Pacific Journal of Mathematics

PACIFIC JOURNAL OF MATHEMATICS

http://www.pjmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS
V. S. Varadarajan (Managing Editor)

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Robert Finn

Department of Mathematics Stanford University Stanford, CA 94305-2125
finn@math.stanford.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Darren Long
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk
Alexander Merkurjev
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu
Jonathan Rogawski
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
jonr@math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu
Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.
The subscription price for 2011 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.
The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\text {TM }}$ from Mathematical Sciences Publishers.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Pacific Journal of Mathematics

TWO KAZDAN-WARNER-TYPE IDENTITIES FOR THE RENORMALIZED VOLUME COEFFICIENTS AND THE GAUSS-BONNET CURVATURES OF A RIEMANNIAN METRIC

Bin Guo, Zheng-Chao Han and Haizhong Li

We prove two Kazdan-Warner-type identities involving the renormalized volume coefficients $v^{(2 k)}$ of a Riemannian manifold (M^{n}, g), the GaussBonnet curvature $G_{2 r}$, and a conformal Killing vector field on (M^{n}, g). In the case when the Riemannian manifold is locally conformally flat, we find

$$
v^{(2 k)}=(-2)^{-k} \sigma_{k} \quad \text { and } \quad G_{2 r}(g)=\frac{4^{r}(n-r)!r!}{(n-2 r)!} \sigma_{r}
$$

and our results reduce to earlier ones established by Viaclovsky in 2000 and the second author in 2006.

1. Introduction

Theorem A [Viaclovsky 2000b; Han 2006a]. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, let $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ be the σ_{k} curvature of g, and let X be a conformal Killing vector field on (M, g). When $k \geq 3$, assume also that (M, g) is locally conformally flat. Then

$$
\begin{equation*}
\int_{M}\left\langle X, \nabla \sigma_{k}\left(g^{-1} \circ A_{g}\right)\right\rangle d v_{g}=0 . \tag{1-1}
\end{equation*}
$$

Recall that on an n-dimensional Riemannian manifold (M, g) with $n \geq 3$, the full Riemannian curvature tensor Rm decomposes as

$$
R m=W_{g} \oplus\left(A_{g} \odot g\right),
$$

where W_{g} denotes the Weyl tensor of g,

$$
A_{g}=\frac{1}{n-2}\left(\operatorname{Ric}_{g}-\frac{R_{g}}{2(n-1)} g\right)
$$

denotes the Schouten tensor, and \odot is the Kulkarni-Nomizu wedge product. Under a conformal change of metrics $g_{w}=e^{2 w} g$, where w is a smooth function over the

[^0]manifold, the Weyl curvature changes pointwise as $W_{g_{w}}=e^{2 w} W_{g}$. Thus, essential information about the Riemannian curvature tensor under a conformal change of metrics is reflected by the change in the Schouten tensor. One often tries to study the Schouten tensor through the elementary symmetric functions $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ (which we later denote as $\sigma_{k}(g)$) of the eigenvalues of the Schouten tensor, called the σ_{k} curvatures of g, by studying how they deform under conformal change of metrics.

Question. For all $k \geq 1$, can we generalize Theorem A without the condition that (M, g) is locally conformally flat?

In this note, we show the answer is yes. The renormalized volume coefficients $v^{(2 k)}(g)$ of a Riemannian metric g, were introduced in the physics literature in the late 1990s in the context of AdS/CFT correspondence - see [Graham 2009] for a mathematical discussion - and were shown in [Graham and Juhl 2007] to be equal to $\sigma_{k}\left(g^{-1} A_{g}\right)$, up to a scaling constant, when (M, g) is locally conformally flat. In fact, in the normalization we are going to adopt,

$$
\begin{equation*}
v^{(2)}(g)=-\frac{1}{2} \sigma_{1}(g) \quad \text { and } \quad v^{(4)}(g)=\frac{1}{4} \sigma_{2}(g) . \tag{1-2}
\end{equation*}
$$

For $k=3$, Graham and Juhl [2007, page 5] have also listed the formula

$$
\begin{equation*}
v^{(6)}(g)=-\frac{1}{8}\left(\sigma_{3}(g)+\frac{1}{3(n-4)}\left(A_{g}\right)^{i j}\left(B_{g}\right)_{i j}\right) \tag{1-3}
\end{equation*}
$$

where

$$
\left(B_{g}\right)_{i j}:=\frac{1}{n-3} \nabla^{k} \nabla^{l} W_{l i k j}+\frac{1}{n-2} R^{k l} W_{l i k j}
$$

is the Bach tensor of the metric. Just as $\int_{M} \sigma_{k}\left(g^{-1} \circ A_{g}\right) d v_{g}$ is conformally invariant when $2 k=n$ and (M, g) is locally conformally flat, Graham [2009] showed that $\int_{M} v^{(2 k)}(g) d v_{g}$ is also conformally invariant on a general manifold when $2 k=n$. Chang and Fang [2008] showed that, for $n \neq 2 k$, the Euler-Lagrange equations for the functional $\int_{M} v^{(2 k)}(g) d v_{g}$ under conformal variations subject to the constraint $\operatorname{Vol}_{g}(M)=1$ satisfies $v^{(2 k)}(g)=$ const, which is a generalized characterization for the curvatures $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ when (M, g) is locally conformally flat, as given by Viaclovsky [2000a].

In this note, we will first show that the curvatures $v^{(2 k)}(g)$ will play the role of $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ in (1-1) for a general manifold. Graham [2009] also gives an explicit expression of $v^{(8)}(g)$, but the explicit expression of $v^{(2 k)}(g)$ for general k is not known because they are algebraically complicated; see [Graham 2009, page 1958]. Thus the study of the $v^{(2 k)}(g)$ curvatures involves significant challenges not shared by that of $\sigma_{k}(g)$: First, $v^{(2 k)}(g)$ for $k \geq 3$ depends on derivatives of curvature of g; in fact, these depend on derivatives of curvatures of order up to $2 k-4$. Second, the $v^{(2 k)}(g)$ are defined in [Graham 2009] via an indirect, highly nonlinear inductive
algorithm. Despite these difficulties, we can use some properties of these $v^{(2 k)}(g)$ curvatures to prove the following.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, and let X be a conformal Killing vector field on $\left(M^{n}, g\right)$. For $k \geq 1$, we have

$$
\begin{equation*}
\int_{M}\left\langle X, \nabla v^{(2 k)}(g)\right\rangle d v_{g}=0 . \tag{1-4}
\end{equation*}
$$

Remark 1.2. From (1-2), we know that Theorem 1.1 is equivalent to Theorem A when $k=1,2$, or when $\left(M^{n}, g\right)$ is locally conformally flat for $k \geq 3$.

One main reason for interest in identities such as (1-1) and (1-4) is that they play crucial roles in analyzing potentially blowing up conformal metrics with a prescribed curvature function, with $v^{(2 k)}(g)$ prescribed in this case. Although little is known about this problem at this stage, Theorem 1.1 establishes one ingredient for attacking this problem.

Our second result involves the Gauss-Bonnet curvatures $G_{2 r}$ for $2 r \leq n$, introduced by H. Weyl in 1939 and defined by

$$
G_{2 r}(g)=\delta_{i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}} R_{j_{1} j_{2}}^{i_{1} i_{2}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}},
$$

where $\delta_{i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r r} j_{2 r}}$ is the generalized Kronecker symbol; see also [Labbi 2008]. Note that $G_{2}=2 R$, with R the scalar curvature.

Theorem 1.3. Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold, and let X be a conformal Killing vector field. Then for the Gauss-Bonnet curvatures defined above, we have

$$
\int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v_{g}=0 .
$$

Remark 1.4. When (M, g) is locally conformally flat, we see that the Gauss curvature satisfies

$$
G_{2 r}(g)=\frac{4^{r}(n-r)!r!}{(n-2 r)!} \sigma_{r},
$$

so Theorem 1.3 reduces to Theorem A.
Remark 1.5. M. Labbi [2008] proved that the first variation of the functional $\int_{M} G_{2 r} d v_{g}$ within metrics with constant volume gave the so-called generalized Einstein metric, and this functional has the variational property for $2 r<n$ and is a topological invariant for $2 r=n$. In fact, if $n=2 r$, this functional is the Gauss-Bonnet integrand up to a constant [Chern 1944].

In the next section, we first provide a general proof for Theorem 1.1 by adapting an ingredient in a preprint version [Han 2006b] of [Han 2006a], and using of a variation formula for $v^{(2 k)}(g)$ established in [Graham 2009] and [Chang and Fang 2008]. Because of the explicit expression for $v^{(6)}(g)$ and potential applications to
other related problems in low dimensions, we provide in Section 3 a self-contained proof for Theorem 1.1 in the case $k=3$. We prove Theorem 1.3 in Section 4.

2. Proof of Theorem 1.1

We will need the following variation formula for $v^{(2 k)}(g)$; see [Graham 2009].
Proposition 2.1. Under the conformal transformation $g_{t}=e^{2 t \eta} g$, the variation of $v^{(2 k)}\left(g_{t}\right)$ is given by

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} v^{(2 k)}\left(g_{t}\right)=-2 k \eta v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \eta_{j}\right), \tag{2-1}
\end{equation*}
$$

where $L_{(k)}^{i j}$ is defined as in [Graham 2009] by

$$
L_{(k)}^{i j}=-\left.\sum_{l=1}^{k} \frac{1}{l!} v^{(2 k-2 l)}(g) \partial_{\rho}^{l-1} g^{i j}(\rho)\right|_{\rho=0},
$$

with $g_{i j}(\rho)$ denoting the extension of g such that

$$
g_{+}=\frac{(d \rho)^{2}-2 \rho g(\rho)}{4 \rho^{2}}
$$

is an asymptotic solution to $\operatorname{Ric}\left(g_{+}\right)=-n g_{+}$near $\rho=0$.
An integral version of (2-1) first appeared in [Chang and Fang 2008]:

$$
\int_{M}\left(\left.\frac{\partial}{\partial t}\right|_{t=0}\left(v^{(2 k)}\left(g_{t}\right)\right)+2 k \eta v^{(2 k)}(g)\right) d v_{g}=0
$$

Proof of Theorem 1.1 in the case $n \neq 2 k$. Let X be a conformal vector field on M. Let ϕ_{t} denote the local one-parameter family of conformal diffeomorphisms of (M, g) generated by X. Thus for some smooth function ω_{t} on M, we have

$$
\phi_{t}^{*}(g)=e^{2 \omega_{t}} g=: g_{t}
$$

We have the properties

$$
\begin{align*}
& \phi_{t}^{*} v^{(2 k)}(g)=v^{(2 k)}\left(\phi_{t}^{*} g\right)=v^{(2 k)}\left(e^{2 \omega_{t}} g\right), \tag{2-2}\\
& \dot{\omega}:=\left.\frac{d}{d t}\right|_{t=0} \omega_{t}=\frac{\operatorname{div} X}{n} \tag{2-3}\\
& \left.\frac{\partial}{\partial t}\right|_{t=0}\left(g_{t}^{-1} \circ A\left(g_{t}\right)\right)=-\nabla^{2} \dot{\omega}-2 \dot{\omega} g^{-1} \circ A(g), \tag{2-4}\\
& \left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{div}_{g_{t}} X=n X \eta=n\langle X, \nabla \eta\rangle \tag{2-5}
\end{align*}
$$

Using (2-2), (2-3), and (2-1), we have

$$
\begin{aligned}
\left\langle X, \nabla v^{(2 k)}(g)\right\rangle & =\left.\frac{\partial}{\partial t}\right|_{t=0}\left(v^{(2 k)}\left(g_{t}\right)\right) \\
& =-2 k \dot{\omega} v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \dot{\omega}_{j}\right) \\
& =-\frac{2 k}{n}(\operatorname{div} X) v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \dot{\omega}_{j}\right) \\
& =-\frac{2 k}{n} \operatorname{div}\left(v^{(2 k)} X\right)+\frac{2 k}{n}\left\langle X, \nabla v^{(2 k)}(g)\right\rangle+\frac{1}{n} \nabla_{i}\left(L_{(k)}^{i j}(\operatorname{div} X)_{j}\right),
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\left(1-\frac{2 k}{n}\right)\left\langle X, \nabla v^{(2 k)}(g)\right\rangle=-\frac{2 k}{n} \operatorname{div}\left(v^{(2 k)} X\right)+\frac{1}{n} \nabla_{i}\left(L_{(k)}^{i j}(\operatorname{div} X)_{j}\right) \tag{2-6}
\end{equation*}
$$

Theorem 1.1 in the case $2 k \neq n$ follows directly by integrating (2-6) over M.
Proof of Theorem 1.1 in the case $2 k=n$. As in [Han 2006b], we will prove that for any conformal metric $g_{1}=e^{2 \eta} g$ of g,

$$
\int_{M}\left\langle X, v^{(2 k)}\left(g_{1}\right)\right\rangle d v_{g_{1}}=\int_{M}\left\langle X, v^{(2 k)}(g)\right\rangle d v_{g}=-\int_{M} \operatorname{div}_{g} X v^{(2 k)}(g) d v_{g},
$$

that is, $\int_{M}\left\langle X, v^{(2 k)}(g)\right\rangle d v_{g}$ is independent of the particular choice of metric in the conformal class. We only have to prove that

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} \operatorname{div}_{g_{t}} X v^{(2 k)}\left(g_{t}\right) d v_{g_{t}}=0 \quad \text { for } g_{t}=e^{2 t \eta} g \tag{2-7}
\end{equation*}
$$

We prove (2-7) by direct computations using Proposition 2.1. Indeed,

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\right|_{t=0} & \int_{M} \operatorname{div}_{g_{t}} X v^{(2 k)}\left(g_{t}\right) d v_{g_{t}} \\
& =\int_{M}\left(n\langle X, \nabla \eta\rangle v^{(2 k)}+\operatorname{div} X\left(-2 k \eta v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \eta_{j}\right)\right)+n \eta \operatorname{div} X v^{(2 k)}\right) d v_{g} \\
& =\int_{M}\left(n\langle X, \nabla \eta\rangle v^{(2 k)}+\operatorname{div} X \nabla_{i}\left(L_{(k)}^{i j} \eta_{j}\right)\right) d v_{g} \\
& =\int_{M}\left(\left\langle n v^{(2 k)} X, \nabla \eta\right\rangle-L_{(k)}^{i j}(\operatorname{div} X)_{i} \eta_{j}\right) d v_{g} \\
& =\int_{M}\left(-\operatorname{div}\left(n v^{(2 k)} X\right)+\nabla_{j}\left(L_{(k)}^{i j}(\operatorname{div} X)_{i}\right)\right) \eta d v_{g}=0
\end{aligned}
$$

in the case $n=2 k$ by (2-6).
The remaining argument is an adaptation of an argument of Bourguignon and Ezin [1987]: either the connected component of the identity of the conformal group $C_{0}(M, g)$ is compact, and then there is a metric \hat{g} conformal to g admitting $C_{0}(M, g)$ as a group of isometries, from which it follows that $\operatorname{div}_{\hat{g}} X \equiv 0$ and therefore (1-4) holds; or, $C_{0}(M, g)$ is noncompact, and then by a theorem of

Obata and Ferrand, (M, g) is conformal to the standard sphere, in which case we can pick the canonical metric to compute the integral on the left hand side of (1-4) and conclude that it is zero.

3. A self-contained proof of Theorem 1.1 in the case $k=3$

We aim to give a direct, self-contained derivation for a more explicit version of (2-1); namely, under conformal change of metric $g_{t}=e^{2 t \eta} g$,

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} v^{(6)}\left(g_{t}\right)=-6 v^{(6)}(g) \eta+\nabla^{j}\left(\left(\frac{T_{i j}^{(2)}(g)}{8}+\frac{B_{i j}(g)}{24(n-4)}\right) \nabla^{i} \eta\right) \tag{3-1}
\end{equation*}
$$

where $T_{i j}^{(2)}(g)$ is the Newton tensor associated with A_{g}, as defined in Reilly [1977]:
Definition. For an integer $k \geq 0$, the k-th Newton tensor is

$$
T_{i j}^{(k)}=\frac{1}{k!} \sum \delta_{i_{1} \cdots i_{k} i}^{j_{1} \cdots j_{k} j} A_{i_{1} j_{1}} \cdots A_{i_{k} j_{k}}
$$

where $\delta_{i_{1} \cdots i_{k} i}^{j_{1} \cdots j_{k} j}$ is the generalized Kronecker symbol.
With (3-1) we can repeat the proof in the last section to prove Theorem 1.1 in the case $k=3$.

First we recall the transformation laws for the tensors $B_{i j}$ and $A_{i j}$ under conformal change of metric $g_{t}=e^{2 t \eta} g$ - see [Chang and Fang 2008]:

$$
\begin{aligned}
& A_{i j}\left(g_{t}\right)=A_{i j}-t \nabla_{i j}^{2} \eta+t^{2} \nabla_{i} \eta \nabla_{j} \eta-\frac{1}{2} t^{2}|\nabla \eta|_{g}^{2} g_{i j} \\
& B_{i j}\left(g_{t}\right)=e^{-2 t \eta}\left(B_{i j}+(n-4) t\left(C_{i j k}+C_{j i k}\right) \nabla^{k} \eta+(n-4) t^{2} W_{i k j l} \nabla^{k} \eta \nabla^{l} \eta\right)
\end{aligned}
$$

where $C_{i j k}:=A_{i j, k}-A_{i k, j}$ are the components of the Cotton tensor, with $A_{i j, k}$ the components of the covariant derivative of the Schouten tensor $A_{i j}$.

Thus

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\right|_{t=0} A^{i j}\left(g_{t}\right)=-\nabla^{i j} \eta-4 A^{i j}(g) \eta, \\
& \left.\frac{\partial}{\partial t}\right|_{t=0} B_{i j}\left(g_{t}\right)=(n-4)\left(C_{i j k}+C_{j i k}\right) \nabla^{k} \eta-2 \eta B_{i j}
\end{aligned}
$$

Proposition 3.1 [Viaclovsky 2000a; Han 2006b; Hu and Li 2004]. We have
(i) $k \sigma_{k}(g)=\sum_{i, j} T_{i j}^{(k-1)} A_{i j}$
(ii) $\sum_{i} T_{i i}^{(k)}=(n-k) \sigma_{k}(g)$.
(iii) $\sum_{l} \nabla^{l} W_{l i j k}=-(n-3) C_{i j k}$.

Using the relation between $v^{(6)}$ and $\sigma_{3}(g)$, and with $A^{i j} B_{i j}$ as in (1-3), we find

$$
\begin{aligned}
& -\left.8 \frac{\partial}{\partial t}\right|_{t=0} v^{(6)}\left(g_{t}\right) \\
& =T_{i j}^{(2)}(g)\left(-\nabla^{i j} \eta-2 \eta A^{i j}(g)\right) \\
& \quad+\frac{1}{3(n-4)}\left(-B_{i j}(g) \nabla^{i j} \eta+(n-4) A^{i j}(g)\left(C_{i j k}+C_{j i k}\right) \nabla^{k} \eta-6 \eta A^{i j} B_{i j}\right) \\
& =-6\left(\sigma_{3}(g)+\frac{1}{3(n-4)} A^{i j} B_{i j}\right) \eta-\left(T_{i j}^{(2)}(g)+\frac{B_{i j}(g)}{3(n-4)}\right) \nabla^{i j} \eta+\frac{2}{3} A^{i j}(g) C_{i j k} \nabla^{k} \eta \\
& =48 v^{(6)}(g) \eta-\nabla^{j}\left(\left(T_{i j}^{(2)}(g)+\frac{B_{i j}(g)}{3(n-4)}\right) \nabla^{i} \eta\right) \\
& \quad+\left(\sum_{j}\left(T_{i j, j}^{(2)}(g)+\frac{B_{i j, j}(g)}{3(n-4)}\right)+\frac{2}{3} A^{k l} C_{k l i}\right) \nabla^{i} \eta,
\end{aligned}
$$

where we used (1-3) and Proposition 3.1(i). The following lemma implies that

$$
\sum_{j}\left(T_{i j, j}^{(2)}(g)+\frac{B_{i j, j}(g)}{3(n-4)}\right)+\frac{2}{3} A^{k l} C_{k l i}=0
$$

thus establishing (3-1).
Lemma 3.2. (i) $\sum_{j} T_{i j, j}^{(2)}=-A^{p q} C_{p q i}$.
(ii) $\sum_{j} B_{i j, j}=(n-4) A^{k l} C_{k l i}$.

Proof of (i). In normal coordinates, we have

$$
\sum_{j} T_{i j, j}^{(2)}=\sum\left(\frac{1}{2!} \sum \delta_{i_{1} i_{2} i}^{j_{1} j_{2} j} A_{i_{1} j_{1}} A_{i_{2} j_{2}}\right)_{j}=\sum \delta_{i_{1} i_{2} i}^{j_{1} j_{2} j} A_{i_{1} j_{1}} A_{i_{2} j_{2}, j}=-A^{p q} C_{p q i}
$$

where we used

$$
\delta_{i_{1} i_{2} i}^{j_{1} j_{2} j}=\left|\begin{array}{ccc}
\delta_{i_{1} j_{1}} & \delta_{i_{1} j_{2}} & \delta_{i_{1} j} \\
\delta_{i_{2} j_{1}} & \delta_{i_{2} j_{2}} & \delta_{i_{2} j} \\
\delta_{i j_{1}} & \delta_{i j_{2}} & \delta_{i j}
\end{array}\right|
$$

and $\sum_{i} A_{i i, j}=\sum_{i} A_{i j, i}$, itself a consequence of the second Bianchi identity.
Proof of (ii). First, using Proposition 3.1(iii) and substituting $R_{i j}$ in terms of $A_{i j}$ in the definition of the Bach tensor $B_{i j}$, we obtain

$$
\begin{aligned}
B_{i j} & =-\sum_{k} C_{i k j, k}+\sum_{k, l} A_{k l} W_{l i k j} \\
& =-\sum_{k}\left(A_{i k, j k}-A_{i j, k k}\right)+\sum_{k, l} A_{k l} W_{l i k j}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{j} B_{i j, j} \\
&=-\sum_{j, k}\left(A_{i k, j k j}-A_{i j, k k j}\right)+\sum_{k, l, j}\left(A_{k l, j} W_{l i k j}+A_{k l} W_{l i k j, j}\right) \\
&=-\sum_{j, k}\left(A_{i k, j k j}-A_{i k, j j k}\right)+\sum_{k, l, j} A_{k l, j} W_{l i k j}-(n-3) \sum_{k, l} A_{k l} C_{k i l} \\
&=-\sum_{j, k, m}\left(A_{i k, m} R_{m j k j}+A_{i m, j} R_{m k k j}+A_{m k, j} R_{m i k j}\right) \\
&+\sum_{k, l, j} A_{k l, j} W_{l i k j}+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{j, k, m}\left(-A_{m k, j} R_{m i k j}+A_{k m, j} W_{m i k j}\right)+(n-3) \sum_{k, l} A_{k l} C_{k i l} \\
&= \sum_{j, k, m} A_{m k, j}\left(-A_{m k} g_{i j}+A_{m j} g_{i k}-g_{m k} A_{i j}+g_{m j} A_{i k}\right)+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{m, k}\left(-A_{m k, i} A_{m k}+A_{m i, k} A_{m k}-A_{m k, j} g_{m k} A_{i j}+A_{m j, k} g_{m k} A_{i j}\right) \\
&+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{m, k} A_{m k}\left(A_{m i, k}-A_{m k, i}\right)+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{m, k} A_{m k} C_{m i k}+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&=(n-4) \sum_{k, l} A_{k l} C_{k l i}
\end{aligned}
$$

where we have used

$$
R_{m i k j}=W_{m i k j}+A_{m k} g_{i j}-A_{m j} g_{i k}+g_{m k} A_{i j}-g_{m j} A_{i k}
$$

Proof of Theorem 1.1 in the special case $k=3$. We use the notation of Section 2. Let ϕ_{t} be the local one-parameter family of conformal diffeomorphisms of (M, g) generated by X. For $g_{t}=\phi_{t}^{*}(g)=e^{2 \omega_{t}} g$, similarly to (3-1), we have

$$
\begin{align*}
\left\langle X, v^{(6)}\right\rangle & =\left.\frac{\partial}{\partial t}\right|_{t=0} v^{(6)}\left(g_{t}\right) \\
& =-6 v^{(6)}(g) \dot{\omega}+\sum_{i, j} \nabla^{j}\left(\left(\frac{T_{i j}^{(2)}(g)}{8}+\frac{B_{i j}(g)}{24(n-4)}\right) \nabla^{i} \dot{\omega}\right) \tag{3-2}
\end{align*}
$$

if $n \neq 2 k$. Then integrating (3-2) we can get Theorem 1.1.
If $n=2 k$, then by use of (3-1) and (3-2), we can prove that $\int_{M}\left\langle X, v^{(6)}(g)\right\rangle d v_{g}$ is independent of the particular choice of the metric within the conformal class. The remainder of the proof repeats verbatim that of Section 2.

4. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 using a method similar to the one used in Section 2. Let (M^{n}, g) be a compact Riemannian manifold, and denote by $R_{i j k l}$ the Riemann curvature tensor in local coordinates. Define a tensor P_{r} by

$$
P_{r_{i}}^{j}=\delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j j_{1} j_{2} \cdots j_{2 r r} j_{2 r}} R_{j_{1} j_{2}}^{i_{1} i_{2}} \cdots R_{j_{2 r-1} j_{2 r}}^{i_{2 r-1} i_{2 r}} \quad \text { for } 2 r \leq n,
$$

where $\delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}}$ is the generalized Kronecker symbol.
Lemma 4.1. The tensor P_{r} is divergence free, that is,

$$
P_{r_{i, j}}^{j}=0 \quad \text { for any } i
$$

This property was present in [Labbi 2008] and [Lovelock 1971], although with different notation and formalism. Since we define the tensor P_{r} explicitly as above, and the property of P_{r} in Lemma 4.1 is a direct consequence of the Bianchi identity, we include a proof here.

Proof. We have

$$
\begin{aligned}
& P_{r, j}^{j}=r \delta_{i i_{1} i_{2} \ldots i_{2 r-1} i_{2 r}}^{j j_{1} j_{2} \ldots j_{2 r-1} j_{2 r}} R_{j_{1} i_{1} i_{2}, j}^{i_{1}{ }_{2}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}}
\end{aligned}
$$

$$
\begin{aligned}
& -r \delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} j_{2} j_{2 r 1} j_{2 r}} R^{i_{1} i_{2}}{ }_{j j_{1}, j_{2}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \\
& =-2 r \delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}} R^{i_{1} i_{2}}{ }_{j_{1} j_{2}, j} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \\
& =-2 P_{r_{i, j}}^{j} \text {, }
\end{aligned}
$$

where we have used the second Bianchi identity. It then follows that $P_{r_{i, j}}^{j}=0$.
Lemma 4.2. The generalized Kronecker symbol satisfies

$$
\sum_{i, j=1}^{n} \delta_{j}^{i} \delta_{i i_{1} \ldots i_{r}}^{j j_{1} \ldots j_{r}}=(n-r) \delta_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{r}} \quad \text { for any } 1 \leq i_{1}, \ldots, j_{r} \leq n \text { and } r \leq n
$$

The proof follows by a direct calculation from the definition.
Let X be a conformal vector field, and denote by ϕ_{t} the one-parameter subgroup of diffeomorphisms generated by X. Then there exists a family of functions ω_{t} such
that $g_{t}=\phi_{t}^{*} g=e^{2 \omega_{t}} g$. We have (2-3), $\omega_{0}=0$, and

$$
\begin{equation*}
G_{2 r}\left(g_{t}\right)=\phi_{t}^{*} G_{2 r}(g) \tag{4-1}
\end{equation*}
$$

Under the conformal change of metric $g_{t}=e^{2 \omega_{t}} g$, we have the formula (see for example [Chow et al. 2006])

$$
\begin{equation*}
R_{k l}^{i j}\left(g_{t}\right)=e^{-2 \omega_{t}}\left(R_{k l}^{i j}-(\alpha \odot g)_{k l}^{i j}\right), \tag{4-2}
\end{equation*}
$$

where we denote $\alpha_{i j}=\left(\omega_{t}\right)_{i j}-\left(\omega_{t}\right)_{i}\left(\omega_{t}\right)_{j}+\frac{1}{2}\left|\nabla \omega_{t}\right|^{2} g_{i j}$ for convenience (note that $\left(\omega_{t}\right)_{i j}$ is the covariant derivative with respect to the fixed metric g) and \odot is the Kulkarni-Nomizu product, defined by

$$
(\alpha \odot g)_{i j k l}=\alpha_{i k} g_{j l}+\alpha_{j l} g_{i k}-\alpha_{i l} g_{j k}-\alpha_{j k} g_{i l}
$$

From (4-2) we see that

$$
\begin{align*}
& G_{2 r}\left(g_{t}\right)=e^{-2 r \omega_{t}} \delta_{i_{1} i_{2} \ldots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \ldots j_{2 r-1} j_{2 r}} \tag{4-3}\\
& \quad \cdot\left(R_{j_{1} j_{2}}^{i_{1} i_{1}}-(\alpha \odot g)^{i_{1} i_{2}}{ }_{j_{1} j_{2}}\right) \cdots\left(R_{j_{2 r-1} j_{2 r}}^{i_{2 r-1} i_{2 r}}-(\alpha \odot g)^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}}\right) .
\end{align*}
$$

Taking derivative with respect to t on both sides of (4-1) and using (4-3), we see by using (2-3) that

$$
\begin{align*}
\langle X, & \left.G_{2 r}(g)\right\rangle \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0} G_{2 r}\left(g_{t}\right) \\
& =-2 r \dot{\omega} G_{2 r}(g)-r \delta_{i_{1} i_{2} \cdots j_{2 r r-1} i_{2 r}}^{j_{1} j_{2} j_{2 r}}\left(\left.\frac{\partial \alpha}{\partial t}\right|_{t=0} \odot g\right)^{i_{1} i_{2}}{ }_{j_{1} j_{2}} R_{j_{3} j_{4}}^{i_{3} i_{4}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \\
& =-2 r \dot{\omega} G_{2 r}(g)-4 r(n-2 r+1) P_{r-1}{ }_{i}^{j} \dot{\omega}_{j}^{i} \tag{4-4}\\
& =-2 r \frac{\operatorname{div} X}{n} G_{2 r}(g)-\frac{4 r(n-2 r+1)}{n} P_{r-1}{ }_{i}^{j}(\operatorname{div} X)_{j}^{i} \\
& =-2 r \frac{\operatorname{div} X}{n} G_{2 r}(g)-\frac{4 r(n-2 r+1)}{n} \nabla_{j}\left(P_{r-1}{ }_{i}^{j}(\operatorname{div} X)^{i}\right) .
\end{align*}
$$

where we have used Lemma 4.2 in the third equality and Lemma 4.1 in the last. Integrating (4-4) over M and using the divergence theorem, we see that

$$
\begin{equation*}
\int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v=-2 r \int_{M} \frac{\operatorname{div} X}{n} G_{2 r}(g) d v=\frac{2 r}{n} \int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v \tag{4-5}
\end{equation*}
$$

Hence, if $n>2 r$, it follows from (4-5) that $\int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v=0$. If $n=2 r$, we follow ideas in Section 2, that is, we need to prove that the integral

$$
\int_{M} G_{2 r}(g) \operatorname{div}_{g} X d v_{g}
$$

is independent of a particular choice of metric within a conformal class. Let $g_{1}=$ $e^{2 \eta} g\left(\eta \in C^{\infty}(M)\right)$ be any metric in the conformal class [g]. Considering a family of metrics $g_{t}=e^{2 t \eta} g$ connecting g and g_{1}, we need to prove that

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} G_{2 r}\left(g_{t}\right) \operatorname{div}_{g_{t}} X d v_{g_{t}}=0
$$

By a direct computation, we have

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} G_{2 r}\left(g_{t}\right) \operatorname{div}_{g_{t}} X d v_{g_{t}} \\
& \quad=\int_{M}\left(\left.\frac{\partial}{\partial t}\right|_{t=0} G_{2 r}\left(g_{t}\right) \operatorname{div} X+\left.G_{2 r}(g) \frac{\partial}{\partial t}\right|_{t=0} \operatorname{div}_{g_{t}} X+n \eta G_{2 r}(g) \operatorname{div} X\right) d v_{g} \\
& =\int_{M}\left(-2 r \eta G_{2 r}(g) \operatorname{div} X-4 r(n-2 r+1) P_{r-1}{ }_{i}^{j} \eta_{j}^{i} \operatorname{div} X\right. \\
& \\
& =\int_{M}\left(-2 r \eta G_{2 r}(g)\langle\nabla \eta, X\rangle+n G_{2 r}(g) \operatorname{div} X \eta\right) d v_{g} \\
& =0,
\end{aligned}
$$

where we have used (2-5) in the second equality, the divergence theorem in the third and (4-4) in the last. The remainder of the proof follows the idea of [Bourguignon and Ezin 1987] as in Section 2. Hence we complete the proof of Theorem 1.3.

References

[Bourguignon and Ezin 1987] J.-P. Bourguignon and J.-P. Ezin, "Scalar curvature functions in a conformal class of metrics and conformal transformations", Trans. Amer. Math. Soc. 301:2 (1987), 723-736. MR 88e:53054 Zbl 0622.53023
[Chang and Fang 2008] S.-Y. A. Chang and H. Fang, "A class of variational functionals in conformal geometry", Int. Math. Res. Not. 2008:7 (2008), Art. ID rnn008. MR 2009h:53072 Zbl 1154.53019
[Chern 1944] S.-s. Chern, "A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds", Ann. of Math. (2) 45 (1944), 747-752. MR 6,106a Zbl 0060.38103
[Chow et al. 2006] B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics 77, American Mathematical Society, Providence, RI, 2006. MR 2008a:53068 Zbl 1118.53001
[Graham 2009] C. R. Graham, "Extended obstruction tensors and renormalized volume coefficients", Adv. Math. 220:6 (2009), 1956-1985. MR 2010e:53060 Zbl 1161.53062
[Graham and Juhl 2007] C. R. Graham and A. Juhl, "Holographic formula for Q-curvature", $A d v$. Math. 216:2 (2007), 841-853. MR 2009a:53062 Zbl 1147.53030
[Han 2006a] Z.-C. Han, "A Kazdan-Warner type identity for the σ_{k} curvature", C. R. Math. Acad. Sci. Paris 342:7 (2006), 475-478. MR 2006j:53045 Zbl 1099.53028
[Han 2006b] Z.-C. Han, "A Kazdan-Warner type identity for the σ_{k} curvature", preprint, 2006, available at http://www.math.rutgers.edu/~zchan/current-preprint/KW.pdf.
[Hu and Li 2004] Z. Hu and H. Li, "A new variational characterization of n-dimensional space forms", Trans. Amer. Math. Soc. 356:8 (2004), 3005-3023. MR 2005d:53058 Zbl 1058.53029
[Labbi 2008] M.-L. Labbi, "Variational properties of the Gauss-Bonnet curvatures", Calc. Var. Partial Differential Equations 32:2 (2008), 175-189. MR 2009a:58013 Zbl 1139.58009
[Lovelock 1971] D. Lovelock, "The Einstein tensor and its generalizations", J. Mathematical Phys. 12 (1971), 498-501. MR 43 \#1588 Zbl 0213.48801
[Reilly 1977] R. C. Reilly, "Applications of the Hessian operator in a Riemannian manifold", Indiana Univ. Math. J. 26:3 (1977), 459-472. MR 57 \#13799 Zbl 0391.53019
[Viaclovsky 2000a] J. A. Viaclovsky, "Conformal geometry, contact geometry, and the calculus of variations", Duke Math. J. 101:2 (2000), 283-316. MR 2001b:53038 Zbl 0990.53035
[Viaclovsky 2000b] J. A. Viaclovsky, "Some fully nonlinear equations in conformal geometry", pp. 425-433 in Differential equations and mathematical physics (Birmingham, AL, 1999), edited by R. Weikard and G. Weinstein, AMS/IP Stud. Adv. Math. 16, Amer. Math. Soc., Providence, RI, 2000. MR 2001i:53057 Zbl 1161.53346

Received May 18, 2010.

Bin Guo

Department of Mathematical Sciences
Tsinghua University
BEIJING 100084
China
Current address:
Department of Mathematics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854
United States
bguo@math.rutgers.edu
ZHENG-CHAO HAN
Department of Mathematics
RUTGERS UniVERSITY
110 Frelinghuysen Road
Piscataway, NJ 08854
United States
zchan@math.rutgers.edu

Haizhong Li
Department of Mathematical Sciences
Tsinghua University
BEIJING 100084
China
hli@math.tsinghua.edu.cn

GONALITY OF A GENERAL ACM CURVE IN $\mathbb{P}^{\mathbf{3}}$

Robin Hartshorne and Enrico Schlesinger

Abstract

Let C be an ACM (projectively normal) nonsingular curve in $\mathbb{P}_{\mathbb{C}}^{3}$ not contained in a plane, and suppose C is general in its Hilbert scheme - this is irreducible once the postulation is fixed. Answering a question posed by Peskine, we show the gonality of C is $d-l$, where d is the degree of the curve and l is the maximum order of a multisecant line of C. Furthermore $l=4$ except for two series of cases, in which the postulation of C forces every surface of minimum degree containing C to contain a line as well. We compute the value of l in terms of the postulation of C in these exceptional cases. We also show the Clifford index of C is equal to gon $(C) \mathbf{- 2}$.

1. Introduction

Let C be a nonsingular projective curve over an algebraically closed field \mathbb{K}. The gonality of C, written $\operatorname{gon}(C)$, is the minimum degree of a surjective morphism $C \rightarrow \mathbb{P}^{1}$, or equivalently the minimum positive integer k such that there exists a g_{k}^{1} on C.

For curves of genus $g \geq 1$ the gonality varies between 2 , the value it takes on hyperelliptic curves, and $\left[\frac{1}{2}(g+3)\right]$, which by Brill-Noether theory is the gonality of a general curve of genus g. It may be regarded as the most fundamental invariant of the algebraic structure of C after the genus, providing a stratification of the moduli space of curves of genus g.

When a curve is embedded in some projective space, it is natural to wonder whether the gonality may be related to extrinsic properties of the curve. Here is a classical result in this direction, already known to Noether [Ciliberto 1984; Hartshorne 1986]:

Theorem 1.1. A smooth curve $C \subset \mathbb{P}^{2}$ of degree $d \geq 3$ has gonality gon $(C)=d-1$, and any morphism $C \rightarrow \mathbb{P}^{1}$ of degree $d-1$ is obtained by projecting C from one of its points.

[^1]See [Hartshorne 2002] for a proof and references. It is a simple exercise to prove the statement using the method of [Lazarsfeld 1986], which associates a vector bundle on \mathbb{P}^{2} to a basepoint-free pencil on C. It is this method that we will exploit in the proof of our result.

One may ask a similar question for a curve $C \subset \mathbb{P}^{3}$. If L is a line in \mathbb{P}^{3}, projection from L induces a morphism $\pi_{L}: C \rightarrow \mathbb{P}^{1}$, whose degree is the degree of C minus the number of points of intersection of C and L. Thus the morphisms π_{L} of minimal degree are those corresponding to maximal order multisecant lines. We define

$$
l=l(C)=\max \left\{\operatorname{deg}(C \cap L): L \text { a line in } \mathbb{P}^{3}\right\}
$$

By analogy with the plane curves case one might wonder whether

$$
\begin{equation*}
\operatorname{gon}(C)=\operatorname{deg}(C)-l(C) \tag{1-1}
\end{equation*}
$$

for a curve in \mathbb{P}^{3}, in which case following the terminology of [Hartshorne 2002] we say the gonality of C is computed by multisecants. Of course, this is usually not the case. For example, a general curve of genus g has gonality $\left[\frac{1}{2}(g+3)\right]$ and can be embedded in \mathbb{P}^{3} as a nonspecial linearly normal curve of degree $g+3$. Since the Grassmannian of lines in \mathbb{P}^{3} has dimension 4, and the set of lines meeting C is a codimension one subvariety, one expects $l(C)$ to be 4 , and so

$$
\operatorname{deg}(C)-l(C)=g-1>\left[\frac{1}{2}(g+3)\right]=\operatorname{gon}(C)
$$

See [Hartshorne 2002, Examples 2.8 and 2.9] for specific counterexamples.
On the other hand, if the embedding of C in \mathbb{P}^{3} is very special, one may hope the gonality of C is computed by multisecants. In this vein Peskine raised the question:
Question 1.2. If C is a smooth $A C M$ curve in \mathbb{P}^{3}, is its gonality computed by multisecants?

Here ACM means arithmetically Cohen-Macaulay: a curve in \mathbb{P}^{3} is ACM if the natural maps $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}(n)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(n)\right)$ are surjective for every $n \geq 0$.

Some special cases have been treated in the literature. Early results about uniqueness of the linear series $\left|O_{C}(1)\right|$ for complete intersections and other ACM curves are in [Ciliberto and Lazarsfeld 1984]. Basili [1996] has proven that the gonality of a smooth complete intersection is indeed computed by multisecants. Ellia and Franco [2001] showed that the maximum order l of a multisecant to a general complete intersection of type (a, b) is 4 if $a \geq b \geq 4$ as one expects. Lazarsfeld [1997, 4.12] finds lower bounds for the gonality of a complete intersection curve in \mathbb{P}^{n}.

Results from [Martens 1996] and [Ballico 1997] show that the gonality of a smooth curve $C \subset \mathbb{P}^{3}$ on a smooth quadric surface is computed by multisecants.

In [Hartshorne 2002] it is shown that if a smooth curve $C \subset \mathbb{P}^{3}$ is $A C M$, lies on a smooth cubic surface X, and is general in its linear system on X, then its gonality is computed by multisecants. Farkas [2001] has shown that smooth ACM curves $C \subset \mathbb{P}^{3}$ lying on certain smooth quartic surfaces that do not contain rational or elliptic curves have gonality computed by multisecants.

In this paper, we show that, with the exception of very few cases we cannot decide, the gonality of a general ACM curve is indeed computed by multisecants. We have to make sense of the expression general ACM curve. To obtain an irreducible parameter space for ACM curves one needs to fix the Hilbert function, that is, the sequence of integers $h^{0}\left(O_{C}(n)\right)$. This is more conveniently expressed by its second difference or h-vector:

$$
h_{C}(n)=h^{0}\left(0_{C}(n)\right)-2 h^{0}\left(0_{C}(n-1)\right)+h^{0}\left(0_{C}(n-2)\right)
$$

which has the advantage of being finitely supported while still nonnegative. We will denote by $A(h)$ the Hilbert scheme parametrizing ACM curves in \mathbb{P}^{3} with h vector h. By a theorem of Ellingsrud (see Remark 6.4), the Hilbert scheme $A(h)$ is smooth and irreducible. Thus by a general ACM curve we will mean a curve in a Zariski open nonempty subset of $A(h)$. We believe it is reasonable to assume that C is general in the statement of our theorem, because it might happen that a special ACM curve had a low degree pencil unrelated to the line bundle $\mathrm{O}_{C}(1)$.

Theorem 1.3. Assume $\mathbb{K}=\mathbb{C}$ is the field of complex numbers. Let $C \subset \mathbb{P}^{3}$ be a nonplanar smooth $A C M$ curve. If C is general in the Hilbert scheme $A\left(h_{C}\right)$, then

$$
\operatorname{gon}(C)=d-l,
$$

where $d=\operatorname{deg}(C)$ and $l=l(C)$ is the maximum order of a multisecant line to C, except perhaps when the degree d, the genus g and the least degree s of a surface containing C form one of the following triples: $(15,26,5),(16,30,5),(21,50,6)$, $(22,55,6),(23,60,6),(28,85,7),(29,91,7),(36,133,8)$.

For curves C contained in a quadric or a cubic surface, the statement follows from the references cited above. So our contribution is for curves not lying on a cubic surface.

We can also determine the integer $l(C)$ in terms of the h-vector of C. Most of the time $l(C)=4$, with two families of exceptions. These exceptional cases arise because the h-vector forces surfaces of minimal degree containing C to contain a line as well; this line is then a multisecant of order higher than expected. If s as above denotes the least degree of a surface containing C, we let

$$
t=\min \left\{n: h^{0}\left(\mathscr{I}_{C}(n)\right)-h^{0}\left(\mathbb{O}_{\mathbb{p}^{3}}(n-s)\right)>0\right\},
$$

so that (s, t) is the smallest type of a complete intersection containing C. We denote by e the index of speciality of $C: e=\max \left\{n: h^{1} \mathscr{O}_{C}(n)>0\right\}$.

The value of $l(C)$ is given as follows:
Theorem 1.4. Let $C \subset \mathbb{P}_{\mathbb{C}}^{3}$ be a general smooth $A C M$ curve with $s \geq 4$. Let $l=l(C)$ denote the maximum order of a multisecant line to C. Then $l=4$, unless

- the h-vector of C satisfies $h(e+1)=3$ and $h(e+2)=2$, in which case $l=e+3$ and C has a unique ($e+3$)-secant line, or
- $t>s+3$ and the h-vector of C satisfies $h(t)=s-2$ and $h(t+1)=s-3$, but not $h(e+1)=3, h(e+2)=2$, in which case $l=t-s+1$ and C has a unique $(t-s+1)$-secant line.

Nollet [1998] has found a sharp bound for the maximal order $l=l(C)$ of a multisecant line in terms of the h-vector of C, valid for any irreducible ACM curve. If C is not a complete intersection, the bound is the largest integer n for which $h_{C}(n-1)-h_{C}(n)>1$. Since this number is at least s, we see that $l(C)$ and the gonality of C vary in the family $A(h)$, provided $s \geq 5$, and the gonality of the general curve is $d-4$ (in fact the argument of Theorem 4.1 shows that $l(C)$ varies in the linear system $|C|$ on a smooth surface X of degree $s \geq 5$). On the other hand, in the special case $h(e+1)=3$ and $h(e+2)=2$, then Nollet's bound is precisely $e+3$, so that $l(C)$ is constant in $A(h)$.

Finally, in most cases we can prove that every pencil computing the gonality of C arises from a maximum order multisecant: the finite list of exceptions is given in Theorem 9.1. In particular, C has a finite number of pencils of minimal degree, and therefore its Clifford index is $\operatorname{Cliff}(C)=\operatorname{gon}(C)-2=d-l(C)-2$.

It would be interesting to investigate linear series g_{k}^{r} on general ACM curves also for $r \geq 2$. For results in this direction we refer to [Lopez and Pirola 1995].

Outline of proof and structure of the paper. Since the conclusions of our result are semicontinuous on the Hilbert scheme $A(h)$, it suffices to show the existence of a single curve C for which the result holds. Let C be a smooth ACM curve in \mathbb{P}^{3} with given h-vector h, not lying on any surface of degree at most 3. In Section 3 we review the classical result that for every smooth space curve D of degree at least 10 there exists a line L that is at least a 4 -secant line of D. Thus gon $(C) \leq d-4$. Next, if C is general in $A(h)$, it is contained in a smooth surface X of degree s. We prove in Corollary 4.2 that, if C is general in its linear system on X and L is an l-secant line of C with $l \geq 5$, then L is contained in X. In fact, we prove a slightly more general result, which gives explicit conditions for a space curve not to have 5-secant lines:

Theorem 4.1. Let $C \subset \mathbb{P}_{\mathbb{K}}^{3}$ be a curve contained in an irreducible surface X of degree s. Suppose C is a Cartier divisor on X and

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{I}_{C}(s-2)\right)=0, \quad H^{1}\left(\mathbb{P}^{3}, \mathscr{I}_{C}(m)\right)=0 \text { for } m=s-2, s-3, s-4 .
$$

If C is general in its linear system on X, then $\operatorname{deg}(C \cap L) \leq 4$ for every line L not contained in X, and C has only finitely many 4 -secant lines not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line for any $l \geq 5$.

At this point to prove our main theorem we need to show that every pencil of minimal degree arises from a multisecant line. The proof uses the technique from [Lazarsfeld 1986], which associates to a basepoint-free pencil on C a vector bundle \mathscr{E} on the surface X, as explained in Section 5. In Section 6 we review enough liaison theory for ACM curves to be able to show that the bundle \mathscr{E} is Bogomolov unstable. Thus it has a destabilizing divisor $A \in \operatorname{Pic}(X)$, whose degree $x=A . H$ satisfies stringent numerical restrictions in terms of the intersection numbers A^{2}, $A . C$ and C^{2}.

To use these constraints effectively we need to control the Picard group of X. The hypothesis that the ground field is \mathbb{C} allows us to apply the Noether-Lefschetz type theorem of [Lopez 1991, II.3.1] or the more recent [Brevik and Nollet 2008] to conclude that, if C is general in $A(h)$ and X is very general among surfaces of minimal degree containing C, then $\operatorname{Pic}(X)$ is freely generated by H and the irreducible components of a curve Γ that is general among curves minimally linked to C. Such a Γ is a general $A C M$ curve, but it may not be irreducible. Thus we are led to establish a structure theorem for general ACM curves. Section 7 is devoted to the proof of this result. It generalizes Gruson-Peskine's theorem [1978], according to which the general ACM curve in $A(h)$ is smooth and irreducible if h is of decreasing type ("has no gaps"):
Theorem 7.21. Let $A(h)$ denote the Hilbert scheme parametrizing ACM curves in $\mathbb{P}_{\mathbb{K}}^{3}$ with h-vector h. If Γ is general in $A(h)$, then

$$
\Gamma=D_{1} \cup D_{2} \cup \cdots \cup D_{r}
$$

where $r-1$ is the number of Gruson-Peskine gaps of h, and the D_{i} are distinct smooth irreducible ACM curves whose h-vectors are determined by the gap decomposition of h as explained in Section 7. Furthermore, for every $1 \leq i_{1}<i_{2}<$ $\cdots<i_{h} \leq r$, the curve

$$
D_{i_{1}} \cup D_{i_{2}} \cup \cdots \cup D_{i_{h}}
$$

is still ACM.
Thus we can write the destabilizing divisor as $A=a H+\sum a_{i} D_{i}$. In the proof of the main Theorem 9.1, using the fact that the curves D_{i} and their unions are ACM,
together with the numerical constraints on $x=A . H$ we show $-s-1 \leq x<0$. We then play this inequality against the bounds of Corollary 8.9 , which are essentially upper bounds for the genus of an ACM curve lying on X in terms of the degree of the curve and of degree of X. In fact, these bounds are a refinement of the bounds for the genus of an ACM curve proven in [Gruson and Peskine 1978] (see Remark 8.8). The end result is that there are only two possibilities for A : either $-A=H$ (the plane section) or $-A=H-L$ for some line L on X.

Corollary 5.7 shows that in case $A=-H$ the pencil arises from a multisecant line not contained in X, while in case $A=L-H$ the pencil arises from L. This shows pencils of minimal degree on C all arise from multisecant lines, thus completing the proof of the theorem.

2. Notation and terminology

A linear system of degree k and projective dimension r on C is denoted with the symbol g_{k}^{r}, and a g_{k}^{1} is called a pencil. The gonality of C, written $\operatorname{gon}(C)$, is the least positive integer k such that there exists a g_{k}^{1} on C. Since a pencil of least degree is automatically basepoint-free, the gonality of C is the least degree of a surjective morphism $C \rightarrow \mathbb{P}^{1}$. One can further notice that a g_{k}^{1} with $k=\operatorname{gon}(C)$ is complete, so that $h^{0}\left(C, \mathscr{O}_{C}(Z)\right)=2$ for every divisor Z in the pencil.
Definition 2.1. Assume $C \subset \mathbb{P}^{3}$ is a nonplanar curve. Given a line L, let $\pi_{L}: C \rightarrow$ \mathbb{P}^{1} be obtained projecting C from L, and let $\mathscr{L}(L)$ denote the g_{k}^{1} corresponding to π_{L}. Note that $\mathscr{L}(L)$ is obtained from the pencil cut out on C by planes through L removing its base locus, which coincides with the scheme theoretic intersection $C \cap L$. In particular,

$$
\operatorname{deg}\left(\pi_{L}\right)=\operatorname{deg} \mathscr{L}(L)=\operatorname{deg}(C)-\operatorname{deg}(C . L)
$$

and $\mathscr{L}(L)$ is complete if $\operatorname{deg}(C . L) \geq 2$. We say that a g_{k}^{1} on C arises from a multisecant if it is of the form $\mathscr{L}(L)$ for some line L. We say the gonality of C can be computed by multisecants if there exists a line L such that $\mathscr{L}(L)$ has degree gon (C).

3. Existence of 4-secant lines

The following statement is classical and well known, but it seems hard to find a reference.

Proposition 3.1. Let C be a smooth irreducible curve of degree $d \geq 10$ in \mathbb{P}^{3}. Then C has an l-secant line L with $l \geq 4$. In particular, the gonality of C is at most $d-4$.

Proof. The statement is clear if $\operatorname{deg}(C) \geq 4$ and C is contained in a plane or $\operatorname{deg}(C) \geq 7$ and C is contained in a quadric surface. If C is not contained in a
quadric surface, we will show the Cayley number of 4-secants

$$
\mathscr{C}(d, g)=\frac{(d-2)(d-3)^{2}(d-4)}{12}-\frac{g\left(d^{2}-7 d+13-g\right)}{2}
$$

is positive. The existence of L then follows from intersection theory as explained in [Le Barz 1987] or in [Arbarello et al. 1985]. For fixed $d \geq 7$, the number $\mathscr{C}(d, g)$ is a decreasing function of g, because the partial derivative with respect to g is

$$
g-\frac{d^{2}-7 d+13}{2}
$$

which is negative because $g \leq d^{2} / 4-d+1$ when C is not contained in a plane.
But C is not even contained in a quadric surface; thus its genus is bounded above by $\frac{1}{6} d(d-3)+1$, and

$$
\mathscr{C}(d, g) \geq \mathscr{C}\left(d, \frac{1}{6} d(d-3)+1\right)=\frac{d(d-3)(d-6)(d-9)}{72}
$$

which is positive for $d \geq 10$.
Remark 3.2. The result is sharp, because a smooth complete intersection of two cubic surfaces has degree 9 and no 4 -secant line.

4. Nonexistence of $\mathbf{5}$-secant lines

Theorem 4.1. Let $C \subset \mathbb{P}^{3}$ be a curve contained in an irreducible surface X of degree s. Suppose C is a Cartier divisor on X and

$$
H^{0}\left(\mathbb{P}^{3}, \Phi_{C}(s-2)\right)=0, \quad H^{1}\left(\mathbb{P}^{3}, \Phi_{C}(m)\right)=0 \text { for } m=s-2, s-3, s-4 .
$$

If C is general in its linear system on X, then $\operatorname{deg}(C . L) \leq 4$ for every line L not contained in X, and C has only finitely many 4 -secant lines not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line for any $l \geq 5$.

Proof. The statement is obvious if $s \leq 3$, so assume $s \geq 4$. The hypotheses imply $h^{1} \mathcal{O}(D)=0$ for $D=C, C-H, C-2 H$ because, by Serre duality,

$$
h^{1}\left(\mathbb{P}^{3}, \mathscr{I}_{C}(m)\right)=h^{1}\left(X, О_{X}(m H-C)\right)=h^{1}\left(X, \widehat{O}_{X}(C+(s-4-m) H)\right)
$$

Similarly, $H^{2}\left(O_{X}(C-n H)\right)$ is dual to

$$
H^{0}\left(O_{X}((s-4+n) H-C)\right)=H^{0}\left(X, \mathscr{I}_{C, X}(s-4+n)\right),
$$

which by assumption is zero for $n \leq 2$. Thus we see that $h^{0} \mathbb{O}_{X}(D)=\chi \mathcal{O}_{X}(D)$ for $D=C, C-H, C-2 H$.

Let L be a line not contained in X, and let V be the scheme theoretic intersection of X and L. Then V has degree s, and there is an exact sequence

$$
0 \rightarrow \widehat{O}_{X}(-2 H) \rightarrow \widehat{O}_{X}(-H)^{\oplus 2} \rightarrow \Phi_{V, X} \rightarrow 0
$$

Twisting by $\mathrm{O}_{X}(C)$ and taking cohomology we see that

$$
h^{0}\left(\mathscr{I}_{V}(C)\right)=2 h^{0}\left(\mathbb{O}_{X}(C-H)\right)-h^{0}\left(\mathbb{O}_{X}(C-2 H)\right)
$$

Therefore

$$
\begin{aligned}
h^{0}\left(\mathbb{O}_{X}(C)\right)-h^{0}\left(\mathscr{I}_{V}(C)\right) & =h^{0}\left(\mathbb{O}_{X}(C)\right)-2 h^{0}\left(\mathbb{O}_{X}(C-H)\right)+h^{0}\left(\mathbb{O}_{X}(C-2 H)\right) \\
& =\chi\left(\mathbb{O}_{X}(C)\right)-2 \chi\left(\mathbb{O}_{X}(C-H)\right)+\chi\left(\mathbb{O}_{X}(C-2 H)\right)=s .
\end{aligned}
$$

This shows that the points of V impose independent conditions on the linear system $|C|$. It follows that the family of curves in $|C|$ meeting L in a scheme of length $l \leq s$ has codimension l in $|C|$. This implies the statement because L varies in a four-dimensional family.
Corollary 4.2. Let $C \subset \mathbb{P}^{3}$ be an ACM curve. Suppose that C is contained in a smooth surface $X \subset \mathbb{P}^{3}$ of degree $s=s_{C}$, and that C is general in its linear system on X. Then $\operatorname{deg}(C . L) \leq 4$ for any line L not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line for any $l \geq 5$.
Proof. The statement follows from Theorem 4.1 because C is ACM precisely when $H^{1}\left(\mathbb{P}^{3}, \Phi_{C}(m)\right)=0$ for every m.

5. Gonality of curves on a smooth surface: Lazarsfeld's method

In this section we explain a construction due to Lazarsfeld [1986; 1997] that will be crucial in proving that every pencil of minimal degree on a general ACM curve arises from a multisecant.

When a curve C is contained in a smooth surface X, we associate a rank two vector bundle on X to a basepoint-free g_{k}^{1} on C as follows. The basepoint-free g_{k}^{1} is determined by a degree k line bundle $O_{C}(Z)$ on C, and a surjective map of 0_{C}-modules

$$
\beta: \mathbb{O}_{C}^{\oplus 2} \rightarrow \mathbb{O}_{C}(Z)
$$

(Note that, since $k \geq 1$, the map $H^{0}(\beta): H^{0}\left(0_{C}^{\oplus 2}\right) \rightarrow H^{0}\left(0_{C}(Z)\right)$ is injective.)
Definition 5.1. Suppose C is an integral curve on the smooth projective surface X, and \mathscr{L} is a basepoint-free pencil on C defined by $\beta: \mathbb{O}_{C}^{\oplus 2} \rightarrow \mathscr{O}_{C}(Z)$. Let

$$
\alpha: \mathbb{O}_{X}^{\oplus 2} \rightarrow \mathbb{O}_{C}(Z)
$$

denote the map obtained composing β with the natural surjection $\mathscr{O}_{X}^{\oplus 2} \rightarrow \mathbb{O}_{C}^{\oplus 2}$.

Proposition 5.2. Let \mathscr{E} be the bundle associated to a pencil of degree k on C as in the previous definition. Then
(a) \mathscr{E} is a rank two vector bundle on X.
(b) $H^{0}(\mathscr{C})=0$.
(c) $c_{1}(\mathscr{E})=\mathcal{O}_{X}(-C)$ and $c_{2}(\mathscr{E})=\operatorname{deg}(Z)$, so that

$$
\Delta(\mathscr{C}) \stackrel{\text { def }}{=} c_{1}^{2}(\mathscr{C})-4 c_{2}(\mathscr{C})=C^{2}-4 k
$$

(Here we consider the first Chern class as an element of $A^{1}(X) \cong \operatorname{Pic}(X)$, while we view the c_{1}^{2} and c_{2} as integers, via the degree map for zero cycles.)

Proof. By definition of \mathscr{E} there is an exact sequence:

$$
0 \rightarrow \mathscr{E} \rightarrow \mathbb{O}_{X}^{\oplus 2} \rightarrow \mathbb{O}_{C}(Z) \rightarrow 0
$$

Since \mathscr{O}_{C} has rank zero and projective dimension 1 as an \mathbb{O}_{X}-module, \mathscr{E} is a rank two vector bundle on X, whose Chern classes can be computed from the above sequence. If $H^{0}(\mathscr{C})$ were not zero, then $H^{0}(\alpha): H^{0}\left(0_{C}^{\oplus 2}\right) \rightarrow H^{0}\left(O_{C}(Z)\right)$ would not be injective, so α would induce a surjective map $\mathbb{O}_{C} \rightarrow \mathbb{O}_{C}(Z)$, contradicting $\operatorname{deg} Z=k \geq 1$.

We recall the definition of Bogomolov instability for rank two vector bundles on a surface, and Bogomolov's theorem which gives a numerical condition for instability.

Definition 5.3. Let \mathscr{E} be a rank two vector bundle on X. One says that \mathscr{E} is $B o$ gomolov unstable if there exist a finite subscheme $W \subset X$ (possibly empty) and divisors A and B on X sitting in an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{X}(A) \rightarrow \mathscr{E} \rightarrow \mathscr{I}_{W} \otimes \mathcal{O}_{X}(B) \rightarrow 0 \tag{5-1}
\end{equation*}
$$

where $(A-B)^{2}>0$ and $(A-B) . H>0$ for some (hence every) ample divisor H. We say A is a destabilizing divisor of \mathscr{E}. It is unique up to linear equivalence.
Theorem 5.4 ([Bogomolov 1978]; compare [Huybrechts and Lehn 1997, 7.3.3] and [Lazarsfeld 1997, 4.2]). Suppose the ground field \mathbb{K} has characteristic zero. Let \mathscr{E} be a rank two vector bundle on the smooth projective surface X, and let $\Delta(\mathscr{E})=c_{1}(\mathscr{E})^{2}-4 c_{2}(\mathscr{E})$.

If $\Delta(\mathscr{E})>0$, then \mathscr{E} is Bogomolov unstable.
Following Lazarsfeld's approach, we will show in Section 6 that the bundle associated to a pencil computing the gonality of a smooth ACM curve satisfies $\Delta(\mathscr{E})>0$, hence it is Bogomolov unstable, and there is a destabilizing divisor A. To work effectively we will need the following technical result that will be useful in two ways. First it immediately implies that, when $-A=H$ (plane section) or
$-A=H-L$ (plane section minus a line), the given pencil arises from a multisecant; later on the inequalities $A^{2} \geq 0$ and $A . H<0$ will be used to exclude all other possibilities for A.

Proposition 5.5. Suppose X is a smooth projective surface, C is an integral curve on X, and $|Z|$ is a complete basepoint-free pencil on C. Let \mathscr{E} be the rank 2 bundle on X associated to $|Z|$. Suppose there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{X}(A) \xrightarrow{h} \mathscr{E} \rightarrow \Phi_{W} \otimes \mathscr{O}_{X}(B) \rightarrow 0 \tag{5-2}
\end{equation*}
$$

with W zero-dimensional and B not effective. Then the linear system $|-A|$ on X contains two effective curves D_{1} and D_{2} with the following properties:
(a) D_{1} and D_{2} meet properly in a 0 -dimensional scheme V containing W.
(b) D_{1} and D_{2} meet C properly, and, if R is the base locus of the pencil cut out on C by C. D_{1} and C. D_{2}, then

$$
\mathfrak{O}_{C}(Z) \cong \mathbb{O}_{X}(-A) \otimes \mathbb{O}_{C}(-R)
$$

that is, the pencil $|Z|$ is obtained by first restricting D_{1} and D_{2} to C and then removing the base locus R.
(c) R is the residual scheme to W in V, that is, there is an exact sequence

$$
0 \rightarrow \mathscr{O}_{W} \rightarrow \mathfrak{O}_{V} \rightarrow \mathfrak{O}_{R} \rightarrow 0
$$

In particular $h^{0} \mathscr{\Phi}_{W}(-A) \geq 2, A . H<0$ for every ample divisor H, and $A^{2} \geq 0$.
Remark 5.6. The proposition applies if \mathscr{E} is Bogomolov unstable with destabilizing sequence (5-2). Indeed in this case, if H is an ample divisor on X, then $(A-B) . H>0$. Since $c_{1}(\mathscr{E})=A+B=-C$ in $\operatorname{Pic}(X)$, we compute

$$
-2 B \cdot H=(A-B) \cdot H+C \cdot H>0
$$

Therefore B is not effective.
Proof of Proposition 5.5. Dualizing $0 \rightarrow \mathscr{E} \rightarrow \mathscr{O}_{X}^{\oplus 2} \rightarrow \mathscr{O}_{C}(Z) \rightarrow 0$ we obtain an exact sequence

$$
0 \rightarrow \mathscr{O}_{X}^{\oplus 2} \rightarrow \mathscr{E}(C) \rightarrow \mathscr{O}_{C}(C-Z) \rightarrow 0
$$

We now look at the composite map $g: \mathbb{O}_{X}^{\oplus 2} \rightarrow \mathscr{E}(C) \rightarrow \mathscr{I}_{W}(-A)$.
This map is nonzero, otherwise $\mathbb{O}_{X}^{\oplus 2}$ would map injectively into the kernel of $\mathscr{E}(C) \rightarrow \mathscr{I}_{W}(-A)$, which is $\mathcal{O}_{X}(C+A)$, absurd. Hence the image of g has rank one, and has the form $\mathscr{I}_{Y}(-A)$ for some proper subscheme $Y \subset X$ containing W. Then $\mathscr{I}_{Y}=\mathscr{I}_{V}(-D)$ where D is the divisorial part of Y, and V is zero dimensional. We obtain an exact sequence

$$
0 \rightarrow \operatorname{Ker}(g) \rightarrow \mathbb{O}_{X}^{\oplus 2} \rightarrow \mathscr{I}_{V}(-A-D) \rightarrow 0
$$

It follows $\operatorname{Ker}(g)=0_{X}(A+D)$ and $-A-D$ is effective. A diagram chase shows there is an exact sequence

$$
0 \rightarrow \mathbb{O}_{X}(A+D) \rightarrow \mathbb{O}_{X}(C+A) \rightarrow \mathbb{O}_{C}(C-Z)
$$

from which we see there is an effective curve C_{0} linearly equivalent to $C-D$ contained in C. Since C is irreducible, this implies either $D=C$ or $D=0$.

