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TWO KAZDAN-WARNER-TYPE IDENTITIES FOR THE
RENORMALIZED VOLUME COEFFICIENTS AND THE
GAUSS-BONNET CURVATURES OF A RIEMANNIAN METRIC

BIN GUO, ZHENG-CHAO HAN AND HAIZHONG LI

We prove two Kazdan—Warner-type identities involving the renormalized
volume coefficients v®*) of a Riemannian manifold (M", g), the Gauss—
Bonnet curvature G,,, and a conformal Killing vector field on (M", g). In
the case when the Riemannian manifold is locally conformally flat, we find

& (n —r)ir!
v = (-2)7*0; and G2r(g)=Mar
(n—=2r)!

and our results reduce to earlier ones established by Viaclovsky in 2000 and
the second author in 2006.

1. Introduction

Theorem A [Viaclovsky 2000b; Han 2006a]. Let (M, g) be a compact Riemann-
ian manifold of dimension n > 3, let o;(g™" o Ay) be the oy curvature of g, and
let X be a conformal Killing vector field on (M, g). When k > 3, assume also that
(M, g) is locally conformally flat. Then

(1-1) / (X, Vor(g™ o Ag))dv, = 0.
M

Recall that on an n-dimensional Riemannian manifold (M, g) with n > 3, the full
Riemannian curvature tensor Rm decomposes as

where W, denotes the Weyl tensor of g,

A= (Ric R )
$ T 2\ T -8
denotes the Schouten tensor, and © is the Kulkarni-Nomizu wedge product. Under
a conformal change of metrics g, = ¢>*g, where w is a smooth function over the
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258 BIN GUO, ZHENG-CHAO HAN AND HAIZHONG LI

manifold, the Weyl curvature changes pointwise as W, = e W,. Thus, essential
information about the Riemannian curvature tensor under a conformal change of
metrics is reflected by the change in the Schouten tensor. One often tries to study
the Schouten tensor through the elementary symmetric functions ox(g~! o A ¢)
(which we later denote as o (g)) of the eigenvalues of the Schouten tensor, called
the oy curvatures of g, by studying how they deform under conformal change of
metrics.

Question. For all k£ > 1, can we generalize Theorem A without the condition that
(M, g) is locally conformally flat?

In this note, we show the answer is yes. The renormalized volume coefficients
v®¥ (g) of a Riemannian metric g, were introduced in the physics literature in the
late 1990s in the context of AdS/CFT correspondence — see [Graham 2009] for a
mathematical discussion — and were shown in [Graham and Juhl 2007] to be equal
tooy(g™'A ¢)» Up to a scaling constant, when (M, g) is locally conformally flat. In
fact, in the normalization we are going to adopt,

(1-2) v (g) = —1o1(g) and v (g) = 1oa(9).

For k = 3, Graham and Juhl [2007, page 5] have also listed the formula

(1-3) v () = 4 (03(8) + 51 (4 (B ).

( 4)

where |

-3
is the Bach tensor of the metric. Just as f v Ok(g™ 0 Ay) dvg is conformally invari-
ant when 2k =n and (M, g) is locally conformally flat, Graham [2009] showed that
f M v (g)d v, 1s also conformally invariant on a general manifold when 2k = n.
Chang and Fang [2008] showed that, for n # 2k, the Euler—Lagrange equations for
the functional f M v@®(g)d v, under conformal variations subject to the constraint
Vol, (M) = 1 satisfies v®% (g) = const, which is a generalized characterization for
o A,) when (M, g) is locally conformally flat, as given by

1
(B )lj = kaIWllk] + _RlellkJ

-1

the curvatures oy (g~
Viaclovsky [2000a].
In this note, we will first show that the curvatures v‘>*)(g) will play the role of
or(g oA ¢) in (1-1) for a general manifold. Graham [2009] also gives an explicit
expression of v® (g), but the explicit expression of v (g) for general k is not
known because they are algebraically complicated; see [Graham 2009, page 1958].
Thus the study of the v?®)(g) curvatures involves significant challenges not shared
by that of o4 (g): First, v (g) for k > 3 depends on derivatives of curvature of g;
in fact, these depend on derivatives of curvatures of order up to 2k —4. Second, the
v0) (g) are defined in [Graham 2009] via an indirect, highly nonlinear inductive
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algorithm. Despite these difficulties, we can use some properties of these v (g)
curvatures to prove the following.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n > 3,
and let X be a conformal Killing vector field on (M", g). For k > 1, we have

(1-4) / (X, Vo (g))dv, = 0.
M

Remark 1.2. From (1-2), we know that Theorem 1.1 is equivalent to Theorem A
when k = 1, 2, or when (M", g) is locally conformally flat for k£ > 3.

One main reason for interest in identities such as (1-1) and (1-4) is that they
play crucial roles in analyzing potentially blowing up conformal metrics with a
prescribed curvature function, with v®)(g) prescribed in this case. Although little
is known about this problem at this stage, Theorem 1.1 establishes one ingredient
for attacking this problem.

Our second result involves the Gauss—Bonnet curvatures G, for 2r < n, intro-
duced by H. Weyl in 1939 and defined by

_ sJujrea—1jar pitia | plar-tior
G (8) = (SiliZ"‘inflin R Jij2 R Jor—1Jjor’?

where 8ijl 'f;éf:;;” is the generalized Kronecker symbol; see also [Labbi 2008].

Note that G, = 2R, with R the scalar curvature.

Theorem 1.3. Let (M", g) be a compact Riemannian manifold, and let X be a con-
formal Killing vector field. Then for the Gauss—Bonnet curvatures defined above,
we have

| .G, =o.
M

Remark 1.4. When (M, g) is locally conformally flat, we see that the Gauss cur-

vature satisfies
G (2) 4 (n—r)lr!
r = ———~— 0,
288 = L o)

so Theorem 1.3 reduces to Theorem A.

Remark 1.5. M. Labbi [2008] proved that the first variation of the functional
[y Gardv, within metrics with constant volume gave the so-called generalized
Einstein metric, and this functional has the variational property for 2r < n and
is a topological invariant for 2r = n. In fact, if n = 2r, this functional is the
Gauss—Bonnet integrand up to a constant [Chern 1944].

In the next section, we first provide a general proof for Theorem 1.1 by adapting
an ingredient in a preprint version [Han 2006b] of [Han 2006a], and using of a
variation formula for v?® (g) established in [Graham 2009] and [Chang and Fang
2008]. Because of the explicit expression for v®(g) and potential applications to
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other related problems in low dimensions, we provide in Section 3 a self-contained
proof for Theorem 1.1 in the case k = 3. We prove Theorem 1.3 in Section 4.

2. Proof of Theorem 1.1
We will need the following variation formula for v (g); see [Graham 2009].

Proposition 2.1. Under the conformal transformation g; = e*"g, the variation of
v®9 (g,) is given by

@-1) v (g1) = =2k + Vi (Ll n)).

&’t:O

where Ll&) is defined as in [Graham 2009] by

k
» 1 o —1ij
L= 3 bl g,
=1

with g;j(p) denoting the extension of g such that

_ (dp)* —2pg(p)
8+ 4,02
is an asymptotic solution to Ric(gy) = —ngy near p = 0.

An integral version of (2-1) first appeared in [Chang and Fang 2008]:

9
/M(E @ (@) + 2@ (g)>dvg =0.

Proof of Theorem 1.1 in the case n # 2k. Let X be a conformal vector field on M.
Let ¢, denote the local one-parameter family of conformal diffeomorphisms of
(M, g) generated by X. Thus for some smooth function w; on M, we have

¢f(g) =™ g = g.

We have the properties

(2-2) ¢ v (g) = v (¢Fg) = v (e* ),
(2-3) . d divX
- = — wr = ,
@ dt 11=0 ! n
0 _ . .o
2-4) 37|80 AR)) =—Vo—2ig™ 0 A(g),
(2-5) % o dive, X =nXn=n(X, Vn).
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Using (2-2), (2-3), and (2-1), we have
@k O (2k)
(X, Vui(g)) = o tzo(v (&)

= —2kain® + Vi(L, @)

= 2 div v + Vi (Ll )

= 2 div® )+ 25X, o () 4 LV, (LY (div X)),
from which it follows that

(2-6) (1 _ 2k

n
Theorem 1.1 in the case 2k # n follows directly by integrating (2-6) over M. [

Proof of Theorem 1.1 in the case 2k = n. As in [Han 2006b], we will prove that
for any conformal metric g; = ¢?"g of g,

2% . Lo i o
)(X, Vo (g)) = ==X div(v @I X) + - Vi (L, (div X) ).

/(X, v (g1))dvy, =/ (X, v(Zk)(g))dvg=—[ div, Xv® (g)dv,,
M M M

that is, f X, v (g))d v, is independent of the particular choice of metric in the
conformal class. We only have to prove that

0

(2-7) 37

/ divy, Xv @ (g,)dv,, =0 for g, = e*'"g.
t=0 Jpm

We prove (2-7) by direct computations using Proposition 2.1. Indeed,

9
ot

[:OfMdivgt Xv ) (g)duv,,

= fM(’“X’ Vi@ 4 div X (—2knv® 4 V(L 1) + nn div Xo®)du,
= /M(n(X, Vi)v® 4 div X Vi (L, n;))dvg

_ fM((””(Zk)X’ Vi) — LI (div X)) dv,

- fM (— div(nv®) X) + V(L (div X);)) ndvg =0

in the case n = 2k by (2-6).

The remaining argument is an adaptation of an argument of Bourguignon and
Ezin [1987]: either the connected component of the identity of the conformal
group Co(M, g) is compact, and then there is a metric ¢ conformal to g admit-
ting Co(M, g) as a group of isometries, from which it follows that div; X = 0
and therefore (1-4) holds; or, Co(M, g) is noncompact, and then by a theorem of
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Obata and Ferrand, (M, g) is conformal to the standard sphere, in which case we
can pick the canonical metric to compute the integral on the left hand side of (1-4)
and conclude that it is zero. ([

3. A self-contained proof of Theorem 1.1 in the case k =3

We aim to give a direct, self-contained derivation for a more explicit version
of (2-1); namely, under conformal change of metric g, = ¢*"g,

((T7®©® By \o
©) (o) = —6v© i (2 ij(8 i
v(8) = —6v(gn+V << g +24(n_4)>V n),

S F

where Tig.z) (g) is the Newton tensor associated with Ag, as defined in Reilly [1977]:

Definition. For an integer k > 0, the k-th Newton tensor is
7® _ Jrjkj
l] k' 2811 “ixd Alljl "'Aikjk’
where 8’ Ik s the generalized Kronecker symbol.

gl

With (3-1) we can repeat the proof in the last section to prove Theorem 1.1 in the
case k = 3.

First we recall the transformation laws for the tensors B;; and A;; under con-
formal change of metric g, = e*/"g — see [Chang and Fang 2008]:

Aij(g) = Aij — V] +12VinVn — 37| Vnl3gi;.
Bij(g)) = e *"(Bij + (n — Dt (Ciji + Cjir) Vi + (n — D> Wi Vi),

where C;j := A;j r — Ajx,j are the components of the Cotton tensor, with A;; ; the
components of the covariant derivative of the Schouten tensor A;;.
Thus

A (g)) = —Vn—4AY (g)n,

E =0

9

5 t_OBij(gt) = (l’l - 4)(C,]k + Cjik)vkn - 2T]Blj
Proposition 3.1 [Viaclovsky 2000a; Han 2006b; Hu and Li 2004]. We have

(i) ko(e) =Y TS DAy

iJ

(ii) Z T = (n —k)oi(g).

(iii) Z VIWiijk = —(n —3)Cijr.
1
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Using the relation between v(® and 03(g), and with AV B;; as in (1-3), we find
0

g9 ©)
Sat l:OU (gt)
=77 () (=Y /n—2147 (g))
+—3(n1_4) (—Bij (@) V/n+(n—4)AY ()(Ciji+Cjix) Vin—6nAY B;)
=— yus:» T Bij(g) DI DU
= 6<03(g)+( B ]Bu>’7 ( ()+( 4))V n+2AY(g)CijiVFn
— 40O i [ (T@ l,(g)> )
=480 (e)n—V ((T ()+( 5 Vin

(8) ;
HX (120 + 5280 4344 Cu ) V',
] 3(n—4)
where we used (1-3) and Proposition 3.1(i). The following lemma implies that

Z( T.7(8) + (Uj(i))>+%Alek1i=O,

j
thus establishing (3-1).

Lemma3.2. () » T, =—AMC;.

1]
J

(i) > Bijj = (n—4A"Cy;.
J
Proof of (1). In normal coordinates, we have

7@ _ 1 J1j2J J1i2j _
Z ij.j = <5 2811121 Allletzjz) Zazlzzz Aij Aigjpj = =AM Cpyi,

where we used
8i1j1 8i1j2 8i1j
82 = 81y iy i)
Siji dijp Bij

and ) Aj; j =) Ajj, itself a consequence of the second Bianchi identity. O
i i

Proof of (i1). First, using Proposition 3.1(iii) and substituting R;; in terms of A;;

in the definition of the Bach tensor B;;, we obtain

Bij == Citjs+)_ AuWij
K Kl

= — Z(Aik,jk — Ajjxk) + Z A Wiikj.
X

k.l
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Thus
> Bii
J
=— Z(Aik,jkj — Ajjkkj) + Z(Akl,leikj + A Wiikj, )
jik

kil,j

= - Z(Aik,jkj — Aik,jjk) + Z A, jWiikj — (n = 3) Z Ak Crit
ok k1, k.l

=— Z (Aik,m Rmjkj + Aim,j Rmikkj + Amk, j Rmik;j)

Jjk,m
+ Z A, jWiikj + (n = 3) Z A Crai
k,d,j k.l
= Y (—Amk.j Ruikj + Ak j Winik) + (0 =3) D~ AuCuas
Jok,m k.l
= > Ak j(—Ami8ij + Amj8ix — gmkAij + gmjAit) + (1 —3) Y AuCu
Jk,m k.l
= Z(_Amk,iAmk + Amik Amk — Amk,j8mk Aij + Amj ik &mk Aij)
m,k
+(n =3 AuCui
k,l
=Y Amc(Apik — Amii) + (1 =3) > AuCui
m,k k.l
= AmkComik + (1 —3) > Ay Cuai
m,k k,l
=(n—4) Z ApCui,
k,l

where we have used
Ruikj = Winikj + Ank8ij — Amj&ik + &mkAij — &mjAik- O

Proof of Theorem 1.1 in the special case k = 3. We use the notation of Section 2.
Let ¢, be the local one-parameter family of conformal diffeomorphisms of (M, g)
generated by X. For g, = ¢/ (g) = e>@ g, similarly to (3-1), we have

©) =2’ ©
(X, v = - oY (81)

(TP Bie) \_,
— 60 . j ij ij\8 i
=—6v"(gQw+ E \Y% <( 3 +24(n_4)>v a)),

i,j

(3-2)
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if n # 2k. Then integrating (3-2) we can get Theorem 1.1.

If n = 2k, then by use of (3-1) and (3-2), we can prove that fM(X, v©® (8))dv,
is independent of the particular choice of the metric within the conformal class.
The remainder of the proof repeats verbatim that of Section 2. (I

4. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 using a method similar to the one used
in Section 2. Let (M", g) be a compact Riemannian manifold, and denote by R; ;i
the Riemann curvature tensor in local coordinates. Define a tensor P, by

J Jir2e jar=1j2r pitiz ior—1i2r
N . , <
P’l 5”112 “ipr—1ior R Jij2 R J2r—1j2r for 2r <n,

5//1 J2Jar—1J2r

where Fijip-ior—1ior

is the generalized Kronecker symbol.

Lemma 4.1. The tensor P, is divergence free, that is,
”zj =0 foranyi.

This property was present in [Labbi 2008] and [Lovelock 1971], although with
different notation and formalism. Since we define the tensor P, explicitly as above,
and the property of P, in Lemma 4.1 is a direct consequence of the Bianchi identity,
we include a proof here.

Proof. We have

J JivJ2---Jar—1J2r pitiz i2r—1i2r
Prl g r8”112 dor—1ior J1j2,J R Jor—1Jar
JivJ2 - jar—1J2r pitia ioy—1i2r
8”112 “dop—1i2r R J2J,J1 R Jor—1J2r
5]]1]2 Jar—1jar pitiz .. plar—tiar
iiyip-ior—1l; Jitsj2 Jor—1j2r
Jiv2ejar—1J2r pitiz ior—1i2r
27’3””2 “ipr—1ior R Jijs R Jar—1J2r
J
2P}’l j’

where we have used the second Bianchi identity. It then follows that P, lj ;=0. |

Lemma 4.2. The generalized Kronecker symbol satisfies

Jivedr _ ¢ JieeJr : :
E 8151111 =(n r)rSl.l_”l.r forany 1 <iy,...,j,<nandr <n.

i,j=1
The proof follows by a direct calculation from the definition.
Let X be a conformal vector field, and denote by ¢, the one-parameter subgroup
of diffeomorphisms generated by X. Then there exists a family of functions w; such
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that g, = ¢}'g = >*' g. We have (2-3), wy = 0, and

(4-1) G (81) = ¢, G2 (8).

Under the conformal change of metric g, = ¢>*' g, we have the formula (see for
example [Chow et al. 2006])

4-2) RY (g) = e (R — (@® 2)",),

where we denote o;; = (w;);j — ()i () j + % [V, |2g,- ; for convenience (note that
(wy);j is the covariant derivative with respect to the fixed metric g) and © is the
Kulkarni—-Nomizu product, defined by

(@O Qiju =Airgji +j18ik — Xi&jk — Xjk&il-
From (4-2) we see that

= 2rw; Q12 J2r—1J2r
(4-3) Go(g) =e 7™6; 5 i
i2r—102r
Jor—1Jjar

_ (O{ @g)in—liZV

.(Ri|i2j1j2 — (v @g)iliz o (R jzr—ljzr)'

jljz) )
Taking derivative with respect to ¢ on both sides of (4-1) and using (4-3), we see
by using (2-3) that

(X, G2r(8))
= 2| Gate
= —2roGy(g) — ”‘Sljlllj;lf:_l;zj,b (88_(: =0 © g)ilizjl i Ri3i4j3j4 o Rizrilizrﬁr—lhr
= _ ~2r Gy (g) —4r(n —2r + Py &,
= 2 XG0 - wl’r—lzj(div X))
= 2 X6 (0 - M"_nﬁvj(f’w’ (div X)").

where we have used Lemma 4.2 in the third equality and Lemma 4.1 in the last.
Integrating (4-4) over M and using the divergence theorem, we see that

@s) [ (xXGundv=-2 [ NX6y@av=2 [ (x.Gatenav
M

M n M

Hence, if n > 2r, it follows from (4-5) that fM(X, G (g))dv=0. If n =2r, we
follow ideas in Section 2, that is, we need to prove that the integral

/ G (g) divy Xdv,
M
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is independent of a particular choice of metric within a conformal class. Let g; =
e g(n € C°°(M)) be any metric in the conformal class [g]. Considering a family
of metrics g, = e*"g connecting g and g;, we need to prove that

d

E t=0 /11/1 Gor (gt) dngt deg, =0.
By a direct computation, we have

9
ot

/ Gor(gr) divg, Xdug,
=0 M

-1,G

:/ (=2rnGar(g) div X —4r(n —2r + 1)Pr—1ij77ij div X
M

_Gar(g)div X+ Gy (g)% (I_O div, X +nnGa () div X)dvg

+nG2r(8)(Vn, X) +nGar(g) div Xn)dv,

= / (—=2rnGar(g) div X —4nr(n —2r + l)Pr_ll.j (div X);
M
—nn(VGar(g), X))dv,
—0,

where we have used (2-5) in the second equality, the divergence theorem in the third
and (4-4) in the last. The remainder of the proof follows the idea of [Bourguignon
and Ezin 1987] as in Section 2. Hence we complete the proof of Theorem 1.3.
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GONALITY OF A GENERAL ACM CURVE IN P3

ROBIN HARTSHORNE AND ENRICO SCHLESINGER

Let C be an ACM (projectively normal) nonsingular curve in [P’% not con-
tained in a plane, and suppose C is general in its Hilbert scheme — this is
irreducible once the postulation is fixed. Answering a question posed by
Peskine, we show the gonality of C is d — I, where d is the degree of the
curve and [ is the maximum order of a multisecant line of C. Furthermore
I = 4 except for two series of cases, in which the postulation of C forces
every surface of minimum degree containing C to contain a line as well. We
compute the value of / in terms of the postulation of C in these exceptional
cases. We also show the Clifford index of C is equal to gon(C) — 2.

1. Introduction

Let C be a nonsingular projective curve over an algebraically closed field K. The
gonality of C, written gon(C), is the minimum degree of a surjective morphism
C — P!, or equivalently the minimum positive integer k such that there exists a
g,l on C.

For curves of genus g > 1 the gonality varies between 2, the value it takes on
hyperelliptic curves, and [% (g+ 3)], which by Brill-Noether theory is the gonality
of a general curve of genus g. It may be regarded as the most fundamental invariant
of the algebraic structure of C after the genus, providing a stratification of the
moduli space of curves of genus g.

When a curve is embedded in some projective space, it is natural to wonder
whether the gonality may be related to extrinsic properties of the curve. Here
is a classical result in this direction, already known to Noether [Ciliberto 1984;
Hartshorne 1986]:

Theorem 1.1. A smooth curve C C P? of degree d > 3 has gonality gon(C) =d—1,
and any morphism C — P! of degree d—1 is obtained by projecting C from one of
its points.

Hartshorne was partially supported by Gnsaga - Programma Professori visitatori. Schlesinger was
partially supported by MIUR PRIN 2005 Spazi di moduli e teoria di Lie and PRIN 2007: Moduli,
strutture geometriche e loro applicazioni.

MSC2000: 14H50, 14H51.
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See [Hartshorne 2002] for a proof and references. It is a simple exercise to
prove the statement using the method of [Lazarsfeld 1986], which associates a
vector bundle on [P? to a basepoint-free pencil on C. It is this method that we will
exploit in the proof of our result.

One may ask a similar question for a curve C C P3. If L is a line in P3,
projection from L induces a morphism 7z : C — P!, whose degree is the degree
of C minus the number of points of intersection of C and L. Thus the morphisms
7, of minimal degree are those corresponding to maximal order multisecant lines.
We define

[ =1(C) =max{deg(CNL): L aline in P3)

By analogy with the plane curves case one might wonder whether
(1-1) gon(C) = deg(C) —1(C)

for a curve in P3, in which case following the terminology of [Hartshorne 2002]
we say the gonality of C is computed by multisecants. Of course, this is usually
not the case. For example, a general curve of genus g has gonality [%(g—l—?))] and
can be embedded in P? as a nonspecial linearly normal curve of degree g+3. Since
the Grassmannian of lines in P has dimension 4, and the set of lines meeting C
is a codimension one subvariety, one expects /(C) to be 4, and so

deg(C) —1(C) = g — 1 > [5(g+3)] = gon(C).

See [Hartshorne 2002, Examples 2.8 and 2.9] for specific counterexamples.

On the other hand, if the embedding of C in P? is very special, one may hope
the gonality of C is computed by multisecants. In this vein Peskine raised the
question:

Question 1.2. If C is a smooth ACM curve in P3, is its gonality computed by
multisecants?

Here ACM means arithmetically Cohen—-Macaulay: a curve in P? is ACM if the
natural maps H(P3,0(n)) - H(C, Oc(n)) are surjective for every n > 0.

Some special cases have been treated in the literature. Early results about
uniqueness of the linear series |O¢(1)| for complete intersections and other ACM
curves are in [Ciliberto and Lazarsfeld 1984]. Basili [1996] has proven that the
gonality of a smooth complete intersection is indeed computed by multisecants.
Ellia and Franco [2001] showed that the maximum order / of a multisecant to a
general complete intersection of type (a, b) is 4 if a > b >4 as one expects. Lazars-
feld [1997, 4.12] finds lower bounds for the gonality of a complete intersection
curve in P".

Results from [Martens 1996] and [Ballico 1997] show that the gonality of a
smooth curve C C 3 on a smooth quadric surface is computed by multisecants.
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In [Hartshorne 2002] it is shown that if a smooth curve C C P3? is ACM, lies on a
smooth cubic surface X, and is general in its linear system on X, then its gonality
is computed by multisecants. Farkas [2001] has shown that smooth ACM curves
C C P3 lying on certain smooth quartic surfaces that do not contain rational or
elliptic curves have gonality computed by multisecants.

In this paper, we show that, with the exception of very few cases we cannot
decide, the gonality of a general ACM curve is indeed computed by multisecants.
We have to make sense of the expression general ACM curve. To obtain an irre-
ducible parameter space for ACM curves one needs to fix the Hilbert function, that
is, the sequence of integers h%(O¢(n)). This is more conveniently expressed by its
second difference or h-vector:

he(n) = h%(Oc(n) —2h°(Oc(n — 1)) +h°(Oc(n —2)).

which has the advantage of being finitely supported while still nonnegative. We
will denote by A(h) the Hilbert scheme parametrizing ACM curves in P? with A-
vector 4. By a theorem of Ellingsrud (see Remark 6.4), the Hilbert scheme A (h)
is smooth and irreducible. Thus by a general ACM curve we will mean a curve
in a Zariski open nonempty subset of A(h). We believe it is reasonable to assume
that C is general in the statement of our theorem, because it might happen that a
special ACM curve had a low degree pencil unrelated to the line bundle O¢(1).

Theorem 1.3. Assume K = C is the field of complex numbers. Let C C P? be a
nonplanar smooth ACM curve. If C is general in the Hilbert scheme A(h¢), then

gon(C) =d — 1,

where d = deg(C) and | = [(C) is the maximum order of a multisecant line to C,
except perhaps when the degree d, the genus g and the least degree s of a surface
containing C form one of the following triples: (15, 26, 5), (16, 30, 5), (21, 50, 6),
(22, 55, 6), (23, 60, 6), (28, 85,7), (29,91, 7), (36, 133, 8).

For curves C contained in a quadric or a cubic surface, the statement follows
from the references cited above. So our contribution is for curves not lying on a
cubic surface.

We can also determine the integer /(C) in terms of the i-vector of C. Most of
the time /(C) = 4, with two families of exceptions. These exceptional cases arise
because the h-vector forces surfaces of minimal degree containing C to contain a
line as well; this line is then a multisecant of order higher than expected. If s as
above denotes the least degree of a surface containing C, we let

t = min{n : h°(Fc(n)) — h®(Ops(n —s5)) > 0},
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so that (s, ) is the smallest type of a complete intersection containing C. We
denote by e the index of speciality of C: e = max{n : h'0c(n) > 0}.
The value of /(C) is given as follows:

Theorem 1.4. Let C C I]j’% be a general smooth ACM curve with s > 4. Let | =1(C)
denote the maximum order of a multisecant line to C. Then | = 4, unless

o the h-vector of C satisfies h(e+1) =3 and h(e+2) =2, in which case | =e+3
and C has a unique (e + 3)-secant line, or

o t > s+ 3 and the h-vector of C satisfies h(t) =s —2 and h(t + 1) = s—3, but
noth(e+1) =3, h(e+2) =2, in which case | = t—s+1 and C has a unique
(t—s+1)-secant line.

Nollet [1998] has found a sharp bound for the maximal order / = /(C) of a
multisecant line in terms of the h-vector of C, valid for any irreducible ACM
curve. If C is not a complete intersection, the bound is the largest integer n for
which hc(n — 1) — he(n) > 1. Since this number is at least s, we see that [(C)
and the gonality of C vary in the family A(h), provided s > 5, and the gonality of
the general curve is d — 4 (in fact the argument of Theorem 4.1 shows that /(C)
varies in the linear system |C| on a smooth surface X of degree s > 5). On the
other hand, in the special case h(e 4 1) =3 and h(e +2) = 2, then Nollet’s bound
is precisely e + 3, so that [(C) is constant in A (k).

Finally, in most cases we can prove that every pencil computing the gonality of
C arises from a maximum order multisecant: the finite list of exceptions is given
in Theorem 9.1. In particular, C has a finite number of pencils of minimal degree,
and therefore its Clifford index is Cliff(C) = gon(C) —2=d —[(C) — 2.

It would be interesting to investigate linear series g; on general ACM curves
also for r > 2. For results in this direction we refer to [Lopez and Pirola 1995].

Outline of proof and structure of the paper. Since the conclusions of our result
are semicontinuous on the Hilbert scheme A(h), it suffices to show the existence
of a single curve C for which the result holds. Let C be a smooth ACM curve in 3
with given h-vector £, not lying on any surface of degree at most 3. In Section 3 we
review the classical result that for every smooth space curve D of degree at least
10 there exists a line L that is at least a 4-secant line of D. Thus gon(C) <d — 4.
Next, if C is general in A(h), it is contained in a smooth surface X of degree s. We
prove in Corollary 4.2 that, if C is general in its linear system on X and L is an
[-secant line of C with [ > 5, then L is contained in X. In fact, we prove a slightly
more general result, which gives explicit conditions for a space curve not to have
5-secant lines:
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Theorem 4.1. Let C C Pfﬁ be a curve contained in an irreducible surface X of
degree s. Suppose C is a Cartier divisor on X and

HO(P3, 9¢c(s=2)) =0, H' (P, 9c(m))=0 form=s—-2,5—3, s—4.

If C is general in its linear system on X, then deg(C N L) < 4 for every line L not
contained in X, and C has only finitely many 4-secant lines not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line
foranyl > 5.

At this point to prove our main theorem we need to show that every pencil of
minimal degree arises from a multisecant line. The proof uses the technique from
[Lazarsfeld 1986], which associates to a basepoint-free pencil on C a vector bundle
‘€ on the surface X, as explained in Section 5. In Section 6 we review enough
liaison theory for ACM curves to be able to show that the bundle € is Bogomolov
unstable. Thus it has a destabilizing divisor A € Pic(X), whose degree x = A.H
satisfies stringent numerical restrictions in terms of the intersection numbers A2,
A.C and C%.

To use these constraints effectively we need to control the Picard group of X.
The hypothesis that the ground field is C allows us to apply the Noether—Lefschetz
type theorem of [Lopez 1991, I1.3.1] or the more recent [Brevik and Nollet 2008]
to conclude that, if C is general in A(h) and X is very general among surfaces
of minimal degree containing C, then Pic(X) is freely generated by H and the
irreducible components of a curve I" that is general among curves minimally linked
to C. Such a I is a general ACM curve, but it may not be irreducible. Thus
we are led to establish a structure theorem for general ACM curves. Section 7 is
devoted to the proof of this result. It generalizes Gruson—Peskine’s theorem [1978],
according to which the general ACM curve in A(#) is smooth and irreducible if /
is of decreasing type (“has no gaps”):

Theorem 7.21. Let A(h) denote the Hilbert scheme parametrizing ACM curves in
IP% with h-vector h. If T is general in A(h), then

I'=DiUD,U-.-UD,,

where r — 1 is the number of Gruson—Peskine gaps of h, and the D; are distinct
smooth irreducible ACM curves whose h-vectors are determined by the gap de-
composition of h as explained in Section 7. Furthermore, for every 1 <i; < iy <
co-<ip <, the curve

D;,UD;,U---UD;,
is still ACM.

Thus we can write the destabilizing divisor as A=aH+ ) _ a; D;. In the proof of
the main Theorem 9.1, using the fact that the curves D; and their unions are ACM,
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together with the numerical constraints on x = A.H we show —s—1 <x < 0. We
then play this inequality against the bounds of Corollary 8.9, which are essentially
upper bounds for the genus of an ACM curve lying on X in terms of the degree
of the curve and of degree of X. In fact, these bounds are a refinement of the
bounds for the genus of an ACM curve proven in [Gruson and Peskine 1978] (see
Remark 8.8). The end result is that there are only two possibilities for A: either
—A = H (the plane section) or —A = H — L for some line L on X.

Corollary 5.7 shows that in case A = —H the pencil arises from a multisec-
ant line not contained in X, while in case A = L — H the pencil arises from L.
This shows pencils of minimal degree on C all arise from multisecant lines, thus
completing the proof of the theorem.

2. Notation and terminology

A linear system of degree k and projective dimension r on C is denoted with the
symbol g;, and a g,l is called a pencil. The gonality of C, written gon(C), is the
least positive integer k such that there exists a g,l on C. Since a pencil of least
degree is automatically basepoint-free, the gonality of C is the least degree of a
surjective morphism C — P'. One can further notice that a g,l with k = gon(C) is
complete, so that ho(C, 0c(2)) =2 for every divisor Z in the pencil.

Definition 2.1. Assume C C [P? is a nonplanar curve. Given a line L, let 7, : C —
P! be obtained projecting C from L, and let %(L) denote the g,l corresponding to
mr. Note that %(L) is obtained from the pencil cut out on C by planes through
L removing its base locus, which coincides with the scheme theoretic intersection
C N L. In particular,

deg(mwy) =deg% (L) = deg(C) —deg(C.L)

and #(L) is complete if deg(C.L) > 2. We say that a g,l on C arises from a
multisecant if it is of the form Z(L) for some line L. We say the gonality of C
can be computed by multisecants if there exists a line L such that #(L) has degree
gon(C).

3. Existence of 4-secant lines

The following statement is classical and well known, but it seems hard to find a
reference.

Proposition 3.1. Let C be a smooth irreducible curve of degree d > 10 in P3. Then
C has an l-secant line L with | > 4. In particular, the gonality of C is at most d —4.

Proof. The statement is clear if deg(C) > 4 and C is contained in a plane or
deg(C) > 7 and C is contained in a quadric surface. If C is not contained in a
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quadric surface, we will show the Cayley number of 4-secants

d—2)(d—-=3)*d—-4 d*>—7d+13—
(G(d,g)z( )( 12)( ) &( 2+ g)

is positive. The existence of L then follows from intersection theory as explained
in [Le Barz 1987] or in [Arbarello et al. 1985]. For fixed d > 7, the number €(d, g)
is a decreasing function of g, because the partial derivative with respect to g is

d*—7d +13

8 5 )

which is negative because g < d?/4 —d + 1 when C is not contained in a plane.
But C is not even contained in a quadric surface; thus its genus is bounded above

by +d(d —3)+1, and

€(d,g) > 6(d, tdd—3)+1) = d(d — 3)(d7; 6)d—9)

which is positive for d > 10. O

Remark 3.2. The result is sharp, because a smooth complete intersection of two
cubic surfaces has degree 9 and no 4-secant line.

4. Nonexistence of 5-secant lines

Theorem 4.1. Let C C P? be a curve contained in an irreducible surface X of
degree s. Suppose C is a Cartier divisor on X and

HOP3, 9c(s=2)) =0, H'(P? $c(m))=0 form=s—2,s-3,s—4.

If C is general in its linear system on X, then deg(C.L) < 4 for every line L not
contained in X, and C has only finitely many 4-secant lines not contained in X.

In particular, if X does not contain a line, then C does not have an [-secant line
foranyl > 5.

Proof. The statement is obvious if s < 3, so assume s > 4. The hypotheses imply
h'o(D)=0for D=C, C — H, C —2H because, by Serre duality,

(3, $cm)) =h"(X,0x(mH — C)) = h' (X, 0x(C + (s — 4 —m)H)).
Similarly, H?*(0x(C —nH)) is dual to
HY(Ox((s —4+n)H —C)) = H(X, $¢c.x(s —4+n)),

which by assumption is zero for n < 2. Thus we see that h00x (D) = x0x (D) for
D=C,C—H,C-2H.
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Let L be a line not contained in X, and let V be the scheme theoretic intersection
of X and L. Then V has degree s, and there is an exact sequence

0— Ox(—2H) = Ox(—H)®? - $y x — 0.
Twisting by Oy (C) and taking cohomology we see that
h(9v(C)) =2h°(Ox(C — H)) — h°(Ox (C — 2H)).
Therefore
h0(0x(C)) = h°($y (C)) = h’(0x(C)) — 2h°(Ox (C—H)) + h°*(Ox (C—2H))
= x(0x(C)) —2x(0x(C — H)) + x (0x(C —2H)) =3s.

This shows that the points of V impose independent conditions on the linear
system |C|. It follows that the family of curves in |C| meeting L in a scheme of
length [ < s has codimension / in |C|. This implies the statement because L varies
in a four-dimensional family. (]

Corollary 4.2. Let C C P3 be an ACM curve. Suppose that C is contained in a
smooth surface X C P? of degree s = s¢, and that C is general in its linear system
on X. Then deg(C.L) < 4 for any line L not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line
foranyl > 5.

Proof. The statement follows from Theorem 4.1 because C is ACM precisely when
H'(P3, $¢(m)) = 0 for every m. O

5. Gonality of curves on a smooth surface: Lazarsfeld’s method

In this section we explain a construction due to Lazarsfeld [1986; 1997] that will
be crucial in proving that every pencil of minimal degree on a general ACM curve
arises from a multisecant.

When a curve C is contained in a smooth surface X, we associate a rank two
vector bundle on X to a basepoint-free g,l on C as follows. The basepoint-free
g,l is determined by a degree k line bundle O¢(Z) on C, and a surjective map of
Oc-modules

B:0&* — 0c(2).

(Note that, since k > 1, the map H°(8) : H*(02%) — H®(0¢(2)) is injective.)

Definition 5.1. Suppose C is an integral curve on the smooth projective surface
X, and ¥ is a basepoint-free pencil on C defined by g : @?2 — 0c(Z). Let

a:09 - 0c(2)

denote the map obtained composing B with the natural surjection @;Bz — @?2.
Then the kernel € of « is called the bundle associated to the pencil %.
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Proposition 5.2. Let € be the bundle associated to a pencil of degree k on C as in
the previous definition. Then

(a) € is a rank two vector bundle on X.
(b) HO(¢) =0.
(¢) c1(€) =0x(—C) and c>(€) = deg(Z), so that

A®) ¥ 2(®) — dey(6) = C? — 4k.
(Here we consider the first Chern class as an element of A!(X) = Pic(X), while
we view the c% and c; as integers, via the degree map for zero cycles.)

Proof. By definition of € there is an exact sequence:
0—>%—>@§92—>@C(Z)—>0

Since O¢ has rank zero and projective dimension 1 as an Ox-module, € is a rank
two vector bundle on X, whose Chern classes can be computed from the above
sequence. If H%(€) were not zero, then H(a) : H(0&%) — H°(0¢(Z)) would
not be injective, so & would induce a surjective map O¢c — O¢(Z), contradicting
degZ=k>1. (Il

We recall the definition of Bogomolov instability for rank two vector bundles
on a surface, and Bogomolov’s theorem which gives a numerical condition for
instability.

