
Pacific
Journal of
Mathematics

RULED MINIMAL SURFACES IN R3 WITH DENSITY ez

DOAN THE HIEU AND NGUYEN MINH HOANG

Volume 243 No. 2 December 2009





PACIFIC JOURNAL OF MATHEMATICS
Vol. 243, No. 2, 2009

RULED MINIMAL SURFACES IN R3 WITH DENSITY ez

DOAN THE HIEU AND NGUYEN MINH HOANG

We classify ruled minimal surfaces in R3 with density ez . We show that
there is a family of cylindrical ones and that there are no others. Also, all
translation minimal surfaces are ruled.

1. Introduction

Manifolds with density, a new category in geometry, appear in many ways in mathe-
matics, for example as quotients of Riemannian manifolds or as Gauss space. They
are the smooth case of Gromov’s mm-spaces. A density on a Riemannian manifold
Mn is a positive function eϕ(x) used to weight volume and hypersurface area. Gauss
space Gn is Euclidean space with Gaussian probability density (2π)−n/2e−r2/2, a
space very interesting to probabilists. For details about manifolds with density
and some first results of Morgan’s goal to “generalize all of Riemannian geometry
to manifolds with density”, see [Morgan 2005; 2009a; 2006; 2009b; Morgan and
Maurmann 2009; Rosales et al. 2008; Corwin et al. 2006; Doan and Tran 2008].
See especially [2009a, Chapter 18], in which Morgan describes general manifolds
with density and their relationship to Perelman’s proof of the Poincaré conjecture.
Following Gromov [2003, page 213], we define the natural generalization of the
mean curvature of hypersurfaces on a manifold with density eϕ as

(1) Hϕ = H − 1
n−1

dϕ
dn .

Therefore, the mean curvature of a surface in R3 with density eϕ is

(2) Hϕ = H − 1
2

dϕ
dn ,

where H is the Euclidean mean curvature and n is the normal vector field of the
surface. We call Hϕ the mean curvature with density or mean ϕ-curvature of the
surface.

The literature of minimal surfaces began with Lagrange in 1760; his eponymous
PDE is satisfied by minimal graphs of a C2-function of two variables. At that time,
the only known solutions to Lagrange’s equation were planes. In 1776, Meusnier
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solved the equation with the added assumption that the level curves were straight
lines and obtained a ruled minimal surface, the helicoid. It is well known that the
helicoid is the only ruled minimal surface besides the trivial case of planes; see
[Barbosa and Colares 1986; do Carmo 1976]. In 1835, Scherk solved Lagrange’s
equation for translation functions, that is, those of the form f (x, y)= g(x)+h(y),
and discovered Scherk’s minimal surfaces.

Often, a regular surface in R3 can be considered locally as the graph of a function
X :U → R, where U is a domain in R2. In this paper, we consider ruled minimal
surfaces in space with log-linear density R3

= R2
×Rϕ , where Rϕ is the real line

with log-linear density eϕ , which is equivalent to space with density ez , as shown in
Section 2. We classify all ruled minimal surfaces in R3 with density ez . In contrast
to the classical case, there are no noncylindrical ruled minimal surfaces, and there
is a family of cylindrical ruled minimal surfaces. We also consider translation
minimal surfaces and prove that all translation minimal surfaces are ruled.

All functions in this paper belong to the class C2.

2. Minimal surfaces in spaces with densities

From the formula of the ϕ-curvature, it is clear that if we understand the geometric
meaning of dϕ/dn we can discover some simple minimal surfaces in a space with
density. For example, in Gauss space, dϕ/dn is the distance from the origin to the
tangent hyperplane at the corresponding point of the surface. So it is easy to see
that in Gauss space G3 (see also [Corwin et al. 2006])

• planes have constant mean curvature, and planes passing through the origin
are minimal;

• spheres about the origin have constant mean curvature and the one with radius
1/
√

2 is minimal;

• circular cylinders whose axes pass through the origin have constant curvature,
and the one with radius 1 is minimal.

Let ϕ(x) be the linear function ϕ(x) =
∑n

i=1 ai xi on Euclidean space Rn , and
consider the log-linear density eϕ(x). Any set of points in Rn with constant density
is a hyperplane. By a suitable change in coordinates, we can assume that the density
has the form exn , and therefore view the space Rn with density eϕ(x) as the product
Rn−1

⊕ Rϕ , where Rn−1 is Euclidean (n−1)-space and Rϕ is the real line with
density exn .

Since∇ϕ= (0, 0, . . . , 1), dϕ/dn=〈∇ϕ, n〉 is the cosine of the angle between n
and the z-axis. By the definition of the mean ϕ-curvature, it is easy to see that Hϕ
does not change under a translation or a rotation about the z-axis, and moreover

• hyperplanes in Rn with density exn have constant mean curvature;
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• hyperplanes in Rn with density exn that are parallel to the xn-axis have zero
mean curvature;

• circular hypercylinders with rules parallel to the xn-axis have constant mean
curvature.

