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JESÚS A. ÁLVAREZ LÓPEZ AND ALBERTO CANDEL

A foliation is called Riemannian if its holonomy pseudogroup consists of
local isometries for some Riemannian metric. By combining the work on
Hilbert’s fifth problem for local groups with our work on equicontinuous
foliated spaces, we prove that, if a foliated space is strongly equicontinuous,
locally connected and of finite dimension, has a dense leaf, and has holo-
nomy pseudogroup whose closure is quasianalytic, then it is a Riemannian
foliation.

Introduction

Riemannian foliations occupy an important place in geometry. An excellent survey
is A. Haefliger’s Bourbaki seminar [1989], and the book of P. Molino [1988] is the
standard reference for Riemannian foliations. In one of the appendices to this
book, E. Ghys proposes the problem of developing a theory of equicontinuous
foliated spaces paralleling that of Riemannian foliations; he uses the suggestive
term “qualitative Riemannian foliations” for such foliated spaces.

In our previous paper [AC 2009], we discussed the structure of equicontinu-
ous foliated spaces and, more generally, of equicontinuous pseudogroups of local
homeomorphisms of topological spaces. This concept was difficult to develop be-
cause of the local nature of pseudogroups and the lack of an infinitesimal charac-
terization of local isometries, as one has in the Riemannian case. These difficulties
give rise to two versions of equicontinuity: A weaker one seems to be more nat-
ural, but a stronger one is more useful for generalizing topological properties of
Riemannian foliations. Another relevant property for this purpose is that of quasi-
effectiveness, which is a generalization to pseudogroups of effectiveness for group
actions. For locally connected foliated spaces, quasieffectiveness is equivalent to
the quasianalyticity introduced by Haefliger [1985]. For instance, the following
well-known topological properties of Riemannian foliations were generalized to

MSC2000: 22E05, 57R30, 57S05, 58H99.
Keywords: Riemannian foliations, equicontinuous pseudogroups, Hilbert’s fifth problem.
Álvarez López is supported by DGicyt grant PB95-0850. Candel is partially supported by NSF grant
DMS-0049077.

257

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2010.248-2


258 JESÚS A. ÁLVAREZ LÓPEZ AND ALBERTO CANDEL

strongly equicontinuous quasieffective compact foliated spaces [AC 2009] (we also
assume that all foliated spaces are locally compact and Polish):

• Leaves without holonomy are quasiisometric to one another (this was our
original motivation for that study).

• Leaf closures define a partition of the space. So the foliated space is transitive
(there is a dense leaf) if and only if it is minimal (all leaves are dense).

• The holonomy pseudogroup has a closure defined by using the compact-open
topology on small enough open subsets.

In this paper we show, in fact, that there are few ways of constructing nice
equicontinuous foliated spaces beyond Riemannian foliations. The definition of
Riemannian foliation used here is slightly more general than usual: A foliation
is called Riemannian when its holonomy pseudogroup is given by local isome-
tries of some Riemannian manifold (a Riemannian pseudogroup); thus leafwise
smoothness is not required. Our main result is the following purely topological
characterization of Riemannian foliations with dense leaves on compact manifolds.

Theorem. Suppose (X,F) is a transitive compact foliated space. Then F is a
Riemannian foliation if and only if X is locally connected and finite-dimensional, F

is strongly equicontinuous, and the closure of its holonomy pseudogroup is quasi-
analytic.

This theorem follows directly from the corresponding result for pseudogroups,
whose proof uses the material developed in [AC 2009], as well as the local ver-
sion of R. Jacoby’s solution [1957] of Hilbert’s fifth problem. For some time,
Jacoby’s work has been known to contain some dubious passages. Fortunately,
I. Goldbring [2010] has established a complete new proof of the local Hilbert fifth
problem. We learned of these developments while revising this paper, and deter-
mined that none of the shortcomings of [Jacoby 1957] directly affect our work
below.

M. Kellum [1993; 1994] made some progress toward a topological characteriza-
tion of Riemannian foliations, by proving a related result for certain pseudogroups
of uniformly Lipschitz diffeomorphisms of Riemannian manifolds. R. Sacksteder
[1965] gave a result that can be interpreted as giving a characterization of Riemann-
ian pseudogroups of one-dimensional manifolds. More recently, C. Tarquini [2004]
proved that equicontinuous transversely conformal foliations are Riemannian; in
the case of dense leaves, this result follows easily from our main theorem.

1. Local groups and local actions

For ease of reference, we recall some of the terminology pertaining to local groups
as developed in [Jacoby 1957].
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Definition 1.1. A local group is a quintuple (G, e, · , ′,D) satisfying the following
conditions:

(1) (G,D) is a topological space;

(2) · is a function from a subset of G×G to G;

(3) ′ is a function from a subset of G to G;

(4) there is a subset O of G such that
(a) O is an open neighborhood of e in G,
(b) O × O is a subset of the domain of · ,
(c) O is a subset of the domain of ′ ,
(d) for all a, b, c ∈ O , if a · b and b · c ∈ O , then (a · b) · c = (a · b) · c,
(e) a · e = e · a = a and a′ · a = a · a′ = e for all a ∈ O and a′ ∈ O ,
(f) the map · : O × O→ G is continuous,
(g) the map ′ : O→ G is continuous;

(5) the set {e} is closed in G.

Jacoby employs the notation G for the quintuple (G, e, · , ′,D), but here it will
be simply denoted by G.

The collection of all sets O satisfying condition (4) will be denoted by 9G.
This is a neighborhood base of e ∈ G; all of these neighborhoods are symmetric
with respect to the inverse operation (3). To say that the local group G enjoys a
certain topological property (for example, local compactness, metrizability, finite-
dimensionality) means that some element O ∈9G, with the induced topology, has
that property. Let 8(G, n) denote the collection of subsets A of G such that the
product of any collection of no more than n elements of A is defined, and the set
An of such products is contained in some O ∈9G.

If G is a local group, then H is a subgroup of G if H ∈8(G, 2), e∈ H , H ′= H
and H · H = H .

If G is a local group, then H ⊂ G is a sublocal group of G in case H is itself a
local group with respect to the induced operations and topology.