Definition 5.3. Let € be a rank two vector bundle on X. One says that € is Bo-
gomolov unstable if there exist a finite subscheme W C X (possibly empty) and
divisors A and B on X sitting in an exact sequence

(5-1) 0—>0x(A) >¢€— 9w ®0x(B)— 0.

where (A — B)? > 0 and (A — B).H > 0 for some (hence every) ample divisor H.
We say A is a destabilizing divisor of €. It is unique up to linear equivalence.

Theorem 5.4 ([Bogomolov 1978]; compare [Huybrechts and Lehn 1997, 7.3.3]
and [Lazarsfeld 1997, 4.2]). Suppose the ground field K has characteristic zero.
Let € be a rank two vector bundle on the smooth projective surface X, and let
A(E) =c1(€)* —4ca(€).

If A(€) > 0, then € is Bogomolov unstable.

Following Lazarsfeld’s approach, we will show in Section 6 that the bundle
associated to a pencil computing the gonality of a smooth ACM curve satisfies
A(€) > 0, hence it is Bogomolov unstable, and there is a destabilizing divisor A.
To work effectively we will need the following technical result that will be useful
in two ways. First it immediately implies that, when —A = H (plane section) or
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—A = H—L (plane section minus a line), the given pencil arises from a multisecant;
later on the inequalities A2 > 0 and A.H < 0 will be used to exclude all other
possibilities for A.

Proposition 5.5. Suppose X is a smooth projective surface, C is an integral curve
on X, and |Z| is a complete basepoint-free pencil on C. Let € be the rank 2 bundle
on X associated to |Z|. Suppose there is an exact sequence

(5-2) 0— Ox(A) 5 € $yy @0x(B) — 0
with W zero-dimensional and B not effective. Then the linear system | — A| on X
contains two effective curves D1 and D, with the following properties:

(a) Dy and D, meet properly in a O-dimensional scheme V containing W.
(b) Dy and D, meet C properly, and, if R is the base locus of the pencil cut out
on C by C.Dy and C.D,, then
0c(Z2) =0x(—A) ®0c(—R);
that is, the pencil |Z| is obtained by first restricting Dy and D, to C and then
removing the base locus R.

(¢) R is the residual scheme to W in V, that is, there is an exact sequence
0— 0y — 0y —>0r—0.

In particular h°$w (—A) > 2, A.H < 0 for every ample divisor H, and A*> > 0.

Remark 5.6. The proposition applies if € is Bogomolov unstable with destabi-
lizing sequence (5-2). Indeed in this case, if H is an ample divisor on X, then
(A—B).H > 0. Since ¢1(€) = A+ B = —C in Pic(X), we compute

—2B.H=(A—B).H+C.H>0.

Therefore B is not effective.

Proof of Proposition 5.5. Dualizing 0 — € — @;?2 — 0¢(Z) — 0 we obtain an
exact sequence
0— 0% — €(C) — Oc(C—2Z) — 0.

We now look at the composite map g : @?2 — €(C) —> $w(—A).

This map is nonzero, otherwise O ;92 would map injectively into the kernel of
€(C) > $w(—A), which is Ox(C + A), absurd. Hence the image of g has rank
one, and has the form $y(—A) for some proper subscheme Y C X containing W.
Then $y = $y (— D) where D is the divisorial part of Y, and V is zero dimensional.
We obtain an exact sequence

0 — Ker(g) — 02> — $y(~A—D) — 0.
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It follows Ker(g) = Ox(A 4+ D) and —A — D is effective. A diagram chase shows
there is an exact sequence

0—-0x(A+D)—>0x(C+A)—0c(C—-2)

from which we see there is an effective curve Cy linearly equivalent to C — D
contained in C. Since C is irreducible, this implies either D = C or D = 0.
Now —A — D is effective, so, if we had D = C, then B = —A — C would be
effective, contradicting the hypotheses. Hence the only possibility is D = 0.
Putting everything together we obtain a commutative diagram with exact rows:

0 —— Ox(4) —— 022 120 g A) —— 0

L | l

0 —> ¢ — 0¥ —— 0c(Z) — 0

Now let D and D, the divisors defined by the sections s; and s, of Ox(—A). The
first row of the diagram shows D; and D, meet properly in the zero dimensional
scheme V, which contains W by construction. The two sections remain indepen-
dent in H°(0¢(Z)) because H°(€) = 0. Hence D; and D, meet C properly, and
D;.C and D,.C span a pencil on C.

By the snake lemma, the kernel of the vertical map $y(—A) — Oc(Z) is
Iw(B)=9w(—A — C), hence a diagram chase produces an exact sequence

0—0c(Z) > 0x(—A)®0c — Oy /Oy — 0
which proves the rest of the statement. (I

Corollary 5.7. Assume X C P3 is a smooth surface with plane section H, contain-
ing a smooth irreducible curve C. Suppose C is not contained in a plane. Let |Z)|
be a complete basepoint-free pencil on C, and let € be the bundle on X associated
to |Z|.

(a) If there is an exact sequence
0—>0x(A) > ¢ —> F$w(B)—0

with W zero dimensional and A + H effective, then there is a line L such that
|Z| =% (L) is the pencil cut out on C by planes through L. Furthermore, if X
does not contain L, then A = —H and W is the residual scheme to C N L in
X N L, while, if X contains L, then A= L — H and W is empty.

(b) Assume C is linearly normal and |Z| is the pencil cut out on C by planes
through a line L meeting C in a scheme of length at least 2. Then there
exists an exact sequence as above with A = —H if X does not contain L and
A =L — H if X contains L.
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Proof. (a) The divisor B is not effective; otherwise
B+(A+H)=(—A—-C)+(A+H)=H—-C

would be effective, which contradicts the assumption that C is not contained in
plane.

Thus we may apply Proposition 5.5 to the given exact sequence to conclude the
linear system | — A| contains a pencil. By assumption P = A+ H is effective, and
therefore in order that | — A| = |H — P| may contain a pencil it is necessary that
P be empty or a line.

If P is empty, by 5.5 the are two plane sections D; = HiNX and D, = HyNX
of X meeting in a zero dimensional scheme V, hence the line L = H; N H; is not
contained in X. Proposition 5.5b shows |Z] is obtained removing from the pencil
spanned by C N Hy and C N H, its base locus C N L, that is, |Z| = %(L), and
Proposition 5.5¢ shows W is the residual scheme to CN L in X N L.

Finally, if P is a line, then D and D, belong to | H — P|, hence their intersection
V = D1 N Dy is empty. It follows from Proposition 5.5 that |Z| = %(P) and that
and W is empty.

(b) By the definition of € there is an exact sequence
0%%—)@?2%(%(2)—)0.

Comparing this sequence with
0—->0c—0c(Z2)—>0;—0,

we obtain
0—0x(—C)—>€— 9zx—0.

Now twist by H and take cohomology to get a long exact sequence
0— H°(Ox(H —C)) - H°(€(H)) - H($7.x(H)) - H'(0x(H —C)).

Since Z is contained in a plane, h°($z x(H)) > 0, while H!(Ox(H — C)) =
H'($¢(H)) = 0 because C is linearly normal. Hence €(H) has a section, and
after removing torsion in the cokernel if necessary we find an exact sequence:

0— Ox(P—H)—>€— $w(H—P—C)— 0,

with W zero dimensional and P effective. Now (b) follows from (a). U

6. ACM curves

In this section we show that, if C is an ACM curve of degree d having a pencil of
minimal degree k < d —4 on a smooth surface of degree s = s¢, then the bundle
€ associated to the given pencil satisfies A(€) > 0 (except for a small list of cases
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given in Proposition 6.10); hence, if the ground field has characteristic zero, it is
Bogomolov unstable. The proof is based on the structure of the biliaison class of
ACM curves which we now briefly recall. We also include some information about
the minimal link I" of a curve C, which we will need later.

Given a curve C in P3 its fundamental numerical invariants are, besides its

degree d¢ and its arithmetic genus g(C) =1 — x(Oc¢):

« its index of speciality e(C) = max{n : h'0¢(n) > 0};

« the minimal degree s¢ of a surface containing C;

o the integer f¢ = min{n : ho($c(n)) — h0(©|p3 (n—sc)) > 0)}. If C is integral
or more generally if C lies on an integral surface of degree s¢, the integer #¢
is the smallest n such that C is contained in a complete intersection of two
surfaces of degree s¢ and n.

When C is ACM, all its basic numerical invariants can be computed from the
Hilbert function. It is convenient to express the Hilbert function through its second
difference function, the so called h-vector h¢ of C — see [Migliore 1998, §1.4] —
because A is a finitely supported function. Thus one defines

he(n) = h°(Oc(n) —2h°(Oc (n — 1)) + h°(Oc(n —2)).
If s =s(C) and e = ¢(C), the function s satisfies

hiny)=n+1 if 0<n<s—1,
(6-1) h(n)>h(n+1) if n>s-—1,
h(e+2)>0 and h(n)=0 forn=>e+3.

Thus we may write & as
he={1,2,...,5, hc(s),...,hc(e+2)}.

with s = he(s—1) = he(s) = he(s+1) = --- = hc(e+2).

We say that a finitely supported function /2 : N — N is an h-vector if it satisfies
(6-1) for some s > 1. Every h-vector arises as the i-vector of an ACM curve in P3;
see [Martin-Deschamps and Perrin 1990, Theorem V.1.3, p. 111] and Remark 7.7
below. It will be convenient to allow the identically zero function among /-vectors,
and think of it as the h-vector of the empty curve. In terms of the h-vector, the
fundamental invariants of C are:

Proposition 6.1. For an ACM curve C in 3, with h-vector h¢, we have
(1) dc =3 hcn),

() g(C) =1+ (n—1)hc(n),

3) e(C)+2=max{n: hc(n) > 0},
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@) sc=min{n >0:hc(n) <n+1}, and
B) tc=min{n>0:hc(n—1) > hc(n)}.

Consistently with these formulas, for the empty curve we define s =0, d = 0,
g=1,e=—o0.

Remark 6.2. If C is an ACM curve with s¢ = s, then

s—1

de=> hcn) =Y (n+1) = ss(s+1).

n=0
The h-vectors of integral curves have a special form:

Definition 6.3 [Maggioni and Ragusa 1988]. An h-vector is of decreasing type if
h(a) > h(a + 1) implies that for each n > a either h(n) > h(n+ 1) or h(n) = 0.

Remark 6.4. By a result from [Ellingsrud 1975] (see also [Martin-Deschamps and
Perrin 1990, p. 5; corollaire 1.2 on p. 134; §1.7, p. 139]), the Hilbert scheme A (h)
of ACM curves in P? with a given A-vector is smooth and irreducible, even when
h is not of decreasing type.

Gruson and Peskine [1978] (see also [Maggioni and Ragusa 1988] and [Nollet
1998]) showed that, if C is an integral ACM curve, then k¢ is of decreasing type,
and conversely, if & is an h-vector of decreasing type, then there exists a smooth
irreducible ACM curve C with i¢c = h. Thus an h-vector h is of decreasing type
if and only if the general curve C in A(h) is smooth and irreducible.

If C is not irreducible, it may happen that every pair of surfaces X; and X,
containing C of minimal degrees s¢ and ¢ have a common component. Nollet
[1998, Proposition 1.5] generalized the result of Gruson and Peskine by showing
that if C is contained in a complete intersection of type (sc, fc), then h¢ is of
decreasing type. We partially reproduce his argument here:

Lemma 6.5. (i) Suppose an ACM curve D is contained in a complete intersec-
tion Y of type (sp, tp), and let I" be the curve and linked to D by Y. Then

e(l)+3 <sp.

(i1) Let T be an ACM curve, and suppose a < b are integers such that a > e(I')+3
and b > e(I") 4+ 4. Then the h-vector of a curve D linked to I" by a complete
intersection of type (a, b) is of decreasing type. If a > e(I') + 4, then sp = a
andtp =b. Ifa=e(")+3,thensp =aandtp =b — 1.

Proof. If I and D are linked by a complete intersection Y of type (a, b), we have,
by [Migliore 1998, 5.2.19],

hr(n)=hy(n) —hpla+b—-2—n)=hy(a+b—2—n)—hpla+b—2—n).
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Suppose first a = sp and b = tp. Then
hr(sp—1)=hy(ty —1)—hp(tp —1) =sy —sp =0.
Therefore e(I') +3 < sp — 1.
Next suppose b > a > e(I') +4. Then sp < a because D C Y, and
hpb—1)=hy(a—1)—hr(a—1)=hy(a—1)=a
while
hp(b) =hy(a—2)—hr(a—2) <hy(a—2)=a—1
hence sp =a and tp = b.
Ifa=e(l")+3 and b > e(I") 44, then a similar calculation shows hp(b—2) =a
and hp(b—1) <a,sothatsp =a and tp =b — 1.
It remains to show /i p is of decreasing type. Letu =s(I'). Thenu <e(I')+3 <a
and hr(n) =hy(n)=n+1forn<u—1;hence hp(n)=0forn>a+b—1—u.
Since hir(n) > hr(n+1) forn >u—1, weseethatforb—1<m <a+b—2—u
hpm)—hpm+1)=hy(m)—hy(m+1)—hr(a+b—2—m)+hr(a+b—1—m)
=1-0hr(a+b—1—m)>1,
which shows that % p is of decreasing type. (I

Fix a smooth surface X C P? of degree s. Two curves C and D on X are said to
be biliaison equivalent if C is linearly equivalent to D +n H for some integer n.

Definition 6.6. A curve C on a surface X is minimal on X if C — H is not effective.

Proposition 6.7. A curve C is minimal on a smooth surface X if and only if
e(C)+3 < deg(X).

Proof. To say C is minimal is equivalent to saying h°(0x (C — H)) = 0. By duality
on X this is the same as h*($¢(s—3)) =0, where s = deg(X). On the other hand,
h?($c(s—3)) =h'(Oc(s—3)), so the condition says s —3 > e(C), or equivalently,
e(C)+3 <. O

Definition 6.8. We say that an i-vector is s-minimal if the corresponding curve
satisfies e + 3 < s. We say that an h-vector is s-basic if it is the h-vector of an
integral curve C satisfying sc = t¢ = s. Thus the s-basic h-vectors are those
h-vectors of decreasing type that begin with a string

{1,2,...,5—1,s, m}
with m = h(s) <s—1.

Table 1 on the next page lists s-basic h-vectors for s =4 and s = 5.
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d g h-vector C>—4(d—4) C>—4(d—5) A (T =tH-C) q(})
10 11 1,2,3,4 —4 0 1,2,3 20
11 14 1,2,3,4,1 -2 2 2,3 17
12 17 1,2,3,4,2 0 4 1,3 16
TT 13 20 1,2,3,4,3 2 6 1,2 17
«» 13 21 1,2,3,4,2,1 4 8 3 9
14 24 1,2,3,4,3,1 6 10 2 12
15 28 1,2,3,4,3,2 10 14 1 9
16 33 1,2,3,4,3,2,1 16 20 @ 0
15 26 1,2,3,4,5 -9 -5 1,2,3,4 50
16 30 1,2,3,4,5,1 —6 -2 2,3,4 46
17 34 1,2,3,4,5,2 -3 1 1,3,4 44
18 38 1,2,3,4,5,3 0 4 1,2,4 44
18 39 1,2,3,4,5,2,1 2 6 3,4 34
19 42 1,2,3,4,5,4 3 7 1,2,3 46
19 43 1,2,3,4,5,3,1 5 9 2,4 36
? 20 47 1,2,3,4,5,4,1 8 12 2,3 40
«» 20 48 1,2,3,4,5,3,2 10 14 1,4 30
21 52 1,2,3,4,5,4,2 13 17 1,3 36
21 54 1,2,3,4,5,3,2,1 17 21 4 16
22 57 1,2,3,4,5,4,3 18 22 1,2 34
22 58 1,2,3,4,5,4,2,1 20 24 3 24
23 63 1,2,3,4,5,4,3,1 25 29 2 24
24 69 1,2,3,4,5,4,3,2 32 36 1 16
25 76 1,2,3,4,5,4,3,2,1 41 45 & 0
21 50 1,2,3,4,5,6 -12 -8 1,2,3,4,5 105
<”> 22 55 1,2,3,4,5,6,1 -8 —4 2,3,4,5 100
« 23 60 1,2,3,4,5,6,2 —4 0 1,3,4,5 97
24 65 1,2,3,4,5,6,3 0 4 1,2,4,5 96
~ 28 85 1,2,3,4,56,7 —12 -8 1,2,3,4,5,6 196
Il 29 91 1,2,3,4,5,6,7,1 —7 -3 2,3,4,5,6 190
© 30 97 1,2,3,4,5,6,7,2 -2 2 1,3,4,5,6 186
35130 1,2,3,4,5,6,7,4,3 29 33 1,2,5,6 154
°|<|> 36 133 1,2,3,4,5,6,7,8 -8 —4 1,2,3,4,5,6,7 336
» 37140 1,2,3,4,5,6,7,8,1 =2 2 2,3,4,5,6,7 329
45196 1,2,3,4,5,6,7,8,9 1 5 1,2,3,4,5,6,7,8 540

Table 1. s-basic h-vectors and s-minimal biliaison types.
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Proposition 6.9. Suppose C is an ACM curve contained in a smooth surface X of
degree sc. Let s =sc,t =tc and e = e(C). Thene+3 >t > s and

(a) hc is of decreasing type;

) ifT €|tH —C|,thene(I") + 3 < s and I" is minimal on X
(c) C—mH is effective if and only if m <e+4 —s;

@) ifCre|C—(@—s)H|, hc, is s-basic;

(e) if Cr e |C—(—s+1)H]|, hc, is of decreasing type.

There is a one to one correspondence hr — hc, mapping s-minimal h-vectors
to s-basic h-vectors.

Proof. Since C is ACM, the ideal sheaf 9 ps is (e + 3)-regular, hence e +3 > 1.
By definition of #, we have ¢ > s, and C is contained in a surface F of degree ¢ that
does not contain X. Therefore C is contained in the complete intersection X N F of
type (s, t). Let I" € |t H — C| be the curve linked to C by XN F: thene(I'g) +3 < s
and I' is minimal (by either Lemma 6.5 or by definition of ¢).

Each of the curves C, Cy, C; is linked to a curve in the linear system |I'| by a
complete intersection of type (s, t), (s, 5), or (s—1, 5), respectively. By Lemma 6.5
the h-vectors of C, C; and C; are of decreasing type, and A, is s-basic. O

There is a unique 1-basic h-vector, namely i = {1}, the h-vector of a line. Every
(s—1)-basic h-vector gives rise to two s-basic h vectors by performing a type A
or type B transformation, defined as follows: (1) A type A = A; transformation
consists of inserting an s to an (s—1)-basic h-vector h ={1,2,...,5s—1,m, ...} to
transform it into the s-basic vector A’ = {1,2,...,s—1,s,m...}. Geometrically,
if h is the h-vector of a curve C on a surface X of degree s, i’ is the h-vector of the
effective divisor C + H on X. (2) A type B transformation consists of inserting a
string s, s—1 to an (s—1)-basic h-vector h = {1,2,...,s—1,m, ...} to transform
it into the s-basic vector b = {1,2,...,s—1,s,5s—1,m...}. Geometrically, this
operation breaks into two steps: suppose /4 is the /-vector of a curve C on a surface
X of degree s—1. Let C; = C + H be obtained by adding to C a plane section of
X1, then pick a surface X, of degree s containing C, and finally let C, =C|+ H
be obtained by adding to C; a plane section of X;,. Then A" is the h-vector of C5.

Conversely, any s-basic h-vector with m = h(s) < s — 2 arises from a type A
transformation of an (s—1)-basic h-vector, while any s-basic h-vector with m =
h(s) = s—1 arises from a type B transformation of an (s—1)-basic h-vector. In
particular, the number of s-basic -vectors is 2°~! (see Table 1).

Proposition 6.10. Let C be an integral ACM curve in P3 with sc > 4. Suppose C
is contained in a smooth surface X of degree s =s(C). Suppose C has a basepoint-
free pencil of degree k, and let ‘€ be the bundle on X associated to such a pencil.
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(@) Ifk <d —5, then A(€) > 0 unless

e s=4and(d,g)=(10,11), or

e s=5and(d, g)=(15,26), (16,30), or

e s=6and (d, g)=(21,50), (22,55), (23, 60), or

e s=Tand (d, g) = (28, 85), (29,91), or

e s=8and (d, g) = (36, 133).
) If k=d — 4, then A(€) > 0 unless

e s=4and(d, g)=(10,11), (11, 14), (12, 17), or

e s=5and (d, g) = (15,26), (16,30), (17,34), (18, 38), or
s=6and (d, g) = (21, 50), (22,55), (23, 60), (24, 65), or
s="Tand (d, g) = (28, 85), (29,91), (30,97), or
e s =8and (d, g) = (36,133), (37, 140).

Proof. We can compute A(€) in terms of d = d¢ and g = g(C):

A@)=C?—4k=2g—-2—(s—4)d —4k =5,(d, g) +4(d —k),

where we have set §,(C) = §;(d, g) = 2g — 2 — ds. One can easily verify the
following facts:

(1) Let C C X, be a curve on a surface X of degree s in P3, and consider the
divisor C + H on X. Then

8;,(C+ H)—6,(C) =2d — 3s.
In particular, if d > %s(s—i—l) and s > 3, §,(C + H) > §;(C).

(2) Suppose C € X, is acurve on a surface X of degree s+1 in P3, and consider
the divisor C + H on X1 Then

Os+1(C+ H) —65(C) =d —3(s+1).

In particular, if d > %S(S-f—l) and s > 6, 8,41(C + H) > §,(C), and the in-
equality is strict unless s = 6 and d = 21.

To prove the proposition, we have seen that A(€) can be computed in terms of
d, g,s, k, which depend only on the h-vector and the choice of s, k. Therefore,
using the two remarks (1), (2) just made and using biliaisons on each surface
to reduce to s-basic h-vectors, and using the transformations of type A and B
mentioned before the statement, it would be sufficient to prove that A > 0 for all
s-basic h-vectors with s = 4. Unfortunately this is not so, as A < 0 for the first
three 4-basic h-vectors (see Table 1). Still the two remarks show that A becomes
positive using the transformations of type A and B, with the only exceptions listed
in the statement. Table 1 displays all A-vectors for which A <0 for k =d —4 and
k=d-5. O
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7. General ACM curves

We now generalize the results of [Gruson and Peskine 1978] by giving a description
of a general ACM curve C with a given i-vector &, even when £ is not of decreasing
type. We show (Theorem 7.21) that C is a union of smooth ACM subcurves whose
h-vectors are determined by that of C. The basic step is Proposition 7.18, which is
a special case of [Davis 1985, Corollary 4.2], and says that C is the union of two
ACM subcurves whenever h¢ is not of decreasing type. As a corollary we show
the existence of multisecant lines for ACM curves with h-vector of special types.

Definition 7.1. Let Cy and C be two curves in P3.

(a) Following [Martin-Deschamps and Perrin 1990] we say that C is obtained
by an elementary biliaison of height h from Cj if there exists a surface X
in P3 containing Cp and C so that $¢ x = $¢, x(—h). In the language of
generalized divisors [Hartshorne 1994] this means C is linearly equivalent to
Co+ hH on X, where H denotes the plane section.

(b) As a particular case, we say C is obtained by a trivial biliaison of height & if
$c.x = Ic,,xPy.x where Y is a complete intersection of X and a surface of
degree h. If Y meets Cy properly, this means C is the union of Cy and Y.

(c) By a special biliaison of degree k we mean an elementary biliaison of height
one C ~ Cop+ H on a surface of degree k > ¢(Cyp) + 4. The condition k >
e(Co) + 4 guarantees s¢c = s¢, + 1 and k = ¢(C) + 3 by [Martin-Deschamps
and Perrin 1990, p. 68].

Proposition 7.2 (Lazarsfeld—Rao property). Suppose C is an ACM curve with in-
dex of speciality e. Then C can be obtained by a special biliaison of degree k = e+3
Sfrom some ACM curve Cy satisfying sc, = sc—1.

Proof. One knows — see for example [Strano 2004] — that an ACM curve C with
index of speciality e can be obtained by an elementary biliaison of height 1 on a
surface X of degree e 43 from an ACM curve Cj satisfying

sc,=sc—1 and e(Cp) <e(C).
Since deg(X) = e+ 3 > e(Cp) + 4, this is a special biliaison. O

Remark 7.3. When s¢ = 1, the curve Cy above is the empty curve, which is
therefore convenient to allow among ACM curves.

Corollary 7.4. Let C be an ACM curve. Then there exist positive integers k| <
ko < --- <k, such that C is obtained from the empty curve by a chain of u special
biliaisons of degrees ki, ..., k,. The sequence A¢ = (ky, ko, ..., k,) is uniquely
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determined by C, and we will call it the biliaison type of C. Morever, we have

u 1 u u .
dc =) ki, g(C)=1+§Zki(ki—3)+2(sc—l)ki,
i=1 i=1 i=1

sc=u, tc—sc+1l=k;, e(lC)+3=k,.

Example 7.5. If C C P3 is ACM , then d¢ > %sc (sc + 1), with equality if and
only if A\c =(1,2,3,...,s5¢ — 1, s¢).

Remark 7.6. The biliaison type A¢ was introduced from a different point of view
in [Green 1998], and it essentially the same thing as the numerical character {n ;}
of [Gruson and Peskine 1978]: the precise relationship, if s = s¢, is

nj—]zks_J forj=0,.--,S—1-

The biliaison type (hence the numerical character) is equivalent to the s-vector
of C. Indeed, h¢ can be recovered from A¢c because one knows how /¢ vector
varies in an elementary biliaison, while Ac can be computed out of i via the
formula

ki=#n:hcn)>sc+1—-i}.

One can visualize ¢ and A¢ as follows. In the first quadrant of the (x, y) plane,
draw a dot at (n, p) if n and p are integers satisfying 1 < p < h(n). Then h(n) is
the number of dots on the vertical line x = n, while k; is the number of dots on the
horizontal line y =s —i + 1. In particular, k; = f¢ — sc¢ + 1 is the number of dots
on the top horizontal line y = s, and k; = ¢(C) + 3 is the number of dots on the
bottom line y = 1.

Remark 7.7. The statement that every h-vector arises as the i-vector of an ACM
curve in P? is equivalent to the statement that every finite, strictly increasing se-
quence of positive integers A = (k, ..., k,) occurs as A¢ for some ACM curve
C C P3. We can see this by induction on u. When u = 1, A = (k) is the biliaison
type of a plane curve of degree k. If u > 1, by induction there is an ACM curve
Co with Ac, = (ky, ..., ky—1). Now s¢c, < e(Co) +3 = ky—1 < k. Therefore we
can find a surface X of degree k, containing Cy, and construct C from Cy by a
biliaison of height one on X. Since e(Cp) + 3 < k,, the biliaison is special, hence
Ac equals the given A. A refined version of this construction is in Theorem 7.21.

Definition 7.8. A sequence A = (ky, kp, ..., k,) hasa gap ati if k;y; —k; > 3.

For example, the sequence A¢ of Figure 1 has a gap ati = 2.

Davis [1985] shows that a gap in A¢ forces C to break in the union of two ACM
subcurves. We now give a more geometric proof of this result. For this we need
some preliminary remarks. While in general the union C of two ACM curves B
and D can fail to be ACM, it is certainly ACM if Ip/I¢ is isomorphic to Rg up to
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h=1{1,2,3,4,2,2}
A={1,2,5,6}

s=4 C@O hi=t—-s+1=1
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kyj=e+3=6
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Figure 1. Biliaison type and A-vector.

a twist. This condition is satisfied when C is obtained from B by a trivial biliaison,
and also when C is obtained from B by a chain of elementary biliaisons “trivial on
B” (Lemma 7.16 below). Here are some preliminary examples.

Example 7.9. If C is obtained from a curve B by a trivial biliaison of height &
on a surface X, “adding” to C the complete intersection ¥ of X with a surface of
degree h, then

~ Iv/Ix  H)9yx) . H)(Ox(=h)
~Ic/Ix  HX(9cx) HY(Ipx(—h))

Example 7.10. Let D C P3 be a curve, and L a line not contained in D. Set
C = DUL, and let f be the degree of the scheme theoretic intersection D N L.
Then $p.c =Fpnr.L =0 (—f). If D is ACM, it follows that C = DU L is ACM
if and only if Ip/Ic = R (—f).

By the same argument, if B and D are two ACM curves meeting properly and
98np.B =0p(—f), then C = BUD is ACM if and only if Ip/Ic = Rp(—f).

From another point of view, suppose B and D are two ACM curves contained
in a smooth surface X, and let C = B + D. Then

def ~
0p(=D) = 0x(—-D)R03 = Ip.c.

Iy/Ic = Rp(—h)

If Og(—D) =0p(—f), then C is ACM if and only if Ip/Ic = Rp(—f).

The condition Ip/Ic = Rp(—f) implies that C is obtained by a “generalized
liaison addition” of B and D in the sense of [Geramita and Migliore 1994]. The
following proposition is essentially a special case of Theorem 1.3 of that reference.

Proposition 7.11. Suppose that C contains two subcurves B and D, and that for
some integer f there is an isomorphism of Rc-modules:

(7-1) Ip/Ic = Rp(=f).
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(a) There is a surface S of degree f containing D but not C, and the curve D is
the scheme theoretic intersection of C and S. In particular, f > sp.

(b) The degrees and genera of B, C and D are related by the formulas
dc =dp+dp, g(C)=g(B)+g(D)+ fdp—1.

If B and D have no common component, then C is the scheme-theoretic
union of B and D, $pnp p = O0p(—f),and B.D = fdp.

If C is contained in a smooth surface X, then C = B + D on X, and
Ox(D)®0g =05 (f). In particular, B.D = fdg.

(c) Suppose D is ACM. Then B is ACM if and only if C is ACM, in which case
hc(n)=hg(n— f)+hp(n)
(d) Suppose B, C and D are ACM and f = sp. If max{\p} < min{Ap} then
Ac=ApUlp.

Proof. The hypothesis Ip/Ic = Rp(—f) is equivalent to there being a form
F e HO(P3, 0( f)) such that the sequence

0— Ig/Ic(—f) = Re(—f) > Re — Rp — 0

is exact. In particular, Ip = I¢c + Is where S is the surface of equation F = 0,
hence D is the scheme theoretic union of C and S. Sheafifying the exact sequence

0— Ig(—f)—> Ic > Ip/(F)—0
we obtain another exact sequence
0= H,(95)(=f) = H,(Ic) > H}(Ip).

It follows that, if D is ACM, then H)($p)(—f) = H]}(9¢), and B is ACM if and
only if C is ACM.

If B and D are ACM, the relation between the h-vectors follows immediately
from the exact sequence 0 - Rp(—f) - Rc — Rp — 0.

The relation between the degrees and genera follows computing the Euler char-
acteristics of the two sides of $p ¢ = O0p(—f).

Suppose B and D have no common components. The kernel of the natural
surjective map

Op(—=f)=9p.c— IBnD,B

is supported on D and is a subsheaf of Op. Since B is locally Cohen—-Macaulay and
has no component in common with D, the kernel is zero, hence Og(— f) = $pnp 5.
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Suppose C is contained in a smooth surface X. Since D C C, there is an effective
divisor A on X such that C = A+ D. Then

Op(=f)=Ipc=E0x(—D)®0y4

from which we deduce A = B and Op(f) =0x (D) ® Op, hence B.D = fdp.
We deduce (d) from (c). By assumption

e(B)+3 =max{Ag} <min{Ap}=1tp —sp+1.

On the other hand, hp(n) =sp ifandonly if sp —1 <n <tp—1,and hg(n —sp)
is nonzero if and only if sp <n < sp 4+ e(B) + 2. Since tp > sp +e(B) + 2,
we see hp(n) = sp whenever hg(n — sp) is nonzero (hpg so to speak sits on the
top of hp, as in Figure 1). Now it follows from h¢c(n) = hg(n — f) + hp(n) that
Ac =ApUAp. O

Example 7.12. Figure 1 on page 289 shows the i-vector of a curve which is the
union of a twisted cubic curve B and a divisor D of type (6, 5) on a smooth quadric
surface. The biliaison types are Ap = {1, 2} and Ap = {5, 6}.

Definition 7.13. Suppose Dy C Cy are curves in [P contained in a surface X, and
D is obtained from Dy by an elementary biliaison of height # on X. The biliaison
is defined by an injective morphism v : $p, x (—h) — Ox whose image is $p x.
Then the image of the restriction of v to $¢, x(—h), is the ideal $¢ x of a curve
C C X, obtained by biliaison from Cy. In this case, we say that the biliaison from
Cy to C is induced by the given biliaison from Dy to D. Note that C contains D.

Remark 7.14. When Dy is empty, a biliaison induced from Dy is the same thing
as a trivial biliaison. Indeed, in this case v is multiplication by a local equation of
the complete intersection D in Oy, and v maps $¢, x(—h) onto $¢, x¥p.x.

Remark 7.15. For an elementary biliaison from Cy to C to be induced by a biliai-
son of Dy it is enough that the corresponding morphism u : $¢, x(—h) — Ox lift
to a morphism & : $p, x(—h) — Ox. Indeed, & is automatically injective because
its kernel ¥ is isomorphic to a subsheaf of $p, c,(—h) C Oc,(—h), and at the
same time is a subsheaf of Ox (—h); since Oy and O¢, have no common associated
points, we must have ¥ = 0.

Lemma 7.16. Suppose C contains B and Dy, and Ip,/Ic, = Rp(— f). Suppose C
is obtained by an elementary biliaison from Cy induced by an elementary biliaison
of height h from Dgy to D on a surface X. Then C contains D and B, and

Ip/Ic = Rp(—f —h).
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Proof. Since the biliaison from Cy to C is induced by that from Dy to D, C contains
D, and

~ Ipy/Ix(=h)
Iy /Ix(=h)
In particular, Rp(—h — f) is an Rc-module, therefore B C C. (]

Ip/Ic Rp(—f —h)

Lemma 7.17. Suppose C¢ contains B and Dy, and Ip,/Ic, = Rg(—sp,). If k is
an integer such that

k > max(sp, +e(B) + 6, e(Cp) +4),

then any height-one biliaison from Cy to C on a surface of degree k is induced by
a biliaison from Dy to a curve D such that

Ip/Ic = Rp(—sp)

Proof. The lemma generalizes [Martin-Deschamps and Perrin 1990, Remark 2.7c,
p. 65], which treats the case Cyp = B and Dy = &. The statement in this case
becomes: if k > e(Co) + 6, then every height-one elementary biliaison from Cj to
C on a surface of degree k is trivial.

To prove the statement, let X be the degree k surface on which the biliaison
from Cy to C is defined, and apply Homg, ( - , Ox) to the exact sequence

0— J¢ox(=1) = Ip, x(=1) = Op(=sp, — 1) = 0

to see that u : $¢, x(—1) — Oy lifts to &t : $p, x(—1) — Oy if and only if the
image of u in Ext(gx (0p(—sp, — 1), Ox) vanishes. Now by Serre duality on X the
latter Ext group is dual to

H'(X,0p(k —sp, —5))

which is zero because k > sp,+e(B)+6. Thus u lifts to give a height-one biliaison
from Dy to a curve D inducing the biliaison from Cy to C. By Lemma 7.16 above
Ip/Ic = Rp(—sp,—1). Finally, since k > sp, 4+ 1, we have sp = sp, + 1. O

The following proposition is a special case of [Davis 1985, Corollary 4.2].

Proposition 7.18. Suppose the biliaison type L¢ = (ki,kp, ..., ks) of an ACM
curve C has a gap at j. Then C contains ACM curves B and D such that

Ap=(ki,ka,....k;), Ap=(kji1,kjt2,...,ks), and Ip/Ic = Rp(—sp).
Furthermore, (B, D) is the unique pair of ACM curves with the above properties.

Proof. Note that s = s¢. Suppose first j = s—1, that is, k; > k;_1 + 3. Since
ks = e(C) + 3, by Proposition 7.2 C is obtained by a special biliaison on a surface
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X of degree k; from an ACM curve B. By definition of biliaison type, Ap =
k1, ky, ..., kg_1). Asky_1 = e(B) + 3, we see

ks > ks_1+3=e(B)+6.

By Lemma 7.17 the biliaison is trivial, so C contains a plane section D of X, and

Ip/Ic = Rp(—1). Since Ap = (deg(X)) = (k;), the statement holds when j =s—1
We now suppose j < s—1 and proceed by induction on s — j. By Proposition 7.2

C is obtained by a special biliaison on a surface X of degree k; from an ACM curve

Co whose biliaison type is Ao := Ac, = (k1, k2, . .., ks—1). Thus Ao has a gap at j,

and sc, = s—1, hence by induction C¢ contains ACM curves B and Dy such that

)LB = (k],kz, ey kj), )‘Do = (kj+1,kj+2, ey ks_1), and IDU/ICO = RB(—SDO).
In particular, sp, = s — j — 1, so that

ks>kjp1+s—j—1>kj+3+sp,=e(B)+6+sp,.

Since k; = e(C) + 3 > e(Cp) + 4, by Lemma 7.17 the biliaison from Cy to C is
induced by a biliaison from Dy to a curve D, and Ip/Ic = Rg(—sp). Finally, since
D is obtained from Dy by a special biliaison, D is ACM and Ap = Ap, U (ks) =
(kjy1, kjra, ..., ks).
It remains to prove uniqueness. Note that sp = s — j is determined by C, hence
SO is tp because
tp —Sq+ 1 =min(Ap) = kj-i—l-

By assumption e(B) +3 =k; <kj;y1 —3 =1p — sp — 2, hence from the exact
sequence
0— wp(m) — wc(m) — w(sp+m) —> 0

we See
H%wp(m)) = H'(wc(m)) for every m <3 —tp.

We will show that Qp = H?(wp) is generated over the polynomial ring R =
H(P3) by its elements of degree at most 3 — 5. Taking this for granted for the
moment, it follows that Qp is the submodule of 2¢ generated by

@D Hwc(m));
m<3—tp

hence it is determined by C. But Ip is the annihilator of Q2p, because Rp is
Cohen—Macaulay with canonical module 2p, hence D is determined by C.

Since tp —sp +1 = kjy1 > 1, the curve D is contained in a unique surface
S of degree sp, and therefore B is also determined, being the residual curve to
D=CNSinC.

To finish, we need to show Qp = H?(wp) is generated by its sections of degree
at most 3 — tp. For this we choose a complete intersection Y of type (sp, u)
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containing D and let E be the curve linked to D by Y. As Qp = Ig/Iy(—ey) and
I is generated by its elements of degree at most e(E) + 3, it is enough to show
e(Y)—tp >e(E).

