Pacific

Journal of

 MathematicsRULED MINIMAL SURFACES IN \mathbb{R}^{3} WITH DENSITY $\boldsymbol{e}^{\boldsymbol{z}}$ Doan The Hieu and Nguyen Minh Hoang

RULED MINIMAL SURFACES IN \mathbb{R}^{3} WITH DENSITY e^{z}

Doan The Hieu and Nguyen Minh Hoang

Abstract

We classify ruled minimal surfaces in \mathbb{R}^{3} with density e^{z}. We show that there is a family of cylindrical ones and that there are no others. Also, all translation minimal surfaces are ruled.

1. Introduction

Manifolds with density, a new category in geometry, appear in many ways in mathematics, for example as quotients of Riemannian manifolds or as Gauss space. They are the smooth case of Gromov's mm -spaces. A density on a Riemannian manifold M^{n} is a positive function $e^{\varphi(x)}$ used to weight volume and hypersurface area. Gauss space G^{n} is Euclidean space with Gaussian probability density $(2 \pi)^{-n / 2} e^{-r^{2} / 2}$, a space very interesting to probabilists. For details about manifolds with density and some first results of Morgan's goal to "generalize all of Riemannian geometry to manifolds with density", see [Morgan 2005; 2009a; 2006; 2009b; Morgan and Maurmann 2009; Rosales et al. 2008; Corwin et al. 2006; Doan and Tran 2008]. See especially [2009a, Chapter 18], in which Morgan describes general manifolds with density and their relationship to Perelman's proof of the Poincaré conjecture. Following Gromov [2003, page 213], we define the natural generalization of the mean curvature of hypersurfaces on a manifold with density e^{φ} as

$$
\begin{equation*}
H_{\varphi}=H-\frac{1}{n-1} \frac{d \varphi}{d \boldsymbol{n}} \tag{1}
\end{equation*}
$$

Therefore, the mean curvature of a surface in \mathbb{R}^{3} with density e^{φ} is

$$
\begin{equation*}
H_{\varphi}=H-\frac{1}{2} \frac{d \varphi}{d \boldsymbol{n}} \tag{2}
\end{equation*}
$$

where H is the Euclidean mean curvature and \boldsymbol{n} is the normal vector field of the surface. We call H_{φ} the mean curvature with density or mean φ-curvature of the surface.

The literature of minimal surfaces began with Lagrange in 1760; his eponymous PDE is satisfied by minimal graphs of a C^{2}-function of two variables. At that time, the only known solutions to Lagrange's equation were planes. In 1776, Meusnier

[^0]solved the equation with the added assumption that the level curves were straight lines and obtained a ruled minimal surface, the helicoid. It is well known that the helicoid is the only ruled minimal surface besides the trivial case of planes; see [Barbosa and Colares 1986; do Carmo 1976]. In 1835, Scherk solved Lagrange's equation for translation functions, that is, those of the form $f(x, y)=g(x)+h(y)$, and discovered Scherk's minimal surfaces.

Often, a regular surface in \mathbb{R}^{3} can be considered locally as the graph of a function $X: U \rightarrow \mathbb{R}$, where U is a domain in \mathbb{R}^{2}. In this paper, we consider ruled minimal surfaces in space with log-linear density $\mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}_{\varphi}$, where \mathbb{R}_{φ} is the real line with log-linear density e^{φ}, which is equivalent to space with density e^{z}, as shown in Section 2 . We classify all ruled minimal surfaces in \mathbb{R}^{3} with density e^{z}. In contrast to the classical case, there are no noncylindrical ruled minimal surfaces, and there is a family of cylindrical ruled minimal surfaces. We also consider translation minimal surfaces and prove that all translation minimal surfaces are ruled.

All functions in this paper belong to the class C^{2}.

