1998], for instance.)

The figure-eight knot has minimal volume among all hyperbolic knot comple-
ments [Cao and Meyerhoff 2001]. For a hyperbolic knot K with crossing number
c > 4, by a result of Colin Adams quoted in [Callahan and Reid 1998], the hyper-
bolic volume of the complement satisfies

Vol(S3
− K )≤ (4c− 16)v3,

where v3 is the volume of a regular ideal hyperbolic tetrahedron.
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.... 

Figure 3. A twist in a diagram of a knot .

For alternating knot complements a better general upper bound is known in terms
of the twist number. As shown by Bill Menasco [1984], a nontorus alternating knot
is hyperbolic.

The twist number of a diagram of an alternating knot is the minimal number of
twists (see Figure 3) in it. Here, a twist can consist of a single crossing. The knot
diagram shown on page 287 has twist number 8.

A twist corresponds to parallel edges in one of the checkerboard graphs. Let D
be a diagram for an alternating knot K , and let G = (V, E) and G∗ = (V ∗, E∗)
be the two checkerboard graphs, which are dual to one another, so |E | = |E∗|. We
can now define the twist number by

(2) T (K ) := |E |−(|E |−|Ẽ |)− (|E∗|−|Ẽ∗|)

= |E | − (|E |−|Ẽ |)− (|E |−|Ẽ∗|) = |Ẽ |+|Ẽ∗| − |E |.

It is an easy exercise to see that

(a) T (K ) is indeed realized as the twist number of a diagram of K , and

(b) T (K ) is an invariant of all alternating projections of K . This follows from the
Tait–Menasco–Thistlethwaite flyping theorem [Menasco and Thistlethwaite
1993]. Below we will give a different argument for it.

Theorem 4.1 (Lackenby [2004], Agol, D. Thurston).

v3 (T (K )− 2)≤ Vol(S3
− K ) < 10v3(T (K )− 1),

where Vol(S3
−K ) is the hyperbolic volume and v3 is the volume of an ideal regular

hyperbolic tetrahedron.

Using work of Perelman the lower bound was improved by Agol, Storm and W.
Thurston [Agol et al. 2005] to

1
2v8 (T (K )− 2)≤ Vol(S3

− K ),

where v8 ≈ 3.66386 is the volume of an ideal regular hyperbolic octahedron.

5. Coefficients of the Jones polynomial

Let K be an alternating knot with reduced alternating diagram D having c cross-
ings. From [Thistlethwaite 1987; Kauffman 1987; Murasugi 1987] we know that:

(a) the span of the Jones polynomial is c;
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(b) the signs of the coefficients are alternating;

(c) the absolute values of the highest and lowest coefficients are 1.

Proposition 2.1 immediately leads to:

Theorem 5.1. Let VK (t)= antn
+ an+1tn+1

+· · ·+ am tm be the Jones polynomial
of an alternating knot K and let G = (V, E) be a checkerboard graph of a reduced
alternating projection of K . Then:

(a) |an| = |am | = 1.

(b) |an+1| + |am−1| = T (K ).

(c) |an+2| + |am−2| + |am−1||an+1| =
T (K )+T (K )2

2
+ n(2)+ n∗(2)− tri− tri∗,

where n(2) is the number of edges in Ẽ of multiplicity > 1 and n∗(2) the
corresponding number in the dual checkerboard graph.

The number tri is the number of triangles in the graph G̃ = (V, Ẽ) and tri∗

corresponds to tri in the dual graph.

(d) In particular, the twist number is an invariant of reduced alternating projec-
tions of the knot.

Proof. Let K be as in the statement, and let G∗ = (V ∗, E∗) be the checkerboard
graph dual to G(V, E). We have |E | = |E∗| and |V |+ |V ∗| = |E |+2. Next recall
from Equation (2) the definition of T (K ), which leads to

T (K )= (|Ẽ | − |V | + 1)+ (|Ẽ∗| − |V ∗| + 1).

The identities in the theorem then follow from Proposition 2.1. �

Volumish Theorem. For an alternating, prime, nontorus knot K let

VK (t)= antn
+ · · ·+ am tm

be the Jones polynomial of K . Then

v8(max(|am−1|, |an+1|)− 1)≤ Vol(S3
− K )≤ 10v3(|an+1| + |am−1| − 1).