Now $-A-D$ is effective, so, if we had $D=C$, then $B=-A-C$ would be effective, contradicting the hypotheses. Hence the only possibility is $D=0$.

Putting everything together we obtain a commutative diagram with exact rows:

Now let D_{1} and D_{2} the divisors defined by the sections s_{1} and s_{2} of $\mathcal{O}_{X}(-A)$. The first row of the diagram shows D_{1} and D_{2} meet properly in the zero dimensional scheme V, which contains W by construction. The two sections remain independent in $H^{0}\left(\mathrm{O}_{C}(Z)\right)$ because $H^{0}(\mathscr{E})=0$. Hence D_{1} and D_{2} meet C properly, and $D_{1} . C$ and $D_{2} . C$ span a pencil on C.

By the snake lemma, the kernel of the vertical map $\mathscr{I}_{V}(-A) \rightarrow{ }_{O}^{C}(Z)$ is $\mathscr{I}_{W}(B)=\mathscr{I}_{W}(-A-C)$, hence a diagram chase produces an exact sequence

$$
0 \rightarrow \mathfrak{O}_{C}(Z) \rightarrow \mathbb{O}_{X}(-A) \otimes \mathbb{O}_{C} \rightarrow \mathbb{O}_{V} / \mathbb{O}_{W} \rightarrow 0
$$

which proves the rest of the statement.
Corollary 5.7. Assume $X \subset \mathbb{P}^{3}$ is a smooth surface with plane section H, containing a smooth irreducible curve C. Suppose C is not contained in a plane. Let $|Z|$ be a complete basepoint-free pencil on C, and let \mathscr{E} be the bundle on X associated to $|Z|$.
(a) If there is an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(A) \rightarrow \mathscr{E} \rightarrow \mathscr{I}_{W}(B) \rightarrow 0
$$

with W zero dimensional and $A+H$ effective, then there is a line L such that $|Z|=\mathscr{L}(L)$ is the pencil cut out on C by planes through L. Furthermore, if X does not contain L, then $A=-H$ and W is the residual scheme to $C \cap L$ in $X \cap L$, while, if X contains L, then $A=L-H$ and W is empty.
(b) Assume C is linearly normal and $|Z|$ is the pencil cut out on C by planes through a line L meeting C in a scheme of length at least 2 . Then there exists an exact sequence as above with $A=-H$ if X does not contain L and $A=L-H$ if X contains L.

Proof. (a) The divisor B is not effective; otherwise

$$
B+(A+H)=(-A-C)+(A+H)=H-C
$$

would be effective, which contradicts the assumption that C is not contained in plane.

Thus we may apply Proposition 5.5 to the given exact sequence to conclude the linear system $|-A|$ contains a pencil. By assumption $P=A+H$ is effective, and therefore in order that $|-A|=|H-P|$ may contain a pencil it is necessary that P be empty or a line.

If P is empty, by 5.5 the are two plane sections $D_{1}=H_{1} \cap X$ and $D_{2}=H_{2} \cap X$ of X meeting in a zero dimensional scheme V, hence the line $L=H_{1} \cap H_{2}$ is not contained in X. Proposition 5.5 b shows $|Z|$ is obtained removing from the pencil spanned by $C \cap H_{1}$ and $C \cap H_{2}$ its base locus $C \cap L$, that is, $|Z|=\mathscr{L}(L)$, and Proposition 5.5 c shows W is the residual scheme to $C \cap L$ in $X \cap L$.

Finally, if P is a line, then D_{1} and D_{2} belong to $|H-P|$, hence their intersection $V=D_{1} \cap D_{2}$ is empty. It follows from Proposition 5.5 that $|Z|=\mathscr{L}(P)$ and that and W is empty.
(b) By the definition of \mathscr{E} there is an exact sequence

$$
0 \rightarrow \mathscr{E} \rightarrow \mathscr{O}_{X}^{\oplus 2} \rightarrow \widehat{O}_{C}(Z) \rightarrow 0
$$

Comparing this sequence with

$$
0 \rightarrow \mathbb{O}_{C} \rightarrow \mathbb{O}_{C}(Z) \rightarrow \mathbb{O}_{Z} \rightarrow 0
$$

we obtain

$$
0 \rightarrow \mathbb{O}_{X}(-C) \rightarrow \mathscr{E} \rightarrow \mathscr{I}_{Z, X} \rightarrow 0
$$

Now twist by H and take cohomology to get a long exact sequence

$$
0 \rightarrow H^{0}\left(\mathbb{O}_{X}(H-C)\right) \rightarrow H^{0}(\mathscr{E}(H)) \rightarrow H^{0}\left(\Phi_{Z, X}(H)\right) \rightarrow H^{1}\left(\mathbb{O}_{X}(H-C)\right)
$$

Since Z is contained in a plane, $h^{0}\left(\mathscr{I}_{Z, X}(H)\right)>0$, while $H^{1}\left(0_{X}(H-C)\right)=$ $H^{1}\left(\mathscr{I}_{C}(H)\right)=0$ because C is linearly normal. Hence $\mathscr{E}(H)$ has a section, and after removing torsion in the cokernel if necessary we find an exact sequence:

$$
0 \rightarrow \mathscr{O}_{X}(P-H) \rightarrow \mathscr{E} \rightarrow \mathscr{I}_{W}(H-P-C) \rightarrow 0
$$

with W zero dimensional and P effective. Now (b) follows from (a).

6. ACM curves

In this section we show that, if C is an ACM curve of degree d having a pencil of minimal degree $k \leq d-4$ on a smooth surface of degree $s=s_{C}$, then the bundle \mathscr{E} associated to the given pencil satisfies $\Delta(\mathscr{E})>0$ (except for a small list of cases
given in Proposition 6.10); hence, if the ground field has characteristic zero, it is Bogomolov unstable. The proof is based on the structure of the biliaison class of ACM curves which we now briefly recall. We also include some information about the minimal link Γ of a curve C, which we will need later.

Given a curve C in \mathbb{P}^{3} its fundamental numerical invariants are, besides its degree d_{C} and its arithmetic genus $g(C)=1-\chi\left(O_{C}\right)$:

- its index of speciality $e(C)=\max \left\{n: h^{1} \mathscr{O}_{C}(n)>0\right\}$;
- the minimal degree s_{C} of a surface containing C;
- the integer $\left.t_{C}=\min \left\{n: h^{0}\left(\mathscr{I}_{C}(n)\right)-h^{0}\left(\mathbb{O}_{\mathbb{P}^{3}}\left(n-s_{C}\right)\right)>0\right)\right\}$. If C is integral or more generally if C lies on an integral surface of degree s_{C}, the integer t_{C} is the smallest n such that C is contained in a complete intersection of two surfaces of degree s_{C} and n.

When C is ACM, all its basic numerical invariants can be computed from the Hilbert function. It is convenient to express the Hilbert function through its second difference function, the so called h-vector h_{C} of C - see [Migliore 1998, §1.4] because h_{C} is a finitely supported function. Thus one defines

$$
h_{C}(n)=h^{0}\left(\mathscr{O}_{C}(n)\right)-2 h^{0}\left(\mathscr{O}_{C}(n-1)\right)+h^{0}\left(\mathbb{O}_{C}(n-2)\right) .
$$

If $s=s(C)$ and $e=e(C)$, the function h_{C} satisfies

$$
\left\{\begin{array}{l}
h(n)=n+1 \text { if } 0 \leq n \leq s-1 \tag{6-1}\\
h(n) \geq h(n+1) \text { if } n \geq s-1, \\
h(e+2)>0 \quad \text { and } \quad h(n)=0 \quad \text { for } n \geq e+3
\end{array}\right.
$$

Thus we may write h as

$$
h_{C}=\left\{1,2, \ldots, s, h_{C}(s), \ldots, h_{C}(e+2)\right\} .
$$

with $s=h_{C}(s-1) \geq h_{C}(s) \geq h_{C}(s+1) \geq \cdots \geq h_{C}(e+2)$.
We say that a finitely supported function $h: \mathbb{N} \rightarrow \mathbb{N}$ is an h-vector if it satisfies (6-1) for some $s \geq 1$. Every h-vector arises as the h-vector of an ACM curve in \mathbb{P}^{3}; see [Martin-Deschamps and Perrin 1990, Theorem V.1.3, p. 111] and Remark 7.7 below. It will be convenient to allow the identically zero function among h-vectors, and think of it as the h-vector of the empty curve. In terms of the h-vector, the fundamental invariants of C are:

Proposition 6.1. For an $A C M$ curve C in \mathbb{P}^{3}, with h-vector h_{C}, we have
(1) $d_{C}=\sum h_{C}(n)$,
(2) $g(C)=1+\sum(n-1) h_{C}(n)$,
(3) $e(C)+2=\max \left\{n: h_{C}(n)>0\right\}$,
(4) $s_{C}=\min \left\{n \geq 0: h_{C}(n)<n+1\right\}$, and
(5) $t_{C}=\min \left\{n \geq 0: h_{C}(n-1)>h_{C}(n)\right\}$.

Consistently with these formulas, for the empty curve we define $s=0, d=0$, $g=1, e=-\infty$.

Remark 6.2. If C is an ACM curve with $s_{C}=s$, then

$$
d_{C}=\sum h_{C}(n) \geq \sum_{n=0}^{s-1}(n+1)=\frac{1}{2} s(s+1)
$$

The h-vectors of integral curves have a special form:
Definition 6.3 [Maggioni and Ragusa 1988]. An h-vector is of decreasing type if $h(a)>h(a+1)$ implies that for each $n \geq a$ either $h(n)>h(n+1)$ or $h(n)=0$.

Remark 6.4. By a result from [Ellingsrud 1975] (see also [Martin-Deschamps and Perrin 1990, p. 5; corollaire 1.2 on p. 134; §1.7, p. 139]), the Hilbert scheme $A(h)$ of ACM curves in \mathbb{P}^{3} with a given h-vector is smooth and irreducible, even when h is not of decreasing type.

Gruson and Peskine [1978] (see also [Maggioni and Ragusa 1988] and [Nollet 1998]) showed that, if C is an integral ACM curve, then h_{C} is of decreasing type, and conversely, if h is an h-vector of decreasing type, then there exists a smooth irreducible ACM curve C with $h_{C}=h$. Thus an h-vector h is of decreasing type if and only if the general curve C in $A(h)$ is smooth and irreducible.

If C is not irreducible, it may happen that every pair of surfaces X_{1} and X_{2} containing C of minimal degrees s_{C} and t_{C} have a common component. Nollet [1998, Proposition 1.5] generalized the result of Gruson and Peskine by showing that if C is contained in a complete intersection of type $\left(s_{C}, t_{C}\right)$, then h_{C} is of decreasing type. We partially reproduce his argument here:
Lemma 6.5. (i) Suppose an ACM curve D is contained in a complete intersection Y of type $\left(s_{D}, t_{D}\right)$, and let Γ be the curve and linked to D by Y. Then

$$
e(\Gamma)+3<s_{D} .
$$

(ii) Let Γ be an ACM curve, and suppose $a \leq b$ are integers such that $a \geq e(\Gamma)+3$ and $b \geq e(\Gamma)+4$. Then the h-vector of a curve D linked to Γ by a complete intersection of type (a, b) is of decreasing type. If $a \geq e(\Gamma)+4$, then $s_{D}=a$ and $t_{D}=b$. If $a=e(\Gamma)+3$, then $s_{D}=a$ and $t_{D}=b-1$.

Proof. If Γ and D are linked by a complete intersection Y of type (a, b), we have, by [Migliore 1998, 5.2.19],

$$
h_{\Gamma}(n)=h_{Y}(n)-h_{D}(a+b-2-n)=h_{Y}(a+b-2-n)-h_{D}(a+b-2-n) .
$$

Suppose first $a=s_{D}$ and $b=t_{D}$. Then

$$
h_{\Gamma}\left(s_{D}-1\right)=h_{Y}\left(t_{Y}-1\right)-h_{D}\left(t_{D}-1\right)=s_{Y}-s_{D}=0 .
$$

Therefore $e(\Gamma)+3 \leq s_{D}-1$.
Next suppose $b \geq a \geq e(\Gamma)+4$. Then $s_{D} \leq a$ because $D \subseteq Y$, and

$$
h_{D}(b-1)=h_{Y}(a-1)-h_{\Gamma}(a-1)=h_{Y}(a-1)=a
$$

while

$$
h_{D}(b)=h_{Y}(a-2)-h_{\Gamma}(a-2) \leq h_{Y}(a-2)=a-1
$$

hence $s_{D}=a$ and $t_{D}=b$.
If $a=e(\Gamma)+3$ and $b \geq e(\Gamma)+4$, then a similar calculation shows $h_{D}(b-2)=a$ and $h_{D}(b-1)<a$, so that $s_{D}=a$ and $t_{D}=b-1$.

It remains to show h_{D} is of decreasing type. Let $u=s(\Gamma)$. Then $u \leq e(\Gamma)+3 \leq a$ and $h_{\Gamma}(n)=h_{Y}(n)=n+1$ for $n \leq u-1$; hence $h_{D}(n)=0$ for $n \geq a+b-1-u$.

Since $h_{\Gamma}(n) \geq h_{\Gamma}(n+1)$ for $n \geq u-1$, we see that for $b-1 \leq m \leq a+b-2-u$

$$
\begin{aligned}
h_{D}(m)-h_{D}(m+1) & =h_{Y}(m)-h_{Y}(m+1)-h_{\Gamma}(a+b-2-m)+h_{\Gamma}(a+b-1-m) \\
& =1-\partial h_{\Gamma}(a+b-1-m) \geq 1
\end{aligned}
$$

which shows that h_{D} is of decreasing type.
Fix a smooth surface $X \subset \mathbb{P}^{3}$ of degree s. Two curves C and D on X are said to be biliaison equivalent if C is linearly equivalent to $D+n H$ for some integer n.

Definition 6.6. A curve C on a surface X is minimal on X if $C-H$ is not effective.
Proposition 6.7. A curve C is minimal on a smooth surface X if and only if

$$
e(C)+3<\operatorname{deg}(X)
$$

Proof. To say C is minimal is equivalent to saying $h^{0}\left(\mathbb{O}_{X}(C-H)\right)=0$. By duality on X this is the same as $h^{2}\left(\mathscr{I}_{C}(s-3)\right)=0$, where $s=\operatorname{deg}(X)$. On the other hand, $h^{2}\left(\mathscr{I}_{C}(s-3)\right)=h^{1}\left(\mathscr{O}_{C}(s-3)\right)$, so the condition says $s-3>e(C)$, or equivalently, $e(C)+3<s$.

Definition 6.8. We say that an h-vector is s-minimal if the corresponding curve satisfies $e+3<s$. We say that an h-vector is s-basic if it is the h-vector of an integral curve C satisfying $s_{C}=t_{C}=s$. Thus the s-basic h-vectors are those h-vectors of decreasing type that begin with a string

$$
\{1,2, \ldots, s-1, s, m\}
$$

with $m=h(s) \leq s-1$.
Table 1 on the next page lists s-basic h-vectors for $s=4$ and $s=5$.

	d	g	h-vector $\quad C$	$C^{2}-4(d-4)$	$C^{2}-4(d-5)$	$\lambda(\Gamma=t H-C)$	$q(\lambda)$		
$\begin{aligned} & \forall \\ & \\| \\ & \\| \end{aligned}$	10	11	1,2, 3, 4	-4	0	1,2,3	20		
	11	14	1, 2, 3, 4, 1	-2	2	2,3	17		
	12	17	1, 2, 3, 4, 2	0	4	1,3	16		
	13	20	1,2,3,4,3	2	6	1,2	17		
	13	21	1,2,3,4,2,1	4	8	3	9		
	14	24	1,2,3,4,3,1	6	10	2	12		
	15	28	1,2, 3, 4, 3, 2	10	14	1	9		
	16	33	1,2,3, 4, 3, 2, 1	16	20	\varnothing	0		
$\begin{aligned} & n \\ & i \\| \\ & n \end{aligned}$	15	26	1,2,3,4, 5	-9	-5	1,2,3, 4	50		
	16	30	1,2,3,4, 5, 1	-6	-2	2, 3, 4	46		
	17	34	1, 2, 3, 4, 5, 2	-3	1	1,3,4	44		
	18	38	1,2, 3, 4, 5, 3	0	4	1,2,4	44		
	18	39	1,2,3, 4, 5, 2, 1	2	6	3, 4	34		
	19	42	1,2,3, 4, 5, 4	3	7	1,2,3	46		
	19	43	1,2,3,4, 5, 3, 1	5	9	2, 4	36		
	20	47	$1,2,3,4,5,4,1$	8	12	2,3	40		
	20	48	1,2,3,4,5,3,2	10	14	1,4	30		
	21	52	1,2,3, 4, 5, 4, 2	13	17	1,3	36		
	21	54	1, 2, 3, 4, 5, 3, 2, 1	17	21	4	16		
	22	57	1,2,3, 4, 5, 4, 3	18	22	1,2	34		
	22	58	$1,2,3,4,5,4,2,1$	20	24	3	24		
	23	63	1,2, 3, 4, 5, 4, 3, 1	25	29	2	24		
	24	69	1,2,3, 4, 5, 4, 3, 2	32	36	1	16		
	25	76	1,2,3, 4, 5, 4, 3, 2, 1	141	45	\varnothing	0		
$\begin{aligned} & 6 \\ & \\| \\ & \\| \end{aligned}$	21	50	$1,2,3,4,5,6$	-12	-8	1,2,3,4, 5	105		
	22	55	$1,2,3,4,5,6,1$	-8	-4	2, 3, 4, 5	100		
	23	60	1,2,3,4, 5, 6, 2	-4	0	1,3,4,5	97		
	24	65	$1,2,3,4,5,6,3$	0	4	1,2,4,5	96		
$\underset{N}{N}$	28	85	1,2,3,4,5,6,7	-12	-8	1,2,3, 4, 5, 6	196		
	29	91	$1,2,3,4,5,6,7,1$	-7	-3	2, 3, 4, 5, 6	190		
	30	97	$1,2,3,4,5,6,7,2$	-2	2	1,3, 4, 5, 6	186		
$\begin{gathered} \infty \\ \\| \\ \\| \end{gathered}$	35	130	1,2,3, 4, 5, 6, 7, 4, 3	329	33	1,2, 5, 6	154		
			$1,2,3,4,5,6,7,8$	-8	-4	$1,2,3,4,5,6,7$	336		
	37	140	$1,2,3,4,5,6,7,8,1$	$1 \quad-2$	2	2, 3, 4, 5, 6, 7	329		
	45		1,2,3, 4, 5, 6, 7, 8, 9	$9 \quad 1$	5	1,2,3,4, 5, 6, 7, 8	540		

Table 1. s-basic h-vectors and s-minimal biliaison types.

Proposition 6.9. Suppose C is an ACM curve contained in a smooth surface X of degree s_{C}. Let $s=s_{C}, t=t_{C}$ and $e=e(C)$. Then $e+3 \geq t \geq s$ and
(a) h_{C} is of decreasing type;
(b) if $\Gamma \in|t H-C|$, then $e(\Gamma)+3<s$ and Γ is minimal on X;
(c) $C-m H$ is effective if and only if $m \leq e+4-s$;
(d) if $C_{1} \in|C-(t-s) H|, h_{C_{1}}$ is s-basic;
(e) if $C_{2} \in|C-(t-s+1) H|, h_{C_{2}}$ is of decreasing type.

There is a one to one correspondence $h_{\Gamma} \mapsto h_{C_{1}}$ mapping s-minimal h-vectors to s-basic h-vectors.

Proof. Since C is ACM, the ideal sheaf $\mathscr{I}_{C, \mathbb{P}^{3}}$ is $(e+3)$-regular, hence $e+3 \geq t$. By definition of t, we have $t \geq s$, and C is contained in a surface F of degree t that does not contain X. Therefore C is contained in the complete intersection $X \cap F$ of type (s, t). Let $\Gamma \in|t H-C|$ be the curve linked to C by $X \cap F$: then $e\left(\Gamma_{0}\right)+3<s$ and Γ is minimal (by either Lemma 6.5 or by definition of t).

Each of the curves C, C_{1}, C_{2} is linked to a curve in the linear system $|\Gamma|$ by a complete intersection of type $(s, t),(s, s)$, or $(s-1, s)$, respectively. By Lemma 6.5 the h-vectors of C, C_{1} and C_{2} are of decreasing type, and $h_{C_{1}}$ is s-basic.

There is a unique 1-basic h-vector, namely $h_{0}=\{1\}$, the h-vector of a line. Every ($s-1$)-basic h-vector gives rise to two s-basic h vectors by performing a type A or type B transformation, defined as follows: (1) A type $A=A_{s}$ transformation consists of inserting an s to an $(s-1)$-basic h-vector $h=\{1,2, \ldots, s-1, m, \ldots\}$ to transform it into the s-basic vector $h^{\prime}=\{1,2, \ldots, s-1, s, m \ldots\}$. Geometrically, if h is the h-vector of a curve C on a surface X of degree s, h^{\prime} is the h-vector of the effective divisor $C+H$ on X. (2) A type B transformation consists of inserting a string $s, s-1$ to an $(s-1)$-basic h-vector $h=\{1,2, \ldots, s-1, m, \ldots\}$ to transform it into the s-basic vector $h^{\prime \prime}=\{1,2, \ldots, s-1, s, s-1, m \ldots\}$. Geometrically, this operation breaks into two steps: suppose h is the h-vector of a curve C on a surface X_{1} of degree $s-1$. Let $C_{1}=C+H$ be obtained by adding to C a plane section of X_{1}, then pick a surface X_{2} of degree s containing C_{1}, and finally let $C_{2}=C_{1}+H$ be obtained by adding to C_{1} a plane section of X_{2}. Then $h^{\prime \prime}$ is the h-vector of C_{2}.

Conversely, any s-basic h-vector with $m=h(s) \leq s-2$ arises from a type A transformation of an (s-1)-basic h-vector, while any s-basic h-vector with $m=$ $h(s)=s-1$ arises from a type B transformation of an ($s-1$)-basic h-vector. In particular, the number of s-basic h-vectors is 2^{s-1} (see Table 1).
Proposition 6.10. Let C be an integral ACM curve in \mathbb{P}^{3} with $s_{C} \geq 4$. Suppose C is contained in a smooth surface X of degree $s=s(C)$. Suppose C has a basepointfree pencil of degree k, and let \mathscr{E} be the bundle on X associated to such a pencil.
(a) If $k \leq d-5$, then $\Delta(\mathscr{E})>0$ unless

- $s=4$ and $(d, g)=(10,11)$, or
- $s=5$ and $(d, g)=(15,26),(16,30)$, or
- $s=6$ and $(d, g)=(21,50),(22,55),(23,60)$, or
- $s=7$ and $(d, g)=(28,85),(29,91)$, or
- $s=8$ and $(d, g)=(36,133)$.
(b) If $k=d-4$, then $\Delta(\mathscr{E})>0$ unless
- $s=4$ and $(d, g)=(10,11),(11,14),(12,17)$, or
- $s=5$ and $(d, g)=(15,26),(16,30),(17,34),(18,38)$, or
- $s=6$ and $(d, g)=(21,50),(22,55),(23,60),(24,65)$, or
- $s=7$ and $(d, g)=(28,85),(29,91),(30,97)$, or
- $s=8$ and $(d, g)=(36,133),(37,140)$.

Proof. We can compute $\Delta(\mathscr{E})$ in terms of $d=d_{C}$ and $g=g(C)$:

$$
\Delta(\mathscr{E})=C^{2}-4 k=2 g-2-(s-4) d-4 k=\delta_{s}(d, g)+4(d-k),
$$

where we have set $\delta_{s}(C)=\delta_{s}(d, g)=2 g-2-d s$. One can easily verify the following facts:
(1) Let $C \subseteq X_{s}$ be a curve on a surface X of degree s in \mathbb{P}^{3}, and consider the divisor $C+H$ on X_{s}. Then

$$
\delta_{s}(C+H)-\delta_{s}(C)=2 d-3 s
$$

In particular, if $d \geq \frac{1}{2} s(s+1)$ and $s \geq 3, \delta_{s}(C+H)>\delta_{s}(C)$.
(2) Suppose $C \subseteq X_{s+1}$ is a curve on a surface X of degree $s+1$ in \mathbb{P}^{3}, and consider the divisor $C+H$ on X_{s+1} Then

$$
\delta_{s+1}(C+H)-\delta_{s}(C)=d-3(s+1)
$$

In particular, if $d \geq \frac{1}{2} s(s+1)$ and $s \geq 6, \delta_{s+1}(C+H) \geq \delta_{s}(C)$, and the inequality is strict unless $s=6$ and $d=21$.
To prove the proposition, we have seen that $\Delta(\mathscr{E})$ can be computed in terms of d, g, s, k, which depend only on the h-vector and the choice of s, k. Therefore, using the two remarks (1), (2) just made and using biliaisons on each surface to reduce to s-basic h-vectors, and using the transformations of type A and B mentioned before the statement, it would be sufficient to prove that $\Delta>0$ for all s-basic h-vectors with $s=4$. Unfortunately this is not so, as $\Delta \leq 0$ for the first three 4 -basic h-vectors (see Table 1). Still the two remarks show that Δ becomes positive using the transformations of type A and B, with the only exceptions listed in the statement. Table 1 displays all h-vectors for which $\Delta \leq 0$ for $k=d-4$ and $k=d-5$.

7. General ACM curves

We now generalize the results of [Gruson and Peskine 1978] by giving a description of a general ACM curve C with a given h-vector h, even when h is not of decreasing type. We show (Theorem 7.21) that C is a union of smooth ACM subcurves whose h-vectors are determined by that of C. The basic step is Proposition 7.18, which is a special case of [Davis 1985, Corollary 4.2], and says that C is the union of two ACM subcurves whenever h_{C} is not of decreasing type. As a corollary we show the existence of multisecant lines for ACM curves with h-vector of special types.

Definition 7.1. Let C_{0} and C be two curves in \mathbb{P}^{3}.
(a) Following [Martin-Deschamps and Perrin 1990] we say that C is obtained by an elementary biliaison of height h from C_{0} if there exists a surface X in \mathbb{P}^{3} containing C_{0} and C so that $\mathscr{I}_{C, X} \cong \mathscr{I}_{C_{0}, X}(-h)$. In the language of generalized divisors [Hartshorne 1994] this means C is linearly equivalent to $C_{0}+h H$ on X, where H denotes the plane section.
(b) As a particular case, we say C is obtained by a trivial biliaison of height h if $\mathscr{I}_{C, X}=\mathscr{I}_{C_{0}, X} \Phi_{Y, X}$ where Y is a complete intersection of X and a surface of degree h. If Y meets C_{0} properly, this means C is the union of C_{0} and Y.
(c) By a special biliaison of degree k we mean an elementary biliaison of height one $C \sim C_{0}+H$ on a surface of degree $k \geq e\left(C_{0}\right)+4$. The condition $k \geq$ $e\left(C_{0}\right)+4$ guarantees $s_{C}=s_{C_{0}}+1$ and $k=e(C)+3$ by [Martin-Deschamps and Perrin 1990, p. 68].

Proposition 7.2 (Lazarsfeld-Rao property). Suppose C is an ACM curve with index of speciality e. Then C can be obtained by a special biliaison of degree $k=e+3$ from some ACM curve C_{0} satisfying $s_{C_{0}}=s_{C}-1$.

Proof. One knows - see for example [Strano 2004] - that an ACM curve C with index of speciality e can be obtained by an elementary biliaison of height 1 on a surface X of degree $e+3$ from an ACM curve C_{0} satisfying

$$
s_{C_{0}}=s_{C}-1 \quad \text { and } \quad e\left(C_{0}\right)<e(C)
$$

Since $\operatorname{deg}(X)=e+3 \geq e\left(C_{0}\right)+4$, this is a special biliaison.
Remark 7.3. When $s_{C}=1$, the curve C_{0} above is the empty curve, which is therefore convenient to allow among ACM curves.

Corollary 7.4. Let C be an ACM curve. Then there exist positive integers $k_{1}<$ $k_{2}<\cdots<k_{u}$ such that C is obtained from the empty curve by a chain of u special biliaisons of degrees k_{1}, \ldots, k_{u}. The sequence $\lambda_{C}=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ is uniquely
determined by C, and we will call it the biliaison type of C. Morever, we have

$$
\begin{gathered}
d_{C}=\sum_{i=1}^{u} k_{i}, \quad g(C)=1+\frac{1}{2} \sum_{i=1}^{u} k_{i}\left(k_{i}-3\right)+\sum_{i=1}^{u}\left(s_{C}-i\right) k_{i}, \\
s_{C}=u, \quad t_{C}-s_{C}+1=k_{1}, \quad e(C)+3=k_{u} .
\end{gathered}
$$

Example 7.5. If $C \subset \mathbb{P}^{3}$ is ACM , then $d_{C} \geq \frac{1}{2} s_{C}\left(s_{C}+1\right)$, with equality if and only if $\lambda_{C}=\left(1,2,3, \ldots, s_{C}-1, s_{C}\right)$.
Remark 7.6. The biliaison type λ_{C} was introduced from a different point of view in [Green 1998], and it essentially the same thing as the numerical character $\left\{n_{j}\right\}$ of [Gruson and Peskine 1978]: the precise relationship, if $s=s_{C}$, is

$$
n_{j}-j=k_{s-j} \quad \text { for } j=0, \ldots, s-1
$$

The biliaison type (hence the numerical character) is equivalent to the h-vector of C. Indeed, h_{C} can be recovered from λ_{C} because one knows how h_{C} vector varies in an elementary biliaison, while λ_{C} can be computed out of h_{C} via the formula

$$
k_{i}=\#\left\{n: h_{C}(n) \geq s_{C}+1-i\right\} .
$$

One can visualize h_{C} and λ_{C} as follows. In the first quadrant of the (x, y) plane, draw a dot at (n, p) if n and p are integers satisfying $1 \leq p \leq h(n)$. Then $h(n)$ is the number of dots on the vertical line $x=n$, while k_{i} is the number of dots on the horizontal line $y=s-i+1$. In particular, $k_{1}=t_{C}-s_{C}+1$ is the number of dots on the top horizontal line $y=s$, and $k_{s}=e(C)+3$ is the number of dots on the bottom line $y=1$.
Remark 7.7. The statement that every h-vector arises as the h-vector of an ACM curve in \mathbb{P}^{3} is equivalent to the statement that every finite, strictly increasing sequence of positive integers $\lambda=\left(k_{1}, \ldots, k_{u}\right)$ occurs as λ_{C} for some ACM curve $C \subset \mathbb{P}^{3}$. We can see this by induction on u. When $u=1, \lambda=(k)$ is the biliaison type of a plane curve of degree k. If $u>1$, by induction there is an ACM curve C_{0} with $\lambda_{C_{0}}=\left(k_{1}, \ldots, k_{u-1}\right)$. Now $s_{C_{0}} \leq e\left(C_{0}\right)+3=k_{u-1}<k_{u}$. Therefore we can find a surface X of degree k_{u} containing C_{0}, and construct C from C_{0} by a biliaison of height one on X. Since $e\left(C_{0}\right)+3<k_{u}$, the biliaison is special, hence λ_{C} equals the given λ. A refined version of this construction is in Theorem 7.21.
Definition 7.8. A sequence $\lambda=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ has a gap at i if $k_{i+1}-k_{i} \geq 3$.
For example, the sequence λ_{C} of Figure 1 has a gap at $i=2$.
Davis [1985] shows that a gap in λ_{C} forces C to break in the union of two ACM subcurves. We now give a more geometric proof of this result. For this we need some preliminary remarks. While in general the union C of two ACM curves B and D can fail to be ACM, it is certainly ACM if I_{D} / I_{C} is isomorphic to R_{B} up to

Figure 1. Biliaison type and h-vector.
a twist. This condition is satisfied when C is obtained from B by a trivial biliaison, and also when C is obtained from B by a chain of elementary biliaisons "trivial on B " (Lemma 7.16 below). Here are some preliminary examples.

Example 7.9. If C is obtained from a curve B by a trivial biliaison of height h on a surface X, "adding" to C the complete intersection Y of X with a surface of degree h, then

$$
I_{Y} / I_{C} \cong \frac{I_{Y} / I_{X}}{I_{C} / I_{X}} \cong \frac{H_{*}^{0}\left(\mathscr{I}_{Y, X}\right)}{H_{*}^{0}\left(\mathscr{I}_{C, X}\right)} \cong \frac{H_{*}^{0}\left(O_{X}(-h)\right)}{H_{*}^{0}\left(\mathscr{I}_{B, X}(-h)\right)} \cong R_{B}(-h)
$$

Example 7.10. Let $D \subset \mathbb{P}^{3}$ be a curve, and L a line not contained in D. Set $C=D \cup L$, and let f be the degree of the scheme theoretic intersection $D \cap L$. Then $\mathscr{I}_{D, C} \cong \mathscr{\Phi}_{D \cap L, L} \cong \mathscr{O}_{L}(-f)$. If D is ACM, it follows that $C=D \cup L$ is ACM if and only if $I_{D} / I_{C} \cong R_{L}(-f)$.

By the same argument, if B and D are two ACM curves meeting properly and $\mathscr{I}_{B \cap D, B} \cong \mathbb{O}_{B}(-f)$, then $C=B \cup D$ is ACM if and only if $I_{D} / I_{C} \cong R_{B}(-f)$.

From another point of view, suppose B and D are two ACM curves contained in a smooth surface X, and let $C=B+D$. Then

$$
\mathscr{O}_{B}(-D) \stackrel{\text { def }}{=} \mathscr{O}_{X}(-D) \otimes \mathscr{O}_{B} \cong \mathscr{I}_{D, C}
$$

If $\mathbb{O}_{B}(-D) \cong \mathbb{O}_{B}(-f)$, then C is ACM if and only if $I_{D} / I_{C} \cong R_{B}(-f)$.
The condition $I_{D} / I_{C} \cong R_{B}(-f)$ implies that C is obtained by a "generalized liaison addition" of B and D in the sense of [Geramita and Migliore 1994]. The following proposition is essentially a special case of Theorem 1.3 of that reference.

Proposition 7.11. Suppose that C contains two subcurves B and D, and that for some integer f there is an isomorphism of R_{C}-modules:

$$
\begin{equation*}
I_{D} / I_{C} \cong R_{B}(-f) \tag{7-1}
\end{equation*}
$$

(a) There is a surface S of degree f containing D but not C, and the curve D is the scheme theoretic intersection of C and S. In particular, $f \geq s_{D}$.
(b) The degrees and genera of B, C and D are related by the formulas

$$
d_{C}=d_{B}+d_{D}, \quad g(C)=g(B)+g(D)+f d_{B}-1
$$

If B and D have no common component, then C is the scheme-theoretic union of B and $D, \mathscr{I}_{B \cap D, B} \cong \mathcal{O}_{B}(-f)$, and B. $D=f d_{B}$.

If C is contained in a smooth surface X, then $C=B+D$ on X, and $\mathbb{O}_{X}(D) \otimes \mathbb{O}_{B} \cong \mathscr{O}_{B}(f)$. In particular, $B . D=f d_{B}$.
(c) Suppose D is ACM. Then B is ACM if and only if C is $A C M$, in which case

$$
h_{C}(n)=h_{B}(n-f)+h_{D}(n)
$$

(d) Suppose B, C and D are ACM and $f=s_{D}$. If $\max \left\{\lambda_{B}\right\}<\min \left\{\lambda_{D}\right\}$ then

$$
\lambda_{C}=\lambda_{B} \cup \lambda_{D}
$$

Proof. The hypothesis $I_{D} / I_{C} \cong R_{B}(-f)$ is equivalent to there being a form $F \in H^{0}\left(\mathbb{P}^{3}, \mathcal{O}(f)\right)$ such that the sequence

$$
0 \rightarrow I_{B} / I_{C}(-f) \rightarrow R_{C}(-f) \xrightarrow{F} R_{C} \rightarrow R_{D} \rightarrow 0
$$

is exact. In particular, $I_{D}=I_{C}+I_{S}$ where S is the surface of equation $F=0$, hence D is the scheme theoretic union of C and S. Sheafifying the exact sequence

$$
0 \rightarrow I_{B}(-f) \rightarrow I_{C} \rightarrow I_{D} /(F) \rightarrow 0
$$

we obtain another exact sequence

$$
0 \rightarrow H_{*}^{1}\left(\mathscr{I}_{B}\right)(-f) \rightarrow H_{*}^{1}\left(\mathscr{I}_{C}\right) \rightarrow H_{*}^{1}\left(\mathscr{I}_{D}\right) .
$$

It follows that, if D is ACM, then $H_{*}^{1}\left(\mathscr{I}_{B}\right)(-f) \cong H_{*}^{1}\left(\mathscr{I}_{C}\right)$, and B is ACM if and only if C is ACM.

If B and D are ACM, the relation between the h-vectors follows immediately from the exact sequence $0 \rightarrow R_{B}(-f) \rightarrow R_{C} \rightarrow R_{D} \rightarrow 0$.

The relation between the degrees and genera follows computing the Euler characteristics of the two sides of $\mathscr{I}_{D, C} \cong \mathcal{O}_{B}(-f)$.

Suppose B and D have no common components. The kernel of the natural surjective map

$$
\mathcal{O}_{B}(-f) \cong \mathscr{I}_{D, C} \rightarrow \mathscr{I}_{B \cap D, B}
$$

is supported on D and is a subsheaf of \mathscr{O}_{B}. Since B is locally Cohen-Macaulay and has no component in common with D, the kernel is zero, hence $0_{B}(-f) \cong \mathscr{I}_{B \cap D, B}$.

Suppose C is contained in a smooth surface X. Since $D \subseteq C$, there is an effective divisor A on X such that $C=A+D$. Then

$$
\mathfrak{O}_{B}(-f) \cong \mathscr{I}_{D, C} \cong \mathcal{O}_{X}(-D) \otimes \mathcal{O}_{A}
$$

from which we deduce $A=B$ and $\mathscr{O}_{B}(f) \cong \mathscr{O}_{X}(D) \otimes \mathcal{O}_{B}$, hence $B . D=f d_{B}$.
We deduce (d) from (c). By assumption

$$
e(B)+3=\max \left\{\lambda_{B}\right\}<\min \left\{\lambda_{D}\right\}=t_{D}-s_{D}+1
$$

On the other hand, $h_{D}(n)=s_{D}$ if and only if $s_{D}-1 \leq n \leq t_{D}-1$, and $h_{B}\left(n-s_{D}\right)$ is nonzero if and only if $s_{D} \leq n \leq s_{D}+e(B)+2$. Since $t_{D}>s_{D}+e(B)+2$, we see $h_{D}(n)=s_{D}$ whenever $h_{B}\left(n-s_{D}\right)$ is nonzero (h_{B} so to speak sits on the top of h_{D}, as in Figure 1). Now it follows from $h_{C}(n)=h_{B}(n-f)+h_{D}(n)$ that $\lambda_{C}=\lambda_{B} \cup \lambda_{D}$.

Example 7.12. Figure 1 on page 289 shows the h-vector of a curve which is the union of a twisted cubic curve B and a divisor D of type $(6,5)$ on a smooth quadric surface. The biliaison types are $\lambda_{B}=\{1,2\}$ and $\lambda_{D}=\{5,6\}$.

Definition 7.13. Suppose $D_{0} \subseteq C_{0}$ are curves in \mathbb{P}^{3} contained in a surface X, and D is obtained from D_{0} by an elementary biliaison of height h on X. The biliaison is defined by an injective morphism $v: \mathscr{I}_{D_{0}, X}(-h) \rightarrow \mathbb{O}_{X}$ whose image is $\mathscr{I}_{D, X}$. Then the image of the restriction of v to $\mathscr{I}_{C_{0}, X}(-h)$, is the ideal $\mathscr{I}_{C, X}$ of a curve $C \subset X$, obtained by biliaison from C_{0}. In this case, we say that the biliaison from C_{0} to C is induced by the given biliaison from D_{0} to D. Note that C contains D.

Remark 7.14. When D_{0} is empty, a biliaison induced from D_{0} is the same thing as a trivial biliaison. Indeed, in this case v is multiplication by a local equation of the complete intersection D in \mathbb{O}_{X}, and v maps $\mathscr{I}_{C_{0}, X}(-h)$ onto $\mathscr{I}_{C_{0}, X} \mathscr{I}_{D, X}$.

Remark 7.15. For an elementary biliaison from C_{0} to C to be induced by a biliaison of D_{0} it is enough that the corresponding morphism $u: \mathscr{I}_{C_{0}, X}(-h) \rightarrow \mathcal{O}_{X}$ lift to a morphism $\hat{u}: \mathscr{I}_{D_{0}, X}(-h) \rightarrow \mathcal{O}_{X}$. Indeed, \hat{u} is automatically injective because its kernel $\mathscr{\mathscr { K }}$ is isomorphic to a subsheaf of $\mathscr{I}_{D_{0}, C_{0}}(-h) \subseteq{ }^{0} C_{0}(-h)$, and at the same time is a subsheaf of $\mathcal{O}_{X}(-h)$; since \mathscr{O}_{X} and $\mathscr{O}_{C_{0}}$ have no common associated points, we must have $\mathscr{K}=0$.

Lemma 7.16. Suppose C_{0} contains B and D_{0}, and $I_{D_{0}} / I_{C_{0}} \cong R_{B}(-f)$. Suppose C is obtained by an elementary biliaison from C_{0} induced by an elementary biliaison of height h from D_{0} to D on a surface X. Then C contains D and B, and

$$
I_{D} / I_{C} \cong R_{B}(-f-h)
$$

Proof. Since the biliaison from C_{0} to C is induced by that from D_{0} to D, C contains D, and

$$
I_{D} / I_{C} \cong \frac{I_{D_{0}} / I_{X}(-h)}{I_{C_{0}} / I_{X}(-h)} \cong R_{B}(-f-h)
$$

In particular, $R_{B}(-h-f)$ is an R_{C}-module, therefore $B \subseteq C$.
Lemma 7.17. Suppose C_{0} contains B and D_{0}, and $I_{D_{0}} / I_{C_{0}} \cong R_{B}\left(-s_{D_{0}}\right)$. If k is an integer such that

$$
k \geq \max \left(s_{D_{0}}+e(B)+6, e\left(C_{0}\right)+4\right)
$$

then any height-one biliaison from C_{0} to C on a surface of degree k is induced by a biliaison from D_{0} to a curve D such that

$$
I_{D} / I_{C} \cong R_{B}\left(-s_{D}\right)
$$

Proof. The lemma generalizes [Martin-Deschamps and Perrin 1990, Remark 2.7c, p. 65], which treats the case $C_{0}=B$ and $D_{0}=\varnothing$. The statement in this case becomes: if $k \geq e\left(C_{0}\right)+6$, then every height-one elementary biliaison from C_{0} to C on a surface of degree k is trivial.

To prove the statement, let X be the degree k surface on which the biliaison from C_{0} to C is defined, and apply $\operatorname{Hom}_{\mathscr{O}_{X}}\left(\cdot, \mathscr{O}_{X}\right)$ to the exact sequence

$$
0 \rightarrow \mathscr{I}_{C_{0}, X}(-1) \rightarrow \mathscr{I}_{D_{0}, X}(-1) \rightarrow \mathbb{O}_{B}\left(-s_{D_{0}}-1\right) \rightarrow 0
$$

to see that $u: \mathscr{I}_{C_{0}, X}(-1) \rightarrow \mathcal{O}_{X}$ lifts to $\hat{u}: \mathscr{I}_{D_{0}, X}(-1) \rightarrow \mathcal{O}_{X}$ if and only if the image of u in $\operatorname{Ext}_{O_{X}}^{1}\left(\mathbb{O}_{B}\left(-s_{D_{0}}-1\right), \mathbb{O}_{X}\right)$ vanishes. Now by Serre duality on X the latter Ext group is dual to

$$
H^{1}\left(X, \mathscr{O}_{B}\left(k-s_{D_{0}}-5\right)\right)
$$

which is zero because $k \geq s_{D_{0}}+e(B)+6$. Thus u lifts to give a height-one biliaison from D_{0} to a curve D inducing the biliaison from C_{0} to C. By Lemma 7.16 above $I_{D} / I_{C} \cong R_{B}\left(-s_{D_{0}}-1\right)$. Finally, since $k \geq s_{D_{0}}+1$, we have $s_{D}=s_{D_{0}}+1$.

The following proposition is a special case of [Davis 1985, Corollary 4.2].
Proposition 7.18. Suppose the biliaison type $\lambda_{C}=\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ of an $A C M$ curve C has a gap at j. Then C contains ACM curves B and D such that

$$
\lambda_{B}=\left(k_{1}, k_{2}, \ldots, k_{j}\right), \quad \lambda_{D}=\left(k_{j+1}, k_{j+2}, \ldots, k_{s}\right), \quad \text { and } \quad I_{D} / I_{C} \cong R_{B}\left(-s_{D}\right)
$$

Furthermore, (B, D) is the unique pair of ACM curves with the above properties.
Proof. Note that $s=s_{C}$. Suppose first $j=s-1$, that is, $k_{s} \geq k_{s-1}+3$. Since $k_{s}=e(C)+3$, by Proposition 7.2 C is obtained by a special biliaison on a surface
X of degree k_{s} from an ACM curve B. By definition of biliaison type, $\lambda_{B}=$ $\left(k_{1}, k_{2}, \ldots, k_{s-1}\right)$. As $k_{s-1}=e(B)+3$, we see

$$
k_{s} \geq k_{s-1}+3=e(B)+6
$$

By Lemma 7.17 the biliaison is trivial, so C contains a plane section D of X, and $I_{D} / I_{C} \cong R_{B}(-1)$. Since $\lambda_{D}=(\operatorname{deg}(X))=\left(k_{s}\right)$, the statement holds when $j=s-1$

We now suppose $j<s-1$ and proceed by induction on $s-j$. By Proposition 7.2 C is obtained by a special biliaison on a surface X of degree k_{s} from an ACM curve C_{0} whose biliaison type is $\lambda_{0}:=\lambda_{C_{0}}=\left(k_{1}, k_{2}, \ldots, k_{s-1}\right)$. Thus λ_{0} has a gap at j, and $s_{C_{0}}=s-1$, hence by induction C_{0} contains ACM curves B and D_{0} such that $\lambda_{B}=\left(k_{1}, k_{2}, \ldots, k_{j}\right), \lambda_{D_{0}}=\left(k_{j+1}, k_{j+2}, \ldots, k_{s-1}\right)$, and $I_{D_{0}} / I_{C_{0}} \cong R_{B}\left(-s_{D_{0}}\right)$.

In particular, $s_{D_{0}}=s-j-1$, so that

$$
k_{s} \geq k_{j+1}+s-j-1 \geq k_{j}+3+s_{D_{0}}=e(B)+6+s_{D_{0}} .
$$

Since $k_{s}=e(C)+3 \geq e\left(C_{0}\right)+4$, by Lemma 7.17 the biliaison from C_{0} to C is induced by a biliaison from D_{0} to a curve D, and $I_{D} / I_{C} \cong R_{B}\left(-s_{D}\right)$. Finally, since D is obtained from D_{0} by a special biliaison, D is ACM and $\lambda_{D}=\lambda_{D_{0}} \cup\left(k_{s}\right)=$ $\left(k_{j+1}, k_{j+2}, \ldots, k_{s}\right)$.

It remains to prove uniqueness. Note that $s_{D}=s-j$ is determined by C, hence so is t_{D} because

$$
t_{D}-s_{d}+1=\min \left(\lambda_{D}\right)=k_{j+1}
$$

By assumption $e(B)+3=k_{j} \leq k_{j+1}-3=t_{D}-s_{D}-2$, hence from the exact sequence

$$
0 \rightarrow \omega_{D}(m) \rightarrow \omega_{C}(m) \rightarrow \omega_{B}\left(s_{D}+m\right) \rightarrow 0
$$

we see

$$
H^{0}\left(\omega_{D}(m)\right)=H^{0}\left(\omega_{C}(m)\right) \quad \text { for every } m \leq 3-t_{D}
$$

We will show that $\Omega_{D}=H_{*}^{0}\left(\omega_{D}\right)$ is generated over the polynomial ring $R=$ $H_{*}^{0}\left(\mathbb{P}^{3}\right)$ by its elements of degree at most $3-t_{D}$. Taking this for granted for the moment, it follows that Ω_{D} is the submodule of Ω_{C} generated by

$$
\bigoplus_{m \leq 3-t_{D}} H^{0}\left(\omega_{C}(m)\right) ;
$$

hence it is determined by C. But I_{D} is the annihilator of Ω_{D}, because R_{D} is Cohen-Macaulay with canonical module Ω_{D}, hence D is determined by C.

Since $t_{D}-s_{D}+1=k_{j+1}>1$, the curve D is contained in a unique surface S of degree s_{D}, and therefore B is also determined, being the residual curve to $D=C \cap S$ in C.

To finish, we need to show $\Omega_{D}=H_{*}^{0}\left(\omega_{D}\right)$ is generated by its sections of degree at most $3-t_{D}$. For this we choose a complete intersection Y of type (s_{D}, u)
containing D and let E be the curve linked to D by Y. As $\Omega_{D} \cong I_{E} / I_{Y}\left(-e_{Y}\right)$ and I_{E} is generated by its elements of degree at most $e(E)+3$, it is enough to show $e(Y)-t_{D} \geq e(E)$.

From $\omega_{E}(-e(Y)) \cong \mathscr{I}_{D} / \mathscr{I}_{Y}$ and $h^{0}\left(\mathscr{I}_{D}\left(t_{D}-1\right)\right)=h^{0}\left(\mathscr{I}_{Y}\left(t_{D}-1\right)\right)$, we see that $h^{0}\left(\omega\left(t_{D}-1-e(Y)\right)\right)=0$; that is, $t_{D}-e(Y) \leq-e(E)$, as desired.
Corollary 7.19. Let $C \subset \mathbb{P}^{3}$ be an irreducible, reduced ACM curve that is contained in a smooth surface X of degree $s=s_{C}$. Let $t=t_{C}$ and $e=e(C)$.
(a) If $h_{C}(e+1)=3, h_{C}(e+2)=2$, then C has a unique $(e+3)$-secant line L, and every surface of degree at most $e+2$ containing C contains L as well.
(b) If $h_{C}(t)=s-2, h_{C}(t+1)=s-3$ (so that $s \geq 3$), then X contains a line L that is a $(t-s+1)$-secant of C.
Remark 7.20. As a partial converse, we will see in the proof of Theorem 9.1 that, if, for every smooth C in the Hilbert scheme $A(h)$, the general surface of degree s containing C contains a line, then the h-vector of C satisfies either (a) or (b).
Proof of Corollary 7.19. Since X is smooth, by definition of t there is surface X_{t} of degree t containing C but not X. Thus C is contained in the complete intersection $Y=X \cap X_{t}$. Let Γ the curve linked to C by Y. Then on X

$$
C \sim t H-\Gamma
$$

where H denotes a plane section of X, and \sim stands for linear equivalence. By [Migliore 1998, Corollary 5.2.19],

$$
h_{\Gamma}(n)=h_{Y}(s+t-2-n)-h_{C}(s+t-2-n)
$$

Case A: $h(e+1)=3$ and $h(e+2)=2$. The formula above implies

$$
s_{\Gamma}=\min \{s, s+t-4-e\}
$$

But $t \leq e+3$ because $h_{C}(e+3)=0$, hence $s_{\Gamma}=s+t-4-e$. The conditions on h_{C} then translate as follows:

$$
h_{\Gamma}\left(s_{\Gamma}\right)=h_{\Gamma}\left(s_{\Gamma}+1\right)=s_{\Gamma}-1 .
$$

If $s_{\Gamma}=1$, this implies $\Gamma=L$ is a line. If $s_{\Gamma} \geq 2$, then the condition on h_{Γ} is equivalent to $\lambda_{\Gamma}=\left(1, k_{2}, \ldots\right)$, with $k_{2} \geq 4$ because $h_{\Gamma}(n) \geq s_{\Gamma}-1$ at least for $n=s_{\Gamma}-2, s_{\Gamma}-1, s_{\Gamma}, s_{\Gamma}+1$. By Proposition 7.18Γ contains a line L and an ACM curve D with $I_{D} / I_{\Gamma} \cong R_{L}\left(1-s_{\Gamma}\right)$. We can treat the two cases simultaneously if we take D to be the empty curve when $s_{\Gamma}=1$.

By Proposition 7.11, $\Gamma=L+D$ on X, and $L . D=s_{\Gamma}-1$. Thus

$$
C \cdot L=(t H-L-D) \cdot L=t+s-2-s_{\Gamma}+1=s+t-s_{\Gamma}-1=e+3 .
$$

In particular, every surface of degree at most $e+2$ containing C contains L as well. On the other hand, $C+L$ is an ACM curve, because it is linearly equivalent to $D+t H$. Therefore

$$
I_{C} / I_{C+L} \cong R_{L}(-C . L)=R_{L}(-e-3)
$$

It follows that $h_{C \cup L}(n)$ and $h_{C}(n)$ differ only for $n=e+3$, where their value is 1 and 0 respectively. In particular, $h_{C \cup L}(e+2)=h_{C}(e+2)=2$ and $h_{C \cup L}(e+3)=1$, so that by [Nollet 1998, Proposition 1.5] the homogeneous ideal of $C \cup L$ is generated by its forms of degree at most $e+2$, hence by the forms in I_{C} of degree at most $e+2$.

Suppose now M is an ($e+3$)-secant line of C. Then the homogeneous ideals of C and $C \cup M$ coincide in degrees at most $e+2$. It follows that the ideal of $C \cup L$ is contained in that of $C \cup M$, hence $C \cup L=C \cup M$ and $L=M$. Therefore L is the unique $(e+3)$-secant of C.
Case B: $h_{C}(t)=s-2$ and $h_{C}(t+1)=s-3$. Then $h_{\Gamma}(s-3)=h_{\Gamma}(s-2)=1$ and $h_{\Gamma}(s-1)=0$. This implies either $\lambda_{\Gamma}=(s-1)$, or $\lambda_{\Gamma}=\left(\ldots, k_{u-1}, s-1\right)$ with $s-1-k_{u-1} \geq 3$. By Proposition 7.18, Γ contains a plane curve P of degree $s-1$ and an ACM curve B (possibly empty) such that $I_{P} / I_{\Gamma} \cong R_{B}(-1)$.

By Proposition 7.11, $\Gamma=B+P$ on X, and $B . P=d_{B}$. Let L be the line residual to P in the intersection of X with the plane of P. Then $B . L=B . H-B . P=0$; hence

$$
C \cdot L=(t H-B-P) \cdot L=((t-1) H-B+L) \cdot L=t-1+2-s=t-s+1
$$

Given any sequence $\lambda=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ with $r-1$ gaps (for any $r \geq 1$), we can decompose λ uniquely as

$$
\begin{equation*}
\lambda=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{r} \tag{7-2}
\end{equation*}
$$

where each λ_{i} has no gaps and, if a_{i} and b_{i} denote respectively the minimum and the maximum integer in λ_{i}, we have $a_{i+1}-b_{i} \geq 3$. We call (7-2) the gap decomposition of λ.
Theorem 7.21. Let $A(\lambda)$ denote the Hilbert scheme parametrizing ACM curves having biliaison type λ. If C is general in $A(\lambda)$, then C is reduced and for every $f \geq e(C)+3$, there exists a smooth surface F of degree f containing C.

Let $\lambda=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{r}$ be the gap decomposition of λ. Then:
(a) Every ACM curve $C \in A(\lambda)$ contains $A C M$ subcurves $D_{i}, i=1,2, \ldots, r$, such that $\lambda_{D_{i}}=\lambda_{i}$.
(b) If C is general in $A(\lambda)$, we have

$$
C=D_{1} \cup D_{2} \cup \cdots \cup D_{r}
$$

where the D_{i} are distinct smooth irreducible ACM curves satisfying $\lambda_{D_{i}}=\lambda_{i}$; for every $1 \leq i_{1}<i_{2}<\cdots<i_{h} \leq r$, the curve

$$
D_{i_{1}} \cup D_{i_{2}} \cup \cdots \cup D_{i_{h}}
$$

is ACM and has biliaison type $\lambda_{i_{1}} \cup \lambda_{i_{2}} \cup \cdots \cup \lambda_{i_{h}}$.
Remark 7.22. The D_{i} in Theorem 7.21 (for $i \geq 2$) are not necessarily general in $A\left(\lambda_{i}\right)$: this is because they are forced to lie on surfaces containing D_{j} for $j<i$.
Proof of Theorem 7.21. Recall that by a theorem of Ellingsrud $A(\lambda)$ is irreducible (see Remark 6.4). By Proposition 7.18 and induction on the number of gaps we see that for each $i, 1 \leq i \leq r$, there are ACM curves C_{i} and D_{i} with the following properties:
(1) $C_{r}=C$ and $C_{1}=D_{1}$.
(2) If $2 \leq i \leq r, C_{i}$ contains C_{i-1} and D_{i}, and $I_{D_{i}} / I_{C_{i}}=R_{C_{i-1}}\left(-s_{D_{i}}\right)$.
(3) $\lambda_{D_{i}}=\lambda_{i}$ for every $1 \leq i \leq r$.
(4) $\lambda_{C_{i}}=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{i}$ for every $1 \leq i \leq r$.

We claim that for every $1 \leq i_{1}<i_{2}<\cdots<i_{h} \leq r$ there are ACM curves $E_{i_{1}, i_{2}, \ldots, i_{h}} \subseteq C_{i_{h}}$ such that
(1) if $h=1, E_{i}=D_{i}$, and, if $h=r, E_{1,2, \ldots, r}=C$;
(2) if $2 \leq h \leq r, E_{i_{1}, i_{2}, \ldots, i_{h}}$ contains $E_{i_{1}, i_{2}, \ldots, i_{h-1}}$ and $D_{i_{h}}$, and

$$
I_{D_{i_{h}}} / E_{i_{1}, i_{2}, \ldots, i_{h}}=R_{E_{i_{1}, i_{2}, \ldots, i_{h-1}}}\left(-s_{D_{i_{h}}}\right)
$$

(3) $\lambda_{E_{i_{1}, i_{2}, \ldots, i_{h}}}=\lambda_{i_{1}} \cup \lambda_{i_{2}} \cup \cdots \cup \lambda_{i_{h}}$.

We prove the statement by induction on h. When $h=1$ there is nothing to prove. Suppose $h>1$. By the induction hypothesis, there is a curve $A=E_{i_{1}, i_{2}, \ldots, i_{h-1}} \subseteq$ $C_{i_{h-1}}$ with the properties above. Let $B=C_{i_{h}-1}$. By Lemma 7.23 below there exists a curve $C_{0} \subseteq C_{i_{h}}$ containing B and $D_{i_{h}}$ such that $I_{D_{i_{h}}} / I_{C_{0}} \cong R_{A}\left(-s_{D_{i_{h}}}\right)$. Since A and $D_{i_{h}}$ are ACM, it follows from Proposition 7.11 that C_{0} is ACM as well. We define $E_{i_{1}, i_{2}, \ldots, i_{h}}$ to be C_{0}. Then $E_{i_{1}, i_{2}, \ldots, i_{h}}$ has the required properties (the formula for the biliaison type follows from part (d) of the same proposition).

To see the components D_{i} of a generic C are smooth, we follow the original proof of [Gruson and Peskine 1978, 2.5]. More precisely we show that, if

$$
\lambda=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{r}
$$

is the gap decomposition of $\lambda=\left(k_{1}, \ldots, k_{s}\right)$, there exists an ACM curve C with $\lambda_{C}=\lambda$ satisfying the following properties:
(1) C is contained in a smooth surface for every $f \geq k_{s}=e(C)+3$.
(2) $C=D_{1} \cup D_{2} \cup \cdots \cup D_{r}$, where the D_{i} are smooth irreducible ACM curves satisfying $\lambda_{D_{i}}=\lambda_{i}$; in particular, C is reduced.
(3) $\omega_{D_{r}}\left(-e\left(D_{r}\right)\right)$ has a section whose scheme of zeros is smooth (contains no multiple points).

We prove this statement by induction on s as in [Gruson and Peskine 1978, 2.5]. For $s=1$, the statement is about plane curves and is well known (note that $e(C)+3=d_{C}$ for a plane curve C).

Assume now the statement is true for λ, fix a curve C with the properties above, and consider $\lambda^{+}=\lambda \cup\left\{k_{s+1}\right\}$. We have two cases to consider:
Case 1: $k_{s+1} \leq k_{s}+3$. In this case λ^{+}has a gap at s, and its gap decomposition is $\lambda^{+}=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{r} \cup\left\{k_{s+1}\right\}$.

By assumption, $k_{s+1} \geq k_{s}+3=e(C)+6$; thus there exists a smooth surface X of degree k_{s+1} containing C. Let D_{r+1} be a general plane section of X, and let $C^{+}=C \cup D_{r+1}$. Then D_{r+1} is smooth with $\lambda=\left(k_{s+1}\right)$, thus C^{+}satisfies (2) with respect to λ^{+}. It also satisfies (3) because $\omega_{D_{r+1}}\left(-e\left(D_{r+1}\right)\right) \cong 0_{D_{r+1}}$. By construction C^{+}lies on the smooth surface X of degree $k_{s+1}=e\left(C^{+}\right)+3$. The fact that C^{+}is contained in a smooth surface of degree f, for every $f>e\left(C^{+}\right)+3$, follows now from the fact that $\Phi_{C^{+}}\left(e\left(C^{+}\right)+3\right)$ is generated by its global sections; see, for example, [Peskine and Szpiro 1974] and [Nollet 1998, Corollary 2.9]. Thus C^{+}also satisfies (1), and we are done in case 1.
Case 2: $k_{s+1}=k_{s}+1$ or $k_{s}+2$. In this case the gap decomposition of λ^{+}is

$$
\lambda^{+}=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{r-1} \cup \lambda_{r}^{+}
$$

where $\lambda_{r}^{+}=\lambda_{r} \cup\left\{k_{s+1}\right\}$.
We can still find a smooth surface X of degree k_{s+1} containing C because $k_{s+1}>$ $e(C)+3$. In particular, X contains D_{r}. The proof of [Gruson and Peskine 1978, 2.5] shows that the general curve D_{r}^{+}in the linear system $D_{r}+H$ on X is smooth with $\lambda_{D_{r}^{+}}=\lambda_{r}^{+}$, and that $\omega_{D_{r}^{+}}\left(-e\left(D_{r}^{+}\right)\right)$has a section whose scheme of zeros is smooth. Thus

$$
C^{+}=D_{1} \cup D_{2} \cup \cdots \cup D_{r}^{+}
$$

has the required properties (note that $e\left(C^{+}\right)+3=k_{s+1}=\operatorname{deg}(X)$).
Lemma 7.23. Suppose $C \subset \mathbb{P}^{3}$ is a curve, with subcurves B, D such that

$$
I_{D} / I_{C} \stackrel{\beta}{\cong} R_{B}(-f)
$$

If A is a subcurve of B, there exists a unique curve C_{0} with the following properties:
(1) C_{0} is contained in C.
(2) C_{0} contains A and D, and there is an isomorphism $I_{D} / I_{C_{0}} \stackrel{\alpha}{\cong} R_{A}(-f)$ which makes commutative the diagram

$$
\begin{array}{ccc}
I_{D} / I_{C} & \xrightarrow{\beta} & R_{B}(-f) \\
\downarrow & & \downarrow \\
I_{D} / I_{C_{0}} & \xrightarrow{\cong} & R_{A}(-f)
\end{array}
$$

where the vertical arrows are induced by the inclusions $C_{0} \subseteq C$ and $A \subseteq B$.
If A and D have no common components, then $C_{0}=A \cup D$.
Proof. The inclusion

$$
I_{A} / I_{B}(-f) \hookrightarrow R_{B}(-f) \stackrel{\beta^{-1}}{\cong} I_{D} / I_{C} \hookrightarrow R_{C}
$$

defines an ideal J in R_{C}. Uniqueness is clear, because if such a C_{0} exists, we must have $I_{C_{0}} / I_{C}=J$. To show existence, let I be the inverse image of J in the polynomial ring $R=H_{*}^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}\right)$, so that $I / I_{C} \cong I_{A} / I_{B}(-f)$. The given isomorphism $I_{D} / I_{C} \stackrel{\beta}{\cong} R_{B}(-f)$ induces $I_{D} / I \stackrel{\alpha}{\cong} R_{A}(-f)$, hence an exact sequence

$$
0 \rightarrow R_{A}(-f) \rightarrow R / I \rightarrow R_{D} \rightarrow 0
$$

From this exact sequence we see that R / I has depth at least one, hence I is the saturated ideal of a subscheme $C_{0} \subset C$.

By construction $I_{C_{0}} / I_{C}$ and $I_{A} / I_{B}(-f)$ are isomorphic, so that the given isomorphism $I_{D} / I_{C} \stackrel{\beta}{=} R_{B}(-f)$ induces another, $I_{D} / I_{C_{0}} \stackrel{\alpha}{=} R_{A}(-f)$, with the desired properties. Finally, we can check C_{0} is a locally Cohen-Macaulay curve looking at the exact sequence

$$
0 \rightarrow \mathrm{O}_{A}(-f) \rightarrow \mathrm{O}_{C_{0}} \rightarrow \mathrm{O}_{D} \rightarrow 0
$$

If A and D have no common components, then C_{0} contains the union $A \cup D$. Since both C_{0} and $A \cup D$ are locally Cohen-Macaulay curves of degree $d_{A}+d_{D}$, they must be equal.

8. Bounds on the quadratic form $\phi(D, D)$

Let $X \subset \mathbb{P}^{3}$ be a smooth surface of degree $s \geq 2$. We will make use of the bilinear form on $\operatorname{Pic}(X)$:

$$
\phi(D, E)=(D \cdot H)(E \cdot H)-s(D \cdot E)=\operatorname{det}\left[\begin{array}{cc}
D \cdot H & H^{2} \\
D \cdot E & E \cdot H
\end{array}\right]
$$

This is essentially the positive definite product on $\operatorname{Pic}(X) / \mathbb{Z} H$ induced by the intersection product: by the algebraic Hodge index theorem, $\phi(D, D) \geq 0$ for any divisor D on X, and $\phi(D, D)=0$ if and only if D is numerically (hence linearly) equivalent to a multiple of H.