2. Minimal surfaces in spaces with densities

From the formula of the φ-curvature, it is clear that if we understand the geometric meaning of $d \varphi / d \boldsymbol{n}$ we can discover some simple minimal surfaces in a space with density. For example, in Gauss space, $d \varphi / d \boldsymbol{n}$ is the distance from the origin to the tangent hyperplane at the corresponding point of the surface. So it is easy to see that in Gauss space G^{3} (see also [Corwin et al. 2006])

- planes have constant mean curvature, and planes passing through the origin are minimal;
- spheres about the origin have constant mean curvature and the one with radius $1 / \sqrt{2}$ is minimal;
- circular cylinders whose axes pass through the origin have constant curvature, and the one with radius 1 is minimal.
Let $\varphi(x)$ be the linear function $\varphi(x)=\sum_{i=1}^{n} a_{i} x_{i}$ on Euclidean space \mathbb{R}^{n}, and consider the log-linear density $e^{\varphi(x)}$. Any set of points in \mathbb{R}^{n} with constant density is a hyperplane. By a suitable change in coordinates, we can assume that the density has the form $e^{x_{n}}$, and therefore view the space \mathbb{R}^{n} with density $e^{\varphi(x)}$ as the product $\mathbb{R}^{n-1} \oplus \mathbb{R}_{\varphi}$, where \mathbb{R}^{n-1} is Euclidean ($n-1$)-space and \mathbb{R}_{φ} is the real line with density $e^{x_{n}}$.

Since $\nabla \varphi=(0,0, \ldots, 1), d \varphi / d \boldsymbol{n}=\langle\nabla \varphi, \boldsymbol{n}\rangle$ is the cosine of the angle between \boldsymbol{n} and the z-axis. By the definition of the mean φ-curvature, it is easy to see that H_{φ} does not change under a translation or a rotation about the z-axis, and moreover

- hyperplanes in \mathbb{R}^{n} with density $e^{x_{n}}$ have constant mean curvature;
- hyperplanes in \mathbb{R}^{n} with density $e^{x_{n}}$ that are parallel to the x_{n}-axis have zero mean curvature;
- circular hypercylinders with rules parallel to the x_{n}-axis have constant mean curvature.

3. Ruled minimal surfaces in \mathbb{R}^{3} with density \boldsymbol{e}^{z}

Now we consider the problem of classifying all ruled minimal surfaces in \mathbb{R}^{3} with a log-linear density. Coordinates in \mathbb{R}^{3} are denoted by (x, y, z). Without loss of generality we can assume that the density is e^{z}.

Locally, a ruled surface is given by the equation

$$
\begin{equation*}
X(u, v)=\alpha(u)+v \beta(u) \quad \text { for } u \in(a, b) \text { and } v \in(c, d) \tag{3}
\end{equation*}
$$

We can assume that $\left|\alpha^{\prime}\right|=1$, that $|\beta|=1$, and that $\left\langle\alpha^{\prime}, \beta\right\rangle=0$.
We will focus on the cases of cylindrical ruled surfaces (β constant) and noncylindrical ruled surfaces ($\beta^{\prime} \neq 0$ for all $u \in(a, b)$).

Denote by E, F and G the coefficients of the first fundamental form and by e, f and g the coefficients of the second fundamental form. A direct computation yields

$$
\begin{array}{lll}
E=1+2 v\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle+v^{2}\left|\beta^{\prime}\right|^{2}, & F=0, & G=1 \\
e=\left\langle N, \alpha^{\prime \prime}+v \beta^{\prime \prime}\right\rangle, & f=\left\langle N, \beta^{\prime}\right\rangle, & g=0
\end{array}
$$

where $\left.N=\left(\left(\alpha^{\prime}+v \beta^{\prime}\right) \wedge \beta\right) / \mid\left(\alpha^{\prime}+v \beta^{\prime}\right) \wedge \beta\right) \mid$. Thus

$$
\begin{equation*}
H_{\varphi}=\frac{1}{2}\left(\frac{\left\langle N, \alpha^{\prime \prime}+v \beta^{\prime \prime}\right\rangle}{1+2 v\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle+v^{2}\left|\beta^{\prime}\right|^{2}}-\langle N, \nabla \varphi\rangle\right) . \tag{4}
\end{equation*}
$$