From wg(—e(Y)) = 9p/Fy and h0(Ip(tp — 1)) = h®(Fy (tp — 1)), we see that
Ko (w(tp —1—e(Y))) =0; that is, tp — e(Y) < —e(E), as desired. O

Corollary 7.19. Let C C P3 be an irreducible, reduced ACM curve that is con-
tained in a smooth surface X of degree s = sc. Lett =tc and e = e(C).
@ Ifhc(e+1) =3, he(e+2) =2, then C has a unique (e + 3)-secant line L,
and every surface of degree at most e + 2 containing C contains L as well.
®) Ifhe(t) =s =2, hc(t+1) =5 — 3 (so that s > 3), then X contains a line L
that is a (t—s+1)-secant of C.

Remark 7.20. As a partial converse, we will see in the proof of Theorem 9.1 that,
if, for every smooth C in the Hilbert scheme A (%), the general surface of degree s
containing C contains a line, then the s-vector of C satisfies either (a) or (b).

Proof of Corollary 7.19. Since X is smooth, by definition of ¢ there is surface X, of
degree ¢ containing C but not X. Thus C is contained in the complete intersection
Y =XNX,. Let I the curve linked to C by Y. Then on X

C~tH-T

where H denotes a plane section of X, and ~ stands for linear equivalence. By
[Migliore 1998, Corollary 5.2.19],

hr(n) =hy(s+t—2—n)—hec(s+t—2—n).
Case A: h(e+1) =3 and h(e+2) =2. The formula above implies

sy =min{s, s+t —4—e}.

But t < e+ 3 because h¢c(e+3) =0, hence sy =5 +t —4 — e. The conditions on
hc then translate as follows:

hr(sr) =hr(sr+1) =sr — 1.

If sp = 1, this implies I' = L is a line. If sy > 2, then the condition on Ar is
equivalent to Ar = (1, kp, ... ), with k» > 4 because hr(n) > sy — 1 at least for
n=spr—2,sr—1,sp, sp+1. By Proposition 7.18 I" contains a line L and an ACM
curve D with Ip/Ir = Ry (1 — sr). We can treat the two cases simultaneously if
we take D to be the empty curve when s = 1.

By Proposition 7.11, ' =L+ D on X, and L.D = s — 1. Thus

CL=t(H—-L—-D).L=t+s—2—sr+1l=s4+t—spr—1=e+3.
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In particular, every surface of degree at most e + 2 containing C contains L as
well. On the other hand, C 4 L is an ACM curve, because it is linearly equivalent
to D +tH. Therefore

Ic/Ic4r = R (=C.L) = Rp(—e —3).

It follows that iy (n) and h¢(n) differ only for n = e+3, where their value is 1 and
0 respectively. In particular, hcyr(e+2) =hc(e+2) =2 and heyr(e+3) =1, so
that by [Nollet 1998, Proposition 1.5] the homogeneous ideal of C UL is generated
by its forms of degree at most e + 2, hence by the forms in /¢ of degree at most
e+2.

Suppose now M is an (e + 3)-secant line of C. Then the homogeneous ideals of
C and C U M coincide in degrees at most e + 2. It follows that the ideal of CU L
is contained in that of CU M, hence CUL = CUM and L = M. Therefore L is
the unique (e + 3)-secant of C.

Case B: he(t)=s—2and he(t+1)=s5—3. Then hr(s—3) = hr(s —2) =1
and hr(s—1) = 0. This implies either Ap = (s—1), or Ar = (..., k,—1, s—1) with
s—1—k,_1 > 3. By Proposition 7.18, I" contains a plane curve P of degree s—1
and an ACM curve B (possibly empty) such that Ip/Ir = Rg(—1).

By Proposition 7.11, '= B+ P on X, and B.P =dpg. Let L be the line residual
to P in the intersection of X with the plane of P. Then B.L = B.H — B.P =0;
hence

CL=tH-B—-P)L=(t—1)H—-B+L).L=t—14+2—s=t—s+1. O

Given any sequence A = (ki, k2, , ..., k,) with r—1 gaps (for any r > 1), we
can decompose A uniquely as

(7-2) A=A Ul U---UA,,

where each A; has no gaps and, if a; and b; denote respectively the minimum
and the maximum integer in A;, we have a;11 — b; > 3. We call (7-2) the gap
decomposition of A.

Theorem 7.21. Let A(A) denote the Hilbert scheme parametrizing ACM curves
having biliaison type A. If C is general in A(L), then C is reduced and for every
f = e(C) + 3, there exists a smooth surface F of degree f containing C.

Let A=A Ul U---UA, be the gap decomposition of A. Then:

(a) Every ACM curve C € A(A) contains ACM subcurves D;, i = 1,2,...,r,
such that Ap; = A;.

(b) If C is general in A()), we have

C=DUD,U---UD,,
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where the D; are distinct smooth irreducible ACM curves satisfying Ap, = A;;
forevery 1l <ij <ip <---<iy <r,the curve

D;,UD;,U---UD;,
is ACM and has biliaison type Aj, UA;, U---UA;,.

Remark 7.22. The D; in Theorem 7.21 (for i > 2) are not necessarily general in
A(A;): this is because they are forced to lie on surfaces containing D; for j <.

Proof of Theorem 7.21. Recall that by a theorem of Ellingsrud A(}) is irreducible
(see Remark 6.4). By Proposition 7.18 and induction on the number of gaps we
see that for each i, 1 <i <r, there are ACM curves C; and D; with the following
properties:
(1) Cr =C and C1 = Dl.
(2) If2<i <r, C; contains C;_; and D;, and Ip,/Ic, = Rc, ,(—sp,).
(3) Ap, =A; forevery 1 <i <r.
@) Ac, =2 UAU---Uj; forevery 1 <i <r.

We claim that for every 1 < i) < i, < --- < i < r there are ACM curves
Eil,izy-n,ih - Cih such that
() ifh=1,E;,=D;,and,if h=r, E1,2,...,r =C;

2) if2<h<r, E; 4, i, contains E; ;, ; ,and D;,, and

ID,'h/Eil,iz ..... in — REi1<i2=-~-»i/1—1 (_SD,-h);
(3) A,y =hiy Uiy Ue Uk,
We prove the statement by induction on 2. When 4 =1 there is nothing to prove.
Suppose 4 > 1. By the induction hypothesis, there is a curve A = E;, ;, i, C

C;,_, with the properties above. Let B =C;,_;. By Lemma 7.23 below there exists
a curve Co C C;, containing B and D;, such that ID,-h/ICo = RA(—le.h). Since A
and D;, are ACM, it follows from Proposition 7.11 that Cy is ACM as well. We
define E;, ;,,..i, to be Co. Then E;, ;, .. ;, has the required properties (the formula
for the biliaison type follows from part (d) of the same proposition).

To see the components D; of a generic C are smooth, we follow the original
proof of [Gruson and Peskine 1978, 2.5]. More precisely we show that, if

A=A UAU.---UA,

is the gap decomposition of A = (ki, ..., ky), there exists an ACM curve C with
Ac = A satisfying the following properties:

(1) C is contained in a smooth surface for every f > k; = e(C) + 3.
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(2) C=DyUDyU---UD,, where the D; are smooth irreducible ACM curves
satisfying Ap, = A;; in particular, C is reduced.

(3) wp,(—e(D,)) has a section whose scheme of zeros is smooth (contains no
multiple points).

We prove this statement by induction on s as in [Gruson and Peskine 1978,
2.5]. For s = 1, the statement is about plane curves and is well known (note that
e(C) 43 =dc for a plane curve C).

Assume now the statement is true for A, fix a curve C with the properties above,
and consider AT = A U {k,1}. We have two cases to consider:

Case 1: kyy1 < ks +3. In this case A" has a gap at s, and its gap decomposition
iSAT =2 UAU---UA Ufker}).

By assumption, kg1 > ks + 3 = e(C) + 6; thus there exists a smooth surface
X of degree kg4 containing C. Let D,y be a general plane section of X, and
let Ct = CUD,,. Then D, is smooth with A = (ks;1), thus C™ satisfies (2)
with respect to AT, It also satisfies (3) because wp,,,(—e(D,41)) = 0p,,,. By
construction C* lies on the smooth surface X of degree ks 1 = e(CT) + 3. The
fact that C™ is contained in a smooth surface of degree f, for every f > e(CT)+3,
follows now from the fact that $c+(e(C™) +3) is generated by its global sections;
see, for example, [Peskine and Szpiro 1974] and [Nollet 1998, Corollary 2.9]. Thus
C™ also satisfies (1), and we are done in case 1.

Case 2: kyy1 =ky+ 1 or ks +2. In this case the gap decomposition of AT is

At =2 UMU-- Ul ULT

where A =4, U {kg41}).

We can still find a smooth surface X of degree k4 containing C because kg1 >
e(C) + 3. In particular, X contains D,. The proof of [Gruson and Peskine 1978,
2.5] shows that the general curve D' in the linear system D, + H on X is smooth
with Ap+ = A}, and that wp+(—e(D;")) has a section whose scheme of zeros is
smooth. Thus

Ct=DUDyU---UDS
has the required properties (note that e(C1) + 3 = k,; 1 = deg(X)). [l
Lemma 7.23. Suppose C C P? is a curve, with subcurves B, D such that
Ip/lc é Rp(—=f).
If A is a subcurve of B, there exists a unique curve Co with the following properties:

(1) Cy is contained in C.
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o
(2) Co contains A and D, and there is an isomorphism Ip/Ic, = Ra(—f) which
makes commutative the diagram

In/le —— Rp(~f)

l l

where the vertical arrows are induced by the inclusions Co € C and A C B.
If A and D have no common components, then Co = AU D.

Proof. The inclusion
ﬁfl

Ia/Ig(—=f) = Rp(—f) = Ip/Ic = Rc

defines an ideal J in Rc. Uniqueness is clear, because if such a Cy exists, we

must have I¢,/Ic = J. To show existence, let I be the inverse image of J in the

polynorlglial ring R = H?(Op3), sothat I /Ic = I4/Ig(— f). The given isomorphism
o

Ip/Ic = Rp(—f) induces Ip/I = Rs(—f), hence an exact sequence
0— Ra(—f)—> R/I — Rp — 0.

From this exact sequence we see that R/I has depth at least one, hence [ is the
saturated ideal of a subscheme Cy C C.
By constructiorll3 Ic,/Ic and I14/Ip(— f) are isomorphic, so that the given iso-
o

morphism Ip/Ic = Rp(—f) induces another, Ip/Ic, = R4 (—f), with the desired
properties. Finally, we can check Cy is a locally Cohen—-Macaulay curve looking
at the exact sequence

0— @A(—f) —> ©C0 —> ©D — 0.

If A and D have no common components, then Cy contains the union A U D.
Since both Cy and A U D are locally Cohen—Macaulay curves of degree d4 + dp,
they must be equal. (]

8. Bounds on the quadratic form ¢ (D, D)

Let X C P? be a smooth surface of degree s > 2. We will make use of the bilinear
form on Pic(X):

2
(D, E)=(D.H)(E.H) — s (D.E) = det [D'H H } .

DE E.H



GONALITY OF A GENERAL ACM CURVE IN P3 299

This is essentially the positive definite product on Pic(X)/ZH induced by the in-
tersection product: by the algebraic Hodge index theorem, ¢ (D, D) > 0 for any
divisor D on X, and ¢ (D, D) = 0 if and only if D is numerically (hence linearly)
equivalent to a multiple of H.

In the proof of our main theorem it will be crucial to be able to bound ¢ (D, D)
from below in terms of the degree dp when D is an ACM curve on X. Note that
if D is a curve on X, then

(8-1) ¢(D, D) =dj, +s(s —4)dp —2s(g(D) — 1)

Thus, if we fix the degree dp and s, then knowing ¢ (D, D) is the same as knowing
the genus g(D), and bounding ¢ (D, D) from below is the same as bounding g(D)
from above. In fact, the bounds of this section can be seen as a refinement of
the bounds on the genus of an ACM curve of [Gruson and Peskine 1978]; see
Remark 8.8. The form ¢ (D, D) has the advantage of being invariant if we replace
D withmH — D or D+ nH, that is, it is invariant under liaison and biliaison on
X. Thus one can compute ¢ (D, D) assuming D is a minimal curve on X.

To compute these bounds we note that, by (8-1), the form ¢ (D, D) for an ACM
curve D depends only on the A-vector (or the biliaison type A) of D and on 5. Since
it is enough to consider only minimal curves on X, and there only finitely many
possible biliaison types A of minimal curves for each s, our proof will proceed by
a careful analysis of these A.

We call a biliaison type A s-minimal if it corresponds to a minimal ACM curve
on a smooth surface X of degree s. Since minimal is equivalent to e + 3 < s
by Proposition 6.7, the s-minimal types A are just those increasing sequences of
positive integers A = (ky, ko, . . ., k) satisfying k,, <s. There are 25—l guch possible
sequences (including the empty one), and by Proposition 6.9 the corresponding
curves are linked by a complete intersection (s, s) to curves with s-basic s-vectors.
For any such A, we let d, g, e be the corresponding invariants of the associated
curve I', and we define

(8-2) g =¢[T.T) =d*+s(s —4)d —2s(g — 1).

Then one verifies the formula

(8-3) qO) =) kis=D)(s —k) —2 Y ki(s —k)).
i=1 I<i<j<u

Table 1 on page 284 lists all the s-basic h-vectors and associated s-minimal bili-
aison types A for s = 4,5 and a few for s = 6, 7, 8, 9, together with the values ¢
takes on them.
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Definition 8.1. Suppose A = (ki, k2, ..., k,) is s-minimal. Then we define the
s-dual X' of A to be

N=(—ky,s—ky_1,...,5—kj)

if A £@. If \ =0, then A = &. Note that, if A is the biliaison type of an ACM curve
I, then )/ is the biliaison type of a curve linked to I' by a complete intersection of
two surfaces of degree sr = u; and s (see Section 6).

Proposition 8.2. The invariants of X' are uy = uy, dyy = uys —dy, g(\") = q(L).

Proof. The first two equalities are obvious. The equality g (1") =g (1) follows from
(8-3), or can be deduced from the invariance of ¢ (D, D) under liaison on X. [J

We say that A; = (ky, ko, .. ., k) precedes »o =(l1, [2, ..., 1,) and write A| < Ay
if k, < [;. In this case, if A, is s-minimal, then

)VIU)Q:(k17k2,---,ku,ll,---,lv)
is also s-minimal. Note that (AU ) = UL,

Example 8.3. A plane curve of degree k < s on a surface X of degree s > 2 is
minimal. The corresponding A sequence is A = (k), and g(A) = k(s—1)(s — k).

More generally if A is the biliaison type of a complete intersection of two sur-
faces of degrees a < b < s then g(A) = ab(s —a)(s — D).

Example 8.4. LetA=(1,2,...,k—1,k) with k <s. Then d, = %k(k—l— 1) and
qgh) =dy (s> — 35k + 1) +d;,)

The first statement of Proposition 8.5 below determines, once g ((k)) is known,
the function g (A) by induction on the number u; of elements of A.

Proposition 8.5. Suppose ) < p are s-minimal.

(@ g Up)=q@)+q(p) —2d,d,.
®) If A < (k) and (k+ 1) < u, then

gAUk+DUpn)—qgAUk)Up) = (s—1)(s—1—2k)—2(d,y —dy).

(c) Suppose B is another s-minimal biliaison type, and h, k are two integers such
that . < (h—1), (h) <B < (k),and (k+1) <p. Let s =AU (h)UBUk)Upun
and e =AU (h—1)UBU (k+1)U . Then

q(8) —q(e) =2s(k—h—upg)>2s > 0.

We next show that g (1) increases if one inserts a new integer in a sequence A.
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Corollary 8.6. Let (ki, ko, ..., k,) be s-minimal.
(@) Ifk, <k <s, then
gk ko, ki k) = gk ko, k) k(s — k)

In particular, g(1) > (s—1)? unless . = @.
®) Ifki <k <kjtq, then

qkiky, ... kik,kivy, ... k) =qlki, ko, ... k) +H k(s —k).
Proof. Let A = (ky, ko, ..., k,) By Proposition 8.5 we have
g U k) =q*)+qk) =2dy(s —k) =qA) + (s — k) (k(s—1) —2d,) .

Thus the first claim follows from
: 1
(8-4) d, = X]:ki < Sktk—1).

For the second claim, set A = (k1,kp,...,k;) and w = (kjyr1, kixa, ..., ky).
Using Proposition 8.5 we compute

gAU((H)Un) —gAUp)=q((k)Uu)—q(w)+2d,(dy —dwyuny)

Now d, — d(yuuy = —(s — k), while by duality and the first claim

(k) U ) —q(p) =g’ U(s —k) —q (i) > (s — k)k™.

Hence
gOU((R)Uw) —gUp) > (s —k)k* = 2d,.(s — k)
= (s —k)(k* = 2d;) = k(s — k),
where the last inequality follows from (8-4). (I

We now prove a lower bound for g (1) in terms of the residue class of d; modulo s.

Proposition 8.7. Let A be s-minimal, of degree d congruent to f modulo s, with

0< f <s. Then
(@) Ifu) =2, sothat . = (h, k) with h+k = f (mod s), then
(}L)_{f(s—l)(s—f)+2h(k—1)s ifh+k<s,
S fGe=DG=f)+ 25—k (s—h—1)s ifh+k=>s.

(d) Ifu) =3 and s = 5, we have
qg(A) =2s+m(f,s),

where m(f, s) denotes the minimum of q(i) as u varies among s-minimal
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biliaison types satisfying u, =2 and d, = f ord, =s—f (mod s). In fact,

S=DG—=1)+2s(f=2) f3<f=s—forf=s-25-1,
f—=DE—f)+2s(s—f-2) if3<s—f<forf=01,2
This minimum is attained by . = (1, f—1) and ' = (s— f+1,s—1) when 3 <
f<s—forif f=s5-2,s—1l,andbyr=(1,s—f—1)and X =(f+1,s5—1)
when3 <s—f < for f=0,1,2

i

Proof. Part (a) is a simple computation. To prove part (b), note that the role of f
and s— f is symmetric, reflecting the fact that g (1) = ¢(A’). Thus we can replace
A with A’ whenever convenient. If A = (ky, ko, ..., k,) and there are two indices
i < jsuchthatk; —1>k;_yand k; +1 <k, we replace k; by k; — 1 and k; by
k-1 to obtain a new increasing sequence A with the same degree as A, hence the
same f. Then g(A) > gq(X1) + 2s by Proposition 8.5(c). When u; = 2, it follows
that the minimum m(f, s) is attained by sequences of the form (1, k) or (h, s—1),
as in the statement. When u; > 3, iterating the procedure above and passing to the
dual word if necessary, we may assume that A is one of the following sequences:

(1,2,...,h) 3<h<s
(L,2,...,h,s—m,s—(m—1),...,5—1) 1<m<h,2<h<s—m-—2
(1,2,...,h,k) 2<h<k-2

(1,2,...,hk,s—m,s—(m—1),...,5—1) m<h, 1<h<k-2,k<s—m-2
fr=(,2,...,5s—1), we replace it with (2, ..., s—2), since
qg(1,2,...,5—=1)>¢q2,...,5=2)
If h > 2, we define
w=Q2,....h—1,h+1,...)

to be the sequence obtained removing 1 and % from A and adding 7 + 1. If h =1,
then A = (1, k, s—1) with 3 <k <s—3, in which case we define u = (k+1, s—1).

Then d,, = d;, u, = u; — 1, hence we will be done by induction on u; if we
show g (1) > g(u) + 2s. By Proposition 8.5(a) we can assume A = (1,2, ..., h)
and u = (2,...,h—1,h+1). Then one computes g(A) — g () = 2s. U

Remark 8.8. One can show that the bound g (1) > f(s—1)(s — f) is equivalent to
the bound in [Gruson and Peskine 1978] for the genus of an ACM curve of degree
d > s(s—1) not lying on a surface degree s—1. They also show that curves of
maximal genus are linked to plane curves: in our notation this means u; = 1 if
g (1) attains its minimal value f(s—1)(s — f).
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Corollary 8.9. Let 1 be s-minimal of degree d congruent to [ modulo s, with
0<f <s. Ifu, >2, then

2s(s—2) if f=0,
gA\) > {3s2—8s+1 iff=1or f=s—1,
267 —ds+4 if £ #(0. 1,51},
Proof. We may assume s > 5 because the cases s = 3, 4 are easily checked; see

Table 1. If f =0, 1 or s—1, the statement follows immediately from Proposition 8.7.
If f#£0,1,s—1, again by the smae proposition we have

gA) = q(f) +2s > q(2) +25s =25% —4ds + 4. O

Corollary 8.10. Suppose s > 5 and let ) be s-minimal. Suppose q(X) < (s+1)2.
Then one of the following occurs:

() x=gandg(r) =0.

Q) A=) orA=(s—1),and g(1) = (s—1)%

B)S<s<Tand A= (2) or A = (s—2), so that g(1) =2(s—1)(s—2).

4) s=6and ) = (3), so that g(A) =3(s—1)(s—3) =45.

5) s=5or6and )= (1,s—1).

(6) s =5and » = (1,3) or . = (2, 4), in which case g(A) = 36 = (s+1)>.
(7 s=5and > = (1,2) or A = (3, 4), in which case q(1) = 34.

Furthermore, if g(\) < (s—1)2, then either (1) or (2) occurs. If (s—1)> < g (1) <s?,
then either s =4 and . = (2) or (1,3), ors =5 and A = (2) or (3).

Proof. Suppose first A = (f). Then g(A) = f(s—1)(s—f). One checks this is
bigger than (s-+1) except in the cases listed in the statement.

Suppose now u; > 2. If f =0, then g(1) > 2s(s —2) by Corollary 8.9, and this
is bigger than (s+1)? unless s <6. When s =5 or 6, one checks by hand the only
possibility is A = (1, s—1).

If f =1 or s—1, the lower bound for g (1) is

352 — 8s+1,

which is bigger than (s+1)? unless s <5. When s =5, one finds the two sequences
A=(1,3)orA=(2,4).

If f+#0,1,s—1, then g(1) > 25> — 4s + 4 which is bigger than (s+1)? unless
s <5. When s =5, one finds the two sequences A = (1, 2) or A = (3, 4) for which
qg(A) =34. [l



304 ROBIN HARTSHORNE AND ENRICO SCHLESINGER

9. Gonality of a general ACM curve

In this section we give the proof of our main result.

Theorem 9.1. Assume K has characteristic zero. Let C C I]j’g’,g be an irreducible,
nonsingular ACM curve with h-vector h, and let s = sc,t =tc,e =e(C) and g =
g(C). Assume that s > 4 and that (s, d, g) is not one of the following: (4, 10, 11),
(5,15, 26), (5, 16, 30), (6, 21, 50), (6, 22, 55), (6, 23, 60), (7, 28, 85), (7,29, 91),
(8, 36, 133).

Suppose there is a smooth surface X of degree s containing C with the following
properties:

(1) The linear system |t H — C| on X contains a reduced curve ', such that the
irreducible components D1, ... D, are ACM curves, and

Ar =Aip, Uip,U---Ulp

is the gap decomposition of Ar.
(2) The Picard group of X is Pic(X) =Z[H|®Z[D]1®---DZ[D,].
3) C is general in its linear system on X.

Then
gon(C)=d —1,
where | = [(C) is the maximum order of a multisecant of C. Furthermore, with

the possible exception of the values of (s, d, g) listed in Proposition 6.10(b), C has
finitely many g}i_l; hence its Clifford index is

Cliff(C) = gon(C) —2=d —1 —2.
More precisely:

@) Ifh(e+ 1) =3, h(e+2) = 2, then the gonality of C is d—e—3 and there is
unique pencil of minimal degree, arising from the unique (e + 3)-secant line
of C (compare Corollary 7.19).

®) ifh(t)=s5—2,h(t+1)=s5-3,t > s+ 3, but the condition of case (a) above
does not occur, then the gonality of C is d — (t—s+1), and there is unique
pencil of minimal degree, arising from the unique (t—s+1)-secant line of C.

(¢c) if neither case (a) nor (b) above occurs, then the gonality of C is d—4, and
every g}l_ 4 on C arises from a 4-secant line, unless either
(1) (s, d, g) is in the list of Proposition 6.10(b), or
2) s =4,C € |Cyp+ bH| where b > 2 and Cy has degree 4 and arithmetic
genus 1; in this case |O¢c (b)| is the unique g [11_ 4 that does not arise from a
4-secant.
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Finally, if C has a complete basepoint-free pencil of degree k < d — 4, then the
pencil arises either from an (e + 3)-secant line or from a (t—s—+1)-secant line.

Remark 9.2. The conditions on /4 in (a) and (b) are not satisfied in any of the cases
listed in Proposition 6.10(b).

Proof of Theorem 9.1. The gonality of C is at most d — 4 by Proposition 3.1.

Suppose ¥ is a complete basepoint-free pencil of degree k on C, and assume
k <d —4, unless we are in one of the cases listed in Proposition 6.10(b), for which
we assume k < d — 5. We will classify these pencils as follows. By the same
proposition the bundle € associated to % on X satisfies A(€) > 0, and then by
Bogomolov’s result (Theorem 5.4) it follows that € is Bogomolov unstable. Let
Ox (A) be the line bundle that destabilizes €. We will show that only the following
cases can occur:

(1) for any h-vector, we can have A = —H; then by Corollary 5.7 the pencil &
arises from a multisecant line L that is not contained in X. Corollary 4.2
shows that k = deg % = d — 4 and that there is a finite set of such pencils.

(2) when h(e+ 1) =3 and h(e +2) = 2, then C has a unique (e + 3)-secant line
L,and%¥ =%(L). Inthiscase LC Xand A=L—H.

3) ift>s+3,h(t)=s—2, h(t+1) =s5—3, then C has a unique (r—s-+1)-secant
line L,and ¥ =%(L). Inthiscase LC X and A=L — H.

4) s=4,C e|Co+bH| where b > 2 and Cy has degree 4 and arithmetic genus
1. In this case # = |O¢c(b)| and A = —Cy. In particular, deg¥ =d —4 and ¥
does not arise from a multisecant.

The statement of the theorem clearly follows from this classification. For the Clif-
ford index, we use the fact, proved in [Coppens and Martens 1991], that Cliff(C) =
gon(C) — 2 when C has a finite number of pencils of minimal degree.

We now proceed to classify the possible basepoint-free complete pencils % of
degree at most d —4. Let A be the divisor that destabilizes the bundle € associated
to %. Recall that A sits in an exact sequence

0—0x(A) > € — Iy x(B)—0

where W is zero-dimensional and (A — B).H > 0. From the exact sequence we
see A—B=2A+4C and

QA+ C)*=(A—B)?> A(€) = C* — 4k.

By Proposition 5.5 we also have (—A).H > 0 and A? > 0.
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To be able to work effectively with the above inequalities, we write x = A.H
for the degree of A, and consider the bilinear form on Pic(X)

2
¢(D,E):(D.H)(E.H)—s(D.E):det|:D'H " i|

D.E E.H

We then obtain the following numerical constraints on x:
9-1) —d<2x <0, x2>¢(A,A), x>+dx+ks>¢(A, A+0O),

the last two inequalities being equivalent to A2 > 0 and (2A + C)?> > C? — 4k
respectively.
In Pic(X) we can write A=) _a; D; +cH with a; € Z, ¢ € Z. We wish to show

$(A,A+C)=0.

We first prove ¢ (D;, Dj) <0. Let Ar =A1UA,U- - -UA, be the gap decomposition
of Ar, so that )\’Di =Xx. Ifi <j, Di + Dj is ACM with )‘DH‘DJ‘ = A U)»j by
Theorem 7.21. Since ¢ (D, D) = g(Ap) for an ACM curve D with sp < s, by
Proposition 8.5

9-2) ¢(Di, Dj) = —d,dy;, <0

(note that the formula ¢ (D;, D;) = —d,, dx; is correct only for i < j).
To simplify notation we let ¢; = ¢ (D, D;) and b; = — Z#i ¢(D;, D;). We
claim that g; > 2b; for every i. To prove this let E; =) ki D;. Then
¢, T)=¢(D; + Ei, Di + E;) = ¢(D;, Di) + ¢ (E;, E;) +2¢(D;, E;)
= ¢(E;, E;) +qi — 2b;;
thus it is enough to show ¢ (I', I') > ¢ (E;, E;), that is, g(Ar) > g(Ag;). The latter

inequality holds by Corollary 8.6; hence ¢g; > 2b;.
We now compute

P(A, A) = Za?d)(Di, Di)+2 3 aia;j¢(Di, D))

i<j
=Y al(qi—b)— Y a} Y ¢(D;, D)) +23 aia;¢(D;, D))
i i J#i i<j
=Y ai(qi—b) — Y (ai —a))’¢p(D;, D)),
1 i<j

$(A,C)=¢(S Dy, 1cH — ¥ ;) = ¢(XaiDi, — X D;)
1 7 1 J
= —Zaﬂﬁ(Di, Dj) = _Zai(%‘ —b;).
l,] 1
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Therefore

9-3) $(A, A) =Y a}(qi —bi) — Y (ai —a))*¢(D;, D),
i i<j

(9-4) $(A, C) =~ ai(gi —bi),

9-5) (A, A+C) =3 (a] —a)gi —bi) = 3 (@i —ap)’*¢(Di, D)).

i<j

The last equality implies ¢ (A, A + C) > 0 because the a; are integers, g; >
2b; > b; and ¢ (D;, Dj) < 0.

We now show that ¢ (A, A+ C) > 0 implies x > —s—1.

By hypothesis k < d — 4; therefore

X2 4dx+(d—4)s>x>+dx+ks>p(A, A+C)>0.
Let & be the discriminant of the equation x> +dx+(d—4)s=0:
§=d*—4sd+ 165 = (d — 2s5)> — 4s(s — 4).

Let y=d —2s. Since C is ACM and s = s¢, we have d > %s(s+l) by Remark 6.2,
hence

y—2=d—2s—2>1(s*=3s —4) > 1(s* — 4s).

In fact, we can have equality only if s =4 and d = 10, while the hypotheses of the
theorem when s = 4 require d to be at least 11. Thus y —2 > %s(s —4) and

§=y>—4s(s—4) > y> =8y + 16 = (y — 4)°.

Thus § is positive, and the equation has two real roots, one smaller than —d /2, the
other one, say x, larger than —d /2. Since —d/2 < x < 0, we conclude x > Xx.
Furthermore, unless s =4 and d = 11, we have y — 4 > 0 under the hypotheses of
the theorem, hence

4.1 _d /o S N N
X = 2+2\/§> 5Ty 8yH16==F 45y —4=—s-2.

The inequality x > —6 holds also in case s =4 and d = 11. Thus x > —s—1. Then
from x? > ¢ (A, A) we see that

(s+1)2 > $(A, A).

If all the a; are zero, then A = cH (this is the case if C is a complete intersection
of X and another surface). Since —s—1 <x =deg A <0, we must have A = —H.
If not all the a; are zero, let 1 <i; < --- < i, < r be the indices for which
a; # 0. Formula (9-3) holds with this new set of indices, and shows that, if all the
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coefficients a; are nonzero, then ¢ (A, A) attains its minimum when all the a; are
equal to 1. Thus
¢(A, A) = ¢(D, D),
where D = D;, 4 - -+ D;, is the support of A.
Now D is ACM with biliaison type Ap = A;, U- - -UA;, by Theorem 7.21. If Ap
is not one of the special cases listed in Corollary 8.10, then

¢(D, D) = q(Ap) > (s+1)%,

contradicting (s+1)2 > ¢ (A, A).

Suppose now Ap is one of the special cases listed in Corollary 8.10. We still
have ¢ (A, A) > (s—1)? because Ap is not empty. Before examining the various
cases, let us remark that, if only one of the g; is nonzero, so that

A=aD+cH

with D irreducible and a # 0, then either @ = 1 or a = —1. This follows from
2 P(A A (s+1)?

a” = < <
¢(D, D) ~ (s—1)?

Also note that D is irreducible precisely when A p has no gaps, that is, in all cases
of Corollary 8.10 except when s =5 or 6 and A = (1, s—1).

To complete the list of Corollary 8.10, observe from Table 1 that for s = 4 there
are 7 possibilities for Ap, because A # @ and u; < 4, namely

D, @), 3), (1,2), (1,3), 2,3), (1,2,3).

Case1: \Ap # (1), p #(s—1),and, when s =5 or 6, Ap # (1,s—1).
Then ¢(D, D) > (s—1) and Ap has no gaps by Corollary 8.10. Thus D is
irreducible, A = aD + cH with a = £1 and

4.

(s+1)?>x2>¢(A, A) =d’¢p(D, D) > (s—1)°.
Hence x = —s—1 or x = —s.

Case la: a =1, x = —s—1. In this case dp = x = —1 (mod s), and by
Corollary 8.10 we must have s < 5. Furthermore by the last inequality in (9-1)

x> +dx+(d—4)s >0,
that is
24+ 2s+1—sd—d+(d—4)s >0

sod <s?—2s+1. This givesd <9ifs=4,andd <16if s =5, while d > %s(s—i—l)
because C is an ACM curve s¢ = s. Thus we must have s = 5, and examining
the list in Corollary 8.10 we find Ap = (1, 3) is the only possibility. Then, for
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' =tH — C, we know Ar contains Ap = (1, 3) in its gap decomposition and
u,. < 5. This forces Ar = Ap, hence D =T" and therefore

d=st—deg(l') >25—-4=21
a contradiction, so this case does not occur.

Case 1b: a =1, x = —s. Inthis case dp = x =0 (mod s) and s* = x? > q(A).
By Corollary 8.10 the only possibility is s = 4 and Ap = (1, 3), which forces
D =T =tH — C. Furthermore, we must have gon(C) = k = d — 4 for the
inequality x24+dx+ks>¢(A, A+ C) of (9-1) to hold.

Since x = —4 = deg(D + cH), we see ¢ = —2. Now pick an effective divisor
Co €| — A| =|2H — D|. Then Cy is ACM with biliaison type (1, 3), thus Cj is
up to a deformation with constant cohomology an elliptic quartic. By construction
Ce|Co+bH| withb=t—2>2. (Note that b =2 gives (d, g) = (12, 17), which is
in the list of Proposition 6.10(b).) For b > 2 the restriction of |Cy| to C is |O¢(b)],
andisag 317 4 on C that does not arise from a multisecant.

Case Ic: a=—1,x=—s—1or —s. Inthiscase A=—D+cH, hence, if D = D;,
P (A, A)+¢(A, C)=2¢(D;, D)+ Y. ¢(—Di, —D;) =2q;—b; > 3g; > 3(s—1)*.
J#L
Therefore
X tdx+d—4s = 3(s—1)>,
which contradicts both x = —s—1 and x = —s, so this case does not occur.

Case2: Ap=(1),sothat Disaline L C X,and A=cH +alL witha==1.1In
this case either I' = L and Ar = (1), or Ar has a gap at the beginning:

ar=01,4,...)

In both cases L = D is unique. The proof of Corollary 7.19 shows that the k-
vector of C satisfies he(e+1) =3 and hc(e+2) =2, and that C.L = e+ 3. Thus
in any case

deg(Z) =gon(C) <d —e—3.

We wish to show that A =L — H and Z =%(L).
Recall that the degree x of A must satisfy the inequalities —s—1 < x < 0 and

x> >a’¢p(L, L) = (s—1)°.

We also know x = c¢s +a with a = &1. Therefore c = —1 and either A= —H — L
orA=—H+L.
Suppose first A= —H — L. Since deg(X) =s >4,

H0x(H + L) = H0x (H)
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thus every curve B in the linear system | — A| = | H + L| contains the line L. This
contradicts Proposition 5.5, according to which we can find two effective divisors
in | — A| meeting properly. So A =—H — L is impossible. Therefore A= —-H + L,
and Z = %¥(L) by Corollary 5.7.

Case 3: Ap = (s—1),sothat D = H — L is a plane curve of degree s—1, residual
to a line L in a plane section of X. Furthermore, A=cH +aD = (c+a)H —alL
with a = £1.

In this case D = D,, thus L is unique, and either I' = D, or Ar has a gap
at the end. The proof of Corollary 7.19 shows that the h-vector of C satisfies
he() =5 —2, he(t+ 1) =s—3 and that L is a (t—s-+1)-secant line for C. An
argument analogous to the one of the previous case shows A = —H + L, so that
% =%(L).

Case4: Ap=(1,s—1) withs =5o0r6,hence A=cH +a;L{+ ayP where L
is a line, P is a plane curve of degree s—1, and a; and a, are nonzero. Note that
¢ (L, P) = —1, therefore

P(A, A) = (a7 +a3)(s—1)* — 2a1a;

= (a} +ad)(s* —25) + (a1 — a)* > 2(s* — 2s5) > s°.

On the other hand, (s+1)> > x> > ¢(A, A). Therefore we must have x = —s—1
and a% + a% < 3, that is, a; and a; can only be 1 or —1.
Then

—s—l=x=cs+a+a(s—1),

from which we see —1 = a; —a, (mod s). This is impossible because a; = +1 and
ar, = +1.

This complete the list of possible cases, and proves the classification of complete
basepoint-free pencils # of degree at most d — 4, hence the theorem U

Remark 9.3. In the first of the cases excluded in the theorem, namely s = 4 and
(d, g) = (10, 11), we can prove gon(C) = 6 = d — 4 by the method of [Hartshorne
2002].

Theorem 9.4. Assume the ground field is the complex numbers. Then the conclu-
sions of Theorem 9.1 hold for the general ACM curve C in A(h).

Proof. Since the conclusions of Theorem 9.1 are semicontinuous on A (%) (cf. [Ar-
barello and Cornalba 1981]), it is enough to show the existence of a single curve C
for which the hypotheses of that theorem are satisfied. To check this, let 2’ denote
the i-vector of a curve I linked by two surfaces of degrees s and t =#¢ to C € A(h).
Note that A" may not be of decreasing type, but in any case sy < er +3 < s by
Lemma 6.5. By Theorem 7.21 a general curve I" in A (k') is reduced, its irreducible
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components are ACM, with biliaison type prescribed by Ar; and, since s > er + 3,
there exist smooth surfaces of any degree > s — 1 containing I.

Now let /1, be the h-vector of a curve C; linked to I' by the complete intersection
of two smooth surfaces of degree s —1 and s respectively. The flag Hilbert schemes
parametrizing pairs (T, Y), where ' € A(h’) and Y is a complete intersection of
type (s—1, s), is irreducible [Martin-Deschamps and Perrin 1990, VII §3]. Thus a
general I' in A(h') can be linked to a general C; € A(hy). By Lemma 6.5 h; is of
decreasing type, hence we may assume C; is smooth, and lies on smooth surfaces
of degree s—1 and s. Since we are working over the complex numbers, we can
use the Noether-Lefschetz type theorem of [Lopez 1991, II 3.1]. We apply this
theorem to C, withd = s, ¢ =1, and T a smooth surface of degree s—1 through
C, to conclude that, if X is a very general surface of degree s containing C;, then
Pic(X) is freely generated by the classes of a plane section H and of the irreducible
components of I' (here “very general” means, as usual, outside a countable union
of proper subvarieties).