If G is a local group, then ϒG denotes the set of all pairs (H,U ) of subsets of
G such that e ∈ H , U ∈ 9G, a · b ∈ H for all a, b ∈ U ∩ H , and c′ ∈ H for all
c ∈U ∩ H .

Jacoby [1957, Theorem 26] proved that H ⊂ G is a sublocal group if and only
if there exists U such that (H,U ) ∈ ϒG.

Let G be a local group and let 5G denote the pairs (H,U ) such that e ∈ H ,
U ∈9G∩8(G, 6), a ·b ∈ H for all a, b ∈U 6

∩H , c′ ∈ H for all c ∈U 6
∩H , and

U 2 r H is open. Given such a pair (H,U ) ∈5G, there is a (completely regular,
Hausdorff) topological space G/(U, H) and a continuous open surjection

T :U 2
→ G/(U, H)
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such that T (a)= T (b) if and only if a′ · b ∈ H ; see [Jacoby 1957, Theorem 29].
If (H, V ) is another pair in 5G, then the spaces G/(H,U ) and G/(H, V ) are

locally homeomorphic in an obvious way. Thus the concept of coset space of H
is well-defined in this sense, as a germ of a topological space. The notation G/H
will be used in this sense; and to say that G/H has a certain topological property
will mean that some G/(H,U ) has such a property.

Let 1G be the set of pairs (H,U ) such that (H,U ) ∈5G and b′ · (a · b) ∈ H
for all a ∈ H ∩U 4 and b ∈U 2. A subset H ⊂ G is called a normal sublocal group
of G if there exists U such that (H,U )∈1G. If (H,U )∈1G, the quotient space
G/(H,U ) admits the structure of a local group (see [Jacoby 1957, Theorem 35] for
the pertinent details) and the natural projection T :U 2

→G/(H,U ) is a local homo-
morphism. As before, another such pair (H, V ) produces a locally isomorphic
quotient local group.

We now recall the main results of [Jacoby 1957] on the structure of locally
compact local groups.

Definition 1.2. A local group G is a local Lie group if there is an O ∈ 9G and a
homeomorphism ϕ of O · O onto an open subset of an Euclidean space such that
the function (x, y) 7→ ϕ(ϕ−1x ·φ−1 y) is real analytic at ϕe.

Theorem 1.3 [Jacoby 1957, Theorem 96]. Any locally compact local group with-
out small subgroups is a local Lie group.

In this result, a local group without small subgroups is a local group where some
neighborhood of the identity element contains no nontrivial subgroup.

Theorem 1.4 [Jacoby 1957, Theorems 97–103]. Any locally compact and second
countable local group G can be approximated by local Lie groups. More precisely,
given V ∈ 9G ∩8(G, 2), there exists U ∈ 9G with U ⊂ V and there exists a
sequence of compact normal subgroups Fn⊂U such that Fn+1⊂ Fn ,

⋂
n Fn={e},

(Fn,U ) ∈1G, and G/(Fn,U ) is a local Lie group.

Theorem 1.5 [Jacoby 1957, Theorem 107]. Any finite-dimensional and metrizable
locally compact local group is locally isomorphic to the direct product of a Lie
group and a compact zero-dimensional topological group.

An immediate consequence of Theorem 1.5 is that any locally Euclidean local
group is a local Lie group, which is known as the local Hilbert’s fifth problem. A
solution was originally proposed by Jacoby, but has only recently been established
correctly by Goldbring [2010].

All local groups appearing in this paper will be assumed, or proved, to be locally
compact and second countable.

Definition 1.6. A local group G is a local transformation group on a subspace
X ⊂ Y if there is given a continuous map G× X→ Y , written (g, x) 7→ gx , such
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that ex = x for all x ∈ X , and g1(g2x)= (g1g2)x , provided both sides are defined.
This map G× X→ Y is called a local action of G on X ⊂ Y .

The standard example of local action is the following. Let H be a sublocal group
of G. If (H,U ) ∈5G and T : U 2

→ G/(H,U ) is the natural projection, then U
is a sublocal group of G and the map (u, T (g)) 7→ T (u · g) defines a local action
of U on the open subspace T (U ) of G/(H,U ).

If G is a local group acting on X ⊂ Y and the action is locally transitive at x ∈ X
in that there is a neighborhood V ∈9G such that V x includes a neighborhood of
x in X , then there is a sublocal group H of G and an open subset U ⊂G such that
(H,U )∈5G and the orbit map g ∈G 7→ gx ∈ X induces a local homeomorphism
G/(H,U )→ X at x , which is equivariant with respect to the action of U .

Theorem 1.7. Let G be a locally compact, separable and metrizable local group.
Suppose that there is a local action of G on a finite-dimensional subspace X ⊂ Y
and that the action is locally transitive at some x ∈ X. Fix some (H,U ) ∈ 5G
so that the orbit map g 7→ gx induces a local homeomorphism G/(H,U )→ X
at x. Then there exists a connected normal subgroup K of G such that K ⊂ H ,
(K ,U ) ∈5G and G/(K ,U ) has finite dimension.

This is a local version of [Montgomery and Zippin 1955, Theorem 6.2.2], whose
proof also establishes the following fact.

Claim 1. Let A be a locally compact, separable and metrizable topological group,
and let B be a closed subgroup of A such that A/B is of finite dimension and con-
nected. Let Nn be a sequence of compact normal subgroups such that

⋂
n Nn = {e}

and every A/Nn is a Lie group. Then there is some index n0 such that the connected
component of the identity of Nn0 is contained in B.

Claim 2. Let A be a local group, let (B, V ) ∈5A, let T : A→ A/(B, V ) denote
the natural projection, and let C be a compact subgroup of A contained in V 2

∩V 6.
Then B ∩C is a compact subgroup of C , a map C/(B ∩C)→ A/(B, V ) is well-
defined by the assignment a(B ∩C) 7→ T (a), and this map is an embedding.