In the proof of our main theorem it will be crucial to be able to bound $\phi(D, D)$ from below in terms of the degree d_{D} when D is an ACM curve on X. Note that if D is a curve on X, then

$$
\begin{equation*}
\phi(D, D)=d_{D}^{2}+s(s-4) d_{D}-2 s(g(D)-1) \tag{8-1}
\end{equation*}
$$

Thus, if we fix the degree d_{D} and s, then knowing $\phi(D, D)$ is the same as knowing the genus $g(D)$, and bounding $\phi(D, D)$ from below is the same as bounding $g(D)$ from above. In fact, the bounds of this section can be seen as a refinement of the bounds on the genus of an ACM curve of [Gruson and Peskine 1978]; see Remark 8.8. The form $\phi(D, D)$ has the advantage of being invariant if we replace D with $m H-D$ or $D+n H$, that is, it is invariant under liaison and biliaison on X. Thus one can compute $\phi(D, D)$ assuming D is a minimal curve on X.

To compute these bounds we note that, by (8-1), the form $\phi(D, D)$ for an ACM curve D depends only on the h-vector (or the biliaison type λ) of D and on s. Since it is enough to consider only minimal curves on X, and there only finitely many possible biliaison types λ of minimal curves for each s, our proof will proceed by a careful analysis of these λ.

We call a biliaison type λs-minimal if it corresponds to a minimal ACM curve on a smooth surface X of degree s. Since minimal is equivalent to $e+3<s$ by Proposition 6.7, the s-minimal types λ are just those increasing sequences of positive integers $\lambda=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ satisfying $k_{u}<s$. There are 2^{s-1} such possible sequences (including the empty one), and by Proposition 6.9 the corresponding curves are linked by a complete intersection (s, s) to curves with s-basic h-vectors. For any such λ, we let d, g, e be the corresponding invariants of the associated curve Γ, and we define

$$
\begin{equation*}
q(\lambda)=\phi(\Gamma, \Gamma)=d^{2}+s(s-4) d-2 s(g-1) . \tag{8-2}
\end{equation*}
$$

Then one verifies the formula

$$
\begin{equation*}
q(\lambda)=\sum_{i=1}^{u} k_{i}(s-1)\left(s-k_{i}\right)-2 \sum_{1 \leq i<j \leq u} k_{i}\left(s-k_{j}\right) \tag{8-3}
\end{equation*}
$$

Table 1 on page 284 lists all the s-basic h-vectors and associated s-minimal biliaison types λ for $s=4,5$ and a few for $s=6,7,8,9$, together with the values q takes on them.

Definition 8.1. Suppose $\lambda=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ is s-minimal. Then we define the s-dual λ^{\prime} of λ to be

$$
\lambda^{\prime}=\left(s-k_{u}, s-k_{u-1}, \ldots, s-k_{1}\right)
$$

if $\lambda \neq \varnothing$. If $\lambda=\varnothing$, then $\lambda^{\prime}=\varnothing$. Note that, if λ is the biliaison type of an ACM curve Γ, then λ^{\prime} is the biliaison type of a curve linked to Γ by a complete intersection of two surfaces of degree $s_{\Gamma}=u_{\lambda}$ and s (see Section 6).
Proposition 8.2. The invariants of λ^{\prime} are $u_{\lambda^{\prime}}=u_{\lambda}, d_{\lambda^{\prime}}=u_{\lambda} s-d_{\lambda}, q\left(\lambda^{\prime}\right)=q(\lambda)$.
Proof. The first two equalities are obvious. The equality $q\left(\lambda^{\prime}\right)=q(\lambda)$ follows from (8-3), or can be deduced from the invariance of $\phi(D, D)$ under liaison on X.

We say that $\lambda_{1}=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ precedes $\lambda_{2}=\left(l_{1}, l_{2}, \ldots, l_{v}\right)$ and write $\lambda_{1}<\lambda_{2}$ if $k_{u}<l_{1}$. In this case, if λ_{2} is s-minimal, then

$$
\lambda_{1} \cup \lambda_{2}=\left(k_{1}, k_{2}, \ldots, k_{u}, l_{1}, \ldots, l_{v}\right)
$$

is also s-minimal. Note that $(\lambda \cup \mu)^{\prime}=\mu^{\prime} \cup \lambda^{\prime}$.
Example 8.3. A plane curve of degree $k<s$ on a surface X of degree $s \geq 2$ is minimal. The corresponding λ sequence is $\lambda=(k)$, and $q(\lambda)=k(s-1)(s-k)$.

More generally if λ is the biliaison type of a complete intersection of two surfaces of degrees $a \leq b<s$ then $q(\lambda)=a b(s-a)(s-b)$.
Example 8.4. Let $\lambda=(1,2, \ldots, k-1, k)$ with $k<s$. Then $d_{\lambda}=\frac{1}{2} k(k+1)$ and

$$
q(\lambda)=d_{\lambda}\left(s^{2}-\frac{2}{3} s(2 k+1)+d_{\lambda}\right)
$$

The first statement of Proposition 8.5 below determines, once $q((k))$ is known, the function $q(\lambda)$ by induction on the number u_{λ} of elements of λ.

Proposition 8.5. Suppose $\lambda<\mu$ are s-minimal.
(a) $q(\lambda \cup \mu)=q(\lambda)+q(\mu)-2 d_{\lambda} d_{\mu^{\prime}}$.
(b) If $\lambda<(k)$ and $(k+1)<\mu$, then

$$
q(\lambda \cup(k+1) \cup \mu)-q(\lambda \cup(k) \cup \mu)=(s-1)(s-1-2 k)-2\left(d_{\mu^{\prime}}-d_{\lambda}\right)
$$

(c) Suppose β is another s-minimal biliaison type, and h, k are two integers such that $\lambda<(h-1),(h)<\beta<(k)$, and $(k+1)<\mu$. Let $\delta=\lambda \cup(h) \cup \beta \cup(k) \cup \mu$ and $\epsilon=\lambda \cup(h-1) \cup \beta \cup(k+1) \cup \mu$. Then

$$
q(\delta)-q(\epsilon)=2 s\left(k-h-u_{\beta}\right) \geq 2 s>0
$$

We next show that $q(\lambda)$ increases if one inserts a new integer in a sequence λ.

Corollary 8.6. Let $\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ be s-minimal.
(a) If $k_{u}<k<s$, then

$$
q\left(k_{1}, k_{2}, \ldots, k_{u}, k\right) \geq q\left(k_{1}, k_{2}, \ldots, k_{u}\right)+k(s-k)^{2}
$$

In particular, $q(\lambda) \geq(s-1)^{2}$ unless $\lambda=\varnothing$.
(b) If $k_{i}<k<k_{i+1}$, then

$$
q\left(k_{1}, k_{2}, \ldots, k_{i}, k, k_{i+1}, \ldots, k_{u}\right) \geq q\left(k_{1}, k_{2}, \ldots, k_{r}\right)+k(s-k) .
$$

Proof. Let $\lambda=\left(k_{1}, k_{2}, \ldots, k_{u}\right)$ By Proposition 8.5 we have

$$
q(\lambda \cup(k))=q(\lambda)+q(k)-2 d_{\lambda}(s-k)=q(\lambda)+(s-k)\left(k(s-1)-2 d_{\lambda}\right) .
$$

Thus the first claim follows from

$$
\begin{equation*}
d_{\lambda}=\sum_{1}^{r} k_{i} \leq \frac{1}{2} k(k-1) \tag{8-4}
\end{equation*}
$$

For the second claim, set $\lambda=\left(k_{1}, k_{2}, \ldots, k_{i}\right)$ and $\mu=\left(k_{i+1}, k_{i+2}, \ldots, k_{u}\right)$. Using Proposition 8.5 we compute

$$
q(\lambda \cup((k) \cup \mu))-q(\lambda \cup \mu)=q((k) \cup \mu)-q(\mu)+2 d_{\lambda}\left(d_{\mu^{\prime}}-d_{((k) \cup \mu)^{\prime}}\right)
$$

Now $d_{\mu^{\prime}}-d_{((k) \cup \mu)^{\prime}}=-(s-k)$, while by duality and the first claim

$$
q((k) \cup \mu)-q(\mu)=q\left(\mu^{\prime} \cup(s-k)\right)-q\left(\mu^{\prime}\right) \geq(s-k) k^{2} .
$$

Hence

$$
\begin{aligned}
q(\lambda \cup((k) \cup \mu))-q(\lambda \cup \mu) & \geq(s-k) k^{2}-2 d_{\lambda}(s-k) \\
& =(s-k)\left(k^{2}-2 d_{\lambda}\right) \geq k(s-k)
\end{aligned}
$$

where the last inequality follows from (8-4).
We now prove a lower bound for $q(\lambda)$ in terms of the residue class of d_{λ} modulo s.
Proposition 8.7. Let λ be s-minimal, of degree d congruent to f modulo s, with $0 \leq f<s$. Then
(a) If $u_{\lambda}=2$, so that $\lambda=(h, k)$ with $h+k \equiv f(\bmod s)$, then

$$
q(\lambda)= \begin{cases}f(s-1)(s-f)+2 h(k-1) s & \text { if } h+k<s \\ f(s-1)(s-f)+2(s-k)(s-h-1) s & \text { if } h+k \geq s\end{cases}
$$

(b) If $u_{\lambda} \geq 3$ and $s \geq 5$, we have

$$
q(\lambda) \geq 2 s+m(f, s)
$$

where $m(f, s)$ denotes the minimum of $q(\mu)$ as μ varies among s-minimal
biliaison types satisfying $u_{\mu}=2$ and $d_{\mu} \equiv f$ or $d_{\mu} \equiv s-f(\bmod s)$. In fact,

$$
m(f, s)= \begin{cases}f(s-1)(s-f)+2 s(f-2) & \text { if } 3 \leq f \leq s-f \text { or } f=s-2, s-1 \\ f(s-1)(s-f)+2 s(s-f-2) & \text { if } 3 \leq s-f \leq f \text { or } f=0,1,2\end{cases}
$$

This minimum is attained by $\lambda=(1, f-1)$ and $\lambda^{\prime}=(s-f+1, s-1)$ when $3 \leq$ $f \leq s-f$ or if $f=s-2, s-1$, and by $\lambda=(1, s-f-1)$ and $\lambda^{\prime}=(f+1, s-1)$ when $3 \leq s-f \leq f$ or $f=0,1,2$.

Proof. Part (a) is a simple computation. To prove part (b), note that the role of f and $s-f$ is symmetric, reflecting the fact that $q(\lambda)=q\left(\lambda^{\prime}\right)$. Thus we can replace λ with λ^{\prime} whenever convenient. If $\lambda=\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ and there are two indices $i<j$ such that $k_{i}-1>k_{i-1}$ and $k_{j}+1<k_{j+1}$, we replace k_{i} by $k_{i}-1$ and k_{j} by $k_{j}+1$ to obtain a new increasing sequence λ_{1} with the same degree as λ, hence the same f. Then $q(\lambda) \geq q\left(\lambda_{1}\right)+2 s$ by Proposition $8.5(\mathrm{c})$. When $u_{\lambda}=2$, it follows that the minimum $m(f, s)$ is attained by sequences of the form $(1, k)$ or $(h, s-1)$, as in the statement. When $u_{\lambda} \geq 3$, iterating the procedure above and passing to the dual word if necessary, we may assume that λ is one of the following sequences:

$$
\begin{array}{cl}
(1,2, \ldots, h) & 3 \leq h<s \\
(1,2, \ldots, h, s-m, s-(m-1), \ldots, s-1) & 1 \leq m \leq h, 2 \leq h \leq s-m-2 \\
(1,2, \ldots, h, k) & 2 \leq h \leq k-2 \\
(1,2, \ldots, h, k, s-m, s-(m-1), \ldots, s-1) & m \leq h, 1 \leq h \leq k-2, k \leq s-m-2
\end{array}
$$

If $\lambda=(1,2, \ldots, s-1)$, we replace it with $(2, \ldots, s-2)$, since

$$
q(1,2, \ldots, s-1)>q(2, \ldots, s-2)
$$

If $h \geq 2$, we define

$$
\mu=(2, \ldots, h-1, h+1, \ldots)
$$

to be the sequence obtained removing 1 and h from λ and adding $h+1$. If $h=1$, then $\lambda=(1, k, s-1)$ with $3 \leq k \leq s-3$, in which case we define $\mu=(k+1, s-1)$.

Then $d_{\mu}=d_{\lambda}, u_{\mu}=u_{\lambda}-1$, hence we will be done by induction on u_{λ} if we show $q(\lambda) \geq q(\mu)+2 s$. By Proposition $8.5($ a) we can assume $\lambda=(1,2, \ldots, h)$ and $\mu=(2, \ldots, h-1, h+1)$. Then one computes $q(\lambda)-q(\mu)=2 s$.

Remark 8.8. One can show that the bound $q(\lambda) \geq f(s-1)(s-f)$ is equivalent to the bound in [Gruson and Peskine 1978] for the genus of an ACM curve of degree $d>s(s-1)$ not lying on a surface degree $s-1$. They also show that curves of maximal genus are linked to plane curves: in our notation this means $u_{\lambda}=1$ if $q(\lambda)$ attains its minimal value $f(s-1)(s-f)$.

Corollary 8.9. Let λ be s-minimal of degree d congruent to f modulo s, with $0 \leq f<s$. If $u_{\lambda} \geq 2$, then

$$
q(\lambda) \geq \begin{cases}2 s(s-2) & \text { if } f=0, \\ 3 s^{2}-8 s+1 & \text { if } f=1 \text { or } f=s-1, \\ 2 s^{2}-4 s+4 & \text { if } f \notin\{0,1, s-1\}\end{cases}
$$

Proof. We may assume $s \geq 5$ because the cases $s=3,4$ are easily checked; see Table 1. If $f=0,1$ or $s-1$, the statement follows immediately from Proposition 8.7. If $f \neq 0,1, s-1$, again by the smae proposition we have

$$
q(\lambda) \geq q(f)+2 s \geq q(2)+2 s=2 s^{2}-4 s+4
$$

Corollary 8.10. Suppose $s \geq 5$ and let λ be s-minimal. Suppose $q(\lambda) \leq(s+1)^{2}$. Then one of the following occurs:
(1) $\lambda=\varnothing$ and $q(\lambda)=0$.
(2) $\lambda=(1)$ or $\lambda=(s-1)$, and $q(\lambda)=(s-1)^{2}$.
(3) $5 \leq s \leq 7$ and $\lambda=(2)$ or $\lambda=(s-2)$, so that $q(\lambda)=2(s-1)(s-2)$.
(4) $s=6$ and $\lambda=(3)$, so that $q(\lambda)=3(s-1)(s-3)=45$.
(5) $s=5$ or 6 and $\lambda=(1, s-1)$.
(6) $s=5$ and $\lambda=(1,3)$ or $\lambda=(2,4)$, in which case $q(\lambda)=36=(s+1)^{2}$.
(7) $s=5$ and $\lambda=(1,2)$ or $\lambda=(3,4)$, in which case $q(\lambda)=34$.

Furthermore, if $q(\lambda) \leq(s-1)^{2}$, then either (1) or (2) occurs. If $(s-1)^{2}<q(\lambda) \leq s^{2}$, then either $s=4$ and $\lambda=(2)$ or $(1,3)$, or $s=5$ and $\lambda=(2)$ or (3).

Proof. Suppose first $\lambda=(f)$. Then $q(\lambda)=f(s-1)(s-f)$. One checks this is bigger than $(s+1)^{2}$ except in the cases listed in the statement.

Suppose now $u_{\lambda} \geq 2$. If $f=0$, then $q(\lambda) \geq 2 s(s-2)$ by Corollary 8.9 , and this is bigger than $(s+1)^{2}$ unless $s \leq 6$. When $s=5$ or 6 , one checks by hand the only possibility is $\lambda=(1, s-1)$.

If $f=1$ or $s-1$, the lower bound for $q(\lambda)$ is

$$
3 s^{2}-8 s+1
$$

which is bigger than $(s+1)^{2}$ unless $s \leq 5$. When $s=5$, one finds the two sequences $\lambda=(1,3)$ or $\lambda=(2,4)$.

If $f \neq 0,1, s-1$, then $q(\lambda) \geq 2 s^{2}-4 s+4$ which is bigger than $(s+1)^{2}$ unless $s \leq 5$. When $s=5$, one finds the two sequences $\lambda=(1,2)$ or $\lambda=(3,4)$ for which $q(\lambda)=34$.

9. Gonality of a general ACM curve

In this section we give the proof of our main result.
Theorem 9.1. Assume \mathbb{K} has characteristic zero. Let $C \subset \mathbb{P}_{\mathbb{K}}^{3}$ be an irreducible, nonsingular ACM curve with h-vector h, and let $s=s_{C}, t=t_{C}, e=e(C)$ and $g=$ $g(C)$. Assume that $s \geq 4$ and that (s, d, g) is not one of the following: $(4,10,11)$, $(5,15,26),(5,16,30),(6,21,50),(6,22,55),(6,23,60),(7,28,85),(7,29,91)$, (8, 36, 133).

Suppose there is a smooth surface X of degree s containing C with the following properties:
(1) The linear system $|t H-C|$ on X contains a reduced curve Γ, such that the irreducible components $D_{1}, \ldots D_{r}$ are ACM curves, and

$$
\lambda_{\Gamma}=\lambda_{D_{1}} \cup \lambda_{D_{2}} \cup \cdots \cup \lambda_{D_{r}}
$$

is the gap decomposition of λ_{Γ}.
(2) The Picard group of X is $\operatorname{Pic}(X)=\mathbb{Z}[H] \oplus \mathbb{Z}\left[D_{1}\right] \oplus \cdots \oplus \mathbb{Z}\left[D_{r}\right]$.
(3) C is general in its linear system on X.

Then

$$
\operatorname{gon}(C)=d-l
$$

where $l=l(C)$ is the maximum order of a multisecant of C. Furthermore, with the possible exception of the values of (s, d, g) listed in Proposition 6.10(b), C has finitely many g_{d-l}^{1}; hence its Clifford index is

$$
\operatorname{Cliff}(C)=\operatorname{gon}(C)-2=d-l-2
$$

More precisely:
(a) If $h(e+1)=3, h(e+2)=2$, then the gonality of C is $d-e-3$ and there is unique pencil of minimal degree, arising from the unique $(e+3)$-secant line of C (compare Corollary 7.19).
(b) if $h(t)=s-2, h(t+1)=s-3, t>s+3$, but the condition of case (a) above does not occur, then the gonality of C is $d-(t-s+1)$, and there is unique pencil of minimal degree, arising from the unique $(t-s+1)$-secant line of C.
(c) if neither case (a) nor (b) above occurs, then the gonality of C is $d-4$, and every g_{d-4}^{1} on C arises from a 4 -secant line, unless either
(1) (s, d, g) is in the list of Proposition 6.10(b), or
(2) $s=4, C \in\left|C_{0}+b H\right|$ where $b \geq 2$ and C_{0} has degree 4 and arithmetic genus 1 ; in this case $\left|O_{C}(b)\right|$ is the unique g_{d-4}^{1} that does not arise from a 4-secant.

Finally, if C has a complete basepoint-free pencil of degree $k<d-4$, then the pencil arises either from an $(e+3)$-secant line or from a $(t-s+1)$-secant line.

Remark 9.2. The conditions on h in (a) and (b) are not satisfied in any of the cases listed in Proposition 6.10(b).

Proof of Theorem 9.1. The gonality of C is at most $d-4$ by Proposition 3.1.
Suppose \mathscr{L} is a complete basepoint-free pencil of degree k on C, and assume $k \leq d-4$, unless we are in one of the cases listed in Proposition 6.10(b), for which we assume $k \leq d-5$. We will classify these pencils as follows. By the same proposition the bundle \mathscr{E} associated to \mathscr{L} on X satisfies $\Delta(\mathscr{E})>0$, and then by Bogomolov's result (Theorem 5.4) it follows that \mathscr{E} is Bogomolov unstable. Let $0_{X}(A)$ be the line bundle that destabilizes \mathscr{E}. We will show that only the following cases can occur:
(1) for any h-vector, we can have $A=-H$; then by Corollary 5.7 the pencil \mathscr{E} arises from a multisecant line L that is not contained in X. Corollary 4.2 shows that $k=\operatorname{deg} \mathscr{\mathscr { L }}=d-4$ and that there is a finite set of such pencils.
(2) when $h(e+1)=3$ and $h(e+2)=2$, then C has a unique $(e+3)$-secant line L, and $\mathscr{L}=\mathscr{L}(L)$. In this case $L \subset X$ and $A=L-H$.
(3) if $t>s+3, h(t)=s-2, h(t+1)=s-3$, then C has a unique $(t-s+1)$-secant line L, and $\mathscr{L}=\mathscr{L}(L)$. In this case $L \subset X$ and $A=L-H$.
(4) $s=4, C \in\left|C_{0}+b H\right|$ where $b \geq 2$ and C_{0} has degree 4 and arithmetic genus 1. In this case $\mathscr{\mathscr { L }}=\left|0_{C}(b)\right|$ and $A=-C_{0}$. In particular, $\operatorname{deg} \mathscr{L}=d-4$ and \mathscr{L} does not arise from a multisecant.

The statement of the theorem clearly follows from this classification. For the Clifford index, we use the fact, proved in [Coppens and Martens 1991], that $\operatorname{Cliff}(C)=$ $\operatorname{gon}(C)-2$ when C has a finite number of pencils of minimal degree.

We now proceed to classify the possible basepoint-free complete pencils $\mathscr{\not}$ of degree at most $d-4$. Let A be the divisor that destabilizes the bundle \mathscr{E} associated to \mathscr{L}. Recall that A sits in an exact sequence

$$
0 \rightarrow \mathscr{O}_{X}(A) \rightarrow \mathscr{E} \rightarrow \mathscr{I}_{W, X}(B) \rightarrow 0
$$

where W is zero-dimensional and $(A-B) . H>0$. From the exact sequence we see $A-B=2 A+C$ and

$$
(2 A+C)^{2}=(A-B)^{2} \geq \Delta(\mathscr{E})=C^{2}-4 k
$$

By Proposition 5.5 we also have $(-A) . H>0$ and $A^{2} \geq 0$.

To be able to work effectively with the above inequalities, we write $x=A . H$ for the degree of A, and consider the bilinear form on $\operatorname{Pic}(X)$

$$
\phi(D, E)=(D \cdot H)(E . H)-s(D \cdot E)=\operatorname{det}\left[\begin{array}{cc}
D \cdot H & H^{2} \\
D \cdot E & E \cdot H
\end{array}\right]
$$

We then obtain the following numerical constraints on x :

$$
\begin{equation*}
-d<2 x<0, \quad x^{2} \geq \phi(A, A), \quad x^{2}+d x+k s \geq \phi(A, A+C) \tag{9-1}
\end{equation*}
$$

the last two inequalities being equivalent to $A^{2} \geq 0$ and $(2 A+C)^{2} \geq C^{2}-4 k$ respectively.

In $\operatorname{Pic}(X)$ we can write $A=\sum a_{i} D_{i}+c H$ with $a_{i} \in \mathbb{Z}, c \in \mathbb{Z}$. We wish to show

$$
\phi(A, A+C) \geq 0
$$

We first prove $\phi\left(D_{i}, D_{j}\right)<0$. Let $\lambda_{\Gamma}=\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{r}$ be the gap decomposition of λ_{Γ}, so that $\lambda_{D_{i}}=\lambda_{i}$. If $i<j, D_{i}+D_{j}$ is ACM with $\lambda_{D_{i}+D_{j}}=\lambda_{i} \cup \lambda_{j}$ by Theorem 7.21. Since $\phi(D, D)=q\left(\lambda_{D}\right)$ for an ACM curve D with $s_{D}<s$, by Proposition 8.5

$$
\begin{equation*}
\phi\left(D_{i}, D_{j}\right)=-d_{\lambda_{i}} d_{\lambda_{j}^{\prime}}<0 \tag{9-2}
\end{equation*}
$$

(note that the formula $\phi\left(D_{i}, D_{j}\right)=-d_{\lambda_{i}} d_{\lambda_{j}^{\prime}}$ is correct only for $i<j$).
To simplify notation we let $q_{i}=\phi\left(D_{i}, D_{i}\right)$ and $b_{i}=-\sum_{j \neq i} \phi\left(D_{i}, D_{j}\right)$. We claim that $q_{i}>2 b_{i}$ for every i. To prove this let $E_{i}=\sum_{j \neq i} D_{j}$. Then

$$
\begin{aligned}
\phi(\Gamma, \Gamma) & =\phi\left(D_{i}+E_{i}, D_{i}+E_{i}\right)=\phi\left(D_{i}, D_{i}\right)+\phi\left(E_{i}, E_{i}\right)+2 \phi\left(D_{i}, E_{i}\right) \\
& =\phi\left(E_{i}, E_{i}\right)+q_{i}-2 b_{i}
\end{aligned}
$$

thus it is enough to show $\phi(\Gamma, \Gamma)>\phi\left(E_{i}, E_{i}\right)$, that is, $q\left(\lambda_{\Gamma}\right)>q\left(\lambda_{E_{i}}\right)$. The latter inequality holds by Corollary 8.6 ; hence $q_{i}>2 b_{i}$.

We now compute

$$
\begin{aligned}
\phi(A, A) & =\sum_{i} a_{i}^{2} \phi\left(D_{i}, D_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \phi\left(D_{i}, D_{j}\right) \\
& =\sum_{i} a_{i}^{2}\left(q_{i}-b_{i}\right)-\sum_{i} a_{i}^{2} \sum_{j \neq i} \phi\left(D_{i}, D_{j}\right)+2 \sum_{i<j} a_{i} a_{j} \phi\left(D_{i}, D_{j}\right) \\
& =\sum_{i} a_{i}^{2}\left(q_{i}-b_{i}\right)-\sum_{i<j}\left(a_{i}-a_{j}\right)^{2} \phi\left(D_{i}, D_{j}\right) \\
\phi(A, C) & =\phi\left(\sum_{i} a_{i} D_{i}, t_{C} H-\sum_{j} D_{j}\right)=\phi\left(\sum_{i} a_{i} D_{i},-\sum_{j} D_{j}\right) \\
& =-\sum_{i, j} a_{i} \phi\left(D_{i}, D_{j}\right)=-\sum_{i} a_{i}\left(q_{i}-b_{i}\right)
\end{aligned}
$$

Therefore

$$
\begin{align*}
\phi(A, A) & =\sum_{i} a_{i}^{2}\left(q_{i}-b_{i}\right)-\sum_{i<j}\left(a_{i}-a_{j}\right)^{2} \phi\left(D_{i}, D_{j}\right), \tag{9-3}\\
\phi(A, C) & =-\sum_{i} a_{i}\left(q_{i}-b_{i}\right), \tag{9-4}\\
\phi(A, A+C) & =\sum_{i}\left(a_{i}^{2}-a_{i}\right)\left(q_{i}-b_{i}\right)-\sum_{i<j}\left(a_{i}-a_{j}\right)^{2} \phi\left(D_{i}, D_{j}\right) . \tag{9-5}
\end{align*}
$$

The last equality implies $\phi(A, A+C) \geq 0$ because the a_{i} are integers, $q_{i}>$ $2 b_{i} \geq b_{i}$ and $\phi\left(D_{i}, D_{j}\right)<0$.

We now show that $\phi(A, A+C) \geq 0$ implies $x \geq-s-1$.
By hypothesis $k \leq d-4$; therefore

$$
x^{2}+d x+(d-4) s \geq x^{2}+d x+k s \geq \phi(A, A+C) \geq 0
$$

Let δ be the discriminant of the equation $x^{2}+d x+(d-4) s=0$:

$$
\delta=d^{2}-4 s d+16 s=(d-2 s)^{2}-4 s(s-4)
$$

Let $y=d-2 s$. Since C is ACM and $s=s_{C}$, we have $d \geq \frac{1}{2} s(s+1)$ by Remark 6.2, hence

$$
y-2=d-2 s-2 \geq \frac{1}{2}\left(s^{2}-3 s-4\right) \geq \frac{1}{2}\left(s^{2}-4 s\right)
$$

In fact, we can have equality only if $s=4$ and $d=10$, while the hypotheses of the theorem when $s=4$ require d to be at least 11. Thus $y-2>\frac{1}{2} s(s-4)$ and

$$
\delta=y^{2}-4 s(s-4)>y^{2}-8 y+16=(y-4)^{2} .
$$

Thus δ is positive, and the equation has two real roots, one smaller than $-d / 2$, the other one, say \bar{x}, larger than $-d / 2$. Since $-d / 2<x<0$, we conclude $x \geq \bar{x}$. Furthermore, unless $s=4$ and $d=11$, we have $y-4 \geq 0$ under the hypotheses of the theorem, hence

$$
\bar{x}=-\frac{d}{2}+\frac{1}{2} \sqrt{\delta}>-\frac{d}{2}+\frac{1}{2} \sqrt{y^{2}-8 y+16}=-\frac{d}{2}+\frac{1}{2}(y-4)=-s-2 .
$$

The inequality $\bar{x}>-6$ holds also in case $s=4$ and $d=11$. Thus $x \geq-s-1$. Then from $x^{2} \geq \phi(A, A)$ we see that

$$
(s+1)^{2} \geq \phi(A, A)
$$

If all the a_{i} are zero, then $A=c H$ (this is the case if C is a complete intersection of X and another surface). Since $-s-1 \leq x=\operatorname{deg} A<0$, we must have $A=-H$.

If not all the a_{i} are zero, let $1 \leq i_{1}<\cdots<i_{h} \leq r$ be the indices for which $a_{i} \neq 0$. Formula (9-3) holds with this new set of indices, and shows that, if all the
coefficients a_{i} are nonzero, then $\phi(A, A)$ attains its minimum when all the a_{i} are equal to 1 . Thus

$$
\phi(A, A) \geq \phi(D, D)
$$

where $D=D_{i_{1}}+\cdots+D_{i_{h}}$ is the support of A.
Now D is ACM with biliaison type $\lambda_{D}=\lambda_{i_{1}} \cup \cdots \cup \lambda_{i_{h}}$ by Theorem 7.21. If λ_{D} is not one of the special cases listed in Corollary 8.10, then

$$
\phi(D, D)=q\left(\lambda_{D}\right)>(s+1)^{2}
$$

contradicting $(s+1)^{2} \geq \phi(A, A)$.
Suppose now λ_{D} is one of the special cases listed in Corollary 8.10. We still have $\phi(A, A) \geq(s-1)^{2}$ because λ_{D} is not empty. Before examining the various cases, let us remark that, if only one of the a_{i} is nonzero, so that

$$
A=a D+c H
$$

with D irreducible and $a \neq 0$, then either $a=1$ or $a=-1$. This follows from

$$
a^{2}=\frac{\phi(A, A)}{\phi(D, D)} \leq \frac{(s+1)^{2}}{(s-1)^{2}}<4
$$

Also note that D is irreducible precisely when λ_{D} has no gaps, that is, in all cases of Corollary 8.10 except when $s=5$ or 6 and $\lambda=(1, s-1)$.

To complete the list of Corollary 8.10, observe from Table 1 that for $s=4$ there are 7 possibilities for λ_{D}, because $\lambda \neq \varnothing$ and $u_{\lambda}<4$, namely

$$
(1),(2),(3),(1,2),(1,3),(2,3),(1,2,3)
$$

Case 1: $\lambda_{D} \neq(1), \lambda_{D} \neq(s-1)$, and, when $s=5$ or $6, \lambda_{D} \neq(1, s-1)$.
Then $\phi(D, D)>(s-1)^{2}$ and λ_{D} has no gaps by Corollary 8.10. Thus D is irreducible, $A=a D+c H$ with $a= \pm 1$ and

$$
(s+1)^{2} \geq x^{2} \geq \phi(A, A)=a^{2} \phi(D, D)>(s-1)^{2}
$$

Hence $x=-s-1$ or $x=-s$.
Case 1a: $a=1, x=-s-1$. In this case $d_{D} \equiv x \equiv-1(\bmod s)$, and by Corollary 8.10 we must have $s \leq 5$. Furthermore by the last inequality in (9-1)

$$
x^{2}+d x+(d-4) s \geq 0
$$

that is

$$
s^{2}+2 s+1-s d-d+(d-4) s \geq 0
$$

so $d \leq s^{2}-2 s+1$. This gives $d \leq 9$ if $s=4$, and $d \leq 16$ if $s=5$, while $d \geq \frac{1}{2} s(s+1)$ because C is an ACM curve $s_{C}=s$. Thus we must have $s=5$, and examining the list in Corollary 8.10 we find $\lambda_{D}=(1,3)$ is the only possibility. Then, for
$\Gamma=t H-C$, we know λ_{Γ} contains $\lambda_{D}=(1,3)$ in its gap decomposition and $u_{\lambda_{\Gamma}}<5$. This forces $\lambda_{\Gamma}=\lambda_{D}$, hence $D=\Gamma$ and therefore

$$
d=s t-\operatorname{deg}(\Gamma) \geq 25-4=21
$$

a contradiction, so this case does not occur.
Case 1b: $a=1, x=-s$. In this case $d_{D} \equiv x \equiv 0(\bmod s)$ and $s^{2}=x^{2} \geq q(\lambda)$. By Corollary 8.10 the only possibility is $s=4$ and $\lambda_{D}=(1,3)$, which forces $D=\Gamma=t H-C$. Furthermore, we must have $\operatorname{gon}(C)=k=d-4$ for the inequality $x^{2}+d x+k s \geq \phi(A, A+C)$ of (9-1) to hold.

Since $x=-4=\operatorname{deg}(D+c H)$, we see $c=-2$. Now pick an effective divisor $C_{0} \in|-A|=|2 H-D|$. Then C_{0} is ACM with biliaison type $(1,3)$, thus C_{0} is up to a deformation with constant cohomology an elliptic quartic. By construction $C \in\left|C_{0}+b H\right|$ with $b=t-2 \geq 2$. (Note that $b=2$ gives $(d, g)=(12,17)$, which is in the list of Proposition 6.10(b).) For $b \geq 2$ the restriction of $\left|C_{0}\right|$ to C is $\left|O_{C}(b)\right|$, and is a g_{d-4}^{1} on C that does not arise from a multisecant.

Case 1c: $a=-1, x=-s-1$ or $-s$. In this case $A=-D+c H$, hence, if $D=D_{i}$, $\phi(A, A)+\phi(A, C)=2 \phi\left(D_{i}, D_{i}\right)+\sum_{j \neq i} \phi\left(-D_{i},-D_{j}\right)=2 q_{i}-b_{i} \geq \frac{3}{2} q_{i}>\frac{3}{2}(s-1)^{2}$.

Therefore

$$
x^{2}+d x+(d-4) s \geq \frac{3}{2}(s-1)^{2}
$$

which contradicts both $x=-s-1$ and $x=-s$, so this case does not occur.
Case 2: $\lambda_{D}=(1)$, so that D is a line $L \subset X$, and $A=c H+a L$ with $a= \pm 1$. In this case either $\Gamma=L$ and $\lambda_{\Gamma}=(1)$, or λ_{Γ} has a gap at the beginning:

$$
\lambda_{\Gamma}=(1,4, \ldots)
$$

In both cases $L=D_{1}$ is unique. The proof of Corollary 7.19 shows that the h vector of C satisfies $h_{C}(e+1)=3$ and $h_{C}(e+2)=2$, and that $C . L=e+3$. Thus in any case

$$
\operatorname{deg}(Z)=\operatorname{gon}(C) \leq d-e-3
$$

We wish to show that $A=L-H$ and $Z=\mathscr{L}(L)$.
Recall that the degree x of A must satisfy the inequalities $-s-1<x<0$ and

$$
x^{2} \geq a^{2} \phi(L, L)=(s-1)^{2}
$$

We also know $x=c s+a$ with $a= \pm 1$. Therefore $c=-1$ and either $A=-H-L$ or $A=-H+L$.

Suppose first $A=-H-L$. Since $\operatorname{deg}(X)=s \geq 4$,

$$
H^{0} \widehat{O}_{X}(H+L) \cong H^{0} \mathbb{O}_{X}(H)
$$

thus every curve B in the linear system $|-A|=|H+L|$ contains the line L. This contradicts Proposition 5.5, according to which we can find two effective divisors in $|-A|$ meeting properly. So $A=-H-L$ is impossible. Therefore $A=-H+L$, and $Z=\mathscr{L}(L)$ by Corollary 5.7.

Case 3: $\lambda_{D}=(s-1)$, so that $D=H-L$ is a plane curve of degree $s-1$, residual to a line L in a plane section of X. Furthermore, $A=c H+a D=(c+a) H-a L$ with $a= \pm 1$.

In this case $D=D_{r}$, thus L is unique, and either $\Gamma=D_{r}$ or λ_{Γ} has a gap at the end. The proof of Corollary 7.19 shows that the h-vector of C satisfies $h_{C}(t)=s-2, h_{C}(t+1)=s-3$ and that L is a $(t-s+1)$-secant line for C. An argument analogous to the one of the previous case shows $A=-H+L$, so that $\mathscr{L}=\mathscr{L}(L)$.

Case 4: $\quad \lambda_{D}=(1, s-1)$ with $s=5$ or 6 , hence $A=c H+a_{1} L_{1}+a_{2} P$ where L_{1} is a line, P is a plane curve of degree $s-1$, and a_{1} and a_{2} are nonzero. Note that $\phi\left(L_{1}, P\right)=-1$, therefore

$$
\begin{aligned}
\phi(A, A) & =\left(a_{1}^{2}+a_{2}^{2}\right)(s-1)^{2}-2 a_{1} a_{2} \\
& =\left(a_{1}^{2}+a_{2}^{2}\right)\left(s^{2}-2 s\right)+\left(a_{1}-a_{2}\right)^{2} \geq 2\left(s^{2}-2 s\right)>s^{2}
\end{aligned}
$$

On the other hand, $(s+1)^{2} \geq x^{2} \geq \phi(A, A)$. Therefore we must have $x=-s-1$ and $a_{1}^{2}+a_{2}^{2}<3$, that is, a_{1} and a_{2} can only be 1 or -1 .

Then

$$
-s-1=x=c s+a_{1}+a_{2}(s-1)
$$

from which we see $-1 \equiv a_{1}-a_{2}(\bmod s)$. This is impossible because $a_{1}= \pm 1$ and $a_{2}= \pm 1$.

This complete the list of possible cases, and proves the classification of complete basepoint-free pencils \mathscr{L} of degree at most $d-4$, hence the theorem

Remark 9.3. In the first of the cases excluded in the theorem, namely $s=4$ and $(d, g)=(10,11)$, we can prove $\operatorname{gon}(C)=6=d-4$ by the method of [Hartshorne 2002].

Theorem 9.4. Assume the ground field is the complex numbers. Then the conclusions of Theorem 9.1 hold for the general ACM curve C in $A(h)$.

Proof. Since the conclusions of Theorem 9.1 are semicontinuous on $A(h)$ (cf. [Arbarello and Cornalba 1981]), it is enough to show the existence of a single curve C for which the hypotheses of that theorem are satisfied. To check this, let h^{\prime} denote the h-vector of a curve Γ linked by two surfaces of degrees s and $t=t_{C}$ to $C \in A(h)$. Note that h^{\prime} may not be of decreasing type, but in any case $s_{\Gamma} \leq e_{\Gamma}+3<s$ by Lemma 6.5. By Theorem 7.21 a general curve Γ in $A\left(h^{\prime}\right)$ is reduced, its irreducible
components are ACM, with biliaison type prescribed by λ_{Γ}; and, since $s>e_{\Gamma}+3$, there exist smooth surfaces of any degree $\geq s-1$ containing Γ.

Now let h_{2} be the h-vector of a curve C_{2} linked to Γ by the complete intersection of two smooth surfaces of degree $s-1$ and s respectively. The flag Hilbert schemes parametrizing pairs (Γ, Y), where $\Gamma \in A\left(h^{\prime}\right)$ and Y is a complete intersection of type $(s-1, s)$, is irreducible [Martin-Deschamps and Perrin 1990, VII §3]. Thus a general Γ in $A\left(h^{\prime}\right)$ can be linked to a general $C_{2} \in A\left(h_{2}\right)$. By Lemma $6.5 h_{2}$ is of decreasing type, hence we may assume C_{2} is smooth, and lies on smooth surfaces of degree $s-1$ and s. Since we are working over the complex numbers, we can use the Noether-Lefschetz type theorem of [Lopez 1991, II 3.1]. We apply this theorem to C_{2} with $d=s, e=1$, and T a smooth surface of degree $s-1$ through C_{2} to conclude that, if X is a very general surface of degree s containing C_{2}, then $\operatorname{Pic}(X)$ is freely generated by the classes of a plane section H and of the irreducible components of Γ (here "very general" means, as usual, outside a countable union of proper subvarieties).

Now on X we can take for C a general curve in the linear system

$$
\left|C_{2}+(t-s+1) H\right|=|t H-\Gamma| .
$$

The hypotheses of Theorem 9.1 are then satisfied for the smooth surface X and the curve C.

One can simplify the argument using a more recent result [Brevik and Nollet 2008, Theorem 1.1], which allows one to work directly with Γ rather than C_{2}.

Acknowledgements

The authors thank Pietro Pirola for many valuable discussions and suggestions, and Cecilia Rizzi for several conversations. We are grateful to Tony Geramita who pointed out that our results in Section 7 are related to those in [Davis et al. 1984] and [Davis 1985]. In particular, our Proposition 7.18 is a special case of [Davis 1985, Corollary 4.2].

References

[Arbarello and Cornalba 1981] E. Arbarello and M. Cornalba, "On a conjecture of Petri", Comment. Math. Helv. 56:1 (1981), 1-38. MR 82k:14029
[Arbarello et al. 1985] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, Grundlehren der Math. Wiss. 267, Springer, New York, 1985. MR 86h:14019 Zbl 0559.14017
[Ballico 1997] E. Ballico, "On the gonality of curves in $\mathbf{P}^{n "}$, Comment. Math. Univ. Carolin. 38:1 (1997), 177-186. MR 98d:14041 Zbl 0888.14010
[Basili 1996] B. Basili, "Indice de Clifford des intersections complètes de l'espace", Bull. Soc. Math. France 124:1 (1996), 61-95. MR 97f: 14048 Zbl 0871.14027
[Bogomolov 1978] F. A. Bogomolov, "Holomorphic tensors and vector bundles on projective manifolds", Izv. Akad. Nauk SSSR Ser. Mat. 42:6 (1978), 1227-1287. In Russian; translated in Math. USSR, Izv. 13 (1979), 499-555. MR 80j:14014 Zbl 0439.14002
[Brevik and Nollet 2008] J. Brevik and S. Nollet, "Extended Noether-Lefschetz loci", preprint, 2008. arXiv 0806.1243
[Ciliberto 1984] C. Ciliberto, "Alcune applicazioni di un classico procedimento di Castelnuovo", pp. 17-43 in Seminari di geometria (Bologna, 1982/1983), Univ. Stud. Bologna, 1984.
[Ciliberto and Lazarsfeld 1984] C. Ciliberto and R. Lazarsfeld, "On the uniqueness of certain linear series on some classes of curves", pp. 198-213 in Complete intersections (Acireale, 1983), edited by S. Greco and R. Strano, Lecture Notes in Math. 1092, Springer, Berlin, 1984. MR 86b:14015 Zbl 0548.14016
[Coppens and Martens 1991] M. Coppens and G. Martens, "Secant spaces and Clifford's theorem", Compositio Math. 78:2 (1991), 193-212. MR 92e:14021 Zbl 0741.14035
[Davis 1985] E. D. Davis, "Complete intersections of codimension 2 in \mathbb{P}^{r} : the Bezout-JacobiSegre theorem revisited", Rend. Sem. Mat. Univ. Politec. Torino 43:2 (1985), 333-353. MR 88i: 16045 Zbl 0675.14024
[Davis et al. 1984] E. D. Davis, A. V. Geramita, and P. Maroscia, "Perfect homogeneous ideals: Dubreil's theorems revisited", Bull. Sci. Math. (2) 108:2 (1984), 143-185. MR 86m:13024 ZBL 0559.14034
[Ellia and Franco 2001] P. Ellia and D. Franco, "Gonality, Clifford index and multisecants", J. Pure Appl. Algebra 158:1 (2001), 25-39. MR 2002k:14050 Zbl 1012.14011
[Ellingsrud 1975] G. Ellingsrud, "Sur le schéma de Hilbert des variétés de codimension 2 dans \mathbf{P}^{e} à cône de Cohen-Macaulay", Ann. Sci. École Norm. Sup. (4) 8:4 (1975), 423-431. MR 52 \#13831 Zbl 0325.14002
[Farkas 2001] G. Farkas, "Brill-Noether loci and the gonality stratification of \mathcal{M}_{g} ", J. Reine Angew. Math. 539 (2001), 185-200. MR 2002m:14024 Zbl 0994.14022
[Geramita and Migliore 1994] A. V. Geramita and J. C. Migliore, "A generalized liaison addition", J. Algebra 163:1 (1994), 139-164. MR 94m:14066 Zbl 0798.14026
[Green 1998] M. L. Green, "Generic initial ideals", pp. 119-186 in Six lectures on commutative algebra (Bellaterra, 1996), edited by J. Elias et al., Progr. Math. 166, Birkhäuser, Basel, 1998. MR 99m:13040 Zbl 0933.13002
[Gruson and Peskine 1978] L. Gruson and C. Peskine, "Genre des courbes de l'espace projectif", pp. 31-59 in Algebraic geometry (Tromsø, 1977), edited by L. D. Olsen, Lecture Notes in Math. 687, Springer, Berlin, 1978. MR 81e:14019 Zbl 0412.14011
[Hartshorne 1986] R. Hartshorne, "Generalized divisors on Gorenstein curves and a theorem of Noether", J. Math. Kyoto Univ. 26:3 (1986), 375-386. MR 87k:14036 Zbl 0613.14008
[Hartshorne 1994] R. Hartshorne, "Generalized divisors on Gorenstein schemes", K-Theory 8:3 (1994), 287-339. MR 95k:14008 Zbl 0826.14005
[Hartshorne 2002] R. Hartshorne, "Clifford index of ACM curves in $\mathbb{P}^{3 "}$, Milan J. Math. 70 (2002), 209-221. MR 2003h:14054 Zbl 1051.14039
[Huybrechts and Lehn 1997] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics E31, Vieweg, Braunschweig, 1997. MR 98g:14012 Zbl 0872.14002
[Lazarsfeld 1986] R. Lazarsfeld, "Brill-Noether-Petri without degenerations", J. Differential Geom. 23:3 (1986), 299-307. MR 88b:14019 Zbl 0608.14026
[Lazarsfeld 1997] R. Lazarsfeld, "Lectures on linear series", pp. 161-219 in Complex algebraic geometry (Park City, UT, 1993), edited by J. Kollár, IAS/Park City Math. Ser. 3, Amer. Math. Soc., Providence, RI, 1997. MR 98h:14008
[Le Barz 1987] P. Le Barz, "Quelques calculs dans les variétés d'alignements", Adv. in Math. 64:2 (1987), 87-117. MR 88e:14065 Zbl 0621.14031
[Lopez 1991] A. F. Lopez, Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 438, American Mathematical Society, Providence, 1991. MR 91f:14030 Zbl 0736.14012
[Lopez and Pirola 1995] A. F. Lopez and G. P. Pirola, "On the curves through a general point of a smooth surface in $\mathbf{P}^{3 "}$, Math. Z. 219:1 (1995), 93-106. MR 96h: 14024 Zbl 0842.14008
[Maggioni and Ragusa 1988] R. Maggioni and A. Ragusa, "The Hilbert function of generic plane sections of curves of $\mathbf{P}^{3 "}$, Invent. Math. 91:2 (1988), 253-258. MR 89g:14027 Zbl 0616.14026
[Martens 1996] G. Martens, "The gonality of curves on a Hirzebruch surface", Arch. Math. (Basel) 67:4 (1996), 349-352. MR 97k:14036 Zbl 0872.14022
[Martin-Deschamps and Perrin 1990] M. Martin-Deschamps and D. Perrin, Sur la classification des courbes gauches, Astérisque 184-185, 1990. MR 91h:14039 Zbl 0717.14017
[Migliore 1998] J. C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics 165, Birkhäuser, Boston, MA, 1998. MR 2000g:14058 Zbl 0921.14033
[Nollet 1998] S. Nollet, "Bounds on multisecant lines", Collect. Math. 49:2-3 (1998), 447-463. MR 2000c: 14072 Zbl 1069.49030
[Peskine and Szpiro 1974] C. Peskine and L. Szpiro, "Liaison des variétés algébriques, I", Invent. Math. 26 (1974), 271-302. MR 51 \#526 Zbl 0298.14022
[Strano 2004] R. Strano, "Biliaison classes of curves in $\mathbf{P}^{3 "}$ ", Proc. Amer. Math. Soc. 132:3 (2004), 649-658. MR 2005a:14065 Zbl 1053.14036

Received June 11, 2010.

```
Robin Hartshorne
Department of Mathematics
University of California
BERKELEY, CA 94720-3840
United States
robin@math.berkeley.edu
EnRIco Schlesinger
Dipartimento di Matematica "F. Brioschi"
Politecnico di Milano
PiazZa Leonardo DA Vinci, 32
I-20122 Milano
ITALY
enrico.schlesinger@polimi.it
```


UNIVERSAL INEQUALITIES FOR THE EIGENVALUES OF THE BIHARMONIC OPERATOR ON SUBMANIFOLDS

Saïd Ilias and Ola Makhoul

Abstract

We establish universal inequalities for the eigenvalues of the clamped plate problem on compact submanifolds of Euclidean space, of spheres and of real, complex and quaternionic projective spaces. We prove similar results for the biharmonic operator on domains of Riemannian manifolds that admit spherical eigenmaps (this includes compact homogeneous Riemannian spaces) and finally on domains of hyperbolic space.

1. Introduction

Let (M, g) be a Riemannian manifold of dimension n and let Δ be the Laplacian operator on M.

We will be concerned with the following eigenvalue problem for the Dirichlet biharmonic operator, called the clamped plate problem:

$$
\begin{cases}\Delta^{2} u=\lambda u & \text { in } \Omega \tag{1-1}\\ u=\frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in M, Δ^{2} is the biharmonic operator in M and v is the outward unit normal. It is well known that the eigenvalues of this problem form a countable family $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow+\infty$.

For the case when $M=\mathbb{R}^{n}$, Payne, Pólya and Weinberger [1956] established the following inequality, for each $k \geq 1$:

$$
\lambda_{k+1}-\lambda_{k} \leq \frac{8(n+2)}{n^{2} k} \sum_{i=1}^{k} \lambda_{i}
$$

[^2]Implicit in [Payne et al. 1956], as noticed by Ashbaugh [1999], is the better inequality

$$
\begin{equation*}
\lambda_{k+1}-\lambda_{k} \leq \frac{8(n+2)}{n^{2} k^{2}}\left(\sum_{i=1}^{k} \lambda_{i}^{1 / 2}\right)^{2} \tag{1-2}
\end{equation*}
$$

Later, Hile and Yeh [1984] extended ideas from earlier work on the Laplacian by Hile and Protter [1980] and proved the better bound

$$
\frac{n^{2} k^{3 / 2}}{8(n+2)} \leq\left(\sum_{i=1}^{k} \frac{\lambda_{i}^{1 / 2}}{\lambda_{k+1}-\lambda_{i}}\right)\left(\sum_{i=1}^{k} \lambda_{i}\right)^{1 / 2}
$$

Implicit in their work is the stronger inequality

$$
\frac{n^{2} k^{2}}{8(n+2)} \leq\left(\sum_{i=1}^{k} \frac{\lambda_{i}^{1 / 2}}{\lambda_{k+1}-\lambda_{i}}\right)\left(\sum_{i=1}^{k} \lambda_{i}^{1 / 2}\right)
$$

which was proved independently by Hook [1990] and Chen and Qian [1990]; see also [Chen and Qian 1993a; 1993b; 1994].

Cheng and Yang [2006] obtained the bound

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right) \leq\left(\frac{8(n+2)}{n^{2}}\right)^{1 / 2} \sum_{i=1}^{k}\left(\lambda_{i}\left(\lambda_{k+1}-\lambda_{i}\right)\right)^{1 / 2} \tag{1-3}
\end{equation*}
$$

Very recently, Cheng, Ichikawa and Mametsuka [2009b] obtained an inequality for eigenvalues of Laplacian with any order l on a bounded domain in \mathbb{R}^{n}. In particular, they showed that for $l=2$,

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{8(n+2)}{n^{2}} \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right) \lambda_{i} \tag{1-4}
\end{equation*}
$$

For the case when $M=\mathbb{S}^{n}$, Wang and Xia [2007] showed that

$$
\begin{align*}
& \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{1}{n}\left(\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2}\left(n^{2}+(2 n+4) \lambda_{i}^{1 / 2}\right)\right)^{1 / 2} \tag{1-5}\\
& \times\left(\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(n^{2}+4 \lambda_{i}^{1 / 2}\right)\right)^{1 / 2}
\end{align*}
$$

from which they deduced, using a variant of Chebyshev's inequality,

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{1}{n^{2}} \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(2(n+2) \lambda_{i}^{1 / 2}+n^{2}\right)\left(4 \lambda_{i}^{1 / 2}+n^{2}\right) \tag{1-6}
\end{equation*}
$$

This last inequality was also obtained by a different method by Cheng, Ichikawa and Mametsuka [2009a].

On the other hand, Wang and Xia [2007] also considered the problem (1-1) on domains of an n-dimensional complete minimal submanifold M of \mathbb{R}^{m} and proved
(1-7) $\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2}$

$$
\leq\left(\frac{8(n+2)}{n^{2}}\right)^{1 / 2}\left(\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \lambda_{i}^{1 / 2}\right)^{1 / 2}\left(\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right) \lambda_{i}^{1 / 2}\right)^{1 / 2}
$$

from which they deduced the following generalization of inequality (1-4) to minimal Euclidean submanifolds:

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{8(n+2)}{n^{2}} \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right) \lambda_{i} \tag{1-8}
\end{equation*}
$$

Recently, Cheng, Ichikawa and Mametsuka [2010] extended this last inequality to any complete Riemannian submanifold M in \mathbb{R}^{m} and showed

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{1}{n^{2}} \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(n^{2} \delta+2(n+2) \lambda_{i}^{1 / 2}\right)\left(n^{2} \delta+4 \lambda_{i}^{1 / 2}\right) \tag{1-9}
\end{equation*}
$$

with

$$
\delta=\sup _{\Omega}|H|^{2}
$$

where H is the mean curvature of M.
The goal of Section 2 of this article is to study the relation between eigenvalues of the biharmonic operator and the local geometry of Euclidean submanifolds M of arbitrary codimension. The approach is based on an algebraic formula (see Theorem 2.3) we proved in [Ilias and Makhoul 2010]. This approach is useful for the unification and for the generalization of all the results in the literature. In fact, using this general algebraic inequality, we obtain (see Theorem 2.4) the inequality

$$
\begin{align*}
\sum_{i=1}^{k} f\left(\lambda_{i}\right) \leq \frac{1}{n}\left(\sum_{i=1}^{k} g\left(\lambda_{i}\right)(2(n\right. & \left.\left.+2) \lambda_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2} \tag{1-10}\\
& \times\left(\sum_{i=1}^{k} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left(4 \lambda_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2}
\end{align*}
$$

where f and g are two functions satisfying some functional conditions (see Definition 2.1), $\delta=\sup _{\Omega}|H|^{2}$ and H is the mean curvature of M. The family of such pairs of functions is large. And particular choices for f and g lead to the known results. For instance, if we take $f(x)=g(x)=\left(\lambda_{k+1}-x\right)^{2}$, then (1-10) becomes

$$
\begin{align*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{1}{n}\left(\sum _ { i = 1 } ^ { k } \left(\lambda_{k+1}-\right.\right. & \left.\left.\lambda_{i}\right)^{2}\left(2(n+2) \lambda_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2} \tag{1-11}\\
& \times\left(\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(4 \lambda_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2}
\end{align*}
$$

which gives easily (see Remark 2.2) inequality (1-9) of Cheng, Ichikawa and Mametsuka [2010].

In Section 3 we consider the case of manifolds admitting spherical eigenmaps and obtain similar results. As a consequence, we obtain universal inequalities for the clamped plate problem on domains of any compact homogeneous Riemannian manifold.

In Section 4, we show how one can easily obtain, from the algebraic techniques used in the previous sections, universal inequalities for eigenvalues of (1-1) on domains of hyperbolic space \Vdash^{n}.

All our results hold if we add a potential to Δ^{2} (that is, $\Delta^{2}+q$ where q is a smooth potential). For instance, in this case instead of inequality (1-10), we obtain

$$
\begin{align*}
\sum_{i=1}^{k} f\left(\lambda_{i}\right) \leq \frac{1}{n}\left(\sum_{i=1}^{k} g\left(\lambda_{i}\right)(2(n\right. & \left.\left.+2) \bar{\lambda}_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2} \tag{1-12}\\
& \times\left(\sum_{i=1}^{k} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left(4 \bar{\lambda}_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2}
\end{align*}
$$

where $\bar{\lambda}_{i}=\lambda_{i}-\inf _{\Omega} q$.
Finally, the case of the clamped problem with weight

$$
\begin{cases}\Delta^{2} u=\lambda \rho u & \text { in } \Omega \tag{1-13}\\ u=\frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

can be easily treated with minor changes.

2. Euclidean submanifolds

Before stating the main result of this section, we introduce a family of pairs of functions and a theorem obtained in [Ilias and Makhoul 2010], which will play an essential role in the proofs of all our results.

Definition 2.1. Let $\lambda \in \mathbb{R}$. A pair (f, g) of functions defined on $]-\infty, \lambda[$ belongs to \Im_{λ} if f and g are positive and, for any distinct $\left.x, y \in\right]-\infty, \lambda[$,

$$
\begin{equation*}
\left(\frac{f(x)-f(y)}{x-y}\right)^{2}+\left(\frac{(f(x))^{2}}{g(x)(\lambda-x)}+\frac{(f(y))^{2}}{g(y)(\lambda-y)}\right)\left(\frac{g(x)-g(y)}{x-y}\right) \leq 0 . \tag{2-1}
\end{equation*}
$$

Remark 2.2. This definition of the family \Im_{λ} differs slightly from that given in [Ilias and Makhoul 2010], but all the results there are still valid.

A direct consequence of our definition is that g must be nonincreasing.
If we multiply f and g of \Im_{λ} by positive constants, the resulting functions are also in \mathfrak{I}_{λ}. In the case where f and g are differentiable, one can easily deduce from (2-1) the necessary condition

$$
\left((\ln f(x))^{\prime}\right)^{2} \leq \frac{-2}{\lambda-x}(\ln g(x))^{\prime}
$$

This last condition helps us to find many pairs (f, g) satisfying the conditions of Definition 2.1, for example,

$$
\begin{gathered}
\left\{\left(1,(\lambda-x)^{\alpha}\right) \mid \alpha \geq 0\right\} \\
\left\{\left((\lambda-x),(\lambda-x)^{\beta}\right) \left\lvert\, \beta \geq \frac{1}{2}\right.\right\} \\
\left\{\left((\lambda-x)^{\delta},(\lambda-x)^{\delta}\right) \mid 0<\delta \leq 2\right\} .
\end{gathered}
$$

Let \mathscr{H} be a complex Hilbert space with scalar product $\langle\cdot, \cdot\rangle$ and corresponding norm $\|\cdot\|$. For any two operators A and B, we denote by $[A, B]$ their commutator, defined by $[A, B]=A B-B A$.

Theorem 2.3. Let $A: \mathscr{D} \subset \mathscr{H} \rightarrow \mathscr{H}$ be a self-adjoint operator defined on a dense domain \mathscr{D}, which is semibounded below and has a discrete spectrum

$$
\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots
$$

Let

$$
\left\{T_{p}: \mathscr{D} \rightarrow \mathscr{H}\right\}_{p=1}^{n}
$$

be a collection of skew-symmetric operators and

$$
\left\{B_{p}: T_{p}(\mathscr{D}) \rightarrow \mathscr{H}\right\}_{p=1}^{n}
$$

a collection of symmetric operators, leaving \mathscr{D} invariant. Denote by

$$
\left\{u_{i}\right\}_{i=1}^{\infty}
$$

a basis of orthonormal eigenvectors of A, u_{i} corresponding to λ_{i}. Let $k \geq 1$ and assume that $\lambda_{k+1}>\lambda_{k}$. Then, for any (f, g) in $\Im_{\lambda_{k+1}}$

$$
\begin{align*}
\left(\sum_{i=1}^{k} \sum_{p=1}^{n} f\left(\lambda_{i}\right)\left\langle\left[T_{p}, B_{p}\right] u_{i}, u_{i}\right)\right)^{2} & \tag{2-2}\\
\leq 4\left(\sum_{i=1}^{k} \sum_{p=1}^{n} g\left(\lambda_{i}\right)\langle \right. & {\left.\left.\left[A, B_{p}\right] u_{i}, B_{p} u_{i}\right\rangle\right) } \\
& \times\left(\sum_{i=1}^{k} \sum_{p=1}^{n} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left\|T_{p} u_{i}\right\|^{2}\right) .
\end{align*}
$$

Our first result is the following application of this inequality to the eigenvalues of the clamped plate problem (1-1) on a domain of a Euclidean submanifold:

Theorem 2.4. Let $X: M \rightarrow \mathbb{R}^{m}$ be an isometric immersion of an n-dimensional Riemannian manifold M in \mathbb{R}^{m}. Let Ω be a bounded domain of M and consider the clamped plate problem (1-1) on Ω. Then for any $k \geq 1$ such that $\lambda_{k+1}>\lambda_{k}$ and for any (f, g) in $\Im_{\lambda_{k+1}}$, we have

$$
\begin{align*}
\sum_{i=1}^{k} f\left(\lambda_{i}\right) \leq \frac{2}{n}\left(\sum_{i=1}^{k} g\left(\lambda_{i}\right)(2(n\right. & \left.\left.+2) \lambda_{i}^{1 / 2}+n^{2} \delta\right)\right)^{1 / 2} \tag{2-3}\\
& \times\left(\sum_{i=1}^{k} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left(\lambda_{i}^{1 / 2}+\frac{n^{2}}{4} \delta\right)\right)^{1 / 2}
\end{align*}
$$

where $\delta=\sup _{\Omega}|H|^{2}$ and H be the mean curvature vector field of the immersion X (that is, which is given by $\frac{1}{n}$ trace h, where h is the second fundamental form of X).
Proof. We apply inequality (2-2) of Theorem 2.3 with $A=\Delta^{2}, B_{p}=X_{p}$ and $T_{p}=$ [Δ, X_{p}], $p=1, \ldots, m$, where X_{1}, \ldots, X_{m} are the components of the immersion X. This gives

$$
\begin{align*}
& \left(\sum_{i=1}^{k} \sum_{p=1}^{m} f\left(\lambda_{i}\right)\left\langle\left[\left[\Delta, X_{p}\right], X_{p}\right] u_{i}, u_{i}\right\rangle_{L^{2}}\right)^{2} \tag{2-4}\\
& \leq 4\left(\sum_{i=1}^{k} \sum_{p=1}^{m} g\left(\lambda_{i}\right)\left\langle\left[\Delta^{2}, X_{p}\right] u_{i}, X_{p} u_{i}\right\rangle_{L^{2}}\right) \\
& \quad \times\left(\sum_{i=1}^{k} \sum_{p=1}^{m} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left\|\left[\Delta, X_{p}\right] u_{i}\right\|_{L^{2}}^{2}\right)
\end{align*}
$$

where u_{i} are the L^{2}-normalized eigenfunctions. First we have, for $p=1, \ldots, m$,

$$
\left[\Delta^{2}, X_{p}\right] u_{i}=\Delta^{2} X_{p} u_{i}+2 \nabla \Delta X_{p} . \nabla u_{i}+2 \Delta\left(\nabla X_{p} \cdot \nabla u_{i}\right)+2 \Delta X_{p} \Delta u_{i}+2 \nabla X_{p} . \nabla \Delta u_{i}
$$

Thus

$$
\begin{aligned}
& \left\langle\left[\Delta^{2}, X_{p}\right] u_{i}, X_{p} u_{i}\right\rangle_{L^{2}} \\
& =\int_{\Omega} u_{i}^{2} X_{p} \Delta^{2} X_{p}+2 \int_{\Omega} X_{p} u_{i} \nabla \Delta X_{p} . \nabla u_{i}+2 \int_{\Omega} X_{p} u_{i} \Delta\left(\nabla X_{p} \cdot \nabla u_{i}\right) \\
& \quad+2 \int_{\Omega} X_{p} u_{i} \Delta X_{p} \Delta u_{i}+2 \int_{\Omega} X_{p} u_{i} \nabla X_{p} . \nabla \Delta u_{i} \\
& =\int_{\Omega} \Delta X_{p} \Delta\left(X_{p} u_{i}^{2}\right)-2 \int_{\Omega} \operatorname{div}\left(X_{p} u_{i} \nabla u_{i}\right) \Delta X_{p}+2 \int_{\Omega} \Delta\left(X_{p} u_{i}\right) \nabla X_{p} \cdot \nabla u_{i} \\
& \quad+2 \int_{\Omega} X_{p} \Delta X_{p} u_{i} \Delta u_{i}-2 \int_{\Omega} \operatorname{div}\left(X_{p} u_{i} \nabla X_{p}\right) \Delta u_{i} .
\end{aligned}
$$

A straightforward calculation gives

$$
\begin{align*}
\left\langle\left[\Delta^{2}, X_{p}\right] u_{i}, X_{p} u_{i}\right\rangle_{L^{2}}=4 \int_{\Omega} & u_{i} \Delta X_{p} \nabla X_{p} \cdot \nabla u_{i}+\int_{\Omega}\left(\Delta X_{p}\right)^{2} u_{i}^{2} \tag{2-5}\\
& +4 \int_{\Omega}\left(\nabla X_{p} \cdot \nabla u_{i}\right)^{2}-2 \int_{\Omega}\left|\nabla X_{p}\right|^{2} u_{i} \Delta u_{i}
\end{align*}
$$

Since X is an isometric immersion, we have

$$
\begin{equation*}
n H=\left(\Delta X_{1}, \ldots, \Delta X_{m}\right) \tag{2-6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p=1}^{m} u_{i} \Delta X_{p} \nabla X_{p} \cdot \nabla u_{i}=0, \quad \sum_{p=1}^{m}\left(\nabla X_{p} \cdot \nabla u_{i}\right)^{2}=\left|\nabla u_{i}\right|^{2} \tag{2-7}
\end{equation*}
$$

Incorporating these identities in (2-5) and summing on p from 1 to m, we obtain

$$
\begin{align*}
\sum_{p=1}^{m}\left\langle\left[\Delta^{2}, X_{p}\right] u_{i}, X_{p} u_{i}\right\rangle_{L^{2}} & =4 \int_{\Omega}\left|\nabla u_{i}\right|^{2}-2 n \int_{\Omega} u_{i} \Delta u_{i}+n^{2} \int_{\Omega}|H|^{2} u_{i}^{2} \\
& =2(n+2) \int_{\Omega} u_{i}\left(-\Delta u_{i}\right)+n^{2} \int_{\Omega}|H|^{2} u_{i}^{2} \\
& \leq 2(n+2)\left(\int_{\Omega}\left(-\Delta u_{i}\right)^{2}\right)^{1 / 2}\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2}+n^{2} \int_{\Omega}|H|^{2} u_{i}^{2} \\
& =2(n+2) \lambda_{i}^{1 / 2}+n^{2} \int_{\Omega}|H|^{2} u_{i}^{2} \\
& \leq 2(n+2) \lambda_{i}^{1 / 2}+n^{2} \delta, \tag{2-9}
\end{align*}
$$

where the Cauchy-Schwarz inequality gave (2-8) and where $\delta=\sup _{\Omega}|H|^{2}$.
On the other hand, we have

$$
\left[\Delta, X_{p}\right] u_{i}=2 \nabla X_{p} \cdot \nabla u_{i}+u_{i} \Delta X_{p}
$$

Then

$$
\begin{aligned}
\sum_{p=1}^{m}\left\|\left[\Delta, X_{p}\right] u_{i}\right\|_{L^{2}}^{2} & =\sum_{p=1}^{m} \int_{\Omega}\left(2 \nabla X_{p} \cdot \nabla u_{i}+u_{i} \Delta X_{p}\right)^{2} \\
& =4 \sum_{p=1}^{m} \int_{\Omega}\left(\nabla X_{p} \cdot \nabla u_{i}\right)^{2}+4 \sum_{p=1}^{m} \int_{\Omega} u_{i} \Delta X_{p} \nabla X_{p} \cdot \nabla u_{i} \\
& +\sum_{p=1}^{m} \int_{\Omega}\left(\Delta X_{p}\right)^{2} u_{i}^{2}
\end{aligned}
$$

Using the identities (2-6) and (2-7), we obtain

$$
\begin{align*}
\sum_{p=1}^{m}\left\|\left[\Delta, X_{p}\right] u_{i}\right\|_{L^{2}}^{2} & =4 \int_{\Omega}\left|\nabla u_{i}\right|^{2}+n^{2} \int_{\Omega}|H|^{2} u_{i}^{2} \tag{2-10}\\
& =4 \int_{\Omega}\left(-\Delta u_{i}\right) \cdot u_{i}+n^{2} \int_{\Omega}|H|^{2} u_{i}^{2} \\
& \leq 4\left(\int_{\Omega}\left(-\Delta u_{i}\right)^{2}\right)^{1 / 2}\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2}+n^{2} \delta \\
& =4 \lambda_{i}^{1 / 2}+n^{2} \delta
\end{align*}
$$

A direct calculation gives

$$
\begin{aligned}
\left\langle\left[\left[\Delta, X_{p}\right], X_{p}\right] u_{i}, u_{i}\right\rangle_{L^{2}} & =\int_{\Omega}\left(\Delta\left(X_{p}^{2} u_{i}\right)-2 X_{p} \Delta\left(X_{p} u_{i}\right)+X_{p}^{2} \Delta u_{i}\right) u_{i} \\
& =2 \int_{\Omega}\left|\nabla X_{p}\right|^{2} u_{i}^{2}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sum_{p=1}^{m}\left\langle\left[\left[\Delta, X_{p}\right], X_{p}\right] u_{i}, u_{i}\right\rangle_{L^{2}}=2 \sum_{p=1}^{m} \int_{\Omega}\left|\nabla X_{p}\right|^{2} u_{i}^{2}=2 n \tag{2-11}
\end{equation*}
$$

To conclude, we simply use the estimates (2-9), (2-10) and (2-11) together with inequality (2-4).
Remarks 2.5. - As indicated in the end of the introduction, Theorem 2.4 holds for a general operator $\Delta^{2}+q$, where q is a smooth potential. Indeed, this is an immediate consequence of the fact that $\left[\Delta^{2}+q, X_{p}\right]=\left[\Delta^{2}, X_{p}\right]$ and the entire proof of Theorem 2.4 works in this situation. The only modification is in the estimation of the term $\int_{\Omega}\left|\nabla u_{i}\right|^{2}$. In this case, letting $\bar{\lambda}_{i}=\lambda_{i}-\inf _{\Omega} q$, we have

$$
\int_{\Omega}\left|\nabla u_{i}\right|^{2} \leq\left(\int_{\Omega}\left(-\Delta u_{i}\right)^{2}\right)^{1 / 2}\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2}=\left(\lambda_{i}-\int_{\Omega} q u_{i}^{2}\right)^{1 / 2} \leq\left(\bar{\lambda}_{i}\right)^{1 / 2}
$$

Taking into account this modification in inequalities (2-8) and (2-10), we obtain inequality (1-12).