Proposition 1. $H_{\varphi}=0$ if and only if

$$
\begin{aligned}
\left\langle\alpha^{\prime} \wedge \beta, \alpha^{\prime \prime}\right\rangle & =\left\langle\alpha^{\prime} \wedge \beta, \nabla \varphi\right\rangle \\
\left\langle\alpha^{\prime} \wedge \beta, \beta^{\prime \prime}\right\rangle+\left\langle\beta^{\prime} \wedge \beta, \alpha^{\prime \prime}\right\rangle & =\left\langle\beta^{\prime} \wedge \beta, \nabla \varphi\right\rangle+\left\langle\alpha^{\prime} \wedge \beta, 2\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle \nabla \varphi\right\rangle \\
\left\langle\beta^{\prime} \wedge \beta, \beta^{\prime \prime}\right\rangle & \left.=\left\langle\beta^{\prime} \wedge \beta, 2\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle \nabla \varphi\right\rangle+\left.\left\langle\alpha^{\prime} \wedge \beta,\right| \beta^{\prime}\right|^{2} \nabla \varphi\right\rangle \\
\left.\left.\left\langle\beta^{\prime} \wedge \beta,\right| \beta^{\prime}\right|^{2} \nabla \varphi\right\rangle & =0
\end{aligned}
$$

Proof. By (4), $H_{\varphi}=0$ if and only if

$$
\frac{\left\langle N, \alpha^{\prime \prime}+v \beta^{\prime \prime}\right\rangle}{1+2 v\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle+v^{2}\left|\beta^{\prime}\right|^{2}}=\langle N, \nabla \varphi\rangle .
$$

With N as defined, this is an equality of polynomials in v. Identifying coefficients, we obtain the claim.

The case $\boldsymbol{\beta}^{\prime} \neq \mathbf{0}$. From the last equation of Proposition 1 , we have $\left\langle\beta^{\prime} \wedge \beta, \nabla \varphi\right\rangle=0$. Since $\nabla \varphi=(0,0,1)$ and $\beta \perp \beta^{\prime}$, we see β belongs to a plane containing the z-axis. After a rotation about the z-axis, we can assume that $\beta=(\cos t(u), 0, \sin t(u))$, with $t^{\prime} \neq 0$. Therefore the third equality of Proposition 1 becomes

$$
\left.\left.\left\langle\alpha^{\prime} \wedge \beta,\right| \beta^{\prime}\right|^{2} \nabla \varphi\right\rangle=0
$$

From this we conclude that α^{\prime} belongs to the plane $\{y=0\}$ and the curve α lies on a plane parallel to the $x z$-plane. It is clear that α and β satisfy the system of equations in Proposition 1.
Corollary 2. If $\beta^{\prime}(u) \neq 0$ for all $u \in(a, b)$, the ruled minimal surfaces determined by (3) are vertical planes.
If $\beta^{\prime}(v) \neq 0$ at some $v \in(a, b)$, then locally the surface is planar. Since minimal surfaces solve elliptic PDEs, Aronszajn's unique continuation theorems [1956; 1957] for solutions of elliptic PDEs guarantee that the surface is planar globally.

The case $\boldsymbol{\beta}^{\prime}=\mathbf{0}$. Since $\beta^{\prime}=0, \beta=(a, b, c)=$ constant, and $a^{2}+b^{2}+c^{2}=1$, the system in Proposition 1 becomes

$$
\begin{aligned}
\left\langle\alpha^{\prime} \wedge \beta, \alpha^{\prime \prime}\right\rangle & =\left\langle\alpha^{\prime} \wedge \beta, \nabla \varphi\right\rangle \\
\beta & =(a, b, c)=\mathrm{constant}
\end{aligned}
$$

The first of these implies $\alpha^{\prime \prime}-\nabla \varphi=m \alpha^{\prime}+n \beta$, and hence

$$
\left\langle\alpha^{\prime \prime}-\nabla \varphi, \alpha^{\prime}\right\rangle=m=-\left\langle\nabla \varphi, \alpha^{\prime}\right\rangle \quad \text { and } \quad\left\langle\alpha^{\prime \prime}-\nabla \varphi, \beta\right\rangle=n=-\langle\nabla \varphi, \beta\rangle .
$$