Proof of Claim 2. On the one hand, B ∩C is compact because B is closed and C
is compact. On the other hand, B∩C is a subgroup of C because C is a subgroup,
C ⊂ V 6, and a · b ∈ B and a′ ∈ B for all a, b ∈ V 6 since (B, V ) ∈ 5A. The
map C/(B ∩ C)→ A/(B, V ) is well-defined and injective because C ⊂ V 2 and
T (a) = T (b) if and only if a · b′ ∈ B for a, b ∈ V 2. This injection is continuous
because it is induced by the inclusion C ↪→ V 2. Thus this map is an embedding
since C/(B ∩C) is compact and A/(B, V ) is Hausdorff. �

Proof of Theorem 1.7. Let Fn be a sequence of compact normal subgroups of G
as provided by [Jacoby 1957, Theorems 97–103] (stated here as Theorem 1.4).
It may be assumed that (Fn,U ) ∈ 1G and Fn ⊂ U 2

∩ U 6 for all n. Let Kn
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be the identity component of Fn . Then the natural quotient map G/(Kn,U )→
G/(Fn,U ) has zero-dimensional fibers because they are locally homeomorphic to
the zero-dimensional group Fn/Kn . Since G/(Fn,U ) is a local Lie group, it has
finite dimension, and so it follows that G/(Kn,U ) has also finite dimension; see
[Hurewicz and Wallman 1941, Chapter VII, Section 4].

By Claim 2, K1 ∩ H is a compact subgroup of K1, and there is a canonical
embedding K1/(K1 ∩ H)→ G/(H,U ). Also K1/(K1 ∩ H) is connected because
K1 is connected. Therefore the dimension of K1/(K1∩H) is less than or equal to
the dimension of G/(H,U ) by [Hurewicz and Wallman 1941, Theorem III.1], and
thus K1/(K1 ∩ H) has finite dimension. Furthermore, each canonical embedding
K1/(K1∩Fn)→G/(Fn,U ), given by Claim 2, realizes K1/(K1∩Fn) as a compact
subgroup of the local Lie group G/(Fn,U ) because K1∩ Fn is a normal subgroup
of K1. So every K1/(K1 ∩ Fn) is a Lie group. Then, by Claim 1 with A = K1,
B = K1 ∩ H , and Nn = K1 ∩ Fn , there is some index n0 such that the identity
component K of F = K1 ∩ Fn0 is contained in K1 ∩ H . This F is a normal
subgroup of G, and thus K is a connected normal subgroup of G. Furthermore
(K ,U ), (F,U ) ∈1G and

dim G/(K ,U )= dim G/(F,U )≤ dim G/(K1,U )+ dim K1/(K1 ∩ Fn0)

by [Hurewicz and Wallman 1941, Theorem III.4], confirming that G/(K ,U ) has
finite dimension. �

2. Equicontinuous pseudogroups

A pseudogroup of local transformations of a topological space Z is a collection
H of homeomorphisms between open subsets of Z that contains the identity on
Z and is closed under composition (wherever defined), inversion, restriction and
combination of maps. A pseudogroup H is generated by a set E ⊂ H if every
element of H can be obtained from E by using the pseudogroup operations; sets
of generators will always be assumed to be symmetric: h−1

∈ E if h ∈ E .
A pseudogroup of local transformations H on Z induces an equivalence relation

on Z whose equivalence classes are the orbits: The orbit of a point x in Z under
H is the set H(x) of all points h(x), for all h ∈H whose domain contains x .

Pseudogroups of local transformations naturally generalize group actions on
topological spaces (the restrictions to open subsets of the space of the homeomor-
phism of the action generate a pseudogroup of local transformations of that space),
and include as an important example the holonomy pseudogroup of a foliated space
generated by the holonomy transformations between transversals of a regular cov-
ering by foliation charts of the foliated space [Candel and Conlon 2000; Haefliger
1985; 1988; Hector and Hirsch 1981].
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The study of the geometry and dynamics of pseudogroups can be simplified
by using certain equivalence relation introduced by Haefliger [1985; 1988]. This
equivalence relation is generated by the following basic example. If H is a pseudo-
group of local transformations of Z and U ⊂ Z is an open subset of Z that has
nonempty intersections with every orbit of H, then the pseudogroup HU generated
by the restrictions of elements of H to U is a pseudogroup of local transforma-
tions of U that is equivalent to H. This concept of pseudogroup equivalence is
very important in the study of foliated spaces because the equivalence class of the
holonomy pseudogroup depends only on each foliated space; it is independent of
the choice of a regular covering by flow boxes.

Haefliger also introduced the concept of compact generation for pseudogroups,
a property that is preserved under equivalence of pseudogroups. A pseudogroup
of local transformations H of a locally compact space Z is compactly generated if
there is a relatively compact open subset U of Z that meets each orbit of H, and is
such that the restriction G of H to U is generated by a finite symmetric collection
E ⊂G such that each g ∈ E is the restriction of an element ḡ of H defined on some
neighborhood of the closure of the source of g. Any such E is called a system of
compact generation of H on U .

In [AC 2009], we introduced the concepts of strong and weak equicontinuity
for pseudogroups of local transformations of spaces whose topology is induced by
the following type of structure. Let {(Zi , di )}i∈I be a family of metric spaces such
that {Zi }i∈I is a covering of a set Z , each intersection Zi ∩ Z j is open in (Zi , di )

and (Z j , d j ), and for all ε > 0 there is some δ(ε) > 0 such that for all i, j ∈ I and
z ∈ Zi ∩ Z j , there is some open neighborhood Ui, j,z of z in Zi ∩ Z j (with respect
to the topology induced by di and d j ) such that

di (x, y) < δ(ε) implies d j (x, y) < ε

for all ε>0 and all x, y∈Ui, j,z . Such a family is called a cover of Z by quasilocally
equal metric spaces. This term refers to a covering of Z by sets endowed with
metrics whose restrictions to the overlaps are almost equal locally. Compare it
with the notion of covering by locally equal metric spaces, which is given below.
Two such families are called quasilocally equal when their union also is a cover
of Z by quasilocally equal metric spaces. This is an equivalence relation whose
equivalence classes are called quasilocal metrics on Z . For each quasilocal metric
Q on Z , the pair (Z ,Q) is called a quasilocal metric space. Such a Q induces
a topology on Z such that, for each {(Zi , di )}i∈I ∈ Q, the family of open balls
of all metric spaces (Zi , di ) form a base of open sets. Any topological concept
or property of (Z ,Q) refers to this underlying topology. We also observed that
(Z ,Q) is a locally compact Polish space if and only if it is Hausdorff, paracompact,
separable and locally compact.
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In [AC 2009], we defined the strongest version of equicontinuity as follows.