- If $f(x)=g(x)=\left(\lambda_{k+1}-x\right)^{2}$, then inequality (2-3) extends inequality (1-7) of Wang and Xia [2007] to any Riemannian submanifolds of \mathbb{R}^{m}. By using a Chebyshev inequality (for instance the one of [Cheng et al. 2009b, Lemma 1]), inequality (1-9) of Cheng, Ichikawa and Mametsuka [2010] can be easily deduced from inequality (2-3).
- If $f(x)=g(x)^{2}=\left(\lambda_{k+1}-x\right)$, then inequality (2-3) generalizes inequality (1-3) of Cheng and Yang [2006] to the case of Euclidean submanifolds.

Using the standard embeddings of the rank one compact symmetric spaces in a Euclidean space (see for instance [El Soufi et al. 2009, Lemma 3.1] for the values of $|H|^{2}$ of these embeddings), we can extend easily the previous theorem to domains or submanifolds of these symmetric spaces and obtain:

Theorem 2.6. Let \bar{M} be the sphere \mathbb{S}^{m}, the real projective space $\mathbb{R} P^{m}$, the complex projective space $\mathbb{C} P^{m}$ or the quaternionic projective space $\mathbb{Q} P^{m}$ endowed with their respective metrics. Let (M, g) be a compact Riemannian manifold of dimension n and let $X: M \rightarrow \bar{M}$ be an isometric immersion of mean curvature H. Consider the clamped plate problem on a bounded domain Ω of M. For any $k \geq 1$ such that $\lambda_{k+1}>\lambda_{k}$ and for any $(f, g) \in \Im_{\lambda_{k+1}}$, we have

$$
\begin{align*}
\sum_{i=1}^{k} f\left(\lambda_{i}\right) \leq \frac{2}{n}\left(\sum_{i=1}^{k} g\left(\lambda_{i}\right)(\right. & \left.\left.(n+2) \lambda_{i}^{1 / 2}+n^{2} \delta^{\prime}\right)\right)^{1 / 2} \tag{2-12}\\
& \times\left(\sum_{i=1}^{k} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left(\lambda_{i}^{1 / 2}+\frac{n^{2}}{4} \delta^{\prime}\right)\right)^{1 / 2}
\end{align*}
$$

where

$$
\delta^{\prime}=\sup \left(|H|^{2}+d(n)\right), \quad \text { where } d(n)= \begin{cases}1 & \text { if } \bar{M}=\mathbb{S}^{m} \\ 2(n+1) / n & \text { if } \bar{M}=\mathbb{R} P^{m} \\ 2(n+2) / n & \text { if } \bar{M}=\mathbb{C} P^{m} \\ 2(n+4) / n & \text { if } \bar{M}=\mathbb{Q} P^{m}\end{cases}
$$

Remarks 2.7. - As in [El Soufi et al. 2009, Remark 3.2], in some special geometrical situations, the constant $d(n)$ in the inequality of Theorem 2.6 can be replaced by a sharper one. For instance, when $\bar{M}=\mathbb{C} P^{m}$ and

- M is odd-dimensional, then $d(n)$ can be replaced by $d^{\prime}(n)=(2 / n)(n+2-1 / n)$,
- X M) is totally real, then $d(n)$ can be replaced by $d^{\prime}(n)=2(n+1) / n$.
- When $f(x)=g(x)=\left(\lambda_{k+1}-x\right)^{2}$, and \bar{M} is a sphere, (2-12) generalizes to submanifolds inequality (1-5) established by Wang and Xia for spherical domains.
- As for Theorem 2.4, the result of Theorem 2.6 holds for a more general operator $\Delta^{2}+q$, with the same modification (that is, $\bar{\lambda}_{i}^{1 / 2}$ instead of $\lambda_{i}^{1 / 2}$).

3. Manifolds admitting spherical eigenmaps

In this section, as before, we let (M, g) be a Riemannian manifold and Ω be a bounded domain of M. A map $X:(M, g) \rightarrow \mathbb{S}^{m-1}$ is called an eigenmap if its components $X_{1}, X_{2}, \ldots, X_{m}$ are all eigenfunctions associated to the same eigenvalue λ of the Laplacian of (M, g). This is equivalent to say that the map X is a harmonic map from (M, g) into \mathbb{S}^{m-1} with constant energy λ (that is, $\sum_{p=1}^{m}\left|\nabla X_{p}\right|^{2}=\lambda$). The most important examples of such manifolds M are the compact homogeneous

Riemannian manifolds. In fact, they admit eigenmaps for all the positive eigenvalues of their Laplacian; see [Li 1980].
Theorem 3.1. Let λ be an eigenvalue of the Laplacian of (M, g) and suppose that (M, g) admits an eigenmap X associated to this eigenvalue λ. Let Ω be a bounded domain of M and consider the clamped plate problem (1-1) on Ω. For any $k \geq 1$ such that $\lambda_{k+1}>\lambda_{k}$ and for any $(f, g) \in \Im_{\lambda_{k+1}}$, we have
(3-1) $\sum_{i=1}^{k} f\left(\lambda_{i}\right)$

$$
\leq\left(\sum_{i=1}^{k} g\left(\lambda_{i}\right)\left(\lambda+6 \lambda_{i}^{1 / 2}\right)\right)^{1 / 2}\left(\sum_{i=1}^{k} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left(\lambda+4 \lambda_{i}^{1 / 2}\right)\right)^{1 / 2} .
$$

Proof. As in the proof of Theorem 2.4, we apply Theorem 2.3 with $A=\Delta^{2}$, $B_{p}=X_{p}$ and $T_{p}=\left[\Delta, X_{p}\right], p=1, \ldots, m$, to obtain

$$
\begin{align*}
& \left(\sum_{i=1}^{k} \sum_{p=1}^{m} f\left(\lambda_{i}\right)\left\langle\left[\left[\Delta, X_{p}\right], X_{p}\right] u_{i}, u_{i}\right\rangle_{L^{2}}\right)^{2} \tag{3-2}\\
& \leq 4\left(\sum_{i=1}^{k} \sum_{p=1}^{m} g\left(\lambda_{i}\right)\left\langle\left[\Delta^{2}, X_{p}\right] u_{i}, X_{p} u_{i}\right\rangle_{L^{2}}\right) \\
& \\
& \quad \times\left(\sum_{i=1}^{k} \sum_{p=1}^{m} \frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\left\|\left[\Delta, X_{p}\right] u_{i}\right\|_{L^{2}}^{2}\right)
\end{align*}
$$

where $\left\{u_{i}\right\}_{i=1}^{\infty}$ is a complete L^{2}-orthonormal basis of eigenfunctions of Δ^{2} associated to $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$. As in (2-11), and using the equality

$$
\sum_{p=1}^{m}\left|\nabla X_{p}\right|^{2}=\lambda
$$

we have

$$
\begin{equation*}
\sum_{p=1}^{m}\left\langle\left[\left[\Delta, X_{p}\right], X_{p}\right] u_{i}, u_{i}\right\rangle_{L^{2}}=2 \sum_{p=1}^{m} \int_{\Omega}\left|\nabla X_{p}\right|^{2} u_{i}^{2}=2 \lambda \tag{3-3}
\end{equation*}
$$

We further have
$\sum_{p=1}^{m}\left\|\left[\Delta, X_{p}\right] u_{i}\right\|_{L^{2}}^{2}$

$$
\begin{aligned}
& =\sum_{p=1}^{m} \int_{\Omega}\left(\left[\Delta, X_{p}\right] u_{i}\right)^{2} \\
& =4 \int_{\Omega} \sum_{p=1}^{m}\left(\nabla X_{p} \cdot \nabla u_{i}\right)^{2}+\int_{\Omega} \sum_{p=1}^{m}\left(\Delta X_{p}\right)^{2} u_{i}^{2}+4 \int_{\Omega} \sum_{p=1}^{m} u_{i} \Delta X_{p} \nabla X_{p} \cdot \nabla u_{i}
\end{aligned}
$$

Applying Cauchy-Schwarz and the equalities

$$
\sum_{p=1}^{m} X_{p}^{2}=1 \quad \text { and } \quad X_{p}=-\lambda X_{p}
$$

we then obtain

$$
\begin{aligned}
\sum_{p=1}^{m} \|[& \left.\Delta, X_{p}\right] u_{i} \|_{L^{2}}^{2} \\
& \leq 4 \int_{\Omega} \sum_{p=1}^{m}\left|\nabla X_{p}\right|^{2}\left|\nabla u_{i}\right|^{2}+\lambda^{2} \int_{\Omega}\left(\sum_{p=1}^{m} X_{p}^{2}\right) u_{i}^{2}-2 \lambda \int_{\Omega} u_{i} \nabla\left(\sum_{p=1}^{m} X_{p}^{2}\right) \cdot \nabla u_{i} \\
& =4 \lambda \int_{\Omega}\left(-\Delta u_{i}\right) u_{i}+\lambda^{2} \leq 4 \lambda\left(\int_{\Omega}\left(-\Delta u_{i}\right)^{2}\right)^{1 / 2}\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2}+\lambda^{2} \\
& =4 \lambda \lambda_{i}^{1 / 2}+\lambda^{2}
\end{aligned}
$$

Similarly, we infer from (2-5) that

$$
\begin{aligned}
& \sum_{p=1}^{m}\left\langle\left[\Delta^{2}, X_{p}\right] u_{i}, X_{p} u_{i}\right\rangle_{L^{2}} \\
& \quad=\lambda^{2} \int_{\Omega} u_{i}^{2}-\lambda \int_{\Omega} \nabla\left(\sum_{p=1}^{m} X_{p}^{2}\right) \cdot \nabla u_{i}^{2}+4 \sum_{p=1}^{m} \int_{\Omega}\left(\nabla X_{p} \cdot \nabla u_{i}\right)^{2}+2 \lambda \int_{\Omega}\left(-\Delta u_{i}\right) u_{i} \\
& \quad \leq \lambda^{2}+4 \int_{\Omega} \sum_{p=1}^{m}\left|\nabla X_{p}\right|^{2}\left|\nabla u_{i}\right|^{2}+2 \lambda\left(\int_{\Omega}(-\Delta u)^{2}\right)^{1 / 2}\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2} \\
& \quad \leq \lambda^{2}+4 \lambda \lambda_{i}^{1 / 2}+2 \lambda \lambda_{i}^{1 / 2} \\
& \quad=\lambda^{2}+6 \lambda \lambda_{i}^{1 / 2}
\end{aligned}
$$

Incorporating these two bounds, together with (3-3), in inequality (3-2) gives the theorem.

Corollary 3.2. Let (M, g) be a compact homogeneous Riemannian manifold without boundary and let λ_{1} be the first nonzero eigenvalue of its Laplacian. Then the inequality (3-1) of Theorem 3.1 holds with $\lambda=\lambda_{1}$.

Remark 3.3. As before, one can get a similar result for the operator $\Delta^{2}+q$.

4. Domains in hyperbolic space

We turn next to the case of a domain Ω of hyperbolic space. It is easy to establish a universal inequality for eigenvalues of the clamped plate problem (1-1) on Ω in the
vein of the preceding ones. Unfortunately, until now we have not succeeded in obtaining a simple generalization for the case of domains of hyperbolic submanifolds. In what follows, we take the half-space model for \mathbb{H}^{n}, that is,

$$
\mathbb{H}^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}
$$

with the standard metric

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}+\cdots+d x_{n}^{2}}{x_{n}^{2}}
$$

In terms of the coordinates $\left(x_{i}\right)_{i=1}^{n}$, the Laplacian of \mathbb{H}^{n} is given by

$$
\Delta=x_{n}^{2} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j} \partial x_{j}}+(2-n) x_{n} \frac{\partial}{\partial x_{n}}
$$

Theorem 4.1. For any $k \geq 1$ such that $\lambda_{k+1}>\lambda_{k}$, the eigenvalues λ_{i} of the clamped problem (1-1) on the bounded domain Ω of $\mathbb{-}^{n}$ must satisfy for any $(f, g) \in \Im_{\lambda_{k+1}}$,

$$
\begin{align*}
\sum_{i=1}^{k} f\left(\lambda_{i}\right) \leq\left(\sum_{i=1}^{k} g\left(\lambda_{i}\right)\right. & \left.\left(6 \lambda_{i}^{1 / 2}-(n-1)^{2}\right)\right)^{1 / 2} \tag{4-1}\\
& \times\left(\sum_{i=1}^{k}\left(\frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\right)\left(4 \lambda_{i}^{1 / 2}-(n-1)^{2}\right)\right)^{1 / 2}
\end{align*}
$$

Proof. Theorem 2.3 remains valid for $A=\Delta^{2}, B_{p}=F=\ln x_{n}$ and $T_{p}=[\Delta, F]$, for all $p=1, \ldots, n$. Thus, denoting by u_{i} the eigenfunction corresponding to λ_{i}, we have
(4-2) $\left(\sum_{i=1}^{k} f\left(\lambda_{i}\right)\left\langle[[\Delta, F], F] u_{i}, u_{i}\right\rangle_{L^{2}}\right)^{2}$

$$
\begin{aligned}
\leq 4\left(\sum_{i=1}^{k} g\right. & \left.\left(\lambda_{i}\right)\left\langle\left[\Delta^{2}, F\right] u_{i}, F u_{i}\right\rangle_{L^{2}}\right) \\
& \times\left(\sum_{i=1}^{k}\left(\frac{\left(f\left(\lambda_{i}\right)\right)^{2}}{g\left(\lambda_{i}\right)\left(\lambda_{k+1}-\lambda_{i}\right)}\right)\left\|[\Delta, F] u_{i}\right\|_{L^{2}}^{2}\right)
\end{aligned}
$$

We start with the calculation of

$$
\begin{aligned}
\left\langle[[\Delta, F], F] u_{i}, u_{i}\right\rangle_{L^{2}} & =\int_{\Omega}\left([\Delta, F]\left(F u_{i}\right)-F[\Delta, F] u_{i}\right) u_{i} \\
& =\int_{\Omega}\left(\Delta\left(F^{2} u_{i}\right)-2 F \Delta\left(F u_{i}\right)+F^{2} \Delta u_{i}\right) u_{i}
\end{aligned}
$$

Note that

$$
\begin{equation*}
\Delta F=1-n \quad \text { and } \quad|\nabla F|^{2}=1 \tag{4-3}
\end{equation*}
$$

Thus a direct calculation gives

$$
\begin{equation*}
\left\langle[[\Delta, F], F] u_{i}, u_{i}\right\rangle_{L^{2}}=2 \int_{\Omega}|\nabla F|^{2} u_{i}^{2}=2 \tag{4-4}
\end{equation*}
$$

On the other hand, using again the identities of (4-3), we obtain
(4-5) $\left\|[\Delta, F] u_{i}\right\|_{L^{2}}^{2}=\int_{\Omega}\left(\Delta F u_{i}+2 \nabla F \cdot \nabla u_{i}\right)^{2}$

$$
\begin{aligned}
& =\int_{\Omega}(\Delta F)^{2} u_{i}^{2}+4 \int_{\Omega}\left(\nabla F \cdot \nabla u_{i}\right)^{2}+4 \int_{\Omega} \Delta F u_{i} \nabla F \cdot \nabla u_{i} \\
& =(1-n)^{2}+4 \int_{\Omega}\left(\nabla F \cdot \nabla u_{i}\right)^{2}+4(1-n) \int_{\Omega} u_{i} \nabla F \cdot \nabla u_{i}
\end{aligned}
$$

But

$$
\int_{\Omega} u_{i} \nabla F \cdot \nabla u_{i}=-\int_{\Omega} u_{i} \nabla F \cdot \nabla u_{i}-\int_{\Omega} u_{i}^{2} \Delta F
$$

hence

$$
\begin{equation*}
\int_{\Omega} u_{i} \nabla F \cdot \nabla u_{i}=\frac{n-1}{2} . \tag{4-6}
\end{equation*}
$$

Then we infer from (4-3), (4-5) and (4-6) that
(4-7) $\left\|[\Delta, F] u_{i}\right\|_{L^{2}}^{2} \leq-(n-1)^{2}+4 \int_{\Omega}|\nabla F|^{2}\left|\nabla u_{i}\right|^{2}$

$$
\begin{aligned}
& =-(n-1)^{2}+4 \int_{\Omega}\left|\nabla u_{i}\right|^{2}=-(n-1)^{2}+4 \int_{\Omega} u_{i}\left(-\Delta u_{i}\right) \\
& \leq-(n-1)^{2}+4\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2}\left(\int_{\Omega}\left(-\Delta u_{i}\right)^{2}\right)^{1 / 2} \\
& =4 \lambda_{i}^{1 / 2}-(n-1)^{2} .
\end{aligned}
$$

Now,
(4-8) $\left[\Delta^{2}, F\right] u_{i}=\Delta^{2}\left(F u_{i}\right)-F \Delta^{2} u_{i}=\Delta\left(\Delta F u_{i}+2 \nabla F \cdot \nabla u_{i}+F \Delta u_{i}\right)-F \Delta^{2} u_{i}$

$$
=2(1-n) \Delta u_{i}+2 \Delta\left(\nabla F \cdot \nabla u_{i}\right)+2 \nabla F \cdot \nabla \Delta u_{i}
$$

thus

$$
\begin{aligned}
& \left\langle\left[\Delta^{2}, F\right] u_{i}, F u_{i}\right\rangle_{L^{2}} \\
& \quad=2(1-n) \int_{\Omega} F u_{i} \Delta u_{i}+2 \int_{\Omega} F u_{i} \Delta\left(\nabla F \cdot \nabla u_{i}\right)+2 \int_{\Omega} F u_{i} \nabla F \cdot \nabla \Delta u_{i} \\
& \quad=2(1-n) \int_{\Omega} F u_{i} \Delta u_{i}+2 \int_{\Omega} \Delta\left(F u_{i}\right) \nabla F \cdot \nabla u_{i}-2 \int_{\Omega} \operatorname{div}\left(F u_{i} \nabla F\right) \Delta u_{i} \\
& \quad=2 \int_{\Omega} \Delta F u_{i} \nabla F \cdot \nabla u_{i}+4 \int_{\Omega}\left(\nabla F \cdot \nabla u_{i}\right)^{2}-2 \int_{\Omega}|\nabla F|^{2} u_{i} \Delta u_{i}
\end{aligned}
$$

We infer from (4-3) and (4-6) that

$$
\begin{align*}
\left\langle\left[\Delta^{2}, F\right] u_{i}, F u_{i}\right\rangle_{L^{2}} & \leq-(n-1)^{2}+4 \int_{\Omega}|\nabla F|^{2}\left|\nabla u_{i}\right|^{2}+2 \int_{\Omega} u_{i}\left(-\Delta u_{i}\right) \tag{4-9}\\
& =-(n-1)^{2}+6 \int_{\Omega} u_{i}\left(-\Delta u_{i}\right) \\
& \leq 6\left(\int_{\Omega} u_{i}^{2}\right)^{1 / 2}\left(\int_{\Omega}\left(-\Delta u_{i}\right)^{2}\right)^{1 / 2}-(n-1)^{2} \\
& =6 \lambda_{i}^{1 / 2}-(n-1)^{2}
\end{align*}
$$

Inequality (4-2) along with (4-4), (4-7) and (4-9) gives the theorem.
Remarks 4.2. - It will be interesting to look for an extension of Theorem 4.1 to domains of hyperbolic submanifolds.

- Our method works for any bounded domain Ω of a Riemannian manifold admitting a function such that $|\nabla h|$ is constant and $|\Delta h| \leq C$, where C is a constant.
- As before, we have the same statement as in Theorem 4.1 for the operator $\Delta^{2}+q$; it suffices to replace $\lambda_{i}^{1 / 2}$ by $\bar{\lambda}_{i}^{1 / 2}$.

References

[Ashbaugh 1999] M. S. Ashbaugh, "Isoperimetric and universal inequalities for eigenvalues", pp. 95-139 in Spectral theory and geometry (Edinburgh, 1998), edited by B. Davies and Y. Safarov, London Math. Soc. Lecture Note Ser. 273, Cambridge Univ. Press, Cambridge, 1999. MR 2001a: 35131 Zbl 0937.35114
[Chen and Qian 1990] Z. C. Chen and C. L. Qian, "Estimates for discrete spectrum of Laplacian operator with any order", J. China Univ. Sci. Tech. 20:3 (1990), 259-266. MR 92c:35087 Zbl 0748.35022
[Chen and Qian 1993a] Z. Chen and C. Qian, "Hile-Yeh estimates of eigenvalues of polyharmonic operators", Acta Math. Sinica (N.S.) 9:4 (1993), 432-437. MR 96m:35239 Zbl 0812.35090
[Chen and Qian 1993b] Z. C. Chen and C. L. Qian, "On the difference of consecutive eigenvalues of uniformly elliptic operators of higher orders", Chinese Ann. Math. Ser. B 14:4 (1993), 435-442. MR 95a:35105 Zbl 0782.35046
[Chen and Qian 1994] Z. C. Chen and C. L. Qian, "On the upper bound of eigenvalues for elliptic equations with higher orders", J. Math. Anal. Appl. 186:3 (1994), 821-834. MR 95f:35181 Zbl 0814.35082
[Cheng and Yang 2006] Q.-M. Cheng and H. Yang, "Inequalities for eigenvalues of a clamped plate problem", Trans. Amer. Math. Soc. 358:6 (2006), 2625-2635. MR 2006m:35263 Zbl 1096.35095
[Cheng et al. 2009a] Q.-M. Cheng, T. Ichikawa, and S. Mametsuka, "Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere", Calc. Var. Partial Differential Equations 36:4 (2009), 507-523. MR 2010k:35332 Zbl 1180.35389
[Cheng et al. 2009b] Q.-M. Cheng, T. Ichikawa, and S. Mametsuka, "Inequalities for eigenvalues of Laplacian with any order", Commun. Contemp. Math. 11:4 (2009), 639-655. MR 2010j:35113 Zbl 1181.35153
[Cheng et al. 2010] Q.-M. Cheng, T. Ichikawa, and S. Mametsuka, "Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds", J. Math. Soc. Japan 62:2 (2010), 673-686. MR 2011e:58039 Zbl 1191.35192
[El Soufi et al. 2009] A. El Soufi, E. M. Harrell, II, and S. Ilias, "Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds", Trans. Amer. Math. Soc. 361:5 (2009), 2337-2350. MR 2010e:58032 Zbl 1162.58009
[Hile and Protter 1980] G. N. Hile and M. H. Protter, "Inequalities for eigenvalues of the Laplacian", Indiana Univ. Math. J. 29:4 (1980), 523-538. MR 82c:35052 Zbl 0454.35064
[Hile and Yeh 1984] G. N. Hile and R. Z. Yeh, "Inequalities for eigenvalues of the biharmonic operator", Pacific J. Math. 112:1 (1984), 115-133. MR 85k:35170 Zbl 0541.35059
[Hook 1990] S. M. Hook, "Domain-independent upper bounds for eigenvalues of elliptic operators", Trans. Amer. Math. Soc. 318:2 (1990), 615-642. MR 90h:35075 Zbl 0727.35096
[Ilias and Makhoul 2010] S. Ilias and O. Makhoul, "Universal inequalities for the eigenvalues of a power of the Laplace operator", Manuscripta Math. 132:1-2 (2010), 75-102. MR 2609289 Zbl 1189.35206
[Li 1980] P. Li, "Eigenvalue estimates on homogeneous manifolds", Comment. Math. Helv. 55:3 (1980), 347-363. MR 81k:58067 Zbl 0451.53036
[Payne et al. 1956] L. E. Payne, G. Pólya, and H. F. Weinberger, "On the ratio of consecutive eigenvalues", J. Math. and Phys. 35 (1956), 289-298. MR 18,905c Zbl 0073.08203
[Wang and Xia 2007] Q. Wang and C. Xia, "Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds", J. Funct. Anal. 245:1 (2007), 334-352. MR 2008e:58033 Zbl 1113.58013

Received April 28, 2010.

SAÏD ILIAS

Université François Rabelais de Tours
Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083
Parc de Grandmont
37200 TOURS
France
ilias@1mpt.univ-tours.fr
Ola Makhoul
Université François Rabelais de Tours
Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083
Parc de Grandmont
37200 Tours
France
ola.makhoul@lmpt.univ-tours.fr

MULTIGRADED FUJITA APPROXIMATION

Shin-Yao Jow

The original Fujita approximation theorem states that the volume of a big divisor D on a projective variety X can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. One can also formulate it in terms of graded linear series as follows: Let $W_{\bullet}=\left\{W_{k}\right\}$ be the complete graded linear series associated to a big divisor D, where

$$
W_{k}=H^{0}\left(X, O_{X}(k D)\right) .
$$

For each fixed positive integer p, define $W_{\bullet}{ }^{(p)}$ to be the graded linear subseries of W_{\bullet} generated by W_{p} :

$$
W_{m}^{(p)}= \begin{cases}0 & \text { if } p \nmid m, \\ \operatorname{Image}\left(S^{k} W_{p} \rightarrow W_{k p}\right) & \text { if } m=k p .\end{cases}
$$

Then the volume of $W_{\bullet}{ }^{(p)}$ approaches the volume of W_{\bullet} as $p \rightarrow \infty$. We will show that, under this formulation, the Fujita approximation theorem can be generalized to the case of multigraded linear series.

1. Introduction

Let X be an irreducible variety of dimension d over an algebraically closed field \boldsymbol{K}, and let D be a (Cartier) divisor on X. When X is projective, the following limit, which measures how fast the dimension of the section space $H^{0}\left(X, O_{X}(m D)\right)$ grows, is called the volume of D :

$$
\operatorname{vol}(D)=\operatorname{vol}_{X}(D)=\lim _{m \rightarrow \infty} \frac{h^{0}\left(X, \mathbb{O}_{X}(m D)\right)}{m^{d} / d!}
$$

One says that D is big if $\operatorname{vol}(D)>0$. It turns out that the volume is an interesting numerical invariant of a big divisor [Lazarsfeld 2004a, Section 2.2.C], and it plays a key role in several recent works in birational geometry [Tsuji 2000; Boucksom et al. 2004; Hacon and McKernan 2006; Takayama 2006].

[^3]When D is ample, one can show that $\operatorname{vol}(D)=D^{d}$, the self-intersection number of D. This is no longer true for a general big divisor D, since D^{d} may even be negative. However, Fujita [1994] showed that the volume of a big divisor can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. This theorem, known as Fujita approximation, has several implications for the properties of volumes, and is also a crucial ingredient in [Boucksom et al. 2004] (see [Lazarsfeld 2004b, Section 11.4] for more details).

Lazarsfeld and Mustaţă [2009] (henceforth [LM]) recently obtained, among other things, a generalization of Fujita approximation to graded linear series. Recall that a graded linear series $W_{\bullet}=\left\{W_{k}\right\}$ on a (not necessarily projective) variety X associated to a divisor D consists of finite dimensional vector subspaces

$$
W_{k} \subseteq H^{0}\left(X, O_{X}(k D)\right)
$$

for each $k \geq 0$, with $W_{0}=\boldsymbol{K}$, such that

$$
W_{k} \cdot W_{\ell} \subseteq W_{k+\ell}
$$

for all $k, \ell \geq 0$. Here the product on the left denotes the image of $W_{k} \otimes W_{\ell}$ under the multiplication map $H^{0}\left(X, \mathscr{O}_{X}(k D)\right) \otimes H^{0}\left(X, \mathscr{O}_{X}(\ell D)\right) \rightarrow H^{0}\left(X, \widehat{O}_{X}((k+\ell) D)\right)$. In order to state the Fujita approximation for W_{\bullet}, they defined, for each fixed positive integer p, a graded linear series $W_{\bullet}^{(p)}$ which is the subgraded linear series of W_{\bullet} generated by W_{p} :

$$
W_{m}^{(p)}= \begin{cases}0 & \text { if } p \nmid m \\ \operatorname{Im}\left(S^{k} W_{p} \rightarrow W_{k p}\right) & \text { if } m=k p\end{cases}
$$

Then under mild hypotheses, they showed that the volume of $W_{\bullet}^{(p)}$ approaches the volume of W_{\bullet} as $p \rightarrow \infty$. See [LM, Theorem 3.5] for the precise statement, as well as [LM, Remark 3.4] for how this is equivalent to the original statement of Fujita when X is projective and W_{\bullet} is the complete graded linear series associated to a big divisor D (that is, $W_{k}=H^{0}\left(X, O_{X}(k D)\right.$) for all $k \geq 0$).

The goal of this note is to generalize the Fujita approximation theorem to multigraded linear series. We will adopt the following notation from [LM, Section 4.3]: Let D_{1}, \ldots, D_{r} be divisors on X. For $\vec{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{N}^{r}$, write $\vec{m} D=$ $\sum m_{i} D_{i}$, and put $|\vec{m}|=\sum\left|m_{i}\right|$.

Definition. A multigraded linear series $W_{\vec{\bullet}}$ on X associated to the D_{i} consists of finite-dimensional vector subspaces

$$
W_{\vec{k}} \subseteq H^{0}\left(X, \widehat{O}_{X}(\vec{k} D)\right)
$$

for each $\vec{k} \in \mathbb{N}^{r}$, with $W_{\overrightarrow{0}}=\boldsymbol{K}$, such that

$$
W_{\vec{k}} \cdot W_{\vec{m}} \subseteq W_{\vec{k}+\vec{m}}
$$

where the multiplication on the left denotes the image of $W_{\vec{k}} \otimes W_{\vec{m}}$ under the natural map

$$
H^{0}\left(X, \mathscr{O}_{X}(\vec{k} D)\right) \otimes H^{0}\left(X, \mathscr{O}_{X}(\vec{m} D)\right) \rightarrow H^{0}\left(X, \mathscr{O}_{X}((\vec{k}+\vec{m}) D)\right)
$$

Given $\vec{a} \in \mathbb{N}^{r}$, denote by $W_{\vec{a}, \bullet}$ the singly graded linear series associated to the divisor $\vec{a} D$ given by the subspaces $W_{k \vec{a}} \subseteq H^{0}\left(X, \mathcal{O}_{X}(k \vec{a} D)\right)$. Then put

$$
\operatorname{vol}_{W_{\bullet}}(\vec{a})=\operatorname{vol}\left(W_{\vec{a}, \bullet}\right)
$$

(assuming that this quantity is finite). It will also be convenient for us to consider $W_{\vec{a}, \bullet}$ when $\vec{a} \in \mathbb{Q}_{\geq 0}^{r}$, given by

$$
W_{\vec{a}, k}= \begin{cases}W_{k \vec{a}} & \text { if } k \vec{a} \in \mathbb{N}^{r} \\ 0 & \text { otherwise }\end{cases}
$$

Our multigraded Fujita approximation, similar to the singly graded version, is going to state that (under suitable conditions) the volume of W_{-}can be approximated by the volume of the following finitely generated submultigraded linear series of $W_{\vec{\bullet}}$:

Definition. Given a multigraded linear series W_{\bullet} and a positive integer p, define $W_{\vec{\bullet}}^{(p)}$ to be the submultigraded linear series of $W_{\vec{\bullet}}$ generated by all $W_{\vec{m}_{i}}$ with $\left|\vec{m}_{i}\right|=p$, or concretely,

$$
W_{\vec{m}}^{(p)}=\left\{\begin{array}{cl}
0 & \text { if } p \nmid|\vec{m}| \\
\sum_{\substack{\left|\vec{m}_{i}\right|=p \\
\vec{m}_{1}+\cdots+\vec{m}_{k}=\vec{m}}} W_{\vec{m}_{1}} \cdots W_{\vec{m}_{k}} & \text { if }|\vec{m}|=k p
\end{array}\right.
$$

We now state our multigraded Fujita approximation when $W_{\vec{\bullet}}$ is a complete multigraded linear series, since this is the case of most interest and allows for a more streamlined statement. The Remark on page 335 points out what assumptions on W_{\bullet} are actually needed in the proof.

Theorem. Let X be an irreducible projective variety of dimension d, and let D_{1}, D_{2}, \ldots, D_{r} be big divisors on X. Let $W_{\mathbf{0}}$ be the complete multigraded linear series associated to the D_{i}, namely

$$
W_{\vec{m}}=H^{0}\left(X, \widehat{O}_{X}(\vec{m} D)\right)
$$

for each $\vec{m} \in \mathbb{N}^{r}$. Then given any $\varepsilon>0$, there exists an integer $p_{0}=p_{0}(\varepsilon)$ having the property that if $p \geq p_{0}$, then

$$
\begin{equation*}
\left|1-\frac{\operatorname{vol}_{W_{\mathbf{0}}(p)}(\vec{a})}{\operatorname{vol}_{W_{\mathbf{*}}}(\vec{a})}\right|<\varepsilon \tag{1}
\end{equation*}
$$

for all $\vec{a} \in \mathbb{N}^{r}$.

2. Proof of the Theorem

The main tool in our proof is the theory of Okounkov bodies developed systematically in [Lazarsfeld and Mustață 2009]. Given a graded linear series W_{\bullet} on a d-dimensional variety X, its Okounkov body $\Delta\left(W_{\bullet}\right)$ is a convex body in \mathbb{R}^{d} that encodes many asymptotic invariants of W_{\bullet}, the most prominent one being the volume of W_{\bullet}, which is precisely $d!$ times the Euclidean volume of $\Delta\left(W_{\bullet}\right)$. The idea first appeared in Okounkov's papers [1996; 2003] in the case of complete linear series of ample line bundles on a projective variety. Later it was further developed and applied to much more general graded linear series by Lazarsfeld and Mustaţǎ [2009] and also independently by Kaveh and Khovanskii [2008; 2009].
Proof of the Theorem. Let $T=\left\{\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}_{\geq 0}^{r} \mid a_{1}+\cdots+a_{r}=1\right\}$, and let $T_{\mathbb{Q}}$ be the set of all points in T with rational coordinates. The fraction inside (1) is invariant under scaling of \vec{a} due to homogeneity, hence it is enough to prove (1) for $\vec{a} \in T_{\mathbb{Q}}$.

Let $\Delta\left(W_{\boldsymbol{\bullet}}\right) \subseteq \mathbb{R}^{d} \times \mathbb{R}^{r}$ be the global Okounkov cone of $W_{\boldsymbol{\bullet}}$ as in [LM, Theorem 4.19], and let $\pi: \Delta\left(W_{\overrightarrow{\mathbf{\bullet}}}\right) \rightarrow \mathbb{R}^{r}$ be the projection map. For each $\vec{a} \in T$, write $\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}$ for the fiber $\pi^{-1}(\vec{a})$. Define in a similar fashion the convex cone $\Delta\left(W_{\vec{\bullet}}{ }^{(p)}\right)$ and the convex bodies $\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}$. By [LM, Theorem 4.19],

$$
\begin{equation*}
\Delta\left(W_{\bullet}\right)_{\vec{a}}=\Delta\left(W_{\vec{a}, \bullet}\right) \quad \text { for all } \vec{a} \in T_{\mathbb{Q}} \tag{2}
\end{equation*}
$$

Although [LM, Theorem 4.19] requires \vec{a} to be in the relative interior of T, here we know that (2) holds even for those \vec{a} in the boundary of T because the big cone of X is open and $W_{\vec{\bullet}}$ was assumed to be the complete multigraded linear series. By the singly graded Fujita approximation, $\operatorname{vol}\left(W_{\vec{a}, \bullet}\right)$ can be approximated arbitrarily closely by $\operatorname{vol}\left(W_{\vec{a}}^{(}, \stackrel{\bullet}{\bullet}\right)$ if p is sufficiently large. (Here by $W_{\vec{a}, \bullet}^{(p)}$ we mean $W_{\stackrel{\bullet}{*}}^{(p)}$ restricted to the \vec{a} direction, which certainly contains $\left(W_{\vec{a}, \bullet}\right)^{(p)}$.) Hence given any finite subset $S \subset T_{\mathbb{Q}}$ and any $\varepsilon^{\prime}>0$, we have

$$
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)-\varepsilon^{\prime} \quad \text { for all } \vec{a} \in S
$$

as soon as p is sufficiently large.
Because the function $\vec{a} \mapsto \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)$ is uniformly continuous on T, given any $\varepsilon^{\prime}>0$, we can partition T into a union of polytopes with disjoint interiors
$T=\bigcup T_{i}$, in such a way that the vertices of each T_{i} all have rational coordinates, and on each T_{i} we have a constant M_{i} such that

$$
\begin{equation*}
M_{i} \leq \operatorname{vol}\left(\Delta\left(W_{\bullet}\right)_{\vec{a}}\right) \leq M_{i}+\varepsilon^{\prime} \quad \text { for all } \vec{a} \in T_{i} \tag{3}
\end{equation*}
$$

Let S be the set of vertices of all the T_{i}. Then as we saw in the end of the previous paragraph, as soon as p is sufficiently large we have

$$
\begin{equation*}
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)-\varepsilon^{\prime} \quad \text { for all } \vec{a} \in S \tag{4}
\end{equation*}
$$

We claim that this implies

$$
\begin{equation*}
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)-2 \varepsilon^{\prime} \quad \text { for all } \vec{a} \in T_{\mathbb{Q}} \tag{5}
\end{equation*}
$$

To show this, it suffices to verify it on each of the T_{i}. Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the vertices of T_{i}. Then each $\vec{a} \in T_{i}$ can be written as a convex combination of the vertices: $\vec{a}=\sum t_{j} \vec{v}_{j}$ where each $t_{j} \geq 0$ and $\sum t_{j}=1$. Since $\Delta\left(W_{-}^{(p)}\right)$ is convex, we have

$$
\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}} \supseteq \sum t_{j} \Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{v}_{j}}
$$

where the sum on the right means the Minkowski sum. By (3) and (4), the volume of each $\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{v}_{j}}$ is at least $M_{i}-\varepsilon^{\prime}$, hence by the Brunn-Minkowski inequality [Kaveh and Khovanskii 2008, Theorem 5.4], we have

$$
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq M_{i}-\varepsilon^{\prime} \quad \text { for all } \vec{a} \in T_{i} \cap T_{\mathbb{Q}}
$$

This combined with (3) shows that (5) is true on $T_{i} \cap T_{\mathbb{Q}}$, hence it is true on $T_{\mathbb{Q}}$ since the T_{i} cover T.

Since (1) follows from (5) by choosing a suitable ε^{\prime}, the proof is complete.
Remark. In the statement of the Theorem we assume that $W_{\overrightarrow{\mathbf{0}}}$ is the complete multigraded linear series associated to big divisors. But in fact since the main tool we used in the proof is the theory of Okounkov bodies established in [Lazarsfeld and Mustață 2009], in particular [LM, Theorem 4.19], the really indispensable assumptions on W_{\cdot} are the same as those in [LM] (which they called Conditions $\left(\mathrm{A}^{\prime}\right)$ and $\left(\mathrm{B}^{\prime}\right)$, or $\left(\mathrm{C}^{\prime}\right)$). The only place in the proof where we invoke that we are working with a complete multigraded linear series is the sentence right after (2), where we want to say that (2) holds not only in the relative interior of T but also in its boundary. Hence if $W_{\overrightarrow{0}}$ is only assumed to satisfy Conditions $\left(\mathrm{A}^{\prime}\right)$ and $\left(\mathrm{B}^{\prime}\right)$, or $\left(\mathrm{C}^{\prime}\right)$, then given any $\varepsilon>0$ and any compact set C contained in $T \cap \operatorname{int}\left(\operatorname{supp}\left(W_{\bullet}\right)\right)$, there exists an integer $p_{0}=p_{0}(C, \varepsilon)$ such that if $p \geq p_{0}$ then

$$
\operatorname{vol}_{W_{0}(p)}(\vec{a})>\operatorname{vol}_{W_{\mathbf{0}}}(\vec{a})-\varepsilon
$$

for all $\vec{a} \in C \cap T_{\mathbb{Q}}$.

Acknowledgments

The author would like to thank Robert Lazarsfeld for raising this question during an email correspondence.

References

[Boucksom et al. 2004] S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell, "The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension", preprint, 2004. arXiv math/0405285
[Fujita 1994] T. Fujita, "Approximating Zariski decomposition of big line bundles", Kodai Math. J. 17:1 (1994), 1-3. MR 95c:14053 Zbl 0814.14006
[Hacon and McKernan 2006] C. D. Hacon and J. McKernan, "Boundedness of pluricanonical maps of varieties of general type", Invent. Math. 166:1 (2006), 1-25. MR 2007e:14022 Zbl 1121.14011
[Kaveh and Khovanskii 2008] K. Kaveh and A. Khovanskii, "Convex bodies and algebraic equations on affine varieties", preprint, 2008. arXiv 0804.4095
[Kaveh and Khovanskii 2009] K. Kaveh and A. Khovanskii, "Newton convex bodies, semigroups of integral points, graded algebras and intersection theory", preprint, 2009. arXiv 0904.3350
[Lazarsfeld 2004a] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergebnisse der Math. und ihrer Grenzgebiete (3) 48, Springer, Berlin, 2004. MR 2005k:14001a Zbl 1093.14501
[Lazarsfeld 2004b] R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Math. und ihrer Grenzgebiete (3) 49, Springer, Berlin, 2004. MR 2005k:14001b Zbl 1093.14500
[Lazarsfeld and Mustață 2009] R. Lazarsfeld and M. Mustață, "Convex bodies associated to linear series", Ann. Sci. Éc. Norm. Supér. (4) 42:5 (2009), 783-835. MR 2011e:14012 Zbl 1182.14004
[Okounkov 1996] A. Okounkov, "Brunn-Minkowski inequality for multiplicities", Invent. Math. 125:3 (1996), 405-411. MR 99a:58074 Zbl 0893.52004
[Okounkov 2003] A. Okounkov, "Why would multiplicities be log-concave?", pp. 329-347 in The orbit method in geometry and physics (Marseille, 2000), edited by C. Duval et al., Progr. Math. 213, Birkhäuser, Boston, 2003. MR 2004j:20022 Zbl 1063.22024
[Takayama 2006] S. Takayama, "Pluricanonical systems on algebraic varieties of general type", Invent. Math. $165: 3$ (2006), 551-587. MR 2007m:14014 Zbl 1108.14031
[Tsuji 2000] H. Tsuji, "Effective birationality of pluricanonical systems", preprint, 2000. arXiv math/0006166

Received May 10, 2010.

```
Shin-Yao Jow
Department of Mathematics
University of Pennsylvania
209 South 33Rd Street
Philadelphia, PA 19104-6395
United States
jows@ math.upenn.edu
```


SOME DIRICHLET PROBLEMS ARISING FROM CONFORMAL GEOMETRY

Qi-Rui Li and Weimin Sheng

We study the problem of finding complete conformal metrics determined by some symmetric function of the modified Schouten tensor on compact manifolds with boundary; which reduces to a Dirichlet problem. We prove the existence of the solution under some suitable conditions. In particular, we prove that every smooth compact \boldsymbol{n}-dimensional manifold with boundary, with $n \geq 3$, admits a complete Riemannian metric g whose Ricci curvature Ric $_{g}$ and scalar curvature \boldsymbol{R}_{g} satisfy

$$
\operatorname{det}\left(\operatorname{Ric}_{g}-R_{g} g\right)=\text { const }
$$

This result generalizes Aviles and McOwen's in the scalar curvature case.

1. Introduction

Let (\bar{M}^{n}, g), for $n \geq 3$, be a compact, n-dimensional smooth Riemannian manifold with smooth boundary ∂M. Let $M=\bar{M} \backslash \partial M$ be the interior of \bar{M}, and denote the Ricci tensor and the scalar curvature by Ric and R (or Ric_{g} and R_{g} to emphasize the metric), respectively. In [2003], Gursky and Viaclovsky introduced the modified Schouten tensor

$$
A_{g}^{\tau}:=\frac{1}{n-2}\left(\operatorname{Ric}_{g}-\frac{\tau}{2(n-1)} R_{g} g\right)
$$

where $\tau \in \mathbb{R}$. We are interested in deforming the metric in the conformal class $[g]$ of a fixed back ground metric g to certain complete metric \bar{g} satisfying

$$
\operatorname{det}\left(\bar{g}^{-1} A_{\bar{g}}^{\tau}\right)=\text { const in } M
$$

More generally, let Γ^{+}be an open convex cone in \mathbb{R}^{n} with vertex at the origin satisfying $\Gamma_{n}^{+} \subset \Gamma^{+} \subset \Gamma_{1}^{+}$, where

$$
\Gamma_{k}^{+}=\left\{\kappa=\left(\kappa_{1}, \ldots, \kappa_{n}\right) \in \mathbb{R}^{n} \mid \sigma_{j}(\kappa)>0,1 \leq j \leq k\right\},
$$

The authors were supported by NSFC 10771189 and 10831008.
MSC2000: primary 53C21; secondary 53C23.
Keywords: modified Schouten tensor, Dirichlet problem, complete metric, prescribed curvature.
and

$$
\sigma_{k}(\kappa)=\sum_{i_{1}<\cdots<i_{k}} \kappa_{i_{1}} \cdots \kappa_{i_{k}}
$$

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth symmetric function that satisfies some structure conditions in Γ^{+}, to be listed later. We ask, Does there exist a complete metric \bar{g} in the conformal class [g] such that

$$
\begin{equation*}
F\left(\bar{g}^{-1} A_{\bar{g}}^{\tau}\right)=f(x) \quad \text { in } M \tag{1-1}
\end{equation*}
$$

for some given smooth function $f \in C^{\infty}(\bar{M})$? In this paper, we give a partial answer in the case $\tau>n-1$. We remark that, if $F=\sigma_{1}$, then (1-1) becomes

$$
\frac{(2-\tau) n-2}{2(n-1)(n-2)} R_{\bar{g}}=f(x)
$$

In the case $\tau>n-1$ and $f(x)$ is positive, some results have appeared in [Aviles and McOwen 1988].

To find a complete conformal metric satisfying (1-1), we need to solve the Dirichlet problem for (1-1) with larger and larger boundary data. We first write this curvature equation as a partial differential equation. Recall the following formula for the transformation of A^{τ} under a conformal change of metric $\bar{g}=e^{2 u} g$:

$$
\begin{equation*}
A_{\bar{g}}^{\tau}=\frac{\tau-1}{n-2}(\Delta u) g-\nabla^{2} u+d u \otimes d u+\frac{\tau-2}{2}|\nabla u|^{2} g+A_{g}^{\tau} . \tag{1-2}
\end{equation*}
$$

From (1-2) we may write (1-1) as

$$
F\left(\frac{\tau-1}{n-2}(\Delta u) g-\nabla^{2} u+d u \otimes d u+\frac{\tau-2}{2}|\nabla u|^{2} g+A_{g}^{\tau}\right)=f(x) e^{2 u}
$$

In this paper, we study a more general equation. Let $h(x, z): \bar{M}^{n} \times \mathbb{R}$ be some smooth positive function. Let's consider

$$
\begin{equation*}
F\left(\lambda(\Delta u) g-\nabla^{2} u+a(x) d u \otimes d u+b(x)|\nabla u|^{2} g+B\right)=h(x, u) \tag{1-3}
\end{equation*}
$$

where $\lambda>1, B$ is a symmetric 2-tensor, and $a(x)$ and $b(x)$ are smooth functions on \bar{M}. Suppose F is homogeneous of degree one, $F=0$ on $\partial \Gamma^{+}$, and F satisfies the following in Γ^{+}:
(C1) F is positive;
(C2) F is concave (that is, $\frac{\partial^{2} F}{\partial \kappa_{i} \partial \kappa_{j}}$ is negative semidefinite);
(C3) F is monotone (that is, $\frac{\partial F}{\partial k_{i}}$ is positive).
For convenience, we define

$$
W[u]:=\nabla_{\mathrm{conf}}^{2} u+B,
$$

and

$$
\nabla_{\text {conf }}^{2} u=\lambda(\Delta u) g-\nabla^{2} u+a d u \otimes d u+b|\nabla u|^{2} g
$$

in the sequel. We call u is admissible if $g^{-1} W[u] \in \Gamma^{+}$.
Theorem 1.1. For $n \geq 3$, let $\left(\bar{M}^{n}, g\right)$ be a smooth, compact Riemannian manifold with boundary ∂M. If
(1) $B \in \Gamma^{+}$;
(2) $h>0$ on $\bar{M} \times \mathbb{R}, \partial_{z} h(x, z)>0$ on $\bar{M} \times \mathbb{R}, \lim _{z \rightarrow+\infty} h(x, z) \rightarrow+\infty$ and $\lim _{z \rightarrow-\infty} h(x, z) \rightarrow 0$ in $M \times \mathbb{R}$; and
(3) $a(x)$ is positive on \bar{M} and $\lambda a(x)+b(x)$ is nonnegative in M,
then there exists a unique admissible function $u \in C^{\infty}(\bar{M})$ solving the Dirichlet problem

$$
\left\{\begin{align*}
F(W[u]) & =h(x, u) & & \text { in } M \tag{1-4}\\
u & =\varphi & & \text { on } \partial M
\end{align*}\right.
$$

where φ is a smooth function defined on a neighborhood of ∂M.
We may apply Theorem 1.1 to the elementary symmetric functions and their quotients $\left(\sigma_{k} / \sigma_{l}\right)^{1 /(k-l)}$ on Γ_{k}^{+}, with $0 \leq l<k \leq n$ and $\sigma_{0}=1$:
Corollary 1.2. For $n \geq 3$, let $\left(\bar{M}^{n}, g\right)$ be a smooth, compact Riemannian manifold with boundary ∂M. Let $f \in C^{\infty}(\bar{M})$, let $f>0$, and let S be a Riemannian metric on ∂M that is conformal to $\left.g\right|_{\partial M}$. If $A_{g}^{\tau} \in \Gamma_{k}^{+}$and $\tau>n-1$, then there exists a smooth metric $\hat{g} \in[g]$ on \bar{M} satisfying

$$
\left(\frac{\sigma_{k}}{\sigma_{l}}\right)^{1 /(k-l)}\left(A_{\hat{g}}^{\tau}\right)=f \quad \text { in } M \quad \text { and }\left.\quad \hat{g}\right|_{\partial M}=S
$$

where $0 \leq l<k \leq n$.
Recently Gursky, Streets and Warren [2011] proved that any Riemannian manifold with boundary admits a negative Ricci curvature metric; see also Lohkamp [1994] and Guan [2008]. Once $\operatorname{Ric}_{g}<0$, we have $A_{g}^{2(n-1)}=\frac{1}{n-2}\left(\operatorname{Ric}_{g}-R_{g} g\right) \in \Gamma_{k}^{+}$. Therefore:

Corollary 1.3. For $n \geq 3$, every smooth compact n-dimensional manifold with boundary admits a Riemannian metric g with its Ricci tensor Ric and scalar curvature R satisfying

$$
\sigma_{k}\left(g^{-1}(\text { Ric }-R g)\right)=\text { const }>0
$$

where $1 \leq k \leq n$. In the case $k=n$, we have

$$
\operatorname{det}(\operatorname{Ric}-R g)=\text { const }>0
$$

By solving the infinite boundary data Dirichlet problem, we can produce complete metrics with constant $\sigma_{k}-A_{g}^{\tau}$ curvature, where $\tau>n-1$.
Theorem 1.4. For $n \geq 3$, let $\left(\bar{M}^{n}, g\right)$ be a smooth, compact Riemannian manifold with boundary ∂M. Choose any smooth positive function $f \in C^{\infty}(\bar{M})$. If $B \in \Gamma^{+}$, $a(x)$ is positive on \bar{M}, and $\lambda a(x)+b(x)$ is nonnegative in M, then there exists an admissible solution $u \in C^{\infty}(M)$ to the equation

$$
\left\{\begin{align*}
F(W[u]) & =f(x) e^{2 u} & & \text { in } M, \tag{1-5}\\
u & =+\infty & & \text { on } \partial M .
\end{align*}\right.
$$

Moreover, there exist some constants $C>0$ and $0<\gamma \leq 1$, depending on

$$
n, \quad \lambda, \quad|f|_{C^{2}(\bar{M})}, \quad|a|_{L^{\infty}(\bar{M})}, \quad|b|_{L^{\infty}(\bar{M})}, \quad|B|_{g(\bar{M})}
$$

and the geometry of (\bar{M}, g), such that

$$
-C-\gamma \log d(x) \leq u(x) \leq-\log d(x)+C \quad \text { near } \partial M,
$$

where $d(x)$ denotes the distance to ∂M with respect to the metric g.
We can combine this with the result of [Gursky et al. 2011]:
Corollary 1.5. For $n \geq 3$, every smooth compact n-dimensional manifold with boundary admits a complete metric g whose Ricci curvature satisfies

$$
\sigma_{k}\left(g^{-1}(\operatorname{Ric}-R g)\right)=\text { const }>0
$$

where $1 \leq k \leq n$. In the case $k=n$, we have

$$
\operatorname{det}(\operatorname{Ric}-R g)=\text { const }>0
$$

When we consider the modified Schouten tensor with $\tau \leq 0$, it seems reasonable to consider the negative cone, by seeking a complete conformal metric \bar{g} in the conformal class [g], such that $\sigma_{k}\left(-\bar{g} A_{\bar{g}}^{\tau}\right)=$ const >0. There are some interesting results, and we refer the reader to [Guan 2008] and [Gursky et al. 2011]. In the case $\tau=1, A_{g}^{1}$ is just the classical Schouten tensor. In [2005], Schnürer fixes the metric at the boundary and realizes a prescribed value for the product of the eigenvalues of the Schouten tensor in the interior, provided there exists a subsolution. In [2007], Guan proved the existence of a conformal metric given its value on the boundary as a prescribed metric conformal to the (induced) background metric, with a prescribed curvature function of the Schouten tensor.

For compact manifolds without boundary, the problem of finding conformal metrics in Γ_{k}^{+}of constant σ_{k} curvature (that is, of finding $g \in\left[g_{0}\right]$ such that $A_{g}^{1} \in \Gamma_{k}^{+}$and $\sigma_{k}\left(g^{-1} A_{g}^{1}\right)=$ const $)$ - known as the higher order k-Yamabe problem for $k \geq 2$ - has attracted enormous interest since the work [Viaclovsky 2000]
appeared. It can be viewed as a fully nonlinear version of the Yamabe problem, which was solved by Trudinger [1968], Aubin [1976] and Schoen [1984]. The solvability of the higher order k-Yamabe problem was shown for $k=2$ in [Sheng et al. 2007] (see also [Chang et al. 2002; Ge and Wang 2006]), for $k=n / 2$ in [Trudinger and Wang 2010], for $k>n / 2$ in [Gursky and Viaclovsky 2007], and for locally conformally flat manifolds in [Guan and Wang 2003a; Li and Li 2003; Sheng et al. 2007]. For results concerning the modified Schouten tensor on closed manifolds, see [Gursky and Viaclovsky 2003; Li and Sheng 2005] for the case $\tau<1$, and [Sheng and Zhang 2007] for the case $\tau \geq n-1$.

Our primary task is to solve the Dirichlet problem (1-4). The proof goes via the continuity method and a priori estimates. This paper is organized as follows. In Section 2, we show (1-3) is elliptic at any admissible solution. In Section 3, 4 and 5, we establish a priori estimates that are essential in proving the existence result. We then complete the proof of Theorem 1.1 in Section 6 and solve the infinite boundary data Dirichlet problem (1-5) in Section 7.

2. Ellipticity

In order to discuss the ellipticity properties of Equation (1-3), we define

$$
\mathscr{A}[u]:=F\left(g^{-1} W[u]\right)-h(x, u) .
$$

We then suppose that $u \in C^{2}(\bar{M})$ satisfies $\mathscr{A}[u]=0$. Let $u_{s}=u+s \psi$, then the linearized operator of \mathscr{A} is

$$
\begin{aligned}
\mathscr{L} \psi & :=\left.\frac{d}{d s} \mathscr{A}\left[u_{s}\right]\right|_{s=0} \\
& =F\left(g^{-1} W[u]\right)^{i j}\left(\lambda(\Delta \psi) g_{i j}-\psi_{i j}+2 a u_{i} \psi_{j}+2 b\langle\nabla u, \nabla \psi\rangle g_{i j}\right) \\
& -h_{z}(x, u) \psi .
\end{aligned}
$$

Defining

$$
\begin{equation*}
Q^{i j}=\lambda \sum_{l}\left(F^{l l}\right) \delta^{i j}-F^{i j} \tag{2-1}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathscr{L} \psi=Q^{i j} \psi_{i j}+2 F^{i j}\left(a u_{i} \psi_{j}+b\langle\nabla u, \nabla \psi\rangle g_{i j}\right)-h_{z}(x, u) \psi . \tag{2-2}
\end{equation*}
$$

Proposition 2.1. Equation (1-3) is elliptic at any admissible solution.
Proof. Since $F^{i j}$ is positive definite in Γ^{+}, we have

$$
Q^{i j} \geq(\lambda-1) \sum_{l}\left(F^{l l}\right) \delta^{i j}>0 .
$$

Therefore, (1-3) is elliptic by (2-2).

If $\partial_{z} h(x, z)$ is positive on $\bar{M} \times \mathbb{R}$, then the coefficient of ψ in the zeroth-order term of (2-2) is strictly negative, and we have this:
Corollary 2.2. If $\partial_{z} h(x, z)$ is positive on $\bar{M} \times \mathbb{R}$, then at any admissible solution of (1-3), the linearized operator $\mathscr{L}: C^{2, \alpha}(M) \rightarrow C^{\alpha}(M)$ is invertible.

3. The global C^{0} estimates

Proposition 3.1. If $B \in \Gamma^{+}$and $\lim _{z \rightarrow+\infty} h(x, z) \rightarrow+\infty, \lim _{z \rightarrow-\infty} h(x, z) \rightarrow 0$. Then there exists some positive constant C_{0}, depending only upon h, B and φ, such that for any $C^{2}(\bar{M})$ admissible solution u of (1-4), we have

$$
|u|_{C^{0}(\bar{M})} \leq C_{0}
$$

Proof. Since \bar{M} is compact, we may suppose \tilde{x} is a minimum of the function u. If $\tilde{x} \in M$, we have

$$
\begin{aligned}
h(\tilde{x}, u(\tilde{x})) & =F\left(\lambda(\Delta u)(\tilde{x}) g-\nabla^{2} u(\tilde{x})+B(\tilde{x})\right) \\
& \geq \min _{M} F(B)>0 .
\end{aligned}
$$

Using $\lim _{z \rightarrow-\infty} h(x, z) \rightarrow 0$, we get the lower bound of u. Otherwise $\tilde{x} \in \partial M$, we get $u \geq \min _{\partial M} \varphi$.

The upper bound of u follows by considering a maximum of the function u and using the fact that $\lim _{z \rightarrow+\infty} h(x, z) \rightarrow+\infty$.

4. Gradient estimates

We first establish the interior gradient estimates.
Lemma 4.1. Suppose $B \in \Gamma^{+}$and $\lambda a(x)+b(x)$ is nonnegative in M. If $u \in C^{3}\left(B_{r}\right)$ is an admissible solution of (1-4) in a ball $B_{r} \subset M$, then there is a constant C depending only on $|a|_{C^{1}(M)},|b|_{C^{1}(M)}, \max _{M \times\left[-C_{0}, C_{0}\right]}|h|_{C^{1}},|g|_{C^{2}(M)}, \lambda,|B|_{C^{1}(M)}$ and $|u|_{C^{0}\left(B_{r}\right)}$, such that

$$
\sup _{B_{r / 2}}|\nabla u| \leq C
$$

Proof. Consider the auxiliary function

$$
H(x)=\zeta(x) v e^{\phi(u)}
$$

where $\zeta(x) \in C_{0}^{\infty}\left(B_{r}\right)$ is a cutoff function to be chosen later, $v=\left(1+\frac{1}{2}|\nabla u|_{g}^{2}\right)$, $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ is a function of the form $\phi(s)=\alpha(\beta+s)^{p}$, and $|s| \leq|u|_{C^{0}\left(B_{r}\right)}$. The constants α, β and p depend only on $|u|_{C^{0}\left(B_{r}\right)}$ and $|a|_{L^{\infty}}$, such that the function $\phi(s)$ satisfies $\phi^{\prime}(s)>0$ and $\phi^{\prime \prime}(s)-\phi^{\prime 2}(s)-|a|_{L^{\infty}} \phi^{\prime}(s) \geq \varepsilon_{1}>0$ for some constant ε_{1} depending on $|u|_{C^{0}\left(B_{r}\right)}$ and $|a|_{L^{\infty}}$. It is proved in [Gursky and Viaclovsky 2003] that
such a function ϕ always exists in the case $|a|_{L^{\infty}}=1$. With a slight modification, the proof still works for our case.