Here, v3 ≈ 1.01494 is the volume of an ideal regular hyperbolic tetrahedron and
v8 ≈ 3.66386 is the volume of an ideal regular hyperbolic octahedron.

Proof. The upper bound follows from Theorem 4.1 and 5.1. For the lower bound
we need a closer look at [Lackenby 2004].

We can suppose that K admits a diagram such that both checkerboard graphs are
imbedded so that every pair of edges connecting the same two vertices are adjacent
to each other in the plane. This can be done through flypes.
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Figure 4. The alternating knot 13.123 in the Knotscape Census.

Suppose G p = (Vp, E p) is the positive (colored in purple) and Gg = (Vg, Eg)

is the negative (colored in gold) checkerboard graph. Since G∗p = Gg we have
|E p| = |Eg| and

|Vp| − |E p| + |Vg| = 2= |Vp| − |Eg| + |Vg|.

Let rp and rg be the number of vertices in G p and Gg having valence at least 3.
It is proved in [Lackenby 2004] (and the bound was improved in [Agol et al. 2005])
that

Vol(S3
− K )≥ v8(max(rp, rg)− 2).

If G̃ p = (Vp, Ẽ p) and G̃g = (Vg, Ẽg) are the reduced graphs of G p and Gg than
it is easy to see that

rp = |Vp| − (|Eg| − |Ẽg|)= 2− |Vg| + |Ẽg| = |an+1| + 1.

Similarly, rg = |am−1| + 1 and the lower bound follows. �

Example. The checkerboard graph G of the knot in Figure 4 has |V | = 8 vertices,
|Ẽ | = 11, n(2)= 2 and tri= 1.

Its dual has |V ∗| = 7 vertices, |Ẽ∗| = 10, n∗(2) = 3 and tri∗ = 2. Therefore,
with the preceding notation for the coefficients of the Jones polynomial,

|an| = 1,

|an+1| = |Ẽ | + 1− |V | = 4,

|an+2| =

(
|an+1|+1

2

)
+ n(2)− tri= 10+ 2− 1= 11,

|am | = 1,

|am−1| = |Ẽ∗| + 1− |V ∗| = 4,

|am−2| =

(
|am−1|+1

2

)
+ n∗(2)− tri∗ = 10+ 3− 2= 11.
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The complete Jones polynomial of the knot is, according to Knotscape,

V13.121(t)= t−12
− 4t−11

+ 11t−10
− 23t−9

+ 35t−8
− 47t−7

+ 53t−6

− 52t−5
+ 47t−4

− 34t−3
+ 22t−2

− 11t−1
+ 4− t,

and the hyperbolic volume is

Vol(S3
− K )≈ 21.1052106828.

Appendix

Higher twist numbers of prime alternating knots on 14 crossings. Here we give
experimental data on the relationship between the twist number, as computed using
the Jones polynomial, and the hyperbolic volume of knots. All data are taken from
Knotscape, written by Jim Hoste, Morwen Thistlethwaite and Jeff Weeks [Hoste
et al. 1998]. We confined ourselves to knots with crossing number 14. As before,
let VK (t)= antn

+an+1tn+1
+· · ·+am tm be the Jones polynomial of an alternating

prime knot K .
As shown, the twist number is T (K ) = |an+1| + |am−1|. We call Ti (K ) =
|an+i | + |am−i | the higher twist numbers. In particular, T (L)= T1(L).
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Figure 5. Twist numbers vs. volume correlation for 14-crossing
alternating knows. Each dot stands for a knot in the census.
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Figure 6. Twist numbers vs. volume correlation for 14-crossing
nonalternating knots. Nonhyperbolic knots are assigned zero vol-
ume.

Higher twist numbers of prime nonalternating knots on 14 crossings. For non-
alternating knots we keep the notation, although there is no direct geometrical
justification known:

Again, let VL(t) = antn
+ an+1tn+1

+ · · · + am tm be the Jones polynomial of a
nonalternating knot L .

Define the twist number as T (L)=|an+1|+|am−1|. As in the alternating case, we
call Ti (L)= |an+i |+|am−i | the higher twist numbers. In particular, T (L)= T1(L).

The pictures give, for nonalternating knots with crossing number 14, the relation
between the twist number (or one of the higher twist numbers T2, T3, T4) and the
volume.
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