Definition 2.1. A pseudogroup H of local homeomorphisms of a quasilocal metric
space (Z ,Q) is strongly equicontinuous if there exists some {(Zi , di )}i∈I ∈Q and
some symmetric set S of generators of H that is closed under compositions such
that, for every ε > 0, there is some δ(ε) > 0 such that

di (x, y) < δ(ε) implies d j (h(x), h(y)) < ε

for all h ∈ S, i, j ∈ I and x, y ∈ Zi ∩ h−1(Z j ∩ im h).
A pseudogroup H of local homeomorphisms of a topological space Z is strongly

equicontinuous if it is strongly equicontinuous with respect to some quasilocal
metric inducing the topology of Z .

Strong equicontinuity is invariant under equivalences of pseudogroups acting on
locally compact Polish spaces [AC 2009, Lemma 8.8].

The condition that the symmetric generating set S in Definition 2.1 be closed
under compositions is precisely what distinguishes strong and weak equicontinuity
[AC 2009, Lemma 8.3]. A typical choice of S is the set of all possible composites
of some symmetric set of generators. In fact, given any S satisfying the condition of
strong equicontinuity, it is obviously possible to find a symmetric set of generators
E consisting of restrictions of elements of S, and so the set of all composites of
elements of E also satisfies the condition of strong equicontinuity.

A key property of strong equicontinuity is the following.

Proposition 2.2 [AC 2009, Proposition 8.9]. Let H be a compactly generated and
strongly equicontinuous pseudogroup acting on a locally compact Polish quasilo-
cal metric space (Z ,Q), and let U be any relatively compact open subset of (Z ,Q)
that meets every H-orbit. Suppose that {(Zi , di )}i∈I ∈Q satisfies the condition of
strong equicontinuity. Let E be any system of compact generation of H on U , and
let ḡ be an extension of each g ∈ E with dom g ⊂ dom ḡ. Also, let {Z ′i }i∈I be
any shrinking of {Zi }i∈I . Then there is a finite family V of open subsets of (Z ,Q)
whose union contains U such that, for any V ∈ V, x ∈ U ∩ V , and h ∈ H with
x ∈ dom h and h(x) ∈ U , the domain of h̃ = ḡn ◦ · · · ◦ ḡ1 contains V for any
composite h = gn ◦ · · · ◦ g1 defined around x with g1, . . . , gn ∈ E , and moreover
V ⊂ Z ′i0

and h̃(V )⊂ Z ′i1
for some i0, i1 ∈ I .

In this statement, {Z ′i }i∈I is a shrinking of {Zi }i∈I in that it is also an open cover
of Z and satisfies Z ′i ⊂ Zi for all i ∈ I .

In [AC 2009], we introduced the following terminology for the study of strongly
equicontinuous pseudogroups. A pseudogroup H of local transformations of a
space Z is said to be quasieffective if it is generated by some symmetric set S
that is closed under compositions, and if any transformation in S is the identity on
its domain if it is the identity on some nonempty open subset of its domain. The
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family S may also be assumed to be closed under restrictions to open sets, and in
that case every map in H is a combination of maps in S. Moreover, if H is strongly
equicontinuous and quasieffective, then S can be chosen to satisfy the conditions
of both strong equicontinuity and quasieffectiveness.

We proved in [AC 2009, Lemma 9.5] that quasieffectiveness is preserved by
equivalences of pseudogroups acting on locally compact Polish spaces, and for
pseudogroups of local homeomorphisms of locally connected and locally compact
Polish spaces, it is equivalent to quasianalyticity [AC 2009, Lemma 9.6], where
recall that a pseudogroup H is called quasianalytic if every h ∈ H is the identity
around some x ∈ dom h whenever h is the identity on some open set whose closure
contains x [Haefliger 1985].

Proposition 2.3 [AC 2009, Proposition 9.9]. Let H be a compactly generated,
strongly equicontinuous and quasieffective pseudogroup of local homeomorphisms
of a locally compact Polish space Z. Suppose that the conditions of strong equi-
continuity and quasieffectiveness are satisfied with a symmetric set S of generators
of H that is closed under compositions. Let A, B be open subsets of Z such that
A is compact and contained in B. If x and y are close enough points in Z , then
f (x) ∈ A implies f (y) ∈ B for all f ∈ S whose domain contains x and y.

Recall that a pseudogroup is said to be transitive if it has a dense orbit, and is
said to be minimal if all of its orbits are dense.

Theorem 2.4 [AC 2009, Theorem 11.1]. Let H be a compactly generated and
strongly equicontinuous pseudogroup of local transformations of a locally compact
Polish space Z. If H is transitive, then H is minimal.

For spaces Y, Z , let C(Y, Z) denote the set of continuous maps Y → Z , and let
Cc-o(Y, Z) denote this set when it is endowed with the compact-open topology. For
open subspaces O and P of a space Z , the space Cc-o(O, P) will be considered as
an open subspace of Cc-o(O, Z) in the canonical way.

Theorem 2.5 [AC 2009, Theorem 12.1]. Let H be a quasieffective, compactly
generated and strongly equicontinuous pseudogroup of local transformations of
a locally compact Polish space Z. Let S be a symmetric set of generators of H

that is closed under compositions and restrictions to open subsets, and satisfies
the conditions of strong equicontinuity and quasieffectiveness. Let H̃ be the set of
maps h between open subsets of Z that satisfy the following property: For every
x ∈ dom h, there exists a neighborhood Ox of x in dom h such that the restriction
h|Ox is in the closure of C(Ox , Z)∩ S in Cc-o(Ox , Z). Then

• H̃ is closed under composition, combination and restriction to open sets;

• every map in H̃ is a homeomorphism around every point of its domain;

• the maps of H̃ that are homeomorphisms form a pseudogroup H containing H;
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• H is strongly equicontinuous;

• the orbits of H are equal to the closures of the orbits of H; and

• H̃ and H are independent of the choice of S.

If a pseudogroup H satisfies the conditions of Theorem 2.5, then the pseudo-
group H is called the closure of H.