Suppose the maximum of H occurs at an interior point $\tilde{x} \in B_{r}$. Take a normal coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ at \tilde{x} with respect to g such that $W[u]_{i j}(\tilde{x})$ is diagonal. Then at \tilde{x} we have

$$
0=H_{i}=\left(v \zeta_{i}+\zeta u_{l i} u_{l}+v \zeta \phi^{\prime} u_{i}\right) e^{\phi(u)}
$$

that is,

$$
\begin{equation*}
\zeta u_{l i} u_{l}=-v\left(\zeta_{i}+\zeta \phi^{\prime} u_{i}\right) \tag{4-1}
\end{equation*}
$$

and

$$
\begin{align*}
& 0 \geq H_{i j}=\zeta\left(u_{l} u_{l i j}+u_{l i} u_{l j}+u_{l}\left(u_{i} u_{l j}+u_{l i} u_{j}\right) \phi^{\prime}\right) e^{\phi(u)} \tag{4-2}\\
& \quad+v \zeta\left(\left(\phi^{\prime 2}+\phi^{\prime \prime}\right) u_{i} u_{j}+\phi^{\prime} u_{i j}\right) e^{\phi(u)} \\
& \quad+u_{l}\left(u_{l j} \zeta_{i}+u_{l i} \zeta_{j}\right) e^{\phi(u)}+v\left(\zeta_{i j}+\phi^{\prime}\left(u_{i} \zeta_{j}+\zeta_{i} u_{j}\right)\right) e^{\phi(u)}
\end{align*}
$$

Recall that $Q^{i j}=\lambda\left(\sum_{l} F^{l l}\right) \delta^{i j}-F^{i j}$. Since $F^{i j}$ is positive definite in Γ^{+}, one obtains $\lambda\left(\sum_{l} F^{l l}\right) \delta^{i j} \geq Q^{i j} \geq \varepsilon_{0}\left(\sum_{l} F^{l l}\right) \delta^{i j}>0$, where $\varepsilon_{0}=\lambda-1$. Then (4-2) implies

$$
\begin{aligned}
0 \geq \zeta Q^{i j}\left(u_{l} u_{l i j}+u_{l i} u_{l j}\right. & \left.+2 u_{i} u_{l} u_{l j} \phi^{\prime}\right) \\
& +v \zeta Q^{i j}\left(\left(\phi^{\prime 2}+\phi^{\prime \prime}\right) u_{i} u_{j}+\phi^{\prime} u_{i j}\right) \\
& +2 u_{l} Q^{i j} u_{l i} \zeta_{j}+v Q^{i j}\left(\zeta_{i j}+2 \phi^{\prime} u_{i} \zeta_{j}\right) .
\end{aligned}
$$

By the Ricci identity, we have $u_{l i j}=u_{i j l}+R_{j l i p} u_{p}$, where $R_{i j l p}$ is the Riemannian curvature tensor of (M, g). Then

$$
\begin{align*}
& 0 \geq \zeta Q^{i j}\left(u_{l} u_{i j l}+R_{j l i p} u_{p} u_{l}+2 u_{l} u_{l i} u_{j} \phi^{\prime}+v\left(\left(\phi^{\prime 2}+\phi^{\prime \prime}\right) u_{i} u_{j}+\phi^{\prime} u_{i j}\right)\right) \tag{4-3}\\
&+2 u_{l} Q^{i j} u_{l i} \zeta_{j}+v Q^{i j}\left(\zeta_{i j}+2 \phi^{\prime} u_{i} \zeta_{j}\right)
\end{align*}
$$

Using $h(x, u)=F(W[u])=F^{i j} W[u]_{i j}$ and $h_{l}+h_{z} u_{l}=F^{i j} W[u]_{i j ; l}$, we obtain

$$
\begin{equation*}
Q^{i j} u_{i j}=-F^{i j}\left(a u_{i} u_{j}+b|\nabla u|^{2} g_{i j}+B_{i j}\right)+h(x, u), \tag{4-4}
\end{equation*}
$$

and
(4-5) $\quad u_{l} Q^{i j} u_{i j l}$

$$
\begin{array}{r}
=-F^{i j}\left(a_{l} u_{l} u_{i} u_{j}+2 a u_{i} u_{j l} u_{l}+b_{l} u_{l}|\nabla u|^{2} g_{i j}+2 b u_{k} u_{l k} u_{l} g_{i j}+u_{l} B_{i j l}\right) \\
+h_{l} u_{l}+h_{z}|\nabla u|^{2}
\end{array}
$$

Plugging (4-4) and (4-5) into (4-3), we have

$$
\begin{aligned}
0 \geq & -\zeta F^{i j}\left(a_{l} u_{l} u_{i} u_{j}+2 a u_{i} u_{j l} u_{l}+b_{l} u_{l}|\nabla u|^{2} g_{i j}+2 b u_{k} u_{l k} u_{l} g_{i j}+u_{l} B_{i j l}\right) \\
& -\zeta v \phi^{\prime} F^{i j}\left(a u_{i} u_{j}+b|\nabla u|^{2} g_{i j}+B_{i j}\right) \\
& +\zeta Q^{i j}\left(R_{j l i p} u_{p} u_{l}+2 u_{l} u_{l i} u_{j} \phi^{\prime}+v\left(\phi^{2}+\phi^{\prime \prime}\right) u_{i} u_{j}\right) \\
& +\zeta\left(h_{l} u_{l}+h_{z}|\nabla u|^{2}+v \phi^{\prime} h(x, u)\right) \\
& +2 u_{l} Q^{i j} u_{l i} \zeta_{j}+2 v \phi^{\prime} Q^{i j} u_{i} \zeta_{j}+v Q^{i j} \zeta_{i j} .
\end{aligned}
$$

Without loss of generality, we may assume $\frac{1}{2}|\nabla u|^{2} \leq v \leq|\nabla u|^{2}$, and using (4-1), we derive

$$
\begin{align*}
0 \geq & \zeta v \phi^{\prime} F^{i j}\left(a u_{i} u_{j}+b|\nabla u|^{2} g_{i j}\right)+\zeta v\left(\phi^{\prime \prime}-\phi^{\prime 2}\right) Q^{i j} u_{i} u_{j} \\
& -\zeta F^{i j}\left(a_{l} u_{l} u_{i} u_{j}+b_{l} u_{l}|\nabla u|^{2} g_{i j}+u_{l} B_{i j l}\right) \\
& -\zeta v \phi^{\prime} F^{i j} B_{i j}+\zeta Q^{i j} R_{j l i p} u_{p} u_{l} \\
+ & \zeta\left(h_{l} u_{l}+h_{z}|\nabla u|^{2}+v \phi^{\prime} h(x, u)\right) \\
& -2 v \phi^{\prime} Q^{i j} \zeta_{i} u_{j}+2 v\left(a F^{i j}+b\left(\sum F^{l l}\right) \delta^{i j}\right) \zeta_{i} u_{j} \tag{4-6}\\
+ & v Q^{i j} \zeta_{i j}-2(v / \zeta) Q^{i j} \zeta_{i} \zeta_{j} \\
\geq & \zeta v\left(\phi^{\prime \prime}-\phi^{\prime 2}-a \phi^{\prime}\right) Q^{i j} u_{i} u_{j} \\
+ & \zeta v \phi^{\prime}(\lambda a(x)+b(x))\left(\sum F^{l l}\right)|\nabla u|^{2}-C \zeta\left(\sum F^{l l}\right)\left(v^{3 / 2}+1\right) \\
& -C \zeta(v+1)-C\left(\sum F^{l l}\right)\left(|\nabla \zeta| v^{3 / 2}+\left|\nabla^{2} \zeta\right| v+\left(|\nabla \zeta|^{2} / \zeta\right) v\right),
\end{align*}
$$

in the second inequality, we have used the definition of $Q^{i j}$ to get

$$
a \zeta v \phi^{\prime} F^{i j} u_{i} u_{j}=\lambda a \zeta \phi^{\prime}\left(\sum_{l} F^{l l}\right)|\nabla u|^{2}-a \zeta v \phi^{\prime} Q^{i j} u_{i} u_{j} .
$$

Now we choose ζ to satisfy, as in [Guan and Wang 2003b],

$$
0 \leq \zeta \leq 1, \quad|\nabla \zeta| \leq b_{0} \zeta^{1 / 2}, \quad\left|\nabla^{2} \zeta\right| \leq b_{0}
$$

for some constant $b_{0}>0$ and

$$
\zeta(x)=1 \text { in } B_{r / 2} \quad \text { and } \quad \zeta(x)=0 \text { outside } B_{r} .
$$

By virtue of (4-6), we then have

$$
0 \geq\left(\sum_{l} F^{l l}\right)\left(\varepsilon_{0} \varepsilon_{1} \zeta v^{2}-C \zeta v^{3 / 2}-C \zeta\right)-C \zeta(v+1)-C\left(\sum_{l} F^{l l}\right)\left(\zeta^{1 / 2} v^{3 / 2}+v\right)
$$

Multiplying by ζ on both sides and using that $0 \leq \zeta \leq 1$, we have

$$
\begin{equation*}
0 \geq\left(\sum_{l} F^{l l}\right)\left(\varepsilon_{0} \varepsilon_{1} \zeta^{2} v^{2}-C \zeta^{3 / 2} v^{3 / 2}-C \zeta v-C\right)-C(\zeta v+1) \tag{4-7}
\end{equation*}
$$

Note that Euler formula and concavity of F imply

$$
\left(\sum_{l} F^{l l}\right)(\kappa)=F(\kappa)+\sum_{i} F^{i i}(\kappa)\left(1-\kappa_{i}\right) \geq F(e)>0 \quad \text { in } \Gamma^{+},
$$

where $e=(1, \ldots, 1)$. From (4-7), if $\varepsilon_{0} \varepsilon_{1} \zeta^{2} v^{2}-C \zeta^{3 / 2} v^{3 / 2}-C \zeta v-C \leq 0$, we have $(\zeta v)(\tilde{x}) \leq C$. Otherwise, we have

$$
0 \geq F(e)\left(\varepsilon_{0} \varepsilon_{1} \zeta^{2} v^{2}-C \zeta^{3 / 2} v^{3 / 2}-C \zeta v-C\right)-C(\zeta v+1)
$$

We then obtain $(\zeta v)(\tilde{x}) \leq C$. Hence $H \leq C$ in B_{r}; therefore $\sup _{B_{r / 2}}|\nabla u| \leq C$.
We now derive a priori bounds for the boundary gradient of solutions to (1-4) with smooth Dirichlet data φ. Without loss of generality, we may assume that $\varphi \in C^{\infty}(\bar{M})$ in the sequel. The method is to construct barrier functions near ∂M using the boundary distance function. Let $d(x)=\operatorname{dist}_{g}(x, \partial M)$ for $x \in M$, and set

$$
M_{\delta}=\{x \in M \mid d(x)<\delta\} \quad \text { for } \delta>0
$$

Since ∂M is smooth and $|\nabla d|=1$ on ∂M, we choose $\delta>0$ sufficiently small so that d is smooth and $\frac{1}{2} \leq|\nabla d| \leq 2$ in M_{δ}.

Consider the locally defined auxiliary function

$$
w^{-}:=\varphi+\theta \log \frac{\delta^{2}}{d+\delta^{2}}
$$

where θ is some small positive constant. We may directly check that

$$
\left\{\begin{align*}
\left.w^{-}\right|_{\partial M} & =\varphi \tag{4-8}\\
\varphi+\theta \log (\delta / 2) & \leq\left. w^{-}\right|_{\{d(x)=\delta\}} \leq \varphi+\theta \log \delta
\end{align*}\right.
$$

Since

$$
\begin{aligned}
\nabla w^{-} & =\nabla \varphi-\frac{\theta}{d+\delta^{2}} \nabla d \\
\nabla^{2} w^{-} & =\nabla^{2} \varphi-\frac{\theta}{d+\delta^{2}} \nabla^{2} d+\frac{\theta}{\left(d+\delta^{2}\right)^{2}} \nabla d \otimes \nabla d
\end{aligned}
$$

we obtain

$$
\begin{aligned}
W\left[w^{-}\right]_{i j}= & \frac{(\lambda+b \theta) \theta}{\left(d+\delta^{2}\right)^{2}}|\nabla d|^{2} g_{i j}+\frac{a \theta^{2}}{\left(d+\delta^{2}\right)^{2}} d_{i} d_{j}-\frac{\theta}{\left(d+\delta^{2}\right)^{2}} d_{i} d_{j} \\
& \quad-\frac{\theta}{d+\delta^{2}}\left(\lambda \Delta d g_{i j}-d_{i j}+a\left(\varphi_{j} d_{i}+\varphi_{i} d_{j}\right)+2 b\langle\nabla \varphi, \nabla d\rangle g_{i j}\right) \\
& \quad+\lambda \Delta \varphi g_{i j}-\varphi_{i j}+a \varphi_{i} \varphi_{j}+b|\nabla \varphi|^{2} g_{i j}+B_{i j} \\
\geq & \frac{\left(\varepsilon_{0}-\left(|a|_{L^{\infty}(\bar{M})}+|b|_{L^{\infty}(\bar{M})}\right) \theta\right) \theta}{\left(d+\delta^{2}\right)^{2}}|\nabla d|^{2} g_{i j}-\frac{\theta}{d+\delta^{2}} C^{\prime} g_{i j}-C^{\prime \prime} g_{i j}
\end{aligned}
$$

where C^{\prime} and $C^{\prime \prime}$ are some sufficiently large constants, depending only on $|\varphi|_{C^{2}(\bar{M})}$, $\lambda,|a|_{L^{\infty}(\bar{M})},|b|_{L^{\infty}(\bar{M})},|B|_{g(\bar{M})}$ and the geometric quantities of (\bar{M}, g), independent
of δ. Choosing

$$
\theta \leq \frac{\varepsilon_{0}}{2\left(|a|_{L^{\infty}(\bar{M})}+|b|_{L^{\infty}(\bar{M})}\right)} \quad \text { and } \quad \delta \leq \min \left\{1, \frac{\varepsilon_{0}}{16 C^{\prime}}, \frac{\varepsilon_{0} \theta}{64 C^{\prime \prime}}\right\}
$$

by virtue of $|\nabla d|>1 / 2$ in M_{δ}, we derive

$$
\begin{align*}
W\left[w^{-}\right]_{i j} & \geq \frac{\varepsilon_{0} \theta}{8\left(d+\delta^{2}\right) \delta} g_{i j}-\frac{\theta}{d+\delta^{2}} C^{\prime} g_{i j}-C^{\prime \prime} g_{i j} \\
& =\frac{\theta}{d+\delta^{2}}\left(\frac{\varepsilon_{0}}{16 \delta}-C^{\prime}\right) g_{i j}-C^{\prime \prime} g_{i j}+\frac{\theta \varepsilon_{0}}{16 \delta\left(d+\delta^{2}\right)} g_{i j} \tag{4-9}\\
& \geq \frac{\theta \varepsilon_{0}}{32 \delta} g_{i j}-C^{\prime \prime} g_{i j} \\
& =\frac{\theta \varepsilon_{0}}{64 \delta} g_{i j}+\left(\frac{\theta \varepsilon_{0}}{64 \delta}-C^{\prime \prime}\right) g_{i j} \geq \frac{\theta \varepsilon_{0}}{64 \delta} g_{i j},
\end{align*}
$$

in the first inequality we have used the fact $d+\delta^{2} \leq 2 \delta$, while in the second, we have used that $d+\delta^{2} \leq 2$.

To estimate the boundary gradient, we need the following maximum principle. We first give a standard definition.
Definition 4.2. We say a subsolution w of (1-3) is admissible and

$$
F(W[w]) \geq h(x, w) \quad \text { in } M
$$

Changing the direction of the inequality, one gets the definition of the supsolution of (1-3).

Lemma 4.3. Suppose that w_{1} and w_{2} are smooth sub- and supersolutions (respectively) of (1-3) with $\left.w_{1}\right|_{\partial M}<\left.w_{2}\right|_{\partial M}$. If $\partial_{z} h(x, z)$ is positive in $M \times \mathbb{R}$, then $w_{1} \leq w_{2}$ on \bar{M}.
Proof. We argue by contradiction. Set $\tilde{w}=w_{2}-w_{1}$. Suppose $\tilde{w}(\tilde{x})=\min _{\bar{M}} \tilde{w}<0$ for some $\tilde{x} \in \bar{M}$; then \tilde{x} must be an interior point. At this point,

$$
\nabla w_{2}(\tilde{x})=\nabla w_{1}(\tilde{x}) \quad \text { and } \quad \nabla^{2} w_{2}(\tilde{x}) \geq \nabla^{2} w_{1}(\tilde{x})
$$

Consequently

$$
\begin{aligned}
F\left(W\left[w_{2}\right]\right)(\tilde{x}) & =Q^{i j} \nabla_{i j}^{2} w_{2}(\tilde{x})+F^{i j}\left(a \nabla_{i} w_{2} \nabla_{j} w_{2}+b\left|\nabla w_{2}\right|^{2} g_{i j}+B_{i j}\right)(\tilde{x}) \\
& \geq Q^{i j} \nabla_{i j}^{2} w_{1}(\tilde{x})+F^{i j}\left(a \nabla_{i} w_{1} \nabla_{j} w_{1}+b\left|\nabla w_{1}\right|^{2} g_{i j}+B_{i j}\right)(\tilde{x}) \\
& =F\left(W\left[w_{1}\right]\right)(\tilde{x}) .
\end{aligned}
$$

We therefore have

$$
h\left(\tilde{x}, w_{2}(\tilde{x})\right) \geq F\left(W\left[w_{2}\right]\right)(\tilde{x}) \geq F\left(W\left[w_{1}\right]\right)(\tilde{x}) \geq h\left(\tilde{x}, w_{1}(\tilde{x})\right),
$$

which contradicts that $w_{1}(\tilde{x})>w_{2}(\tilde{x})$ and $\partial_{z} h(x, z)$ is positive in $M \times \mathbb{R}$.

Let x_{0} be an arbitrary point on ∂M. We pick local coordinates in M_{δ} so that ∂M is the plane $x_{n}=0$, and let $\left\{e_{\gamma}, e_{n}\right\}_{\gamma=1}^{n-1}$ be the corresponding coordinate vector fields, where $e_{n}\left(x_{0}\right)$ denotes the interior normal vector and $e_{\gamma}\left(x_{0}\right)$ the tangential direction.
Lemma 4.4. Let u be a $C^{2}(\bar{M})$ admissible solution of (1-4). If $B \in \Gamma^{+}$and $\partial_{z} h(x, z)$ is positive in $M \times \mathbb{R}$, then there exists a constant C depending on

$$
C_{0}, \quad \lambda, \quad|\varphi|_{C^{2}(\bar{M})}, \quad|a|_{L^{\infty}(\bar{M})}, \quad|b|_{L^{\infty}(\bar{M})}, \quad|B|_{g(\bar{M})}
$$

and the geometric quantities of (\bar{M}, g), such that

$$
\left.\partial_{n} u\right|_{\partial M}>-C .
$$

Proof. Recalling (4-8) and (4-9), we have

$$
\left.w^{-}\right|_{\partial M}=\varphi \quad \text { and } \quad F\left(W\left[w^{-}\right]\right)=F^{i j} W\left[w^{-}\right]_{i j} \geq \frac{\varepsilon_{0} \theta}{64 \delta} F(e) \quad \text { on } M_{\delta}
$$

We choose δ smaller, so that

$$
F\left(W\left[w^{-}\right]\right) \geq \max _{\bar{M} \times\left[\min _{\bar{M}} \varphi \max _{\bar{M}} \varphi\right]} h(x, z) \geq h\left(x, w^{-}\right) \quad \text { on } M_{\delta} .
$$

Since $|u|_{C^{0}}(\bar{M})<C_{0}$, we can regard w^{-}as a local subsolution of (1-3) on $\bar{M}_{\delta}=$ $\{x \mid d(x) \leq \delta\}$. Applying Lemma 4.3 to \bar{M}_{δ}, we have

$$
\frac{u(x)-u\left(x_{0}\right)}{d\left(x, x_{0}\right)} \geq \frac{w^{-}(x)-w^{-}\left(x_{0}\right)}{d\left(x, x_{0}\right)} \quad \text { for any } x_{0} \in \partial M
$$

That is, $\left.\partial_{n} u\right|_{\partial M} \geq\left.\partial_{n} w^{-}\right|_{\partial M}$, and our lemma follows.
We next prove that the $\partial_{n} u$ have an upper bound; the boundary gradient estimates follow.

Lemma 4.5. Let u be a $C^{2}(\bar{M})$ admissible solution of (1-4). If $B \in \Gamma^{+}$and $\partial_{z} h(x, z)$ is positive in $M \times \mathbb{R}$, then we have

$$
\partial_{n} u\left(x_{0}\right)<C \quad \text { for any point } x_{0} \in \partial M
$$

where C is a positive constant depending on $C_{0}, \lambda,|\varphi|_{C^{2}(\bar{M})},|a|_{L^{\infty}(\bar{M})},|b|_{L^{\infty}(\bar{M})}$, $|B|_{g(\bar{M})}$ and the geometric quantities of (\bar{M}, g).
Proof. Since u is admissible and $\Gamma^{+} \subset \Gamma_{1}^{+}$, we have

$$
c_{1} \Delta u+c_{2}|\nabla u|^{2}+\operatorname{tr} B \geq(n \lambda-1) \Delta u+(a+n b)|\nabla u|^{2}+\operatorname{tr} B>0
$$

where $c_{1}=n \lambda-1$ and $c_{2}=|a|_{L^{\infty}}+n|b|_{L^{\infty}}$. Therefore the proof reduces to constructing a local supbarrier function of the equation

$$
c_{1} \Delta v+c_{2}|\nabla v|^{2}+\operatorname{tr} B=0
$$

Let's consider $w^{+}=\varphi+\theta \log \left(\left(d+\delta^{2} / \delta^{2}\right)\right)$ in M_{δ}; then

$$
\begin{aligned}
w_{i}^{+} & =\theta \frac{d_{i}}{d+\delta^{2}}+\varphi_{i} \\
w_{i j}^{+} & =-\theta \frac{d_{i} d_{j}}{\left(d+\delta^{2}\right)^{2}}+\theta \frac{d_{i j}}{d+\delta^{2}}+\varphi_{i j}
\end{aligned}
$$

We therefore have
$c_{1} \Delta w^{+}+c_{2}\left|\nabla w^{+}\right|^{2}+\operatorname{tr} B$

$$
\begin{aligned}
&=-\theta\left(c_{1}-c_{2} \theta\right) \frac{|\nabla d|^{2}}{\left(d+\delta^{2}\right)^{2}}+\left(c_{1} \Delta d+2 c_{2}\langle\nabla d, \nabla \varphi\rangle\right) \frac{\theta}{d+\delta^{2}} \\
&+c_{1}(\Delta \varphi)+c_{2}|\nabla \varphi|^{2}+\operatorname{tr} B
\end{aligned}
$$

Now we choose $\theta<c_{1} /\left(2 c_{2}\right)$. Then using $|\nabla d|^{2}>\frac{1}{2}$ in M_{δ}, we derive

$$
\begin{aligned}
c_{1} \Delta w^{+}+c_{2}\left|\nabla w^{+}\right|^{2}+\operatorname{tr} B & \leq-\frac{c_{1} \theta}{4\left(d+\delta^{2}\right)^{2}}+C^{\prime} \frac{\theta}{d+\delta^{2}}+C^{\prime \prime} \\
& \leq\left(-\frac{c_{1}}{4 \delta(1+\delta)}+C^{\prime}\right) \frac{\theta}{d+\delta^{2}}+C^{\prime \prime} \quad \text { in } M_{\delta}
\end{aligned}
$$

where C^{\prime} and $C^{\prime \prime}$ are two positive constants depending on

$$
|\varphi|_{C^{2}(\bar{M})}, \quad \lambda, \quad|a|_{L^{\infty}(\bar{M})}, \quad|b|_{L^{\infty}(\bar{M})}, \quad|B|_{g(\bar{M})}
$$

and the geometric quantities of (\bar{M}, g), independent of δ. Next we choose

$$
\delta<\min \left\{1, \frac{c_{1}}{8\left(C^{\prime}+1\right)}, \frac{\theta}{2 C^{\prime \prime}}\right\}
$$

then $c_{1} \Delta w^{+}+c_{2}\left|\nabla w^{+}\right|^{2}+\operatorname{tr} B<0$ in M_{δ}.
Note that

$$
\left\{\begin{array}{l}
\left.w^{+}\right|_{\partial M}=\varphi \\
\left.w^{+}\right|_{\{x \in M \mid d(x)=\delta\}} \geq \varphi+\theta \log (1 / \delta)
\end{array}\right.
$$

Without loss of generality, we can assume δ is small; then $|u|_{C^{0}}(\bar{M})<C_{0}$ and the maximum principle imply $u \leq w^{+}$in \bar{M}_{δ}. Consequently, for any $x_{0} \in \partial M$,

$$
\frac{u(x)-u\left(x_{0}\right)}{d\left(x, x_{0}\right)} \leq \frac{w^{+}(x)-w^{+}\left(x_{0}\right)}{d\left(x, x_{0}\right)}
$$

That is, $\left.\partial_{n} u\right|_{\partial M} \leq\left.\partial_{n} w^{+}\right|_{\partial M}$, and our lemma follows.
Combining Lemma 4.1, Lemma 4.4 and Lemma 4.5, we obtain this:
Proposition 4.6. Suppose $B \in \Gamma^{+}, \lambda a(x)+b(x)$ is nonnegative in M and $\partial_{z} h(x, z)$ is positive in $M \times \mathbb{R}$. Then for any $C^{3}(\bar{M})$ admissible solution u of (1-4), there is
a constant C_{1} depending only on

$$
C_{0}, \quad \lambda, \quad|\varphi|_{C^{2}(\bar{M})}, \quad|a|_{C^{1}(\bar{M})}, \quad|b|_{C^{1}(\bar{M})}, \quad \max _{M \times\left[-C_{0}, C_{0}\right]}|h|_{C^{1}}, \quad|B|_{C^{1}(\bar{M})}
$$ and the geometric quantities of (\bar{M}, g), such that $|\nabla u| \leq C_{1}$ on \bar{M}.

5. Estimates for the second derivative

As in Section 4, we begin by establishing the interior estimates.
Lemma 5.1. Let $B \in \Gamma^{+}$and $a(x)$ be positive on \bar{M}. Let $u \in C^{4}\left(B_{r}\right)$ be an admissible solution of (1-4) in a ball $B_{r} \subset M$; there is a constant C depending only on

$$
|a|_{C^{2}(M)}, \quad|b|_{C^{2}(M)}, \quad \max _{M \times\left[-C_{0}, C_{0}\right]}|h|_{C^{2}}, \quad|g|_{C^{2}(M)}, \quad|B|_{C^{2}(M)}, \quad \lambda, \quad|u|_{C^{1}\left(B_{r}\right)}
$$

such that $\sup _{B_{r / 2}}\left|\nabla^{2} u\right| \leq C$.
Proof. Since $\Gamma^{+} \subset \Gamma_{1}^{+}$, we obtain

$$
0<\operatorname{tr} W[u]=(n \lambda-1)(\Delta u)+(a(x)+n b(x))|\nabla u|^{2}+\operatorname{tr} B .
$$

Consequently $\Delta u \geq-C$. For obtaining the upper bound of Δu, we consider the auxiliary function

$$
G(x)=\zeta(x)\left(\Delta u+\Lambda a(x)|\nabla u|^{2}\right)
$$

for some large constant $\Lambda>1$, depending only on $|a|_{L^{\infty}},|b|_{L^{\infty}}$ and λ, to be chosen later; here $\zeta(x) \in C_{0}^{\infty}\left(B_{r}\right)$ is a cutoff function as in Lemma 4.1.

Suppose G achieves a maximum at an interior point $\tilde{x} \in M$. We take a normal coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ with respect to g such that $W[u]_{i j}(\tilde{x})$ is diagonal. Without loss of generality, we may assume $G(\tilde{x}) \geq 1$ and $\tilde{x} \in B_{r}$. Then, at \tilde{x}, we have

$$
0=G_{i}=\left(\Delta u+\Lambda a|\nabla u|^{2}\right) \zeta_{i}+\zeta\left(u_{l l i}+\Lambda a_{i}|\nabla u|^{2}+2 \Lambda a u_{l} u_{l i}\right)
$$

that is,

$$
\begin{equation*}
\zeta u_{l l i}=-\Lambda a_{i} \zeta|\nabla u|^{2}-2 \Lambda a \zeta u_{l} u_{l i}-\left(\Delta u+\Lambda a|\nabla u|^{2}\right) \zeta_{i} \tag{5-1}
\end{equation*}
$$

and

$$
\begin{align*}
0 \geq G_{i j}=\zeta\left(u_{l l i j}\right. & \left.+\Lambda a_{i j}|\nabla u|^{2}+2 \Lambda u_{l}\left(a_{i} u_{l j}+a_{j} u_{l i}\right)+2 \Lambda a\left(u_{l i} u_{l j}+u_{l} u_{l i j}\right)\right) \tag{5-2}\\
+ & \left(u_{l l i}+\Lambda a_{i}|\nabla u|^{2}+2 \Lambda a u_{l} u_{l i}\right) \zeta_{j} \\
& +\left(u_{l l j}+\Lambda a_{j}|\nabla u|^{2}+2 \Lambda a u_{l} u_{l j}\right) \zeta_{i}+\left(\Delta u+\Lambda a|\nabla u|^{2}\right) \zeta_{i j} .
\end{align*}
$$

Recall that $Q^{i j}=\lambda\left(\sum_{l} F^{l l}\right) \delta^{i j}-F^{i j}$. Since $F^{i j}$ is positive definite in Γ^{+}, one obtains $\lambda\left(\sum_{l} F^{l l}\right) \delta^{i j} \geq Q^{i j} \geq \varepsilon_{0}\left(\sum_{l} F^{l l}\right) \delta^{i j}>0$, where $\varepsilon_{0}=\lambda-1$. Notice that
the Ricci identity gives $u_{l i j}=u_{i j l}+O(|\nabla u|)$ and $u_{l l i j}=u_{i j l l}+O\left(\left|\nabla^{2} u\right|+|\nabla u|\right)$. Then (5-2) implies

$$
\begin{align*}
0 \geq & Q^{i j} G_{i j} \\
= & \zeta Q^{i j}\left(u_{l l i j}+\Lambda a_{i j}|\nabla u|^{2}+4 \Lambda u_{l} a_{i} u_{l j}+2 \Lambda a\left(u_{l i} u_{l j}+u_{l} u_{l i j}\right)\right) \\
& +2 Q^{i j}\left(u_{l l i}+\Lambda a_{i}|\nabla u|^{2}+2 \Lambda a u_{l} u_{l i}\right) \zeta_{j}+\left(\Delta u+\Lambda a|\nabla u|^{2}\right) Q^{i j} \zeta_{i j} \tag{5-3}\\
\geq & \zeta Q^{i j}\left(u_{i j l l}+2 \Lambda a\left(u_{l i} u_{l j}+u_{l} u_{i j l}\right)\right)+2 Q^{i j} u_{l l i} \zeta_{j} \\
& -C \Lambda\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|+1\right) .
\end{align*}
$$

Using $h_{l l}+2 h_{l z} u_{l}+h_{z} u_{l l}=F^{i j} W[u]_{i j ; l l}+F^{i j, r s} W[u]_{i j ; l} W[u]_{r s ; l}$ and the concavity of F, we obtain

$$
\begin{align*}
Q^{i j} u_{i j l l} \geq-2 a F^{i j}\left(u_{i l} u_{j l}\right. & \left.+u_{i} u_{j l l}\right)-2 b\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|^{2}+u_{k l l} u_{k}\right) \tag{5-4}\\
& -C\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|+1\right)+h_{l l}+2 h_{l z} u_{l}+h_{z} u_{l l}
\end{align*}
$$

On the other hand, (4-5) implies

$$
\begin{equation*}
2 \Lambda a u_{l} Q^{i j} u_{i j l} \geq-C \Lambda\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|+1\right)+2 \Lambda a h_{l} u_{l}+2 \Lambda a h_{z}|\nabla u|^{2} \tag{5-5}
\end{equation*}
$$

Plugging (5-4) and (5-5) into (5-3), and employing (5-1) we have

$$
\begin{aligned}
& 0 \geq 2 \Lambda a \zeta Q^{i j} u_{l i} u_{l j}-2 a \zeta F^{i j}\left(u_{i l} u_{j l}+u_{i} u_{j l l}\right)+2 Q^{i j} u_{l l i} \zeta_{j} \\
& -2 b \zeta\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|^{2}+u_{k l l} u_{k}\right) \\
& -C \Lambda\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|+1\right)-C \Lambda\left(\left|\nabla^{2} u\right|+1\right) \\
& \geq 2 \zeta(\Lambda a \lambda-b)\left(\sum_{l} F^{l l}\right)\left|\nabla^{2} u\right|^{2}-2 a \zeta(\Lambda+1) F^{i j} u_{i l} u_{j l} \\
& \quad-C \Lambda\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|+1\right)-C \Lambda\left(\left|\nabla^{2} u\right|+1\right) \\
& \geq 2 \zeta\left(\varepsilon_{0} a \Lambda-a-b\right)\left(\sum_{l} F^{l l}\right)\left|\nabla^{2} u\right|^{2} \\
& -C \Lambda\left(\sum_{l} F^{l l}\right)\left(\left|\nabla^{2} u\right|+1\right)-C \Lambda\left(\left|\nabla^{2} u\right|+1\right)
\end{aligned}
$$

Since a is positive on \bar{M}, we assume $a(x) \geq \varepsilon_{2}>0$. We now choose $\Lambda>$ $\max \left\{1,2\left(|a|_{L^{\infty}}+|b|_{L^{\infty}}\right) /\left(\varepsilon_{0} \varepsilon_{2}\right)\right\}$, and multiply ζ on both sides to produce

$$
\begin{equation*}
0 \geq \Lambda\left(\sum_{l} F^{l l}\right)\left(\varepsilon_{0} \varepsilon_{2} \zeta^{2}\left|\nabla^{2} u\right|^{2}-C \zeta\left|\nabla^{2} u\right|-C\right)-C \Lambda\left(\zeta\left|\nabla^{2} u\right|+1\right) \tag{5-6}
\end{equation*}
$$

It follows that $\left(\zeta\left|\nabla^{2} u\right|\right)(\tilde{x}) \leq C$. Therefore $\sup _{B_{r / 2}} \Delta u \leq C$.
If $\Gamma^{+} \subset \Gamma_{2}^{+}$, then $\sup _{B_{r / 2}} \Delta u \leq C$ implies that $\sup _{B_{r / 2}}\left|\nabla^{2} u\right| \leq C$. To get the Hessian bounds of u in general, we simply consider the maximum of

$$
\zeta(x) \max _{\xi \in\left(T_{x} M \cap S^{n}\right)}\left(\nabla_{\xi} \nabla_{\xi} u+\Lambda a(x)\left(\nabla_{\xi} u\right)^{2}\right) .
$$

The calculation is similar.

We next derive a priori bounds for second derivatives of solutions to (1-4). The method we use is similar to that of [Guan 2007; Guan 2008; Gursky et al. 2011]. The notation below is the same as in Section 4.

We use a barrier function

$$
v(x)=p\left(q d^{2}-d\right) \quad \text { in } M_{\delta},
$$

where p and q are positive constants. Let's define a linear operator

$$
\begin{equation*}
\mathscr{P}(\psi)=Q^{i j} \psi_{i j}+2 F^{i j}\left(a(x) u_{i} \psi_{j}+b(x)\langle\nabla u, \nabla \psi\rangle g_{i j}\right) \tag{5-7}
\end{equation*}
$$

Then

$$
\mathscr{P} d=Q^{i j} d_{i j}+2 F^{i j}\left(a u_{i} d_{j}+b\langle\nabla u, \nabla d\rangle g_{i j}\right)
$$

and consequently

$$
\mid \mathscr{P d} d \leq C_{\#} \sum_{l} F^{l l} \quad \text { in } M_{\delta},
$$

where $C_{\#}$ depends on $\lambda,|u|_{C^{1}(\bar{M})},|a|_{L^{\infty}(\bar{M})},|b|_{L^{\infty}(\bar{M})}$ and the geometric quantities of (\bar{M}, g). On the other hand, we have in M_{δ}

$$
\begin{aligned}
\mathscr{P} d^{2} & =2 Q^{i j}\left(d_{i} d_{j}\right)+2 d \mathscr{P} d \\
& \geq 2 \varepsilon_{0}\left(\sum_{l} F^{l l}\right)|\nabla d|^{2}-2 d C_{\#} \sum_{l} F^{l l} \\
& \geq\left(\varepsilon_{0}-2 C_{\#} \delta\right) \sum_{l} F^{l l},
\end{aligned}
$$

where $\varepsilon_{0}=\lambda-1$ as before. After we choose

$$
q>2\left(1+C_{\#}\right) / \varepsilon_{0} \quad \text { and } \quad \delta<\min \left\{\varepsilon_{0} /\left(4 C_{\#}\right), 1 /(2 q)\right\}
$$

the function v satisfies

$$
\begin{equation*}
\mathscr{P} v \geq p\left\{q\left(\varepsilon_{0}-2 C_{\#} \delta\right)-C_{\#}\right\} \sum_{l} F^{l l} \geq p \sum_{l} F^{l l} \tag{5-8}
\end{equation*}
$$

and

$$
\begin{equation*}
v \leq-\frac{1}{2} p d \quad \text { in } M_{\delta} \tag{5-9}
\end{equation*}
$$

Let x_{0} be an arbitrary point on ∂M. Let $r(x)=\operatorname{dist}_{g}\left(x, x_{0}\right)$ to denote the distance from x to x_{0} with respect to the background metric. Let $\Omega_{\delta}\left(x_{0}\right)=B_{\delta}\left(x_{0}\right) \cap M_{\delta}$, where $B_{\delta}\left(x_{0}\right)=\{x \in \bar{M} \mid r(x)<\delta\}$. Since δ is small, we assume r^{2} is smooth in $\Omega_{\delta}\left(x_{0}\right)$. A similar calculation implies

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{0} \sum_{l} F^{l l} \leq \mathscr{P} r^{2} \leq\left(2 \lambda+\frac{1}{2} \varepsilon_{0}\right) \sum_{l} F^{l l} \quad \text { in } \Omega_{\delta}\left(x_{0}\right) . \tag{5-10}
\end{equation*}
$$

Now we pick a local coordinates in M_{δ} so that ∂M is the plane $x_{n}=0$, and we let $\left\{e_{\gamma}, e_{n}\right\}_{\gamma=1}^{n-1}$ be the corresponding coordinate vector fields, where $e_{n}\left(x_{0}\right)$ denotes the interior normal vector and $e_{\gamma}\left(x_{0}\right)$ the tangential direction. Fix some γ and consider the locally defined function $\phi=e_{\gamma}(u-\varphi)$, where u is a $C^{3}(\bar{M})$ admissible solution
of (1-4). In order to derive the boundary estimates for second derivatives, we need the following lemma.

Lemma 5.2. In the notation above, there exists a constant C, depending only on $C_{0}, C_{1},|a|_{C^{1}(\bar{M})},|b|_{C^{1}(\bar{M})},|h|_{C^{1}\left(\bar{M} \times\left[-C_{0}, C_{0}\right]\right)}$ and $|\varphi|_{C^{3}\left(M_{\delta}\right)}$, such that

$$
|\mathscr{P} \phi| \leq C\left(1+\sum_{l} F^{l l}\right)
$$

Proof. Differentiating Equation (1-3) with respect to e_{γ} yields

$$
\begin{aligned}
& Q^{i j} u_{i j \gamma}+2 F^{i j}\left(a u_{i \gamma} u_{j}+b u_{l} u_{l \gamma} g_{i j}\right) \\
&=-F^{i j}\left(a_{\gamma} u_{i} u_{j}+b_{\gamma}|\nabla u|^{2} g_{i j}+B_{i j \gamma}\right)+h_{z} u_{\gamma}+h_{\gamma}
\end{aligned}
$$

Exchanging derivatives implies

$$
u_{i j \gamma}=u_{\gamma i j}+(R m * \nabla u)_{i j \gamma}
$$

Combining these calculations yields

$$
\begin{aligned}
\mathscr{P} \phi= & Q^{i j} u_{\gamma i j}+2 F^{i j}\left(a u_{i} u_{\gamma j}+b u_{k} u_{\gamma k} g_{i j}\right) \\
& -Q^{i j} \varphi_{\gamma i j}-2 F^{i j}\left(a u_{i} \varphi_{\gamma j}+b u_{k} \varphi_{\gamma k} g_{i j}\right) \\
=- & F^{i j}\left(a_{\gamma} u_{i} u_{j}+b_{\gamma}|\nabla u|^{2} g_{i j}+B_{i j \gamma}\right)+h_{z} u_{\gamma}+h_{\gamma} \\
& -Q^{i j} \varphi_{\gamma i j}-2 F^{i j}\left(a u_{i} \varphi_{\gamma j}+b u_{k} \varphi_{\gamma k} g_{i j}\right)-Q^{i j}(R m * \nabla u)_{i j \gamma}
\end{aligned}
$$

Therefore

$$
|\mathscr{P} \phi| \leq C\left(\sum_{l} F^{l l}\right)+C .
$$

We are now ready to prove the boundary estimates for second derivatives.
Lemma 5.3. Let $u \in C^{3}(\bar{M})$ be an admissible solution of (1-4). Then

$$
\left|\nabla^{2} u\right| \leq C \quad \text { on } \partial M
$$

where the constant $C>0$ depends on
$C_{0}, \quad C_{1}, \quad|a|_{C^{1}(\bar{M})}, \quad|b|_{C^{1}(\bar{M})}, \quad|h|_{C^{1}\left(\bar{M} \times\left[-C_{0}, C_{0}\right]\right)}, \quad|\varphi|_{C^{3}\left(M_{\delta}\right)}, \quad|B|_{C^{1}(\bar{M})}$
and the geometric quantities of (\bar{M}, g).
Proof. We require separate proofs for the different types $\nabla_{\gamma} \nabla_{\eta} u, \nabla_{\gamma} \nabla_{n} u$ and $\nabla_{n} \nabla_{n} u$ of boundary second derivatives.

Let x_{0} be an arbitrary point on ∂M. Using that $u-\varphi=0$ on ∂M, we obtain

$$
\nabla_{\gamma} \nabla_{\eta}(u-\varphi)\left(x_{0}\right)=-\nabla_{n}(u-\varphi) \Pi\left(e_{\gamma}, e_{\eta}\right)\left(x_{0}\right),
$$

where $1 \leq \gamma, \eta \leq n-1$ and Π denotes the second fundamental form of ∂M. We therefore have the estimates for the pure tangential second order derivatives.

Combining (5-8), (5-10) and Lemma 5.2, we have for any positive constant μ

$$
\mathscr{P}\left(\phi-v+\mu r^{2}\right) \leq\left(C-p+\mu\left(2 \lambda+\frac{1}{2} \varepsilon_{0}\right)\right) \sum_{l} F^{l l}+C .
$$

Picking μ large enough and $p>\mu^{2}$, we get

$$
\mathscr{P}\left(\phi-v+\mu r^{2}\right) \leq-\frac{1}{2} p F(e)+C<0 .
$$

Thus by the maximum principle, we conclude that the minimum of $\phi-v+\mu r^{2}$ occurs on the boundary of $\Omega_{\delta}\left(x_{0}\right)$. It remains to check these boundary values. There are two components of $\partial \Omega_{\delta}\left(x_{0}\right)$ to check. Firstly, since $\phi \equiv 0$ and $v \equiv 0$ on $\partial \Omega_{\delta}\left(x_{0}\right) \cap \partial M$, we get $\phi-v+\mu r^{2} \geq 0$ on $\partial \Omega_{\delta}\left(x_{0}\right) \cap \partial M$ and $\left(\phi-v+\mu r^{2}\right)\left(x_{0}\right)=0$. Since μ is large, (5-9) implies $\phi-v+\mu r^{2}>\phi+(p / 2) d+\mu r^{2}>0$ on $\partial \Omega_{\delta}\left(x_{0}\right) \backslash \partial M$. It follows that the normal derivative of $\phi-v+\mu r^{2}$ is nonnegative, and therefore we conclude

$$
\begin{aligned}
\nabla_{n} \nabla_{\gamma} u\left(x_{0}\right) & >\nabla_{n}\left(\nabla_{\gamma} \varphi+v-\mu r^{2}\right)\left(x_{0}\right) \\
& =\nabla_{n} \nabla_{\gamma} \varphi\left(x_{0}\right)-p>-C .
\end{aligned}
$$

However, using Lemma 5.2 again, it is clear that the same argument applies to $-\phi$, and one deduces the mixed second derivative estimates

$$
\left|\nabla_{n} \nabla_{\gamma} u\right|<C .
$$

Once we bound $\nabla_{\gamma} \nabla_{\eta} u$ and $\nabla_{\gamma} \nabla_{n} u$, to estimate the double normal second derivative $\nabla_{n} \nabla_{n} u$ we only need to bound Δu. Note that $W[u]_{i j} \in \Gamma_{1}^{+}$, that is,

$$
(n \lambda-1)(\Delta u)+(a(x)+n b(x))|\nabla u|^{2}+\operatorname{tr} B>0 .
$$

Consequently Δu is bounded from below and we have to establish an upper bound

$$
u_{n n} \leq C \quad \text { on } \partial M
$$

Without loss of generality, one can assume $u_{n n} \geq 0$ on ∂M (otherwise we are done). Orthogonally decompose the matrix W at $x_{0} \in \partial M$ in terms of e_{γ} and e_{n}. Using the known bounds, we find

$$
\begin{aligned}
W[u]_{i j}\left(x_{0}\right) & =\left(\lambda \Delta u g_{i j}-u_{i j}+a u_{i} u_{j}+b|\nabla u|^{2} g_{i j}+B_{i j}\right)\left(x_{0}\right) \\
& \geq\left(\begin{array}{cc}
\lambda u_{n n} I_{n-1} & 0 \\
0 & (\lambda-1) u_{n n}
\end{array}\right)\left(x_{0}\right)-C \delta_{i j} \\
& \geq\left(\varepsilon_{0} u_{n n}\left(x_{0}\right)-C\right) \delta_{i j},
\end{aligned}
$$

where C depends on $|u|_{C^{1}(\bar{M})},|a|_{C^{0}(\bar{M})},|b|_{C^{0}(\bar{M})},|B|_{C^{0}(\bar{M})},\left|\nabla_{\gamma} \nabla_{\eta} u\right|$ and $\left|\nabla_{\gamma} \nabla_{n} u\right|$. It is clear that

$$
\begin{aligned}
C & >\max _{M \times\left[-|u|_{C}^{0}(\bar{M}),|u|_{C^{0}(\bar{M})}\right.}|h| \\
& \geq F^{i j}\left(x_{0}\right) W[u]_{i j}\left(x_{0}\right) \\
& \geq\left(\varepsilon_{0} u_{n n}\left(x_{0}\right)-C\right) \sum_{l} F^{l l}\left(x_{0}\right) \\
& \geq\left(\varepsilon_{0} u_{n n}\left(x_{0}\right)-C\right) F(e) .
\end{aligned}
$$

Thus we obtain the upper bound as desired.
Combining Lemma 5.1 and Lemma 5.3, we have the global estimates for the second derivative.

Proposition 5.4. Suppose $B \in \Gamma^{+}$and $a(x)$ is positive on \bar{M}. Then for any $C^{4}(\bar{M})$ admissible solution u of (1-4), there is a constant C_{2} depending only on C_{0}, C_{1}, λ, $|a|_{C^{2}(\bar{M})},|b|_{C^{2}(\bar{M})},|h|_{C^{2}\left(M \times\left[-C_{0}, C_{0}\right]\right)},|\varphi|_{C^{3}(\bar{M})},|B|_{C^{2}(\bar{M})}$ and the geometric quantities of (\bar{M}, g) such that

$$
\left|\nabla^{2} u\right| \leq C_{2} \quad \text { on } \bar{M}
$$

6. Proof of Theorem 1.1

The proof of Theorem 1.1 is standard. We only sketch it here. For $t \in[0,1]$, we consider the equations
$\left(\star_{t}\right)$

$$
\left\{\begin{aligned}
F\left(\nabla_{\mathrm{conf}}^{2} u+B^{t}\right) & =h^{t}, \\
\left.u\right|_{\partial M} & =\varphi^{t},
\end{aligned}\right.
$$

where

$$
B^{t}=t B+\frac{1-t}{F(e)} g, \quad h^{t}=(1-t) e^{2 u}+t h(x, u), \quad \varphi^{t}=t \varphi
$$

For $t=0$, the admissible solution is $u \equiv 0$ on \bar{M}; for $t=1$, it is our desired Equation (1-4). It is direct to check that

- $B^{t} \in \Gamma^{+}$.
- $h^{t}>0$ on $\bar{M} \times \mathbb{R}, \partial_{z} h^{t}(x, z)>0$ on $\bar{M} \times \mathbb{R}, \lim _{z \rightarrow+\infty} h^{t}(x, z) \rightarrow+\infty$ and $\lim _{z \rightarrow-\infty} h^{t}(x, z) \rightarrow 0$ in $M \times \mathbb{R}$.
- There exists a uniform constant $C>0$, independent of $t \in[0,1]$, such that $\left|B^{t}\right|_{C^{2}(\bar{M})}<C,\left|h^{t}\right|_{C^{2}(\bar{M} \times[-C, C])}<C$ and $\left|\varphi^{t}\right|_{C^{3}(\bar{M})}<C$.
Applying our a priori estimates Proposition 3.1, 4.6 and 5.4 to $\left(\star_{t}\right)$ and noting that F is concave, we obtain, by Evans-Krylov estimates,

$$
\left|u_{t}\right|_{C^{2, \alpha}(\bar{M})} \leq C \quad \text { for all } t \in[0,1]
$$

Combining this with Corollary 2.2, we see by standard degree theory that $\left(\star_{t}\right)$ is solvable for $t=1$. Uniqueness follows by Lemma 4.3.

7. Proof of Theorem 1.4

To solve the Dirichlet problem for large boundary conditions, we need to control the behavior of the solution near the boundary. We can do this by constructing barrier functions for some suitable equation.

Recall that F is concave, then

$$
F(\kappa) \leq \omega \sum \kappa_{i} \quad \text { in } \Gamma^{+}
$$

for some uniform constant $\omega>0$. For any $C^{2}(\bar{M})$ admissible function u satisfying

$$
F(W[u])=f(x) e^{2 u} \quad \text { in } M,
$$

u is a subsolution of the equation

$$
\begin{equation*}
b_{1} \Delta u+b_{2}|\nabla u|^{2}+b_{3}=e^{2 u}, \tag{7-1}
\end{equation*}
$$

where

$$
b_{1}=\frac{\omega(n \lambda-1)}{\min _{\bar{M}} f}, \quad b_{2}=\frac{\omega\left(|a|_{L^{\infty}}+n|b|_{L \infty}\right)}{\min _{\bar{M}} f} \quad b_{3}=\frac{\omega|\operatorname{tr} B|_{L^{\infty}}}{\min _{\bar{M}} f} .
$$

Before constructing a local supsolution of (7-1), we give some notation. Take a point $y_{0} \in M_{\delta / 4}$ near the boundary ∂M. Suppose $x_{0} \in \partial M$ is the point that satisfies $d\left(y_{0}\right)=\operatorname{dist}_{g}\left(x_{0}, y_{0}\right)$. Consider a geodesic running from x_{0}, passing through y_{0}, and going out a small distance to a point z_{0} with $\operatorname{dist}_{g}\left(z_{0}, x_{0}\right)=\eta$. We use $r(x)$ to denote the distance from z_{0} to x with respect to the background metric g. We assume that δ and η are small enough that $r^{2}(x)=\left(\operatorname{dist}_{g}\left(x, z_{0}\right)\right)^{2}$ is smooth in the ball $B_{\eta}\left(z_{0}\right)$. We may choose normal coordinates $\left\{e_{k}\right\}$. Then we have

$$
\Delta r^{2}\left(z_{0}\right)=2 n
$$

We now assume

$$
1 \leq \Delta r^{2} \leq 3 n \quad \text { in } B_{\eta}\left(z_{0}\right)
$$

Consider the following auxiliary function defined in $B_{\eta}\left(z_{0}\right)$:

$$
\bar{w}(x)=-\log \left(\eta^{2}-r^{2}\right)+\theta \log \frac{\eta^{2}-r^{2}+\epsilon}{\epsilon}+\log 2+\frac{1}{2} \log \left(n b_{1}+b_{2}\right)+\log \eta
$$

where θ and ϵ are constants to be chosen later. It is easy to check that

$$
\bar{w}_{i}=\frac{2 r r_{i}}{\eta^{2}-r^{2}}-\theta \frac{2 r r_{i}}{\eta^{2}-r^{2}+\epsilon},
$$

and

$$
\bar{w}_{i j}=\frac{\nabla_{i j}^{2} r^{2}}{\eta^{2}-r^{2}}+\frac{4 r^{2} r_{i} r_{j}}{\left(\eta^{2}-r^{2}\right)^{2}}-\theta \frac{\nabla_{i j}^{2} r^{2}}{\eta^{2}-r^{2}+\epsilon}-\theta \frac{4 r^{2} r_{i} r_{j}}{\left(\eta^{2}-r^{2}+\epsilon\right)^{2}}
$$

Consequently, using $|\nabla r|=1$ and $1 \leq \Delta r^{2} \leq 3 n$ in $B_{\eta}\left(z_{0}\right)$, we derive

$$
\begin{aligned}
& b_{1} \Delta \bar{w}+b_{2}|\nabla \bar{w}|^{2}+b_{3} \\
& =b_{1} \frac{\Delta r^{2}}{\eta^{2}-r^{2}}+\frac{4\left(b_{1}+b_{2}\right) r^{2}}{\left(\eta^{2}-r^{2}\right)^{2}}-\frac{b_{1} \theta \Delta r^{2}}{\eta^{2}-r^{2}+\epsilon}-\frac{4\left(b_{1}-b_{2} \theta\right) \theta r^{2}}{\left(\eta^{2}-r^{2}+\epsilon\right)^{2}} \\
& \quad-\frac{8 b_{2} \theta r^{2}}{\left(\eta^{2}-r^{2}\right)\left(\eta^{2}-r^{2}+\epsilon\right)}+b_{3} \\
& \leq
\end{aligned} \begin{aligned}
& \quad \frac{3 n b_{1} \eta^{2}+\left(3 b_{1}+4 b_{2}\right) r^{2}}{\left(\eta^{2}-r^{2}\right)^{2}}-\frac{b_{1} \theta}{\eta^{2}-r^{2}+\epsilon}-\frac{4\left(b_{1}-b_{2} \theta\right) \theta r^{2}}{\left(\eta^{2}-r^{2}+\epsilon\right)^{2}}+b_{3}
\end{aligned}
$$

Now choosing $\theta<b_{1} /\left(2 b_{2}\right), \quad \eta<\sqrt{b_{1} \theta /\left(2 b_{3}\right)}, \quad \epsilon<\eta^{2}$, and using $r \leq \eta$, one obtains

$$
b_{1} \Delta \bar{w}+b_{2}|\nabla \bar{w}|^{2}+b_{3} \leq \frac{4\left(n b_{1}+b_{2}\right) \eta^{2}}{\left(\eta^{2}-r^{2}\right)^{2}} \leq e^{2 \bar{w}}
$$

Since $\left.\bar{w}\right|_{\partial B_{\eta}\left(z_{0}\right)}=+\infty$, maximum principle implies

$$
u \leq \bar{w} \quad \text { in } B_{\eta}\left(z_{0}\right)
$$

hence

$$
\begin{equation*}
u\left(y_{0}\right) \leq-\log d\left(y_{0}\right)+\theta \log \frac{2 \eta d\left(y_{0}\right)+\epsilon}{\epsilon}+\log 2+\frac{1}{2} \log \left(n b_{1}+b_{2}\right) \tag{7-2}
\end{equation*}
$$

Now we complete the proof as follows.
Proof of Theorem 2. We use the notation of Section 4. The argument here is similar to that in [Guan 2008]. Let's consider the locally defined auxiliary functions

$$
v_{m}^{\gamma}:=\gamma \log \frac{m \delta^{2}}{m d+\delta^{2}} \quad \text { in } M_{\delta}
$$

where γ is some small positive constant to be chosen later and $m=1,2,3, \ldots$ It is direct to check that

$$
\begin{align*}
\left.v_{m}^{\gamma}\right|_{\partial M} & =\gamma \log m \\
\gamma \log \frac{1}{2} \delta & \leq\left. v_{m}^{\gamma}\right|_{\{d(x)=\delta\}} \leq \gamma \log \delta \tag{7-3}
\end{align*}
$$

By a direct computation, we obtain

$$
\begin{aligned}
& W\left[v_{m}^{\gamma}\right]_{i j}= \frac{(\lambda+b \gamma) \gamma m^{2}}{\left(m d+\delta^{2}\right)^{2}}|\nabla d|^{2} g_{i j}+\frac{a \gamma^{2} m^{2}}{\left(m d+\delta^{2}\right)^{2}} d_{i} d_{j}-\frac{\gamma m^{2}}{\left(m d+\delta^{2}\right)^{2}} d_{i} d_{j} \\
&-\frac{\gamma m}{m d+\delta^{2}}\left(\lambda \Delta d g_{i j}-d_{i j}\right)+B_{i j} \\
& \geq \frac{\left(\varepsilon_{0}-\left(|a|_{L^{\infty}(\bar{M})}+|b|_{L^{\infty}(\bar{M})}\right) \gamma\right) \gamma m^{2}}{\left(m d+\delta^{2}\right)^{2}}|\nabla d|^{2} g_{i j} \\
&-\frac{\gamma m}{m d+\delta^{2}} C^{\prime} g_{i j}-C^{\prime \prime} g_{i j}
\end{aligned}
$$

where C^{\prime} and $C^{\prime \prime}$ are some large constants depending only on $\lambda,|B|_{g(\bar{M})}$ and the geometric quantities of (\bar{M}, g), independent of δ. Choosing

$$
\gamma \leq \frac{\varepsilon_{0}}{2\left(|a|_{L^{\infty}(\bar{M})}+|b|_{L^{\infty}(\bar{M})}\right)} \quad \text { and } \quad \delta \leq \min \left\{1, \frac{\varepsilon_{0}}{16 C^{\prime}}, \frac{\varepsilon_{0} \gamma}{64 C^{\prime \prime}}\right\}
$$

and observing that $|\nabla d|>1 / 2$ in M_{δ}, we derive

$$
\begin{aligned}
W\left[v_{m}^{\gamma}\right]_{i j} & \geq\left(\frac{\varepsilon_{0} m}{4\left(m d+\delta^{2}\right)}-C^{\prime}\right) \frac{\gamma m}{m d+\delta^{2}} g_{i j}-C^{\prime \prime} g_{i j} \\
& \geq \frac{\varepsilon_{0} \gamma m^{2}}{8\left(m d+\delta^{2}\right)^{2}} g_{i j}-C^{\prime \prime} g_{i j} \\
& \geq \frac{\varepsilon_{0} \gamma m^{2}}{16\left(m d+\delta^{2}\right)^{2}} g_{i j}
\end{aligned}
$$

Consequently, if $\gamma \leq \min \left\{1, \frac{1}{2} \varepsilon_{0} /\left(|a|_{L^{\infty}(\bar{M})}+|b|_{L^{\infty}(\bar{M})}\right)\right\}$ and δ is small enough, then

$$
\begin{align*}
F\left(W\left[v_{m}^{\gamma}\right]\right) & \geq \frac{\varepsilon_{0} \gamma m^{2}}{16\left(m d+\delta^{2}\right)^{2}} F(e) \\
& =\frac{\varepsilon_{0} \gamma F(e)}{16 \delta^{4}} \exp \left(2 v_{m}^{\gamma} / \gamma\right) \tag{7-4}\\
& \geq f(x) e^{2 v_{m}^{\gamma}}
\end{align*}
$$

in M_{δ}. For any integer $m \geq 1$, let $u_{m} \in C^{\infty}(\bar{M})$ be the admissible solution of the Dirichlet problem

$$
\left\{\begin{aligned}
& F(W[u])=f(x) e^{2 u} \text { in } M, \\
& u=\gamma \log m \\
& \text { on } \partial M,
\end{aligned}\right.
$$

where γ is the constant has been fixed. Then (7-3), (7-4) and Lemma 4.3 imply

$$
\begin{equation*}
u_{m} \geq v_{m}^{\gamma}=\gamma \log \frac{m \delta^{2}}{m d+\delta^{2}} \tag{7-5}
\end{equation*}
$$

Recalling (7-2), we obtain for any $m \geq 1$

$$
\begin{equation*}
u_{m} \leq-\log d+C \tag{7-6}
\end{equation*}
$$

Since $u_{m} \leq u_{m+1}$ for $m \geq 1$, and the u_{m} have the boundary control (7-5) and (7-6), the limit

$$
u(x):=\lim _{m \rightarrow \infty} u_{m}(x)
$$

exists for all $x \in M$ and satisfies

$$
-C-\gamma \log d \leq u(x) \leq-\log d+C
$$

near ∂M.
For any compact subset $K \subset M$, by the boundary control above and the a priori estimates of Proposition 3.1, Lemma 4.1 and Lemma 5.1, we obtain

$$
\left|u_{m}\right|_{C^{2, \alpha}(K)} \leq C,
$$

where $0<\alpha<1, C=C(K)$ is independent of m. Thus u is a solution of (1-5).

References

[Aubin 1976] T. Aubin, "Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire", J. Math. Pures Appl. (9) 55:3 (1976), 269-296. MR 55 \#4288 Zbl 0336.53033
[Aviles and McOwen 1988] P. Aviles and R. C. McOwen, "Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds", Duke Math. J. 56:2 (1988), 395-398. MR 89b:58224 Zbl 0645.53023
[Chang et al. 2002] S.-Y. A. Chang, M. J. Gursky, and P. C. Yang, "An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature", Ann. of Math. (2) 155:3 (2002), 709-787. MR 2003j:53048 Zbl 1031.53062
[Ge and Wang 2006] Y. Ge and G. Wang, "On a fully nonlinear Yamabe problem", Ann. Sci. École Norm. Sup. (4) 39:4 (2006), 569-598. MR 2007k:53040 Zbl 1121.53027
[Guan 2007] B. Guan, "Conformal metrics with prescribed curvature functions on manifolds with boundary", Amer. J. Math. 129:4 (2007), 915-942. MR 2008e:53053 Zbl 1130.53026
[Guan 2008] B. Guan, "Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary", Int. Math. Res. Not. 2008 (2008), Art. ID rnn 105. MR 2009m:53091 Zbl 1160.53018
[Guan and Wang 2003a] P. Guan and G. Wang, "A fully nonlinear conformal flow on locally conformally flat manifolds", J. Reine Angew. Math. 557 (2003), 219-238. MR 2004e:53101 Zbl 1033. 53058
[Guan and Wang 2003b] P. Guan and G. Wang, "Local estimates for a class of fully nonlinear equations arising from conformal geometry", Int. Math. Res. Not. 2003:26 (2003), 1413-1432. MR 2003m:53055 Zbl 1042.53021
[Gursky and Viaclovsky 2003] M. J. Gursky and J. A. Viaclovsky, "Fully nonlinear equations on Riemannian manifolds with negative curvature", Indiana Univ. Math. J. 52:2 (2003), 399-419. MR 2004a:53039 Zbl 1036.53025
[Gursky and Viaclovsky 2007] M. J. Gursky and J. A. Viaclovsky, "Prescribing symmetric functions of the eigenvalues of the Ricci tensor", Ann. of Math. (2) 166:2 (2007), 475-531. MR 2008k:53068 Zbl 1142.53027
[Gursky et al. 2011] M. Gursky, J. Streets, and M. Warren, "Existence of complete conformal metrics of negative Ricci curvature on manifolds with boundary.", Calc. Var. Partial Differ. Equ. 41:1-2 (2011), 21-43. Zbl 05884575
[Li and Li 2003] A. Li and Y. Li, "On some conformally invariant fully nonlinear equations", Comm. Pure Appl. Math. 56:10 (2003), 1416-1464. MR 2004e:35072 Zbl 1155.35353
[Li and Sheng 2005] J. Li and W. Sheng, "Deforming metrics with negative curvature by a fully nonlinear flow", Calc. Var. Partial Differential Equations 23:1 (2005), 33-50. MR 2005m:53121 Zbl 1069.53054
[Lohkamp 1994] J. Lohkamp, "Negative bending of open manifolds", J. Differential Geom. 40:3 (1994), 461-474. MR 96k:53061 Zbl 0840.53023
[Schnürer 2005] O. C. Schnürer, "Schouten tensor equations in conformal geometry with prescribed boundary metric", Electron. J. Differential Equations 2005 (2005), No. 81. MR 2006h:53027 Zbl 1074.53032
[Schoen 1984] R. Schoen, "Conformal deformation of a Riemannian metric to constant scalar curvature", J. Differential Geom. 20:2 (1984), 479-495. MR 86i:58137 Zbl 0576.53028
[Sheng and Zhang 2007] W. Sheng and Y. Zhang, "A class of fully nonlinear equations arising from conformal geometry", Math. Z. 255:1 (2007), 17-34. MR 2007k:53042 Zbl 1133.53036
[Sheng et al. 2007] W.-M. Sheng, N. S. Trudinger, and X.-J. Wang, "The Yamabe problem for higher order curvatures", J. Differential Geom. 77:3 (2007), 515-553. MR 2008i:53048 Zbl 1133.53035
[Trudinger 1968] N. S. Trudinger, "Remarks concerning the conformal deformation of Riemannian structures on compact manifolds", Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-274. MR 39 \#2093 Zbl 0159.23801
[Trudinger and Wang 2010] N. S. Trudinger and X.-J. Wang, "The intermediate case of the Yamabe problem for higher order curvatures", Int. Math. Res. Not. 2010:13 (2010), 2437-2458. MR 2011g: 53074 Zbl 1194.53033
[Viaclovsky 2000] J. A. Viaclovsky, "Conformal geometry, contact geometry, and the calculus of variations", Duke Math. J. 101:2 (2000), 283-316. MR 2001b:53038 Zbl 0990.53035

Received May 14, 2010. Revised February 23, 2011.