3. Ruled minimal surfaces in R3 with density ez

Now we consider the problem of classifying all ruled minimal surfaces in R3 with
a log-linear density. Coordinates in R3 are denoted by (x, y, z). Without loss of
generality we can assume that the density is ez .

Locally, a ruled surface is given by the equation

(3) X (u, v)= α(u)+ vβ(u) for u ∈ (a, b) and v ∈ (c, d).

We can assume that |α′| = 1, that |β| = 1, and that 〈α′, β〉 = 0.
We will focus on the cases of cylindrical ruled surfaces (β constant) and non-

cylindrical ruled surfaces (β ′ 6= 0 for all u ∈ (a, b)).
Denote by E , F and G the coefficients of the first fundamental form and by

e, f and g the coefficients of the second fundamental form. A direct computation
yields

E = 1+ 2v〈α′, β ′〉+ v2
|β ′|2, F = 0, G = 1;

e = 〈N , α′′+ vβ ′′〉, f = 〈N , β ′〉, g = 0;

where N = ((α′+ vβ ′)∧β)/|(α′+ vβ ′)∧β)|. Thus

(4) Hϕ =
1
2

(
〈N , α′′+vβ ′′〉

1+2v〈α′, β ′〉+v2|β ′|2
−〈N ,∇ϕ〉

)
.

Proposition 1. Hϕ = 0 if and only if

〈α′ ∧β, α′′〉 = 〈α′ ∧β,∇ϕ〉,

〈α′ ∧β, β ′′〉+ 〈β ′ ∧β, α′′〉 = 〈β ′ ∧β,∇ϕ〉+ 〈α′ ∧β, 2〈α′, β ′〉∇ϕ〉,

〈β ′ ∧β, β ′′〉 = 〈β ′ ∧β, 2〈α′, β ′〉∇ϕ〉+ 〈α′ ∧β, |β ′|2∇ϕ〉,

〈β ′ ∧β, |β ′|2∇ϕ〉 = 0.

Proof. By (4), Hϕ = 0 if and only if

〈N , α′′+ vβ ′′〉
1+ 2v〈α′, β ′〉+ v2|β ′|2

= 〈N ,∇ϕ〉.

With N as defined, this is an equality of polynomials in v. Identifying coefficients,
we obtain the claim. �
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The case β ′ 6=0. From the last equation of Proposition 1, we have 〈β ′∧β,∇ϕ〉=0.
Since ∇ϕ= (0, 0, 1) and β⊥β ′, we see β belongs to a plane containing the z-axis.
After a rotation about the z-axis, we can assume that β = (cos t (u), 0, sin t (u)),
with t ′ 6= 0. Therefore the third equality of Proposition 1 becomes

〈α′ ∧β, |β ′|2∇ϕ〉 = 0.

From this we conclude that α′ belongs to the plane {y = 0} and the curve α lies
on a plane parallel to the xz-plane. It is clear that α and β satisfy the system of
equations in Proposition 1.

Corollary 2. If β ′(u) 6= 0 for all u ∈ (a, b), the ruled minimal surfaces determined
by (3) are vertical planes.

If β ′(v) 6=0 at some v∈ (a, b), then locally the surface is planar. Since minimal sur-
faces solve elliptic PDEs, Aronszajn’s unique continuation theorems [1956; 1957]
for solutions of elliptic PDEs guarantee that the surface is planar globally.

The case β ′ = 0. Since β ′ = 0, β = (a, b, c) = constant, and a2
+ b2
+ c2
= 1,

the system in Proposition 1 becomes

〈α′ ∧β, α′′〉 = 〈α′ ∧β,∇ϕ〉,

β = (a, b, c)= constant.

The first of these implies α′′−∇ϕ = mα′+ nβ, and hence

〈α′′−∇ϕ, α′〉 = m =−〈∇ϕ, α′〉 and 〈α′′−∇ϕ, β〉= n =−〈∇ϕ, β〉.

Thus, α′′−∇ϕ =−〈∇ϕ, α′〉α′−〈∇ϕ, β〉β, or

(5) α′′+〈∇ϕ, α′〉α′ =∇ϕ−〈∇ϕ, β〉β.

Since the mean ϕ-curvature does not change under a rotation about z-axis, we
can assume a = 0. So we have ∇ϕ − 〈∇ϕ, β〉β = (0,−cb, 1 − c2). Because
b2
= 1− c2, we have

∇ϕ−〈∇ϕ, β〉β = (0,−cb, b2).

Suppose that α= (x(u), y(u), z(u)). Then this equation is equivalent to the system

(6) x ′′+ x ′z′ = 0, y′′+ y′z′ =−cb, z′′+ z′2 = b2.