Now on X we can take for C a general curve in the linear system

|Co+(t —s+1)H|=|tH —T.

The hypotheses of Theorem 9.1 are then satisfied for the smooth surface X and the
curve C.

One can simplify the argument using a more recent result [Brevik and Nollet
2008, Theorem 1.1], which allows one to work directly with I" rather than C,. [J
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UNIVERSAL INEQUALITIES FOR THE EIGENVALUES
OF THE BIHARMONIC OPERATOR ON SUBMANIFOLDS

SAID ILIAS AND OLA MAKHOUL

We establish universal inequalities for the eigenvalues of the clamped plate
problem on compact submanifolds of Euclidean space, of spheres and of
real, complex and quaternionic projective spaces. We prove similar results
for the biharmonic operator on domains of Riemannian manifolds that ad-
mit spherical eigenmaps (this includes compact homogeneous Riemannian
spaces) and finally on domains of hyperbolic space.

1. Introduction

Let (M, g) be a Riemannian manifold of dimension # and let A be the Laplacian
operator on M.

We will be concerned with the following eigenvalue problem for the Dirichlet
biharmonic operator, called the clamped plate problem:

A%u = u in 2,
(1-1)
u= du =0 onodQ,
av
where Q is a bounded domain in M, A? is the biharmonic operator in M and v
is the outward unit normal. It is well known that the eigenvalues of this problem
form a countable family 0 < A} <Ay <--- — +00.
For the case when M = R”", Payne, Pélya and Weinberger [1956] established

the following inequality, for each k > 1:

k
8(n+2)
A+l — Ak < P 2;%-.
=

This work was partially supported by the Agence Nationale de la Recherche through the FOG project
(ANR-07-BLAN-0251-01).

MSC2000: 35P15, 58A10, 58C40, 58J50.

Keywords: eigenvalue, biharmonic operator, universal inequality, submanifold, eigenmap.

315



316 SAID ILIAS AND OLA MAKHOUL

Implicit in [Payne et al. 1956], as noticed by Ashbaugh [1999], is the better in-
equality

(12) Mt — i < SED) (ZA” 2)

Later, Hile and Yeh [1984] extended ideas from earlier work on the Laplacian by
Hile and Protter [1980] and proved the better bound

k 1/2 1/2
020312 A
< Ai .
o= (S ()

Implicit in their work is the stronger inequality

n2k? £ kl/z 1/2
8(n+2) = (Z Aert — )(ZA )

which was proved independently by Hook [1990] and Chen and Qian [1990]; see
also [Chen and Qian 1993a; 1993b; 1994].
Cheng and Yang [2006] obtained the bound

k k
(1-3) Z(MH =) < (8(2—;2)) Z (i kg1 — 1/2.
i=1 P

Very recently, Cheng, Ichikawa and Mametsuka [2009b] obtained an inequality for
eigenvalues of Laplacian with any order [ on a bounded domain in R". In particular,
they showed that for [ = 2,

(1-4) Z(ml ? < 2042 Z(MH 3

i=1

For the case when M = S", Wang and Xia [2007] showed that

1/2
(1-5) Z(/\kﬂ A<= <Z(xk+1 r) (n? +(2n+4)k1/2))

k

12
X(Z(Am M) +4A”2)) ,

i=1
from which they deduced, using a variant of Chebyshev’s inequality,

k

1-6) Y s =1 = -5 Z(ml 1) (201 + 22,7 +0%) @1 ).
i=1
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This last inequality was also obtained by a different method by Cheng, Ichikawa
and Mametsuka [2009a].

On the other hand, Wang and Xia [2007] also considered the problem (1-1) on
domains of an n-dimensional complete minimal submanifold M of R™ and proved

k
A7) ) Ot — 1)
i=1

/2

8(n+2)\/? £ 2.1/2 12 & 12 !
5( 2 ) <Z(A’<+1_)‘i) A; ) (Z(kkﬂ—ki)ki ) :
i=1 i=1

from which they deduced the following generalization of inequality (1-4) to mini-
mal Euclidean submanifolds:

k k
8 2
(1-8) E (g1 —A)* < % E (A1 = M)A
izl i=1

Recently, Cheng, Ichikawa and Mametsuka [2010] extended this last inequality to
any complete Riemannian submanifold M in R” and showed

k k
(1-9) Eam —A)P s Eakﬂ =) (784201 +2)2,) (n8 + 43, 7),
with
8 = supg | H|?,
where H is the mean curvature of M.

The goal of Section 2 of this article is to study the relation between eigenvalues
of the biharmonic operator and the local geometry of Euclidean submanifolds M
of arbitrary codimension. The approach is based on an algebraic formula (see
Theorem 2.3) we proved in [Ilias and Makhoul 2010]. This approach is useful for
the unification and for the generalization of all the results in the literature. In fact,
using this general algebraic inequality, we obtain (see Theorem 2.4) the inequality

k k 1/2
(1-10) > f() < %(Z g0 (2 +2)1," +n25)>

i=1 i=1
k ’ 12
(f) 12, 2 )
E 4r."" 4+ n-s ,
) (l.zl g(Ai) (Mgt —)w‘)( ' =

where f and g are two functions satisfying some functional conditions (see Defi-
nition 2.1), 8§ = supg, | H|* and H is the mean curvature of M. The family of such
pairs of functions is large. And particular choices for f and g lead to the known
results. For instance, if we take f(x) = g(x) = (Ag+1 —x)2, then (1-10) becomes
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1/2
(1-11) Z(MH i) < (Z(Am )»)(Z(n+2)k1/2+n28))
i=1 i=1 12
x (Z(xkﬂ —Ai)<4x}/2+n26>> :
i=1

which gives easily (see Remark 2.2) inequality (1-9) of Cheng, Ichikawa and
Mametsuka [2010].

In Section 3 we consider the case of manifolds admitting spherical eigenmaps
and obtain similar results. As a consequence, we obtain universal inequalities for
the clamped plate problem on domains of any compact homogeneous Riemannian
manifold.

In Section 4, we show how one can easily obtain, from the algebraic techniques
used in the previous sections, universal inequalities for eigenvalues of (1-1) on
domains of hyperbolic space H".

All our results hold if we add a potential to A? (that is, A? 4+ g where ¢ is a
smooth potential). For instance, in this case instead of inequality (1-10), we obtain

1/2
(1-12) Zf(k )< - (Zg(k) 2(n+2)k1/2+n26)>
k

(f(A))? 12 2 >1/2
43 5)) .
: (; S0 G —r) 1 T

where &; = A; — infg q.
Finally, the case of the clamped problem with weight
Au=Xipu in$,
(1-13) _du
v

can be easily treated with minor changes.

=0 onodf2,

2. Euclidean submanifolds

Before stating the main result of this section, we introduce a family of pairs of
functions and a theorem obtained in [Ilias and Makhoul 2010], which will play an
essential role in the proofs of all our results.

Definition 2.1. Let A € R. A pair (f, g) of functions defined on ]—oo, A[ belongs
to 3, if f and g are positive and, for any distinct x, y € ]—o0, A[,

FO—FOV L (@) | (F0) \/em)—gk)
e (P + (ooms oo ) (i) =
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Remark 2.2. This definition of the family J, differs slightly from that given in
[Mlias and Makhoul 2010], but all the results there are still valid.

A direct consequence of our definition is that g must be nonincreasing.

If we multiply f and g of J; by positive constants, the resulting functions are
also in 3. In the case where f and g are differentiable, one can easily deduce
from (2-1) the necessary condition

-2
A—x
This last condition helps us to find many pairs (f, g) satisfying the conditions of
Definition 2.1, for example,

((n £(x)))’ < —=(ng(x))"

(1, x=x)*) |a >0},
{(h=x), A —x)P) | B =1},
(A=), (A —x)")|0<8<2)}.

Let 7 be a complex Hilbert space with scalar product (-, - ) and corresponding
norm || - ||. For any two operators A and B, we denote by [A, B] their commutator,
defined by [A, B]= AB — BA.

Theorem 2.3. Let A : 9 C # — K be a self-adjoint operator defined on a dense
domain 9, which is semibounded below and has a discrete spectrum

M <A3<---.

Let
{T, 9 — ?C}’;Zl

be a collection of skew-symmetric operators and
{B,:T,(D) — %}'Il,:l
a collection of symmetric operators, leaving % invariant. Denote by
{u; }?i 1

a basis of orthonormal eigenvectors of A, u; corresponding to \;. Let k > 1 and
assume that i1 > Ai. Then, for any (f, g) in 3,

k n )
(2-2) (Z Z f()»,)( [Ty, Bplu;, ui>)
i=1 p=1 .
< 4(2 3" gG)([A, Bylus, Bpui)>

i=1 p=1 L n
(f () 2)
T,u; .
* (Z 2 2 Gaer iy 1T

i=1 p=1
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Our first result is the following application of this inequality to the eigenvalues
of the clamped plate problem (1-1) on a domain of a Euclidean submanifold:

Theorem 2.4. Let X : M — R™ be an isometric immersion of an n-dimensional
Riemannian manifold M in R™. Let Q be a bounded domain of M and consider
the clamped plate problem (1-1) on Q2. Then for any k > 1 such that Ay > Ay and
forany (f, g) in3;, ,, we have

k k 1/2
2-3) Y fOa)< %(Z g0 (2 +2)1" + nZa))
i=1 i=1

k 2 2 1/2
(f () 12 N ))
E A — ,
X( g(?wi)()»kﬂ—h)( r Ty

i=1

where § = supq, |H |* and H be the mean curvature vector field of the immersion X
(that is, which is given by % trace h, where h is the second fundamental form of X).

Proof. We apply inequality (2-2) of Theorem 2.3 with A = A?, B p=Xpand T) =
[A,X,], p=1,...,m, where Xy, ..., X,, are the components of the immersion
X. This gives

k m 2
(2-4) (Z D FOD(IA X1 X us, u,»>L2>

i=1 p=1 P
< 4( > (1A%, X plu;, Xpu,-)Lz)
TR ger
Ai 5
X ITA, X pJu; |l )
(; p; g0 s — 1) preE
where u; are the L2-normalized eigenfunctions. First we have, for p=1,...,m,

[A% X ) lu; = A X pui +2VAX , Vi +2A (VX -V ) +2AX , Au;+2V X .V Au,.
Thus
(1A% Xplui, X pui) 2

=/ u%XpAZX,,Jrz/ XpuiVAXp.Vui—i—Z/ Xpui A(VX,-Vu;)
Q Q Q
+2/ Xpbll‘AXpAui-i-Z/ Xpu,-VXp.VAu;
Q Q
:/ AX,,A(X,,u?)—zf div(X pu; Vu;)AX, +2/ AX,u)VX, Vu;
Q Q Q

+2/ XPAXPM,'AM,'—Z/ diV(XpuiVXp)Abti.
Q Q
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A straightforward calculation gives
(2-5) (1A% Xplui, X pui) 2 :4/ uiAX,,VX,,-w,-Jrf(AX,,)Zu?
Q Q
+4/(vxp-w,~)2—2/ VX, 2u; Au,.
Q Q

Since X is an isometric immersion, we have

(2-6) nH=(AX1,...,AX,)
and
m m
2-7) D uiAX, VX, Vi =0, Y (VX, Vu;)* =|Vu;[”
p=1 p=1

Incorporating these identities in (2-5) and summing on p from 1 to m, we obtain

m

> 018% X, i Xy = 4 [ Vil =2 [ i n? [ (i
Q Q Q

p=1

=2(n+2)/ u,-(—Au;)+n2f |H |*u?
Q Q

1/2 1/2
(2-8) §2<n+2>< f (—Aunz) ( f u%) +n? / |H *u?
Q Q Q

=2(n+2)1" +n2/ |H | u?
Q

1/2

(2-9) <2(n+2)r;" +n?s,

where the Cauchy—Schwarz inequality gave (2-8) and where § = supg, | H|>.
On the other hand, we have

[A, X,u; =2VX, - Vi, +u; AX .

Then

m m

YA, Xl =) / QVX, - Vi +ui AX )
Q

p=1 p=1

m m
:42/(vx,,-w,~)2+42/ u;AX,VX,-Vu
Q Q
p=1 p=1

m
+ Z/ (AX,)u?.
Q
p=1
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Using the identities (2-6) and (2-7), we obtain

m
@10 WA Xl =4 [ Vet en [ HP
Q Q
p=1

:4/(—Au,~)-u,~+n2/ |H |u?
Q Q

1/2 1/2
54(/ (—Au,-)z) <f u?) +n?8
Q Q

= 4212 4 n2s.

i

A direct calculation gives

([[Aaxp]:Xp]uiaui>L2:/ (AXGui) = 2X ) A(X pur) + X5 A )u;
Q
=2f VX, |%u?.
Q
m

(2-11) D (A, X1 X plui, ui), :22/ VX ,|2u? = 2n.
p=1"¢

p=1

Therefore

To conclude, we simply use the estimates (2-9), (2-10) and (2-11) together with
inequality (2-4). (]

Remarks 2.5. ¢ As indicated in the end of the introduction, Theorem 2.4 holds
for a general operator A% + ¢, where ¢ is a smooth potential. Indeed, this is an
immediate consequence of the fact that (A% + q,Xpl = [AZ, X p] and the entire
proof of Theorem 2.4 works in this situation. The only modification is in the
estimation of the term fQ |Vu;|%. In this case, letting A = A; —infg q, we have

1/2 1/2 1/2
/|Vu,-|25(/ (—Aui)z) (/ u?) =(xi—/qu%) < G2,
Q Q Q Q

Taking into account this modification in inequalities (2-8) and (2-10), we obtain
inequality (1-12).

o If f(x) = g(x) = (g1 — x)2, then inequality (2-3) extends inequality (1-7)
of Wang and Xia [2007] to any Riemannian submanifolds of R”. By using a
Chebyshev inequality (for instance the one of [Cheng et al. 2009b, Lemma 1]),
inequality (1-9) of Cheng, Ichikawa and Mametsuka [2010] can be easily deduced
from inequality (2-3).

oIf f(x)=gx)= (Ak+1 — x), then inequality (2-3) generalizes inequality (1-3)
of Cheng and Yang [2006] to the case of Euclidean submanifolds.
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Using the standard embeddings of the rank one compact symmetric spaces in
a Euclidean space (see for instance [El Soufi et al. 2009, Lemma 3.1] for the val-
ues of |H|? of these embeddings), we can extend easily the previous theorem to
domains or submanifolds of these symmetric spaces and obtain:

Theorem 2.6. Let M be the sphere S, the real projective space RP™, the com-
plex projective space CP™ or the quaternionic projective space QP™ endowed
with their respective metrics. Let (M, g) be a compact Riemannian manifold of
dimension n and let X : M — M be an isometric immersion of mean curvature H.
Consider the clamped plate problem on a bounded domain Q2 of M. For any k > 1
such that A1 > Ay and for any (f, g) € Sy, we have

k k 1/2
(2-12) ;f(x,-) < %(; g(x,-)(z(n+2),\g/2+nz(3,))

k > 2 \\1/2
(f)) ( 12 N /)>
AT+ —6 ,
: (; 80—\ T

1 ifM=S",

2(n+1)/n  if M =RP™,
2(n+2)/n  if M =CP™,
2(n+4)/n  if M =QP™.

where

8’ =sup(|H|* +d(n)), whered(n)=

Remarks 2.7. « As in [El Soufi et al. 2009, Remark 3.2], in some special geomet-
rical situations, the constant d(n) in the inequality of Theorem 2.6 can be replaced
by a sharper one. For instance, when M = CP" and

— M is odd-dimensional, then d (n) can be replaced by d’(n) =(2/n) (n+2—1/n),
— X (M) is totally real, then d(n) can be replaced by d’'(n) =2(n + 1) /n.
e When f(x) = g(x) = (Agg1 — x)2, and M is a sphere, (2-12) generalizes to
submanifolds inequality (1-5) established by Wang and Xia for spherical domains.

* As for Theorem 2.4, the result of Theorem 2.6 holds for a more general operator

A+ g, with the same modification (that is, le /% instead of Al.l / 2).

3. Manifolds admitting spherical eigenmaps

In this section, as before, we let (M, g) be a Riemannian manifold and €2 be a
bounded domain of M. A map X : (M, g) — S" ! is called an eigenmap if its com-
ponents X, X, ..., X,, are all eigenfunctions associated to the same eigenvalue A
of the Laplacian of (M, g). This is equivalent to say that the map X is a harmonic
map from (M, g) into S™~! with constant energy A (that is, Z';}Zl |VXp|2 = A).
The most important examples of such manifolds M are the compact homogeneous
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Riemannian manifolds. In fact, they admit eigenmaps for all the positive eigenval-
ues of their Laplacian; see [Li 1980].

Theorem 3.1. Let A be an eigenvalue of the Laplacian of (M, g) and suppose that
(M, g) admits an eigenmap X associated to this eigenvalue . Let Q be a bounded
domain of M and consider the clamped plate problem (1-1) on Q2. For any k > 1
such that Ay > A and for any (f, g) € Iy, we have

k
G-1) Y O

k 1/2 )2 1/2
A A+6A.”2) ( (f A+4)\.”2> .
= <§g( ! i) Z8()»1')(?»k+1 —)»i)( i)

i=1
Proof. As in the proof of Theorem 2.4, we apply Theorem 2.3 with A = A?Z,
B,=X,and T, =[A,X,], p=1,...,m, to obtain

k m 2
(3-2) (Z Y FOMIIA, X)), X plus, uim)
i=1 p=1 L m
s4(22g(x,~><m2,Xp]ui,xpu,-m)

i=1 p=1 )
I (fG) 2 )
A, X uill%s ),

X (ZZ g(M) Mt — Ai) Il p]u ”L

i=1 p=I

where {u;}7°, is a complete L?-orthonormal basis of eigenfunctions of A? associ-

ated to {A;}72,. As in (2-11), and using the equality

m
DIVX, =4,
p=1
we have
m m
(3-3) Z([[A,Xp],Xp]ui,ui)L2:2Z/Q|VXP|2ul~2:2A.
p=1 p=1

We further have

m
D A, X pluill
p=1
u 2
=3 [ (12 Xyl
p=1"%
m m m
:4/ Z(vxp-vu,-)%r/ Z(AXP)ZM$+4/ > uiAX, VX, Vu;
Q Q Q
p=1 p=1

p=1
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Applying Cauchy—Schwarz and the equalities

m

dYoX;=1 and X,=-1X,,

p=1
we then obtain
m
> AL X pluill3.
p=1
m m m
<4/ Z|vxp|2|vul|2+x2/ (Zxﬁ)uf—zxf ulv(Zx§> Vu;
p=1 2\ p=1 @ p=1
1/2 1/2
=4A/(—Aui)ui+k2§4k</ (—Au,-)z) (/ uf) + A2
Q Q Q
— 42 a2

i

Similarly, we infer from (2-5) that

m
D (A% Xplui, X pui) g2
p=1
m

m
=)”2/Qui2_)\/gv<lez’) .Vu%+4Z/Q(VXp-Vui)2+2AL(—AMi)Mi
p=1 p

=1

m 12 12
5x2+4f Z|VX,,|2|W,-|2+2,\</ (—Au)2> (/ u,?)
Qo Q Q

<2244 2l
172

i .

= A2+ 620

Incorporating these two bounds, together with (3-3), in inequality (3-2) gives the
theorem. ]

Corollary 3.2. Let (M, g) be a compact homogeneous Riemannian manifold with-
out boundary and let Ay be the first nonzero eigenvalue of its Laplacian. Then the
inequality (3-1) of Theorem 3.1 holds with A = A1.

Remark 3.3. As before, one can get a similar result for the operator A%+ g.

4. Domains in hyperbolic space

We turn next to the case of a domain 2 of hyperbolic space. It is easy to establish a
universal inequality for eigenvalues of the clamped plate problem (1-1) on €2 in the
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vein of the preceding ones. Unfortunately, until now we have not succeeded in ob-
taining a simple generalization for the case of domains of hyperbolic submanifolds.
In what follows, we take the half-space model for H”, that is,

H"={x=(1,x2,...,x,) € R": x,, > 0}

with the standard metric
42 — dxf—f—dx%—i—---—l—dx,%‘

2
Xn

In terms of the coordinates (x;);_,, the Laplacian of H" is given by

n
32 d
A=x? 2— —
n Zl 0x;0x; +@—mx, 0x,
=

Theorem 4.1. For any k > 1 such that Ay11 > Ay, the eigenvalues A; of the clamped
problem (1-1) on the bounded domain 2 of H" must satisfy for any (f, g) € 3;,,,

k k 1/2
@1 Y fo0) < (Z 261, = (n — 1)2>)

i=1 i=1 k (f()\))z 2 2 U
2 : a2 -1 .
X (i:l (g()»i)(kkﬂ _)“z))( i (n ) ))

Proof. Theorem 2.3 remains valid for A = A2, B,=F=Inx,and T, =[A, F],
forall p=1,...,n. Thus, denoting by u; the eigenfunction corresponding to A;,
we have

k 2
(4-2) (Z FONUA, F1, Flu;, u,->Lz)
i=1 k

< 4(2 g (A%, Flu, Fuim)

i=1 k

(f())? ) X )
A, Fluillz ).
X (;(g()\l)()\k_i_l _)\’l) ”[ ]u ”L

We start with the calculation of
([[A’ F]v F]Mi, ui>L2 =/ ([Av F](Ful) - F[A’ F]ui)ui
Q
:/ (A(F?u;) —2FA(Fu;) + F> Au; )u;.
Q

Note that

(4-3) AF=1-n and |VFP?=1.
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Thus a direct calculation gives
(4-4) (LA, F1, Flui, ui),, = 2/Q |VF[*uf =2.
On the other hand, using again the identities of (4-3), we obtain
(45) A, Flu |2, = /Q (AFus +29F - Vuy?
= fQ(AF)Zu? ~|—4/Q(VF - Vu;)? +4/Q AFu;VF - Vu;

=(1—n)2+4/(VF-Vui)2—|—4(1—n)/ u;VF -Vu;.
Q Q

But
/uiVF-Vui=—/ u,-VF-Vui—/uizAF,
Q Q Q
hence
(4-6) /u,-VF-Vu,- _n=l
9 2

Then we infer from (4-3), (4-5) and (4-6) that

(4-7) ||[A,F]ui||iz<—<n—1>2+4f |VF | |Vu; |*
Q

=—(n—1)2+4/ |Vu[|2=—(n—1)2+4/ ui (—Au;)
Q Q

1/2 1/2
5—(n—1)2+4</ uf) (/ <—Au,->2>
Q Q

=407 —(n—1)>

Now,

(4-8) [A%, Flu; = A*(Fu;)— FA?u; = A(AFu; +2VF -Vu; + F Au;) — F A%u;
=2(1—-n)Au; +2A(VF -Vu;)+2VF -V Au;;

thus

([A%, Flu;, Fu;) 2

:2(1—n)/ Fu,-Au,-—{—Z/ Fu,-A(VF-VMi)+2/ Fu;VF -V Au;
Q Q Q

:2(1—n)/ Fu,-Au,--i—Z/ A(Fu,-)VF-Vui—2/ div(Fu;VF)Au;
Q Q Q

:2/ AFu,-VF-Vui+4/(VF-Vul-)2—2/ |VF|*u; Au;.
Q Q Q
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We infer from (4-3) and (4-6) that

4-9) ([A% F]ui,Fui>Lzs—(n—1>2+4/ |VF|2|Vui|2+2/ui<—Aui>
Q Q

=—(n—1)° +6/ ui (—Auy)
Q

1/2 1/2
56(/ u§> (/(—Aui)2> —(n—1)>
Q Q

—6 (1)

Inequality (4-2) along with (4-4), (4-7) and (4-9) gives the theorem. O

Remarks 4.2. « It will be interesting to look for an extension of Theorem 4.1 to
domains of hyperbolic submanifolds.

» Our method works for any bounded domain 2 of a Riemannian manifold admit-
ting a function such that |V#| is constant and |Ah| < C, where C is a constant.

« As before, we have the same statement as in Theorem 4.1 for the operator A2 +q;

it suffices to replace A;ﬂ by )_\3/2.
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MULTIGRADED FUJITA APPROXIMATION

SHIN-YAO Jow

The original Fujita approximation theorem states that the volume of a big
divisor D on a projective variety X can always be approximated arbitrarily
closely by the self-intersection number of an ample divisor on a birational
modification of X. One can also formulate it in terms of graded linear series
as follows: Let W, = {W;} be the complete graded linear series associated
to a big divisor D, where

W, = H* (X, Ox (kD)).

For each fixed positive integer p, define W.(p ) to be the graded linear sub-
series of W, generated by W,:

W — 0 if ptm,
" Image(S*W, - Wy,) ifm=kp.

Then the volume of W.(p ) approaches the volume of W, as p — oco. We will
show that, under this formulation, the Fujita approximation theorem can
be generalized to the case of multigraded linear series.

1. Introduction

Let X be an irreducible variety of dimension d over an algebraically closed field K,
and let D be a (Cartier) divisor on X. When X is projective, the following limit,
which measures how fast the dimension of the section space H%(X,0x(mD))
grows, is called the volume of D:

0
vol(D) = voly(D) = lim X 0x(mD))

One says that D is big if vol(D) > 0. It turns out that the volume is an interesting
numerical invariant of a big divisor [Lazarsfeld 2004a, Section 2.2.C], and it plays
a key role in several recent works in birational geometry [Tsuji 2000; Boucksom
et al. 2004; Hacon and McKernan 2006; Takayama 2006].

MSC2000: 14C20.
Keywords: Fujita approximation, multigraded linear series, Okounkov body.
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When D is ample, one can show that vol(D) = D?, the self-intersection number
of D. This is no longer true for a general big divisor D, since D? may even be
negative. However, Fujita [1994] showed that the volume of a big divisor can
always be approximated arbitrarily closely by the self-intersection number of an
ample divisor on a birational modification of X. This theorem, known as Fujita
approximation, has several implications for the properties of volumes, and is also a
crucial ingredient in [Boucksom et al. 2004] (see [Lazarsfeld 2004b, Section 11.4]
for more details).

Lazarsfeld and Mustatd [2009] (henceforth [LM]) recently obtained, among
other things, a generalization of Fujita approximation to graded linear series. Re-
call that a graded linear series W, = { W} } on a (not necessarily projective) variety X
associated to a divisor D consists of finite dimensional vector subspaces

Wi € H°(X,0x(kD))
for each k > 0, with Wy = K, such that
Wi-We © Wi

forall k, £ > 0. Here the product on the left denotes the image of Wi @ W, under the
multiplication map H(X, Ox (kD)) ® H*(X, Ox (¢D)) — H°(X, Ox((k +£)D)).
In order to state the Fujita approximation for W,, they defined, for each fixed
positive integer p, a graded linear series W P which is the subgraded linear series
of W, generated by W),:

0 if ptm,

w) —
Im(SKW, — Wy,) if m = kp.

m

Then under mild hypotheses, they showed that the volume of W'?) approaches the
volume of W, as p — oo. See [LM, Theorem 3.5] for the precise statement, as
well as [LM, Remark 3.4] for how this is equivalent to the original statement of
Fujita when X is projective and W, is the complete graded linear series associated
to a big divisor D (that is, W, = H*(X, Ox (kD)) for all k > 0).

The goal of this note is to generalize the Fujita approximation theorem to multi-
graded linear series. We will adopt the following notation from [LM, Section 4.3]:
Let Dy, ..., D, be divisors on X. For m = (my,...,m,) € N, write mD =
>_m;D;, and put |m| =) |m;]|.

Definition. A multigraded linear series W; on X associated to the D; consists of
finite-dimensional vector subspaces

Wi € H(X,0x(kD))
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for each k € N , with W = K, such that

Wi - Wi © Weias

where the multiplication on the left denotes the image of W; ® Wj; under the natural
map

H(X,0x(kD)) ® H'(X, Ox (D)) — H°(X, Ox((k + ) D)).

Given a € N', denote by W; , the singly graded linear series associated to the
divisor a D given by the subspaces W;; C H 0(X, 0x(kaD)). Then put

voly. (@) = vol(Wz..)

(assuming that this quantity is finite). It will also be convenient for us to consider
W; . when a € Q_, given by

Wiz ifkaeN’,

Wi =
@k {0 otherwise.

Our multigraded Fujita approximation, similar to the singly graded version, is
going to state that (under suitable conditions) the volume of W; can be approx-
imated by the volume of the following finitely generated submultigraded linear
series of Wj:

Definition. Given a multigraded linear series W; and a positive integer p, de-
fine WP to be the submultigraded linear series of W; generated by all W;;, with
|m;| = p, or concretely,

0 if p1|ml,
W = Y Wiy Wi, if ] =kp.

_ Imil=p

mi+-+mp=m
We now state our multigraded Fujita approximation when W; is a complete
multigraded linear series, since this is the case of most interest and allows for a
more streamlined statement. The Remark on page 335 points out what assumptions

on Wj; are actually needed in the proof.

Theorem. Let X be an irreducible projective variety of dimension d, and let D,
Dy, ..., D, be big divisors on X. Let W; be the complete multigraded linear series
associated to the D;, namely

Wi = H(X, Ox(m D))
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for each m € N, Then given any ¢ > 0, there exists an integer py = po(¢) having
the property that if p > po, then
(1)

VOlw_(p) (Ei)
— = | <e¢

voly. (@)

foralla e N',

2. Proof of the Theorem

The main tool in our proof is the theory of Okounkov bodies developed system-
atically in [Lazarsfeld and Mustatd 2009]. Given a graded linear series W, on a
d-dimensional variety X, its Okounkov body A(W,) is a convex body in R? that
encodes many asymptotic invariants of W,, the most prominent one being the vol-
ume of W,, which is precisely d! times the Euclidean volume of A(W,). The idea
first appeared in Okounkov’s papers [1996; 2003] in the case of complete linear
series of ample line bundles on a projective variety. Later it was further developed
and applied to much more general graded linear series by Lazarsfeld and Mustata
[2009] and also independently by Kaveh and Khovanskii [2008; 2009].

Proof of the Theorem. Let T = {(ay,...,a;) € R | a; +---+a, = 1}, and let
Tp be the set of all points in 7 with rational coordinates. The fraction inside (1)
is invariant under scaling of a due to homogeneity, hence it is enough to prove (1)
for a € Tg.

Let A(W;) € RY x R" be the global Okounkov cone of W5 as in [LM, Theo-
rem 4.19], and let 7 : A(W;) — R” be the projection map. For each a € T, write
A(W;); for the fiber ~1(a). Define in a similar fashion the convex cone A(W;(” )

and the convex bodies A(W{P));. By [LM, Theorem 4.19],
2) A(W;); = A(Wz.) forall d e To.

Although [LM, Theorem 4.19] requires a to be in the relative interior of 7', here
we know that (2) holds even for those a in the boundary of T because the big cone
of X is open and W; was assumed to be the complete multigraded linear series. By
the singly graded Fujita approximation, vol(W; ,) can be approximated arbitrarily
closely by Vol(Wa(f:)) if p is sufficiently large. (Here by Wa(,’j) we mean WP
restricted to the @ direction, which certainly contains (W; ,)(”).) Hence given any
finite subset S C Tg and any &’ > 0, we have

VOI(A(WSP)2) > vol(A(W;);) —¢' foralld e S

as soon as p is sufficiently large.
Because the function a — vol(A(Wy);) is uniformly continuous on 7', given
any ¢ > 0, we can partition 7 into a union of polytopes with disjoint interiors
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T =|JT;, in such a way that the vertices of each 7; all have rational coordinates,
and on each T; we have a constant M; such that

3) M; <vol(A(W;);) <M;+¢ forallaeT,.

Let S be the set of vertices of all the 7;. Then as we saw in the end of the previous
paragraph, as soon as p is sufficiently large we have

4) vol(A(W{P);) > vol(A(W;);) —¢’ foralla e S.
We claim that this implies
(5) VOl(A(W4P)2) > vol(A(W;),) —2¢"  for all @ € Tg.

To show this, it suffices to verify it on each of the T;. Let vy, . .., Uy be the vertices
of T;. Then each a € T; can be written as a convex combination of the vertices:
d=Y t;v; where each t; > 0 and }_#; = 1. Since A(W{P) is convex, we have

A(W;(p))a > Z[j A(WZ(p))Uj’

where the sum on the right means the Minkowski sum. By (3) and (4), the volume
of each A(W;(p))ﬁj is at least M; — ¢’, hence by the Brunn—Minkowski inequality
[Kaveh and Khovanskii 2008, Theorem 5.4], we have

vol(A(WLP).) > M; —¢' foralla e T; N Tg.

This combined with (3) shows that (5) is true on 7; N T, hence it is true on Tg
since the T; cover T.
Since (1) follows from (5) by choosing a suitable &, the proof is complete. []

Remark. In the statement of the Theorem we assume that W; is the complete
multigraded linear series associated to big divisors. But in fact since the main tool
we used in the proof is the theory of Okounkov bodies established in [Lazarsfeld
and Mustad 2009], in particular [LM, Theorem 4.19], the really indispensable
assumptions on W; are the same as those in [LM] (which they called Conditions
(A’) and (B’), or (C')). The only place in the proof where we invoke that we are
working with a complete multigraded linear series is the sentence right after (2),
where we want to say that (2) holds not only in the relative interior of T but also
in its boundary. Hence if W; is only assumed to satisfy Conditions (A’) and (B),
or (C'), then given any ¢ > 0 and any compact set C contained in 7 Nint(supp(W5)),
there exists an integer pg = po(C, ¢€) such that if p > pg then

voly.» @) > volW;(ﬁ) —¢

foralla € C N Tg.
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SOME DIRICHLET PROBLEMS ARISING FROM CONFORMAL
GEOMETRY

QI1-RUI L1 AND WEIMIN SHENG

We study the problem of finding complete conformal metrics determined by
some symmetric function of the modified Schouten tensor on compact man-
ifolds with boundary; which reduces to a Dirichlet problem. We prove the
existence of the solution under some suitable conditions. In particular, we
prove that every smooth compact n-dimensional manifold with boundary,
with n > 3, admits a complete Riemannian metric g whose Ricci curvature
Ric, and scalar curvature R, satisfy

det(Ric, — R, g) = const.

This result generalizes Aviles and McOwen’s in the scalar curvature case.

1. Introduction

Let (M", g), for n > 3, be a compact, n-dimensional smooth Riemannian manifold
with smooth boundary M. Let M = M \ M be the interior of M, and denote the
Ricci tensor and the scalar curvature by Ric and R (or Ricg and R, to emphasize the
metric), respectively. In [2003], Gursky and Viaclovsky introduced the modified
Schouten tensor

1 . T
At = —— (R —— R )
¢ T 2 \Ne Ty 88
where T € R. We are interested in deforming the metric in the conformal class [g]
of a fixed back ground metric g to certain complete metric g satisfying

det(g_lA;;) =const in M.

More generally, let '™ be an open convex cone in R" with vertex at the origin
satisfying ) ¢ T Cc T, where

F,j:{x:(/q,...,/cn)eR"IGj(K)>0,1Ejik}’
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MSC2000: primary 53C21; secondary 53C23.
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and
O’k(K) = Z Kip - Kip.
i <---<iy
Let F : R" — R be a smooth symmetric function that satisfies some structure
conditions in I't, to be listed later. We ask, Does there exist a complete metric g
in the conformal class [g] such that

(1-1) FG'AD=f@) inM

for some given smooth function f € C*(M)? In this paper, we give a partial
answer in the case T > n — 1. We remark that, if ' = o1, then (1-1) becomes

2—-17)n-2
2(n—1)(n —2)
In the case T > n — 1 and f(x) is positive, some results have appeared in [Aviles
and McOwen 1988].
To find a complete conformal metric satisfying (1-1), we need to solve the

Dirichlet problem for (1-1) with larger and larger boundary data. We first write this
curvature equation as a partial differential equation. Recall the following formula

R; = f(x).

for the transformation of A® under a conformal change of metric g = e?*g:

f_‘L’—l 2 T—2 2 T
(1-2) Aé—,—n_z(Au)g Vu+du®du+—2 [Vul"g +A,.

From (1-2) we may write (1-1) as

’gz Vullg + A;) = Flo)e.

F(T_é(Au)g—Vzu—qu@du—i-

In this paper, we study a more general equation. Let A (x, z) : M" x R be some
smooth positive function. Let’s consider

(1-3) F(A(Au)g — Viu+a(x)du @ du + b(x)|Vul’g + B) = h(x, u),

where A > 1, B is a symmetric 2-tensor, and a(x) and b(x) are smooth functions
on M. Suppose F is homogeneous of degree one, F =0 on dI'", and F satisfies
the following in I't:

(C1) F is positive;

. . 2p . . . .
(C2) F is concave (that is, 3,25( - is negative semidefinite);
i0Kj
(C3) F is monotone (that is, % is positive).
For convenience, we define

Wlu] :=V> u+ B,

conf



SOME DIRICHLET PROBLEMS ARISING FROM CONFORMAL GEOMETRY 339

and
V2

con

it =A(Au)g — VZu+adu ®du + b|Vu|2g

in the sequel. We call u is admissible if g~'W[u] e I't.

Theorem 1.1. For n > 3, let (1\7”, g) be a smooth, compact Riemannian manifold

with boundary oM. If

(1) Bel'™;

2 h>00nMxR, 3:h(x,z) >0o0n M xR, lim,_, ;o h(x,z) = 400 and
lim, , o h(x,z) > 0in M x R; and

3) a(x) is positive on M and ha(x) +b(x) is nonnegative in M,

then there exists a unique admissible function u € C®(M) solving the Dirichlet
problem

(1-4) F(Wlul) =h(x,u) inM,
u=g on oM,

where @ is a smooth function defined on a neighborhood of 9 M.

We may apply Theorem 1.1 to the elementary symmetric functions and their
quotients (o*k/m)l/("_l) on F,:r, with0 <l <k <nand op=1:

Corollary 1.2. Forn >3, let (1\71 ", g) be a smooth, compact Riemannian manifold
with boundary 9M. Let f € C®(M), let f > 0, and let S be a Riemannian metric
on M that is conformal to glam. If Ay € F,j and T > n — 1, then there exists a

smooth metric § € [g] on M satisfying

o\ /E=D , .
<;l> (A(é):f inM and gloy =S,

where 0 <[ <k <n.