Remark. In Theorem 2.5, the closure of C(Ox , Z)∩ S in Cc-o(Ox , Z) is compact
by the equicontinuity condition. So the restriction of the Tikhonov product topol-
ogy of Z Ox to C(Ox , Z) would produce the same closure. In the study of distal
flows — R. Ellis [1958; 1969; 1978] and H. Furstenberg [1963] — the Tikhonov
topology is used to define the Ellis (semi)group because the more general condition
of distality does not guarantee the mentioned precompactness, and also because it
applies to compact Hausdorff spaces that need not be metrizable [Ellis 1978].

Lemma 2.6. Let H be a compactly generated, strongly equicontinuous and quasi-
effective pseudogroup of local transformations of a locally compact Polish space Z.
Then H is quasieffective if and only if there is a symmetric set S of generators of H

that is closed under compositions and restrictions to open subsets, and such that
the restriction map ρV

W : S ∩C(V, Z)→ S ∩C(W, Z) is a homeomorphism with
respect to the compact-open topologies for small enough open subsets V and W
of Z with W ⊂ V .

Proof. The result follows directly by observing that, according to Theorem 2.5,
H is quasieffective just when there is some symmetric set S of generators of H that
is closed under compositions and satisfies the condition that for any sequence hn

in S and open nonempty subsets V and W of Z , with W ⊂ V ⊂ dom hn for all n,
if hn|W → idW in Cc-o(W, Z), then hn|V → idV in Cc-o(V, Z). �

Corollary 2.7. Suppose H is a compactly generated, strongly equicontinuous and
quasianalytic pseudogroup of local transformations of a locally connected and
locally compact Polish space Z. Then H is quasianalytic if and only if there
is a symmetric set S of generators of H that is closed under compositions and
restrictions to open subsets and for which ρV

W : S ∩ C(V, Z)→ S ∩ C(W, Z) is
a homeomorphism with respect to the compact-open topologies for small enough
open subsets V and W of Z with W ⊂ V .

A pseudogroup H of local transformations of a locally compact space Z is quasi-
effective precisely when there is a symmetric set S of generators of H that is closed
under compositions and restrictions to open subsets, and for which the restriction
map ρV

W : S ∩ C(V, Z)→ S ∩ C(W, Z) is injective for all open subsets V and
W of Z with W ⊂ V . If moreover Z is a locally compact Polish space, and H is
compactly generated and strongly equicontinuous, then any such ρV

W is bijective
for V and W small enough by Proposition 2.2. Moreover ρV

W is continuous with
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respect to the compact-open topology [Munkres 1975, page 289], but it may not
be a homeomorphism as shown by the following example.

Example 2.8. Let Z be the union of two tangent spheres in R3, and let h : Z→ Z
be the combination of two rotations, one on each sphere, around the common axis
and with rationally independent angles. Then h generates a compactly generated,
strongly equicontinuous and quasieffective pseudogroup H of local transformations
of Z ; indeed, h is an isometry for the path metric space structure on Z induced from
that of R3. Nevertheless, it is easy to see that the closure H is not quasieffective.

We next recall an isometrization theorem from [AC 2009] that establishes that
in a certain sense equicontinuous quasieffective pseudogroups are indeed pseudo-
groups of local isometries. Two metrics on the same set are said to be locally
equal when they induce the same topology and each point has a neighborhood
where both metrics are equal. Let {(Zi , di )}i∈I be a family of metric spaces such
that {Zi }i∈I is a covering of a set Z , each intersection Zi ∩ Z j is open in (Zi , di )

and (Z j , d j ), and the metrics di , d j are locally equal on Zi ∩ Z j whenever this
is a nonempty set. Such a family will be called a cover of Z by locally equal
metric spaces. Two such families are called locally equal when their union also is
a cover of Z by locally equal metric spaces. This is an equivalence relation whose
equivalence classes are called local metrics on Z . For each local metric D on Z ,
the pair (Z ,D) is called a local metric space. Observe that every metric induces
a unique local metric in a canonical way. In turn, every local metric canonically
determines a unique quasilocal metric. Note also that local metrics induced by
metrics can be considered as germs of metrics around the diagonal. Moreover, a
local or quasilocal metric is induced by some metric if and only if it is Hausdorff
and paracompact [AC 2009, Theorems 13.5 and 15.1].

We call a local homeomorphism h of a local metric space (Z ,D) a local isometry
if there is some {(Zi , di )}i∈I ∈D such that, for i, j ∈ I and z ∈ Zi∩h−1(Z j∩im h),
there is some neighborhood Uh,i, j,z of z in Zi∩h−1(Z j∩im h) such that di (x, y)=
d j (h(x), h(y)) for all x, y ∈ Uh,i, j,z . This definition is independent of the choice
of the family {(Zi , di )}i∈I ∈D.

Theorem 2.9 [AC 2009, Theorem 15.1]. Let H be a compactly generated, quasi-
effective and strongly equicontinuous pseudogroup of local transformations of a
locally compact Polish space Z. Then H is a pseudogroup of local isometries with
respect to some local metric inducing the topology of Z.

3. Riemannian pseudogroups

Definition 3.1. A pseudogroup H of local transformations of a space Z is called
a Riemannian pseudogroup if Z is a Hausdorff paracompact C∞ manifold and all
maps in H are local isometries with respect to some Riemannian metric on Z .
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Example 3.2. Let G be a local Lie group, and G0 ⊂G a compact subgroup. Then
the canonical local action of some neighborhood of the identity in G on some
neighborhood of the identity class in G/G0 generates a transitive Riemannian
pseudogroup. In fact, since G0 is compact, there is a G-left invariant and G0-
right invariant Riemannian metric on some neighborhood of the identity in G;
this metric induces a G-invariant Riemannian metric on some neighborhood of the
identity class in G/G0. More generally, if 0 ⊂ G is a dense sublocal group, then
the canonical local action of some neighborhood of the identity in 0 on some
neighborhood of the identity class in G/G0 generates a transitive Riemannian
pseudogroup that is complete in the sense of [Haefliger 1985]. The pseudogroup
version of the Molino description of Riemannian foliations establishes that any
transitive complete Riemannian pseudogroup is equivalent to a pseudogroup of
this type.