Thus, $\alpha^{\prime \prime}-\nabla \varphi=-\left\langle\nabla \varphi, \alpha^{\prime}\right\rangle \alpha^{\prime}-\langle\nabla \varphi, \beta\rangle \beta$, or

$$
\begin{equation*}
\alpha^{\prime \prime}+\left\langle\nabla \varphi, \alpha^{\prime}\right\rangle \alpha^{\prime}=\nabla \varphi-\langle\nabla \varphi, \beta\rangle \beta \tag{5}
\end{equation*}
$$

Since the mean φ-curvature does not change under a rotation about z-axis, we can assume $a=0$. So we have $\nabla \varphi-\langle\nabla \varphi, \beta\rangle \beta=\left(0,-c b, 1-c^{2}\right)$. Because $b^{2}=1-c^{2}$, we have

$$
\nabla \varphi-\langle\nabla \varphi, \beta\rangle \beta=\left(0,-c b, b^{2}\right)
$$

Suppose that $\alpha=(x(u), y(u), z(u))$. Then this equation is equivalent to the system

$$
\begin{equation*}
x^{\prime \prime}+x^{\prime} z^{\prime}=0, \quad y^{\prime \prime}+y^{\prime} z^{\prime}=-c b, \quad z^{\prime \prime}+z^{\prime 2}=b^{2} \tag{6}
\end{equation*}
$$

We treat the special cases $\beta=(0,0, \pm 1)$ and $\beta=(0, \pm 1,0)$ first.
If $\beta=(0,0, \pm 1)$, the right side of (5) equals zero. We conclude that α^{\prime} and $\alpha^{\prime \prime}$ are parallel, and hence $\alpha^{\prime \prime}=0$. Thus, α is a straight line and we have this:
Proposition 3. If $\beta=(0,0, \pm 1)$, the ruled minimal surfaces determined by (3) are planes parallel to the z-axis.

Figure 1. Ruled minimal surface with $\beta=(0,1,0)$.

We can also treat this case by solving (6). In this case (6) becomes

$$
\begin{equation*}
x^{\prime \prime}+x^{\prime} z^{\prime}=0, \quad y^{\prime \prime}+y^{\prime} z^{\prime}=0, \quad z^{\prime \prime}+z^{\prime 2}=0 \tag{7}
\end{equation*}
$$

Since $\beta \perp \alpha^{\prime}$, we get $z^{\prime}=0$, and hence $x^{\prime \prime}=y^{\prime \prime}=0$. We conclude that $\alpha=(x, y, z)$ is a straight line lying on the plane $z=$ constant. Hence the ruled surface is a plane parallel to the z-axis.

If $\beta=(0, \pm 1,0)$, then (6) becomes

$$
x^{\prime \prime}+x^{\prime} z^{\prime}=0, \quad y^{\prime \prime}+y^{\prime} z^{\prime}=0, \quad z^{\prime \prime}+z^{\prime 2}=1
$$

Since $\beta \perp \alpha^{\prime}$, we get $y^{\prime}=0$ and conclude that α lies on the plane $y=$ constant. The last equation above has the solution

$$
\begin{aligned}
z^{\prime} & =1-\frac{2}{1+A e^{2 u}}=\frac{A e^{2 u}-1}{A e^{2 u}+1} \\
z & =\log \left(1+A e^{2 u}\right)-u=\log \left(e^{-u}+A e^{u}\right)
\end{aligned}
$$

where $A>0$, whereas the first equation gives

$$
x^{\prime}=B e^{-z} \frac{B}{e^{-u}+A e^{u}}=\frac{B e^{u}}{1+A e^{2 u}}
$$

hence

$$
x=\frac{B}{\sqrt{A}} \arctan \sqrt{A} e^{u}+C
$$

Since the mean φ-curvature does not change under a translation, we can put $C=0$.
Since $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=1$, we have $4 A=B^{2}$. This proves:
Proposition 4. If $\beta=(0, \pm 1,0)$, a ruled minimal surface determined by (3) has a parametric equation of the form

$$
\begin{equation*}
x=2 \arctan \sqrt{A} e^{u}, \quad y= \pm v, \quad z=\log \left(e^{-u}+A e^{u}\right) \tag{8}
\end{equation*}
$$

Figure 2. Ruled minimal surface with $\beta=(0,1 / \sqrt{2}, 1 / \sqrt{2})$.