Recently Gursky, Streets and Warren [2011] proved that any Riemannian man-
ifold with boundary admits a negative Ricci curvature metric; see also Lohkamp
[1994] and Guan [2008]. Once Ric, <0, we have A" ™" = -L_(Ric, —R,g) €T} .
Therefore:

Corollary 1.3. For n > 3, every smooth compact n-dimensional manifold with
boundary admits a Riemannian metric g with its Ricci tensor Ric and scalar cur-
vature R satisfying

ak(g_l(Ric —Rg)) = const > 0,

where 1 < k <n. In the case k = n, we have

det(Ric —Rg) = const > 0.
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By solving the infinite boundary data Dirichlet problem, we can produce com-
plete metrics with constant ok—Az, curvature, where 7 > n — 1.

Theorem 1.4. Forn >3, let (M", g) be a smooth, compact Riemannian manifold
with boundary M. Choose any smooth positive function f € C*°(M). If B e T,
a(x) is positive on M, and ra(x) + b(x) is nonnegative in M, then there exists an
admissible solution u € C*° (M) to the equation
F(Wlu)) = f()e* in M,
u=-+00 on dM.

(1-5)

Moreover, there exist some constants C > 0 and 0 < y < 1, depending on

n, Ao Aflexanys  Nalpegnys Plisany,  1Blgan
and the geometry of (M, g), such that
—C —ylogd(x) <u(x) <—logd(x)+C near oM,
where d(x) denotes the distance to d M with respect to the metric g.
We can combine this with the result of [Gursky et al. 2011]:

Corollary 1.5. For n > 3, every smooth compact n-dimensional manifold with
boundary admits a complete metric g whose Ricci curvature satisfies

or (g (Ric —Rg)) = const > 0,
where 1 < k <n. In the case k = n, we have
det(Ric —Rg) = const > 0.

When we consider the modified Schouten tensor with T <0, it seems reasonable
to consider the negative cone, by seeking a complete conformal metric g in the
conformal class [g], such that o} (— gAz_,) = const > 0. There are some interesting
results, and we refer the reader to [Guan 2008] and [Gursky et al. 2011]. In the
case T =1, Ai, is just the classical Schouten tensor. In [2005], Schniirer fixes the
metric at the boundary and realizes a prescribed value for the product of the eigen-
values of the Schouten tensor in the interior, provided there exists a subsolution.
In [2007], Guan proved the existence of a conformal metric given its value on the
boundary as a prescribed metric conformal to the (induced) background metric,
with a prescribed curvature function of the Schouten tensor.

For compact manifolds without boundary, the problem of finding conformal
metrics in F,j of constant oy curvature (that is, of finding g € [go] such that
Aé € F,j and oy (g_lAi,) = const) —known as the higher order k-Yamabe prob-
lem for k > 2 — has attracted enormous interest since the work [Viaclovsky 2000]
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appeared. It can be viewed as a fully nonlinear version of the Yamabe problem,
which was solved by Trudinger [1968], Aubin [1976] and Schoen [1984]. The
solvability of the higher order k-Yamabe problem was shown for k = 2 in [Sheng
et al. 2007] (see also [Chang et al. 2002; Ge and Wang 2006]), for k = n/2 in
[Trudinger and Wang 2010], for £ > n/2 in [Gursky and Viaclovsky 2007], and
for locally conformally flat manifolds in [Guan and Wang 2003a; Li and Li 2003;
Sheng et al. 2007]. For results concerning the modified Schouten tensor on closed
manifolds, see [Gursky and Viaclovsky 2003; Li and Sheng 2005] for the case
7 < 1, and [Sheng and Zhang 2007] for the case T > n — 1.

Our primary task is to solve the Dirichlet problem (1-4). The proof goes via
the continuity method and a priori estimates. This paper is organized as follows.
In Section 2, we show (1-3) is elliptic at any admissible solution. In Section 3,
4 and 5, we establish a priori estimates that are essential in proving the existence
result. We then complete the proof of Theorem 1.1 in Section 6 and solve the
infinite boundary data Dirichlet problem (1-5) in Section 7.

2. Ellipticity
In order to discuss the ellipticity properties of Equation (1-3), we define
Alu] := F(g~'W[ul) — h(x, u).

We then suppose that u € C%(M) satisfies sd[u] = 0. Let uy = u + s, then the
linearized operator of « is

d
Ly = d_&d[us“szo
s
= F(g~'Wlul)Y O(AY)gij — ij + 2aui v +2b (Vu, V) gi))
—h,(x, u)y.
Defining
@2-1) Q' =1y (F'hs" — F,
I

we have
2-2) Y = QY +2FY (au ¥ + b (Vu, Vi) gij) — ho(x, )y,
Proposition 2.1. Equation (1-3) is elliptic at any admissible solution.

Proof. Since F'/ is positive definite in I'", we have
Q7> (—-1)) (F's’ >o0.
!

Therefore, (1-3) is elliptic by (2-2). [l
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If 3.h(x, z) is positive on M x R, then the coefficient of v in the zeroth-order
term of (2-2) is strictly negative, and we have this:

Corollary 2.2. If 3.h(x, 7) is positive on M x R, then at any admissible solution
of (1-3), the linearized operator £ : C>*(M) — C*(M) is invertible.

3. The global C" estimates

Proposition 3.1. If B T'" and lim,_, ; oo h(x, 7) — 400, lim,_, _o, h(x, z) — O.
Then there exists some positive constant Cy, depending only upon h, B and ¢, such
that for any C*(M) admissible solution u of (1-4), we have

lulcoizy < Co-

Proof. Since M is compact, we may suppose X is a minimum of the function u. If
X € M, we have

h(F, u(%)) = F(M(Au)(X)g — Vu(X) + B(X))

> min F(B) > 0.
M

Using lim,_, _ o h(x, z) — 0, we get the lower bound of u. Otherwise x € dM, we
get u > mingyy .

The upper bound of u follows by considering a maximum of the function u and
using the fact that lim,_, 1 2 (x, 7) — +00. O

4. Gradient estimates

We first establish the interior gradient estimates.

Lemma 4.1. Suppose B € 't and ha(x)+b(x) is nonnegative in M. If u € C3(B))
is an admissible solution of (1-4) in a ball B, C M, then there is a constant C
depending only on |a|ci(yy, 1blc1 (), MaXpxi—cy.Corlltlcrs 1812y A5 |Blerun
and |u|cop,, such that

sup|Vu| < C.

B,

Proof. Consider the auxiliary function
H(x) = ¢ (x)ve? ™,

where ¢(x) € C3°(B,) is a cutoff function to be chosen later, v = (1 + %qu@,),
¢ : R—>R is a function of the form ¢ (s) = a(B +5)”, and |s| < |u|cop,). The
constants , B and p depend only on |u|co(p, ) and |a|L=, such that the function ¢ (s)
satisfies ¢/(s) > 0 and ¢” (s) — ¢’>(s) — |a|r~¢'(s) > &1 > O for some constant ;
depending on |u|cop,) and |a| . Itis proved in [Gursky and Viaclovsky 2003] that
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such a function ¢ always exists in the case |a|r~ = 1. With a slight modification,
the proof still works for our case.

Suppose the maximum of H occurs at an interior point X € B,. Take a nor-
mal coordinate system (x!, ..., x") at X with respect to g such that W[u]; (%) 1s
diagonal. Then at X we have

0= H; = (g + Sugiug + v @'u;)e? ™,
that is,
(4-1) Cugiug = —v(& + ¢ 'u;),
and

(4-2) 0= Hij = & (upugij 4wy +wy (g + ugi )@ )e? ™
+0L (@7 + ¢ uiuj + ¢'uij)e? ™
(g &+ ui e ™ + v (& + ¢ Wil + Gup))e? ™.
Recall that Q" = A0, FH§ii — FiJ. Since F is positive definite in '™, one
obtains A(}_; FI)§' > QU > o(>_, F')8'/ > 0, where &g = A — 1. Then (4-2)
implies
0> ¢ QY (wpuyij + wyigj + 2u;ugug; @)
+vE QY (97 + ¢ uiuj + ¢'uij)
+2u QY uyi & + v QY (& +2¢'uig)).
By the Ricci identity, we have u;;; = u;j; + R jjipu ,, where R;j;, is the Riemannian
curvature tensor of (M, g). Then
(4-3) 0= 20" (wuiji + Rjtiptt pus + 2upugiu ;' +v((@” + ¢ uiuej + ¢'uij))
+2u QY uii b +v QY (4ij + 20 ui ).
Using h(x, u) = F(W[u]) = FYW/[u);; and h; + hou; = F'/ W ul;j,;, we obtain
(4-4) QYu;j = —F"(auuj+b|Vul*g;; + Bij) +h(x, u),
and
4-5)  u; QY uijy
= —F' (aquuiu ; + 2au;u jju; + byug | Vu|* gi; -+ 2buguguigi + ui Bijr)
+ hjuy + e |Vul,
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Plugging (4-4) and (4-5) into (4-3), we have
0> — {Fij (aluluiuj + 2au,-uﬂu1 + blu1|Vu|2g,-j + 2buku1ku1gij + M[B,'j[)
— v F(au;u; +b|Vul*gij + Bij)
+ ¢ QY (Rjtipupus + 2upugiv ;¢ +v(@9? + ¢ uju ;)
+ ¢ (g + ho|Vul* + v h(x, u))
+2u1 QY g ¢+ 209" QY ui g + v QY ;.

Without loss of generality, we may assume %|Vu|2 < v <|Vul? and using (4-1),
we derive

0> v FY(auiuj+b|Vul’gij) + tv(@" — ) QY uiu;
— ¢ FY (aquyuiu j + bjug|Vul* g +u Bijr)
— ¢vg' F B + ¢ QY R jiput pu
+ ¢ (hyug 4 h2|Vu)? 4+ vd'h(x, u))

(4-6) — 209’ QY giu; +2v(@F" +b(Y. F)8)¢u,

+v0" 5 —2(v/8) QY i

> v(@" —¢” —ap)Quu;
+ v (a(x) +b(x) O F|Vul> = Ce (X FH@Y2 +1)
—CLw+1) = C FH(VEW 2+ Ve v+ (VLI /E)v),

in the second inequality, we have used the definition of Q%/ to get
atvg' Fluu; = ragd' (3, F')|Vul® —agve’ QVu;u;.
Now we choose ¢ to satisfy, as in [Guan and Wang 2003b],
0<¢=<1, [Vel<bot'? V¢ <by
for some constant by > 0 and
{(x)=11in B, and ¢(x)=0 outside B,.
By virtue of (4-6), we then have
0= (3, F')(eoe16v> = CEv¥? = CE) = Ce(o+1) = C(, FIH(E V202 4 v).
Multiplying by ¢ on both sides and using that 0 < ¢ < 1, we have

(4-7) 0> (X, FlY(epe12?v? — CE3%032 —Cev—C) = C(cv + 1).
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Note that Euler formula and concavity of F imply
Qo FH) =Fu)+ Y Fik)(1—k;) = F(e) >0 inTT,
where e = (1, ..., 1). From (4-7), if 8081;“21)2 — Cg“3/2v3/2 —Ctv—C <0, we
have (¢v)(x) < C. Otherwise, we have
0> F(e)(gpe1020? — C/*v? —Cev—C) = C(Cv+1).
We then obtain (¢v)(x) < C. Hence H < C in B,; therefore supBr/2|Vu| <C. O

We now derive a priori bounds for the boundary gradient of solutions to (1-4)
with smooth Dirichlet data ¢. Without loss of generality, we may assume that
¢ € C®(M) in the sequel. The method is to construct barrier functions near 0 M
using the boundary distance function. Let d(x) = dist, (x, dM) for x € M, and set

Ms={xeM|dx)<é8} foré=>D0.

Since dM is smooth and |Vd| =1 on dM, we choose § > 0 sufficiently small so
that d is smooth and § < |Vd| <2 in M;.
Consider the locally defined auxiliary function

52
d+8%°

where 6 is some small positive constant. We may directly check that

w™ :=¢+0log

wo =,

(4-8) { lom 90_

@ +6010g(8/2) < w™ |ja)=s) < ¢ +6logs.
Since ;

_ 0 fa)
V2T =V — oV + oo Vd @ Vd,

WV T e T e

we obtain
_ A+b60)0 _ ab? 0
Wl = s Ve T G

RS (AAdgij —dij +a(p;di + ¢id;) +2b(Vo, Vd) gi;)

+AAQgij — ¢ij +agip; +b|Voligi; + B
- (g0 — (|a|Loo(M) + |b|Loo(M))9)9 _ a]
= (d+6%)? d+57

where C” and C” are some sufficiently large constants, depending only on 1@l 201y

IVd|?gi;

C'gij—C"gij,

A, lalpsocizys 10l Loy 1B |g(1t7) and the geometric quantities of (M, g), independent
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of 8. Choosing
< %0
2(|a|LOO(M) + |b|L00(117[))

by virtue of |Vd| > 1/2 in Ms, we derive

0

0
and (Sfmin{ £0 £0 },

=2 =07
T 16C"7 64C”

_ 8()0 6 , ”
Ww™];j > mgij - d—i-—ézc gij —C g&ij
9 ( 80 /) " 980
=0 (2 g —Clgijt—— g
d+52\16s 8ii = C 8ii T To5(d + 625

(4-9)
980 "
Z 35580 T C gij

980 980 ” 980
_ 780, . __c)..>_~,
6485 +(645 i = 6ag St

in the first inequality we have used the fact d + 8> < 268, while in the second, we
have used that d + 8% < 2.

To estimate the boundary gradient, we need the following maximum principle.
We first give a standard definition.

Definition 4.2. We say a subsolution w of (1-3) is admissible and
F(W[w]) > h(x,w) in M.

Changing the direction of the inequality, one gets the definition of the supsolution
of (1-3).

Lemma 4.3. Suppose that w, and w, are smooth sub- and supersolutions (respec-
tively) of (1-3) with wy|am < walam- If 9.h(x, 2) is positive in M X R, then w; < w»
on M.

Proof. We argue by contradiction. Set w = w; —w;. Suppose w(X) =minz; w <0
for some x € M; then X must be an interior point. At this point,

Vwy(X) = Vwi(X) and  VZwyr(F) > Viw, (F).
Consequently
F(Wlwa))(¥) = Q7 V7 wa (%) + FV (aViwy Vjwy 4 b|Vwal*gij + Bij) (%)
> QYViw (%) + FY (aViw Vjwy + b|Vw; [*gij + Bij) ()
= F(W[w])(x).
We therefore have
h(x, wa(x)) = F(W[w2])(x) = F(W[w;])(x) > h(xX, wi (X)),

which contradicts that w(X) > w,(X) and 9,k (x, z) is positive in M x R. O
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Let x¢ be an arbitrary point on 0 M. We pick local coordinates in Ms so that

dM is the plane x,, =0, and let {e,, en}';;% be the corresponding coordinate vector

fields, where e, (xo) denotes the interior normal vector and e, (xp) the tangential
direction.

Lemma 4.4. Let u be a C*(M) admissible solution of 1-4). If B € T'" and
d;h(x, z) is positive in M X R, then there exists a constant C depending on

Co, 2, |§0|C2(/\7), |a|L00(M)v |b|LOO(M)v |B|g(/17)
and the geometric quantities of (M, g), such that
anu|3M > —C.

Proof. Recalling (4-8) and (4-9), we have
pp 0
w ey =¢ and FW[w ) =F'W[w™];; > 23—81‘7(8) on Ms.

We choose § smaller, so that

F(Ww™])>  max h(x,z) > h(x,w™) on M;.

M x[ming; ¢, max i ¢]

Since |u|co(1\7l) < Cp, we can regard w™ as a local subsolution of (1-3) on Ms=
{x | d(x) <é}. Applying Lemma 4.3 to M3, we have

u(x) —u(xp) - w™(x) —w™ (xo)
d(x,xo) d(x, xp)

for any xg € OM.

That is, d,u|3y > 9, w™ |ya, and our lemma follows. O

We next prove that the 9, u have an upper bound; the boundary gradient estimates
follow.

Lemma 4.5. Let u be a C>(M) admissible solution of (1-4). If B € I'" and
d;h(x, z) is positive in M x R, then we have

oput(xg) < C  for any point xo € OM,

where C is a positive constant depending on Cy, A, |<p|C2(A7I), |a|L°°(A71)’ |b|L°°(Il7[)’
| Bl (s1) and the geometric quantities of (M, g).

Proof. Since u is admissible and '™ C Ffr, we have
c1Au+co|Vul? +tr B > (nk — )Au + (a +nb)|Vu|* +tr B > 0,

where ¢; = nA — 1 and ¢, = |a|p > + n|b|L~. Therefore the proof reduces to
constructing a local supbarrier function of the equation

c1Av+ 2| Vo] +tr B =0.
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Let’s consider w™ = ¢ 4 0 log((d + 82/8%)) in Ms; then

d;
wi=0——=+¢,

! d + 682
d;d; d;;
+_ idj ij y
w;; = 9(d+82)2+9d+82+(p”'
We therefore have
clAw++cz|Vw+|2+trB
0( 0) vaP 4+ (c1Ad +2¢2(Vd, Vo)) 6
=—0(c1 —c0)————— c c s
1—C2 d 1802 1 2 2 d152

+c1(Ap) + 2| Vo> +u B.
Now we choose 6 < ¢1/(2c»). Then using |Vd|? > % in Mg, we derive

B e
dd+8p C dve

Cl / 0 1 .
< (- C C Ms,
_< 45(1+5)+ )d—|—82+ n Ms;

ciAwT + | Vwt P +tr B < +c”

where C’ and C” are two positive constants depending on

|§0|c2(117[)’ A, |a|L00(1\71)a |b|L00(M)a IBlg(M)
and the geometric quantities of (M, g), independent of . Next we choose

C 0 }

< mln{l, m, W

then c; Aw™ + ¢ |Vwt|>+tr B < 0in M;.
Note that
{ whlom =@,
W (xemide=s) = ¢ +6 log(1/8).
Without loss of generality, we can assume 8 is small; then |u|-o(M) < Co and the
maximum principle imply # < w* in Ms. Consequently, for any xo € M,

u(x) —u(xo) _ wt(x) —wt(xp)
d(x,xo) — d(x, xo)

That is, 9,u|3p < 9, w™|3m, and our lemma follows. U
Combining Lemma 4.1, Lemma 4.4 and Lemma 4.5, we obtain this:

Proposition 4.6. Suppose B eT'", ia(x)+b(x) is nonnegative in M and 9,h(x, z)
is positive in M x R. Then for any C3(M) admissible solution u of (1-4), there is
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a constant Cy depending only on

Co, A, |(0|C2(M), |a|C1(/l7)’ |b|C1(M)’ MX{E%);CO]V/”C]’ |B|Cl(/\7)

and the geometric quantities of (M, g), such that |Vu| < Cy on M.

5. Estimates for the second derivative

As in Section 4, we begin by establishing the interior estimates.

Lemma 5.1. Let B € T'" and a(x) be positive on M. Letu € C*(B,) be an
admissible solution of (1-4) in a ball B, C M; there is a constant C depending only
on

ale2evn, ble2ovn, max |h|q2, 201 Blr2ony, A, Ul
lalc2my>  1Plc2 Mx[fco,Co]l lc2s 18le2nys |1Ble2any lulcr(s,)

such that supg, , |V2u| < C.
Proof. Since I'" C '}, we obtain
O0<trWlul= (nx—1)(Au) + (a(x) —|—nb(x))|Vu|2 +trB.

Consequently Au > —C. For obtaining the upper bound of Au, we consider the
auxiliary function
G(x) = ¢ () (Au+ Aax)|Vul’)

for some large constant A > 1, depending only on |a|p~, |b| = and A, to be chosen
later; here ¢(x) € C;°(B,) is a cutoff function as in Lemma 4.1.

Suppose G achieves a maximum at an interior point X € M. We take a normal
coordinate system (x', ..., x”) with respect to g such that W [u]; (%) is diagonal.
Without loss of generality, we may assume G(x) > 1 and x € B,. Then, at X, we
have

0=G; = (Au+ Aa|Vul*)§; + ¢ (i + Aaj|Vul* + 2 Aauuyy),
that is,
(5-1) Cupi = —Aai¢|Vul> = 2Aagupu; — (Au+ Aa|VulP)e;,

and

(5-2) 0> Gyj = ¢ (upij+ Aaij | Vul* +2Auy(@iug; +a;ug) +2Aa(ugiug +ugug;;))
+ (uui + Aa; | Vul* +2Aauu;)g;
+ (uyj + Aaj |Vul?> + 2Aauju;p) g + (Au+ Aa|Vu|2)§’,-j.

Recall that Q" = A, FH§ii — FiJ. Since F is positive definite in '™, one
obtains A(}_; FI)§" > QU > ¢o(>_, F'')8"/ > 0, where g9 = A — 1. Notice that
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the Ricci identity gives u;;; = u;j; + O(|Vu|) and uy;; = u;j; + O(IV?u| +|Vu)).
Then (5-2) implies
0> Q"G
= ¢ 0" (upij + Aaj \Vul? + 4 Aua;ugj +2Aaugug; + wiuij))
(5-3) +20Y (upy; + Aa; | Vul* + 2Aauju; )¢ + (Au+ Aa|Vul*) Q7 ¢
> 0 (uijn +2Mauug; 4 ujui) + 207wy
—CAC, F!Y(IV2ul + 1).
Using hy; + 2k u; + houy = FUWulijn + F7S Wlul;j W ulys, and the con-
cavity of F', we obtain
(5-4)  QYuiju = —2aFY (uipu jy + uiuji) — 263, FY(IV2ul? + ugue)
— CQZy FIDAV2ul + 1) + hu 4 2k u + houy.
On the other hand, (4-5) implies
(5-5) 2Aau;QYuij; > —CACY, FYY(IV?ul + 1) + 2Aahu; +2Aah,|Vul?.
Plugging (5-4) and (5-5) into (5-3), and employing (5-1) we have
0> 2Aa¢ Q7 ujuy; —2ag FY (uipu jy + wiu jir) +20% uyi ¢
—2b¢ (X", F!Y(IV?ul? + ugguk)
—CACY, F'DY(IV2ul +1) — CA(IV?u| + 1)
> 2¢(Aar — b)Y, FID|V2ul?> — 2ac (A + 1) Fluyu
—CACY, F'HY(V?ul+1) — CA(IV?ul + 1)
> 20 (coah —a —b) (Y, F')|V2u|?
— CACQY, FIDY(IV?ul +1) = CA(|V?ul + 1).

Since a is positive on M, we assume a(x) > & > 0. We now choose A >
max{1, 2(|a|r~ + |b|L=)/(g0€2)}, and multiply ¢ on both sides to produce

(5-6) 0> AY, F!)(e0e28V?ul? — C¢|V?ul — C) — CAL|V?ul +1).

It follows that (¢|V?u|)(¥) < C. Therefore supBr/zAu <C.
If T c I, then supg, , Au < C implies that supBr/2|V2u| < C. To get the
Hessian bounds of u in general, we simply consider the maximum of

V:V A Veu)?).
) e i (T Vo A0 (Ve

The calculation is similar. U
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We next derive a priori bounds for second derivatives of solutions to (1-4). The
method we use is similar to that of [Guan 2007; Guan 2008; Gursky et al. 2011].
The notation below is the same as in Section 4.

We use a barrier function

v(x) = p(gd* —d) in M;,
where p and g are positive constants. Let’s define a linear operator
(5-7) P@W) = Q7 +2F (a(@)uiyr; +b(x) (Vu, Vi) gi)).

Then
Pd = Q"d;; +2F" (au;d; +b (Vu, Vd) g;)),
and consequently
|Pd| < Cy >, F!' in M,

where Cy depends on A, |u|C1(A7), lal o IbILm(M) and the geometric quantities
of (M, g). On the other hand, we have in M

Pd* =20" (did;) +2dPd
>2e0(>"; F'HIVd|? —2dCy Y, F!
> (g0 —2Cy8) Y, F'',
where ¢g = A — 1 as before. After we choose
qg>2(1+Cs)/ep and & < min{eg/(4Cys), 1/(29)},

the function v satisfies

(5-8) Pv > plqeg—2C48) — Cy} Y, F' > p > F!,
and
(5-9) v<—3pd in M;.

Let xo be an arbitrary point on d M. Let r(x) = dist, (x, xo) to denote the distance
from x to xg with respect to the background metric. Let 25(xg) = B;s(xo) N M3,
where Bs(xo) = {x € M | r(x) < 8}. Since 8 is small, we assume 2 is smooth
in 5(xp). A similar calculation implies

(5-10) leo X FU<Pr? < @r+3e0) Y, F!' in Q5(x0).

Now we pick a local coordinates in M so that d M is the plane x, =0, and we let
{ey, e, })”/;} be the corresponding coordinate vector fields, where e, (x¢) denotes the
interior normal vector and e, (xo) the tangential direction. Fix some y and consider
the locally defined function ¢ = e, (u —¢), where u is a C3(M) admissible solution
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of (1-4). In order to derive the boundary estimates for second derivatives, we need
the following lemma.

Lemma 5.2. In the notation above, there exists a constant C, depending only on
C07 Cl? |a|C1(M)7 |b|C1(M)’ |h|C1(M><[—C0,C0]) and |(p|C3(M5)7 Such that

Ppl < CA+ Y, F.
Proof. Differentiating Equation (1-3) with respect to e, yields
Qijuijy + 2FY (au,-yuj + bululygij)
= —FY(ayuju; +b,|Vul*g;j + Bijy) +hou, +h,.
Exchanging derivatives implies
Ujjy = Uyij + (Rm * Vu),'jy.
Combining these calculations yields
PP = Qijuy,-j + 2Fij(auiuyj + buguyigij)
— QY ¢yi; — 2FY (aui@yj + burpygi;)
= —Fij(ayuiuj + by|Vu|2gij —+ Bijy) + hzuy —+ l’ly
— QY¢yij —2FY (au;p,; + burpgij) — QY (Rm % Vu);j,

Therefore
2ol <C(Y, F'+C. O

We are now ready to prove the boundary estimates for second derivatives.
Lemma 5.3. Let u € C3(M) be an admissible solution of (1-4). Then
IVZu|<C on oM,

where the constant C > 0 depends on

Co.  Ci. lalcigry  blergny  rleigaxi—co.cone 19lc3as  1Blein
and the geometric quantities of (M, g).

Proof. We require separate proofs for the different types V,V,u, V,V,u and
V,,V,,u of boundary second derivatives.
Let xo be an arbitrary point on 0 M. Using that u — ¢ = 0 on dM, we obtain

VyVy(u — @) (x0) = =V (u — ¢)I1(ey, ey) (x0),

where 1 < y,n <n — 1 and IT denotes the second fundamental form of 0 M. We
therefore have the estimates for the pure tangential second order derivatives.



SOME DIRICHLET PROBLEMS ARISING FROM CONFORMAL GEOMETRY 353

Combining (5-8), (5-10) and Lemma 5.2, we have for any positive constant
P(p—v+ur?) < (C—p+p@r+ieo) Y, F' +C.
Picking p large enough and p > u?, we get
9’(¢—v+,ur2) < —%pF(e)—l—C < 0.

Thus by the maximum principle, we conclude that the minimum of ¢ — v + ur?
occurs on the boundary of Qs(xp). It remains to check these boundary values.
There are two components of d€25(xp) to check. Firstly, since ¢ =0 and v =0 on
Qs (x0)NIM, we get g —v+pur? >0 on dQLs(xo)NIM and (¢ — v+ ur?)(xg) =0.
Since p is large, (5-9) implies ¢ —v+ur? > ¢+ (p/2)d+ur? >0 on 925 (xg) \ M.
It follows that the normal derivative of ¢ — v + ur? is nonnegative, and therefore
we conclude

Va Vo (x0) > Vi (Vyp + v — ur?)(xo)
=V, Vypo(xo) — p > —C.

However, using Lemma 5.2 again, it is clear that the same argument applies to —¢,
and one deduces the mixed second derivative estimates

IV, V,ul < C.

Once we bound V, V,u and V, V,u, to estimate the double normal second de-
rivative V,,V,,u we only need to bound Au. Note that W[u];; € Ffr, that is,

(nx — D)(Au) + (a(x) +nbx))|Vu|> +tr B > 0.
Consequently Au is bounded from below and we have to establish an upper bound
Upy, <C onodM.

Without loss of generality, one can assume u,, > 0 on d M (otherwise we are done).
Orthogonally decompose the matrix W at xo € dM in terms of e, and e,. Using
the known bounds, we find

Wulij(xo) = (AAugi; — u;j +auiuj +b|Vu|*g;; + Bij)(xo)

- YRT S 0
- 0 (A = Duyy

> (&outnn(x0) — C)(Sij,

> (x0) — Cé;j
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where C depends on |u|C1(M), |a|C0(A7)’ |b|C0(A7)’ |B|C0(/\7)’ |V, Vyul and |V, V,ul.
It is clear that
A

max
M x[—ulco 7, 14100 i7)]
> FY (xo) W[ulij (x0)
> (gotnn(x0) — C) Y, F'(x0)
> (€ounn(x0) — C)F(e).
Thus we obtain the upper bound as desired. (]

Combining Lemma 5.1 and Lemma 5.3, we have the global estimates for the
second derivative.

Proposition 5.4. Suppose B € Tt and a(x) is positive on M. Then for any C*(M)
admissible solution u of (1-4), there is a constant Cy depending only on Cy, Cy, A,

|a|c2(/l71)’_|b|c2(1171)’ |7l 2 (M x[—co.Col)» |§0|C3(1t71)’ |B|C2(1t71) and the geometric quanti-
ties of (M, g) such that

|V2u| <C, onM.
6. Proof of Theorem 1.1

The proof of Theorem 1.1 is standard. We only sketch it here. For ¢ € [0, 1], we
consider the equations

F(V: u+B)=h,
(%) t
ulogy =¢',
where
t__ l_t r__ _ 2u t__
B _tB-l——F(e)g, ==t +th(x,u), ¢ =tg.

For + = 0, the admissible solution is u = 0 on M; for t = 1, it is our desired
Equation (1-4). It is direct to check that

e« Blel™.

e h'>00nM xR, 3,4 (x,z) >00n M x R, lim,_, ;o h'(x,z) = +o00 and
lim, ., oo h'(x,z) > 0in M x R.

o There exists a uniform constant C > 0, independent of ¢ € [0, 1], such that
|BI|C2(M) < C, |ht|C2(MX[—C,C]) < C and |¢)t|c3(ﬁ) < C.

Applying our a priori estimates Proposition 3.1, 4.6 and 5.4 to (x;) and noting
that F is concave, we obtain, by Evans—Krylov estimates,

|ut|c2,a(M) S C f0r all t S [0, 1]
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Combining this with Corollary 2.2, we see by standard degree theory that (x;) is
solvable for = 1. Uniqueness follows by Lemma 4.3.

7. Proof of Theorem 1.4

To solve the Dirichlet problem for large boundary conditions, we need to control
the behavior of the solution near the boundary. We can do this by constructing
barrier functions for some suitable equation.

Recall that F is concave, then

Fk)<w) ki inT*
for some uniform constant o > 0. For any C?(M) admissible function  satisfying
F(W[ul) = f(x)e* in M,

u is a subsolution of the equation

(7-1) biAu+by|Vul|* + by = *,
where
w(ni—1) w(lalr~ +n|b| o) oltr B~
by=——F, b= : 3=
ming; f ming; f ming; f

Before constructing a local supsolution of (7-1), we give some notation. Take a
point yo € M4 near the boundary d M. Suppose xo € d M is the point that satisfies
d(yo) = distg(x0, yo). Consider a geodesic running from xo, passing through yo,
and going out a small distance to a point zo with distg(zo, x0) = 1. We use r(x)
to denote the distance from z to x with respect to the background metric g. We
assume that § and n are small enough that r(x) = (distg (x, 20))? is smooth in the
ball B, (zo). We may choose normal coordinates {e;}. Then we have

Ar?(zo) = 2n.
We now assume
1<Ar’<3n in B, (z0).

Consider the following auxiliary function defined in B, (z):

’72_r.2+6

w(x) =— log(n2 — r2) + 6 log +log2 + % log(nby + by) + logn,

where 6 and € are constants to be chosen later. It is easy to check that

. 2rr; 2rr;

W = —
T Ty e
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and
2.2 2.2
;ijr 41‘21’,'?‘]' ;,'jr 4r2r,'rj

an—r2 (,72_,,2)2_ n2—r2+e_ (2 —r2+e)2

Consequently, using [Vr|=1and 1 < Ar? < 3n in B,(z0), we derive

b1 AW + by |VW|> + b3
Ar? 4(by + by)r? b6 Ar? 4(b; — by0)0r?

=) _
YT TR T 224 e (P —r21e)?
8b,0r?
- b
= —rite)
- 3nbin® + (3by + 4by)r? bl A — by0)0r?
= (7% — r2)2 —rite (P—riter

Now choosing 6 < b/(2by), n < «/b10/(2b3), € < n?, and using r < 1, one
obtains
4(nby + by)n? <20

— —2
blAw+b2|Vw| +b3§ (7)2—1’2)2

Since wlyp, (z) = +00, maximum principle implies

hence

(7-2)  u(yo) < —logd(yo)+ 6 log

2nd +€
% +10g2+ L log(nby +b2).

Now we complete the proof as follows.

Proof of Theorem 2. We use the notation of Section 4. The argument here is similar
to that in [Guan 2008]. Let’s consider the locally defined auxiliary functions

més? .
v’ = ylog md+s: n Ms,

where y is some small positive constant to be chosen later and m =1, 2,3, .... It
is direct to check that

v o = ylogm,
(7-3) e &
ylog 56 < v} |la)=s) < ylogs.
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By a direct computation, we obtain

A+ by)ym2 2 01)/2m2 ym2
S VA P+ s didy — ————did
md o0z | A8+ i T Gy s i

ym
m(lAd&] dij) + Bij

- (80 — (|a|Loo(/17) + |b|Loo(/\7))V)V
- (md + 8%)2

W)l =

m

|Vd|*gi
ym

/ 1
Tmd s ST s

357

where C’ and C” are some large constants depending only on A, |Bl,(j7) and the

geometric quantities of (M, g), independent of §. Choosing

y < %0
2(|a|Loo(M) + |b|L°°(M))

and 8§min{1 £0 soy},

T 16C’T 64C”

and observing that |Vd| > 1/2 in M;, we derive

— (g

Eom ym
Wilvhlij > < - /)

4(md + %) md + 625"

2
eoym
> mgu‘ —C"gij

80)/m2
= 16(nd + 82)251"

Consequently, if y < min{l, 80/(|a|Loo(M) + bl j7))} and 8 is small enough,

then
’] goym’
Unl) Z g ind 1 692

7 = 2 expu /)

v
> fx)e*”

F(W[ F(e)

in Ms. For any integer m > 1, let u,, € C°°(M) be the admissible solution of the

Dirichlet problem
{ F(Wul) = f(x)e* in M,
u=ylogm ondM,

where y is the constant has been fixed. Then (7-3), (7-4) and Lemma 4.3 imply

més?

(7-5) Uy = l)r);l = ylog m
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Recalling (7-2), we obtain for any m > 1
(7-6) uy < —logd+C.

Since u,, < u;,+1 for m > 1, and the u,, have the boundary control (7-5) and (7-6),
the limit

u(x):= lim wu,(x)
m—0o0
exists for all x € M and satisfies
—C —vylogd <u(x) <—logd+C

near oM.
For any compact subset K C M, by the boundary control above and the a priori
estimates of Proposition 3.1, Lemma 4.1 and Lemma 5.1, we obtain

[umlc2exy < C,

where 0 < o < 1, C = C(K) is independent of m. Thus u is a solution of (1-5). [J
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POLYCYCLIC QUASICONFORMAL
MAPPING CLASS SUBGROUPS

KATSUHIKO MATSUZAKI

For a subgroup of the quasiconformal mapping class group of a Riemann
surface in general, we give an algebraic condition which guarantees its dis-
creteness in the compact-open topology. Then we apply this result to its
action on the Teichmiiller space.

1. Introduction

We consider a Riemann surface R in general, not necessarily topologically finite,
and a subgroup G consisting of quasiconformal mapping classes of R. Such a
group usually appears as acting on the infinite dimensional Teichmiiller space
of R and in particular discreteness of its orbit is often discussed. In this case,
the discreteness of G is understood through the action on the Teichmiiller space.
In this paper however, we first start from a more basic viewpoint on G as surface
homeomorphisms and then look into its action on the Teichmiiller space.

Throughout this introduction, we assume that a Riemann surface R has no ideal
boundary at infinity d R for the sake of simplicity. The quasiconformal mapping
class group MCG(R) of R is the group of all quasiconformal automorphisms g of R
modulo homotopy equivalence. We introduce a topology for this group induced
by the compact-open topology of homeomorphisms of R. Then a subgroup G
of MCG(R) is defined to be discrete if it is discrete in this topology. Our main
theorem refers to a certain algebraic condition under which G is always discrete.
Here we say that a group G is polycyclic if G is solvable and if every subgroup
of G is finitely generated.

Theorem 2.4. If a subgroup G of MCG(R) is polycyclic, then G is discrete.

This result is sharp in a sense that there is a counterexample for either a finitely
generated solvable group or an infinitely generated abelian group.
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In the first of the application of this theorem, we deal with stationary mapping
class subgroups and consider their action on Teichmiiller spaces. The quasiconfor-
mal mapping class group MCG(R) acts on the Teichmiiller space 7 (R) of a Rie-
mann surface R biholomorphically and isometrically. A subgroup G C MCG(R)
is called stationary if there exists a compact subsurface V of R such that every
representative g of every mapping class [g] € G satisfies g(V) NV # &.

A basic nature of stationary subgroups in connection with their discreteness
in the compact-open topology and discontinuity of the action on the Teichmiiller
space is that, if G C MCG(R) is stationary and discrete, then G acts discontinu-
ously on T (R). Then we have the following consequence from the main theorem.
Recall that we assume d R = & until the end of this section.

Corollary 4.2. If a polycyclic subgroup G of MCG(R) is stationary, then G acts
discontinuously on T (R).

We expect that this result should be valid for every finitely generated stationary
subgroup G C MCG(R).

In the second application of Theorem 2.4, we deal with asymptotically confor-
mal mapping class subgroups. We say that a quasiconformal homeomorphism of a
Riemann surface R is asymptotically conformal if its complex dilatation vanishes
at infinity of R. We say that a subgroup G C MCG(R) is asymptotically conformal
if there exists some p € T (R) such that every element of G can be realized as an
asymptotically conformal automorphism of the Riemann surface R, corresponding
to p. We denote by MCG,(R) the subgroup of MCG(R) having this property for
p e T(R).