Qi-Rui Li
Department of Mathematics
Zhejiang University
HANGZHOU 310027
China
qirui-li@hotmail.com
\section*{Weimin Sheng}
Department of Mathematics
Zhejiang University
Hangzhou 310027
\section*{China}
weimins@zju.edu.cn

POLYCYCLIC QUASICONFORMAL MAPPING CLASS SUBGROUPS

Katsuhiko Matsuzaki

Abstract

For a subgroup of the quasiconformal mapping class group of a Riemann surface in general, we give an algebraic condition which guarantees its discreteness in the compact-open topology. Then we apply this result to its action on the Teichmüller space.

1. Introduction

We consider a Riemann surface R in general, not necessarily topologically finite, and a subgroup G consisting of quasiconformal mapping classes of R. Such a group usually appears as acting on the infinite dimensional Teichmüller space of R and in particular discreteness of its orbit is often discussed. In this case, the discreteness of G is understood through the action on the Teichmüller space. In this paper however, we first start from a more basic viewpoint on G as surface homeomorphisms and then look into its action on the Teichmüller space.

Throughout this introduction, we assume that a Riemann surface R has no ideal boundary at infinity ∂R for the sake of simplicity. The quasiconformal mapping class group $\operatorname{MCG}(R)$ of R is the group of all quasiconformal automorphisms g of R modulo homotopy equivalence. We introduce a topology for this group induced by the compact-open topology of homeomorphisms of R. Then a subgroup G of $\operatorname{MCG}(R)$ is defined to be discrete if it is discrete in this topology. Our main theorem refers to a certain algebraic condition under which G is always discrete. Here we say that a group G is polycyclic if G is solvable and if every subgroup of G is finitely generated.

Theorem 2.4. If a subgroup G of $\operatorname{MCG}(R)$ is polycyclic, then G is discrete.
This result is sharp in a sense that there is a counterexample for either a finitely generated solvable group or an infinitely generated abelian group.

MSC2000: primary 30F60; secondary 37F30.
Keywords: quasiconformal mapping class group, Teichmüller space, discrete, polycyclic.

In the first of the application of this theorem, we deal with stationary mapping class subgroups and consider their action on Teichmüller spaces. The quasiconformal mapping class group $\operatorname{MCG}(R)$ acts on the Teichmüller space $T(R)$ of a Riemann surface R biholomorphically and isometrically. A subgroup $G \subset \operatorname{MCG}(R)$ is called stationary if there exists a compact subsurface V of R such that every representative g of every mapping class $[g] \in G$ satisfies $g(V) \cap V \neq \varnothing$.

A basic nature of stationary subgroups in connection with their discreteness in the compact-open topology and discontinuity of the action on the Teichmüller space is that, if $G \subset \operatorname{MCG}(R)$ is stationary and discrete, then G acts discontinuously on $T(R)$. Then we have the following consequence from the main theorem. Recall that we assume $\partial R=\varnothing$ until the end of this section.

Corollary 4.2. If a polycyclic subgroup G of $\operatorname{MCG}(R)$ is stationary, then G acts discontinuously on $T(R)$.

We expect that this result should be valid for every finitely generated stationary subgroup $G \subset \operatorname{MCG}(R)$.

In the second application of Theorem 2.4, we deal with asymptotically conformal mapping class subgroups. We say that a quasiconformal homeomorphism of a Riemann surface R is asymptotically conformal if its complex dilatation vanishes at infinity of R. We say that a subgroup $G \subset \operatorname{MCG}(R)$ is asymptotically conformal if there exists some $p \in T(R)$ such that every element of G can be realized as an asymptotically conformal automorphism of the Riemann surface R_{p} corresponding to p. We denote by $\operatorname{MCG}_{p}(R)$ the subgroup of $\operatorname{MCG}(R)$ having this property for $p \in T(R)$.

Theorem 5.1. If an asymptotically conformal subgroup G of $\mathrm{MCG}_{p}(R)$ for $p \in$ $T(R)$ is polycyclic, then the orbit $G(p)$ is a discrete set in $T(R)$.

One may ask a question about how the algebraic assumption on G can be relaxed for this statement.

2. Discreteness of mapping class subgroups

We always assume that a Riemann surface R is hyperbolic, that is, R is represented by a Fuchsian group F acting on the unit disk \mathbb{D} and is endowed with the hyperbolic metric. The quasiconformal mapping class group $\operatorname{MCG}(R)$ for R is the group of all homotopy classes $[g]$ of quasiconformal automorphisms g of R. Here the homotopy is considered to be relative to the ideal boundary at infinity ∂R of R, where $\partial R=(\partial \mathbb{D}-\Lambda(F)) / F$ for the limit set $\Lambda(F)$ of F. This means that, when $\partial R \neq \varnothing$, two quasiconformal automorphisms g_{0} and g_{1} are regarded as homotopic if there is a homotopy $\Phi: R \times[0,1] \rightarrow R$ between $g_{0}=\Phi(\cdot, 0)$ and $g_{1}=\Phi(\cdot, 1)$ such that its extension to each $x \in \partial R$ is constant over [0, 1].

The compact-open topology on the space of all homeomorphic automorphisms of R induces a topology on $\operatorname{MCG}(R)$. More precisely, we say that a sequence of mapping classes $\left[g_{n}\right] \in \operatorname{MCG}(R)$ converges to a mapping class $[g] \in \operatorname{MCG}(R)$ in the compact-open topology if we can choose representatives $g_{n} \in\left[g_{n}\right]$ and $g \in[g]$ satisfying that g_{n} converges to g locally uniformly on R. When R has the ideal boundary at infinity ∂R, we further require that the extensions \bar{g}_{n} of the quasiconformal automorphisms g_{n} to ∂R converge to the extension \bar{g} of g in such a way that \bar{g}_{n} is identical with \bar{g} on a compact subset $W_{n} \subset \partial R$, where $\left\{W_{n}\right\}_{n=1}^{\infty}$ is some compact exhaustion of ∂R, that is, an increasing sequence of compact subsets of ∂R satisfying that the closure of the union of all W_{n} is ∂R. We call this topology on $\operatorname{MCG}(R)$ the compact-open topology relative to the boundary. If $\left[g_{n}\right]$ converges to [g] in the compact-open topology relative to the boundary, then there are quasisymmetric automorphisms \tilde{g}_{n} and \tilde{g} of the unit circle $\partial \mathbb{D}$ corresponding to $\left[g_{n}\right]$ and $[g]$ respectively such that the sequence \tilde{g}_{n} converges uniformly to \tilde{g}.

Definition. We say that a subgroup G of $\operatorname{MCG}(R)$ is discrete if it is a discrete set in $\mathrm{MCG}(R)$ with respect to the compact-open topology relative to the boundary. The discreteness is equivalent to the condition that, if a sequence of mapping classes $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty} \subset \operatorname{MCG}(R)$ converges to [id], then $\left[g_{n}\right]=[\mathrm{id}]$ for all sufficiently large n.

Concerning the discreteness of the full mapping class group $\operatorname{MCG}(R)$, we have a simple characterization.

Proposition 2.1. The quasiconformal mapping class group $\operatorname{MCG}(R)$ is discrete if and only if R is analytically finite, that is, R is a compact Riemann surface from which at most finitely many points are removed.

Proof. Assume that R is analytically finite. In this case, there are a finite number of simple closed geodesics $\left\{c_{i}\right\}_{i=1}^{k}$ such that, if $[g] \in \operatorname{MCG}(R)$ satisfies that $g\left(c_{i}\right)$ is freely homotopic to c_{i} for every i, then $[g]=[\mathrm{id}]$. If a sequence of mapping classes $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty}$ converges to [id], then $g_{n}\left(c_{i}\right)$ is freely homotopic to c_{i} for every i and for all sufficiently large n. This implies that $\operatorname{MCG}(R)$ is discrete.

Conversely, assume that R is not analytically finite. If R is topologically finite, that is, the fundamental group $\pi_{1}(R)$ of R is finitely generated, then R should have the ideal boundary at infinity and clearly $\operatorname{MCG}(R)$ is not discrete in this case. If R is not topologically finite, then there is an infinite sequence of simple closed geodesics $\left\{c_{n}\right\}_{n=1}^{\infty}$ diverging to the infinity of R, in other words, escaping from any compact subset of R. Let $\left[\tau_{n}\right]$ be the mapping class caused by the Dehn twist along c_{n}. Then $\left[\tau_{n}\right] \neq[\mathrm{id}]$ and $\left\{\left[\tau_{n}\right]\right\}_{n=1}^{\infty}$ converges to [id]. This implies that $\operatorname{MCG}(R)$ is not discrete.

We will consider the discreteness of countable subgroups of $\operatorname{MCG}(R)$. Note that $\operatorname{MCG}(R)$ is uncountable in many cases when R is analytically infinite [Matsuzaki

2005]. An uncountable subgroup G of $\operatorname{MCG}(R)$ is not discrete, as the following proposition asserts.
Proposition 2.2. Assume that R has no ideal boundary at infinity ∂R. If a subgroup $G \subset \operatorname{MCG}(R)$ is uncountable, then G is not discrete.
Proof. Let $\left\{c_{i}\right\}_{i=1}^{\infty}$ be the family of (free homotopy classes of) all simple closed geodesics on R. We first consider the images of c_{1} under G. Since G is uncountable whereas $\left\{c_{i}\right\}$ is countable, there are uncountably many elements of G that map c_{1} to simple closed curves freely homotopic to each other. Then, by composing the inverse of one of these elements, we have uncountably many elements of G that keep c_{1} in its free homotopy class. Next we consider the images of c_{2} under this uncountable subset of G and obtain uncountably many elements of G that keep c_{1} and c_{2} in their free homotopy classes. By continuing this process and then by taking the diagonal, we can choose a sequence $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty}$ of elements in G such that $g_{n}\left(c_{i}\right)$ is freely homotopic to c_{i} for all $i=1,2, \ldots, n$ and for each n. This implies that $\left\{\left[g_{n}\right]\right\}$ converges to [id].

In this section, we investigate an algebraic condition on a countable subgroup G of $\operatorname{MCG}(R)$ under which G is always discrete. Our fundamental result is the following. The proof will be given in the next section.
Theorem 2.3. If $G \subset \operatorname{MCG}(R)$ is a finitely generated abelian group, then G is discrete.

Note that both assumptions that G is finitely generated and that G is abelian are necessary for the above theorem as examples below show. However, we cannot have the converse statement to the theorem. In fact, for any countable group G, there exists a discrete subgroup of $\operatorname{MCG}(R)$ for some Riemann surface R that is isomorphic to G. Indeed, we can construct R so that its conformal automorphism group, which is always discrete unless $\pi_{1}(R)$ is abelian, contains such a subgroup.
Examples. (1) First we give an indiscrete $G \subset \operatorname{MCG}(R)$ that is abelian but not finitely generated. Let R be a Riemann surface with an infinite family of mutually disjoint simple closed geodesics $\left\{c_{n}\right\}_{n=1}^{\infty}$ and G a subgroup of $\operatorname{MCG}(R)$ generated by all the mapping classes $\left[\tau_{n}\right]$ caused by the Dehn twist along c_{n} for each integer $n \geq 1$. Since [τ_{n}] converges to [id], G is not discrete though G is abelian.
(2) Next we give an indiscrete $G \subset \operatorname{MCG}(R)$ that is finitely generated but not abelian. Assume that there are a simple closed geodesic c_{0} on R and a mapping class $[g] \in \operatorname{MCG}(R)$ such that the images $\left\{g^{n}\left(c_{0}\right)\right\}_{n \in \mathbb{Z}}$ of c_{0} under the iteration of a representative $g \in[g]$ are mutually disjoint. Define c_{n} to be the simple closed geodesic freely homotopic to $g^{n}\left(c_{0}\right)$ and $\left[\tau_{n}\right]$ to be the mapping classes caused by the Dehn twist along c_{n}. Let G be a subgroup of $\operatorname{MCG}(R)$ generated by two elements $[g]$ and $\left[\tau_{0}\right]$. Since $[g]^{n}\left[\tau_{0}\right]=\left[\tau_{n}\right][g]^{n}$ for every integer $n \in \mathbb{Z}$, we see that
G contains the subgroup G^{\prime} generated by all such $\left[\tau_{n}\right]$. Hence G is not discrete as Example (1) shows.

In the second example above, the group G is solvable since the commutator subgroup $[G, G]$ is contained in the abelian subgroup G^{\prime}. Although G itself is finitely generated, G^{\prime} is not, so G is not discrete. Hence we consider the following stronger condition than solvability which requires all its subgroups to be finitely generated.

Definition. We say that a group G is polycyclic if G is solvable and if every subgroup of G is finitely generated.

See [Wolf 1968] for other equivalent conditions for G to be polycyclic. This name comes from the fact that G is polycyclic if and only if G has a finite normal chain of subgroups $G=G_{0} \triangleright G_{1} \triangleright \cdots \triangleright G_{m}=\{1\}$ such that each quotient group $G_{i-1} / G_{i}(i=1, \ldots, m)$ is cyclic. We can say that G is polycyclic when G is obtained in finitely many simple steps from finitely generated abelian groups.

Theorem 2.4. If $G \subset \operatorname{MCG}(R)$ is a polycyclic group, then G is discrete.
This extension of Theorem 2.3 is obtained by an inductive argument which is easily seen from the following assertion.

Lemma 2.5. Assume that every subgroup of $G \subset \operatorname{MCG}(R)$ is finitely generated. If G is not discrete, then neither is the commutator subgroup $[G, G]$.

Proof. Since G is not discrete, there is a sequence $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty}$ in G that converges to [id] as $n \rightarrow \infty$. Then we see that for every $n_{0} \geq 1$, there exist $m, n \geq n_{0}$ such that [g_{m}] and $\left[g_{n}\right.$] do not commute. Indeed, if not, there is n_{0} such that [$\left.g_{m}\right]$ and $\left[g_{n}\right.$] commute for any $m, n \geq n_{0}$. Then a subgroup G^{\prime} of G generated by $\left\{\left[g_{n}\right]\right\}_{n \geq n_{0}}$ is abelian and G^{\prime} is not discrete. By assumption, G^{\prime} is finitely generated. However, this contradicts Theorem 2.3.

Fix some $n_{0} \geq 1$. We choose $m_{1}, n_{1} \geq n_{0}$ such that $\left[h_{1}\right]:=\left[\left[g_{m_{1}}\right],\left[g_{n_{1}}\right]\right]$ is not the identity [id]. Then we choose $m_{2}, n_{2} \geq \max \left\{m_{1}, n_{1}\right\}$ such that $\left[h_{2}\right]:=\left[\left[g_{m_{2}}\right],\left[g_{n_{2}}\right]\right]$ is not the identity. Inductively, for each $i \geq 1$, we choose $m_{i}, n_{i} \geq \max \left\{m_{i-1}, n_{i-1}\right\}$ such that $\left[h_{i}\right]:=\left[\left[g_{m_{i}}\right],\left[g_{n_{i}}\right]\right]$ is not the identity. Then every $\left[h_{i}\right]$ belongs to the commutator subgroup $[G, G]$ of G and $\left[h_{i}\right]$ converges to [id] as $i \rightarrow \infty$. This implies that $[G, G]$ is not discrete.

3. Restraint of mapping class groups

In this section, we will prove Theorem 2.3. The proof uses a certain property of mapping class groups, not necessarily satisfied for abstract groups in general. We first explain this situation by the following example.

Example. Let \mathfrak{S}_{∞} be the infinite symmetric group acting on a countable set $X=$ $\{1,2, \ldots\}$ as permutations. We consider an element $g=(1)(23)(456) \cdots$ of \mathfrak{S}_{∞} which gives a cyclic permutation on mutually disjoint subsets of n points in X where n runs over all positive integers. Then we see that $g^{n!}$ converges to id in the compact-open topology with respect to the discrete topology on X. In particular, the cyclic subgroup $\langle g\rangle$ is not discrete.

Let $X=\left\{c_{i}\right\}_{i=1}^{\infty}$ be the family of (free homotopy classes of) all simple closed geodesics on a Riemann surface R. The quasiconformal mapping class group $\operatorname{MCG}(R)$ acts faithfully on the countable set X by the correspondence of the free homotopy class $g(c)$ to $[g] \cdot c$ for any $[g] \in \operatorname{MCG}(R)$ and for any $c \in X$. In this way, we can represent $\operatorname{MCG}(R)$ as a subgroup of \mathfrak{S}_{∞}. As the above example shows, an arbitrary subgroup of \mathfrak{S}_{∞} cannot have the required property which we want to prove in Theorem 2.3. The nature in which $\operatorname{MCG}(R) \subset \mathfrak{S}_{\infty}$ originates from R gives a certain restriction on the action of $\operatorname{MCG}(R)$ and we must use this constraint in order to prove our theorem. The following lemma can be regarded as one of such properties of $\operatorname{MCG}(R)$.
Lemma 3.1. For every element $[g] \in \operatorname{MCG}(R)$ of infinite order, there exists either a compact subsurface V in R or a compact subset V^{\prime} in an arbitrarily given compact exhaustion of the ideal boundary at infinity ∂R such that either the restriction $\left.g^{n}\right|_{V}$ is homotopic to $\left.\mathrm{id}\right|_{V}$ on R or the extension \bar{g}^{n} is the identity on V^{\prime} for no positive integer $n \in \mathbb{N}$.
Proof. Suppose to the contrary that there is no such compact subsurface V in R nor compact subset V^{\prime} in the compact exhaustion of ∂R. Then, for any compact subsurface $V_{1} \subset R$, there is $n_{1} \in \mathbb{N}$ such that $\left.g^{n_{1}}\right|_{V_{1}}$ is homotopic to id $\left.\right|_{V_{1}}$ on R. Also, for any compact subset V_{1}^{\prime} in the compact exhaustion of ∂R, there is $n_{1}^{\prime} \in \mathbb{N}$ such that $\bar{g}^{n_{1}^{\prime}}$ is the identity on V^{\prime}. Set $h=g^{n_{1} n_{1}^{\prime}}$. Since h is not homotopic to the identity on R relative to ∂R, there is either some compact subsurface $V_{2} \subset R$ including V_{1} such that $\left.h\right|_{V_{2}}$ is not homotopic to $\left.\mathrm{id}\right|_{V_{2}}$ on R or some compact subset V_{2}^{\prime} in the compact exhaustion of ∂R including V_{1}^{\prime} such that \bar{h} is not the identity on V_{2}^{\prime}. We assume that the first case occurs. The argument for the second case is similar.

For that compact subsurface V_{2}, there is $n_{2} \in \mathbb{N}$ such that $\left.g^{n_{2}}\right|_{V_{2}}$ is homotopic to $\left.\mathrm{id}\right|_{V_{2}}$ on R. We may assume that n_{2} is a proper multiple of $n_{1} n_{1}^{\prime}$, that is, $n_{2}=k n_{1} n_{1}^{\prime}$ for some integer $k>1$. Then $\left.\left.h\right|_{V_{1}} \sim \mathrm{id}\right|_{V_{1}},\left.\left.h\right|_{V_{2}} \nsim \mathrm{id}\right|_{V_{2}}$ and $\left.\left.h^{k}\right|_{V_{2}} \sim \mathrm{id}\right|_{V_{2}}$, where \sim means that they are homotopic to each other on R. However, this is impossible, as we see in the following. Represent the Riemann surface R by a Fuchsian group F acting on the unit disk \mathbb{D} and take a subgroup F_{1} of F corresponding to the subsurface V_{1}. Choose a quasisymmetric automorphism \tilde{h} of $\partial \mathbb{D}$ corresponding to h so that \tilde{h} is the identity on the limit set $\Lambda\left(F_{1}\right) \subset \partial \mathbb{D}$ of F_{1}. Also, take a subgroup F_{2} of F corresponding to the subsurface V_{2} which contains F_{1}.

Then the quasisymmetric automorphism \tilde{h} is not the identity on the limit set $\Lambda\left(F_{2}\right)$ containing $\Lambda\left(F_{1}\right)$. This implies that there is a point $x \in \Lambda\left(F_{2}\right)-\Lambda\left(F_{1}\right)$ that is moved by \tilde{h}. Since the movement of x is towards one direction in some interval contained in $\partial \mathbb{D}-\Lambda\left(F_{1}\right)$, it cannot return to the original place under the iteration of \tilde{h}. Thus $\tilde{h}^{k}(x) \neq x$, which violates the condition that $\left.\left.h^{k}\right|_{V_{2}} \sim \mathrm{id}\right|_{V_{2}}$.

Although the following fact is not special for mapping class groups, the property of discreteness is shared with a subgroup of finite index as in usual arguments. We also use this fact in the proof of Theorem 2.3.
Proposition 3.2. Let G^{\prime} be a subgroup of $G \subset \operatorname{MCG}(R)$ of finite index. If G^{\prime} is discrete, then so is G.
Proof. If G is not discrete, there is a sequence of distinct elements [g_{n}] of G that converges to [id]. Since the index of G^{\prime} in G is finite, we may assume that the [g_{n}] are all in the same coset, say, $G^{\prime}[h]$ for some $[h] \in G$. Then $\left[g_{n}^{\prime}\right]=\left[g_{n}\right] \cdot[h]^{-1}$ belong to G^{\prime} and converge to $[h]^{-1}$. This contradicts the assumption that G^{\prime} is discrete.

Now we are ready to prove our fundamental result.
Proof of Theorem 2.3. By Proposition 3.2, we may assume that G is isomorphic to a free abelian group \mathbb{Z}^{m} of rank $m \geq 1$. We will prove the statement of the theorem by induction with respect to m. First, we show that the statement is valid when $m=1$. Assume that $G \cong \mathbb{Z}$ is not discrete, that is, there is a sequence of elements in G converging to [id]. When R has the ideal boundary at infinity ∂R, some compact exhaustion of ∂R is associated to this converging sequence. For a generator $[g] \in \operatorname{MCG}(R)$ of G, Lemma 3.1 gives either a compact subsurface V of R or a compact subset V^{\prime} in the exhaustion of ∂R as in its statement. However, since G is not discrete, there is some $n \in \mathbb{N}$ such that $\left.g^{n}\right|_{V}$ is homotopic to id $\left.\right|_{V}$ on R and the extension \bar{g}^{n} of g^{n} to ∂R is the identity on V^{\prime}. This contradicts the choice of V and V^{\prime}.

We assume that the statement is true for any subgroup of $\operatorname{MCG}(R)$ isomorphic to \mathbb{Z}^{j} for every integer j with $1 \leq j \leq m-1$. Let G be a subgroup of $\operatorname{MCG}(R)$ isomorphic to \mathbb{Z}^{m}; we prove that G is discrete. Suppose to the contrary that G is not discrete. Then we have a sequence $\left[g_{n}\right] \in G$ converging to [id] as well as a compact exhaustion of ∂R associated with this sequence. We will choose a subsequence of $\left[g_{n}\right]$ so that any m elements in the subsequence generates a subgroup isomorphic to \mathbb{Z}^{m}. To this end, first observe that all the elements $\left[g_{n}\right]$ in the convergent sequence cannot be contained in a finite union of subgroups of G that are isomorphic to \mathbb{Z}^{j} with $1 \leq j \leq m-1$, by the induction assumption. Then choose a subsequence $\left[g_{n(i)}\right]$ in the following way. The first $m-1$ entries $\left[g_{n(1)}\right], \ldots,\left[g_{n(m-1)}\right]$ are chosen so that they are linearly independent over \mathbb{Z}. Suppose that we have already chosen l entries $G_{l}=\left\{\left[g_{n(1)}\right], \ldots,\left[g_{n(l)}\right]\right\}$ for $l \geq m-1$.

Then take the $(l+1)$-st entry $\left[g_{n(l+1)}\right]$ so that any $m-1$ elements of G_{l} together with $\left[g_{n(l+1)}\right]$ are linearly independent over \mathbb{Z}, in other words, $\left[g_{n(l+1)}\right]$ belongs to no maximal proper subgroup ($\cong \mathbb{Z}^{m-1}$) of G containing $m-1$ elements of G_{l}. The reason why we can choose such $\left[g_{n(l+1)}\right]$ is that, if not, all $\left[g_{n}\right]$ must be contained in the union of the finite number of subgroups of G determined by any $m-1$ elements of G_{l}. By this construction, it is clear that any m elements in the subsequence $\left[g_{n(i)}\right]$ generate a subgroup isomorphic to \mathbb{Z}^{m}.

Fix an arbitrary nontrivial element $\left[g_{0}\right] \in G$. By Lemma 3.1, we take either a compact subsurface V of R such that $\left.\left.g_{0}^{n}\right|_{V} \nsim \mathrm{id}\right|_{V}$ or a compact subset V^{\prime} in the exhaustion of ∂R such that $\left.\bar{g}_{0}^{n}\right|_{V^{\prime}} \neq\left.\mathrm{id}\right|_{V^{\prime}}$ for all $n \in \mathbb{N}$. We only consider the first case. The second case is similar. Since we are assuming that $\left[g_{n(i)}\right]$ converges to [id], there is some i_{0} such that $\left.\left.g_{n(i)}\right|_{V} \sim \mathrm{id}\right|_{V}$ for every $i \geq i_{0}$. Take m arbitrary elements $\left[g_{n(i)}\right]$ with $i \geq i_{0}$ and rename them as $\left[g_{i}\right](i=1, \ldots, m)$. Since they generate a subgroup of G isomorphic to \mathbb{Z}^{m}, a linear combination of [g_{i}] $(i=$ $1, \ldots, m)$ over \mathbb{Z} yields some multiple of any element of G. This implies that $\left[g_{0}\right]^{n}$ for some $n \in \mathbb{N}$ is represented by $\left[g_{1}\right]^{k_{1}} \cdots\left[g_{m}\right]^{k_{m}}$ for some $k_{i} \in \mathbb{Z}$. However, this forces $\left.\left.g_{0}^{n}\right|_{V} \sim \mathrm{id}\right|_{V}$, which contradicts the choice of V.

4. Discontinuity of the action on the Teichmüller space

We apply our theorem to the action of mapping class subgroups on Teichmüller spaces. For a Riemann surface R, the Teichmüller space $T(R)$ is defined to be the set of all equivalence classes [f] of quasiconformal homeomorphisms f of R. Here we say that two quasiconformal homeomorphisms f_{1} and f_{2} of R are equivalent if there exists a conformal homeomorphism $h: f_{1}(R) \rightarrow f_{2}(R)$ such that $f_{2}^{-1} \circ h \circ f_{1}$ is homotopic to the identity on R, where the homotopy is considered to be relative to the ideal boundary at infinity ∂R. The Teichmüller distance between two points $\left[f_{1}\right]$ and $\left[f_{2}\right]$ in $T(R)$ is defined by $d_{T}\left(\left[f_{1}\right],\left[f_{2}\right]\right)=$ $(1 / 2) \log K(f)$, where f is an extremal quasiconformal homeomorphism in the sense that its maximal dilatation $K(f)$ is minimal in the homotopy class of $f_{2} \circ f_{1}^{-1}$. Then d_{T} is a complete distance on $T(R)$. The Teichmüller space $T(R)$ can be embedded in the complex Banach space of all bounded holomorphic quadratic differentials on R^{\prime}, where R^{\prime} is the complex conjugate of R. In this way, $T(R)$ is endowed with a complex structure. Consult [Lehto 1987; Nag 1988; Gardiner and Lakic 2000] for the theory of Teichmüller spaces.

Each element $[g] \in \operatorname{MCG}(R)$ acts on $T(R)$ from the left as $[g] \cdot[f]=\left[f \circ g^{-1}\right]$ for $[f] \in T(R)$. It is evident from the definition that $\operatorname{MCG}(R)$ acts on $T(R)$ isometrically with respect to the Teichmüller distance. It also acts biholomorphically on $T(R)$. Except for few cases where the dimension of $T(R)$ is lower, the action
of $\operatorname{MCG}(R)$ on $T(R)$ is faithful. Then $\operatorname{MCG}(R)$ can be represented in the group of all isometric biholomorphic automorphisms of $T(R)$.

We say that a subgroup $G \subset \mathrm{MCG}(R)$ acts at $p=[f] \in T(R)$ discontinuously if there exists a neighborhood U of p such that the number of the elements $[g] \in G$ satisfying $[g](U) \cap U \neq \varnothing$ is finite. We denote the orbit of p under G by $G(p)$ and the stabilizer subgroup of G at p by $\operatorname{Stab}_{G}(p)$. Then G acts discontinuously at p if and only if $G(p)$ is a discrete set and $\operatorname{Stab}_{G}(p)$ is a finite group. If G acts discontinuously at every point p in $T(R)$, then we say that G acts discontinuously on $T(R)$. When R is analytically finite, $\operatorname{MCG}(R)$ itself acts discontinuously on $T(R)$. However, for a Riemann surface in general, this is not always true. See [Fujikawa 2004] regarding the discontinuity of the action of mapping class groups on Teichmüller spaces.

We consider mapping class subgroups by imposing a stationary property on them in the following sense.

Definition. We call a subgroup G of $\operatorname{MCG}(R)$ stationary if there exists a compact subsurface V of R such that every representative g of every mapping class $[g] \in G$ satisfies $g(V) \cap V \neq \varnothing$.

The stationary property puts a certain normalization on a family of quasiconformal automorphisms of R. Under this condition, the discreteness of G in the compact-open topology affects the behavior of its orbit on the Teichmüller space.
Lemma 4.1. Let G be a stationary subgroup of $\operatorname{MCG}(R)$ for a Riemann surface R with $\partial R=\varnothing$. If G is discrete then the orbit $G(p)$ for any $p \in T(R)$ diverges to the infinity of $T(R)$, and in particular, G acts discontinuously on $T(R)$.
Proof. Compactness of a family of normalized quasiconformal homeomorphisms with uniformly bounded dilatations yields that if there is a sequence $\left[g_{n}\right]$ in a stationary subgroup G of $\operatorname{MCG}(R)$ such that $\left[g_{n}\right](p)$ is bounded in $T(R)$, then a subsequence of some representatives $g_{n} \in\left[g_{n}\right]$ converges to some quasiconformal automorphism of R locally uniformly. However, if G is discrete in the compactopen topology, then there is no such sequence. This implies that $\left[g_{n}\right](p)$ is bounded in $T(R)$ for no sequence $\left[g_{n}\right] \in G$, that is, the orbit $G(p)$ diverges to the infinity of $T(R)$.

Combining Theorem 2.4 and Lemma 4.1 immediately yields the following.
Corollary 4.2. Let G be a stationary subgroup of $\operatorname{MCG}(R)$ for a Riemann surface R with $\partial R=\varnothing$. If G is polycyclic, then G acts discontinuously on $T(R)$.

We expect that this corollary is valid for every finitely generated stationary subgroup G of $\operatorname{MCG}(R)$.
Conjecture. If a finitely generated subgroup $G \subset \operatorname{MCG}(R)$ is stationary, then G is discrete.

If R is analytically finite, then $\operatorname{MCG}(R)$ is finitely generated and stationary. In this case, $\operatorname{MCG}(R)$ is discrete and acts on $T(R)$ discontinuously. The above conjecture can be regarded as a generalization of this property for mapping class groups of analytically finite Riemann surfaces.

There is an example of an infinitely generated (countable) stationary subgroup G such that G does not act discontinuously on $T(R)$. This is obtained similarly to Example (1) in Section 2 but we must further assume that the lengths of the simple closed geodesics c_{n} in the example tend to zero as $n \rightarrow \infty$.

Remark. If we assume a bounded geometry condition on the hyperbolic metric on R, then we do not have to impose any algebraic condition on a stationary subgroup G for the discontinuity of its action on $T(R)$. This result was proved in [Fujikawa 2004; Fujikawa et al. 2004]. See also these papers for the definition of the bounded geometry condition, to which we add $\partial R=\varnothing$.

5. Discreteness of the orbit on a fiber over the asymptotic Teichmüller space

In this section, we impose a certain analytic condition on a subgroup of the quasiconformal mapping class group and show the discreteness of its orbit in the Teichmüller space. Our condition also generalizes certain properties of the mapping class group of an analytically finite Riemann surface.

A quasiconformal homeomorphism f of a Riemann surface R is called asymptotically conformal if, for every $\varepsilon>0$, there exists a compact subsurface V of R such that the maximal dilatation of f restricted to $R-V$ is less than $1+\varepsilon$. The asymptotic Teichmüller space $A T(R)$ of R is defined by replacing the words "conformal automorphisms" with "asymptotically conformal automorphisms" in the definition of the Teichmüller space $T(R)$. Since a conformal automorphism is asymptotically conformal, there is a projection $\alpha: T(R) \rightarrow A T(R)$. We denote the fiber of α containing $p \in T(R)$ by T_{p}, that is, $T_{p}=\alpha^{-1}(\alpha(p))$. Consult [Earle et al. 2000; 2002; 2004; Gardiner and Lakic 2000] for the theory of asymptotic Teichmüller spaces.

The quasiconformal mapping class group $\operatorname{MCG}(R)$ acts on $T(R)$ preserving the fiber structure of α. Hence it acts on $A T(R)$. We define $\operatorname{MCG}_{p}(R)$ to be the subgroup of $\operatorname{MCG}(R)$ consisting of all elements keeping the fiber T_{p} invariant. Every element of $\mathrm{MCG}_{p}(R)$ can be realized as an asymptotically conformal automorphism of the Riemann surface R_{p} corresponding to p. We say that a subgroup G of $\operatorname{MCG}(R)$ is asymptotically conformal if G is a subgroup of $\mathrm{MCG}_{p}(R)$ for some $p \in T(R)$. When R is analytically finite, $A T(R)$ consists of a single point and $\operatorname{MCG}_{p}(R)$ coincides with the full $\operatorname{MCG}(R)$ for every $p \in T(R)$.

We will show the following theorem concerning the discreteness of the orbit of an asymptotically conformal subgroup.

Theorem 5.1. For a Riemann surface R with $\partial R=\varnothing$, if an asymptotically conformal subgroup G of $\mathrm{MCG}_{p}(R)$ is polycyclic, then the orbit $G(p)$ is a discrete set in $T(R)$.

We first prove this theorem in the case that G is a finitely generated abelian group. Before the proof, we give the definition of an escaping sequence of mapping classes. A sequence $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty}$ of mapping classes in $\operatorname{MCG}(R)$ is stationary if there exists a compact subsurface V of R such that every representative g_{n} of each mapping class $\left[g_{n}\right]$ satisfies $g_{n}(V) \cap V \neq \varnothing$. If a subgroup G of $\operatorname{MCG}(R)$ is stationary in the previous sense, then every sequence in G is stationary in this sense. On the contrary, a sequence $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty}$ is called escaping if, for every compact subsurface V of R, there exists some representative g_{n} of each mapping class [g_{n}] such that $\left\{g_{n}(V)\right\}$ diverges to the infinity of R (that is, escapes from every compact subset of R) as $n \rightarrow \infty$. Remark that a sequence $\left\{\left[g_{n}\right]\right\} \subset \operatorname{MCG}(R)$ can be neither stationary nor escaping, but we can always choose a subsequence either stationary or escaping.

The following lemma is crucial for considering an escaping sequence in an asymptotically conformal mapping class group. The proof has been given in [Matsuzaki 2007; 2010, Theorem 5.6].

Lemma 5.2. Assume that the fundamental group $\pi_{1}(R)$ of R is noncyclic. Let G be an abelian subgroup of $\operatorname{MCG}_{p}(R)$ having an escaping sequence $\left[g_{n}\right]$ such that $\left[g_{n}\right](p) \rightarrow p$ as $n \rightarrow \infty$. Then $[g](p)=p$ for every $[g] \in G$.

Then the following inductive step gives the full statement of Theorem 5.1 as we have done in Section 2.
Lemma 5.3. Assume that $\partial R=\varnothing$ and every subgroup of $G \subset \operatorname{MCG}_{p}(R)$ is finitely generated. If the orbit $G(p)$ is not a discrete set, then neither is the orbit $G_{1}(p)$ of the commutator subgroup $G_{1}=[G, G]$.
Proof of Theorem 5.1. Let G be a finitely generated abelian subgroup of $\mathrm{MCG}_{p}(R)$. If G is stationary, then Corollary 4.2 gives that G acts discontinuously on $T(R)$, and in particular, the orbit $G(p)$ is a discrete set in $T(R)$. This is also true for a stationary sequence in G. If G contains an escaping sequence $\left\{\left[g_{n}\right]\right\}$ such that $\left[g_{n}\right](p) \rightarrow p$ as $n \rightarrow \infty$, then Lemma 5.2 implies that $G(p)=\{p\}$ is a discrete set. Hence, if G is a finitely generated abelian subgroup, then the statement of the theorem is valid. For the general case that G is polycyclic, we apply Lemma 5.3 to obtain the statement.

Proof of Lemma 5.3. If $G(p)$ is not a discrete set, then we find a sequence $\left\{\left[g_{n}\right]\right\}_{n=1}^{\infty} \subset G$ such that $\left[g_{n}\right](p) \neq p$ converges to p as $n \rightarrow \infty$. Then we can apply the same arguments as in the proof of Lemma 2.5. Namely, for every $n_{0} \geq 1$, there exist $m, n \geq n_{0}$ such that $\left[g_{m}\right]$ and $\left[g_{n}\right]$ do not commute. Indeed, if not,
there is n_{0} such that [g_{m}] and [g_{n}] commute for any $m, n \geq n_{0}$. Then the finitely generated subgroup G^{\prime} of G generated by $\left\{\left[g_{n}\right]\right\}_{n \geq n_{0}}$ is abelian and $G^{\prime}(p)$ is not a discrete set. However, this contradicts Theorem 5.1 in the finitely generated abelian case. Note that this case has been proved without Lemma 5.3.

Fix some $n_{0} \geq 1$. Choose $m_{1}, n_{1} \geq n_{0}$ such that $\left[h_{1}\right]:=\left[\left[g_{m_{1}}\right],\left[g_{n_{1}}\right]\right] \neq[\mathrm{id}]$. Then choose $m_{2}, n_{2} \geq \max \left\{m_{1}, n_{1}\right\}$ such that $\left[h_{2}\right]:=\left[\left[g_{m_{2}}\right],\left[g_{n_{2}}\right]\right] \neq[\mathrm{id}]$. Using induction, for each $i \geq 1$, choose $m_{i}, n_{i} \geq \max \left\{m_{i-1}, n_{i-1}\right\}$ such that $\left[h_{i}\right]:=$ $\left[\left[g_{m_{i}}\right],\left[g_{n_{i}}\right]\right] \neq[\mathrm{id}]$. Then every $\left[h_{i}\right]$ belongs to the commutator subgroup $[G, G]$ of G. Note that all $\left[h_{i}\right]$ are not necessarily distinct. We see that $\left[h_{i}\right](p) \rightarrow p$ as $i \rightarrow \infty$. Indeed,

$$
d\left(\left[h_{i}\right](p), p\right) \leq 2 d\left(\left[g_{m_{i}}\right](p), p\right)+2 d\left(\left[g_{n_{i}}\right](p), p\right) \rightarrow 0
$$

as $i \rightarrow \infty$. If $\left[h_{i}\right](p) \neq p$ for infinitely many i, then we are done by passing to a subsequence. Hence we have only to consider the case that all but finitely many [$\left.h_{i}\right] \neq[\mathrm{id}]$ belong to the stabilizer subgroup $H=\operatorname{Stab}_{G}(p)$ of G for p, and in particular the case that H is not trivial.

We may assume that p is the base point of the Teichmüller space $T(R)$. Then there is a conformal automorphism group of R identified with H. Let $\operatorname{Fix}(H)$ be the fixed point locus of H in $T(R)$, which can be identified with the Teichmüller space $T(R / H)$ of the orbifold R / H. If $\left[g_{n}\right](p)$ does not lie in $\operatorname{Fix}(H)$, then there is some $\left[e_{n}\right] \in H$ such that $\left[e_{n}\right]\left[g_{n}\right](p) \neq\left[g_{n}\right](p)$. Set $\left[h_{n}\right]=\left[e_{n}\right]^{-1}\left[g_{n}\right]^{-1}\left[e_{n}\right]\left[g_{n}\right]$ for such n, which belongs to $[G, G]$ and satisfies $\left[h_{n}\right](p) \neq p$. If there are infinitely many such n, we have $\left[h_{n}\right](p) \rightarrow p$, which is the desired consequence. Hence we have only to consider the case that $\left[g_{n}\right](p)$ lies in $\operatorname{Fix}(H)$ for all but finitely many n.

The condition $\left[g_{n}\right](p) \in \operatorname{Fix}(H)$ is equivalent to $\left[g_{n}\right]^{-1}[e]\left[g_{n}\right] \in H$ for every $[e] \in H$. This is satisfied if and only if the mapping class $\left[g_{n}\right] \in \operatorname{MCG}(R)$ descends to a mapping class $\left[\hat{g}_{n}\right]$ of R / H. Consider the subgroup of the mapping class group $\operatorname{MCG}(R / H)$ generated by all $\left\{\left[\hat{g}_{n}\right]\right\}_{n=1}^{\infty}$. Here $\left[\hat{g}_{n}\right]$ belongs to $\operatorname{MCG}_{p}(R / H)$ for $p \in T(R / H)=\operatorname{Fix}(H)$. In the case where H is a finite group, this is easily seen. In the case where H is an infinite group, the present situation is possible only when [g_{n}] belongs to H. Indeed, this follows from the fact that $T_{p} \cap \operatorname{Fix}(H)=\{p\}$ for the infinite group H [Matsuzaki 2010, Theorem 4.2]. However, since we are dealing with the elements $\left[g_{n}\right] \in G$ satisfying $\left[g_{n}\right](p) \neq p$, this is not the case. Hence, by the same reason as before, we can choose a sequence $\left\{\left[h_{i}\right]\right\}$ in $[G, G]$ such that $\left[h_{i}\right](p) \rightarrow p$ as $i \rightarrow \infty$ and in addition that none of $\left[h_{i}\right]$ belongs to $H=\operatorname{Stab}_{G}(p)$. This implies $\left[h_{i}\right](p) \neq p$ converges to p as $i \rightarrow \infty$, which completes the proof.

In the remark of the previous section, we mentioned that when R satisfies the bounded geometry condition, we do not have to impose any algebraic condition
on G. In particular, G is not necessarily finitely generated. The corresponding statement for the discreteness of the orbit of an asymptotically conformal mapping class subgroup will be the following.
Proposition 5.4. Assume that a Riemann surface R satisfies the bounded geometry condition. If a subgroup G of $\mathrm{MCG}_{p}(R)$ is solvable, then the orbit $G(p)$ is a discrete set in $T(R)$.

However, if $G \subset \operatorname{MCG}_{p}(R)$ is an infinitely generated (countable) group, for instance, then the orbit is not necessarily a discrete set. Our question asks for some algebraic conditions upon G that guarantee this discreteness.

References

[Earle et al. 2000] C. J. Earle, F. P. Gardiner, and N. Lakic, "Asymptotic Teichmüller space, I: The complex structure", pp. 17-38 in In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998), edited by I. Kra and B. Maskit, Contemp. Math. 256, Amer. Math. Soc., Providence, RI, 2000. MR 2001m:32029 Zbl 0973.30032
[Earle et al. 2002] C. J. Earle, V. Markovic, and D. Saric, "Barycentric extension and the Bers embedding for asymptotic Teichmüller space", pp. 87-105 in Complex manifolds and hyperbolic geometry (Guanajuato, 2001), edited by C. J. Earle et al., Contemp. Math. 311, Amer. Math. Soc., Providence, RI, 2002. MR 2003i:30072 Zbl 1020.30047
[Earle et al. 2004] C. J. Earle, F. P. Gardiner, and N. Lakic, "Asymptotic Teichmüller space, II: The metric structure", pp. 187-219 in In the tradition of Ahlfors and Bers, III (Storrs, CT, 2001), edited by W. Abikoff and A. Haas, Contemp. Math. 355, Amer. Math. Soc., Providence, RI, 2004. MR 2006g:30078 Zbl 1112.30034
[Fujikawa 2004] E. Fujikawa, "Modular groups acting on infinite dimensional Teichmüller spaces", pp. 239-253 in In the tradition of Ahlfors and Bers, III (Storrs, CT, 2001), edited by W. Abikoff and A. Haas, Contemp. Math. 355, Amer. Math. Soc., Providence, RI, 2004. MR 2006c:30052 Zbl 1072.30032
[Fujikawa et al. 2004] E. Fujikawa, H. Shiga, and M. Taniguchi, "On the action of the mapping class group for Riemann surfaces of infinite type", J. Math. Soc. Japan 56:4 (2004), 1069-1086. MR 2005e:30075 Zbl 1064.30047
[Gardiner and Lakic 2000] F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller theory, Math. Surveys and Monogr. 76, Amer. Math. Soc., Providence, RI, 2000. MR 2001d:32016 Zbl 0949. 30002
[Lehto 1987] O. Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Math. 109, Springer, New York, 1987. MR 88f:30073 Zbl 0606.30001
[Matsuzaki 2005] K. Matsuzaki, "A countable Teichmüller modular group", Trans. Amer. Math. Soc. 357:8 (2005), 3119-3131. MR 2006f:30052 Zbl 1136.30011
[Matsuzaki 2007] K. Matsuzaki, "A classification of the modular transformations of infinite dimensional Teichmüller spaces", pp. 167-177 in In the tradition of Ahlfors-Bers, IV (Ann Arbor, MI, 2005), edited by D. Canary et al., Contemp. Math. 432, Amer. Math. Soc., Providence, RI, 2007. MR 2009b:30094 Zbl 1170.30020
[Matsuzaki 2010] K. Matsuzaki, "Properties of asymptotically elliptic modular transformations of Teichmüller spaces", pp. 73-84 in Infinite dimensional Teichmüller space and moduli space, edited by E. Fujikawa, RIMS Kôkyûroku Bessatsu B17, Res. Inst. Math. Sci., Kyoto, 2010.
[Nag 1988] S. Nag, The complex analytic theory of Teichmüller spaces, Wiley-Interscience, New York, 1988. MR 89f:32040 Zbl 0667.30040
[Wolf 1968] J. A. Wolf, "Growth of finitely generated solvable groups and curvature of Riemanniann manifolds", J. Differential Geometry 2 (1968), 421-446. MR 40 \#1939 Zbl 0207.51803

Received May 30, 2010.

Katsuhiko Matsuzaki
Department of Mathematics, School of Education
Waseda University
1-6-1 Nishi-Waseda, Shinjuku
TOKYO 169-8050
JAPAN
matsuzak@waseda.jp

ON ZERO-DIVISOR GRAPHS OF BOOLEAN RINGS

Ali Mohammadian

Abstract

The zero-divisor graph of a ring R is the graph whose vertices consist of the nonzero zero-divisors of \boldsymbol{R} in which two distinct vertices a and b are adjacent if and only if either $a b=0$ or $b a=0$. In this paper, we investigate some properties of zero-divisor graphs of Boolean rings. Among other results, we prove that for any two rings R and S with $\Gamma(R) \simeq \Gamma(S)$, if R is Boolean and $|R|>4$, then $R \simeq S$.

1. Introduction

Throughout the paper, R denotes a ring, not necessarily with identity, and $\mathcal{D}(R)$ denotes the set of all zero-divisors of R. If X is either an element or a subset of R, then the left annihilator of X is $\operatorname{Ann}_{\ell}(X)=\{a \in R \mid a X=0\}$ and the right annihilator of X, denoted by $\operatorname{Ann}_{r}(X)$, is similarly defined. For any subset Y of R, we let $Y^{*}=Y \backslash\{0\}$. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a graph with the vertex set $\mathcal{D}(R)^{*}$ such that two vertices x and y are joined by an undirected edge if and only if $x \neq y$ and either $x y=0$ or $y x=0$. Notice that a ring R is a domain if and only if $\Gamma(R)$ is the null graph. For a commutative ring R with identity, the definition of a zero-divisor graph of R that was first introduced in [Beck 1988] coincides with the above definition of $\Gamma(R)$. The zero-divisor graph concept for noncommutative rings was first defined in [Redmond 2002]. The zero-divisor graphs offer a graphical representation of rings so that we may discover some new algebraic properties of rings that are hidden from the viewpoint of classical ring theorists. For an instance, using the notion of a zero-divisor graph, it has been proven in [Redmond 2004] that for any finite ring $R, \sum_{x \in R}\left|\operatorname{Ann}_{\ell}(x) \backslash \operatorname{Ann}_{r}(x)\right|$ is even. A simple proof of this result is given in [Akbari and Mohammadian 2007].

Let us recall some definitions regarding graph theory and ring theory. For a vertex v of a graph $G, \mathcal{N}(v)$ denotes the set of all vertices of G adjacent to v, and the degree of v is defined by $|\mathcal{N}(v)|$. A graph G is called a star if G contains at least two vertices and there exists a vertex that is joined to all other vertices

[^4]and G has no other edges. A path \mathcal{P} in a graph G is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k+1}$ in which every two consecutive vertices are adjacent. The number k is called the length of \mathcal{P}. For two vertices u and v in a graph G, the distance between u and v, denoted by $d(u, v)$, is the length of the shortest path between u and v, if such a path exists; otherwise, we define $d(u, v)=\infty$. The diameter of a graph G is defined by $\operatorname{diam} G=\sup \{d(u, v) \mid u$ and v are distinct vertices of $G\}$. In [Redmond 2002] it was shown that for any $\operatorname{ring} R$, $\operatorname{diam} \Gamma(R) \leqslant 3$. Furthermore, two graphs G_{1} and G_{2} are said to be isomorphic if there is a bijective map φ between the vertex set of G_{1} and the vertex set of G_{2} such that the adjacency relation is preserved. Finally, we recall that a ring is called reduced if it has no nonzero nilpotent elements. A ring whose elements are all idempotent is called Boolean. We denote by \mathbb{Z}_{n} the ring of integers modulo n and by \mathbb{F}_{q} the field with q elements.

In this article we study the zero-divisor graphs of Boolean rings. We show that for any reduced ring R that is not a domain, $\Gamma(R)$ is isomorphic to the zero-divisor graph of a nonreduced ring, provided that $\Gamma(R)$ is a star. As a consequence, we prove that Boolean rings with more than four elements are determined by their zero-divisor graphs.

2. The results

In [Akbari and Mohammadian 2006, Theorem 17], it is proven that for any finite ring R that is not a field, if $\Gamma(R)$ is isomorphic to the zero-divisor graph of a reduced ring S, then $R \simeq S$, unless $S \simeq \mathbb{Z}_{2} \times \mathbb{F}_{q}$, where either $q=2$ or $(q+1) / 2$ is a prime power. Since for any finite field $F, \Gamma\left(\mathbb{Z}_{2} \times F\right)$ is a star, the following theorem presents an analogue of this result for the general case.
Remark 1. Let $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ and $\left\{\mathcal{B}_{j}\right\}_{j \in J}$ be two families of commutative domains with identity, where $|I| \geqslant 2$. In [Anderson et al. 2003, Theorem 2.1], it is shown that $\Gamma\left(\prod_{i \in I} \mathcal{A}_{i}\right) \simeq \Gamma\left(\prod_{j \in J} \mathcal{B}_{j}\right)$ if and only if there is a bijective map $\pi: I \rightarrow J$ such that $\left|\mathcal{A}_{i}\right|=\left|\mathcal{B}_{\pi(i)}\right|$ for all $i \in I$. Hence there are many examples of nonisomorphic pairs of infinite reduced commutative rings whose zero-divisor graphs are isomorphic.

Theorem 2. Let S be a reduced ring such that S is not a domain and $\Gamma(S)$ is not a star. If R is a ring such that $\Gamma(R) \simeq \Gamma(S)$, then R is also a reduced ring.
Proof. We recall a well-known fact about reduced rings: for all elements x and y of a reduced ring $T, x y=0$ if and only if $y x=0$. For this, note that if $x y=0$ for some elements $x, y \in T$, then $(y x)^{2}=0$ and since T is reduced, we find that $y x=0$. This fact implies that if two vertices u and v of $\Gamma(S)$ are adjacent, then $u v=v u=0$. We use this property frequently in what follows. We also state two properties of $\Gamma(S)$:
(i) For every two adjacent vertices u and v of $\Gamma(S)$ with at least one common neighbor, $u+v$ is a vertex of $\Gamma(S)$ and $\mathcal{N}(u+v)=\mathcal{N}(u) \cap \mathcal{N}(v)$. For this, note that if $x \in \mathcal{N}(u) \cap \mathcal{N}(v)$, then $x u=x v=0$, and hence $x(u+v)=0$. Also, $u+v \neq 0$ since $u v=0$ and S is reduced. Therefore, $x \in \mathcal{N}(u+v)$. Conversely, if $x \in \mathcal{N}(u+v)$, then $(x u) u=x(u+v) u=0$ and thus $u(x u)=0$. Therefore $(x u)^{2}=0$ and so $x u=0$. This means that $x \in \mathcal{N}(u)$ and with a similar argument, we find that $x \in \mathcal{N}(v)$, as required.
(ii) For every three mutually adjacent vertices u, v and w of $\Gamma(S)$, we have $\mathcal{N}(u) \nsubseteq$ $\mathcal{N}(v) \cup \mathcal{N}(w)$. Indeed, it easily seen that $v+w \in \mathcal{N}(u) \backslash(\mathcal{N}(v) \cup \mathcal{N}(w))$.

Suppose that R is a ring with $\Gamma(R) \simeq \Gamma(S)$. So properties (i) and (ii) also hold for $\Gamma(R)$. To the contrary, assume that $a^{2}=0$ for some element $a \in R^{*}$.

Since S is reduced, [Akbari and Mohammadian 2006, Corollary 4] yields that $\Gamma(R)$ has at least two vertices. Note that a is not adjacent to all other vertices of $\Gamma(R)$. To prove this, suppose otherwise. Since $\Gamma(R)$ is not a star, there exist two adjacent vertices $x, y \in \mathcal{N}(a)$. So $\mathcal{N}(x) \subseteq \mathcal{N}(a) \cup \mathcal{N}(y)$, which contradicts (ii). Moreover, we have $|\mathcal{N}(a)| \geqslant 2$. For this, suppose otherwise. Since $\Gamma(R)$ is a connected graph [Redmond 2002] with at least two vertices, we may assume that $\mathcal{N}(a)=\{b\}$ for some vertex b of $\Gamma(R)$. From $a+b \in \operatorname{Ann}_{\ell}(a) \cup \operatorname{Ann}_{r}(a)$, we conclude that $a+b=0$. Hence $b=-a$ and therefore $\Gamma(R)$ is a star on two vertices, a contradiction.

We claim that either $R a=\{0, a\}$ or $a R=\{0, a\}$. Suppose that there exist two elements $b \in R a \backslash\{0, a\}$ and $c \in a R \backslash\{0, a\}$. If $b \neq c$, then a, b and c are three mutually adjacent vertices and $\mathcal{N}(a) \subseteq \mathcal{N}(b) \cup \mathcal{N}(c)$, which contradicts (ii). Hence $b=c$. For some vertex $d \in \mathcal{N}(a) \backslash\{b\}$, the vertices a, b and d are mutually adjacent and $\mathcal{N}(a) \subseteq \mathcal{N}(b) \cup \mathcal{N}(d)$, which again contradicts (ii). Since $R a \neq\{0\}$ and $a R \neq\{0\}$, the claim is proved.

We assume that $R a=a R=\{0, a\}$. For any two vertices $x, y \notin \mathcal{N}(a)$, we have $x a=y a=a$. Thus $(x y) a=a$ and so $x y \neq 0$. This means that every edge of $\Gamma(R)$ has at least one endpoint in $\mathcal{N}(a)$. Working towards a contradiction, assume that no two vertices in $\mathcal{N}(a)$ are adjacent. This means that $\Gamma(R)$, and so $\Gamma(S)$ is a bipartite graph, and using [Akbari et al. 2003, Theorem 2.4], $\Gamma(S)$ and thus $\Gamma(R)$ is a complete bipartite graph. Let $r \notin \mathcal{N}(a)$ and $s \in \mathcal{N}(a) \cap \mathcal{N}(r)$. Since $\Gamma(R)$ is a complete bipartite graph and $a+s \in \mathcal{N}(a), r$ is adjacent to $a+s$. Therefore $a=r(a+s) r=0$, a contradiction. Hence there are two adjacent vertices $b, c \in \mathcal{N}(a)$. We now consider the two following cases.

Case I. Suppose that a together with one of the elements b, c are contained in one of the one-sided annihilators of the third element. Without loss of generality, assume that $\{a, c\} \in \operatorname{Ann}_{\ell}(b)$. By (i), there exists a vertex d in $\Gamma(R)$ such that $d \notin\{a, b\}$ and $\mathcal{N}(d)=\mathcal{N}(a) \cap \mathcal{N}(b)$. If $b \neq a+c$, then $a+c \in \mathcal{N}(a) \cap \mathcal{N}(b)$, and
hence $a=d(a+c) d=0$, a contradiction. Thus $b=a+c$, and it follows from $a b=0$ that $a c=0$. Moreover, if $c a \neq 0$, then $a=c a=c b-c^{2}=-c^{2}$, which contradicts $d \in \mathcal{N}(c) \backslash \mathcal{N}(a)$. Therefore $c a=0$ and so $c^{2}=c b-c a=0$. Since $b=a+c$, we find that the product of any two elements of $\{a, b, c\}$ is zero.

Suppose towards a contradiction that there is a vertex $r \in(\mathcal{N}(b) \cap \mathcal{N}(c)) \backslash\{a\}$. We have $\mathrm{rar}=r(b-c) r=0$ and by $R a=a R=\{0, a\}$, we deduce that $r \in \mathcal{N}(a)$. By (i), there exists a vertex s in $\Gamma(R)$ such that $\mathcal{N}(s)=\mathcal{N}(a) \cap \mathcal{N}(r)$. This implies that sas $=s(b-c) s=0$, since $\{b, c\} \subseteq \mathcal{N}(a) \cap \mathcal{N}(r)$. On the other hand, $s \notin \mathcal{N}(a)$ and $R a=a R=\{0, a\}$ yields that $s a s=a$, a contradiction. This establishes that $\mathcal{N}(b) \cap \mathcal{N}(c)=\{a\}$.

For convenience and without loss of generality, assume that $c d=0$. From $\{b, c\} \subseteq \operatorname{Ann}_{r}(c), d \notin \mathcal{N}(a) \cup \mathcal{N}(b)$ and $\mathcal{N}(b) \cap \mathcal{N}(c)=\{a\}$, we have $R c=\{0, c\}$. Therefore $\left[R: \operatorname{Ann}_{\ell}(a) \cap \operatorname{Ann}_{\ell}(c)\right] \leqslant\left[R: \operatorname{Ann}_{\ell}(a)\right]\left[R: \operatorname{Ann}_{\ell}(c)\right]=|R a||R c|=4$. Since $\mathcal{N}(b) \cap \mathcal{N}(c)=\{a\}$ and the product of any two elements of $\{a, b, c\}$ is zero, we find that $\mathrm{Ann}_{\ell}(a) \cap \mathrm{Ann}_{\ell}(c)=\{0, a, b, c\}$. This yields that $|R| \leqslant 16$. Using (i), let e be a vertex of $\Gamma(R)$ in which $\mathcal{N}(e)=\mathcal{N}(a) \cap \mathcal{N}(c)$. It is not hard to see that

$$
R=\{0, a, b, c\} \cup(d+\{0, a, b, c\}) \cup(e+\{0, a, b, c\}) \cup(d+e+\{0, a, b, c\})
$$

Therefore $\operatorname{Ann}_{\ell}(a)=\operatorname{Ann}_{r}(a)=\{0, a, b, c\} \cup(d+e+\{0, a, b, c\})$. Because $e \notin$ $\mathcal{N}(a) \cup \mathcal{N}(c), R a=\{0, a\}$ and $R c=\{0, c\}$, we conclude that $e a=a$ and $e c=c$. Therefore $e b=b$ and by $b \in \mathcal{N}(a) \cap \mathcal{N}(c)$, we obtain that $b e=0$. Furthermore, $e \notin \mathcal{N}(a) \cup \mathcal{N}(c)$ and $\mathcal{N}(b) \cap \mathcal{N}(c)=\{a\}$ yield that $R b=\{0, b\}$. It follows from $d \notin \mathcal{N}(b)$ that $d+e \in \mathrm{Ann}_{\ell}(b)$, and so $\mathcal{N}(a) \subseteq \mathcal{N}(b) \cup \mathcal{N}(c)$, which contradicts (ii).

Case II. When Case I does not occur, by replacing b with c if necessary, we may assume that $a b=b c=c a=0$ and none of $b a, c b$ and $a c$ is zero. We have $\{a, b\} \in \mathrm{Ann}_{\ell}(c b)$, and so, applying the argument in the first paragraph of Case I for $c b$ and b instead of b and c, respectively, we obtain in particular that $b a=0$, which is a contradiction.

Next, with no loss of generality, assume that $a R=\{0, a\}$ and there exists an element $g \in R a \backslash\{0, a\}$. Since $a R=\{0, a\},-a=a$ and so $-g=g$. Also, from $g \in R a$ and $a R=\{0, a\}$, we easily obtain that $a g=g a=0$. By (i), there exists a vertex h in $\Gamma(R)$ such that $\mathcal{N}(h)=\mathcal{N}(a) \cap \mathcal{N}(g)$. We claim that $\operatorname{Ann}_{r}(a) \subseteq$ $\operatorname{Ann}_{r}(h) \cup\{0, a, g, a+g\}$. Suppose $x \in \operatorname{Ann}_{r}(a) \backslash\left(\operatorname{Ann}_{r}(h) \cup\{a, g\}\right)$. Since $g \in R a$ and $\mathcal{N}(h)=\mathcal{N}(a) \cap \mathcal{N}(g)$, we conclude that $x \in \operatorname{Ann}_{\ell}(h)$. Moreover, $h \notin \mathcal{N}(a)$ and $a R=\{0, a\}$, so $a h=a$. We have $a+g \in \mathcal{N}(a) \cap \mathcal{N}(g)$ and $(a+g) h=a+g$, and hence $h(a+g)=0$. These equalities yield that $h(a+g+x)=h x \neq 0$ and $(a+g+x) h=a+g \neq 0$. On the other hand, $a(a+g+x)=0$, so it follows from $g \in R a$ and $\mathcal{N}(h)=\mathcal{N}(a) \cap \mathcal{N}(g)$ that $a+g+x=0$. Therefore, $x=a+g$, and the claim is proved. Since $\operatorname{Ann}_{r}(a), \operatorname{Ann}_{r}(h)$ and $\{0, a, g, a+g\}$
are three additive subgroups of R in which $\operatorname{Ann}_{r}(a) \subseteq \operatorname{Ann}_{r}(h) \cup\{0, a, g, a+g\}$ and $a \in \operatorname{Ann}_{r}(a) \backslash \operatorname{Ann}_{r}(h)$, we deduce that $\operatorname{Ann}_{r}(a)=\{0, a, g, a+g\}$. Applying (ii), there exists a vertex $y \in \mathcal{N}(a) \backslash(\mathcal{N}(g) \cup \mathcal{N}(a+g))$. We have $y a=0$ and $a y \neq 0$. By $\left[R: \operatorname{Ann}_{r}(a)\right]=|a R|$, we conclude that $R=\operatorname{Ann}_{r}(a) \cup y+\operatorname{Ann}_{r}(a)$. It follows from $\operatorname{Ann}_{r}(a)=\{0, a, g, a+g\}$ that $R a=\{0\}$, a contradiction. Now the proof is complete.
Example 3. The condition on $\Gamma(S)$ in Theorem 2 is necessary. For examples involving infinite rings, let \mathscr{S} be an arbitrary infinite domain, \mathscr{R} be the polynomial ring in the set of variables $\{\mathrm{x}\} \cup\left\{\mathrm{x}_{\alpha} \mid \alpha \in \mathscr{\mathscr { G }}\right\}$ with coefficients in \mathbb{Z}_{2}, and \mathscr{I} be the ideal of \mathscr{R} generated by $\left\{\mathrm{x}^{2}\right\} \cup\left\{\mathrm{xx}_{\alpha}-\mathrm{x} \mid \alpha \in \mathscr{Y}\right\} \cup\left\{\mathrm{x}_{\alpha} \mathrm{x}-\mathrm{x} \mid \alpha \in \mathscr{Y}\right\}$. It is easy to verify that $\Gamma(\mathscr{R} / \mathscr{I})$ is a star on $|\mathscr{Y}|$ vertices and $\mathrm{x}+\mathscr{\mathscr { I }}$ is that vertex which is adjacent to all other vertices of the graph. Therefore $\Gamma(\mathscr{R} / \mathscr{F}) \simeq \Gamma\left(\mathbb{Z}_{2} \times \mathscr{Y}\right)$, while $\mathscr{R} / \mathscr{I}$ is not reduced.
Remark 4. It is easy to establish that every reduced ring whose zero-divisor graph is a star is isomorphic to the direct product of \mathbb{Z}_{2} and a domain. For this, let R be a reduced ring with $\Gamma(R)$ a star and let e be that vertex which is adjacent to all other vertices of $\Gamma(R)$. Obviously, e is idempotent, and using the fact that all idempotent elements of a reduced ring are central, we may write $R \simeq e R \times(1-e) R$. Since $\Gamma(R)$ is a star, we clearly conclude that $e R=\{0, e\}$ and $(1-e) R$ is a domain, as required. From this, Theorem 2, Example 3, and [Akbari and Mohammadian 2006, Theorem 17], we imply that for every reduced ring R that is not a domain, $\Gamma(R)$ is isomorphic to the zero-divisor graph of a nonreduced ring if and only if $\Gamma(R)$ is either an infinite star or a star with q vertices, where either $q=2$ or both q and $(q+1) / 2$ are prime powers.