The pseudogroup version of our main result here is the following topological
characterization of transitive compactly generated Riemannian pseudogroups.

Theorem 3.3. Let H be a transitive, compactly generated pseudogroup of local
transformations of a locally compact Polish space Z. Then H is a Riemannian
pseudogroup if and only if Z is locally connected and finite-dimensional, H is
strongly equicontinuous, and H is quasianalytic.

Remark. The closure H of H exists by virtue of Theorem 2.5, because the space Z
is locally connected (hence the pseudogroup H is quasieffective because it is quasi-
analytic [AC 2009, Lemma 9.6]).

Corollary 3.4. Let H be a compactly generated, strongly equicontinuous pseudo-
group of local transformations of a locally compact Polish space Z. Then the
H-orbit closures are C∞ manifolds if and only if they are locally connected and
finite-dimensional, and the induced pseudogroup H is quasianalytic on them.

Proof. This follows from Theorem 3.3 because the closure of H acting on the
closure of an orbit is equivalent to a pseudogroup like the one in Example 3.2. �

The proof of Theorem 3.3 will be given in the next section; in the interim, we
describe some examples illustrating the necessity of several hypotheses.

Example 3.5. Let Z be the product of countably infinitely many circles. This is
a compact, locally connected Polish group that acts on itself by translations in
an equicontinuous way. Let Z→ Z be an injective homomorphism with dense
image. Then the action of Z on Z induced by this homomorphism is minimal and
equicontinuous, and so it generates a minimal, quasianalytic and equicontinuous
pseudogroup, which is not Riemannian because Z is of infinite dimension.
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Example 3.6. Suppose Z is the set of p-adic numbers x ∈ Qp with p-adic norm
|x |p ≤ 1. Then the operation x 7→ x+1 defines an action of Z on Z that is minimal
and equicontinuous (it preserves the p-adic metric on Z ). Thus it generates a
minimal, quasianalytic and equicontinuous pseudogroup, which is not Riemannian
because Z is zero-dimensional.

Example 3.7. Let C be the standard Cantor set in [0, 1]⊂R and Z =
⋃
∞

n=−∞ C+n
be the union of C and all of its integer translates. Then there is a pseudogroup H

acting on Z generated by translations of the line that locally preserve Z . In fact,
H is a pseudogroup of local isometries for two geometrically distinct metrics, the
Euclidean and the dyadic.

Example 3.8. The previous example can be generalized, replacing Z by the uni-
versal Menger curve [Blumenthal and Menger 1970, Chapter 15]. This space Z (to
be precise, a modification of it) is constructed as an invariant set of the pseudogroup
of local homeomorphisms of R3 generated by the map f (x) = 3x and the three
unit translations parallel to the coordinate axes. There is a pseudogroup acting on
Z generated by Euclidean isometries that locally preserve Z . It is fairly easy to see
that such a pseudogroup is minimal, quasianalytic and equicontinuous. Moreover
Z is locally connected and of dimension one. However, this pseudogroup is not
compactly generated.

The most elusive hypotheses of Theorem 3.3 is the one concerning the quasi-
analyticity of the closure of a quasianalytic pseudogroup. It is used explicitly in
the proof of Lemma 4.2. We do not have an example of a pseudogroup H as in the
main theorem whose closure fails to be quasianalytic; the remaining of this section
offers some examples and observations relevant to this problem.

For metric spaces, being a length space is a local property; thus the two theorems
of [AC 2009, Section 15] are valid for length spaces.

Definition 3.9. A length space X is analytic at a point x ∈ X if the following holds:
If γ and γ ′ are geodesic arcs (parametrized by arc-length) defined on an interval
about 0 ∈R, such that γ (0)= γ ′(0)= x and that γ = γ ′ on some interval (−a, 0],
then they have the same germ at 0. The space X is analytic if it is analytic at every
point.

For example, a Riemannian manifold is an analytic length space. In relation to
Theorem 3.3, if a local length space is known to be analytic at one point and admits
a transitive action of a pseudogroup of local isometries, then it is analytic.

Real trees give rise to many examples, like the one below, of metric spaces that
are also length space and admit actions of pseudogroups of isometries that are not
quasianalytic; see [Shalen 1987].
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Example 3.10. Let X = R2 be endowed with the metric given by

d((x1, y1), (x2, y2))=

{
|y1| + |x1− x2| + |y2| if x1 6= x2,
|y1− y2| if x1 = x2.

Given a subset F of the real axis there is an isometry fF of X given by

fF (x, y)=
{
(x, y) if x ∈ F ,
(x,−y) if x /∈ F .

This family of isometries { fF | F ⊂ X} forms a normal subgroup of the group
of isometries of X . Thus this group is not quasianalytic.

Proposition 3.11. Let H be a pseudogroup of local isometries of an analytic local
length space X. Then H is quasianalytic.

Proof. If H is not quasianalytic, then, by definition, there exists an element f of H,
an open set U in dom( f ) such that f |U = id, and a point x0 in the closure of U
such that f is not the identity in any neighborhood of x0. Therefore, there is a
sequence of points xn converging to x0 such that f (xn) 6= xn . If n is sufficiently
large, then there is a geodesic arc contained in the domain of f and joining xn and
a point y ∈U . This geodesic arc is mapped by f onto a distinct geodesic arc that
has the same germ at one of its endpoints as the first one. �

The following example shows that the converse is false.

Example 3.12. Let X be the Euclidean plane R2 endowed with the metric induced
by the supremum norm ‖(x, y)‖ =max{|x |, |y|}. Then X is a length space that is
not locally analytic. Indeed, if f : I→R is a function such that | f (s)− f (t)|≤|s−t |
for all s, t ∈ I , then t ∈ I 7→ (t, f (t)) ∈ X is a geodesic. However, every local
isometry is locally equal to a linear isometry; hence the pseudogroup of local
isometries is quasianalytic.