Theorem 5.1. If an asymptotically conformal subgroup G of MCG,(R) for p €
T (R) is polycyclic, then the orbit G(p) is a discrete set in T (R).

One may ask a question about how the algebraic assumption on G can be relaxed
for this statement.

2. Discreteness of mapping class subgroups

We always assume that a Riemann surface R is hyperbolic, that is, R is represented
by a Fuchsian group F acting on the unit disk [ and is endowed with the hyperbolic
metric. The quasiconformal mapping class group MCG(R) for R is the group
of all homotopy classes [g] of quasiconformal automorphisms g of R. Here the
homotopy is considered to be relative to the ideal boundary at infinity R of R,
where 0R = (0D — A(F))/F for the limit set A(F) of F. This means that, when
dR # @, two quasiconformal automorphisms g and g; are regarded as homotopic
if there is a homotopy @ : R x [0, 1] — R between go = ®(-,0) and g; = O(-, 1)
such that its extension to each x € d R is constant over [0, 1].
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The compact-open topology on the space of all homeomorphic automorphisms
of R induces a topology on MCG(R). More precisely, we say that a sequence of
mapping classes [g,] € MCG(R) converges to a mapping class [g] € MCG(R) in
the compact-open topology if we can choose representatives g, € [g,] and g € [g]
satisfying that g, converges to g locally uniformly on R. When R has the ideal
boundary at infinity d R, we further require that the extensions g, of the quasi-
conformal automorphisms g, to dR converge to the extension g of g in such a
way that g, is identical with g on a compact subset W,, C dR, where {W,}>,
is some compact exhaustion of dR, that is, an increasing sequence of compact
subsets of d R satisfying that the closure of the union of all W), is d R. We call this
topology on MCG(R) the compact-open topology relative to the boundary. If [g,]
converges to [g] in the compact-open topology relative to the boundary, then there
are quasisymmetric automorphisms g, and g of the unit circle dD) corresponding
to [g,] and [g] respectively such that the sequence g, converges uniformly to g.

Definition. We say that a subgroup G of MCG(R) is discrete if it is a discrete set in
MCG(R) with respect to the compact-open topology relative to the boundary. The
discreteness is equivalent to the condition that, if a sequence of mapping classes
{[gx1};2; C MCG(R) converges to [id], then [g,] = [id] for all sufficiently large n.

Concerning the discreteness of the full mapping class group MCG(R), we have
a simple characterization.

Proposition 2.1. The quasiconformal mapping class group MCG(R) is discrete if
and only if R is analytically finite, that is, R is a compact Riemann surface from
which at most finitely many points are removed.

Proof. Assume that R is analytically finite. In this case, there are a finite number
of simple closed geodesics {ci}f.‘zl such that, if [g] € MCG(R) satisfies that g(c;)
is freely homotopic to ¢; for every i, then [g] = [id]. If a sequence of mapping
classes {[g,]}; 2, converges to [id], then g, (c;) is freely homotopic to ¢; for every i
and for all sufficiently large n. This implies that MCG(R) is discrete.

Conversely, assume that R is not analytically finite. If R is topologically finite,
that is, the fundamental group 7;(R) of R is finitely generated, then R should
have the ideal boundary at infinity and clearly MCG(R) is not discrete in this
case. If R is not topologically finite, then there is an infinite sequence of simple
closed geodesics {c,};- | diverging to the infinity of R, in other words, escaping
from any compact subset of R. Let [t,] be the mapping class caused by the Dehn
twist along c,. Then [z,] # [id] and {[7,]}72; converges to [id]. This implies that
MCG(R) is not discrete. |

We will consider the discreteness of countable subgroups of MCG(R). Note that
MCG(R) is uncountable in many cases when R is analytically infinite [Matsuzaki
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2005]. An uncountable subgroup G of MCG(R) is not discrete, as the following
proposition asserts.

Proposition 2.2. Assume that R has no ideal boundary at infinity OR. If a sub-
group G C MCG(R) is uncountable, then G is not discrete.

Proof. Let {¢;}72, be the family of (free homotopy classes of) all simple closed
geodesics on R. We first consider the images of ¢; under G. Since G is uncountable
whereas {c;} is countable, there are uncountably many elements of G that map ¢
to simple closed curves freely homotopic to each other. Then, by composing the
inverse of one of these elements, we have uncountably many elements of G that
keep c; in its free homotopy class. Next we consider the images of ¢, under this
uncountable subset of G and obtain uncountably many elements of G that keep
c1 and ¢ in their free homotopy classes. By continuing this process and then by

taking the diagonal, we can choose a sequence {[g,]}°2, of elements in G such
that g, (c;) is freely homotopic to ¢; for all i = 1,2, ..., n and for each n. This
implies that {[g, ]} converges to [id]. |

In this section, we investigate an algebraic condition on a countable subgroup G
of MCG(R) under which G is always discrete. Our fundamental result is the fol-
lowing. The proof will be given in the next section.

Theorem 2.3. If G C MCG(R) is a finitely generated abelian group, then G is
discrete.

Note that both assumptions that G is finitely generated and that G is abelian are
necessary for the above theorem as examples below show. However, we cannot
have the converse statement to the theorem. In fact, for any countable group G,
there exists a discrete subgroup of MCG(R) for some Riemann surface R that is
isomorphic to G. Indeed, we can construct R so that its conformal automorphism
group, which is always discrete unless 1 (R) is abelian, contains such a subgroup.

Examples. (1) First we give an indiscrete G C MCG(R) that is abelian but not
finitely generated. Let R be a Riemann surface with an infinite family of mutually
disjoint simple closed geodesics {c,}> ; and G a subgroup of MCG(R) generated
by all the mapping classes [7,] caused by the Dehn twist along ¢, for each integer
n > 1. Since [t,] converges to [id], G is not discrete though G is abelian.

(2) Next we give an indiscrete G C MCG(R) that is finitely generated but not
abelian. Assume that there are a simple closed geodesic ¢y on R and a mapping
class [g] € MCG(R) such that the images {g" (co)}necz of co under the iteration of
a representative g € [g] are mutually disjoint. Define ¢, to be the simple closed
geodesic freely homotopic to g"(cg) and [z,] to be the mapping classes caused
by the Dehn twist along ¢,. Let G be a subgroup of MCG(R) generated by two
elements [g] and [1g]. Since [g]"[to] = [7,][g]" for every integer n € Z, we see that
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G contains the subgroup G’ generated by all such [z, ]. Hence G is not discrete as
Example (1) shows.

In the second example above, the group G is solvable since the commutator
subgroup [G, G] is contained in the abelian subgroup G’. Although G itself is
finitely generated, G’ is not, so G is not discrete. Hence we consider the following
stronger condition than solvability which requires all its subgroups to be finitely
generated.

Definition. We say that a group G is polycyclic if G is solvable and if every sub-
group of G is finitely generated.

See [Wolf 1968] for other equivalent conditions for G to be polycyclic. This
name comes from the fact that G is polycyclic if and only if G has a finite normal
chain of subgroups G = Go> G > ---> G, = {1} such that each quotient group
Gi—1/G; (i =1,...,m) is cyclic. We can say that G is polycyclic when G is
obtained in finitely many simple steps from finitely generated abelian groups.

Theorem 2.4. If G C MCG(R) is a polycyclic group, then G is discrete.

This extension of Theorem 2.3 is obtained by an inductive argument which is
easily seen from the following assertion.

Lemma 2.5. Assume that every subgroup of G C MCG(R) is finitely generated. If
G is not discrete, then neither is the commutator subgroup |G, G].

Proof. Since G is not discrete, there is a sequence {[g,]},~, in G that converges to
[id] as n — oo. Then we see that for every ng > 1, there exist m, n > ng such that
[g] and [g,,] do not commute. Indeed, if not, there is ng such that [g,,] and [g,]
commute for any m, n > ng. Then a subgroup G’ of G generated by {[g,1}n>n, IS
abelian and G’ is not discrete. By assumption, G’ is finitely generated. However,
this contradicts Theorem 2.3.

Fix some ng > 1. We choose m, n1 > ng such that [/11] :=[[gm, ], [gr,]]is not the
identity [id]. Then we choose m2, ny > max{m, n1} such that [h2] :=1[[gm,], [8n,]]
is not the identity. Inductively, for each i > 1, we choose m;, n; > max{m;_1, n;_}
such that [4;] := [[gm,], [gn,]] is not the identity. Then every [/;] belongs to the
commutator subgroup [G, G] of G and [A;] converges to [id] as i — oo. This
implies that [G, G] is not discrete. O

3. Restraint of mapping class groups

In this section, we will prove Theorem 2.3. The proof uses a certain property of
mapping class groups, not necessarily satisfied for abstract groups in general. We
first explain this situation by the following example.
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Example. Let G, be the infinite symmetric group acting on a countable set X =
{1,2, ...} as permutations. We consider an element g = (1)(23)(456) - - - of G
which gives a cyclic permutation on mutually disjoint subsets of n points in X
where 7 runs over all positive integers. Then we see that g"' converges to id in the
compact-open topology with respect to the discrete topology on X. In particular,
the cyclic subgroup (g) is not discrete.

Let X = {c¢;}72, be the family of (free homotopy classes of) all simple closed
geodesics on a Riemann surface R. The quasiconformal mapping class group
MCG(R) acts faithfully on the countable set X by the correspondence of the free
homotopy class g(c) to [g] - ¢ for any [g] € MCG(R) and for any ¢ € X. In this
way, we can represent MCG(R) as a subgroup of G.,. As the above example
shows, an arbitrary subgroup of G, cannot have the required property which we
want to prove in Theorem 2.3. The nature in which MCG(R) C G, originates
from R gives a certain restriction on the action of MCG(R) and we must use this
constraint in order to prove our theorem. The following lemma can be regarded as
one of such properties of MCG(R).

Lemma 3.1. For every element [g] € MCG(R) of infinite order, there exists ei-
ther a compact subsurface V in R or a compact subset V' in an arbitrarily given
compact exhaustion of the ideal boundary at infinity R such that either the re-
striction g"|y is homotopic to id|y on R or the extension g" is the identity on V'
for no positive integer n € N.

Proof. Suppose to the contrary that there is no such compact subsurface V in R
nor compact subset V' in the compact exhaustion of dR. Then, for any compact
subsurface V; C R, there is nj € N such that g"'|y, is homotopic toid|y, on R. Also,
for any compact subset V| in the compact exhaustion of d R, there is n| € N such
that "1 is the identity on V. Set h = g"'™1. Since h is not homotopic to the identity
on R relative to d R, there is either some compact subsurface V, C R including V;
such that &|y, is not homotopic to id|y, on R or some compact subset V, in the
compact exhaustion of dR including V| such that h is not the identity on V. We
assume that the first case occurs. The argument for the second case is similar.
For that compact subsurface V5, there is ny € N such that g"*?|y, is homotopic
to id|y, on R. We may assume that n, is a proper multiple of nn/, that is,
ny =knn) for some integer k > 1. Then |y, ~id|y,, h|y, #id|y, and h* )y, ~id]v,,
where ~ means that they are homotopic to each other on R. However, this is
impossible, as we see in the following. Represent the Riemann surface R by a
Fuchsian group F acting on the unit disk D) and take a subgroup F; of F corre-
sponding to the subsurface V|. Choose a quasisymmetric automorphism h of 9D
corresponding to & so that / is the identity on the limit set A (F;) C 3D of F. Also,
take a subgroup F, of F corresponding to the subsurface V, which contains Fj.
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Then the quasisymmetric automorphism # is not the identity on the limit set A (F»)
containing A (F}). This implies that there is a point x € A(F,) — A(F}) that is
moved by /. Since the movement of x is towards one direction in some interval
contained in D — A (F1), it cannot return to the original place under the iteration
of h. Thus h* (x) # x, which violates the condition that h¥| v, ~id|y,. O

Although the following fact is not special for mapping class groups, the property
of discreteness is shared with a subgroup of finite index as in usual arguments. We
also use this fact in the proof of Theorem 2.3.

Proposition 3.2. Let G’ be a subgroup of G C MCG(R) of finite index. If G’ is
discrete, then so is G.

Proof. If G is not discrete, there is a sequence of distinct elements [g,] of G that
converges to [id]. Since the index of G’ in G is finite, we may assume that the [g,]
are all in the same coset, say, G'[h] for some [h] € G. Then [g/] = [ga]- [h]~!
belong to G’ and converge to [h]~!. This contradicts the assumption that G’ is
discrete. O

Now we are ready to prove our fundamental result.

Proof of Theorem 2.3. By Proposition 3.2, we may assume that G is isomorphic
to a free abelian group Z" of rank m > 1. We will prove the statement of the
theorem by induction with respect to m. First, we show that the statement is valid
when m = 1. Assume that G = Z is not discrete, that is, there is a sequence of
elements in G converging to [id]. When R has the ideal boundary at infinity dR,
some compact exhaustion of d R is associated to this converging sequence. For a
generator [g] € MCG(R) of G, Lemma 3.1 gives either a compact subsurface V
of R or a compact subset V' in the exhaustion of R as in its statement. However,
since G is not discrete, there is some n € N such that g"|y is homotopic to id|y
on R and the extension g" of g" to dR is the identity on V’. This contradicts the
choice of V and V'.

We assume that the statement is true for any subgroup of MCG(R) isomorphic
to Z/ for every integer j with 1 < j <m — 1. Let G be a subgroup of MCG(R)
isomorphic to Z™; we prove that G is discrete. Suppose to the contrary that G
is not discrete. Then we have a sequence [g,] € G converging to [id] as well
as a compact exhaustion of dR associated with this sequence. We will choose
a subsequence of [g,] so that any m elements in the subsequence generates a
subgroup isomorphic to Z". To this end, first observe that all the elements [g,]
in the convergent sequence cannot be contained in a finite union of subgroups
of G that are isomorphic to Z/ with 1 < j <m — 1, by the induction assumption.
Then choose a subsequence [g,(;)] in the following way. The first m — 1 entries
[8n(1)])s - - ., [8nem—1)] are chosen so that they are linearly independent over Z. Sup-
pose that we have already chosen [ entries G; = {[g, )], ..., [gny]} fOr { >m —1.
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Then take the (/4-1)-st entry [g,¢+1)] so that any m — 1 elements of G, together
with [g,(+1)] are linearly independent over Z, in other words, [g,¢+1)] belongs to
no maximal proper subgroup (= Z"~!) of G containing m — 1 elements of G;. The
reason why we can choose such [g,+1)] s that, if not, all [g, ] must be contained in
the union of the finite number of subgroups of G determined by any m — 1 elements
of G,. By this construction, it is clear that any m elements in the subsequence [g, ;)]
generate a subgroup isomorphic to Z™.

Fix an arbitrary nontrivial element [gg] € G. By Lemma 3.1, we take either a
compact subsurface V of R such that gg|y 7 id|y or a compact subset V'’ in the
exhaustion of 9 R such that gj|y- # id|y- for all n € N. We only consider the first
case. The second case is similar. Since we are assuming that [g,()] converges
to [id], there is some i such that g,)|v ~id|y for every i > iy. Take m arbitrary
elements [g,()] with i > iy and rename them as [g;] (i =1, ..., m). Since they
generate a subgroup of G isomorphic to Z™, a linear combination of [g;] (i =
1,...,m) over Z yields some multiple of any element of G. This implies that
[go]" for some n € N is represented by [gl]kl e [gm]k'" for some k; € Z. However,
this forces g |y ~ id|y, which contradicts the choice of V. U

4. Discontinuity of the action on the Teichmiiller space

We apply our theorem to the action of mapping class subgroups on Teichmiil-
ler spaces. For a Riemann surface R, the Teichmiiller space T (R) is defined to
be the set of all equivalence classes [ f] of quasiconformal homeomorphisms f
of R. Here we say that two quasiconformal homeomorphisms f; and f, of R
are equivalent if there exists a conformal homeomorphism 4 : fi(R) — f2(R)
such that fz_l o h o f1 is homotopic to the identity on R, where the homotopy is
considered to be relative to the ideal boundary at infinity 0 R. The Teichmiiller
distance between two points [ f1] and [ f>] in T (R) is defined by d7 ([ f1], [f2]) =
(1/2)log K(f), where f is an extremal quasiconformal homeomorphism in the
sense that its maximal dilatation K ( f) is minimal in the homotopy class of f,o fl_l.
Then dr is a complete distance on 7 (R). The Teichmiiller space 7 (R) can be
embedded in the complex Banach space of all bounded holomorphic quadratic
differentials on R’, where R’ is the complex conjugate of R. In this way, T (R) is
endowed with a complex structure. Consult [Lehto 1987; Nag 1988; Gardiner and
Lakic 2000] for the theory of Teichmiiller spaces.

Each element [g] € MCG(R) acts on T (R) from the left as [g]-[f]=[f og_l]
for [f] € T(R). It is evident from the definition that MCG(R) acts on T (R) iso-
metrically with respect to the Teichmiiller distance. It also acts biholomorphically
on T (R). Except for few cases where the dimension of 7 (R) is lower, the action
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of MCG(R) on T (R) is faithful. Then MCG(R) can be represented in the group
of all isometric biholomorphic automorphisms of 7 (R).

We say that a subgroup G C MCG(R) acts at p = [ f] € T (R) discontinuously
if there exists a neighborhood U of p such that the number of the elements [g] € G
satisfying [g](U) N U # & is finite. We denote the orbit of p under G by G(p)
and the stabilizer subgroup of G at p by Stabg(p). Then G acts discontinuously
at p if and only if G(p) is a discrete set and Stabg(p) is a finite group. If G
acts discontinuously at every point p in 7'(R), then we say that G acts discontinu-
ously on 7 (R). When R is analytically finite, MCG(R) itself acts discontinuously
on T (R). However, for a Riemann surface in general, this is not always true. See
[Fujikawa 2004] regarding the discontinuity of the action of mapping class groups
on Teichmiiller spaces.

We consider mapping class subgroups by imposing a stationary property on
them in the following sense.

Definition. We call a subgroup G of MCG(R) stationary if there exists a compact
subsurface V of R such that every representative g of every mapping class [g] € G
satisfies g(V)NV # &.

The stationary property puts a certain normalization on a family of quasicon-
formal automorphisms of R. Under this condition, the discreteness of G in the
compact-open topology affects the behavior of its orbit on the Teichmiiller space.

Lemma 4.1. Let G be a stationary subgroup of MCG(R) for a Riemann surface R
with R = &. If G is discrete then the orbit G(p) for any p € T (R) diverges to the
infinity of T (R), and in particular, G acts discontinuously on T (R).

Proof. Compactness of a family of normalized quasiconformal homeomorphisms
with uniformly bounded dilatations yields that if there is a sequence [g,] in a sta-
tionary subgroup G of MCG(R) such that [g,](p) is bounded in T (R), then a
subsequence of some representatives g, € [g,] converges to some quasiconformal
automorphism of R locally uniformly. However, if G is discrete in the compact-
open topology, then there is no such sequence. This implies that [g,](p) is bounded
in T (R) for no sequence [g,] € G, that is, the orbit G(p) diverges to the infinity
of T(R). O

Combining Theorem 2.4 and Lemma 4.1 immediately yields the following.

Corollary 4.2. Let G be a stationary subgroup of MCG(R) for a Riemann sur-
face R with OR = @. If G is polycyclic, then G acts discontinuously on T (R).

We expect that this corollary is valid for every finitely generated stationary sub-
group G of MCG(R).

Conjecture. If a finitely generated subgroup G C MCG(R) is stationary, then G
is discrete.
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If R is analytically finite, then MCG(R) is finitely generated and stationary.
In this case, MCG(R) is discrete and acts on 7 (R) discontinuously. The above
conjecture can be regarded as a generalization of this property for mapping class
groups of analytically finite Riemann surfaces.

There is an example of an infinitely generated (countable) stationary subgroup G
such that G does not act discontinuously on 7'(R). This is obtained similarly to
Example (1) in Section 2 but we must further assume that the lengths of the simple
closed geodesics ¢, in the example tend to zero as n — oo.

Remark. If we assume a bounded geometry condition on the hyperbolic metric
on R, then we do not have to impose any algebraic condition on a stationary sub-
group G for the discontinuity of its action on 7 (R). This result was proved in
[Fujikawa 2004; Fujikawa et al. 2004]. See also these papers for the definition of
the bounded geometry condition, to which we add 0R = @.

5. Discreteness of the orbit on a fiber over the asymptotic Teichmiiller space

In this section, we impose a certain analytic condition on a subgroup of the quasi-
conformal mapping class group and show the discreteness of its orbit in the Teich-
miiller space. Our condition also generalizes certain properties of the mapping
class group of an analytically finite Riemann surface.

A quasiconformal homeomorphism f of a Riemann surface R is called asymp-
totically conformal if, for every ¢ > 0, there exists a compact subsurface V of R
such that the maximal dilatation of f restricted to R — V is less than 1 + ¢. The
asymptotic Teichmiiller space AT (R) of R is defined by replacing the words “con-
formal automorphisms” with “asymptotically conformal automorphisms” in the
definition of the Teichmiiller space T(R). Since a conformal automorphism is
asymptotically conformal, there is a projection « : T (R) — AT (R). We denote the
fiber of « containing p € T(R) by T),, thatis, T, = oz_l(oz(p)). Consult [Earle
et al. 2000; 2002; 2004; Gardiner and Lakic 2000] for the theory of asymptotic
Teichmiiller spaces.

The quasiconformal mapping class group MCG(R) acts on T (R) preserving the
fiber structure of «. Hence it acts on AT(R). We define MCG , (R) to be the sub-
group of MCG(R) consisting of all elements keeping the fiber 7), invariant. Every
element of MCG,(R) can be realized as an asymptotically conformal automor-
phism of the Riemann surface R, corresponding to p. We say that a subgroup G
of MCG(R) is asymptotically conformal if G is a subgroup of MCG, (R) for some
p € T(R). When R is analytically finite, AT(R) consists of a single point and
MCG,(R) coincides with the full MCG(R) for every p € T(R).

We will show the following theorem concerning the discreteness of the orbit of
an asymptotically conformal subgroup.
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Theorem 5.1. For a Riemann surface R with dR = &, if an asymptotically con-
formal subgroup G of MCG,(R) is polycyclic, then the orbit G(p) is a discrete set
in T(R).

We first prove this theorem in the case that G is a finitely generated abelian
group. Before the proof, we give the definition of an escaping sequence of mapping
classes. A sequence {[g,]},2, of mapping classes in MCG(R) is stationary if
there exists a compact subsurface V of R such that every representative g, of
each mapping class [g,] satisfies g,(V) NV # &. If a subgroup G of MCG(R) is
stationary in the previous sense, then every sequence in G is stationary in this sense.
On the contrary, a sequence {[g,]}7, is called escaping if, for every compact
subsurface V of R, there exists some representative g,, of each mapping class [g;]
such that {g,(V)} diverges to the infinity of R (that is, escapes from every compact
subset of R) as n — oco. Remark that a sequence {[g,]} C MCG(R) can be neither
stationary nor escaping, but we can always choose a subsequence either stationary
or escaping.

The following lemma is crucial for considering an escaping sequence in an
asymptotically conformal mapping class group. The proof has been given in [Mat-
suzaki 2007; 2010, Theorem 5.6].

Lemma 5.2. Assume that the fundamental group m1(R) of R is noncyclic. Let G
be an abelian subgroup of MCG,(R) having an escaping sequence [g,] such that
[x1(p) = p asn — oo. Then [g](p) = p for every [g] € G.

Then the following inductive step gives the full statement of Theorem 5.1 as we
have done in Section 2.

Lemma 5.3. Assume that 0 R = & and every subgroup of G C MCG, (R) is finitely
generated. If the orbit G(p) is not a discrete set, then neither is the orbit G1(p) of
the commutator subgroup G| =[G, G].

Proof of Theorem 5.1. Let G be a finitely generated abelian subgroup of MCG, (R).
If G is stationary, then Corollary 4.2 gives that G acts discontinuously on 7T (R),
and in particular, the orbit G(p) is a discrete set in 7'(R). This is also true for
a stationary sequence in G. If G contains an escaping sequence {[g,]} such that
[gn](p) — p as n — oo, then Lemma 5.2 implies that G(p) = {p} is a discrete
set. Hence, if G is a finitely generated abelian subgroup, then the statement of the
theorem is valid. For the general case that G is polycyclic, we apply Lemma 5.3
to obtain the statement. (I

Proof of Lemma 5.3. If G(p) is not a discrete set, then we find a sequence
{[g,1};2, C G such that [g,](p) # p converges to p as n — oo. Then we can
apply the same arguments as in the proof of Lemma 2.5. Namely, for every ng > 1,
there exist m,n > ng such that [g,,] and [g,] do not commute. Indeed, if not,
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there is ng such that [g,,] and [g,] commute for any m, n > ngy. Then the finitely
generated subgroup G’ of G generated by {[g,1},>n, is abelian and G’(p) is not a
discrete set. However, this contradicts Theorem 5.1 in the finitely generated abelian
case. Note that this case has been proved without Lemma 5.3.

Fix some ng > 1. Choose my, ny > ng such that [21] := [[gm,], [gn,]] # [id].
Then choose my, ny > max{my, n} such that [hs] := [[gm,], [gn,]] # [id]. Using
induction, for each i > 1, choose m;, n; > max{m;_i,n;_1} such that [h;] :=
[[gm,], [gn,]] # [id]. Then every [4;] belongs to the commutator subgroup [G, G]
of G. Note that all [/;] are not necessarily distinct. We see that [h;](p) — p as
i — 00. Indeed,

d([hil(p), p) <2d([gm;1(p), p) +2d([gn;](P), p) — O

as i — oo. If [h;](p) # p for infinitely many i, then we are done by passing to a
subsequence. Hence we have only to consider the case that all but finitely many
[A;] # [id] belong to the stabilizer subgroup H = Stabg(p) of G for p, and in
particular the case that H is not trivial.

We may assume that p is the base point of the Teichmiiller space 7' (R). Then
there is a conformal automorphism group of R identified with H. Let Fix(H) be
the fixed point locus of H in T (R), which can be identified with the Teichmiiller
space T (R/H) of the orbifold R/H. If [g,](p) does not lie in Fix(H ), then there is
some [e,] € H such that [e,1[g,1(p) # [gx1(p). Set [h,]=1[en]~"[gn] " [en][gn] for
such n, which belongs to [G, G] and satisfies [/#,](p) # p. If there are infinitely
many such n, we have [h,](p) — p, which is the desired consequence. Hence
we have only to consider the case that [g,](p) lies in Fix(H) for all but finitely
many 7.

The condition [g,](p) € Fix(H) is equivalent to [g,,]_l[e][g,,] € H for every
[e] € H. This is satisfied if and only if the mapping class [g,] € MCG(R) descends
to a mapping class [g, ] of R/ H. Consider the subgroup of the mapping class group
MCG(R/H) generated by all {[g,]}°2,. Here [g,] belongs to MCG,(R/H) for
p € T(R/H) =Fix(H). In the case where H is a finite group, this is easily seen.
In the case where H is an infinite group, the present situation is possible only when
[gn] belongs to H. Indeed, this follows from the fact that 7), "Fix(H) = { p} for the
infinite group H [Matsuzaki 2010, Theorem 4.2]. However, since we are dealing
with the elements [g,] € G satisfying [g,](p) # p, this is not the case. Hence, by
the same reason as before, we can choose a sequence {[/#;]} in [G, G] such that
[#;1(p) = p asi — oo and in addition that none of [/;] belongs to H = Stabg (p).
This implies [4;](p) # p converges to p as i — 0o, which completes the proof. []

In the remark of the previous section, we mentioned that when R satisfies the
bounded geometry condition, we do not have to impose any algebraic condition



POLYCYCLIC QUASICONFORMAL MAPPING CLASS SUBGROUPS 373

on G. In particular, G is not necessarily finitely generated. The corresponding
statement for the discreteness of the orbit of an asymptotically conformal mapping
class subgroup will be the following.

Proposition 5.4. Assume that a Riemann surface R satisfies the bounded geometry
condition. If a subgroup G of MCG,(R) is solvable, then the orbit G(p) is a
discrete set in T (R).

However, if G C MCG,(R) is an infinitely generated (countable) group, for
instance, then the orbit is not necessarily a discrete set. Our question asks for
some algebraic conditions upon G that guarantee this discreteness.
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ON ZERO-DIVISOR GRAPHS OF BOOLEAN RINGS

ALI MOHAMMADIAN

The zero-divisor graph of a ring R is the graph whose vertices consist of the
nonzero zero-divisors of R in which two distinct vertices a and b are adja-
cent if and only if either ab = 0 or ba = 0. In this paper, we investigate some
properties of zero-divisor graphs of Boolean rings. Among other results, we
prove that for any two rings R and S with I'(R) ~ T'(S), if R is Boolean and
|R| > 4, then R =~ S.

1. Introduction

Throughout the paper, R denotes a ring, not necessarily with identity, and D(R)
denotes the set of all zero-divisors of R. If X is either an element or a subset of
R, then the left annihilator of X is Anng(X) = {a € R|aX = 0} and the right
annihilator of X, denoted by Ann, (X), is similarly defined. For any subset ¥ of R,
we let Y* = Y\{0}. The zero-divisor graph of R, denoted by I'(R), is a graph with
the vertex set D(R)* such that two vertices x and y are joined by an undirected
edge if and only if x # y and either xy = 0 or yx = 0. Notice that a ring R
is a domain if and only if I"(R) is the null graph. For a commutative ring R with
identity, the definition of a zero-divisor graph of R that was first introduced in [Beck
1988] coincides with the above definition of I'(R). The zero-divisor graph concept
for noncommutative rings was first defined in [Redmond 2002]. The zero-divisor
graphs offer a graphical representation of rings so that we may discover some new
algebraic properties of rings that are hidden from the viewpoint of classical ring
theorists. For an instance, using the notion of a zero-divisor graph, it has been
proven in [Redmond 2004] that for any finite ring R, D _ |Anng(x) \ Ann,(x)| is
even. A simple proof of this result is given in [Akbari and Mohammadian 2007].

Let us recall some definitions regarding graph theory and ring theory. For a
vertex v of a graph G, N(v) denotes the set of all vertices of G adjacent to v, and
the degree of v is defined by |N(v)|. A graph G is called a star if G contains
at least two vertices and there exists a vertex that is joined to all other vertices

This research was in part supported by a grant from IPM.
MSC2000: 05C25, 06E20, 16P10.
Keywords: Boolean ring, reduced ring, zero-divisor graph.
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and G has no other edges. A path P in a graph G is a sequence of distinct vertices
vy, U2, ..., Ukt+1 in which every two consecutive vertices are adjacent. The number
k is called the length of P. For two vertices u and v in a graph G, the distance
between u and v, denoted by d(u, v), is the length of the shortest path between u
and v, if such a path exists; otherwise, we define d(u, v) = co. The diameter of a
graph G is defined by diam G = sup{d(u, v) | u and v are distinct vertices of G}.
In [Redmond 2002] it was shown that for any ring R, diam I'(R) < 3. Furthermore,
two graphs G; and G, are said to be isomorphic if there is a bijective map ¢
between the vertex set of G and the vertex set of G, such that the adjacency
relation is preserved. Finally, we recall that a ring is called reduced if it has no
nonzero nilpotent elements. A ring whose elements are all idempotent is called
Boolean. We denote by Z,, the ring of integers modulo n and by [, the field with
q elements.

In this article we study the zero-divisor graphs of Boolean rings. We show that
for any reduced ring R that is not a domain, I" (R) is isomorphic to the zero-divisor
graph of a nonreduced ring, provided that I'(R) is a star. As a consequence, we
prove that Boolean rings with more than four elements are determined by their
zero-divisor graphs.

2. The results

In [Akbari and Mohammadian 2006, Theorem 17], it is proven that for any finite
ring R that is not a field, if I'(R) is isomorphic to the zero-divisor graph of a
reduced ring S, then R >~ §, unless § >~ Z; x [, where either g =2 or (¢ +1)/2
is a prime power. Since for any finite field F, I'(Z; x F) is a star, the following
theorem presents an analogue of this result for the general case.

Remark 1. Let {4;};c; and {B;} jc,; be two families of commutative domains with
identity, where |/| > 2. In [Anderson et al. 2003, Theorem 2.1], it is shown that
T([Tie; &) = F(]_[jej 8;) if and only if there is a bijective map 7 : I — J such
that |4;| = | B ()| for all i € I. Hence there are many examples of nonisomorphic
pairs of infinite reduced commutative rings whose zero-divisor graphs are isomor-
phic.

Theorem 2. Let S be a reduced ring such that S is not a domain and I (S) is not a
star. If R is a ring such that I'(R) >~ T'(S), then R is also a reduced ring.

Proof. We recall a well-known fact about reduced rings: for all elements x and y
of a reduced ring 7, xy = 0 if and only if yx = 0. For this, note that if xy =0
for some elements x, y € T, then (yx)2 = 0 and since T is reduced, we find that
yx = 0. This fact implies that if two vertices u and v of I'(S) are adjacent, then
uv = vu = 0. We use this property frequently in what follows. We also state two
properties of I'(S):
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(i) For every two adjacent vertices u and v of I'(S) with at least one common
neighbor, u + v is a vertex of I'(S) and N(u 4+ v) = N(u) N N(v). For this,
note that if x € N(u) N N(v), then xu = xv = 0, and hence x(u + v) = 0.
Also, u + v # 0 since uv = 0 and S is reduced. Therefore, x € N(u + v).
Conversely, if x € N(u +v), then (xu)u = x(u + v)u = 0 and thus u(xu) =0.
Therefore (xu)> = 0 and so xu = 0. This means that x € N(u) and with a
similar argument, we find that x € N(v), as required.

(ii) For every three mutually adjacent vertices u, v and w of I'(S), we have N (u) g
N(v) UN(w). Indeed, it easily seen that v + w € N(u) \ (N (v) UN(w)).

Suppose that R is a ring with I'(R) ~ I"'(S). So properties (i) and (ii) also hold
for I'(R). To the contrary, assume that a> = 0 for some element a € R*.

Since S is reduced, [Akbari and Mohammadian 2006, Corollary 4] yields that
['(R) has at least two vertices. Note that a is not adjacent to all other vertices
of I'(R). To prove this, suppose otherwise. Since I'(R) is not a star, there exist
two adjacent vertices x, y € N(a). So N(x) € N(a) UN(y), which contradicts
(ii). Moreover, we have |N(a)| > 2. For this, suppose otherwise. Since I'(R)
is a connected graph [Redmond 2002] with at least two vertices, we may assume
that N(a) = {b} for some vertex b of I'(R). From a + b € Anngy(a) U Ann, (a),
we conclude that a + b = 0. Hence b = —a and therefore I"'(R) is a star on two
vertices, a contradiction.

We claim that either Ra = {0, a} or aR = {0, a}. Suppose that there exist two
elements b € Ra \ {0, a} and c € aR \ {0, a}. If b # ¢, then a, b and c are three
mutually adjacent vertices and N(a) € N(b) UN(c), which contradicts (ii). Hence
b = c. For some vertex d € N(a) \ {b}, the vertices a, b and d are mutually
adjacent and N(a) € N(b) UN(d), which again contradicts (ii). Since Ra # {0}
and aR # {0}, the claim is proved.

We assume that Ra = aR = {0, a}. For any two vertices x, y € N(a), we have
xa = ya = a. Thus (xy)a = a and so xy # 0. This means that every edge of
["(R) has at least one endpoint in N(a). Working towards a contradiction, assume
that no two vertices in N(a) are adjacent. This means that I'(R), and so I'(S) is a
bipartite graph, and using [Akbari et al. 2003, Theorem 2.4], I'(S) and thus I'(R)
is a complete bipartite graph. Let r € N(a) and s € N(a) N N(r). Since I'(R)
is a complete bipartite graph and a + s € N(a), r is adjacent to a + s. Therefore
a=r(a+s)r =0, acontradiction. Hence there are two adjacent vertices b, c € N(a).
We now consider the two following cases.

Case 1. Suppose that a together with one of the elements b, ¢ are contained in
one of the one-sided annihilators of the third element. Without loss of generality,
assume that {a, c} € Anny(b). By (i), there exists a vertex d in ['(R) such that
d ¢ {a,b} and N(d) =N@) NND). If b #a +c, then a + ¢ € N(a) " N(b), and
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hence a = d(a + ¢)d = 0, a contradiction. Thus » = a + ¢, and it follows from
ab = 0 that ac = 0. Moreover, if ca # 0, then a = ca = ¢b — ¢* = —c?, which
contradicts d € N(c) \ N(a). Therefore ca = 0 and so ¢* = cb — ca = 0. Since
b = a + ¢, we find that the product of any two elements of {a, b, c} is zero.

Suppose towards a contradiction that there is a vertex r € (N(b) N N(¢c)) \ {a}.
We have rar =r(b—c)r =0 and by Ra =aR = {0, a}, we deduce that r € N(a).
By (i), there exists a vertex s in I'(R) such that N(s) = N(a) N N(r). This implies
that sas = s(b—c)s =0, since {b, c} CN(a) "N(r). On the other hand, s & N(a)
and Ra = aR = {0, a} yields that sas = a, a contradiction. This establishes that
N(b)NN(c) = {a}.

For convenience and without loss of generality, assume that cd = 0. From
{b, c} C Ann,(c), d € N(a) UN(b) and N(b) " N(c) = {a}, we have Rc = {0, c}.
Therefore [R : Anng(a) NAnng(c)] < [R : Anng(a)][R : Anng(c)] = |Ral|Rc| = 4.
Since N(b) N N(c) = {a} and the product of any two elements of {a, b, c} is zero,
we find that Ann,(a) N Anng(c) = {0, a, b, c}. This yields that | R| < 16. Using (i),
let e be a vertex of I'(R) in which N(e) = N(a) N N(c). It is not hard to see that

R={0,a,b, c}U(d—I—{O,a,b, c})U(e+{0,a,b,c})U(d+e+{O,a,b, c}).

Therefore Anny(a) = Ann,(a) = {0,a, b, c}U(d+ e+ {0, a, b, c}). Because e ¢
N(a) UN(c), Ra = {0, a} and Rc = {0, c}, we conclude that ea = a and ec = c.
Therefore eb = b and by b € N(a) N N(c), we obtain that be = 0. Furthermore,
e € N(a) UN(c) and N(b) N N(c) = {a} yield that Rb = {0, b}. It follows from
d ¢ N(b) that d + ¢ € Anngy(b), and so N(a) € N(b) UN(c), which contradicts (ii).

Case II. When Case I does not occur, by replacing b with c if necessary, we may
assume that ab = bc = ca = 0 and none of ba, cb and ac is zero. We have
{a, b} € Anny(ch), and so, applying the argument in the first paragraph of Case I
for cb and b instead of b and c, respectively, we obtain in particular that ba = 0,
which is a contradiction.