In [LaGrange 2007, Theorem 4.1], it is shown that if R and S are two commutative rings with identity such that S is a Boolean ring with more than four elements and $\Gamma(R) \simeq \Gamma(S)$, then $R \simeq S$. In what follows, we generalize this result to every arbitrary ring R. We need the following easy lemmas.
Lemma 5. Let R be a ring such that all elements in $\mathcal{D}(R)$ are idempotent. Then R is either a domain or a Boolean ring.
Proof. Suppose that R is not a domain. By the hypotheses, R is reduced. Using the fact that all idempotent elements of a reduced ring are central, $\mathcal{D}(R)$ is contained in the center of R. Therefore, for every two elements $a \in R$ and $z \in \mathcal{D}(R)^{*}$, we have $a z \in \mathcal{D}(R)$. Hence $(a z)^{2}=a z$, and so $\left(a^{2}-a\right) z=0$. The latter equality shows that $a^{2}-a \in \mathcal{D}(R)$ and also $\operatorname{Ann}_{\ell}\left(a^{2}-a\right)=\mathcal{D}(R)$. Thus $a^{2}-a=\left(a^{2}-a\right)^{2}=0$ for each element $a \in R$, as desired.

Lemma 6. Let R be a Boolean ring with $|R|>4$. Then $\Gamma(R)$ contains no vertex adjacent to all other vertices of the graph.

Proof by contradiction. Suppose that a vertex r is adjacent to all other vertices of $\Gamma(R)$. Let $z \in \mathcal{D}(R) \backslash\{0, r\}$. We have $r(r+z)=r \neq 0$ and so $r+z$ is a nonzero-divisor idempotent of R. Thus $1=r+z$ is the identity of R and so $R=\{0,1, r, 1-r\}$, which contradicts $|R|>4$.

Theorem 7. Let S be a Boolean ring with $|S|>4$. Suppose that R is a ring and $\varphi: \Gamma(R) \rightarrow \Gamma(S)$ is a graph isomorphism. Then φ is extendable to a ring isomorphism from R to S. In particular, $R \simeq S$.

Proof. Recall that the characteristic of every Boolean ring is 2 . We first state the following properties of $\Gamma(S)$.
(i) For every two vertices u and v of $\Gamma(S)$, if $\mathcal{N}(u)=\mathcal{N}(v)$, then $u=v$. For this, note that if $u \neq u v$, then $u+u v \in \mathcal{N}(v) \backslash \mathcal{N}(u)$, which is impossible. So we conclude that $u=u v$, and similarly $v=u v$, which yield that $u=v$, as desired.
(ii) For every two adjacent vertices u and v of $\Gamma(S)$, using (i) together with an easy argument, we find that $u+v$ is the unique vertex of $\Gamma(S)$ such that $\mathcal{N}(u+v)=\mathcal{N}(u) \cap \mathcal{N}(v)$, if $\mathcal{N}(u) \cap \mathcal{N}(v) \neq \varnothing$; and otherwise, $1=u+v$ is the identity of S, because in this case $u+v$ is a nonzero-divisor idempotent of S. Moreover, if S has identity, then $v=1+u$ is the unique neighbor of u in $\Gamma(S)$ such that $\mathcal{N}(u) \cap \mathcal{N}(v)=\varnothing$. For uniqueness, note that for any vertex $x \in \mathcal{N}(u)$, if $x \neq 1+u$, then $1+u+x \in \mathcal{N}(u) \cap \mathcal{N}(x)$.
(iii) For every two nonadjacent vertices u and v of $\Gamma(S), \mathcal{N}(u) \cup \mathcal{N}(v) \subseteq \mathcal{N}(u v)$; and if $\mathcal{N}(u) \cup \mathcal{N}(v) \subseteq \mathcal{N}(w)$ for some vertex w of $\Gamma(S)$, then $\mathcal{N}(u v) \subseteq \mathcal{N}(w)$. For the second statement, let $x \in \operatorname{Ann}_{\ell}(u v)$. We have $v x \in \operatorname{Ann}_{\ell}(u)$. Since $\mathcal{N}(u) \subseteq \mathcal{N}(w), w(v x)=0$ and so $w x \in \operatorname{Ann}_{\ell}(v)$. It follows from $\mathcal{N}(v) \subseteq \mathcal{N}(w)$ that $w(w x)=0$ and thus $x \in \operatorname{Ann}_{\ell}(w)$, as required.

Since $\Gamma(R) \simeq \Gamma(S)$, the above properties also hold for $\Gamma(R)$. Using Theorem 2 and Lemma $6, R$ is reduced. It is easily checked that $\mathcal{N}\left(z^{2}\right)=\mathcal{N}(z)$ for each vertex z of $\Gamma(R)$. By (i), we have $z^{2}=z$ for every element $z \in \mathcal{D}(R)$. Applying Lemma 5, R is a Boolean ring. Define $\varphi(0)=0$. By (ii), $\Gamma(R)$ (respectively, $\Gamma(S)$) contains two adjacent vertices with no common neighbors if and only if R (respectively, S) has identity. Since $\Gamma(R) \simeq \Gamma(S)$, either both R and S have identity or neither of them has identity. When the first case occurs, we define $\varphi(1)=1$. Furthermore, the properties (ii) and (iii) imply that for every two vertices u and v of $\Gamma(S)$, the elements

- $1+u$, if S has identity;
- $u+v$, if u and v are adjacent and $u+v \neq 1$; and
- $u v$, if u and v are not adjacent,
can be determined by $\Gamma(S)$. We claim that for every two distinct nonadjacent vertices u and v of $\Gamma(S)$, the element $u+v$ can also be determined by $\Gamma(S)$. First assume that $u v \notin\{u, v\}$. Using (iii), we obtain that the element $u v$ is determined by $\Gamma(S)$. By (i) and (ii), $u+u v$ is the unique vertex of $\Gamma(S)$ such that $\mathcal{N}(u)=$ $\mathcal{N}(u v) \cap \mathcal{N}(u+u v)$. This and a similar argument establish that the elements $u+u v$ and $v+u v$ are determined by $\Gamma(S)$. Since the vertices $u+u v$ and $v+u v$ are adjacent, we are done using (ii). Next, with no loss of generality, suppose that $u v=u$. In this case, the vertices u and $u+v$ are adjacent, and so applying (i) and (ii), we find that $u+v$ is the unique vertex of $\Gamma(S)$ such that $\mathcal{N}(v)=\mathcal{N}(u) \cap \mathcal{N}(u+v)$. This proves the claim. Now, by $\Gamma(R) \simeq \Gamma(S)$ and the above reasonings, it is not hard to verify that $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in R$, as desired.

As an interesting fact, it is well-known that every isomorphism between multiplicative semigroups of two Boolean rings is a ring isomorphism. Obviously, Theorem 7 generalizes this fact. The following theorem asserts that the zero-divisor graph of a Boolean ring R determines whether R has identity or not.

Theorem 8. Let R be a Boolean ring and $|R|>4$. Then $\operatorname{diam} \Gamma(R)=3$ if R has identity, and otherwise $\operatorname{diam} \Gamma(R)=2$.

Proof. We know from [Redmond 2002] that for any ring T, $\operatorname{diam} \Gamma(T) \leqslant 3$. First suppose that R has identity. Since $|R|>4$, we can take an element $e \notin\{0,1\}$. We have $R=e R \oplus(1-e) R$, so either $|e R|>2$ or $|(1-e) R|>2$. With no loss of generality, let $f \in e R \backslash\{0, e\}$. Since e and $1+e+f$ are two nonadjacent vertices with no common neighbors and $\operatorname{diam} \Gamma(R) \leqslant 3$, the result follows.

Next suppose that R has no identity. Applying Lemma 6, we find diam $\Gamma(R) \geqslant 2$. Now, let a and b be two nonadjacent vertices of $\Gamma(R)$. Since R has no identity, there exists an element c such that $(a+b+a b) c \neq c$. We have $c+a c+b c+a b c \in$ $\mathcal{N}(a) \cap \mathcal{N}(b)$, which clearly completes the proof.

It is well-known that every finite Boolean ring has identity. We generalize this fact in the following theorem.

Theorem 9. Let R be a Boolean ring such that $\Gamma(R)$ has a vertex of finite degree. Then R has identity.

Proof. Recall that the adjoint multiplication \circ of an arbitrary ring T is defined by $x \circ y=x+y+x y$ for any two elements $x, y \in T$. Suppose that a is a vertex of finite degree of $\Gamma(R)$ and $\mathcal{N}(a)=\left\{a_{1}, \ldots, a_{n}\right\}$ for some integer $n \geqslant 1$. Let $b=a_{1} \circ \cdots \circ a_{n}$. Clearly, $a b=0$ and $a_{i} b=a_{i}$ for all i. We show that $a+b$ is the identity of R. Indeed, it is enough to prove that $a+b$ is a nonzero-divisor. Toward a contradiction, assume that $(a+b) z=0$ for some element $z \in R^{*}$. Multiplying this equality by a, we find that $a z=0$, and hence $z=a_{j}$ for some $j \in\{1, \ldots, n\}$.

Also, multiplying the equality $(a+b) z=0$ by a_{j} yields that $a_{j} z=0$, which is impossible. This completes the proof.
Remark 10. The converse of Theorem 9 is not true. Let \mathscr{R} be the set consisting of the empty set together with all finite unions of all left-closed right-open intervals and all left-unbounded right-open intervals of real numbers. Clearly, \mathscr{R} is a Boolean ring with identity with respect to symmetric difference as the addition operation and intersection as the multiplication operation, while obviously every vertex of $\Gamma(\mathscr{R})$ has infinite degree.

We conclude the paper with the following theorem on the polynomial rings over Boolean rings.
Theorem 11. Let R and S be two Boolean rings such that $\Gamma(R[x]) \simeq \Gamma(S[x])$. Then $R \simeq S$.

Proof. Let T be an arbitrary Boolean ring. $\Gamma(T[\mathrm{x}])$ is the null graph if and only if $T \simeq \mathbb{Z}_{2}$. Hence we may assume that $\mathcal{D}(R)^{*}$ and $\mathcal{D}(S)^{*}$ are both nonempty. Using Theorem 7, it suffices to establish that $\Gamma(R) \simeq \Gamma(S)$. Since finitely generated onesided ideals of von Neumann regular rings, including Boolean rings, are principal [Lam 2001, (4.23)], for each finitely generated ideal I of T, there exists a unique element e such that $I=(e)$. For a polynomial $f(\mathrm{x})=a_{n} \mathrm{x}^{n}+\cdots+a_{0} \in T[\mathrm{x}]$, let $\widehat{f(\mathrm{x})}$ be the unique element of T such that $\left.\left(a_{0}, \ldots, a_{n}\right)=(\widehat{f(\mathrm{x}})\right)$. From [Armendariz 1974, Lemma 1], every reduced ring is Armendariz, and hence it is not hard to see that for any polynomial $f(\mathrm{x}) \in \mathcal{D}(T[\mathrm{x}])^{*}, \widehat{f(\mathrm{x})}$ is the unique element of T such that $\mathcal{N}(f(\mathrm{x}))=\mathcal{N}(\widehat{f(\mathrm{x})})$.

Now, assume that $\phi: \Gamma(R[\mathrm{x}]) \rightarrow \Gamma(S[\mathrm{x}])$ is a graph isomorphism. We define $\psi: \Gamma(R) \rightarrow \Gamma(S)$ by $\psi(a)=\widehat{\phi(a)}$ for all $a \in \mathcal{D}(R)^{*}$, and we claim that ψ is a graph isomorphism. If a and b are two adjacent vertices of $\Gamma(R)$, then $\phi(a) \in \mathcal{N}(\phi(b))=$ $\mathcal{N}(\psi(b))$. This yields that $\psi(b) \in \mathcal{N}(\phi(a))=\mathcal{N}(\psi(a))$ and therefore $\psi(a)$ and $\psi(b)$ are adjacent in $\Gamma(S)$. The converse is clearly true, and so ψ preserves the adjacency relation. Moreover, if $\psi(a)=\psi(b)$ for two vertices a and b of $\Gamma(R)$, then $\mathcal{N}(\phi(a))=\mathcal{N}(\phi(b))$ and thus $\mathcal{N}(a)=\mathcal{N}(b)$. In particular, $\mathcal{N}(a) \cap R=\mathcal{N}(b) \cap R$. Using the property (i) of the zero-divisor graphs of Boolean rings given in the proof of Theorem 7, we deduce that $a=b$. This concludes the injectivity of ψ. Finally, we prove that ψ is surjective. Suppose $s \in \mathcal{D}(S)^{*}$ and let

$$
r=\widehat{\phi^{-1}(s)}
$$

Since $\mathcal{N}\left(\phi^{-1}(s)\right)=\mathcal{N}(r)$, we find that $\mathcal{N}(s)=\mathcal{N}(\phi(r))=\mathcal{N}(\psi(r))$ and hence $s=\psi(r)$. This establishes the claim and completes the proof.
Remark 12. Let $n \geqslant 2$ and \mathscr{R} and \mathscr{S} be two rings which each of them is the direct product of n arbitrary finite fields. Using the result mentioned in Remark 1, it is
easily checked that $\Gamma(\mathscr{R}[\mathrm{x}]) \simeq \Gamma(\mathscr{S}[\mathrm{x}])$. Therefore the conclusion of Theorem 11 is not true if one of R and S is not Boolean.

References

[Akbari and Mohammadian 2006] S. Akbari and A. Mohammadian, "Zero-divisor graphs of noncommutative rings", J. Algebra 296:2 (2006), 462-479. MR 2007a:16046 Zbl 1113.16038
[Akbari and Mohammadian 2007] S. Akbari and A. Mohammadian, "On zero-divisor graphs of finite rings", J. Algebra 314:1 (2007), 168-184. MR 2008f: 16048 Zbl 1122.16015
[Akbari et al. 2003] S. Akbari, H. R. Maimani, and S. Yassemi, "When a zero-divisor graph is planar or a complete r-partite graph", J. Algebra 270:1 (2003), 169-180. MR 2004h:13025 Zbl 1032.13014
[Anderson et al. 2003] D. F. Anderson, R. Levy, and J. Shapiro, "Zero-divisor graphs, von Neumann regular rings, and Boolean algebras", J. Pure Appl. Algebra 180:3 (2003), 221-241. MR 2003m: 13007 Zbl 1076.13001
[Armendariz 1974] E. P. Armendariz, "A note on extensions of Baer and P.P.-rings", J. Austral. Math. Soc. 18 (1974), 470-473. MR 51 \#3224 Zbl 0292.16009
[Beck 1988] I. Beck, "Coloring of commutative rings", J. Algebra 116:1 (1988), 208-226. MR 89i: 13006 Zbl 0654.13001
[LaGrange 2007] J. D. LaGrange, "Complemented zero-divisor graphs and Boolean rings", J. Algebra 315:2 (2007), 600-611. MR 2008h:13012 Zbl 1133.13005
[Lam 2001] T. Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics 131, Springer, New York, 2001. MR 2002c: 16001 Zbl 0980.16001
[Redmond 2002] S. P. Redmond, "The zero-divisor graph of a non-commutative ring", pp. 39-47 in Commutative rings, edited by A. Badawi, Nova Sci. Publ., Hauppauge, NY, 2002. MR 2037657 Zbl 1195.16038
[Redmond 2004] S. P. Redmond, "Structure in the zero-divisor graph of a noncommutative ring", Houston J. Math. 30:2 (2004), 345-355. MR 2005d:16002 Zbl 1064.16033

Received June 5, 2010. Revised August 31, 2010.

```
Ali Mohammadian
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
NiAVARAN SQUARE
P.O. BOX 19395-5746
Tehran
IrAN
ali_m@ipm.ir
```


RATIONAL CERTIFICATES OF POSITIVITY ON COMPACT SEMIALGEBRAIC SETS

Victoria Powers

Let $\mathbb{R}[X]$ denote the real polynomial ring $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and write $\sum \mathbb{R}[X]^{2}$ for the set of sums of squares in $\mathbb{R}[X]$. Given $g_{1}, \ldots, g_{s} \in \mathbb{R}[X]$ such that the semialgebraic set $K:=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0\right.$ for all $\left.i\right\}$ is compact, Schmüdgen's theorem says that if $f \in \mathbb{R}[X]$ such that $f>0$ on K, then f is in the preordering in $\mathbb{R}[X]$ generated by the g_{i} 's, i.e., f can be written as a finite sum of elements $\sigma g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}$, where σ is a sum of squares in $\mathbb{R}[X]$ and each $e_{i} \in\{0,1\}$. Putinar's theorem says that under a condition on the set of generators $\left\{g_{1}, \ldots, g_{s}\right\}$ (which is a stronger condition than the compactness of K), any $f>0$ on K can be written $f=\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s}$, where $\sigma_{i} \in \sum \mathbb{R}[X]^{2}$. Both of these theorems can be viewed as statements about the existence of certificates of positivity on compact semialgebraic sets. In this note we show that if the defining polynomials g_{1}, \ldots, g_{s} and polynomial f have coefficients in \mathbb{Q}, then in Schmüdgen's theorem we can find a representation in which the σ 's are sums of squares of polynomials over \mathbb{Q}. We prove a similar result for Putinar's theorem assuming that the set of generators contains $N-\sum X_{i}^{2}$ for some $N \in \mathbb{N}$.

1. Introduction

We write \mathbb{N}, \mathbb{R}, and \mathbb{Q} for the set of natural, real, and rational numbers. Let $n \in \mathbb{N}$ be fixed and let $\mathbb{R}[X]$ denote the polynomial ring $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. We denote by $\sum \mathbb{R}[X]^{2}$ the set of sums of squares in $\mathbb{R}[X]$.

For $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[X]$, the basic closed semialgebraic set generated by S, denoted K_{S}, is

$$
\left\{x \in \mathbb{R}^{n} \mid g_{1}(x) \geq 0, \ldots, g_{s}(x) \geq 0\right\}
$$

Associated to S are two algebraic objects: The quadratic module generated by S, denoted M_{S}, is the set of $f \in \mathbb{R}[X]$ which can be written

$$
f=\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s},
$$

[^5]where each σ_{i} lies in $\sum \mathbb{R}[X]^{2}$, and the preordering generated by S, denoted T_{S}, is the quadratic module generated by all products of elements in S. In other words, T_{S} is the set of $f \in \mathbb{R}[X]$ which can be written as a finite sum of elements
$$
\sigma g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}, \quad \text { for } \sigma \in \mathbb{R}[X] \text { and each } e_{i} \in\{0,1\}
$$

A polynomial $f \in \sum \mathbb{R}[X]^{2}$ is obviously globally nonnegative in \mathbb{R}^{n} and writing f explicitly as a sum of squares gives a "certificate of positivity" for the fact that f takes only nonnegative values in \mathbb{R}^{n}. (Note: To avoid having to write "nonnegativity or positivity" we use the term "positivity" to mean either.) More generally, for a basic closed semialgebraic set K_{S}, if $f \in T_{S}$ or $f \in M_{S}$, then f is nonnegative on K_{S} and an explicit representation of f in M_{S} or T_{S} gives a certificate of positivity for f on K_{S}.

Schmüdgen [1991] showed that if the semialgebraic set K_{S} is compact, then any $f \in \mathbb{R}[X]$ which is strictly positive on K_{S} is in the preordering T_{S}. A preordering or quadratic module is archimedean if it contains $N-\sum X_{i}^{2}$ for some $N \in \mathbb{N}$. We note that if M_{S} is archimedean, then it follows immediately that K_{S} is compact, however the converse is not true in general. Putinar [1993] showed that if M_{S} is archimedean then any $f \in \mathbb{R}[X]$ which is strictly positive on K_{S} is in M_{S}. In other words, these results say that under the given conditions a certificate of positivity for f on K_{S} exists.

Recently, techniques from semidefinite programming combined with Schmüdgen's and Putinar's theorems have been used to give numerical algorithms for applications such as optimization of polynomials on semialgebraic sets. However since these algorithms are numerical they might not produce exact certificates of positivity. With this in mind, Sturmfels asked whether any $f \in \mathbb{Q}[X]$ which is a sum of squares in $\mathbb{R}[X]$ is a sum of squares in $\mathbb{Q}[X]$. Hillar [2009] showed that the answer is yes in the case where f is known to be a sum of squares over a totally real field K. The general question remains unsolved.

It is natural to ask a similar question for Schmüdgen's and Putinar's theorems: If the polynomials defining the semialgebraic set and the positive polynomial f have rational coefficients, is there a certificate of positivity for f in which the sums of squares have rational coefficients? In this note, we show that in the case of Schmüdgen's theorem the answer is yes. This follows from an algebraic proof of the theorem, originally due to T. Wörmann [1998]. In the case of Putinar's theorem, we show that the answer is also yes as long as the generating set contains $N-\sum X_{i}^{2}$ for some $N \in \mathbb{N}$. This follows easily from an algorithmic proof of the theorem, due to Schweighofer [2005]. For Lasserre's method [2001] for optimization of polynomials on compact semialgebraic sets, it is usual in concrete cases to add a polynomial of the type $N-\sum X_{i}^{2}$ to the generators in order to insure that Putinar's theorem holds. Thus our assumption in this case is reasonable.

2. Rational certificates of for Schmüdgen's theorem

Fix $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[X]$ and define K_{S} and T_{S} as above.
Theorem 1 (Schmüdgen). Suppose that K_{S} is compact. If $f \in \mathbb{R}[X]$ and $f>0$ on K_{S}, then $f \in T_{S}$.

In this section we show that if f and the generating polynomials g_{1}, \ldots, g_{s} are in $\mathbb{Q}[X]$, then f has a representation in T_{S} in which all sums of squares σ_{ϵ} are in $\sum \mathbb{Q}[X]^{2}$. This follows from T. Wörmann's algebraic proof of the theorem using the classical Abstract Positivstellensatz, and a generalization of Wörmann's crucial lemma due to M. Schweighofer.

The abstract Positivstellensatz. We will need a version of the abstract Positivstellensatz, a result traditionally attributed to Kadison and Dubois, but now thought to have been proved earlier by Krivine or Stone. For details on its history, see [Prestel and Delzell 2001, Section 5.6]. The setting is preordered commutative rings, and we state the version we need as Theorem 2 below.

Let A be a commutative ring with $\mathbb{Q} \subseteq A$. A subset $T \subseteq A$ is a preordering if $T+T \subseteq T, T \cdot T \subseteq T$, and $-1 \notin T$. For $S=\left\{a_{1}, \ldots, a_{k}\right\} \subseteq A$, we define the preordering generated by S, T_{S}, exactly as for $A=\mathbb{R}[X]$.

An ordering in A is a preordering P such that $P \cup-P=A$ and $P \cap-P$ is a prime ideal. Any $a \in A$ has a unique sign in $\{-1,0,1\}$ with respect to a fixed ordering P and we use the notation $a \geq_{P} 0$ if $a \in P, a>_{P} 0$ if $a \in P \backslash(P \cap-P)$, etc.

Fix a preordered ring (A, T) and denote by Sper A the real spectrum of (A, T), i.e., the set of orderings of A which contain T. Then define
$H(A)=\left\{a \in A \mid\right.$ there exists $n \in \mathbb{N}$ with $n \pm a \geq{ }_{P} 0$ for all $\left.P \in \operatorname{Sper} A\right\}$, the ring of geometrically bounded elements in (A, T), and

$$
H^{\prime}(A)=\{a \in A \mid \text { there exists } n \in \mathbb{N} \text { with } n \pm a \in T\}
$$

the ring of arithmetically bounded elements in (A, T). Clearly, $H^{\prime}(A) \subseteq H(A)$. The preordering T is archimedean if $H^{\prime}(A)=A$.

Theorem 2 [Schweighofer 2002, Theorem 1]. Given the preordered ring (A, T) as above and suppose $A=H^{\prime}(A)$. For any $a \in A$, if $a>_{P} 0$ for all $P \in \operatorname{Sper} A$, then $a \in T$.

Consider the case where $A=\mathbb{R}[X]$ and $T=T_{S}$ for $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{R}[X]$. Let $K=K_{S}$, then K embeds densely in Sper A and hence $H(A)=\{f \in \mathbb{R}[X] \mid f$ is bounded on $S\}$. If S is compact, this implies $H(A)=A$ and Schmüdgen's theorem follows from the following result:

Lemma 3 [Berr and Wörmann 2001, Lemma 1]. With A, T, and S as above, if $H(A)=A$ then $H^{\prime}(A)=A$.

Our result follows from a generalization of this lemma:
Theorem 4 [Schweighofer 2002, Theorem 4.13]. Let F be a subfield of \mathbb{R} and (A, T) a preordered F-algebra such that $F \subseteq H^{\prime}(A)$ and A has finite transcendence degree over F. Then

$$
A=H(A) \Longrightarrow A=H^{\prime}(A)
$$

We can now prove the existence of rational certificates of positivity in Schmüdgen's theorem. The argument is exactly that of the proof of the general theorem above.
Theorem 5. Given $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{Q}[X]$ and suppose $K_{S} \subseteq \mathbb{R}^{n}$ is compact. Then for any and $f \in \mathbb{Q}[X]$ such that $f>0$ on K_{S}, there is a representation of f in the preordering T_{S},

$$
f=\sum_{e \in\{0,1\}^{s}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}
$$

with all $\sigma_{e} \in \sum \mathbb{Q}[X]^{2}$.
Proof. Let T be the preordering in $\mathbb{Q}[X]$ generated by S. Since K_{S} is compact, every element of $\mathbb{Q}[X]$ is bounded on K_{S}. Then K_{S} dense in Sper A implies that $H(\mathbb{Q}[X])=\mathbb{Q}[X]$, hence by Theorem 4 we have $\mathbb{Q}[X]=H^{\prime}(A)$. Note that the condition $F \subseteq H^{\prime}(A)$ holds in this case since $\mathbb{Q}^{+}=\sum \mathbb{Q}^{2}$. The result follows from Theorem 2.

3. Rational certificates for Putinar's theorem

Given $S=\left\{g_{1}, \ldots, g_{s}\right\}$, recall that the quadratic module generated by S, M_{S}, is the set of elements in the preordering K_{S} with a "linear" representation, i.e.,

$$
M_{S}=\left\{\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s} \mid \sigma_{i} \in \sum \mathbb{R}[X]^{2}\right\}
$$

In order to guarantee representations of positive polynomials in the quadratic module, we need a condition stronger than compactness of K_{S}, namely, we need M_{S} to be archimedean.

The quadratic module M_{S} is archimedean if all elements of $\mathbb{R}[X]$ are bounded by a positive integer with respect to M_{S}, i.e., if for every $f \in \mathbb{R}[X]$ there is some $N \in \mathbb{N}$ such that $N-f \in M_{S}$. It is not too hard to show that M_{S} is archimedean if there is some $N \in \mathbb{N}$ such that $N-\sum X_{i}^{2} \in M_{S}$. Clearly, if M_{S} is archimedean, then K_{S} is compact; the polynomial $N-\sum X_{i}^{2}$ can be thought of as a "certificate of compactness". However, the converse is not true; see [Prestel and Delzell 2001, Example 6.3.1]. The key to the algebraic proof of Schmüdgen's theorem from the
previous section is showing that in the case of the preordering generated by a finite set of elements from $\mathbb{R}[X]$, the compactness of the semialgebraic set implies that the corresponding preordering is archimedean.

Putinar [1993] showed that if the quadratic module M_{S} is archimedean, we can replace the preordering T_{S} by the quadratic module M_{S}.

Theorem 6 (Putinar). Suppose that the quadratic module M_{S} is archimedean. Then for every $f \in \mathbb{R}[X]$ with $f>0$ on $K_{S}, f \in M_{S}$.

Lasserre's method [2001] for minimizing a polynomial on a compact semialgebraic set involves defining a sequence of semidefinite programs corresponding to representations of bounded degree in M_{S} whose solutions converge to the minimum. In this context, if M_{S} is archimedean then Putinar's theorem implies the convergence of the semidefinite programs. In practice, it is not clear how to decide if M_{S} is archimedean for a given set of generators S, however in concrete cases a polynomial $N-\sum X_{i}^{2}$ can be added to the generators if an appropriate N is known or can be computed.

Using an algorithmic proof of Putinar's theorem due to M. Schweighofer [2005] we can show that rational certificates exist for the theorem as long as we have a polynomial $N-\sum X_{i}^{2}$ as one of our generators:

Theorem 7. Suppose $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{Q}[X]$ and $N-\sum X_{i}^{2} \in M_{S}$ for some $N \in \mathbb{N}$. Then given any $f \in \mathbb{Q}[X]$ such that $f>0$ on K_{S}, there exist $\sigma_{0} \ldots \sigma_{s}, \sigma \in$ $\sum \mathbb{Q}[X]^{2}$ so that

$$
f=\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s}+\sigma\left(N-\sum X_{i}^{2}\right)
$$

Proof. The idea of Schweighofer's proof is to reduce to Pólya's theorem. We follow the proof, making sure that each step preserves rationality.

Let

$$
\Delta=\left\{y \in[0, \infty)^{2 n} \left\lvert\, y_{1}+\cdots+y_{2 n}=2 n\left(N+\frac{1}{4}\right)\right.\right\} \subseteq \mathbb{R}^{2 n}
$$

and let C be the compact subset of \mathbb{R}^{n} defined by $C=l(\Delta)$, where $l: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
y \mapsto\left(\frac{y_{1}-y_{n+1}}{2}, \ldots, \frac{y_{n}-y_{2 n}}{2}\right) .
$$

Scaling the g_{i} 's by positive elements in \mathbb{Q}, we can assume that $g_{i} \leq 1$ on C for all i. The key to the proof is the observation that there exists $\lambda \in \mathbb{R}^{+}$such that $q:=f-\lambda \sum\left(g_{i}-1\right)^{2 k} g_{i}>0$ on C [Schweighofer 2005, Lemma 2.3]. Since we can always replace λ by a smaller value, we can assume $\lambda \in \mathbb{Q}$, whence $q \in \mathbb{Q}[X]$.

Let $d=\operatorname{deg} q$ and let Q_{i} be the homogeneous part of q of degree i, so $q=$ $\sum_{i=1}^{d} Q_{i}$. Let $Y=\left(Y_{1}, \ldots, Y_{2 n}\right)$ and define in $\mathbb{Q}[Y]$

$$
F\left(Y_{1}, \ldots, Y_{2 n}\right):=\sum_{i=1}^{d} Q_{i}\left(\frac{Y_{1}-Y_{n+1}}{2}, \ldots, \frac{Y_{n}-Y_{2 n}}{2}\right)\left(\frac{Y_{1}+\cdots+Y_{2 n}}{2 n\left(N+\frac{1}{4}\right)}\right)^{d-i}
$$

Then F is homogenous and $F>0$ on $[0, \infty)^{2 n} \backslash\{0\}$. By Pólya's theorem, there is some $k \in \mathbb{N}$ so that

$$
G:=\left(\frac{Y_{1}+\cdots+Y_{2 n}}{2 n\left(N+\frac{1}{4}\right)}\right)^{k} F
$$

has nonnegative coefficients as a polynomial in $\mathbb{R}[Y]$. Furthermore, since $F \in$ $\mathbb{Q}\left[Y_{1}, \ldots, Y_{2 n}\right]$, it is easy to see that $G \in \mathbb{Q}[Y]$.

Define $\phi: \mathbb{Q}\left[Y_{1}, \ldots, Y_{2 n}\right] \rightarrow \mathbb{Q}[X]$ by

$$
\phi\left(Y_{i}\right)=N+\frac{1}{4}+X_{i}, \quad \phi\left(Y_{n+i}\right)=\left(N+\frac{1}{4}\right)-X_{i} \quad \text { for } i=1, \ldots, n
$$

and note that $\phi(G)=q$ and

$$
\begin{aligned}
\phi\left(Y_{i}\right) & =\left(N+\frac{1}{4}\right) \pm X_{i} \\
& =\sum_{j \neq i}\left(X_{j}^{2}+\left(X_{i} \pm \frac{1}{2}\right)^{2}\right)+\left(N-\sum X_{j}^{2}\right) \in \sum \mathbb{Q}[X]^{2}+\left(N-\sum X_{j}^{2}\right) .
\end{aligned}
$$

Thus $\phi(G)=q$ implies there is a representation of q of the required type and then, since $f=q+\lambda \sum\left(g_{i}-1\right)^{2 k} g_{i}$ with $\lambda \in \mathbb{Q}$, we are done.

Remark 8. In the preordering case (Schmüdgen's theorem), as noted above if the semialgebraic set K_{S} is compact, then it follows that the preordering T_{S} in $\mathbb{Q}[X]$ is archimedean. However it is more subtle in the quadratic module case since it is not always clear how to decide if M_{S} is archimedean for a given set of generators S. Thus an open question is the following: Suppose $S \subseteq \mathbb{Q}[X]$ is a finite set of polynomials and M_{S} is archimedean as a quadratic module in $\mathbb{R}[X]$. Is it true that M_{S} is archimedean as a quadratic module in $\mathbb{Q}[X]$? To put it more concretely, suppose $S=\left\{g_{1}, \ldots, g_{s}\right\} \subseteq \mathbb{Q}[X]$ and we know that there is some $N \in \mathbb{N}$ such that

$$
N-\sum X_{i}^{2}=\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s}
$$

with $\sigma_{i} \in \sum \mathbb{R}[X]^{2}$. Does there exist a representation with $\sigma_{i} \in \sum \mathbb{Q}[X]^{2}$? Equivalently, does there exist $N \in \mathbb{N}$ such that for each $i=1, \ldots, n$ we can write

$$
N \pm X_{i}=\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s}
$$

with $\sigma_{i} \in \sum \mathbb{Q}[X]^{2}$?

References

[Berr and Wörmann 2001] R. Berr and T. Wörmann, "Positive polynomials on compact sets", Manuscripta Math. 104:2 (2001), 135-143. MR 2002a:14061 Zbl 0992.14021
[Hillar 2009] C. J. Hillar, "Sums of squares over totally real fields are rational sums of squares", Proc. Amer. Math. Soc. 137:3 (2009), 921-930. MR 2009h:12009 Zbl 1163.12005
[Lasserre 2001] J. B. Lasserre, "Global optimization with polynomials and the problem of moments", SIAM J. Optim. 11:3 (2001), 796-817. MR 2002b:90054 Zbl 1010.90061
[Prestel and Delzell 2001] A. Prestel and C. N. Delzell, Positive polynomials: from Hilbert's 17th problem to real algebra, Springer, Berlin, 2001. MR 2002k:13044 Zbl 0987.13016
[Putinar 1993] M. Putinar, "Positive polynomials on compact semi-algebraic sets", Indiana Univ. Math. J. 42:3 (1993), 969-984. MR 95h:47014 Zbl 0796.12002
[Schmüdgen 1991] K. Schmüdgen, "The K-moment problem for compact semi-algebraic sets", Math. Ann. 289:2 (1991), 203-206. MR 92b:44011
[Schweighofer 2002] M. Schweighofer, Iterated rings of bounded elements and generalizations of Schmüdgen's theorem, Ph.D. thesis, Universität Konstanz, 2002, available at http://tinyurl.com/ SchweighoferPhD.
[Schweighofer 2005] M. Schweighofer, "Optimization of polynomials on compact semialgebraic sets", SIAM J. Optim. 15:3 (2005), 805-825. MR 2006d:90136 Zbl 1114.90098
[Wörmann 1998] T. Wörmann, Strikt positive polynome in der semialgebraischen geometrie, Ph.D. thesis, Universität Dortmund, 1998, available at http://www.lulu.com/items/volume_63/2227000/ 2227267/2/print/diss.pdf.

Received January 2, 2011. Revised February 3, 2011.

Victoria Powers
Department of Mathematics and Computer Science
Emory University
Atlanta, GA 30322
United States
vicki@mathcs.emory.edu

QUIVER GRASSMANNIANS, QUIVER VARIETIES AND THE PREPROJECTIVE ALGEBRA

Alistair Savage and Peter Tingley

Quivers play an important role in the representation theory of algebras, with a key ingredient being the path algebra and the preprojective algebra. Quiver grassmannians are varieties of submodules of a fixed module of the path or preprojective algebra. In the current paper, we study these objects in detail. We show that the quiver grassmannians corresponding to submodules of certain injective modules are homeomorphic to the lagrangian quiver varieties of Nakajima which have been well studied in the context of geometric representation theory. We then refine this result by finding quiver grassmannians which are homeomorphic to the Demazure quiver varieties introduced by the first author, and others which are homeomorphic to the graded/cyclic quiver varieties defined by Nakajima. The Demazure quiver grassmannians allow us to describe injective objects in the category of locally nilpotent modules of the preprojective algebra. We conclude by relating our construction to a similar one of Lusztig using projectives in place of injectives. In an appendix added after the first version of the current paper was released, we show how subsequent results of Shipman imply that the above homeomorphisms are in fact isomorphisms of algebraic varieties.
Introduction 394

1. Quivers, path algebras, and preprojective algebras 396
2. Modules of the path algebra and quiver grassmannians 397
3. Quiver varieties 402
4. Quiver varieties as quiver grassmannians 404
5. Group actions and graded quiver grassmannians 410
6. Representations of Kac-Moody algebras and compatibility 414
7. Relation to Lusztig's grassmannian realization 420
Appendix: Isomorphisms of varieties 424
Acknowledgements 426
References 427
[^6]
Introduction

Quivers play a fundamental role in the theory of associative algebras and their representations. Gabriel's theorem, which states a precise relationship between indecomposable representations of certain quivers and root systems of associated Lie algebras, indicated that the representation theory of quivers was also intimately connected to the representation theory of Kac-Moody algebras. This eventually lead to the Ringel-Hall construction of quantum groups and the quiver variety constructions of Lusztig and Nakajima.

Fix a quiver (directed graph) $Q=\left(Q_{0}, Q_{1}\right)$ with vertex set Q_{0} and arrow set Q_{1}. The corresponding path algebra $\mathbb{C} Q$ is the algebra spanned by the set of directed paths, with multiplication given by concatenation. There is a natural grading $\mathbb{C} Q=\bigoplus_{n}(\mathbb{C} Q)_{n}$ of the path algebra by length of paths. Representations of a quiver are equivalent to representations (or modules) of its path algebra. Note that $(\mathbb{C} Q)_{0^{-}}$ modules are simply Q_{0}-graded vector spaces, and in particular all $\mathbb{C} Q$-modules are Q_{0}-graded. For a $\mathbb{C} Q$-module V and $u \in \mathbb{N} Q_{0}$, the associated quiver grassmannian is the variety $\operatorname{Gr}_{Q}(u, V)$ of all $\mathbb{C} Q$-submodules of V of graded dimension u. These natural objects (or closely related ones) can be found in several places in the literature. For instance, they appear in [Crawley-Boevey 1996; Schofield 1992] in the study of spaces of morphisms of $\mathbb{C} Q$-modules and in [Caldero and Chapoton 2006; Caldero and Keller 2006; Derksen et al. 2009] in connection with the theory of cluster algebras. Geometric properties have been studied in [Caldero and Reineke 2008; Szántó 2009; Wolf 2009] and representation theoretic properties in [Fedotov 2010; Geiss et al. 2006; Lusztig 1998; 2000; Nakajima 2003; Reineke 2008].

Let \mathfrak{g} be the Kac-Moody algebra whose Dynkin diagram is the underlying graph of Q (the graph obtained by forgetting the orientation of all arrows) and let \tilde{Q} be the double quiver obtained from Q by adding an oppositely oriented arrow \bar{a} for every $a \in Q_{1}$. One is often interested in modules of the preprojective algebra $\mathscr{P}=\mathscr{P}(Q)$, which is a certain natural quotient of the path algebra $\mathbb{C} \tilde{Q}$ and inherits the grading. In particular, \mathscr{P}-modules are also $\mathbb{C} \tilde{Q}$-modules. To each vertex $i \in Q_{0}$, we have an associated one-dimensional simple \mathscr{P}-module s^{i}. For

$$
w=\sum_{i} w_{i} i \in \mathbb{N} Q_{0}
$$

we let $s^{w}=\bigoplus_{i}\left(s^{i}\right)^{\oplus w_{i}}$ be the corresponding semisimple module. By Baer's Theorem, the category of \mathscr{P}-modules has enough injectives, so we can define q^{w} to be the injective hull of s^{w}. One of the main results of the current paper is that the quiver grassmannian $\operatorname{Gr}_{\tilde{Q}}\left(v, q^{w}\right)$ is homeomorphic to the lagrangian Nakajima quiver variety $\mathfrak{L}(v, w)$ used to give a geometric realization of irreducible highest weight representations of \mathfrak{g}; [Nakajima 1994; 1998]. In addition, for each σ in
the Weyl group of \mathfrak{g}, there is a natural finite-dimensional submodule $q^{w, \sigma}$ of q^{w} such that the quiver grassmannian $\operatorname{Gr}_{\tilde{Q}}\left(v, q^{w, \sigma}\right)$ is homeomorphic to the Demazure quiver variety $\mathfrak{L}_{\sigma}(v, w)$ defined in [Savage 2006d]. Since Nakajima's realization of highest weight representations and the first author's realization of Demazure modules depend only on the topological information of the spaces involved, such homeomorphisms allow one to replace quiver varieties by quiver grassmannians in the constructions. This change of setting affords some advantages. In particular, it avoids the description as a moduli space. One can view it as a uniform way of picking a representative from each orbit in the original moduli space descriptions.

Quiver grassmannians admit natural group actions. We describe these actions and show that certain special cases agree, under the homeomorphisms described above, with well-studied groups actions on Nakajima quiver varieties. In this way, we are able to give a quiver grassmannian realization of the cyclic/graded quiver varieties used by Nakajima [2004] to define t-analogs of q-characters of quantum affine algebras.

The injective modules q^{w} are locally nilpotent if and only if the quiver Q is of finite or affine type. However, it turns out that the submodules $q^{w, \sigma}$ are always nilpotent. The limit \tilde{q}^{w} of these submodules is the injective hull of the semisimple module s^{w} in the category of locally nilpotent \mathscr{P}-modules, giving us a description of the indecomposable injectives in this category.

Lusztig has previously presented a canonical bijection between the points of the lagrangian Nakajima quiver variety and the points of a type of quiver grassmannian inside a projective (as opposed to injective) object. In finite type, the projective objects are also injective. It turns out that, on the level of geometric realizations of representations of finite type \mathfrak{g}, the two constructions are related by the Chevalley involution. Outside of finite type, there are some other subtle yet important differences between the two constructions. In particular, the description in terms of projective objects requires one to impose a nilpotency condition in the definitions. However, the description in terms of injectives given in the current paper requires no such condition and is in this way simpler. Furthermore, through the use of the distinguished modules $q^{w, \sigma}$ mentioned above, one can always consider quiver grassmannians of submodules of a fixed finite-dimensional module of the preprojective algebra. Thus, one can avoid working with infinite-dimensional objects.

Motivated by an earlier version of the current paper [Savage and Tingley 2009], I. Shipman [2010] has recently proven that the canonical bijection given by Lusztig and mentioned above is, in fact, an isomorphism of algebraic varieties. We have added an Appendix explaining how this result allows us to conclude that the maps between quiver grassmannians and lagrangian Nakajima quiver varieties described in the current paper are also isomorphisms of algebraic varieties.

Throughout this paper, we work over the field \mathbb{C} of complex numbers. While many results hold in more generality, this assumption will streamline the exposition and several results we quote in the literature are stated over \mathbb{C}. We will always use the Zariski topology and do not assume that algebraic varieties are irreducible. We let $\mathbb{N}=\mathbb{Z}_{\geq 0}$ and denote the fundamental weights and simple roots of a Kac-Moody algebra by ω_{i} and α_{i} respectively.

This paper is organized as follows. In Section 1 we review some results on quivers, path algebras and preprojective algebras. In Section 2 we discuss various module categories of these objects and introduce our main object of study, the quiver grassmannian. We review the definition of the quiver varieties of Lusztig and Nakajima in Section 3 and realize these as quiver grassmannians in Section 4. In Section 5 we introduce a natural group action and show how it can be used to recover group actions typically constructed on quiver varieties. We also define graded/cyclic versions of quiver grassmannians. In Section 6 we use quiver grassmannians to give a geometric realization of integrable highest weight representations of a symmetric Kac-Moody algebra and discuss the compatibility of this construction with the natural nesting of quiver grassmannians. Finally, in Section 7 we discuss a precise relationship between our construction and a similar one due to Lusztig. The Appendix, added after the appearance of [Shipman 2010], provides a proof that the maps between quiver grassmannians and quiver varieties described in the current paper are isomorphisms of algebraic varieties.

1. Quivers, path algebras, and preprojective algebras

We briefly review the relevant definitions concerning quivers. We refer the reader to [Deng et al. 2008; Ringel 1998; Savage 2006a] for further details.

A quiver is a directed graph. That is, it is a quadruple $Q=\left(Q_{0}, Q_{1}, s, t\right)$ where Q_{0} and Q_{1} are sets and s and t are maps from Q_{1} to Q_{0}. We call Q_{0} and Q_{1} the sets of vertices and directed edges (or arrows) respectively. For an arrow $a \in Q_{1}$, we call $s(a)$ the source of a and $t(a)$ the target of a. Usually we will write $Q=\left(Q_{0}, Q_{1}\right)$, leaving the maps s and t implied. The quiver Q is said to be finite if Q_{0} and Q_{1} are finite. A loop is an arrow a with $s(a)=t(a)$. In this paper, all quivers will be assumed to be finite and without loops. A quiver is said to be of finite type if the underlying graph of Q (i.e the graph obtained from Q by forgetting the orientation of the edges) is a Dynkin diagram of finite $A D E$ type. Similarly, it is of affine (or tame) type if the underlying graph is a Dynkin diagram of affine type and of indefinite (or wild) type if the underlying graph is a Dynkin diagram of indefinite type.

A path in Q is a sequence $\beta=a_{l} a_{l-1} \cdots a_{1}$ of arrows such that $t\left(a_{i}\right)=s\left(a_{i+1}\right)$ for $1 \leq i \leq l-1$. We call l the length of the path. We let $s(\beta)=s\left(a_{1}\right)$ and
$t(\beta)=t\left(a_{l}\right)$ denote the initial and final vertices of the path β. For each vertex $i \in I$, we have a trivial path e_{i} with $s\left(e_{i}\right)=t\left(e_{i}\right)=i$.

The path algebra $\mathbb{C} Q$ associated to a quiver Q is the \mathbb{C}-algebra whose underlying vector space has basis the set of paths in Q, and with the product of paths given by concatenation. More precisely, if $\beta=a_{l} \cdots a_{1}$ and $\beta^{\prime}=b_{m} \cdots b_{1}$ are two paths in Q, then $\beta \beta^{\prime}=a_{l} \cdots a_{1} b_{m} \cdots b_{1}$ if $t\left(\beta^{\prime}\right)=s(\beta)$ and $\beta \beta^{\prime}=0$ otherwise. This multiplication is associative. There is a natural grading

$$
\mathbb{C} Q=\bigoplus_{n \geq 0}(\mathbb{C} Q)_{n}
$$

where $(\mathbb{C} Q)_{n}$ is the span of the paths of length n.
Given a quiver $Q=\left({\underset{\tilde{Q}}{0}}, Q_{1}\right)$, we define the double quiver associated to Q to be the quiver $\tilde{Q}=\left(Q_{0}, \tilde{Q}_{1}\right)$ where

$$
\tilde{Q}_{1}=\bigcup_{a \in Q_{1}}\{a, \bar{a}\}, \quad \text { where } \quad s(\bar{a})=t(a), t(\bar{a})=s(a)
$$

We then have a natural involution $\tilde{Q}_{1} \rightarrow \tilde{Q}_{1}$ given by $a \mapsto \bar{a}$ (where $\overline{\bar{a}}=a$). The algebra

$$
\mathscr{P}=\mathscr{P}(Q)=\mathbb{C} \tilde{Q} / \sum_{a \in Q_{1}}(a \bar{a}-\bar{a} a)
$$

is called the preprojective algebra associated to Q. It inherits a grading

$$
\mathscr{P}=\bigoplus_{n \geq 0} \mathscr{P}_{n}
$$

from the grading on $\mathbb{C} Q$. Up to isomorphism, the preprojective algebra $\mathscr{P}(Q)$ depends only on the underlying graph of Q. See [Lusztig 1991, $\S 12.15$] for details.

2. Modules of the path algebra and quiver grassmannians

2A. Module categories. For an associative algebra A, let A-Mod denote the category of A-modules and A-mod the category of finite-dimensional A-modules. We will use the notation $V \in A$-Mod (resp. $V \in A$-mod) to indicate that V is an object in the category A-Mod (resp. A-mod). Note that \mathscr{P}_{0}-mod is equivalent to the category of finite-dimensional Q_{0}-graded vector spaces whose morphisms are linear maps preserving the grading, and we will often blur the distinction between these two categories. Up to isomorphism, the objects of \mathscr{P}_{0}-mod are classified by their graded dimension. We denote the graded dimension of a module V by $\operatorname{dim}_{Q_{0}} V=\sum_{i}\left(\operatorname{dim} V_{i}\right) i \in \mathbb{N} Q_{0}$ and let $\operatorname{dim}_{\mathbb{C}} V=\sum_{i \in Q_{0}} \operatorname{dim} V_{i} \in \mathbb{N}$. We will sometimes view the graded dimension $\operatorname{dim}_{Q_{0}} V$ of V as its isomorphism class.

For $V, W \in \mathscr{P}_{0}$-mod, we denote the set of \mathscr{P}_{0}-module morphisms from V to W by $\operatorname{Hom}_{\mathscr{P}_{0}}(V, W)$. Under the equivalence of categories above, $\operatorname{Hom}_{\mathscr{P}_{0}}(V, W)$ is
identified with $\bigoplus_{i \in Q_{0}} \operatorname{Hom}_{\mathbb{C}}\left(V_{i}, W_{i}\right)$. We define $\operatorname{End}_{\mathscr{P}_{0}} V$ to be $\operatorname{Hom}_{\mathscr{P}_{0}}(V, V)$ and $\mathrm{GL}_{V}=\prod_{i \in Q_{0}} G L\left(V_{i}\right)$ to be group of invertible elements of End $\mathscr{P}_{0} V$. For $V \in \mathscr{P}_{0^{-}}$ mod, we will write $U \subseteq V$ to mean that U is a \mathscr{P}_{0}-submodule of V. This is the same as a Q_{0}-graded subspace. Note that any \mathscr{P}-module becomes a \mathscr{P}_{0}-module by restriction, and thus can be thought of as a Q_{0}-graded vector space.

Suppose $A=\bigoplus_{n \geq 0} A_{n}$ is a graded algebra and V is an A-module. Then V is nilpotent if there exists an $n \in \mathbb{N}$ such that $A_{k} \cdot V=0$ for all $k \geq n$. We say V is locally nilpotent if for all $v \in V$, there exists $n \in \mathbb{N}$ such that $A_{k} \cdot v=0$ for all $k \geq n$. We denote by A - \ln Mod the category of locally nilpotent A-modules. For $n \geq 0$, we define $A_{\geq n}=\bigoplus_{k \geq n} A_{k}$ and we let $A_{+}=A_{\geq 1}$.
Proposition 2.1. For a quiver Q, the following are equivalent:
(i) $\mathscr{P}(Q)$ is finite-dimensional,
(ii) all finite-dimensional $\mathscr{P}(Q)$-modules are nilpotent,
(iii) all finite-dimensional $\mathscr{P}(Q)$-modules are locally nilpotent, and
(iv) Q is of finite type.

Proof. The equivalence of (i) and (iv) is well-known; see [Reiten 1997], for example. That (ii) implies (iv) was proven in [Crawley-Boevey 2001] and the converse was proven by Lusztig [Lusztig 1991, Proposition 14.2]. Since a finite-dimensional module is nilpotent if and only if it is locally nilpotent, (ii) is equivalent to (iii).

2B. Simple objects. For each $i \in Q_{0}$, let s^{i} be the simple $\mathbb{C} \tilde{Q}$-module given by $s_{i}^{i}=\mathbb{C}$ and $s_{j}^{i}=0$ for $i \neq j$. Then s^{i} is also naturally a \mathscr{P}-module which we also denote by s^{i}.
Lemma 2.2. The set $\left\{s^{i}\right\}_{i \in Q_{0}}$ is a set of representatives of the isomorphism classes of simple objects of $\mathbb{C} \tilde{Q}$-lnMod and \mathscr{P}-lnMod. In particular, if Q is of finite type, then $\left\{s^{i}\right\}_{i \in Q_{0}}$ is a set of representatives of the isomorphism classes of simple objects of $\mathbb{C} \tilde{Q}$-mod and \mathscr{P}-mod.
Proof. Any nonzero element of a simple locally nilpotent module M generates a finite-dimensional module which must be all of M. Therefore M is finite-dimensional and hence nilpotent. Then $(\mathbb{C} \tilde{Q})_{+}$and \mathscr{P}_{+}are two-sided ideals of $\mathbb{C} \tilde{Q}$ and \mathscr{P} respectively that act nilpotently on any nilpotent module. Therefore, simple nilpotent $\mathbb{C} \tilde{Q}$-modules and \mathscr{P}-modules are the same as simple $\mathbb{C} \tilde{Q} /(\mathbb{C} \tilde{Q})_{+}$-modules and $\mathscr{P} / \mathscr{P}_{+}$-modules respectively. Since

$$
\mathbb{C} \tilde{Q} /(\mathbb{C} \tilde{Q})_{+} \cong \mathscr{P} / \mathscr{P}_{+} \cong \bigoplus_{i \in I} \mathbb{C} e_{i}
$$

the first statement follows. The second statement then follows from Proposition 2.1.

Lemma 2.3. Fix a quiver Q and let A be either $\mathbb{C} \tilde{Q}$ or $\mathscr{P}(Q)$. If $V \in A$-lnMod, then the socle of V is $\left\{v \in V \mid A_{+} \cdot v=0\right\}$.

Proof. It is clear that $\left\{v \in V \mid A_{+} \cdot v=0\right\}$ is a sum of simple subrepresentations of V and is thus contained in the socle of V. Similarly, by Lemma 2.2, any simple subrepresentation of (V, x) is contained in $\left\{v \in V \mid A_{+} \cdot v=0\right\}$.

2C. Projective covers. Recall that if A is an associative algebra and V is an A module, then a projective cover of V is a pair (P, f) such that P is a projective A-module and $f: P \rightarrow V$ is a superfluous epimorphism of A-modules. This means that $f(P)=V$ and $f\left(P^{\prime}\right) \neq V$ for all proper submodules P^{\prime} of P. We often omit the homomorphism f and simply call P a projective cover of V.

Definition 2.4. For $i \in Q_{0}$, let $p^{i}=\mathscr{P} e_{i}$.
Lemma 2.5. Assume Q is a quiver of finite type. For $i \in Q_{0},\left\{p^{i}\right\}_{i \in Q_{0}}$ is a set of representatives of the isomorphism classes of indecomposable projective \mathscr{P} modules. Furthermore, p^{i} is a projective cover of s^{i}.

Proof. This follows from [Auslander et al. 1995, Proposition 4.8].
Lemma 2.6. Assume Q is a quiver of affine (tame) or indefinite (wild) type. Then there exist $i \in Q_{0}$ for which the simple module s^{i} does not have a projective cover.

Proof. Since the module s^{i} is obviously cyclic, by [Anderson and Fuller 1992, Lemma 27.3] it has a projective cover if and only if $s^{i} \cong \mathscr{P} e / I e$ for some idempotent $e \in \mathscr{P}$ and some left ideal I contained in the Jacobson radical of \mathscr{P}. Assume this is true for some idempotent e and ideal I. Then we must have $e=e_{i}$ and then I would have to contain $\mathscr{P}_{+} e_{i}$, the ideal consisting of all paths of length at least one starting at vertex i. We identify $\mathbb{Z} Q_{0}$ with the root lattice via $\sum v_{j} j \leftrightarrow \sum v_{j} \alpha_{j}$. Let β be a minimal positive imaginary root and let i be in the support of β (i.e., $\beta=\sum \beta_{j} \alpha_{j}$ with $\beta_{i}>0$). By [Crawley-Boevey 2001, Theorem 1.2], there is a simple module T of \mathscr{P} whose dimension vector is β and so, in particular, $\operatorname{dim} T_{i} \neq 0$. Since the simple module T cannot be killed by $\mathscr{P}_{+} e_{i}$ (since then T_{i} would be a proper submodule), $\mathscr{P}_{+} e_{i}$ is not contained in the Jacobson radical of \mathscr{P}. This contradicts the fact that I is contained in the Jacobson radical.

2D. Injective hulls. Recall that if A is an associative algebra and V is an A module, then an injective hull of V is an injective A-module E that is an essential extension of V (that is, V is a submodule of E and any nonzero submodule of E intersects V nontrivially). By Baer's Theorem [1940], the category \mathscr{P}-Mod has enough injectives. In particular, the simple modules s^{i} have injective hulls. Here we give an explicit description of these injective hulls in the finite type case, and study some of their properties in the more general case.

Definition 2.7. Assume Q is a quiver of finite type. For $i \in Q_{0}$, let

$$
q^{i}=\operatorname{Hom}_{\mathbb{C}}\left(e_{i} \mathscr{P}, \mathbb{C}\right)
$$

be the dual space of the right \mathscr{P}-module $e_{i} \mathscr{P}$. Define a left \mathscr{P}-module structure on q^{i} by setting $a \cdot f(x)=f(x a)$, for $a \in \mathscr{P}, f \in q^{i}$, and $x \in e_{i} \mathscr{P}$.
Lemma 2.8. If Q is a quiver of finite type, then $\left\{q^{i}\right\}_{i \in Q_{0}}$ is a set of representatives of the isomorphism classes of indecomposable injective \mathscr{P}-modules. Furthermore, q^{i} is an injective hull of s^{i}.
Proof. If Q is of finite type, then \mathscr{P} is finite-dimensional by Proposition 2.1. The result then follows from Lemma 2.5 and a well-known fact about modules over finite-dimensional algebras; see, for example, [Lam 1999, Corollary 3.66].

For $w=\sum_{i} w_{i} i \in \mathbb{N} Q_{0}$, define the semisimple \mathscr{P}-module

$$
s^{w}=\bigoplus_{i \in Q_{0}}\left(s^{i}\right)^{\oplus w_{i}}
$$

Let q^{i} be the injective hull of s^{i} in the category \mathscr{P}-Mod (if Q is a quiver of finite type, this agrees with the notation of Definition 2.7). Then

$$
q^{w}=\bigoplus_{i \in I}\left(q^{i}\right)^{\oplus w_{i}}
$$

is the injective hull of s^{w}.
Lemma 2.9. For $w \in \mathbb{N} Q_{0}$, any finite-dimensional submodule of q^{w} is nilpotent.
Proof. Let V be a finite-dimensional submodule of q^{w}. Then we have the chain of submodules $V=\mathscr{P}_{\geq 0} V \supseteq \mathscr{P}_{\geq 1} V \supseteq \mathscr{P}_{\geq 2} V \supseteq \cdots$. Since q^{w} is an essential extension of s^{w}, we have $s^{w} \cap \mathscr{P}_{\geq n} V \neq 0$ for all $n \in \mathbb{N}$ such that $\mathscr{P}_{\geq n} V \neq 0$. Because \mathscr{P}_{1} acts trivially on s^{w}, we have $\operatorname{dim} \mathscr{P}_{\geq n+1} V<\operatorname{dim} \mathscr{P}_{\geq n} V$ for all $n \in \mathbb{N}$ such that $\mathscr{P}_{\geq n} V \neq 0$. Thus $\mathscr{P}_{\geq n} V=0$ for n large enough.

Remark 2.10. It follows from Lemma 2.9 and Proposition 7.10 that if Q is a quiver of finite type, then p^{w} (and q^{w}) is nilpotent. However, in general the p^{w} are not nilpotent.

Proposition 2.11. If Q is of affine (tame) type, then q^{w} is locally nilpotent for all $w \in \mathbb{N} Q_{0}$. If Q is connected and of indefinite (wild) type, then q^{w} is not locally nilpotent for any $w \in \mathbb{N} Q_{0}, w \neq 0$.

The following proof was explained to us by W. Crawley-Boevey.
Proof. It suffices to consider the case where $w=i$ for some $i \in Q_{0}$. We identify $\mathbb{Z} Q_{0}$ with the root lattice via $\sum v_{j} j \leftrightarrow \sum v_{j} \alpha_{j}$. We first assume that Q is connected of wild type. Let β be a minimal positive imaginary root. Thus $(\beta, j) \leq 0$
for all $j \in Q_{0}$. Suppose the support of β is all of Q_{0}. Since Q is wild, β cannot be a radical vector (see [Kac 1990, Theorem 4.3]), so (β, j) <0 for some $j \in Q_{0}$. If, on the other hand, the support of β is not all of Q_{0}, we take $j \in Q_{0}$ to be a vertex not in the support of β but connected to it by an arrow and we again have $(\beta, j)<0$. By [Crawley-Boevey 2001, Theorem 1.2], there is a simple module T for the preprojective algebra of dimension β. By [Crawley-Boevey 2000, Lemma 1], $\operatorname{Ext}^{1}\left(T, s^{j}\right)$ is nonzero. Let V be a nontrivial extension of T by s^{j}. This module must embed in the injective hull q^{j} of s^{j} and thus q^{j} cannot be locally nilpotent. Thus the result holds whenever $(\beta, i)<0$. For general i, choose a shortest path from i to some j with $(\beta, j)<0$ and consider the corresponding nilpotent module U with head s^{j} and socle s^{i}. Then, as above, there is a nontrivial extension of T by U, which must embed into q^{i}. So q^{i} is not locally nilpotent.

Now assume that Q is of tame type. Since the preprojective algebra of a tame quiver is a finitely generated \mathbb{C}-algebra, noetherian, and a polynomial identity ring [Baer et al. 1987, Theorem 6.5] (see [Ringel 1998] for a proof that the preprojective algebra considered there is the same as the one considered here), any simple module is finite-dimensional; see [McConnell and Robson 2001, Theorem 13.10.3]. By [Jategaonkar 1976, Theorem 2], the injective hull of a simple \mathscr{P}-module is artinian. In particular, finitely generated submodules of injective hulls of simple modules are artinian and noetherian. Thus they are of finite length and hence finite-dimensional. Now, the dimension vectors of simple \mathscr{P}-modules are the coordinate vectors $i \in Q_{0}$ and the minimal imaginary root δ. Since $(\delta, i)=0$ for all $i \in Q_{0}$, there are no nontrivial extensions between simples of dimension δ and the one-dimensional simples. Therefore, the composition factors of the finite-dimensional submodules of the injective hull q^{i} of s^{i} are all one-dimensional simple modules. Thus q^{i} is locally nilpotent.

Remark 2.12. In types A and D, there exist simple and explicit descriptions of the representations $q^{i}, i \in Q_{0}$, in terms of classical combinatorial objects such as Young diagrams; see [Frenkel and Savage 2003; Savage 2006b; 2006c]. This allows one to give simple and explicit descriptions of the injective modules q^{w} for any $w \in \mathbb{N} Q_{0}$ when the underlying graph of the corresponding quiver is of type A or D.

2E. Quiver grassmannians.

Definition 2.13 (quiver grassmannian). For a $\mathbb{C} Q$-module V, let $\operatorname{Gr}_{Q}(V)$ be the variety of all $\mathbb{C} Q$-submodules of V. We have a natural decomposition

$$
\operatorname{Gr}_{Q}(V)=\bigsqcup_{u \in \mathbb{N} Q_{0}} \operatorname{Gr}_{Q}(u, V), \quad \operatorname{Gr}_{Q}(u, V)=\left\{U \in \operatorname{Gr}_{Q}(V) \mid \operatorname{dim} U=u\right\}
$$

We call $\operatorname{Gr}_{Q}(u, V)$ a quiver grassmannian. Note that $\operatorname{Gr}_{Q}(u, V)$ is a closed subset of the usual grassmannian of dimension u subspaces of V and thus is a projective variety. If V is a \mathscr{P}-module, then \mathscr{P}-submodules of V are the same as $\mathbb{C} \tilde{Q}$-submodules of V. Hence one can think of $\operatorname{Gr}_{\tilde{Q}}(V)$ as the variety of all \mathscr{P} submodules of V. Therefore, we will often write $\operatorname{Gr}_{\mathscr{P}}(V)$ and $\operatorname{Gr}_{\mathscr{P}}(u, V)$ for $\operatorname{Gr}_{\tilde{Q}}(V)$ and $\operatorname{Gr}_{\tilde{Q}}(u, V)$ when V is a \mathscr{P}-module.
Example 2.14 (grassmannians). If Q is the quiver with a single vertex and no arrows, then $\mathscr{P}=\mathbb{C}$ and \mathscr{P}-modules are simply vector spaces. Then $\operatorname{Gr}_{\mathscr{P}}(u, V)=$ $\operatorname{Gr}(u, V)$ is the usual grassmannian of dimension u subspaces of V.
Example 2.15 (partial flag varieties). Let Q be the quiver with $Q_{0}=\{1,2, \ldots, n\}$ and $Q_{1}=\left\{a_{1}, \ldots, a_{n-1}\right\}$, where $s\left(a_{i}\right)=i, t\left(a_{i}\right)=i+1$ for all $i=1, \ldots, n-1$. Fix a positive integer d and set $V_{i}=\mathbb{C}^{d}$ for all $i=1, \ldots, n$. For each $1 \leq i \leq n-1$, let a_{i} act by the identification $V_{i} \cong V_{i+1}$. Then for $u \in \mathbb{N} Q_{0}$ with $u_{1} \leq u_{2} \leq \cdots \leq u_{n} \leq d$, the quiver grassmannian $\operatorname{Gr}_{\mathscr{P}}(u, V)$ is isomorphic to the partial flag variety

$$
\left\{0 \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{n} \subseteq \mathbb{C}^{d} \mid \operatorname{dim} F_{i}=u_{i}\right\}
$$

Definition 2.16. For $V \in \mathscr{P}$-Mod, we define a natural action of $\operatorname{Aut}_{\mathscr{P}} V$ on $\operatorname{Gr}_{\mathscr{F}_{\mathcal{P}}}(u, V)$ by

$$
(g, U) \mapsto g(U), \quad g \in \operatorname{Aut}_{\mathscr{P}} V, \quad U \in \operatorname{Gr}_{\mathscr{P}}(u, V)
$$

3. Quiver varieties

We briefly recall certain quiver varieties defined by Lusztig and Nakajima, referring the reader to [Lusztig 1991; Nakajima 1994; 1998] for further details, as well as the Demazure quiver varieties introduced in [Savage 2006d]. We fix a quiver $Q=\left(Q_{0}, Q_{1}\right)$ and let $\mathscr{P}=\mathscr{P}(Q)$ denote its preprojective algebra.