4. Equicontinuous pseudogroups and Hilbert’s fifth problem

This section is devoted to the proof of Theorem 3.3. The “only if” part is obvious,
so it is enough to show the “if” part, which has essentially two steps. In the first
one, a local group action on Z is obtained as the closure of the set of elements of
H that are sufficiently close to the identity map on an appropriate subset of Z . This
construction follows Kellum [1993]. The second step invokes the theory behind
the solution to the local version of Hilbert’s fifth problem in order to show that the
local group is a local Lie group, and thus this local action is isometric for some
Riemannian metric if its isotropy subgroups are compact. So H will be shown to
be Riemannian by proving that it is of the type described in Example 3.2.

By Theorem 2.9, there is a local metric structure D on Z with respect to which
the elements of H are local isometries. Let {(Zi , di )}i∈I ∈D be any local cover of



DESCRIPTION OF RIEMANNIAN FOLIATIONS WITH DENSE LEAVES 271

Z satisfying the condition of strong equicontinuity. Let U be a relatively compact
nontrivial open subset of Z , and let V be a family of open subsets that cover U as
in Proposition 2.2. Let V be an element of V having nonempty intersection with
U and contained in Zi0 for some i0 ∈ I , and let D ⊂ V be an open nonempty
connected subset whose closure is compact and also contained in V . According to
Proposition 2.2, if h ∈ H is such that dom h ⊂ D and im h ∩U 6= ∅, then there
exists an element h̃ ∈H that extends h and whose domain contains V . Moreover,
since H is quasianalytic and D is connected, such extension h̃ is unique on D. In
particular, such h admits a unique extension to a homeomorphism of D onto its
image.

Under the current hypothesis, the completion H of H is a quasianalytic pseudo-
group of transformations of Z whose action on Z has a single orbit. Let HD be the
collection of all homeomorphisms h|D , where h ∈H is any element whose domain
contains D. Let D′ ⊂ D be a connected, compact set with nonempty interior,
and let HDD′ = {h ∈ HD | h(D′) ∩ D′ 6= ∅}. By the strong equicontinuity of H

and Proposition 2.3, the set D′ can be chosen so that all the translates h(D′) for
h ∈HDD′ are contained in a fixed compact subset K of D. Once this choice of D′

is made, let G =HDD′ be the resulting space.
The space G is endowed with the compact open topology as a subset of C(D, Z).

Every element of G is actually defined on V , and hence on D, and so the compact
open topology can be described by the supremum metric given by d(g1, g2) =

supx∈D di0(g1(x), g2(x)), where di0 is the distance function on Zi0 ⊂ Z as above.

Lemma 4.1. Endowed with this topology, G is a compact space.

Proof. It has to be shown that any sequence gn of elements of G has a convergent
subsequence. By equicontinuity, the sequence gn may be assumed to be consist of
elements of H. By Proposition 2.2 and the definition of G, each gn can be extended
to a homeomorphism whose domain contains V . According to Theorem 2.5, the
sequence gn converges uniformly on D to a map g ∈ H̃. It needs to be shown that
g : D→ g(D) is a homeomorphism and that it satisfies g(D′)∩ D′ 6=∅.

To verify this last condition, note that, for each n, there exists xn ∈ D′ such
that gn(xn) ∈ D′, by the definition of G. Since D′ is compact, it may be assumed
(after passing to a subsequence if needed) that xn → x ∈ D′, which implies that
gn(xn)→ g(x) ∈ D′ since gn→ g uniformly on D. Thus, g(D′)∩ D′ 6=∅.

To verify that g :D→ g(D) is a homeomorphism, we argue by contradiction and
thus assume that there are points x, y ∈ D with di0(x, y) > 0 and g(x)= g(y)= z.
The map g is a homeomorphism around each point of D, as Theorem 2.5 shows.
Thus there are disjoint neighborhoods Ox and Oy of x and y, respectively, such
that g maps each of them homeomorphically onto a neighborhood W of z.



272 JESÚS A. ÁLVAREZ LÓPEZ AND ALBERTO CANDEL

Because each gn :D→ gn(D)⊂V is a homeomorphism, Proposition 2.2 implies
that there are maps hn ∈H defined on V such that hn ◦gn = id on gn(D). Since the
sequences gn(x) and gn(y) both converge to z, it may be assumed, after passing to
a subsequence if needed, that they are contained in W . Furthermore, perhaps after
further shrinking W , the restrictions hn|W form an equicontinuous family, and so
hn converges uniformly on W to a map h that inverts g on W , and whose image
contains both x and y, a contradiction. �

Lemma 4.2 (compare [Kellum 1993]). The space G, endowed with the compact-
open topology and the operations just described, is a locally compact local group.

Proof. Let g1 and g2 be two elements of G. Then the composition g1 ◦ g2 is
defined on D′ because g1(D′) ⊂ D. Therefore there exists h ∈ HD that extends
g1◦g2. By quasianalyticity of H, this extension is unique and thus it defines a map
(g1, g2) 7→ g1 · g2 from G × G into H. If g1 and g2 are sufficiently close to the
identity of D in the compact open topology of C(D, Z), then also g1 · g2 ∈ G.

The existence of a unique identity element e for G and the existence of an inverse
operation on G are proved in a similar fashion.

Finally, it follows easily from Corollary 2.7 and the quasianalyticity of H that the
local group multiplication and inverse map are continuous operations with respect
to the compact open topology on G. �

Remark. By Theorem 2.9, we can assume that all elements of G are isometries
with respect to di0 . Then it easily follows that the above distance d on G is left
invariant.

The proof of the following lemma is straightforward; see [Kellum 1993].

Lemma 4.3. The map G×D′→ D defined by (g, x) 7→ g(x) makes G into a local
group of transformations on D′ ⊂ D.

Let 0 = H∩G, which is a finitely generated dense sublocal group of G. The
following is a direct consequence of the minimality of H.

Lemma 4.4. H is equivalent to the pseudogroup generated by the local action of
0 on any nonempty open subset of D′ ⊂ Z.

Let x0 be a point in the interior of D′, which will remain fixed from now on.
Note that, by construction, all elements of G are defined at x0. Let φ : G→ D be
the orbit map given by φ(g) = g(x0). This map is continuous because the action
is continuous.

Lemma 4.5. The image of the orbit map φ contains a neighborhood of x0.