Next, with no loss of generality, assume that aR = {0, a} and there exists an
element g € Ra \ {0,a}. Since aR = {0,a}, —a = a and so —g = g. Also,
from g € Ra and aR = {0, a}, we easily obtain that ag = ga = 0. By (i), there
exists a vertex & in I'(R) such that N(h) = N(a) "N(g). We claim that Ann, (a) C
Ann, (h)U{0, a, g, a+g}. Suppose x € Ann, (a)\ (Ann, (h)U{a, g}). Since g € Ra
and N(h) = N(a) "N(g), we conclude that x € Anng (k). Moreover, h € N(a) and
aR =1{0,a}, soah =a. Wehave a+ g € N(a) N N(g) and (a + g)h =a + g,
and hence h(a + g) = 0. These equalities yield that h(a + g +x) = hx # 0
and (a + g+ x)h =a+ g # 0. On the other hand, a(a + g + x) = 0, so it
follows from g € Ra and N(h) = N(a) N N(g) that a + g + x = 0. Therefore,
x = a+ g, and the claim is proved. Since Ann,(a), Ann,(h) and {0, a, g, a + g}
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are three additive subgroups of R in which Ann,(a) C Ann,(h)U{0,a, g,a+ g}
and a € Ann,(a) \ Ann, (h), we deduce that Ann, (a) = {0, a, g, a + g}. Applying
(ii), there exists a vertex y € N(a) \(N(g)UN(a+g)). We have ya =0 and ay #0.
By [R : Ann,(a)] = |aR|, we conclude that R = Ann, (a) Uy + Ann,(a). It follows
from Ann,(a) = {0, a, g, a + g} that Ra = {0}, a contradiction. Now the proof is
complete. ]

Example 3. The condition on I'(S) in Theorem 2 is necessary. For examples
involving infinite rings, let ¥ be an arbitrary infinite domain, % be the polynomial
ring in the set of variables {x} U {x, | @ € ¥} with coefficients in Z;, and $ be the
ideal of %R generated by (XJU{Xxxg — X |0 € P} U {Xex — X | € F}. Tt is easy
to verify that I'(R/$) is a star on |¥| vertices and x + $ is that vertex which is
adjacent to all other vertices of the graph. Therefore I'(R/$) >~ I'(Z, x &), while
R /9 is not reduced.

Remark 4. It is easy to establish that every reduced ring whose zero-divisor graph
is a star is isomorphic to the direct product of Z, and a domain. For this, let R be a
reduced ring with I'(R) a star and let e be that vertex which is adjacent to all other
vertices of I'(R). Obviously, e is idempotent, and using the fact that all idempotent
elements of a reduced ring are central, we may write R >~ eR x (1 —e)R. Since
['(R) is a star, we clearly conclude that eR = {0, e} and (1 — e)R is a domain,
as required. From this, Theorem 2, Example 3, and [Akbari and Mohammadian
2006, Theorem 17], we imply that for every reduced ring R that is not a domain,
["(R) is isomorphic to the zero-divisor graph of a nonreduced ring if and only if
["(R) is either an infinite star or a star with ¢ vertices, where either ¢ = 2 or both
q and (g + 1)/2 are prime powers.

In [LaGrange 2007, Theorem 4.1], it is shown that if R and S are two commuta-
tive rings with identity such that S is a Boolean ring with more than four elements
and I'(R) >~ T'(S), then R ~ S. In what follows, we generalize this result to every
arbitrary ring R. We need the following easy lemmas.

Lemma 5. Let R be a ring such that all elements in D(R) are idempotent. Then
R is either a domain or a Boolean ring.

Proof. Suppose that R is not a domain. By the hypotheses, R is reduced. Using the
fact that all idempotent elements of a reduced ring are central, D(R) is contained
in the center of R. Therefore, for every two elements a € R and z € D(R)*, we
have az € D(R). Hence (az)?> =az, and so (a>—a)z =0. The latter equality shows
that a®> —a € D(R) and also Anng(a®> —a) = D(R). Thus a®> —a = (a* —a)* =0
for each element a € R, as desired. O

Lemma 6. Let R be a Boolean ring with |R| > 4. Then I'(R) contains no vertex
adjacent to all other vertices of the graph.
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Proof by contradiction. Suppose that a vertex r is adjacent to all other vertices
of '(R). Letz € D(R)\{0,r}. Wehave r(r4+2z) =r 20 andsor +zis a
nonzero-divisor idempotent of R. Thus 1 = r + z is the identity of R and so
R =1{0,1,r,1—r}, which contradicts |R| > 4. O

Theorem 7. Let S be a Boolean ring with |S| > 4. Suppose that R is a ring
and ¢ : I'(R) — I'(S) is a graph isomorphism. Then ¢ is extendable to a ring
isomorphism from R to S. In particular, R >~ §.

Proof. Recall that the characteristic of every Boolean ring is 2. We first state the
following properties of I"(S).

(i) For every two vertices u# and v of I"(S), if N(u) = N(v), then u = v. For this,
note that if u # uv, then u 4+ uv € N(v) \ N(u), which is impossible. So we
conclude that # = uv, and similarly v = uv, which yield that u = v, as desired.

(i) For every two adjacent vertices u and v of I'(S), using (i) together with an
easy argument, we find that u + v is the unique vertex of I"(S) such that
N(u 4+ v) = N@u) NN(®), if N(u) N N(v) # @; and otherwise, 1 = u + v is
the identity of S, because in this case u 4 v is a nonzero-divisor idempotent
of S. Moreover, if S has identity, then v = 1 4 u is the unique neighbor of u
in I'(S) such that N(u) N N(v) = @. For uniqueness, note that for any vertex
x €Nu),if x #1+u, then 1 +u+x € N(u) N N(x).

(iii) For every two nonadjacent vertices u and v of I"(S), N(u) UN(v) € N(uv);
and if N(u) UN(v) € N(w) for some vertex w of I'(S), then N(uv) € N(w).
For the second statement, let x € Anng(uv). We have vx € Anng(u). Since
N(u) CN(w), w(vx) =0 and so wx € Anng (v). It follows from N(v) € N(w)
that w(wx) = 0 and thus x € Anng(w), as required.

Since I'(R) >~ I'(S), the above properties also hold for I'(R). Using Theorem 2
and Lemma 6, R is reduced. It is easily checked that N(z%) = N(z) for each vertex
z of T'(R). By (i), we have 7> = 7 for every element z € D(R). Applying Lemma 5,
R is a Boolean ring. Define ¢(0) = 0. By (ii), ['(R) (respectively, I'(S)) contains
two adjacent vertices with no common neighbors if and only if R (respectively, S)
has identity. Since I'(R) >~ I'(S), either both R and S have identity or neither of
them has identity. When the first case occurs, we define ¢ (1) = 1. Furthermore,
the properties (ii) and (iii) imply that for every two vertices u and v of I'(S), the
elements

e 14 u, if S has identity;
e u+v,if u and v are adjacent and u + v # 1; and

e yv, if u and v are not adjacent,
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can be determined by I'(S). We claim that for every two distinct nonadjacent
vertices u and v of I'(S), the element u + v can also be determined by I'(S). First
assume that uv ¢ {u, v}. Using (iii), we obtain that the element uv is determined
by I'(S). By (i) and (ii), u 4+ uv is the unique vertex of I'(S) such that N(u) =
N(@uv) "N (u+uv). This and a similar argument establish that the elements u + uv
and v 4 uv are determined by I'(S). Since the vertices u + uv and v 4+ uv are
adjacent, we are done using (ii). Next, with no loss of generality, suppose that
uv = u. In this case, the vertices u# and u + v are adjacent, and so applying (i) and
(ii), we find that u+v is the unique vertex of I'(S) such that N(v) =N (u) "N (u+v).
This proves the claim. Now, by I'(R) ~ I'(S) and the above reasonings, it is not
hard to verify that ¢(a + b) = ¢(a) + ¢(b) and p(ab) = ¢(a)e(b) for all a, b € R,
as desired. O

As an interesting fact, it is well-known that every isomorphism between mul-
tiplicative semigroups of two Boolean rings is a ring isomorphism. Obviously,
Theorem 7 generalizes this fact. The following theorem asserts that the zero-divisor
graph of a Boolean ring R determines whether R has identity or not.

Theorem 8. Let R be a Boolean ring and |R| > 4. Then diamI"'(R) = 3 if R has
identity, and otherwise diam I"(R) = 2.

Proof. We know from [Redmond 2002] that for any ring T, diam I'(T") < 3. First
suppose that R has identity. Since |R| > 4, we can take an element e & {0, 1}. We
have R = e¢R & (1 — e¢)R, so cither |[eR| > 2 or |(1 — e)R| > 2. With no loss of
generality, let f € eR \ {0, e}. Since e and 1+ e + f are two nonadjacent vertices
with no common neighbors and diam I'(R) < 3, the result follows.

Next suppose that R has no identity. Applying Lemma 6, we find diam I"(R) > 2.
Now, let a and b be two nonadjacent vertices of I"'(R). Since R has no identity,
there exists an element ¢ such that (a +b+ab)c # ¢. We have c+ac+bc+abc €
N(a) N N(b), which clearly completes the proof. O

It is well-known that every finite Boolean ring has identity. We generalize this
fact in the following theorem.

Theorem 9. Let R be a Boolean ring such that ' (R) has a vertex of finite degree.
Then R has identity.

Proof. Recall that the adjoint multiplication o of an arbitrary ring T is defined by
xoy=x+y+xy for any two elements x, y € T. Suppose that a is a vertex
of finite degree of I'(R) and N(a) = {ay, ..., a,} for some integer n > 1. Let
b=ajo---o0ay. Clearly, ab =0 and a;b = a; for all i. We show that a + b is the
identity of R. Indeed, it is enough to prove that a + b is a nonzero-divisor. Toward
a contradiction, assume that (@ 4+ b)z = 0 for some element z € R*. Multiplying
this equality by a, we find that az = 0, and hence z = a; for some j € {1,...,n}.
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Also, multiplying the equality (a + b)z = 0 by a; yields that a;z = 0, which is
impossible. This completes the proof. U

Remark 10. The converse of Theorem 9 is not true. Let %R be the set consisting of
the empty set together with all finite unions of all left-closed right-open intervals
and all left-unbounded right-open intervals of real numbers. Clearly, R is a Boolean
ring with identity with respect to symmetric difference as the addition operation
and intersection as the multiplication operation, while obviously every vertex of
["(%R) has infinite degree.

We conclude the paper with the following theorem on the polynomial rings over
Boolean rings.

Theorem 11. Let R and S be two Boolean rings such that I'(R[X]) ~ ' (S[x]).
Then R >~ S.

Proof. Let T be an arbitrary Boolean ring. I'(T'[x]) is the null graph if and only if
T ~ 7,. Hence we may assume that D(R)* and D(S)* are both nonempty. Using
Theorem 7, it suffices to establish that I'(R) >~ I"(S). Since finitely generated one-
sided ideals of von Neumann regular rings, including Boolean rings, are principal
[Lam 2001, (4.23)], for each finitely generated ideal I of T, there exists a unique
element e such that / = (e). For a polynomial f(x) =a,x"+- - -+ag € T[x], let f/(;)
be the unique element of T such that (ag, ..., a,) = ( f/(;)). From [Armendariz
1974, Lemma 1], every reduced ring is Armendariz, and hence it is not hard to see
that for any polynorgifl f(x) € D(T[xD*, f/(;) is the unique element of 7' such
that N(f (x)) = N(f (x)).

Now, assume that ¢ : I'(R[x]) — I'(S[x]) is a graph isomorphism. We define
Y :T(R)—>T(S)by ¢¥(a)= d)/(-é\l) for all a € D(R)*, and we claim that v is a graph
isomorphism. If @ and b are two adjacent vertices of I'(R), then ¢ (a) € N(¢ (b)) =
N (b)). This yields that ¢ (b) € N(¢(a)) = N(¢¥(a)) and therefore ¥ (a) and
¥ (b) are adjacent in I'(S). The converse is clearly true, and so  preserves the
adjacency relation. Moreover, if {(a) = vy (b) for two vertices a and b of I'(R),
then N (¢ (a)) =N (¢ (b)) and thus N(a) =N(b). In particular, N(a)NR=N(b)NR.
Using the property (i) of the zero-divisor graphs of Boolean rings given in the proof
of Theorem 7, we deduce that a = b. This concludes the injectivity of . Finally,
we prove that v is surjective. Suppose s € D(S)* and let

ey
Since N(¢p~'(s)) = N(r), we find that N(s) = N(¢(r)) = N(¥(r)) and hence
s = v (r). This establishes the claim and completes the proof. U

Remark 12. Letn > 2 and R and ¥ be two rings which each of them is the direct
product of n arbitrary finite fields. Using the result mentioned in Remark 1, it is
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easily checked that I'(R[x]) =~ I'(¥[x]). Therefore the conclusion of Theorem 11
is not true if one of R and S is not Boolean.
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RATIONAL CERTIFICATES OF POSITIVITY ON COMPACT
SEMIALGEBRAIC SETS

VICTORIA POWERS

Let R[X] denote the real polynomial ring R[ Xy, ..., X,] and write ) R[X 1?
for the set of sums of squares in R[X]. Given g1, ..., g, € R[X] such that
the semialgebraic set K := {x € R" | g;(x) > 0 for all i} is compact, Schmiid-
gen’s theorem says that if f € R[X] such that f > 0 on K, then f is in
the preordering in R[X] generated by the g;’s, i.e., f can be written as a
finite sum of elements o gf‘ ... g%, where o is a sum of squares in R[X] and
each e; € {0, 1}. Putinar’s theorem says that under a condition on the set of
generators {g1, . .., g} (Which is a stronger condition than the compactness
of K), any f > 0 on K can be written f = oy + 0121 + - -+ + 0,2, Where
o; € Y R[X 1?. Both of these theorems can be viewed as statements about
the existence of certificates of positivity on compact semialgebraic sets. In
this note we show that if the defining polynomials g, ..., g, and polyno-
mial f have coefficients in Q, then in Schmiidgen’s theorem we can find a
representation in which the o’s are sums of squares of polynomials over Q.
We prove a similar result for Putinar’s theorem assuming that the set of
generators contains N — ) X 12 for some N € N.

1. Introduction

We write N, R, and Q for the set of natural, real, and rational numbers. Let n € N
be fixed and let R[X] denote the polynomial ring R[ X}, ..., X,]. We denote by
> R[X]? the set of sums of squares in R[X].
For S ={g1, ..., g} € R[X], the basic closed semialgebraic set generated by
S, denoted Ky, is
xeR"[g1(x)>0,..., g(x) >0}

Associated to S are two algebraic objects: The quadratic module generated by S,
denoted Mg, is the set of f € R[X] which can be written

f=o0+o181+ - +oygs,
MSC2010: primary 11E25, 12D15, 13J30, 14P10; secondary 14Q20.

Keywords: rational sums of squares, certificates of positivity, Schmiidgen’s theorem, Putinar’s
theorem.
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where each o; lies in ) R[X 12, and the preordering generated by S, denoted Ty, is
the quadratic module generated by all products of elements in S. In other words,
Ts is the set of f € R[X] which can be written as a finite sum of elements

ogy'...g>, for o € R[X]and each ¢; € {0, 1}.

A polynomial f € > R[X]? is obviously globally nonnegative in R" and writing
f explicitly as a sum of squares gives a “certificate of positivity” for the fact that f
takes only nonnegative values in R”. (Note: To avoid having to write “nonnegativ-
ity or positivity” we use the term “positivity”” to mean either.) More generally, for
a basic closed semialgebraic set K, if f € Ts or f € Mg, then f is nonnegative on
K and an explicit representation of f in Mg or Ts gives a certificate of positivity
for f on K.

Schmiidgen [1991] showed that if the semialgebraic set K s is compact, then any
f € R[X] which is strictly positive on K is in the preordering 7s. A preordering
or quadratic module is archimedean if it contains N — " X? for some N € N. We
note that if My is archimedean, then it follows immediately that Kg is compact,
however the converse is not true in general. Putinar [1993] showed that if My is
archimedean then any f € R[X] which is strictly positive on K is in Mg. In other
words, these results say that under the given conditions a certificate of positivity
for f on Ky exists.

Recently, techniques from semidefinite programming combined with Schmiid-
gen’s and Putinar’s theorems have been used to give numerical algorithms for ap-
plications such as optimization of polynomials on semialgebraic sets. However
since these algorithms are numerical they might not produce exact certificates of
positivity. With this in mind, Sturmfels asked whether any f € Q[X] which is a
sum of squares in R[X] is a sum of squares in @[ X]. Hillar [2009] showed that the
answer is yes in the case where f is known to be a sum of squares over a totally
real field K. The general question remains unsolved.

It is natural to ask a similar question for Schmiidgen’s and Putinar’s theorems: If
the polynomials defining the semialgebraic set and the positive polynomial f have
rational coefficients, is there a certificate of positivity for f in which the sums
of squares have rational coefficients? In this note, we show that in the case of
Schmiidgen’s theorem the answer is yes. This follows from an algebraic proof of
the theorem, originally due to T. Wormann [1998]. In the case of Putinar’s theorem,
we show that the answer is also yes as long as the generating set contains N —»_ X l2
for some N € N. This follows easily from an algorithmic proof of the theorem,
due to Schweighofer [2005]. For Lasserre’s method [2001] for optimization of
polynomials on compact semialgebraic sets, it is usual in concrete cases to add a
polynomial of the type N — )~ X 12 to the generators in order to insure that Putinar’s
theorem holds. Thus our assumption in this case is reasonable.
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2. Rational certificates of for Schmiidgen’s theorem

Fix § ={g1, ..., g} € R[X] and define Kg and Ts as above.

Theorem 1 (Schmiidgen). Suppose that K is compact. If f € R[X]and f >0on
Ks, then f € Tg.

In this section we show that if f and the generating polynomials gi, ..., g are
in Q[X], then f has a representation in 75 in which all sums of squares o, are in
Y Q[X]?. This follows from T. Wormann’s algebraic proof of the theorem using
the classical Abstract Positivstellensatz, and a generalization of Wormann’s crucial
lemma due to M. Schweighofer.

The abstract Positivstellensatz. We will need a version of the abstract Positivstel-
lensatz, a result traditionally attributed to Kadison and Dubois, but now thought to
have been proved earlier by Krivine or Stone. For details on its history, see [Prestel
and Delzell 2001, Section 5.6]. The setting is preordered commutative rings, and
we state the version we need as Theorem 2 below.

Let A be a commutative ring with @ C A. A subset T C A is a preordering
fT+T<T, T-TCT,and —1¢T. For S={aj,...,a;r} C A, we define the
preordering generated by S, Ts, exactly as for A = R[X].

An ordering in A is a preordering P such that PU—-P = A and PN —P is
a prime ideal. Any a € A has a unique sign in {—1, 0, 1} with respect to a fixed
ordering P and we use the notationa >p Oifae P,a>p0ifae P\ (PN—P),
etc.

Fix a preordered ring (A, T') and denote by Sper A the real spectrum of (A, T),
i.e., the set of orderings of A which contain 7. Then define

H(A) ={a € A | there exists n € N withn+a >p O for all P € Sper A},
the ring of geometrically bounded elements in (A, T'), and
H'(A)={a € A| thereexistsn € N withn+a € T},

the ring of arithmetically bounded elements in (A, T). Clearly, H'(A) C H(A).
The preordering 7T is archimedean if H'(A) = A.

Theorem 2 [Schweighofer 2002, Theorem 1]. Given the preordered ring (A, T)
as above and suppose A = H'(A). Forany a € A, ifa >p 0 for all P € Sper A,
thenaeT.

Consider the case where A = R[X] and T = Ts for S = {g1, ..., g} € R[X].
Let K = K, then K embeds densely in Sper A and hence H(A) ={f e R[X]| f is
bounded on S}. If S is compact, this implies H (A) = A and Schmiidgen’s theorem
follows from the following result:
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Lemma 3 [Berr and Wormann 2001, Lemma 1]. With A, T, and S as above, if
H(A) = A then H'(A) = A.

Our result follows from a generalization of this lemma:

Theorem 4 [Schweighofer 2002, Theorem 4.13]. Let F be a subfield of R and
(A, T) a preordered F-algebra such that F C H'(A) and A has finite transcen-
dence degree over F. Then

A=H(A) = A=H'(A).

We can now prove the existence of rational certificates of positivity in Schmiid-
gen’s theorem. The argument is exactly that of the proof of the general theorem
above.

Theorem 5. Given S = {g1, ..., g} € Q[X] and suppose Ks € R" is compact.
Then for any and [ € Q[X] such that f > 0 on Kg, there is a representation of f
in the preordering Ts,

f= Z oe8y ... 82,

ec{0,1}*
with all o, € Y Q[X]?.

Proof. Let T be the preordering in Q[X] generated by S. Since Ky is compact,
every element of Q[X] is bounded on K. Then Ks dense in Sper A implies that
H(Q[X]) = Q[X], hence by Theorem 4 we have Q[X] = H'(A). Note that the
condition F € H'(A) holds in this case since QT =" Q2. The result follows from
Theorem 2. O

3. Rational certificates for Putinar’s theorem

Given S = {g1, ..., &}, recall that the quadratic module generated by S, My, is
the set of elements in the preordering K¢ with a “linear” representation, i.e.,

Ms={og+ 0181+ +0y8 | oy € X RIX]*}.

In order to guarantee representations of positive polynomials in the quadratic mod-
ule, we need a condition stronger than compactness of Kg, namely, we need Mg
to be archimedean.

The quadratic module My is archimedean if all elements of R[X] are bounded
by a positive integer with respect to My, i.e., if for every f € R[X] there is some
N € N such that N — f € Mg. It is not too hard to show that Mg is archimedean
if there is some N € N such that N — > Xl.2 € Ms. Clearly, if My is archimedean,
then K is compact; the polynomial N — > X 12 can be thought of as a “certificate
of compactness”. However, the converse is not true; see [Prestel and Delzell 2001,
Example 6.3.1]. The key to the algebraic proof of Schmiidgen’s theorem from the
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previous section is showing that in the case of the preordering generated by a finite
set of elements from R[X], the compactness of the semialgebraic set implies that
the corresponding preordering is archimedean.

Putinar [1993] showed that if the quadratic module My is archimedean, we can
replace the preordering T's by the quadratic module M.

Theorem 6 (Putinar). Suppose that the quadratic module My is archimedean.
Then for every f € R[X]with f > 0on Kgs, f € Ms.

Lasserre’s method [2001] for minimizing a polynomial on a compact semial-
gebraic set involves defining a sequence of semidefinite programs corresponding
to representations of bounded degree in Mg whose solutions converge to the min-
imum. In this context, if Mg is archimedean then Putinar’s theorem implies the
convergence of the semidefinite programs. In practice, it is not clear how to decide
if Mg is archimedean for a given set of generators S, however in concrete cases a
polynomial N —>_ X 12 can be added to the generators if an appropriate N is known
or can be computed.

Using an algorithmic proof of Putinar’s theorem due to M. Schweighofer [2005]
we can show that rational certificates exist for the theorem as long as we have a
polynomial N — ) X 12 as one of our generators:

Theorem 7. Suppose S = {g1,..., 8} € Q[X] and N — ZXl2 € Mg for some
N € N. Then given any f € Q[X] such that f > 0 on Ky, there exist oy ...05,0 €
Y Q[X1? so that

f=00+01g1 4+ +og+o(N -3 X?).

Proof. The idea of Schweighofer’s proof is to reduce to Pélya’s theorem. We
follow the proof, making sure that each step preserves rationality.
Let

A={yel0,00™ | y1 4+ +ym =2n(N+]} SR™"

and let C be the compact subset of R” defined by C = [(A), where [ : R*" — R”"
is defined by

y > Y1 = Yn+1 Yn — Yon
> e, 2 .

Scaling the g;’s by positive elements in Q, we can assume that g; < 1 on C for
all i. The key to the proof is the observation that there exists & € Rt such that
g:=f—1> (g —1*g >0 on C [Schweighofer 2005, Lemma 2.3]. Since we
can always replace A by a smaller value, we can assume A € (O, whence ¢ € Q[X].
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Let d = degqg and let Q; be the homogeneous part of g of degree i, so g =
S Qi LetY =(Yy,...,Ys,) and define in Q[Y]

d d—i
) Yl_Yn-H Y, — Yo Y|+ +7Yo
= Yo (et B (Y
i=1 4

Then F is homogenous and F > 0 on [0, 00)*" \ {0}. By Pélya’s theorem, there is
some k € N so that
Yi4 -4V \F
G:=( 1+ +1 Zn) .
2n(N + 3)

has nonnegative coefficients as a polynomial in R[Y]. Furthermore, since F €
Q[Yy, ..., Ya,], it is easy to see that G € Q[Y].
Define ¢ : Q[Y1, ..., Y2,] = Q[X] by

pY)=N+1+Xi, ¢Tur)=N+1H-X; fori=1,....n
and note that ¢ (G) = g and

(Y =(N+p£X;
= ;(x§+ Xi £ D)+ (N-XX3) e LQIXP+(N- Y X3).
JFEI
Thus ¢ (G) = g implies there is a representation of g of the required type and then,
since f =q+1Y (g — 1)*g; with A € Q, we are done. ([

Remark 8. In the preordering case (Schmiidgen’s theorem), as noted above if
the semialgebraic set Kg is compact, then it follows that the preordering Ts in
Q[X] is archimedean. However it is more subtle in the quadratic module case
since it is not always clear how to decide if My is archimedean for a given set of
generators S. Thus an open question is the following: Suppose S € Q@[ X] is a finite
set of polynomials and M is archimedean as a quadratic module in R[X]. Is it true
that My is archimedean as a quadratic module in @[ X]? To put it more concretely,
suppose S ={g1, ..., g} C Q[X] and we know that there is some N € N such that

N_ZX[Z:O—O+O'lgl+"’+0’sgs’

with o; € > R[X 1?. Does there exist a representation with o; € > Q[X 1?2 Equiv-
alently, does there exist N € N such that foreachi =1, ..., n we can write

NE+X;,=0p+0181+ - +0:8s,

with 0; € 3" Q[X]??



RATIONAL CERTIFICATES OF POSITIVITY ON COMPACT SEMIALGEBRAIC SETS 391

References

[Berr and Wormann 2001] R. Berr and T. Wormann, “Positive polynomials on compact sets”, Man-
uscripta Math. 104:2 (2001), 135-143. MR 2002a:14061 Zbl 0992.14021

[Hillar 2009] C. J. Hillar, “Sums of squares over totally real fields are rational sums of squares”,
Proc. Amer. Math. Soc. 137:3 (2009), 921-930. MR 2009h:12009 Zbl 1163.12005

[Lasserre 2001] J. B. Lasserre, “Global optimization with polynomials and the problem of mo-
ments”, STAM J. Optim. 11:3 (2001), 796-817. MR 2002b:90054 Zbl 1010.90061

[Prestel and Delzell 2001] A. Prestel and C. N. Delzell, Positive polynomials: from Hilbert’s 17th
problem to real algebra, Springer, Berlin, 2001. MR 2002k:13044 Zbl 0987.13016

[Putinar 1993] M. Putinar, “Positive polynomials on compact semi-algebraic sets”, Indiana Univ.
Math. J. 42:3 (1993), 969-984. MR 95h:47014 Zbl 0796.12002

[Schmiidgen 1991] K. Schmiidgen, “The K-moment problem for compact semi-algebraic sets”,
Math. Ann. 289:2 (1991), 203-206. MR 92b:44011

[Schweighofer 2002] M. Schweighofer, lterated rings of bounded elements and generalizations of
Schmiidgen’s theorem, Ph.D. thesis, Universitit Konstanz, 2002, available at http:/tinyurl.com/
SchweighoferPhD.

[Schweighofer 2005] M. Schweighofer, “Optimization of polynomials on compact semialgebraic
sets”, SIAM J. Optim. 15:3 (2005), 805-825. MR 2006d:90136 Zbl 1114.90098

[Wormann 1998] T. Wormann, Strikt positive polynome in der semialgebraischen geometrie, Ph.D.
thesis, Universitdt Dortmund, 1998, available at http:/www.lulu.com/items/volume_63/2227000/
2227267/2/print/diss.pdf.

Received January 2, 2011. Revised February 3, 2011.

VICTORIA POWERS

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
EMORY UNIVERSITY

ATLANTA, GA 30322

UNITED STATES

vicki @mathcs.emory.edu






PACIFIC JOURNAL OF MATHEMATICS
Vol. 251, No. 2, 2011

QUIVER GRASSMANNIANS, QUIVER VARIETIES AND THE
PREPROJECTIVE ALGEBRA

ALISTAIR SAVAGE AND PETER TINGLEY

Quivers play an important role in the representation theory of algebras,
with a key ingredient being the path algebra and the preprojective algebra.
Quiver grassmannians are varieties of submodules of a fixed module of the
path or preprojective algebra. In the current paper, we study these objects
in detail. We show that the quiver grassmannians corresponding to sub-
modules of certain injective modules are homeomorphic to the lagrangian
quiver varieties of Nakajima which have been well studied in the context of
geometric representation theory. We then refine this result by finding quiver
grassmannians which are homeomorphic to the Demazure quiver varieties
introduced by the first author, and others which are homeomorphic to the
graded/cyclic quiver varieties defined by Nakajima. The Demazure quiver
grassmannians allow us to describe injective objects in the category of lo-
cally nilpotent modules of the preprojective algebra. We conclude by relat-
ing our construction to a similar one of Lusztig using projectives in place of
injectives. In an appendix added after the first version of the current paper
was released, we show how subsequent results of Shipman imply that the
above homeomorphisms are in fact isomorphisms of algebraic varieties.
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Introduction

Quivers play a fundamental role in the theory of associative algebras and their
representations. Gabriel’s theorem, which states a precise relationship between
indecomposable representations of certain quivers and root systems of associated
Lie algebras, indicated that the representation theory of quivers was also intimately
connected to the representation theory of Kac—Moody algebras. This eventually
lead to the Ringel-Hall construction of quantum groups and the quiver variety
constructions of Lusztig and Nakajima.

Fix a quiver (directed graph) Q = (Qq, Q1) with vertex set Q¢ and arrow set
Q1. The corresponding path algebra CQ is the algebra spanned by the set of di-
rected paths, with multiplication given by concatenation. There is a natural grading
CQ=6p, (CQ), of the path algebra by length of paths. Representations of a quiver
are equivalent to representations (or modules) of its path algebra. Note that (CQ)o-
modules are simply Qy-graded vector spaces, and in particular all CQ-modules are
Qo-graded. For a CQ-module V and u € NQy, the associated quiver grassman-
nian is the variety Grg(u, V) of all CQ-submodules of V of graded dimension
u. These natural objects (or closely related ones) can be found in several places
in the literature. For instance, they appear in [Crawley-Boevey 1996; Schofield
1992] in the study of spaces of morphisms of CQ-modules and in [Caldero and
Chapoton 2006; Caldero and Keller 2006; Derksen et al. 2009] in connection with
the theory of cluster algebras. Geometric properties have been studied in [Caldero
and Reineke 2008; Szant6 2009; Wolf 2009] and representation theoretic properties
in [Fedotov 2010; Geiss et al. 2006; Lusztig 1998; 2000; Nakajima 2003; Reineke
2008].

Let g be the Kac—Moody algebra whose Dynkin diagram is the underlying graph
of Q (the graph obtained by forgetting the orientation of all arrows) and let Q be the
double quiver obtained from Q by adding an oppositely oriented arrow a for every
a € Q1. One is often interested in modules of the preprojective algebra = ?(Q),
which is a certain natural quotient of the path algebra CQ and inherits the grading.
In particular, -modules are also CQ—moduleS. To each vertex i € Qp, we have an
associated one-dimensional simple #-module s'. For

w =7 w;i € NQy,
i

we let s =P, (s")®¥i be the corresponding semisimple module. By Baer’s Theo-
rem, the category of P-modules has enough injectives, so we can define g% to
be the injective hull of s*. One of the main results of the current paper is that
the quiver grassmannian Gr 5 (v, ¢*) is homeomorphic to the lagrangian Nakajima
quiver variety £(v, w) used to give a geometric realization of irreducible highest
weight representations of g; [Nakajima 1994; 1998]. In addition, for each o in
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the Weyl group of g, there is a natural finite-dimensional submodule ¢*-° of g%
such that the quiver grassmannian Gr o, q"?) is homeomorphic to the Demazure
quiver variety £, (v, w) defined in [Savage 2006d]. Since Nakajima’s realization
of highest weight representations and the first author’s realization of Demazure
modules depend only on the topological information of the spaces involved, such
homeomorphisms allow one to replace quiver varieties by quiver grassmannians in
the constructions. This change of setting affords some advantages. In particular,
it avoids the description as a moduli space. One can view it as a uniform way of
picking a representative from each orbit in the original moduli space descriptions.

Quiver grassmannians admit natural group actions. We describe these actions
and show that certain special cases agree, under the homeomorphisms described
above, with well-studied groups actions on Nakajima quiver varieties. In this way,
we are able to give a quiver grassmannian realization of the cyclic/graded quiver
varieties used by Nakajima [2004] to define #-analogs of g-characters of quantum
affine algebras.

The injective modules g* are locally nilpotent if and only if the quiver Q is of
finite or affine type. However, it turns out that the submodules ¢*-° are always
nilpotent. The limit g* of these submodules is the injective hull of the semisimple
module s¥ in the category of locally nilpotent -modules, giving us a description
of the indecomposable injectives in this category.

Lusztig has previously presented a canonical bijection between the points of
the lagrangian Nakajima quiver variety and the points of a type of quiver grass-
mannian inside a projective (as opposed to injective) object. In finite type, the
projective objects are also injective. It turns out that, on the level of geometric
realizations of representations of finite type g, the two constructions are related by
the Chevalley involution. Outside of finite type, there are some other subtle yet
important differences between the two constructions. In particular, the description
in terms of projective objects requires one to impose a nilpotency condition in the
definitions. However, the description in terms of injectives given in the current
paper requires no such condition and is in this way simpler. Furthermore, through
the use of the distinguished modules ¢*-° mentioned above, one can always con-
sider quiver grassmannians of submodules of a fixed finite-dimensional module of
the preprojective algebra. Thus, one can avoid working with infinite-dimensional
objects.

Motivated by an earlier version of the current paper [Savage and Tingley 2009],
I. Shipman [2010] has recently proven that the canonical bijection given by Lusztig
and mentioned above is, in fact, an isomorphism of algebraic varieties. We have
added an Appendix explaining how this result allows us to conclude that the maps
between quiver grassmannians and lagrangian Nakajima quiver varieties described
in the current paper are also isomorphisms of algebraic varieties.
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Throughout this paper, we work over the field C of complex numbers. While
many results hold in more generality, this assumption will streamline the exposition
and several results we quote in the literature are stated over C. We will always use
the Zariski topology and do not assume that algebraic varieties are irreducible. We
let N =7~ and denote the fundamental weights and simple roots of a Kac—-Moody
algebra by w; and «; respectively.

This paper is organized as follows. In Section 1 we review some results on
quivers, path algebras and preprojective algebras. In Section 2 we discuss various
module categories of these objects and introduce our main object of study, the
quiver grassmannian. We review the definition of the quiver varieties of Lusztig
and Nakajima in Section 3 and realize these as quiver grassmannians in Section 4.
In Section 5 we introduce a natural group action and show how it can be used
to recover group actions typically constructed on quiver varieties. We also de-
fine graded/cyclic versions of quiver grassmannians. In Section 6 we use quiver
grassmannians to give a geometric realization of integrable highest weight repre-
sentations of a symmetric Kac-Moody algebra and discuss the compatibility of this
construction with the natural nesting of quiver grassmannians. Finally, in Section 7
we discuss a precise relationship between our construction and a similar one due to
Lusztig. The Appendix, added after the appearance of [Shipman 2010], provides a
proof that the maps between quiver grassmannians and quiver varieties described
in the current paper are isomorphisms of algebraic varieties.

1. Quivers, path algebras, and preprojective algebras

We briefly review the relevant definitions concerning quivers. We refer the reader
to [Deng et al. 2008; Ringel 1998; Savage 2006a] for further details.

A quiver is a directed graph. That is, it is a quadruple Q = (Qo, O1, s, 1)
where Qg and Q) are sets and s and ¢ are maps from Q to Qp. We call Q¢ and
Q1 the sets of vertices and directed edges (or arrows) respectively. For an arrow
a € Q1, we call s(a) the source of a and ¢(a) the target of a. Usually we will
write O = (Qo, Q1), leaving the maps s and ¢ implied. The quiver Q is said to
be finite if Q¢ and Q; are finite. A loop is an arrow a with s(a) = t(a). In this
paper, all quivers will be assumed to be finite and without loops. A quiver is said
to be of finite type if the underlying graph of Q (i.e the graph obtained from Q by
forgetting the orientation of the edges) is a Dynkin diagram of finite ADE type.
Similarly, it is of affine (or tame) type if the underlying graph is a Dynkin diagram
of affine type and of indefinite (or wild) type if the underlying graph is a Dynkin
diagram of indefinite type.

A path in Q is a sequence B = aja;_1 - - - a; of arrows such that  (a;) = s(a;j+1)
for 1 <i <[l—1. We call [ the length of the path. We let s(8) = s(a;) and
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t(B) = t(a;) denote the initial and final vertices of the path 8. For each vertex
i € I, we have a trivial path e¢; with s(e;) =1(e;) = 1.

The path algebra CQ associated to a quiver Q is the C-algebra whose underlying
vector space has basis the set of paths in Q, and with the product of paths given
by concatenation. More precisely, if 8 =a; - --a; and 8’ = b,, - - - by are two paths
in Q, then B8’ =a;---aib,, --- by if t(B") = s(B) and BB’ = 0 otherwise. This
multiplication is associative. There is a natural grading

Co =P,
n>0
where (CQ), is the span of the paths of length .
Given a quiver Q = (Qg, Q1), we define the double quiver associated to Q to
be the quiver Q = (Qg, Q1) where

01=|Jla.a), where s(@) =t(a). 1@ =s(a).
aeQ
We then have a natural involution O — 0, given by a > a (where a = a). The
algebra
P=9(Q)=C0/ ) (aa—aa)
acQ;
is called the preprojective algebra associated to Q. It inherits a grading

?=P 2.

n>0

from the grading on CQ. Up to isomorphism, the preprojective algebra %(Q)
depends only on the underlying graph of Q. See [Lusztig 1991, §12.15] for details.