Figure 3. Ruled minimal surface with $\beta=(0,0.1,0.99)$.
If $\beta=(0, b, c)$ with $b, c \neq 0$, the system (6) becomes

$$
x^{\prime \prime}+x^{\prime} z^{\prime}=0, \quad y^{\prime \prime}+y^{\prime} z^{\prime}=-c b, \quad z^{\prime \prime}+z^{\prime 2}=b^{2}
$$

Since $\beta \perp \alpha^{\prime}$, we get $b y^{\prime}=-c z^{\prime}$ and conclude that α lies on the plane $b y+c z+d=0$. The last equation above has the solution

$$
\begin{aligned}
z^{\prime} & =b-\frac{2 b}{1+A e^{2 b u}}=\frac{b A e^{2 b u}-b}{A e^{2 b u}+1} \\
z & =\log \left(1+A e^{2 b u}\right)-b u=\log \left(e^{-b u}+A e^{b u}\right)
\end{aligned}
$$

Figure 4. Ruled minimal surface with $\beta=(0,0.01,0.999)$.
where $A>0$, whereas the first gives $x^{\prime}=B e^{-z}=B /\left(e^{-b u}+A e^{b u}\right)$, and hence

$$
x=\frac{B}{b \sqrt{A}} \arctan \left(\sqrt{A} e^{b u}\right)+C
$$

Since $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=1$, we have $4 A=B^{2}$ and another result:
Proposition 5. If $\beta=(0, b, c)$ with $b, c \neq 0$, the ruled minimal surface determined by (3) has a parametric equation of the form

$$
x=2 \arctan \sqrt{A} e^{b u}, \quad y=-\frac{c}{b} \log \left(e^{-b u}+A e^{b u}\right)+b v, \quad z=\log \left(e^{-b u}+A e^{b u}\right)+c v .
$$

We now combine the results above:
Theorem 6. Besides planes parallel to the z-axis, the ruled minimal surfaces in \mathbb{R}^{3} with density e^{z} are the cylindrical ones given by Proposition 5.

4. Translation minimal surfaces in space with \log-linear density \boldsymbol{e}^{z}.

In this section we study translation minimal surfaces in \mathbb{R}^{3} with density e^{z}. We prove that all translation surfaces that are minimal must be ruled.
Theorem 7. A translation surface given by

$$
X(u, v)=(u, v, g(u)+h(v))
$$

is minimal if either $g(u)=a u+b$ or $h(v)=c v+d$.

Proof. A straightforward computation shows that $H_{\varphi}=0$ if and only if

$$
\begin{equation*}
g^{\prime \prime}\left(1+h^{\prime 2}\right)+h^{\prime \prime}\left(1+g^{\prime 2}\right)=1+g^{\prime 2}+h^{\prime 2} . \tag{9}
\end{equation*}
$$

We fix $v=v_{0}$, and set $A=1-h^{\prime \prime}\left(v_{0}\right), B=1+h^{\prime 2}\left(v_{0}\right), C=1+h^{\prime 2}\left(v_{0}\right)-h^{\prime \prime}\left(v_{0}\right)$. Note that $B>0$ and $C=B-A-1$. Thus, f satisfies $A g^{\prime 2}+B g^{\prime \prime}=C$, and hence $g^{\prime \prime}=\left(C-A g^{\prime 2}\right) / B$.

Substituting $g^{\prime \prime}$ into (9), we get

$$
g^{\prime 2}\left(h^{\prime \prime}-A\left(1+h^{\prime 2}\right) / B-1\right)=1-h^{\prime \prime}+h^{\prime 2}-C\left(1+h^{\prime 2}\right) / B
$$

This implies that unless $g^{\prime}=$ constant, we must have

$$
\begin{aligned}
h^{\prime \prime}-A\left(1+h^{\prime 2}\right) / B-1 & =0 \\
1-h^{\prime \prime}+h^{\prime 2}-C\left(1+h^{\prime 2}\right) / B & =0
\end{aligned}
$$