Proof. H is minimal by Theorem 2.4, and therefore the space Z is locally homo-
geneous with respect to the pseudogroup H by Theorem 2.5. More precisely,
Proposition 2.2 and Theorem 2.5 show that, given x ∈ D′, there exists h ∈ H



DESCRIPTION OF RIEMANNIAN FOLIATIONS WITH DENSE LEAVES 273

with domain dom h = D such that h(x0)= x . Since both x, x0 ∈ D′, it follows that
h ∈ G. The statement follows immediately from this. �

Let G0 denote the collection of elements g ∈ G such that g(x0)= x0.

Lemma 4.6. The set G0 is a compact subgroup of G.

Proof. First, G0 is compact because, being the stabilizer of a point, it is a closed
subset of G and G is a compact Hausdorff space.

Second, it follows from the definitions of G and of its group multiplication that
the product of two elements of G0 is defined and belongs to G0, and likewise the
inverse of every element. More precisely, if g1, g2 ∈G0, then g1 ◦g2 is an element
of H that fixes x0; hence g1 ◦ g2(D′)∩ D′ 6=∅. �

In the special case just considered of the group G0 that stabilizes x0, the equiv-
alence relation ∼ on G used to define a representative coset space of G0 can also
be defined as h ∼ g if and only if h(x0)= g(x0). Therefore:

Lemma 4.7. The orbit map φ : G → Z induces a map ψ : G/G0 → Z that is a
homeomorphism of a neighborhood of the identity class in G/G0 onto a neighbor-
hood of x0 in Z.

Corollary 4.8. H is equivalent to the pseudogroup induced by the canonical local
action of some neighborhood of the identity in 0 on some neighborhood of the
identity class in G/G0.

Proof. This follows from Lemmas 4.4 and 4.7. �

Corollary 4.9. G/G0 is finite-dimensional.

Proof. This follows directly from Lemma 4.7 and the finite dimensionality of Z . �

Lemma 4.10. The group G0 contains no nontrivial normal sublocal group of G.

Proof. If N ⊂ G is a normal sublocal group contained in G0 and n ∈ N , then
for each g in a suitable neighborhood of e in G there is some n′ ∈ N such that
nφ(g)= ng(x0)= gn′(x0)= g(x0)=φ(g). Thus n acts trivially on a neighborhood
of x0 in D′. This is possible only if n = e, because H is quasianalytic. �

Lemma 4.11. The local group G is finite-dimensional.

Proof. By Corollary 4.9, G/G0 is finite-dimensional. By Theorem 1.7, there exists
a compact normal subgroup (K ,U ) in 1G such that K ⊂ G0 and G/(K ,U )
is finite-dimensional. Lemma 4.10 implies that K is trivial; thus G is finite-
dimensional because it is locally isomorphic to G/K . �

Finally, since G0 is a compact subgroup of G, the following finishes the proof
of Theorem 3.3 according to Example 3.2 and Corollary 4.8.

Lemma 4.12. The group G is a local Lie group.
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Proof. This is a local version of [Pontriaguin 1978, Theorem 73]. By Theorem 1.3,
it is enough to show that G has no small subgroups. The local group G is finite-
dimensional and metrizable, so Theorem 1.5 implies that there is a neighborhood
U of e in G that decomposes as the direct product of a local Lie group L and a
compact zero-dimensional normal subgroup N . Then P = N ∩ G0 is a normal
subgroup of G0, and G0/P is a Lie group because it is a group that is locally
isomorphic to the local Lie group G/(N ,U ); see [Jacoby 1957, Theorem 36].

Furthermore, since N is zero-dimensional, P is also zero-dimensional and so
there exists a neighborhood V of e in G0 that is the direct product of a connected
local Lie group M and the normal subgroup P . It may be assumed that V ⊂ U .
Since M is connected and N is zero-dimensional, it follows that M ⊂ L .

In summary, there is a local isomorphism between G and the direct product
L × N , which restricts to a local isomorphism of G0 to M × P . Therefore, there
exists a neighborhood of the class G0 in G/G0 that is homeomorphic to a neigh-
borhood of the class of the identity in the product L/M × N/P . It follows that
a neighborhood of x0 in Z is homeomorphic to the product of a Euclidean ball
and an open subspace T ⊂ N/P . Since Z is by assumption locally connected
and N/P is zero-dimensional, it follows that T is finite, and hence that N/P is a
discrete space. So P is an open subset of N and thus there exists a neighborhood
W of e in G such that W ∩ P = W ∩ N . By the local approximation of Jacoby
(Theorem 1.4), there exists a compact normal subgroup K ⊂W such that G/K is
a local Lie group. Then G0 contains P∩K , which is equal to the normal subgroup
N ∩K of G because K ⊂W . Thus, by Lemma 4.10, N ∩K is trivial. On the other
hand, N/(N ∩ K ) is a zero-dimensional Lie group; hence N ∩ K is open in N . It
follows that N is finite, and thus that G is a local Lie group. �

5. A description of transitive, compactly generated, strongly equicontinuous
and quasieffective pseudogroups

The following example is slightly more general than Example 3.2.

Example 5.1. Let G be a locally compact, metrizable and separable local group,
G0⊂G a compact subgroup, and 0⊂G a dense sublocal group. Suppose that there
is a left invariant metric on G inducing its topology. This metric can be assumed
to be also G0-right invariant by the compactness of G0. Then the canonical local
action of 0 on some neighborhood of the identity class in G/G0 induces a transitive
strongly equicontinuous and quasieffective pseudogroup of local transformations
of a locally compact Polish space. In fact, this is a pseudogroup of local isometries
in the sense of [AC 2009].

The proof of the following is a straightforward adaptation of the first part of the
proof of Theorem 3.3, using quasieffectiveness instead of quasianalyticity.
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Theorem 5.2. Suppose H is a transitive, compactly generated, strongly equicon-
tinuous pseudogroup of local transformations of a locally compact Polish space,
and suppose that H is quasieffective. Then H is equivalent to a pseudogroup of the
type described in Example 5.1.

The study of compact generation for the pseudogroups of Example 5.1 is very
delicate [Meigniez 1992]. Since those pseudogroups are obviously complete, one
could try to replace compact generation by completeness in Theorem 5.2. This
would seem to require the generalization of our work [AC 2009] to complete
strongly equicontinuous pseudogroups.
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