2. Modules of the path algebra and quiver grassmannians

2A. Module categories. For an associative algebra A, let A-Mod denote the cat-
egory of A-modules and A-mod the category of finite-dimensional A-modules.
We will use the notation V € A-Mod (resp. V € A-mod) to indicate that V is an
object in the category A-Mod (resp. A-mod). Note that #y-mod is equivalent to
the category of finite-dimensional Qq-graded vector spaces whose morphisms are
linear maps preserving the grading, and we will often blur the distinction between
these two categories. Up to isomorphism, the objects of Py-mod are classified
by their graded dimension. We denote the graded dimension of a module V by
dimp,V = ) ;(dim V;)i € NQo and let dim¢ V = Zier dimV; € N. We will
sometimes view the graded dimension dimg,V of V' as its isomorphism class.
For V, W € ®p-mod, we denote the set of Pg-module morphisms from V to W
by Homg,(V, W). Under the equivalence of categories above, Homg,(V, W) is
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identified with B, _ Homc (V;, W;). We define Endg,V to be Homg,(V, V) and
GLy = Hier GL(V;) to be group of invertible elements of Endg, V. For V € P¢-
mod, we will write U C V to mean that U is a Py-submodule of V. This is the
same as a Qp-graded subspace. Note that any -module becomes a %y-module by
restriction, and thus can be thought of as a Q¢-graded vector space.

Suppose A = D, An is a graded algebra and V is an A-module. Then V is
nilpotent if there exists an n € N such that Ay - V =0 for all k > n. We say V
is locally nilpotent if for all v € V, there exists n € N such that A; - v =0 for all
k > n. We denote by A-InMod the category of locally nilpotent A-modules. For
n >0, we define A~, = ,., Ax and we let AL = A-y.

Proposition 2.1. For a quiver Q, the following are equivalent:
(1) P(Q) is finite-dimensional,
(ii) all finite-dimensional % (Q)-modules are nilpotent,

(iii) all finite-dimensional P (Q)-modules are locally nilpotent, and

(iv) Q is of finite type.

Proof. The equivalence of (i) and (iv) is well-known; see [Reiten 1997], for exam-
ple. That (ii) implies (iv) was proven in [Crawley-Boevey 2001] and the converse

was proven by Lusztig [Lusztig 1991, Proposition 14.2]. Since a finite-dimensional
module is nilpotent if and only if it is locally nilpotent, (ii) is equivalent to (iii). [

2B. Simple objects. For each i € Qy, let s' be the simple CQ-module given by
sl.i = C and sj. =0fori # j. Then s' is also naturally a -module which we also

denote by s'.

Lemma 2.2. The set {s'} icQ, 18 a set of representatives of the isomorphism classes
of simple objects of CQ-InMod and P-InMod. In particular, if Q is of finite type,
then {s'} icQ, is a set of representatives of the isomorphism classes of simple objects

of CQ-mod and P-mod.

Proof. Any nonzero element of a simple locally nilpotent module M generates a
finite-dimensional module which must be all of M. Therefore M is finite-dimen-
sional and hence nilpotent. Then (C 0). and @, are two-sided ideals of CQ and P
respectively that act nilpotently on any nilpotent module. Therefore, simple nilpo-
tent C Q-modules and %-modules are the same as simple CcO /(C Q)+—m0dules and
% /% -modules respectively. Since

CO/(CQ)+ =2/P. = (P Cei,
iel
the first statement follows. The second statement then follows from Proposition 2.1.
O
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Lemma 2.3. Fix a quiver Q and let A be either CQ or P(Q). If V € A-InMod,
then the socle of Vis{ve V| Ay -v =0}

Proof. 1t is clear that {v € V | Ay - v =0} is a sum of simple subrepresentations
of V and is thus contained in the socle of V. Similarly, by Lemma 2.2, any simple
subrepresentation of (V, x) is contained in {fv e V | AL - v =0}. O

2C. Projective covers. Recall that if A is an associative algebra and V is an A-
module, then a projective cover of V is a pair (P, f) such that P is a projective
A-module and f : P — V is a superfluous epimorphism of A-modules. This means
that f(P) =V and f(P’) # V for all proper submodules P’ of P. We often omit
the homomorphism f and simply call P a projective cover of V.

Definition 2.4. For i € Qy, let p' = Pe;.

Lemma 2.5. Assume Q is a quiver of finite type. For i € Qo, {p'}icq, is a set
of representatives of the isomorphism classes of indecomposable projective P-
modules. Furthermore, p' is a projective cover of s'.

Proof. This follows from [Auslander et al. 1995, Proposition 4.8]. (]

Lemma 2.6. Assume Q is a quiver of affine (tame) or indefinite (wild) type. Then
there exist i € Qg for which the simple module s' does not have a projective cover.

Proof. Since the module s’ is obviously cyclic, by [Anderson and Fuller 1992,
Lemma 27.3] it has a projective cover if and only if s = %e /I ¢ for some idempotent
e € % and some left ideal / contained in the Jacobson radical of ?. Assume this is
true for some idempotent e and ideal /. Then we must have e = ¢; and then / would
have to contain P ¢;, the ideal consisting of all paths of length at least one starting
at vertex i. We identify ZQ( with the root lattice via ) vjj <> > vj;. Let Bbea
minimal positive imaginary root and let i be in the support of S (i.e., 8 =) Bj«;
with 8; > 0). By [Crawley-Boevey 2001, Theorem 1.2], there is a simple module T
of  whose dimension vector is 8 and so, in particular, dim 7; # 0. Since the simple
module T cannot be killed by % e; (since then 7; would be a proper submodule),
P 1 e; is not contained in the Jacobson radical of %. This contradicts the fact that
[ is contained in the Jacobson radical. (]

2D. Injective hulls. Recall that if A is an associative algebra and V is an A-
module, then an injective hull of V is an injective A-module E that is an essential
extension of V (that is, V is a submodule of £ and any nonzero submodule of E
intersects V nontrivially). By Baer’s Theorem [1940], the category %-Mod has
enough injectives. In particular, the simple modules s’ have injective hulls. Here
we give an explicit description of these injective hulls in the finite type case, and
study some of their properties in the more general case.
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Definition 2.7. Assume Q is a quiver of finite type. For i € Q, let
q' =Home(e;#, C)

be the dual space of the right -module ¢;%. Define a left -module structure on
g' by setting a - f(x) = f(xa),fora e P, f €q’, and x € ¢;P.

Lemma 2.8. If Q is a quiver of finite type, then {q' Yico, is a set of representatives
of the isomorphism classes of indecomposable injective P-modules. Furthermore,
q' is an injective hull of s'.

Proof. If Q is of finite type, then P is finite-dimensional by Proposition 2.1. The

result then follows from Lemma 2.5 and a well-known fact about modules over
finite-dimensional algebras; see, for example, [Lam 1999, Corollary 3.66]. O

For w =), w;i € NQy, define the semisimple %-module

sv = @ (sh)®wr,

i€Qo

Let ¢' be the injective hull of s’ in the category %-Mod (if Q is a quiver of finite
type, this agrees with the notation of Definition 2.7). Then

9" =PH™"

iel
is the injective hull of s*.
Lemma 2.9. For w € NQy, any finite-dimensional submodule of q* is nilpotent.

Proof. Let V be a finite-dimensional submodule of g*. Then we have the chain of
submodules V=%~V D P> VO P,V O-... Since g" is an essential extension
of s¥, we have s* N %>,V # 0 for all n € N such that %,V # 0. Because %
acts trivially on s*, we have dim®>,41V < dim®5,V for all n € N such that
P>,V #0. Thus P>,V =0 for n large enough. (]

Remark 2.10. It follows from Lemma 2.9 and Proposition 7.10 that if Q is a quiver
of finite type, then p» (and ¢") is nilpotent. However, in general the p" are not
nilpotent.

Proposition 2.11. If Q is of affine (tame) type, then qv is locally nilpotent for all
w € NQg. If Q is connected and of indefinite (wild) type, then qv is not locally
nilpotent for any w € NQg, w # 0.

The following proof was explained to us by W. Crawley-Boevey.

Proof. 1t suffices to consider the case where w = i for some i € Qp. We identify
7 Qo with the root lattice via ) v;j <> > vja;. We first assume that Q is con-
nected of wild type. Let 8 be a minimal positive imaginary root. Thus (8, j) <0
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forall j € Qp. Suppose the support of 8 is all of Qg. Since Q is wild, 8 cannot be a
radical vector (see [Kac 1990, Theorem 4.3]), so (8, j) < 0 for some j € Qy. If, on
the other hand, the support of § is not all of Qg, we take j € Q¢ to be a vertex not in
the support of B but connected to it by an arrow and we again have (8, j) < 0. By
[Crawley-Boevey 2001, Theorem 1.2], there is a simple module T for the prepro-
jective algebra of dimension 8. By [Crawley-Boevey 2000, Lemma 1], Ext! (7, s7)
is nonzero. Let V be a nontrivial extension of 7 by s/. This module must embed in
the injective hull ¢/ of s/ and thus g/ cannot be locally nilpotent. Thus the result
holds whenever (8, i) < 0. For general i, choose a shortest path from i to some
j with (B, j) < 0 and consider the corresponding nilpotent module U with head
s/ and socle s'. Then, as above, there is a nontrivial extension of T by U, which
must embed into g’. So ¢’ is not locally nilpotent.

Now assume that Q is of tame type. Since the preprojective algebra of a tame
quiver is a finitely generated C-algebra, noetherian, and a polynomial identity ring
[Baer et al. 1987, Theorem 6.5] (see [Ringel 1998] for a proof that the preprojective
algebra considered there is the same as the one considered here), any simple module
is finite-dimensional; see [McConnell and Robson 2001, Theorem 13.10.3]. By
[Jategaonkar 1976, Theorem 2], the injective hull of a simple -module is artinian.
In particular, finitely generated submodules of injective hulls of simple modules are
artinian and noetherian. Thus they are of finite length and hence finite-dimensional.
Now, the dimension vectors of simple -modules are the coordinate vectors i € Qg
and the minimal imaginary root é. Since (§,i) = O for all i € Qy, there are no
nontrivial extensions between simples of dimension § and the one-dimensional
simples. Therefore, the composition factors of the finite-dimensional submodules
of the injective hull g’ of s are all one-dimensional simple modules. Thus g° is
locally nilpotent. U

Remark 2.12. In types A and D, there exist simple and explicit descriptions of
the representations ¢, i € Qo, in terms of classical combinatorial objects such
as Young diagrams; see [Frenkel and Savage 2003; Savage 2006b; 2006c]. This
allows one to give simple and explicit descriptions of the injective modules ¢* for
any w € NQ¢ when the underlying graph of the corresponding quiver is of type A
or D.

2E. Quiver grassmannians.

Definition 2.13 (quiver grassmannian). For a CQ-module V, let Grp(V) be the
variety of all CQ-submodules of V. We have a natural decomposition

Gro(V)= || Gro,V), Grou,V)={UeGro(V)| dimU = u}.
MENQO
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We call Grg(u, V) a quiver grassmannian. Note that Grg(u, V) is a closed sub-
set of the usual grassmannian of dimension u subspaces of V and thus is a pro-
jective variety. If V is a P-module, then %-submodules of V are the same as
CQ-submodules of V. Hence one can think of GrQ(V) as the variety of all %-
submodules of V. Therefore, we will often write Grge(V) and Grg(u, V) for
GrQ(V) and GrQ (u, V) when V is a P-module.

Example 2.14 (grassmannians). If Q is the quiver with a single vertex and no
arrows, then ? = C and %-modules are simply vector spaces. Then Grg(u, V) =
Gr(u, V) is the usual grassmannian of dimension u subspaces of V.

Example 2.15 (partial flag varieties). Let Q be the quiver with Q¢ ={1, 2, ..., n}
and Q1 ={ai,...,a,_1}, wheres(a;)=i,t(a;)=i+1foralli=1,...,n—1. Fix
a positive integer d and set V; = Clforalli=1,...,n. Foreachl <i<n—1,letq;
act by the identification V; = V. Then for u e NQg withu; <up <---<u, <d,
the quiver grassmannian Grg (4, V') is isomorphic to the partial flag variety

0CSF CFhc- CFcC| dmF =u}.
Definition 2.16. For V € %-Mod, we define a natural action of Autgp V on Grg (1, V')

by
g, U)—glU), geAutypV, UceGrpu,V).

3. Quiver varieties

We briefly recall certain quiver varieties defined by Lusztig and Nakajima, referring
the reader to [Lusztig 1991; Nakajima 1994; 1998] for further details, as well
as the Demazure quiver varieties introduced in [Savage 2006d]. We fix a quiver
0 = (Qo, O1) and let ¥ = P(Q) denote its preprojective algebra.

3A. Lusztig and Nakajima quiver varieties. For V € Py-mod, define

RepQ V= @ Homq;(Vs(a),t(a)).
a€Q1
Forapathf=a;---a;in Q and x = (xa)a€Q1 eRepQ V, we define xg =x,, - - - Xq4,.
For an element Zj cjBj € CQ, we define

XY ieiBj = Z CjXB;-
J

Thus each x € Rep oV defines a representation CQ — Endg V of graded dimen-
sion dimg,V (i.e., whose induced representation of (CQ)o is in the isomorphism
class determined by dimg, V). Furthermore, each such representation comes from
an element of x € Rep; V. These two statements are simply the equivalence of
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categories between the representations of the quiver and of the path algebra. We
say that x is nilpotent if there exists N > 0 such that xg = 0 for all paths B of
length greater than N.

Definition 3.1 (Lusztig nilpotent variety). For V € ?o-mod, define A(V)=Ap(V)
to be the set of all nilpotent -module structures on V compatible with its Pg-
module structure. More precisely,

Z XaXg — Z xzxa =0 Vi€ Qp, x nilpotent ;.

aeQy, aeQy,
t(a)=i s(a)=i

A(V) = {x € RepQ |4

We call A(V) a Lusztig nilpotent variety.

As above, elements of A(V) are in natural one-to-one correspondence with
nilpotent representations % — Endc V of graded dimension dimg, V.

For V, W € ?9-mod, let A(V, W) = A(V)xHomg,(V, W). We say that (x, 1) €
A(V, W) is stable if there exists no nontrivial x-invariant %y-submodule of V
contained in ker ¢. This is equivalent to the condition that ker((x, t)|y,) = 0 for all
i € Qo (see [Frenkel and Savage 2003, Lemma 3.4] — while the statement there
is for type A, the proof carries over to the more general case). We denote the set
of stable elements by A(V, W), There is a natural action of GLy on A(V, W)
and the restriction to A(V, W)™ is free; see [Nakajima 1994; 1998]. We denote
the GLy -orbit through a point (x, ¢) by [x, ¢].

Definition 3.2 (lagrangian Nakajima quiver variety). For V, W € Py-mod, let
LV, W) = A(V, W)Y YGLy. We call £(V, W) a lagrangian Nakajima quiver
variety. Up to isomorphism, this variety depends only on v = dimg,V and w =
dimg, W and so we will sometimes denote it by £(v, w).

Remark 3.3. The quiver varieties defined above are lagrangian subvarieties of
what are usually called the Nakajima quiver varieties [Nakajima 1994; 1998].

3B. Group actions. Let Gy be the group of algebra automorphisms of & that
fix ®y. The group GLw acts naturally on Homg,(V, W). As above, we identify
elements of A (V) with nilpotent representations % — Endc V of graded dimension
dimg, V. Then

(h, (x, 1) > (hxx,t), hxx=xoh" ', heGgy,

defines a Gg-action on A(V, W). The actions of GLy and G commute and both
commute with the GLy-action. Since they also preserve the stability condition,
they define a GLy x Gg-action on £(v, w).

We can use this action to define GLy x C*-actions on £(v, w) as follows. Sup-
pose a function m : Q1 — Z is given such that m(a) = —m(a) for all a € Ql.
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Then the map a — 7" @*1a, 7 € C*, extends to an automorphism of % fixing Py.
We denote this automorphism by #,,(z). Thus &, defines a group homomorphism
C* — Gg. Then the homomorphism

(3-D GLwy x C* — GLw x Gy, (g, 2) > (28, hw(2))

defines a GLy x C*-action on £(v, w) which we denote by x,,.

We give two important examples of this action [Nakajima 2001, §2.7; 2004].
First, for each pair i, j € Q¢ connected by at least one edge, let b;; denote the
number of arrows in Q joining i and j. We fix a numbering a1, .. ., Qp,; of these
arrows, which induces a numbering aj, ..., Ap,; of the corresponding arrows in
Ql. Define m; : H — Z by

ml(ap):bij—l—l—Zp, ml(c_zp):—b,-j—l—{—Zp.
For the second action, we define m,(a) =0 for all a € Q.

3C. Demazure quiver varieties. Let g be the Kac-Moody algebra corresponding
to the underlying graph of Q (the one whose Dynkin diagram is this graph) and let
W be its Weyl group. Recall that W' acts naturally on the weight lattice of g. For
u € ZQy, we define elements of the weight and root lattice by

wy = Z uwi, oy = Z uo;.
i€Qo i€Qo

Proposition/Definition 3.4 [Savage 2006d, Proposition 5.1]. The lagrangian Nak-
ajima quiver variety £(v, w) is a point if and only if w, — @, = o (w,,) for some
o €W (ie., wy — @y is an extremal weight of the irreducible representation of
highest weight w,,, equivalently v is w-extremal in the sense of Definition 4.7).
In this case, we let (x*?,t"-?) be a representative (unique up to isomorphism)
of the GLy-orbit corresponding to this point. So £(v, w) = {[x*7, 7]} when
Wy — Oy = 0 (Wy).

Definition 3.5 (Demazure quiver variety). Foro € W and v, w e NQy, let £, (v, w)
be the subvariety consisting of all [x, ] € £(v, w) such that (x, ¢) is isomorphic to
a subrepresentation of (x*7, t*»?). We call £, (v, w) a Demazure quiver variety.

Remark 3.6. It follows from the uniqueness assertion in Proposition/Definition 3.4
that the GLy x Gg-action on £(v, w) fixes £, (v, w) for all o € W'. Thus we have
an induced GLy x Gg-action on the Demazure quiver varieties.

4. Quiver varieties as quiver grassmannians

4A. Lagrangian Nakajima quiver varieties as quiver grassmannians. We will
now show that certain quiver grassmannians are homeomorphic to the lagrangian
Nakajima quiver varieties. We begin with a key technical proposition.
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Proposition 4.1. Suppose A = @n>o n is a graded algebra and V is a locally
nilpotent A-module. Furthermore, suppose S is a semisimple locally nilpotent A-
module with injective hull E.

(1) Letw : E — S be an Ag-linear retract for the canonical embedding 1 : S — E
(that is, an Ag-linear map such that w1 =1id) and let T : V — S be a homomor-
phism of Ag-modules. Then there exists a unique A-module homomorphism
y ' V. — E such that the following diagram commutes:

e
V——>3§

Furthermore, the map v is injective if and only if T|socle v IS injective.

(i1) Suppose my,mr : E — S are Ag-linear retracts for the canonical embedding
t: S — E. Then there exists a unique y € Auty E such that my =my. The map
y fixes S pointwise. Conversely, given an Ag-linear retract w : E — S and
any y € Auty E fixing S pointwise, my : E — S is also a Ag-linear retract.

Proof. Since V is locally nilpotent, we have a filtration
0=vVOcv®=socleVvcVv@cv®c...

of V. where VW ={m eV | As, -m = 0}. We prove by induction on n that there
exists a unique homomorphism y, : V™ — E such that the diagram

(4-1) 74 ln

ym —"s g

commutes, where 7, = t|yw. Since Vv =gocle V and A4 -socle V =0, we must
have yl(V(l)) C S and so the unique choice for y; is 7;. Suppose the statement
holds for n = k. Since E is injective, there exists an A-module homomorphism
Vk+1 such that the following diagram commutes:

V(k+1) Vk+1

| A

y &)
Define yxy1 by

Yk+1 = Vi1 — T O Y1 + T.



406 ALISTAIR SAVAGE AND PETER TINGLEY

It is then clear that the diagram (4-1) commutes (with n = k + 1). Note also that
Vi+1ly® = vik. We claim that 41 is a homomorphism of A-modules. Since it is
an Ag-module homomorphism by definition, it suffices to show it commutes with
the action of A.

Forr e Ay andm e V&) wehave r-m € V. Also, Ay - S =0. Then

reYip1(m) =71 - (Prgp1(m) — 1w 0 Py (m) + t(m))
=7 Yip1(m) = Y1 (r -m) = y(r -m)

= Yk+1(r -m),

as desired.

Now suppose that y; 1 18 another #-module homomorphism making (4-1) com-
mute (with n =k +1). By the inductive hypothesis, we have yi11|yw =y, lyw.
Forallr € A, and m € V&*D_ we have

r Vit (m) = Vi1 (r-m) =y (r-m) =1 -y, (m).

Thus yxy1(m) —y, 4+1(m) lies in S. Therefore

Yir1(m) — v (m) = (g1 (m) — yy 4y (m))
=7 (Yrr1(m)) — (Y41 (m)) = t(m) — t(m) =0.

The induction is complete and we obtain the desired map y by taking the limit.

Note that ¥ |socle v = Tlsocle v- Since a homomorphism of modules is injective if
and only if its restriction to the socle is injective, it follows that y is injective if
and only if T|socle v 1S injective.

We now prove (ii). By (i), there exists a unique A-module homomorphism
y . E — E such that m, = my. Similarly, there exists a unique A-module auto-
morphism y : E — E such that 71 = mpy and yy = yy = id by the uniqueness
assertion in (i). Thus y is an A-automorphism of E. The converse statement is
trivial. (]

Remark 4.2. The retract 7 : E — S in Proposition 4.1 is equivalent to choosing
an Ag-module decomposition £ = S@ T. The second part of the proposition states
that any two such decompositions are related by a unique A-module automorphism
of E fixing S.

Definition 4.3. Let V be a Pp-module of graded dimension v. Define §r@(v, q")
to be the variety of injective p-module homomorphisms y : V — g whose image
is a P-submodule of g% .

Theorem 4.4. Fix v, w € NQo. Then there is a bijective GLy -equivariant al-
gebraic map from Grg(v, g%) to A(v, w)™ and a bijective algebraic map from
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Grg (v, ¢%) to £(v, w). In particular, @r@(v, q%) is homeomorphic to A(v, w)™
and Grg (v, g"') is homeomorphic to £(v, w).

Remark 4.5. Lusztig [1998; 2000] has described a canonical bijection between
the lagrangian Nakajima quiver varieties and grassmannian type varieties inside
the projective modules p*” (see Section 7). In several places in the literature, it was
claimed that the varieties defined by Lusztig are isomorphic (as algebraic varieties)
to the lagrangian Nakajima quiver varieties. However, the authors were not aware
of a proof existing in the literature. Most references for this statement were to
[Lusztig 1998; 2000], where the points of the two varieties are shown to be in
canonical bijection (similar to the situation in the current paper). Lusztig informed
the authors that he was not aware of a proof that the varieties are isomorphic. After
the appearance of an earlier version of the current paper [Savage and Tingley 2009],
Shipman [2010] proved that the varieties are indeed isomorphic. From now on, we
will incorporate Shipman’s work, as it allows us to strengthen several results; in
particular (see Corollary A.6 in the Appendix) the map 7 in the proof below is an
isomorphism of algebraic varieties.

Proof of Theorem 4.4. Fix V € Pp-mod of graded dimension v and a %p-module

homomorphism 7 : g% — s% that is the identity on s*. We identify s* with the

W appearing in the definition of the quiver varieties. A point y € 6@ (v, g™)

defines an embedding of V into g%, hence a -module structure on V satisfying

the stability condition and so a point of A (v, w)*. More precisely, y € 6@ (v, g")
-1, .w

corresponds to the point (y ~'x¥y, wy) € A(v, w)™, where x¥ is the element of
Repy g* corresponding to the %-module ¢*. Thus we have a map

1:Grp(v, g%) = AV, W)™,

which is clearly algebraic and GLy-equivariant. By Proposition 4.1, ¢ is bijective.
Passing to the quotient by GLy we also obtain a bijective algebraic map ¢ from
Grg (v, ¢%) to £(v, w).

Now, Grg (v, ¢*) and £(v, w) are both projective. By, for example, [Hartshorne
1977, Theorem 4.9 and Exercise 4.4], the image of a projective variety under an
algebraic map is always closed, so ¢ takes closed subsets to closed subsets. Sincet is
a bijection, this implies that 7! is continuous. Hence 7 is a homeomorphism. Since
@r@(v, q%) and A (v, w)* are principal G-bundles over Grg (v, ¢*) and £(v, w),
the map ¢ also induces a homeomorphism. (I

Remark 4.6.

(i) The role of the retract w in Proposition 4.1 is to ensure the uniqueness of y.

(il)) When Q is of finite type, the injective module g% is also projective (see
Proposition 7.10) and thus Theorem 4.4 follows from [Lusztig 2000, §2.1].
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(iii) The isomorphisms of Theorem 4.4 depend on the choice of the retract 7 :
q” — s". By Proposition 4.1(ii), isomorphisms coming from different retracts
are related by an automorphism of g% fixing s.

(iv) In Lusztig’s grassmannian type realization of the lagrangian Nakajima quiver
varieties [Lusztig 1998; 2000], one must require that the submodules contain
all paths of large enough length (this corresponds to the nilpotency condition
in the definition of the quiver varieties). In the current approach using injective
modules, no such condition is required due to Lemma 2.9.

4B. Demazure quiver grassmannians. As before, let g be the Kac—Moody alge-
bra corresponding to the underlying graph of Q and let W be its Weyl group with
Bruhat order <.

Definition 4.7. For each w € NQ(, we define an action of W on ZQ as follows.
Forv e ZQp and o € W', define o -, v = u where u is the unique element of ZQ
satisfying

0 (wy — ay) = @y — Q.
We say that v € NQy is w-extremal if v e W -, 0.
Lemma 4.8. If v, w € NQg and wy — oy, is a weight of the irreducible highest

weight representation of g of highest weight w,, (i.e the corresponding weight space
is nonzero), then o -, v € NQy for all o € W. In particular W -, 0 C NQ.

Proof. This follows easily from the fact that W acts on the weights of highest
weight irreducible representations and the weight multiplicities are invariant under
this action. (]

Proposition 4.9. For v € NQy, the following statements are equivalent:
(1) v is w-extremal,

(1) L£(v, w) consists of a single point,

(iii) Grg (v, g%) consists of a single point, and

(iv) there is a unique submodule of g% of graded dimension v.

Proof. The equivalence of (i) and (ii) is given in [Savage 2006d, Proposition 5.1].
The equivalence of (ii), (iii) and (iv) follows from Theorem 4.4. O

Definition 4.10 (Demazure quiver grassmannian). For o € W, we let ¢**° denote
the unique submodule of ¢% of graded dimension o -, 0. We call Gra (v, g*7) a
Demazure quiver grassmannian.

Proposition 4.11. If o1, 0, € W with o1 < 03, then ¢">°* has a unique submodule

of graded dimension o -, 0 and this submodule is isomorphic to q"-°!.
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Proof. Since o1 < 03, we have L, » < Ly, o, Where L, ., is the Demazure
module corresponding to L, (the irreducible integrable highest weight g-module
with highest weight w,,) and o;. It then follows from [Savage 2006d, Theorem 7.1]
that ¢g*-°! is (isomorphic to) a submodule of g*>?2. Since any submodule of ¢"°2
is also a submodule of g%, uniqueness follows directly from Proposition 4.9. [J

Proposition 4.12. Fix o € W and v, w € NQg. Then Grg (v, g"%) is isomorphic
(as an algebraic variety) to the Demazure quiver variety £, (v, w).

Proof. This follows immediately from Definitions 3.5 and 4.10 and the description
of the homeomorphism Grg (v, g%) = £(v, w) given in Theorem 4.4, which is
actually an isomorphism of algebraic varieties by Corollary A.6. O

Remark 4.13. Note that if Q is a quiver of finite type and oy is the longest element
of W, then £,,(v, w) = £(v, w) and Gr(v, g*°°) = Gr(v, g*) for all v, w € NQy.

The (¢"?)yew form a directed system under the Bruhat order. Let g be the
direct limit of this system.

Lemma 4.14. Any locally nilpotent submodule V of gV is contained in g".

Proof. First note that for n € N, the submodule (¢*)™ = {v € g% : P, - v =0}
of ¢ is finite-dimensional. This follows from the fact that ¢’ is a submodule of
Homg (e;%, C) (since this is an injective module containing s?), which has this
property, and ¢ = @, (g")®"".

Since V is locally nilpotent, we have a filtration

0=v®O® - v —socle V - y® c...

where VW ={v e V : P, -v=0}. Local nilpotency of V ensures that | J, V" =V.
It suffices to show that each V" is contained in g¥. Since V™ C (g*)™, it
follows that V® is finite-dimensional. Choose a linear retract 77 : g* — s*. By
Theorem 4.4, V corresponds to a point of £(v, w). Choose o € W sufficiently
large so that the (w,, — o )-weight space of the representation L, is contained
in the Demazure module L,,, , (we can always do this since the weight space is
finite-dimensional). Then by Proposition 4.12, we have that V C ¢¥° C g¥. [

Theorem 4.15. We have that g% is the injective hull of s¥ in the category P-InMod.

Proof. Since each ¢"° is nilpotent, it follows that g¥ is locally nilpotent and thus
belongs to the category ?-InMod. Furthermore, it is clear that g% has socle s* and
that it is an essential extension of s*. It remains to show that g% is an injective
object of P-InMod. Suppose M and N are locally nilpotent -modules and we
have a homomorphism M — g" and an injection M — N. Since g is injective
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in the category of ?-modules, there exists a homomorphism 4 : N — g such that
the following diagram commutes:

N

] T

M—=q"—q"

Since N is locally nilpotent, 2 (V) is a locally nilpotent submodule of ¢g*. There-
fore the map & factors through g* by Lemma 4.14. U

Corollary 4.16. We have that gV = g% if and only if Q is of finite or affine (tame)
ype.

Proof. This follows immediately from Theorem 4.15 and Proposition 2.11. U

We see from the above that {g"? }, <y is a “rigid” filtration of g% (rigid in the
sense of the uniqueness of submodules of the given w-extremal graded dimen-
sions). Proposition 4.12 can be seen as a representation theoretic interpretation of
this filtration. It corresponds to the filtration by Demazure modules of the irre-
ducible highest-weight representation of g of highest weight w,,. If the quiver Q is
of finite type, the Weyl group W', and hence this filtration, is finite. Otherwise they
are infinite. In the infinite case, we have a filtration of the infinite-dimensional g%
by finite-dimensional submodules g*-?, o € W.

5. Group actions and graded quiver grassmannians

We now define a natural GLy x Gg-action on the quiver grassmannians and show
that the maps of Theorem 4.4 are equivariant. We then define graded/cyclic quiver
grassmannians and show they are isomorphic to the graded/cyclic quiver varieties
of Nakajima [2001, §4.1; 2004, §4].

5A. GL,, x Gg-action and equivariance. Let GL,, = GL v and recall that G is
the group of algebra automorphisms of % that fix g pointwise. For a -module
V and h € Gy, denote by "V the P-module with action given by (a, v) — h~Ya)-
v. Now, fix (g,h) € GL, x Gg and a Pyp-module retract 7 : g¥ — s*. By
Proposition 4.1, there exists a unique %-module homomorphism y(g s : hgw — gv
such that the following diagram commutes:

how Y(g.h) w
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The uniqueness assertion of Proposition 4.1 ensures that y(, ;) is bijective with
inverse y(,-1 5-1y. Note that since the action of Py on hg" and g™ is the same,
Y(g.n) can be considered as a Pp-automorphism of ¢*. This defines a group ho-
momorphism GL,, x Gy — GLgv, (g, h) +> Y(g.n). In other words, it defines an
action of GL,, x Gg on g% by Pp-module automorphisms. This in turn defines an
action on @@(v, q") and Grg (v, ¢%) given by

@ M*y=veny, v eGrpwq")

(g, W) *U=yenlU), UeGCGryp(v,q").
Proposition 5.1. The isomorphisms of Theorem 4.4 are GL,, x Gg-equivariant.
Proof. Let (x, 1) — y(x, t) be the map A (v, w)™ 3 Gr@(v, q") of Theorem 4.4.
Fix (x,1) € A(v, w)*. Recall that for (g, h) € GL,, x Gy, we have (g, h)x(x, 1) =

(h*x, gt). Let V* be the -module corresponding to x. Then” V" is the ?-module
corresponding to &« x. We have the commutative diagram

w

q

vl
b/

V.Xtésw

It follows that the diagram

Y(g,h)
-4

lﬂ

Sw

w

w
"q
V(V L”
th . sW .

commutes. By the uniqueness statement in Proposition 4.1, we have

y((g. M) x(x, 1) =y(hxx,gt) =yEmy(x,1) = (g h)xyx,1),
which proves that the map A (v, w)* = Gryp (v, ¢%) is equivariant. The remaining
claim follows from the fact that the isomorphism £(v, w) = Grg (v, g") is obtained
from the map A (v, w)** = Gr@(v, q") by taking quotients by GLy . ]
5B. Graded/cyclic quiver grassmannians. Fix an abelian reductive subgroup A
and a group homomorphism p : A — GL,, X Gg, defining an action of A on g% by

%o-module automorphisms. The weight space corresponding to A € Hom(A, C*)
is

(5-1) 4" () = v eq” | p@)(v) =A@y Ya e A).
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We define
Gry(q")* ={U €Grap(q") | p(a)»U=U Vae A},
Grg (u, ") = Gra(g")" NGrop(u, ¢*).
Then for all U € Gr@(qw)A, we have the map py : A - GLy, a — p(a)|y. In
other words, py is a representation of A in the category of %g-modules. If p; and
02 are two such representations, we write p; = p, when p; and p, are isomorphic.
That is, p; = p, for p; : A — GLy,, if there exists a p-module isomorphism

£ : U; — U, such that p) = £p;£~!, where £py&~! denotes the homomorphism
a > Epy(a)&~". Then, for p; : A— GLy, U a Pp-module, we define

Grg(p1,¢")* = (U’ € Grap(¢")* | pur = p1}.

Note that Grg (p1, g*)4 depends only on the isomorphism class of p;.
Recall the action of GL,, x Gg on A(V, W) and £(v,w) described in Section 3B
(where we now identify W with s, w = dimg, W). Define
L) ={lx, 11 € L, w) | p(@) x[x, 11 =[x, 1]V a € A},
L, w)* = Lw)* N L, w).

Fix a point [x, t] € £(v, w)A. For every a € A, there exists a unique pj(a) € GLy
such that

(5-2) pla)*(x,1) = p; (@) (x,1),

and the map p; : A — GLy is a homomorphism. Let £(p;, w)4 € £(v, w)4 be the
set of A-fixed points y such that (5-2) holds for some representative (x, ¢) of y.

Theorem 5.2. Let V be a Po-module and py : A — GLy a group homomorphism.
Then Grg(p1, g»)4 is isomorphic to £(p1, w)A as an algebraic variety.

Proof. Choose [x, ] € £(p1, w)4. Let U = y (x, t)(V) be the corresponding point
of Grg (v, qw)A. We want to show that p; = py. Let (g, h) € A and consider the
commutative diagram

how Y(g.h) qw
v RS
h VX - sW Z §W - Vv

Then py (g, h) = y(g.nlvu- Note that y (x, ¢) is an isomorphism when its codomain
is restricted to U and we denote by y (x, 1)~! the inverse of this restriction. We
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claim that p; = p def y (., 7 (V.mlu) v (x, 1). Tt suffices to show that

(hxx,gt)=(g, W) *(x,t)=p""-(x,1) = (5" 'xp, 1 ).
We have

- x =y, ) Weml) v (x, Dx
=y, 07 emlo) xy (1)
=y, ) (h*x ) (Vgnlv) v (. 1)
=(h*x)y (.0 W lo) "y x, 1)
= (h*x)p~",

s0 p~'xp = hxx. Similarly, 15 =ty (x, )" (ye.mlv) ¥ (x, 1) = gt and we are

done. |

We now restrict to a special case of this construction that has been studied by
Nakajima. In particular, we define GL,, x C*-actions on the quiver grassmannians
corresponding to the actions on quiver varieties described in Section 3B.

For any function m : Q1 — Z such that m(a) = —m(a) for all ae Ql, the
group homomorphism (3-1) defines a GL,, x C*-action on ¢", Gr@(v, q¥) and
Grg (v, ¢¥) which we again denote by *,,. If A is any abelian reductive subgroup of
GL,, x C*, we can consider the weight decompositions as above. For the remainder
of this section, we fix m = my (see Section 3B). That is, m(a) =0 for all a € Q;.
We also write * for x,,. Recall the definition (5-1) of ¢* (). For x e ?,, ve g¥ (1)
and (g, z) € A, we have

P(8, (X V) = Vg hm() X - V) =27"X - Vg hm(z) (V) =27 "A(g, 2)v.

Thus %, : ¢* (A) = g"” (")), where we write [ 7" X for the element L(—n) ® A of
Hom(A, C*) and L(—n) = C with C*-module structure given by z - v = z7"v.
Now let (g, z) be a semisimple element of A and define
Gra(q")®? ={U € Gra(¢") | (8, 2)xU = U},
Grg (u, ¢*) ¢ = Grgp(¢*)*? N Gra(u, ¢*).
The module ¢ has an eigenspace decomposition with respect to the action of

(g, z) given by
=P e"@. ¢"@={eq”|(g.)*v=av}

aeC*

Then Grg (qw)(g 2 consists of those U € Grp (g") that are direct sums of subspaces
of the weight spaces ¢* (a), a € C*. Thus, each U € Gry(¢*)®? inherits a weight
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space decomposition, or C*-grading,
U=@P U@, U@={pel] (g )*v=av}.
aeC*
As above we see that P, : g% (a) - q¥(az™") and P, : U (a) — U(az™"). We also
regard s as an A-module via the composition

projection

A — GL,, x C* —— GL,, = GL;w.

Thus s" also inherits a C*-grading as above. For a Q¢ x C*-graded vector space
V= & Vi, define the graded dimension (or character)

i€Qo,
Cc* .
“ char V=Y (dim Vi 4) Xi.« € N[X;.alicgy. acc>-
i€Qo,
aeCx

Recall that a g-module is equivalent to an Qg-graded vector space. Thus g%, s¥,
and elements of Grp(¢™)? have natural Qg x C*-gradings and we can consider
their graded dimensions.

Definition 5.3 (graded/cyclic quiver grassmannian). For a graded dimension
de N[Xi,a]ier, aeC*, define

Gry(d, ¢¥) ¢ = (U € Gryp(q™)®? | charU = d}.

We call Grg(d, )2 a cyclic qui