Substituting $h^{\prime \prime}$ from the first of these into the second, we obtain

$$
\left(1+h^{\prime 2}\right)(1-C / B-A / B)=1
$$

Noting that $C=B-A-1$, we get $h^{\prime 2}=B-1$. Thus, $h^{\prime}=$ constant.
Since the roles of g and h are the same, we only need to consider translation minimal surfaces of the form

$$
X(u, v)=(u, v, g(u)+c v+d)
$$

A straightforward computation shows that g must be of the form

$$
g(u)=-\left(1+c^{2}\right) \log \left|\cos \frac{u+D}{\sqrt{1+c^{2}}}\right|
$$

Acknowledgment

We would like to thank Professor Frank Morgan for his encouragement, for bringing manifolds with density to our attention and for introducing to us the nice papers of Aronszajn.

References

[Aronszajn 1956] N. Aronszajn, "Sur l'unicité du prolongement des solutions des équations aux dérivées partielles elliptiques du second ordre", C. R. Acad. Sci. Paris 242 (1956), 723-725. MR 17,854d Zbl 0074.31203
[Aronszajn 1957] N. Aronszajn, "A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order", J. Math. Pures Appl. (9) 36 (1957), 235249. MR 19,1056c Zbl 0084.30402
[Barbosa and Colares 1986] J. L. M. Barbosa and A. G. Colares, Minimal surfaces in \mathbb{R}^{3}, Lecture Notes in Mathematics 1195, Springer, Berlin, 1986. MR 87j:53010 Zbl 0609.53001
[do Carmo 1976] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976. MR 52 \#15253 Zbl 0326.53001
[Corwin et al. 2006] I. Corwin, N. Hoffman, S. Hurder, V. Sesum, and Y. Xu, "Differential geometry of manifolds with density", Rose-Hulman Undergraduate Math Journal 7:1, paper 2 (2006).
[Doan and Tran 2008] Doan T. H. and Tran, L. N., "On the four vertex theorem in planes with radial density $e^{\phi(r) ", ~ C o l l o q . ~ M a t h . ~ 113: 1 ~(2008), ~ 169-174 . ~ M R ~ 2009 a: 53003 ~ Z b l ~} 1152.53042$
[Gromov 2003] M. Gromov, "Isoperimetry of waists and concentration of maps", Geom. Funct. Anal. 13:1 (2003), 178-215. MR 2004m:53073 Zbl 1044.46057
[Morgan 2005] F. Morgan, "Manifolds with density", Notices Amer. Math. Soc. 52:8 (2005), 853858. MR 2006g:53044 Zbl 1118.53022
[Morgan 2006] F. Morgan, "Myers' theorem with density", Kodai Math. J. 29:3 (2006), 455-461. MR 2007h:53043 Zbl 1132.53306
[Morgan 2009a] F. Morgan, Geometric measure theory: A beginner's guide, 4th ed., Academic, Amsterdam, 2009. MR 2455580 Zbl 05501365
[Morgan 2009b] F. Morgan, "Manifolds with density and Perelman's proof of the Poincaré conjecture", Amer. Math. Monthly 116:2 (2009), 134-142. MR 2478057 Zbl 05545508
[Morgan and Maurmann 2009] F. Morgan and Q. Maurmann, "Isoperimetric comparison theorems for manifolds with density", Calc. Var. Partial Differential Equations (2009).
[Rosales et al. 2008] C. Rosales, A. Cañete, V. Bayle, and F. Morgan, "On the isoperimetric problem in Euclidean space with density", Calc. Var. Partial Differential Equations 31:1 (2008), 27-46. MR 2008m:49212 Zbl 1126.49038

Received February 10, 2009. Revised March 23, 2009.
Doan The Hieu
Hue Geometry Group
College of Education
Hue University
34 Le Loi
HUE
Vietnam
dthehieu@yahoo.com
http://sites.google.com/site/dthehieu/

```
Nguyen Minh Hoang
Hue Geometry Group
College of Education
Hue University
34 Le Loi
Hue
Vietnam
minhhoangtk0319@gmail.com
```


[^0]: MSC2000: primary 53C25; secondary 53A10, 49Q05.
 Keywords: log-linear density, ruled minimal surfaces, translation minimal surfaces.