We treat the special cases β = (0, 0,±1) and β = (0,±1, 0) first.
If β = (0, 0,±1), the right side of (5) equals zero. We conclude that α′ and α′′

are parallel, and hence α′′ = 0. Thus, α is a straight line and we have this:

Proposition 3. If β = (0, 0,±1), the ruled minimal surfaces determined by (3) are
planes parallel to the z-axis.
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Figure 1. Ruled minimal surface with β = (0, 1, 0).

We can also treat this case by solving (6). In this case (6) becomes

(7) x ′′+ x ′z′ = 0, y′′+ y′z′ = 0, z′′+ z′2 = 0.

Since β ⊥α′, we get z′= 0, and hence x ′′= y′′= 0. We conclude that α= (x, y, z)
is a straight line lying on the plane z= constant. Hence the ruled surface is a plane
parallel to the z-axis.

If β = (0,±1, 0), then (6) becomes

x ′′+ x ′z′ = 0, y′′+ y′z′ = 0, z′′+ z′2 = 1.

Since β ⊥ α′, we get y′ = 0 and conclude that α lies on the plane y = constant.
The last equation above has the solution

z′ = 1− 2
1+Ae2u =

Ae2u
−1

Ae2u+1
,

z = log(1+ Ae2u)− u = log(e−u
+ Aeu),

where A > 0, whereas the first equation gives

x ′ = Be−z B
e−u+Aeu =

Beu

1+Ae2u ;

hence
x = B
√

A
arctan

√
Aeu
+C.

Since the mean ϕ-curvature does not change under a translation, we can put C = 0.
Since x ′2+ y′2+ z′2 = 1, we have 4A = B2. This proves:

Proposition 4. If β = (0,±1, 0), a ruled minimal surface determined by (3) has a
parametric equation of the form

(8) x = 2 arctan
√

Aeu, y =±v, z = log(e−u
+ Aeu).
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Figure 2. Ruled minimal surface with β = (0, 1/
√

2, 1/
√

2).

Figure 3. Ruled minimal surface with β = (0, 0.1, 0.99).

If β = (0, b, c) with b, c 6= 0, the system (6) becomes

x ′′+ x ′z′ = 0, y′′+ y′z′ =−cb, z′′+ z′2 = b2.

Since β⊥α′, we get by′=−cz′ and conclude that α lies on the plane by+cz+d=0.
The last equation above has the solution

z′ = b− 2b
1+Ae2bu =

bAe2bu
−b

Ae2bu+1
,

z = log(1+ Ae2bu)− bu = log(e−bu
+ Aebu),
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Figure 4. Ruled minimal surface with β = (0, 0.01, 0.999).

where A > 0, whereas the first gives x ′ = Be−z
= B/(e−bu

+ Aebu), and hence

x = B
b
√

A
arctan(

√
Aebu)+C.

Since x ′2+ y′2+ z′2 = 1, we have 4A = B2 and another result:

Proposition 5. If β = (0, b, c) with b, c 6= 0, the ruled minimal surface determined
by (3) has a parametric equation of the form

x=2 arctan
√

Aebu, y=− c
b

log(e−bu
+Aebu)+bv, z= log(e−bu

+Aebu)+cv.

We now combine the results above:

Theorem 6. Besides planes parallel to the z-axis, the ruled minimal surfaces in R3

with density ez are the cylindrical ones given by Proposition 5.

4. Translation minimal surfaces in space with log-linear density ez.

In this section we study translation minimal surfaces in R3 with density ez . We
prove that all translation surfaces that are minimal must be ruled.

Theorem 7. A translation surface given by

X (u, v)= (u, v, g(u)+ h(v))

is minimal if either g(u)= au+ b or h(v)= cv+ d.
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Proof. A straightforward computation shows that Hϕ = 0 if and only if

(9) g′′(1+ h′2)+ h′′(1+ g′2)= 1+ g′2+ h′2.

We fix v= v0, and set A= 1−h′′(v0), B = 1+h′2(v0), C = 1+h′2(v0)−h′′(v0).
Note that B > 0 and C = B− A−1. Thus, f satisfies Ag′2+ Bg′′ =C , and hence
g′′ = (C − Ag′2)/B.

Substituting g′′ into (9), we get

g′2(h′′− A(1+ h′2)/B− 1)= 1− h′′+ h′2−C(1+ h′2)/B.

This implies that unless g′ = constant, we must have

h′′− A(1+ h′2)/B− 1= 0,

1− h′′+ h′2−C(1+ h′2)/B = 0.

Substituting h′′ from the first of these into the second, we obtain

(1+ h′2)(1−C/B− A/B)= 1.

Noting that C = B− A− 1, we get h′2 = B− 1. Thus, h′ = constant. �

Since the roles of g and h are the same, we only need to consider translation
minimal surfaces of the form

X (u, v)= (u, v, g(u)+ cv+ d).

A straightforward computation shows that g must be of the form

g(u)=−(1+ c2) log
∣∣∣∣cos u+D
√

1+c2

∣∣∣∣.
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