3A. Lusztig and Nakajima quiver varieties. For $V \in \mathscr{P}_{0}$-mod, define

$$
\operatorname{Rep}_{\tilde{Q}} V=\bigoplus_{a \in \tilde{Q}_{1}} \operatorname{Hom}_{\mathbb{C}}\left(V_{s(a), t(a)}\right)
$$

For a path $\beta=a_{l} \cdots a_{1}$ in Q and $x=\left(x_{a}\right)_{a \in \tilde{Q}_{1}} \in \operatorname{Rep}_{\tilde{Q}} V$, we define $x_{\beta}=x_{a_{l}} \cdots x_{a_{1}}$. For an element $\sum_{j} c_{j} \beta_{j} \in \mathbb{C} Q$, we define

$$
x_{\sum_{j} c_{j} \beta_{j}}=\sum_{j} c_{j} x_{\beta_{j}}
$$

Thus each $x \in \operatorname{Rep}_{\tilde{Q}} V$ defines a representation $\mathbb{C} \tilde{Q} \rightarrow \operatorname{End}_{\mathbb{C}} V$ of graded dimension $\operatorname{dim}_{Q_{0}} V$ (i.e., whose induced representation of $(\mathbb{C} Q)_{0}$ is in the isomorphism class determined by $\operatorname{dim}_{Q_{0}} V$). Furthermore, each such representation comes from an element of $x \in \operatorname{Rep}_{\tilde{Q}} V$. These two statements are simply the equivalence of
categories between the representations of the quiver and of the path algebra. We say that x is nilpotent if there exists $N>0$ such that $x_{\beta}=0$ for all paths β of length greater than N.

Definition 3.1 (Lusztig nilpotent variety). For $V \in \mathscr{P}_{0}-\bmod$, define $\Lambda(V)=\Lambda_{Q}(V)$ to be the set of all nilpotent \mathscr{P}-module structures on V compatible with its $\mathscr{P}_{0^{-}}$ module structure. More precisely,

$$
\Lambda(V)=\left\{x \in \operatorname{Rep}_{\tilde{Q}} V \mid \sum_{\substack{a \in Q_{1}, t(a)=i}} x_{a} x_{\bar{a}}-\sum_{\substack{a \in Q_{1}, s(a)=i}} x_{\bar{a}} x_{a}=0 \forall i \in Q_{0}, x \text { nilpotent }\right\} .
$$

We call $\Lambda(V)$ a Lusztig nilpotent variety.
As above, elements of $\Lambda(V)$ are in natural one-to-one correspondence with nilpotent representations $\mathscr{P} \rightarrow \operatorname{End}_{\mathbb{C}} V$ of graded dimension $\operatorname{dim}_{Q_{0}} V$.

For $V, W \in \mathscr{P}_{0}-\bmod$, let $\Lambda(V, W)=\Lambda(V) \times \operatorname{Hom}_{\mathscr{P}_{0}}(V, W)$. We say that $(x, t) \in$ $\Lambda(V, W)$ is stable if there exists no nontrivial x-invariant \mathscr{P}_{0}-submodule of V contained in $\operatorname{ker} t$. This is equivalent to the condition that $\operatorname{ker}\left(\left.(x, t)\right|_{V_{i}}\right)=0$ for all $i \in Q_{0}$ (see [Frenkel and Savage 2003, Lemma 3.4] - while the statement there is for type A, the proof carries over to the more general case). We denote the set of stable elements by $\Lambda(V, W)^{\text {st }}$. There is a natural action of GL_{V} on $\Lambda(V, W)$ and the restriction to $\Lambda(V, W)^{\text {st }}$ is free; see [Nakajima 1994; 1998]. We denote the GL_{V}-orbit through a point (x, t) by $[x, t]$.

Definition 3.2 (lagrangian Nakajima quiver variety). For $V, W \in \mathscr{P}_{0}$-mod, let $\mathfrak{L}(V, W)=\Lambda(V, W)^{\text {st }} / \mathrm{GL}_{V}$. We call $\mathfrak{L}(V, W)$ a lagrangian Nakajima quiver variety. Up to isomorphism, this variety depends only on $v=\operatorname{dim}_{Q_{0}} V$ and $w=$ $\operatorname{dim}_{Q_{0}} W$ and so we will sometimes denote it by $\mathfrak{L}(v, w)$.

Remark 3.3. The quiver varieties defined above are lagrangian subvarieties of what are usually called the Nakajima quiver varieties [Nakajima 1994; 1998].

3B. Group actions. Let $G_{\mathscr{P}}$ be the group of algebra automorphisms of \mathscr{P} that fix \mathscr{P}_{0}. The group GL_{W} acts naturally on $\operatorname{Hom}_{\mathscr{P}_{0}}(V, W)$. As above, we identify elements of $\Lambda(V)$ with nilpotent representations $\mathscr{P} \rightarrow \operatorname{End}_{\mathbb{C}} V$ of graded dimension $\operatorname{dim}_{Q_{0}} V$. Then

$$
(h,(x, t)) \mapsto(h \star x, t), \quad h \star x=x \circ h^{-1}, \quad h \in G_{\mathscr{P}},
$$

defines a $G_{\mathscr{P}}$-action on $\Lambda(V, W)$. The actions of GL_{W} and $G_{\mathscr{P}}$ commute and both commute with the GL_{V}-action. Since they also preserve the stability condition, they define a $\mathrm{GL}_{W} \times G_{\mathscr{P}}$-action on $\mathfrak{L}(v, w)$.

We can use this action to define $\mathrm{GL}_{W} \times \mathbb{C}^{*}$-actions on $\mathfrak{L}(v, w)$ as follows. Suppose a function $m: \tilde{Q}_{1} \rightarrow \mathbb{Z}$ is given such that $m(a)=-m(\bar{a})$ for all $a \in \tilde{Q}_{1}$.

Then the map $a \mapsto z^{m(a)+1} a, z \in \mathbb{C}^{*}$, extends to an automorphism of \mathscr{P} fixing \mathscr{P}_{0}. We denote this automorphism by $h_{m}(z)$. Thus h_{m} defines a group homomorphism $\mathbb{C}^{*} \rightarrow G_{\mathscr{P}}$. Then the homomorphism

$$
\begin{equation*}
\mathrm{GL}_{W} \times \mathbb{C}^{*} \rightarrow \mathrm{GL}_{W} \times G_{\mathscr{P}}, \quad(g, z) \mapsto\left(z g, h_{m}(z)\right) \tag{3-1}
\end{equation*}
$$

defines a $\mathrm{GL}_{W} \times \mathbb{C}^{*}$-action on $\mathfrak{L}(v, w)$ which we denote by \star_{m}.
We give two important examples of this action [Nakajima 2001, §2.7; 2004]. First, for each pair $i, j \in Q_{0}$ connected by at least one edge, let $b_{i j}$ denote the number of arrows in Q_{1} joining i and j. We fix a numbering $a_{1}, \ldots, a_{b_{i j}}$ of these arrows, which induces a numbering $\bar{a}_{1}, \ldots, \bar{a}_{b_{i j}}$ of the corresponding arrows in \bar{Q}_{1}. Define $m_{1}: H \rightarrow \mathbb{Z}$ by

$$
m_{1}\left(a_{p}\right)=b_{i j}+1-2 p, \quad m_{1}\left(\bar{a}_{p}\right)=-b_{i j}-1+2 p
$$

For the second action, we define $m_{2}(a)=0$ for all $a \in Q_{1}$.
3C. Demazure quiver varieties. Let \mathfrak{g} be the Kac-Moody algebra corresponding to the underlying graph of Q (the one whose Dynkin diagram is this graph) and let \mathscr{W} be its Weyl group. Recall that \mathscr{W} acts naturally on the weight lattice of \mathfrak{g}. For $u \in \mathbb{Z} Q_{0}$, we define elements of the weight and root lattice by

$$
\omega_{u}=\sum_{i \in Q_{0}} u_{i} \omega_{i}, \quad \alpha_{u}=\sum_{i \in Q_{0}} u_{i} \alpha_{i}
$$

Proposition/Definition 3.4 [Savage 2006d, Proposition 5.1]. The lagrangian Nakajima quiver variety $\mathfrak{L}(v, w)$ is a point if and only if $\omega_{w}-\alpha_{v}=\sigma\left(\omega_{w}\right)$ for some $\sigma \in \mathscr{W}$ (i.e., $\omega_{w}-\alpha_{v}$ is an extremal weight of the irreducible representation of highest weight ω_{w}, equivalently v is w-extremal in the sense of Definition 4.7). In this case, we let $\left(x^{w, \sigma}, t^{w, \sigma}\right)$ be a representative (unique up to isomorphism) of the GL_{V}-orbit corresponding to this point. So $\mathfrak{L}(v, w)=\left\{\left[x^{w, \sigma}, t^{w, \sigma}\right]\right\}$ when $\omega_{w}-\alpha_{v}=\sigma\left(\omega_{w}\right)$.
Definition 3.5 (Demazure quiver variety). For $\sigma \in \mathscr{W}$ and $v, w \in \mathbb{N} Q_{0}$, let $\mathfrak{L}_{\sigma}(v, w)$ be the subvariety consisting of all $[x, t] \in \mathfrak{L}(v, w)$ such that (x, t) is isomorphic to a subrepresentation of $\left(x^{w, \sigma}, t^{w, \sigma}\right)$. We call $\mathfrak{L}_{\sigma}(v, w)$ a Demazure quiver variety.
Remark 3.6. It follows from the uniqueness assertion in Proposition/Definition 3.4 that the $\mathrm{GL}_{W} \times G_{\mathscr{P}}$-action on $\mathfrak{L}(v, w)$ fixes $\mathfrak{L}_{\sigma}(v, w)$ for all $\sigma \in \mathscr{W}$. Thus we have an induced $\mathrm{GL}_{W} \times G_{\mathscr{\rho}}$-action on the Demazure quiver varieties.

4. Quiver varieties as quiver grassmannians

4A. Lagrangian Nakajima quiver varieties as quiver grassmannians. We will now show that certain quiver grassmannians are homeomorphic to the lagrangian Nakajima quiver varieties. We begin with a key technical proposition.

Proposition 4.1. Suppose $A=\bigoplus_{n \geq 0} A_{n}$ is a graded algebra and V is a locally nilpotent A-module. Furthermore, suppose S is a semisimple locally nilpotent A module with injective hull E.
(i) Let $\pi: E \rightarrow S$ be an A_{0}-linear retract for the canonical embedding $\iota: S \rightarrow E$ (that is, an A_{0}-linear map such that $\pi \iota=\mathrm{id}$) and let $\tau: V \rightarrow S$ be a homomorphism of A_{0}-modules. Then there exists a unique A-module homomorphism $\gamma: V \rightarrow E$ such that the following diagram commutes:

Furthermore, the map γ is injective if and only if $\left.\tau\right|_{\text {socle } V}$ is injective.
(ii) Suppose $\pi_{1}, \pi_{2}: E \rightarrow S$ are A_{0}-linear retracts for the canonical embedding $\iota: S \rightarrow E$. Then there exists a unique $\gamma \in$ Aut $_{A} E$ such that $\pi_{2}=\pi_{1} \gamma$. The map γ fixes S pointwise. Conversely, given an A_{0}-linear retract $\pi: E \rightarrow S$ and any $\gamma \in \mathrm{Aut}_{A} E$ fixing S pointwise, $\pi \gamma: E \rightarrow S$ is also a A_{0}-linear retract.

Proof. Since V is locally nilpotent, we have a filtration

$$
0=V^{(0)} \subseteq V^{(1)}=\text { socle } V \subseteq V^{(2)} \subseteq V^{(3)} \subseteq \cdots
$$

of V where $V^{(n)}=\left\{m \in V \mid A_{\geq n} \cdot m=0\right\}$. We prove by induction on n that there exists a unique homomorphism $\gamma_{n}: V^{(n)} \rightarrow E$ such that the diagram

commutes, where $\tau_{n}=\left.\tau\right|_{V^{(n)}}$. Since $V^{(1)}=$ socle V and $A_{+} \cdot$ socle $V=0$, we must have $\gamma_{1}\left(V^{(1)}\right) \subseteq S$ and so the unique choice for γ_{1} is τ_{1}. Suppose the statement holds for $n=k$. Since E is injective, there exists an A-module homomorphism $\hat{\gamma}_{k+1}$ such that the following diagram commutes:

Define γ_{k+1} by

$$
\gamma_{k+1}=\hat{\gamma}_{k+1}-\pi \circ \hat{\gamma}_{k+1}+\tau .
$$

It is then clear that the diagram (4-1) commutes (with $n=k+1$). Note also that $\left.\gamma_{k+1}\right|_{V^{(k)}}=\gamma_{k}$. We claim that γ_{k+1} is a homomorphism of A-modules. Since it is an A_{0}-module homomorphism by definition, it suffices to show it commutes with the action of A_{+}.

For $r \in A_{+}$and $m \in V^{(k+1)}$, we have $r \cdot m \in V^{(k)}$. Also, $A_{+} \cdot S=0$. Then

$$
\begin{aligned}
r \cdot \gamma_{k+1}(m) & =r \cdot\left(\hat{\gamma}_{k+1}(m)-\pi \circ \hat{\gamma}_{k+1}(m)+\tau(m)\right) \\
& =r \cdot \hat{\gamma}_{k+1}(m)=\hat{\gamma}_{k+1}(r \cdot m)=\gamma_{k}(r \cdot m) \\
& =\gamma_{k+1}(r \cdot m),
\end{aligned}
$$

as desired.
Now suppose that γ_{k+1}^{\prime} is another \mathscr{P}-module homomorphism making (4-1) commute (with $n=k+1$). By the inductive hypothesis, we have $\left.\gamma_{k+1}\right|_{V^{(k)}}=\left.\gamma_{k+1}^{\prime}\right|_{V^{(k)}}$. For all $r \in A_{+}$and $m \in V^{(k+1)}$, we have

$$
r \cdot \gamma_{k+1}(m)=\gamma_{k+1}(r \cdot m)=\gamma_{k+1}^{\prime}(r \cdot m)=r \cdot \gamma_{k+1}^{\prime}(m)
$$

Thus $\gamma_{k+1}(m)-\gamma_{k+1}^{\prime}(m)$ lies in S. Therefore

$$
\begin{aligned}
\gamma_{k+1}(m)-\gamma_{k+1}^{\prime}(m) & =\pi\left(\gamma_{k+1}(m)-\gamma_{k+1}^{\prime}(m)\right) \\
& =\pi\left(\gamma_{k+1}(m)\right)-\pi\left(\gamma_{k+1}^{\prime}(m)\right)=\tau(m)-\tau(m)=0 .
\end{aligned}
$$

The induction is complete and we obtain the desired map γ by taking the limit.
Note that $\left.\gamma\right|_{\text {socle } V}=\left.\tau\right|_{\text {socle } V}$. Since a homomorphism of modules is injective if and only if its restriction to the socle is injective, it follows that γ is injective if and only if $\left.\tau\right|_{\text {socle } V}$ is injective.

We now prove (ii). By (i), there exists a unique A-module homomorphism $\gamma: E \rightarrow E$ such that $\pi_{2}=\pi_{1} \gamma$. Similarly, there exists a unique A-module automorphism $\tilde{\gamma}: E \rightarrow E$ such that $\pi_{1}=\pi_{2} \tilde{\gamma}$ and $\gamma \tilde{\gamma}=\tilde{\gamma} \gamma=$ id by the uniqueness assertion in (i). Thus γ is an A-automorphism of E. The converse statement is trivial.

Remark 4.2. The retract $\pi: E \rightarrow S$ in Proposition 4.1 is equivalent to choosing an A_{0}-module decomposition $E=S \oplus T$. The second part of the proposition states that any two such decompositions are related by a unique A-module automorphism of E fixing S.
Definition 4.3. Let V be a \mathscr{P}_{0}-module of graded dimension v. Define $\widehat{\operatorname{Gr}}_{\mathscr{F}_{\mathcal{P}}}\left(v, q^{w}\right)$ to be the variety of injective \mathscr{P}_{0}-module homomorphisms $\gamma: V \rightarrow q^{w}$ whose image is a \mathscr{P}-submodule of q^{w}.

Theorem 4.4. Fix $v, w \in \mathbb{N} Q_{0}$. Then there is a bijective GL_{V}-equivariant algebraic map from $\widehat{\operatorname{Gr}} \mathscr{P}_{\mathcal{P}}\left(v, q^{w}\right)$ to $\Lambda(v, w)^{\text {st }}$ and a bijective algebraic map from
$\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ to $\mathfrak{L}(v, w)$. In particular, $\widehat{\operatorname{Gr}}\left(v, q^{w}\right)$ is homeomorphic to $\Lambda(v, w)^{\text {st }}$ and $\operatorname{Grg}_{\mathfrak{p}}\left(v, q^{w}\right)$ is homeomorphic to $\mathfrak{L}(v, w)$.
Remark 4.5. Lusztig [1998; 2000] has described a canonical bijection between the lagrangian Nakajima quiver varieties and grassmannian type varieties inside the projective modules p^{w} (see Section 7). In several places in the literature, it was claimed that the varieties defined by Lusztig are isomorphic (as algebraic varieties) to the lagrangian Nakajima quiver varieties. However, the authors were not aware of a proof existing in the literature. Most references for this statement were to [Lusztig 1998; 2000], where the points of the two varieties are shown to be in canonical bijection (similar to the situation in the current paper). Lusztig informed the authors that he was not aware of a proof that the varieties are isomorphic. After the appearance of an earlier version of the current paper [Savage and Tingley 2009], Shipman [2010] proved that the varieties are indeed isomorphic. From now on, we will incorporate Shipman's work, as it allows us to strengthen several results; in particular (see Corollary A. 6 in the Appendix) the map $\bar{\imath}$ in the proof below is an isomorphism of algebraic varieties.

Proof of Theorem 4.4. Fix $V \in \mathscr{P}_{0}-\bmod$ of graded dimension v and a \mathscr{P}_{0}-module homomorphism $\pi: q^{w} \rightarrow s^{w}$ that is the identity on s^{w}. We identify s^{w} with the W appearing in the definition of the quiver varieties. A point $\gamma \in \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right)$ defines an embedding of V into q^{w}, hence a \mathscr{P}-module structure on V satisfying the stability condition and so a point of $\Lambda(v, w)^{\text {st }}$. More precisely, $\gamma \in \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right)$ corresponds to the point $\left(\gamma^{-1} x^{w} \gamma, \pi \gamma\right) \in \Lambda(v, w)^{\text {st }}$, where x^{w} is the element of $\operatorname{Rep}_{\tilde{Q}} q^{w}$ corresponding to the \mathscr{P}-module q^{w}. Thus we have a map

$$
\iota: \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right) \rightarrow \Lambda(V, W)^{\mathrm{st}}
$$

which is clearly algebraic and GL_{V}-equivariant. By Proposition 4.1, ι is bijective. Passing to the quotient by GL_{V} we also obtain a bijective algebraic map $\bar{\imath}$ from $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ to $\mathfrak{L}(v, w)$.

Now, $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ and $\mathfrak{L}(v, w)$ are both projective. By, for example, [Hartshorne 1977, Theorem 4.9 and Exercise 4.4], the image of a projective variety under an algebraic map is always closed, so \bar{l} takes closed subsets to closed subsets. Since $\bar{\imath}$ is a bijection, this implies that \bar{l}^{-1} is continuous. Hence $\bar{\imath}$ is a homeomorphism. Since $\widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right)$ and $\Lambda(v, w)^{\text {st }}$ are principal G-bundles over $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ and $\mathfrak{L}(v, w)$, the map ι also induces a homeomorphism.

Remark 4.6.

(i) The role of the retract π in Proposition 4.1 is to ensure the uniqueness of γ.
(ii) When Q is of finite type, the injective module q^{w} is also projective (see Proposition 7.10) and thus Theorem 4.4 follows from [Lusztig 2000, §2.1].
(iii) The isomorphisms of Theorem 4.4 depend on the choice of the retract π : $q^{w} \rightarrow s^{w}$. By Proposition 4.1(ii), isomorphisms coming from different retracts are related by an automorphism of q^{w} fixing s^{w}.
(iv) In Lusztig's grassmannian type realization of the lagrangian Nakajima quiver varieties [Lusztig 1998; 2000], one must require that the submodules contain all paths of large enough length (this corresponds to the nilpotency condition in the definition of the quiver varieties). In the current approach using injective modules, no such condition is required due to Lemma 2.9.

4B. Demazure quiver grassmannians. As before, let \mathfrak{g} be the Kac-Moody algebra corresponding to the underlying graph of Q and let \mathscr{W} be its Weyl group with Bruhat order \preceq.

Definition 4.7. For each $w \in \mathbb{N} Q_{0}$, we define an action of \mathscr{W} on $\mathbb{Z} Q_{0}$ as follows. For $v \in \mathbb{Z} Q_{0}$ and $\sigma \in \mathscr{W}$, define $\sigma \cdot w v=u$ where u is the unique element of $\mathbb{Z} Q_{0}$ satisfying

$$
\sigma\left(\omega_{w}-\alpha_{v}\right)=\omega_{w}-\alpha_{u}
$$

We say that $v \in \mathbb{N} Q_{0}$ is w-extremal if $v \in \mathscr{W} \cdot w 0$.
Lemma 4.8. If $v, w \in \mathbb{N} Q_{0}$ and $\omega_{w}-\alpha_{v}$ is a weight of the irreducible highest weight representation of \mathfrak{g} of highest weight ω_{w} (i.e the corresponding weight space is nonzero), then $\sigma \cdot{ }_{w} v \in \mathbb{N} Q_{0}$ for all $\sigma \in \mathscr{W}$. In particular $\mathscr{W} \cdot{ }_{w} 0 \subseteq \mathbb{N} Q_{0}$.

Proof. This follows easily from the fact that ${ }^{\mathscr{W}}$ acts on the weights of highest weight irreducible representations and the weight multiplicities are invariant under this action.

Proposition 4.9. For $v \in \mathbb{N} Q_{0}$, the following statements are equivalent:
(i) v is w-extremal,
(ii) $\mathfrak{L}(v, w)$ consists of a single point,
(iii) $\operatorname{Grop}_{\mathscr{P}}\left(v, q^{w}\right)$ consists of a single point, and
(iv) there is a unique submodule of q^{w} of graded dimension v.

Proof. The equivalence of (i) and (ii) is given in [Savage 2006d, Proposition 5.1]. The equivalence of (ii), (iii) and (iv) follows from Theorem 4.4.

Definition 4.10 (Demazure quiver grassmannian). For $\sigma \in \mathscr{W}$, we let $q^{w, \sigma}$ denote the unique submodule of q^{w} of graded dimension $\sigma \cdot{ }_{w} 0$. We call $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma}\right)$ a Demazure quiver grassmannian.

Proposition 4.11. If $\sigma_{1}, \sigma_{2} \in \mathscr{W}$ with $\sigma_{1} \preceq \sigma_{2}$, then $q^{w, \sigma_{2}}$ has a unique submodule of graded dimension $\sigma_{1} \cdot w 0$ and this submodule is isomorphic to $q^{w, \sigma_{1}}$.

Proof. Since $\sigma_{1} \preceq \sigma_{2}$, we have $L_{\omega_{w}, \sigma_{1}} \subseteq L_{\omega_{w}, \sigma_{2}}$, where $L_{\omega_{w}, \sigma_{i}}$ is the Demazure module corresponding to $L_{\omega_{w}}$ (the irreducible integrable highest weight \mathfrak{g}-module with highest weight ω_{w}) and σ_{i}. It then follows from [Savage 2006d, Theorem 7.1] that $q^{w, \sigma_{1}}$ is (isomorphic to) a submodule of $q^{w, \sigma_{2}}$. Since any submodule of $q^{w, \sigma_{2}}$ is also a submodule of q^{w}, uniqueness follows directly from Proposition 4.9.

Proposition 4.12. Fix $\sigma \in \mathscr{W}$ and $v, w \in \mathbb{N} Q_{0}$. Then $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma}\right)$ is isomorphic (as an algebraic variety) to the Demazure quiver variety $\mathfrak{L}_{\sigma}(v, w)$.

Proof. This follows immediately from Definitions 3.5 and 4.10 and the description of the homeomorphism $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right) \cong \mathfrak{L}(v, w)$ given in Theorem 4.4, which is actually an isomorphism of algebraic varieties by Corollary A.6.

Remark 4.13. Note that if Q is a quiver of finite type and σ_{0} is the longest element of \mathscr{W}, then $\mathfrak{L}_{\sigma_{0}}(v, w)=\mathfrak{L}(v, w)$ and $\operatorname{Gr}\left(v, q^{w, \sigma_{0}}\right)=\operatorname{Gr}\left(v, q^{w}\right)$ for all $v, w \in \mathbb{N} Q_{0}$.

The $\left(q^{w, \sigma}\right)_{\sigma \in \mathscr{W}}$ form a directed system under the Bruhat order. Let \tilde{q}^{w} be the direct limit of this system.

Lemma 4.14. Any locally nilpotent submodule V of q^{w} is contained in \tilde{q}^{w}.
Proof. First note that for $n \in \mathbb{N}$, the submodule $\left(q^{w}\right)^{(n)}=\left\{v \in q^{w}: \mathscr{P}_{\geq n} \cdot v=0\right\}$ of q^{w} is finite-dimensional. This follows from the fact that q^{i} is a submodule of $\operatorname{Hom}_{\mathbb{C}}\left(e_{i} \mathscr{P}, \mathbb{C}\right)$ (since this is an injective module containing s^{i}), which has this property, and $q^{w}=\bigoplus_{i \in I}\left(q^{i}\right)^{\oplus w_{i}}$.

Since V is locally nilpotent, we have a filtration

$$
0=V^{(0)} \subseteq V^{(1)}=\text { socle } V \subseteq V^{(2)} \subseteq \ldots
$$

where $V^{(n)}=\left\{v \in V: \mathscr{P}_{\geq n} \cdot v=0\right\}$. Local nilpotency of V ensures that $\bigcup_{n} V^{(n)}=V$. It suffices to show that each $V^{(n)}$ is contained in \tilde{q}^{w}. Since $V^{(n)} \subseteq\left(q^{w}\right)^{(n)}$, it follows that $V^{(n)}$ is finite-dimensional. Choose a linear retract $\pi: q^{w} \rightarrow s^{w}$. By Theorem 4.4, V corresponds to a point of $\mathfrak{L}(v, w)$. Choose $\sigma \in \mathscr{W}$ sufficiently large so that the $\left(\omega_{w}-\alpha_{v}\right)$-weight space of the representation $L_{\omega_{w}}$ is contained in the Demazure module $L_{\omega_{w}, \sigma}$ (we can always do this since the weight space is finite-dimensional). Then by Proposition 4.12, we have that $V \subseteq q^{w, \sigma} \subseteq \tilde{q}^{w}$.
Theorem 4.15. We have that \tilde{q}^{w} is the injective hull of s^{w} in the category \mathscr{P}-lnMod.
Proof. Since each $q^{w, \sigma}$ is nilpotent, it follows that \tilde{q}^{w} is locally nilpotent and thus belongs to the category \mathscr{P} - \ln Mod. Furthermore, it is clear that \tilde{q}^{w} has socle s^{w} and that it is an essential extension of s^{w}. It remains to show that \tilde{q}^{w} is an injective object of $\mathscr{P}-\ln$ Mod. Suppose M and N are locally nilpotent \mathscr{P}-modules and we have a homomorphism $M \rightarrow \tilde{q}^{w}$ and an injection $M \hookrightarrow N$. Since q^{w} is injective
in the category of \mathscr{P}-modules, there exists a homomorphism $h: N \rightarrow q^{w}$ such that the following diagram commutes:

Since N is locally nilpotent, $h(N)$ is a locally nilpotent submodule of q^{w}. Therefore the map h factors through \tilde{q}^{w} by Lemma 4.14.

Corollary 4.16. We have that $\tilde{q}^{w} \cong q^{w}$ if and only if Q is of finite or affine (tame) type.

Proof. This follows immediately from Theorem 4.15 and Proposition 2.11.
We see from the above that $\left\{q^{w, \sigma}\right\}_{\sigma \in W}$ is a "rigid" filtration of \tilde{q}^{w} (rigid in the sense of the uniqueness of submodules of the given w-extremal graded dimensions). Proposition 4.12 can be seen as a representation theoretic interpretation of this filtration. It corresponds to the filtration by Demazure modules of the irreducible highest-weight representation of \mathfrak{g} of highest weight ω_{w}. If the quiver Q is of finite type, the Weyl group \mathscr{W}, and hence this filtration, is finite. Otherwise they are infinite. In the infinite case, we have a filtration of the infinite-dimensional \tilde{q}^{w} by finite-dimensional submodules $q^{w, \sigma}, \sigma \in \mathscr{W}$.

5. Group actions and graded quiver grassmannians

We now define a natural $\mathrm{GL}_{W} \times G_{\mathscr{P}}$-action on the quiver grassmannians and show that the maps of Theorem 4.4 are equivariant. We then define graded/cyclic quiver grassmannians and show they are isomorphic to the graded/cyclic quiver varieties of Nakajima [2001, §4.1; 2004, §4].

5A. $\mathbf{G L}_{\boldsymbol{w}} \times \boldsymbol{G}_{\mathscr{P}}$-action and equivariance. Let $\mathrm{GL}_{w}=\mathrm{GL}_{s^{w}}$ and recall that $G_{\mathscr{P}}$ is the group of algebra automorphisms of \mathscr{P} that fix \mathscr{P}_{0} pointwise. For a \mathscr{P}-module V and $h \in G_{\mathscr{P}}$, denote by ${ }^{h} V$ the \mathscr{P}-module with action given by $(a, v) \mapsto h^{-1}(a)$. v. Now, fix $(g, h) \in \mathrm{GL}_{w} \times G_{\mathscr{P}}$ and a \mathscr{P}_{0}-module retract $\pi: q^{w} \rightarrow s^{w}$. By Proposition 4.1, there exists a unique \mathscr{P}-module homomorphism $\gamma_{(g, h)}:{ }^{h} q^{w} \rightarrow q^{w}$ such that the following diagram commutes:

The uniqueness assertion of Proposition 4.1 ensures that $\gamma_{(g, h)}$ is bijective with inverse $\gamma_{\left(g^{-1}, h^{-1}\right)}$. Note that since the action of \mathscr{P}_{0} on ${ }^{h} q^{w}$ and q^{w} is the same, $\gamma_{(g, h)}$ can be considered as a \mathscr{P}_{0}-automorphism of q^{w}. This defines a group homomorphism $\mathrm{GL}_{w} \times G_{\mathscr{P}} \rightarrow \mathrm{GL}_{q^{w}},(g, h) \mapsto \gamma_{(g, h)}$. In other words, it defines an action of $\mathrm{GL}_{w} \times G_{\mathscr{P}}$ on q^{w} by \mathscr{P}_{0}-module automorphisms. This in turn defines an action on $\widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right)$ and $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ given by

$$
\begin{array}{ll}
(g, h) \star \gamma=\gamma_{(g, h)} \gamma, & \gamma \in \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right) \\
(g, h) \star U=\gamma_{(g, h)}(U), & U \in \operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right) .
\end{array}
$$

Proposition 5.1. The isomorphisms of Theorem 4.4 are $\mathrm{GL}_{w} \times G_{\mathscr{P}}$-equivariant.
Proof. Let $(x, t) \mapsto \gamma(x, t)$ be the $\operatorname{map} \Lambda(v, w)^{\text {st }} \xrightarrow{\cong} \widehat{\operatorname{Gr}}_{\gamma_{\mathcal{P}}}\left(v, q^{w}\right)$ of Theorem 4.4. Fix $(x, t) \in \Lambda(v, w)^{\text {st }}$. Recall that for $(g, h) \in \mathrm{GL}_{w} \times G_{\mathscr{P}}$, we have $(g, h) \star(x, t)=$ $(h \star x, g t)$. Let V^{x} be the \mathscr{P}-module corresponding to x. Then ${ }^{h} V^{x}$ is the \mathscr{P}-module corresponding to $h \star x$. We have the commutative diagram

It follows that the diagram

commutes. By the uniqueness statement in Proposition 4.1, we have

$$
\gamma((g, h) \star(x, t))=\gamma(h \star x, g t)=\gamma_{(g, h)} \gamma(x, t)=(g, h) \star \gamma(x, t)
$$

which proves that the map $\Lambda(v, w)^{\text {st }} \cong \widehat{\operatorname{Gr}} \mathrm{T}_{\mathscr{P}}\left(v, q^{w}\right)$ is equivariant. The remaining claim follows from the fact that the isomorphism $\mathfrak{L}(v, w) \cong \operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ is obtained from the map $\Lambda(v, w)^{\text {st }} \xrightarrow{\cong} \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right)$ by taking quotients by GL_{V}.

5B. Graded/cyclic quiver grassmannians. Fix an abelian reductive subgroup A and a group homomorphism $\rho: A \rightarrow \mathrm{GL}_{w} \times G_{\mathscr{P}}$, defining an action of A on q^{w} by \mathscr{P}_{0}-module automorphisms. The weight space corresponding to $\lambda \in \operatorname{Hom}\left(A, \mathbb{C}^{*}\right)$ is

$$
\begin{equation*}
q^{w}(\lambda) \stackrel{\text { def }}{=}\left\{v \in q^{w} \mid \rho(a)(v)=\lambda(a) v \quad \forall a \in A\right\} . \tag{5-1}
\end{equation*}
$$

We define

$$
\begin{aligned}
\operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{A} & =\left\{U \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right) \mid \rho(a) \star U=U \quad \forall a \in A\right\}, \\
\operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right)^{A} & =\operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{A} \cap \operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right) .
\end{aligned}
$$

Then for all $U \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{A}$, we have the map $\rho_{U}: A \rightarrow \mathrm{GL}_{U},\left.a \mapsto \rho(a)\right|_{U}$. In other words, ρ_{U} is a representation of A in the category of \mathscr{P}_{0}-modules. If ρ_{1} and ρ_{2} are two such representations, we write $\rho_{1} \cong \rho_{2}$ when ρ_{1} and ρ_{2} are isomorphic. That is, $\rho_{1} \cong \rho_{2}$ for $\rho_{i}: A \rightarrow \mathrm{GL}_{U_{i}}$, if there exists a \mathscr{P}_{0}-module isomorphism $\xi: U_{1} \rightarrow U_{2}$ such that $\rho_{2}=\xi \rho_{1} \xi^{-1}$, where $\xi \rho_{U} \xi^{-1}$ denotes the homomorphism $a \mapsto \xi \rho_{U}(a) \xi^{-1}$. Then, for $\rho_{1}: A \rightarrow \mathrm{GL}_{U}, U$ a \mathscr{P}_{0}-module, we define

$$
\operatorname{Gr}_{\mathscr{P}}\left(\rho_{1}, q^{w}\right)^{A}=\left\{U^{\prime} \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{A} \mid \rho_{U^{\prime}} \cong \rho_{1}\right\}
$$

Note that $\operatorname{Gr}_{\mathscr{P}}\left(\rho_{1}, q^{w}\right)^{A}$ depends only on the isomorphism class of ρ_{1}.
Recall the action of $\mathrm{GL}_{w} \times G_{\mathscr{P}}$ on $\Lambda(V, W)^{\text {st }}$ and $\mathfrak{L}(v, w)$ described in Section 3B (where we now identify W with $s^{w}, w=\operatorname{dim}_{Q_{0}} W$). Define

$$
\begin{aligned}
\mathfrak{L}(w)^{A} & =\{[x, t] \in \mathfrak{L}(v, w) \mid \rho(a) \star[x, t]=[x, t] \forall a \in A\}, \\
\mathfrak{L}(v, w)^{A} & =\mathfrak{L}(w)^{A} \cap \mathfrak{L}(v, w) .
\end{aligned}
$$

Fix a point $[x, t] \in \mathfrak{L}(v, w)^{A}$. For every $a \in A$, there exists a unique $\rho_{1}(a) \in \mathrm{GL}_{V}$ such that

$$
\begin{equation*}
\rho(a) \star(x, t)=\rho_{1}^{-1}(a) \cdot(x, t) \tag{5-2}
\end{equation*}
$$

and the map $\rho_{1}: A \rightarrow \mathrm{GL}_{V}$ is a homomorphism. Let $\mathfrak{L}\left(\rho_{1}, w\right)^{A} \subseteq \mathfrak{L}(v, w)^{A}$ be the set of A-fixed points y such that (5-2) holds for some representative (x, t) of y.

Theorem 5.2. Let V be a \mathscr{P}_{0}-module and $\rho_{1}: A \rightarrow \mathrm{GL}_{V}$ a group homomorphism. Then $\operatorname{Gr}_{\mathscr{P}}\left(\rho_{1}, q^{w}\right)^{A}$ is isomorphic to $\mathfrak{L}\left(\rho_{1}, w\right)^{A}$ as an algebraic variety.

Proof. Choose $[x, t] \in \mathfrak{L}\left(\rho_{1}, w\right)^{A}$. Let $U=\gamma(x, t)(V)$ be the corresponding point of $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)^{A}$. We want to show that $\rho_{1} \cong \rho_{U}$. Let $(g, h) \in A$ and consider the commutative diagram

Then $\rho_{U}(g, h)=\left.\gamma_{(g, h)}\right|_{U}$. Note that $\gamma(x, t)$ is an isomorphism when its codomain is restricted to U and we denote by $\gamma(x, t)^{-1}$ the inverse of this restriction. We
claim that $\rho_{1}=\tilde{\rho} \stackrel{\text { def }}{=} \gamma(x, t)^{-1}\left(\left.\gamma_{(g, h)}\right|_{U}\right) \gamma(x, t)$. It suffices to show that

$$
(h \star x, g t)=(g, h) \star(x, t)=\tilde{\rho}^{-1} \cdot(x, t)=\left(\tilde{\rho}^{-1} x \tilde{\rho}, t \tilde{\rho}\right) .
$$

We have

$$
\begin{aligned}
\tilde{\rho}^{-1} x & =\gamma(x, t)^{-1}\left(\left.\gamma_{(g, h)}\right|_{U}\right)^{-1} \gamma(x, t) x \\
& =\gamma(x, t)^{-1}\left(\left.\gamma_{(g, h)}\right|_{U}\right)^{-1} x \gamma(x, t) \\
& =\gamma(x, t)^{-1}(h \star x)\left(\left.\gamma_{(g, z)}\right|_{U}\right)^{-1} \gamma(x, t) \\
& =(h \star x) \gamma(x, t)^{-1}\left(\left.\gamma_{(g, z)}\right|_{U}\right)^{-1} \gamma(x, t) \\
& =(h \star x) \tilde{\rho}^{-1},
\end{aligned}
$$

so $\tilde{\rho}^{-1} x \tilde{\rho}=h \star x$. Similarly, $t \tilde{\rho}=t \gamma(x, t)^{-1}\left(\left.\gamma_{(g, h)}\right|_{U}\right) \gamma(x, t)=g t$ and we are done.

We now restrict to a special case of this construction that has been studied by Nakajima. In particular, we define $\mathrm{GL}_{w} \times \mathbb{C}^{*}$-actions on the quiver grassmannians corresponding to the actions on quiver varieties described in Section 3B.

For any function $m: \tilde{Q}_{1} \rightarrow \mathbb{Z}$ such that $m(a)=-m(\bar{a})$ for all $a \in \tilde{Q}_{1}$, the group homomorphism (3-1) defines a $\mathrm{GL}_{w} \times \mathbb{C}^{*}$-action on $q^{w}, \widehat{\operatorname{Gr}} \mathscr{P}_{\mathcal{P}}\left(v, q^{w}\right)$ and $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ which we again denote by \star_{m}. If A is any abelian reductive subgroup of $\mathrm{GL}_{w} \times \mathbb{C}^{*}$, we can consider the weight decompositions as above. For the remainder of this section, we fix $m=m_{2}$ (see Section 3B). That is, $m(a)=0$ for all $a \in Q_{1}$. We also write \star for \star_{m}. Recall the definition (5-1) of $q^{w}(\lambda)$. For $x \in \mathscr{P}_{n}, v \in q^{w}(\lambda)$ and $(g, z) \in A$, we have

$$
\rho(g, z)(x \cdot v)=\gamma_{\left(z g, h_{m}(z)\right)}(x \cdot v)=z^{-n} x \cdot \gamma_{\left(z g, h_{m}(z)\right)}(v)=z^{-n} \lambda(g, z) v
$$

Thus $\mathscr{P}_{n}: q^{w}(\lambda) \rightarrow q^{w}\left(l^{-n} \lambda\right)$, where we write $l^{-n} \lambda$ for the element $L(-n) \otimes \lambda$ of $\operatorname{Hom}\left(A, \mathbb{C}^{*}\right)$ and $L(-n)=\mathbb{C}$ with \mathbb{C}^{*}-module structure given by $z \cdot v=z^{-n} v$.

Now let (g, z) be a semisimple element of A and define

$$
\begin{aligned}
\operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{(g, z)} & =\left\{U \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right) \mid(g, z) \star U=U\right\}, \\
\operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right)^{(g, z)} & =\operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{(g, z)} \cap \operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right) .
\end{aligned}
$$

The module q^{w} has an eigenspace decomposition with respect to the action of (g, z) given by

$$
q^{w}=\bigoplus_{a \in \mathbb{C}^{*}} q^{w}(a), \quad q^{w}(a)=\left\{v \in q^{w} \mid(g, z) \star v=a v\right\}
$$

Then $\operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{(g, z)}$ consists of those $U \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)$ that are direct sums of subspaces of the weight spaces $q^{w}(a), a \in \mathbb{C}^{*}$. Thus, each $U \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{(g, z)}$ inherits a weight
space decomposition, or \mathbb{C}^{*}-grading,

$$
U=\bigoplus_{a \in \mathbb{C}^{*}} U(a), \quad U(a)=\{v \in U \mid(g, z) \star v=a v\}
$$

As above we see that $\mathscr{P}_{n}: q^{w}(a) \rightarrow q^{w}\left(a z^{-n}\right)$ and $\mathscr{P}_{n}: U(a) \rightarrow U\left(a z^{-n}\right)$. We also regard s^{w} as an A-module via the composition

$$
A \hookrightarrow \mathrm{GL}_{w} \times \mathbb{C}^{*} \xrightarrow{\text { projection }} \mathrm{GL}_{w}=\mathrm{GL}_{s^{w}}
$$

Thus s^{w} also inherits a \mathbb{C}^{*}-grading as above. For a $Q_{0} \times \mathbb{C}^{*}$-graded vector space $V=\bigoplus_{\substack{i \in Q_{0}, a \in \mathbb{C}^{*}}} V_{i, a}$, define the graded dimension (or character)
$\quad \operatorname{char} V=\sum_{\substack{i \in Q_{0}, a \in \mathbb{C} *}}\left(\operatorname{dim} V_{i, a}\right) X_{i, a} \in \mathbb{N}\left[X_{i, a}\right]_{i \in Q_{0}, a \in \mathbb{C}^{*}}$.
Recall that a \mathscr{P}_{0}-module is equivalent to an Q_{0}-graded vector space. Thus q^{w}, s^{w}, and elements of $\operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{(g, z)}$ have natural $Q_{0} \times \mathbb{C}^{*}$-gradings and we can consider their graded dimensions.
Definition 5.3 (graded/cyclic quiver grassmannian). For a graded dimension $\mathbf{d} \in \mathbb{N}\left[X_{i, a}\right]_{i \in Q_{0}, a \in \mathbb{C}^{*}}$, define

$$
\operatorname{Gr}_{\mathscr{P}}\left(\mathbf{d}, q^{w}\right)^{(g, z)}=\left\{U \in \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right)^{(g, z)} \mid \operatorname{char} U=\mathbf{d}\right\} .
$$

We call $\operatorname{Gr}_{\mathscr{P}}\left(\mathbf{d}, q^{w}\right)^{(g, z)}$ a cyclic quiver grassmannian if z is a root of unity, and a graded quiver grassmannian otherwise.
Theorem 5.4. Let V be a $Q_{0} \times \mathbb{C}^{*}$-graded vector space. For a semisimple element $(g, z) \in \mathrm{GL}_{w} \times \mathbb{C}^{*}$, the graded/cyclic quiver grassmannian $\mathrm{Gr}_{\mathscr{P}}\left(\operatorname{char} V, q^{w}\right)^{(g, z)}$ is isomorphic to the lagrangian graded/cylic quiver variety $\mathfrak{L}\left(V, s^{w}\right)$ defined in [Nakajima 2004, §4], where s ${ }^{w}$ is considered as a $Q_{0} \times \mathbb{C}^{*}$-graded vector space as above.

Proof. This follows immediately from Proposition 5.1 since $\mathfrak{L}^{\bullet}(V, W)$ is simply the set of points of $\mathfrak{L}(V, W)$ fixed by a semisimple element (g, z) of $\mathrm{GL}_{w} \times \mathbb{C}^{*}$.
Remark 5.5. Nakajima [2004] assumes the quiver Q is of $A D E$ type. However, the definitions in $\S 4$ of that article extend naturally to the more general case.

6. Geometric construction of representations of Kac-Moody algebras and compatibility with nested quiver grassmannians

Since certain quiver grassmannians are isomorphic to lagrangian Nakajima quiver varieties, one can translate Nakajima's geometric construction of representations of Kac-Moody algebras into the quiver grassmannian setting. Having done this, one sees that the quiver grassmannian construction is compatible with a natural nesting
of these varieties - a property which seems to have no analog in the setting of quiver varieties. One benefit of this nesting compatibility is that it allows one to always work with quiver grassmannians in finite-dimensional modules, even though the injective objects q^{w} themselves may be infinite-dimensional (outside of finite type).

For the remainder of this section, we fix a Kac-Moody algebra \mathfrak{g} with symmetric Cartan matrix and let \mathscr{W} be its Weyl group. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver whose underlying graph is the Dynkin graph of \mathfrak{g} and let $\mathscr{P}=\mathscr{P}(Q)$ denote the corresponding path algebra. We also fix a \mathscr{P}_{0}-module retract $\pi: q^{w} \rightarrow s^{w}$, allowing us to identify $\operatorname{Gr}_{\mathscr{p}}\left(v, q^{w}\right)$ with $\mathfrak{L}(v, w)$ as in Theorem 4.4.

6A. Constructible functions. Recall that for a topological space X, a constructible set is a subset of X that is obtained from open sets by a finite number of the usual set theoretic operations (complement, union and intersection). A constructible function on X is a function that is a finite linear combination of characteristic functions of constructible sets. For a complex variety X, let $M(X)$ denote the \mathbb{C}-vector space of constructible functions on X with values in \mathbb{C}. We define $M(\varnothing)=0$. For a continuous map $p: X \rightarrow X^{\prime}$, define

$$
p^{*}: M\left(X^{\prime}\right) \rightarrow M(X), \quad\left(p^{*} f^{\prime}\right)(x)=f^{\prime}(p(x)), \quad f^{\prime} \in M\left(X^{\prime}\right)
$$

and

$$
p_{!}: M(X) \rightarrow M\left(X^{\prime}\right), \quad\left(p_{!} f\right)(x)=\sum_{a \in \mathbb{Q}} a \chi\left(p^{-1}(x) \cap f^{-1}(a)\right), \quad f \in M(X),
$$

where χ denotes the Euler characteristic of cohomology with compact support.
Lemma 6.1. Suppose X is a constructible subset of a topological space Y and let $\iota: X \hookrightarrow Y$ be the inclusion map. Then
(i) $\iota^{*}(f)=\left.f\right|_{X}$ for $f \in M(Y)$, and
(ii) for $f \in M(X)$, $!(f)$ is the extension of f by zero. That is,

$$
u_{!}(f)(x)= \begin{cases}f(x) & \text { if } x \in X \\ 0 & \text { if } x \in Y \backslash X\end{cases}
$$

The proof is straightforward and will be omitted.
6B. Raising and lowering operators. Let V be a \mathscr{P}-module. For $u, u^{\prime} \in \mathbb{N} Q_{0}$ with $u \leq u^{\prime}$ (i.e., $u=\sum u_{i} i$ and $u^{\prime}=\sum u_{i}^{\prime} i$ where $u_{i} \leq u_{i}^{\prime}$ for all $i \in Q_{0}$), define

$$
\begin{equation*}
\operatorname{Gr}_{\mathscr{P}}\left(u, u^{\prime}, V\right)=\left\{\left(U, U^{\prime}\right) \in \operatorname{Gr}_{\mathscr{P}}(u, V) \times \operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V\right) \mid U \subseteq U^{\prime}\right\}, \tag{6-1}
\end{equation*}
$$

and let

$$
\operatorname{Gr}_{\mathscr{P}}(u, V) \stackrel{\pi_{1}}{\leftarrow} \operatorname{Gr}_{\mathscr{P}}\left(u, u^{\prime}, V\right) \xrightarrow{\pi_{2}} \operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V\right)
$$

be the natural projections given by $\pi_{1}\left(U, U^{\prime}\right)=U$ and $\pi_{2}\left(U, U^{\prime}\right)=U^{\prime}$. For each $i \in I$, define the operators

$$
\begin{array}{cll}
\hat{E}_{i}: & M\left(\operatorname{Gr}_{\mathscr{P}}(u+i, V)\right) \rightarrow M\left(\operatorname{Gr}_{\mathscr{P}}(u, V)\right), \quad \hat{E}_{i} f=\left(\pi_{1}\right)_{!}\left(\pi_{2}^{*} f\right), \tag{6-2}\\
\hat{F}_{i}: & M\left(\operatorname{Gr}_{\mathscr{P}}(u, V)\right) \rightarrow M\left(\operatorname{Gr}_{\mathscr{P}}(u+i, V)\right), \quad \hat{F}_{i} f=\left(\pi_{2}\right)!\left(\pi_{1}^{*} f\right),
\end{array}
$$

where the maps π_{1} and π_{2} are as in (6-1) with $u^{\prime}=u+i$.
6C. Compatibility with nested quiver grassmannians. Suppose $V_{1} \subseteq V_{2}$ are \mathscr{P} modules. Then we have the commutative diagram

where $\iota_{u}, \iota_{u^{\prime}}$ and $\iota_{u, u^{\prime}}$ denote the canonical inclusions. Denote by \hat{E}_{i}^{j} and \hat{F}_{i}^{j}, $j=1,2$, the operators defined in (6-2) for $V=V_{j}$.

Proposition 6.2. We have
(i) $\hat{E}_{i}^{1}=\iota_{u}^{*} \circ \hat{E}_{i}^{2} \circ\left(\iota_{u+i}\right)!$, and
(ii) $\hat{F}_{i}^{1}=\iota_{u+i}^{*} \circ \hat{F}_{i}^{2} \circ\left(\iota_{u}\right)!$.

Proof. Let $u^{\prime}=u+i$. By linearity, it suffices to prove the first statement for functions of the form 1_{X} where X is a constructible subset of $\operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V_{1}\right)$. Then $\left(\iota_{u^{\prime}}\right)!1_{X}=1_{X}$, where on the right-hand side, X is viewed as a subset of $\operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V_{2}\right)$. We have

$$
\left(\pi_{2}^{2}\right)^{*} \circ\left(\iota_{u^{\prime}}\right)!1_{X}=\left(\pi_{2}^{2}\right)^{*} 1_{X}=1_{\left(\pi_{2}^{2}\right)^{-1}(X)}
$$

and

$$
\left(\iota_{u, u^{\prime}}\right)!\left(\pi_{2}^{1}\right)^{*} 1_{X}=\left(\iota_{u, u^{\prime}}\right)!1_{\left(\pi_{2}^{1}\right)^{-1}(X)}=1_{\left(\pi_{2}^{1}\right)^{-1}(X)}
$$

Since $X \subseteq \operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V_{1}\right)$, we have $\left(\pi_{2}^{2}\right)^{-1}(X)=\left(\pi_{2}^{1}\right)^{-1}(X)$ and thus

$$
\left(\pi_{2}^{2}\right)^{*} \circ\left(\iota_{u^{\prime}}\right)!1_{X}=\left(\iota_{u, u^{\prime}}\right)!\circ\left(\pi_{2}^{1}\right)^{*} 1_{X}
$$

Therefore

$$
\begin{aligned}
\iota_{u}^{*} \circ \hat{E}_{i}^{2} \circ\left(\iota_{u^{\prime}}\right)!1_{X} & =\iota_{u}^{*} \circ\left(\pi_{1}^{2}\right)!\circ\left(\pi_{2}^{2}\right)^{*} \circ\left(\iota_{u^{\prime}}\right)!1_{X} \\
& =\iota_{u}^{*} \circ\left(\pi_{1}^{2}\right)!\circ\left(\iota_{u, u^{\prime}}\right)!\circ\left(\pi_{2}^{1}\right)^{*} 1_{X} \\
& =\iota_{u}^{*} \circ\left(\pi_{1}^{2} \circ \iota_{u, u^{\prime}}\right)!\circ\left(\pi_{2}^{1}\right)^{*} 1_{X} \\
& =\iota_{u}^{*} \circ\left(\iota_{u} \circ \pi_{1}^{1}\right)!\circ\left(\pi_{2}^{1}\right)^{*} 1_{X} \\
& =\iota_{u}^{*} \circ\left(\iota_{u}\right)!\circ\left(\pi_{1}^{1}\right)!\circ\left(\pi_{2}^{1}\right)^{*} 1_{X} \\
& =\left(\pi_{1}^{1}\right)!\circ\left(\pi_{2}^{1}\right)^{*} 1_{X} \\
& =\hat{E}_{i}^{1} 1_{X}
\end{aligned}
$$

where the sixth equality holds since $\iota_{u}^{*} \circ\left(\iota_{u}\right)$! is the identity on $M\left(\operatorname{Gr}_{\mathscr{P}}\left(u, V_{1}\right)\right)$.
We now prove the second statement. Again, it suffices to prove it for functions of the form 1_{X} where X is a constructible subset of $\operatorname{Gr}_{\mathscr{P}}\left(u, V_{1}\right)$. Now, for $U \in$ $\operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V_{1}\right)$, we have

$$
\begin{aligned}
\iota_{u^{\prime}}^{*} \circ \hat{F}_{i}^{2} \circ\left(\iota_{u}\right)!1_{X}(U) & =\iota_{u^{\prime}}^{*} \circ\left(\pi_{2}^{2}\right)!\circ\left(\pi_{1}^{2}\right)^{*} \circ\left(\iota_{u}\right)!1_{X}(U) \\
& =\iota_{u^{\prime}}^{*} \circ\left(\pi_{2}^{2}\right)!\circ\left(\pi_{1}^{2}\right)^{*} 1_{X}(U) \\
& =\iota_{u^{\prime}}^{*} \circ\left(\pi_{2}^{2}\right)!\circ 1_{\left(\pi_{1}^{2}\right)^{-1}(X)}(U) \\
& =\chi\left(\left(\pi_{2}^{2}\right)^{-1}(U) \cap\left(\pi_{1}^{2}\right)^{-1}(X)\right) \\
& =\chi\left(\left(\pi_{2}^{1}\right)^{-1}(U) \cap\left(\pi_{1}^{1}\right)^{-1}(X)\right) \\
& =\left(\pi_{2}^{1}\right)!1_{\left(\pi_{1}^{1}\right)^{-1}(X)}(U) \\
& =\left(\pi_{2}^{1}\right)!\circ\left(\pi_{1}^{1}\right)^{*} 1_{X}(U) \\
& =\hat{F}_{i}^{1} 1_{X}(U)
\end{aligned}
$$

where the fifth equality holds since $U \in \operatorname{Gr}_{\mathscr{P}}\left(u^{\prime}, V_{1}\right)$.
It follows from Proposition 4.12 that the Demazure quiver grassmannians stabilize in the following sense.
Corollary 6.3. For $u, w \in \mathbb{N} Q_{0}$, there exists $\sigma \in \mathscr{W}$, such that $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma^{\prime}}\right)$ is isomorphic to $\mathfrak{L}(v, w)$ for all $\sigma^{\prime} \succeq \sigma$.
Proof. It follows from [Savage 2006d, Proposition 6.1] that there exists a $\sigma \in \mathscr{W}$ such that $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma}\right) \cong \mathfrak{L}_{\sigma}(v, w)=\mathfrak{L}(v, w)$. It follows from the same proposition that for $\sigma^{\prime} \succeq \sigma$, we have $\mathfrak{L}_{\sigma^{\prime}}(v, w)=\mathfrak{L}(v, w)$. The result then follows from Proposition 4.12.
Corollary 6.4. For $v, w \in \mathbb{N} Q_{0}$, let $\sigma^{v, w} \in \mathscr{W}$ be minimal among the $\sigma \in \mathscr{W}$ such that $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma}\right)$ is isomorphic to $\mathfrak{L}(v, w)$. Then $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma}\right) \cong \operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ for all $\sigma \succeq \sigma^{v, w}$. In particular, every submodule of the injective module q^{w} of graded dimension v is a submodule of $q^{w, \sigma}$ for $\sigma \succeq \sigma^{v, w}$.

Remark 6.5. In the case when \mathfrak{g} is of finite type, we can take $\sigma=\sigma_{0}$, where σ_{0} is the longest element of the Weyl group. Then $\operatorname{Gr}_{\mathscr{\rho}}\left(v, q^{w}\right)$ is isomorphic to $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma_{0}}\right)$ for all $v \in \mathbb{N} Q_{0}$.

Lemma 6.6. Suppose $w, v, v^{\prime} \in \mathbb{N} Q_{0}$ with $v \leq v^{\prime}$ and $\sigma \in \mathscr{W}$. Then the diagram

commutes, where the vertical arrows are the natural inclusions. If $\sigma \succeq \sigma^{v, w}, \sigma^{v^{\prime}, w}$, then the vertical arrow are isomorphisms.

Proof. This follows immediately from Corollary 6.4.
6D. Quiver grassmannian realization of representations. For each $i \in I$, define

$$
\begin{equation*}
H_{i}: M\left(\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)\right) \rightarrow M\left(\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)\right), \quad H_{i} f=(w-C v)_{i} f \tag{6-3}
\end{equation*}
$$

where C is the Cartan matrix of \mathfrak{g}. Also, in the special case when $V=q^{w}$ for some w, we denote the operators \hat{E}_{i} and \hat{F}_{i} by E_{i} and F_{i} respectively.
Proposition 6.7. The operators E_{i}, F_{i}, H_{i} define an action of \mathfrak{g} on

$$
\underset{u}{\bigoplus} M\left(\operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right)\right) .
$$

Proof. Throughout this proof, for varieties X and Y, the notation $X \cong Y$ means that X and Y are homeomorphic. In [Nakajima 1994, §10], Nakajima defines the variety

$$
\mathfrak{F}(v, w ; i) \stackrel{\text { def }}{=} \tilde{\mathfrak{F}}(v, w ; i) / \mathrm{GL}_{V}
$$

where
$\tilde{\mathfrak{F}}(v, w ; i)=\left\{(x, t, Z) \mid(x, t) \in \Lambda(V, W)^{\text {st }}, Z \subseteq V, x(Z) \subseteq Z, \operatorname{dim} Z=v-i\right\}$.
Using the homeomorphism of Theorem 4.4, we have
$\left.\tilde{\mathfrak{F}}(v, w ; i) \cong\left\{(\gamma, Z) \mid \gamma \in \widehat{\operatorname{Gr}_{\mathscr{P}}}\left(v, q^{w}\right), Z \subseteq V, \operatorname{dim} Z=v-i, \mathscr{P} \cdot \gamma(Z)\right) \subseteq \gamma(Z)\right\}$.
The map from the set

$$
\left\{(\gamma, Z) \mid \gamma \in \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right), Z \subseteq V, \operatorname{dim} Z=v-i, \mathscr{P} \cdot \gamma(Z) \subseteq \gamma(Z)\right\}
$$

into $\operatorname{Gr}_{\mathscr{P} P}\left(v-i, v, q^{w}\right)$ given by

$$
(\gamma, Z) \mapsto(\gamma(Z), \gamma(V))
$$

is a principal GL_{V}-bundle and thus

$$
\begin{aligned}
\mathfrak{F}(v, & w ; i) \\
& =\tilde{\mathfrak{F}}(v, w ; i) / \mathrm{GL}_{V} \\
& \cong\left\{(\gamma, Z) \mid \gamma \in \widehat{\operatorname{Gr}}_{\mathscr{P}}\left(v, q^{w}\right), Z \subseteq V, \operatorname{dim} Z=v-i, \mathscr{P} \cdot \gamma(Z) \subseteq \gamma(Z)\right\} / \mathrm{GL}_{V} \\
& =\operatorname{Gr}_{\mathscr{P}}\left(u-i, u, q^{w}\right)
\end{aligned}
$$

Therefore, the following diagram commutes:

where the maps π_{1} and π_{2} appearing on the bottom row are described in $\S 10$ of [Nakajima 1994]. The result then follows immediately from Proposition 10.12 of the same reference.

Let $U(\mathfrak{g})^{-}$be the lower half of the enveloping algebra of \mathfrak{g}. Let α be the constant function on $\operatorname{Gr}_{\mathscr{P}}\left(0, q^{w}\right)$ with value 1 and let

$$
\begin{align*}
L_{w} & \stackrel{\text { def }}{=} U(\mathfrak{g})^{-} \cdot \alpha \subseteq \bigoplus_{v} M\left(\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)\right), \tag{6-5}\\
L_{w}(v) & \stackrel{\operatorname{def}}{=} M\left(\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)\right) \cap L_{w} . \tag{6-6}
\end{align*}
$$

Theorem 6.8. The operators E_{i}, F_{i}, H_{i} preserve L_{w} and L_{w} is isomorphic to the irreducible highest-weight integrable representation of \mathfrak{g} with highest weight ω_{w}. The summand $L_{w}(v)$ in the decomposition $L_{w}=\bigoplus_{v} L_{w}(v)$ is a weight space with weight $\omega_{w}-\alpha_{v}$.

Proof. In light of the commutative diagram (6-4), the result follows immediately from [Nakajima 1994, Theorem 10.14].

Remark 6.9. It follows from Proposition 6.2 and Lemma 6.6 that we can always work with $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w, \sigma}\right)$ for large enough σ. Therefore, we can avoid quiver grassmannians in infinite-dimensional injectives if desired.

From the realization of irreducible highest-weight representations given in Theorem 6.8, we obtain some natural automorphisms of these representations. Recall from Definition 2.16 the natural action of $\operatorname{Aut}_{\mathscr{P}} q^{w}$ on $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ for any v given by $(g, V) \mapsto g(V)$. This induces an action on $\bigoplus_{v} M\left(\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)\right)$ given by

$$
(g, f) \mapsto f \circ g^{-1}, \quad f \in \bigoplus_{v} M\left(\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)\right), \quad g \in \operatorname{Aut}_{\mathscr{P}} q_{w}
$$

This action clearly commutes with the operators E_{i} and F_{i} and thus induces an action on L_{w}. Such actions do not seem to be clear in the original quiver variety picture. Similar actions were considered in [Lusztig 2000, §1.22] in the case when Q is of finite type.

7. Relation to Lusztig's grassmannian realization

Lusztig [1998; 2000] gave a grassmannian type realization of the lagrangian Nakajima quiver varieties inside the projective modules p^{w}. In the case when Q is a quiver of finite type, the injective hulls of the simple objects are also projective covers (of different simple objects). Thus, Lusztig's and our construction are closely related. In this section, we extend Lusztig's construction to give a realization of the Demazure quiver varieties. We then give a precise relationship between his construction and ours in the finite type case. We will see that the natural identification of the two constructions corresponds to the Chevalley involution on the level of representations of the Lie algebra \mathfrak{g} associated to our quiver.

7A. Lusztig's construction and Demazure quiver varieties.

Definition 7.1. For $V \in \mathscr{P}$-Mod, define

$$
\tilde{\operatorname{Gr}}_{\mathscr{P}}(V)=\left\{U \in \operatorname{Gr}_{\mathscr{P}}(V) \mid \mathscr{P}_{n} \cdot V \subseteq U \text { for some } n \in \mathbb{N}\right\}
$$

In other words, $\tilde{\operatorname{Gr}}_{\mathscr{P}}(V)$ consists of all \mathscr{P}-submodules of V such that the quotient V / U is nilpotent. For $u \in \mathbb{N} Q_{0}$, we define

$$
\tilde{\operatorname{Gr}}_{\mathscr{P}}(u, V)=\left\{U \in \tilde{\operatorname{Gr}}_{r_{P}}(V) \mid \operatorname{dim}_{Q_{0}}(V / U)=u\right\}
$$

Proposition 7.2. Fix $v, w \in \mathbb{N} Q_{0}$. Then $\mathfrak{L}(v, w)$ is isomorphic to $\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right)$ as an algebraic variety.

Proof. This is proven in Corollary 3.2 of [Shipman 2010]. Note that, in that article, a different stability condition is used in the definition of $\mathfrak{L}(v, w)$. However, it is well-known that the different stability conditions give rise to isomorphic varieties. We refer the reader to [Nakajima 1996] for a discussion of various stability conditions.

Proposition 7.3. For $v \in \mathbb{N} Q_{0}$, the following statements are equivalent:
(i) v is w-extremal.
(ii) $\mathfrak{L}(v, w)$ consists of a single point.
(iii) $\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right)$ consists of a single point.
(iv) There is a unique \mathscr{P}-submodule V of p^{w} of codimension v such that p^{w} / V is nilpotent.

Proof. The equivalence of (i) and (ii) is given in [Savage 2006d, Proposition 5.1]. The equivalence of (ii) and (iii) follows from Proposition 7.2. Finally, the equivalence of (iii) and (iv) follows directly from Definition 7.1
Definition 7.4. For $\sigma \in \mathscr{W}$, we let $p^{w, \sigma}$ denote the unique submodule of p^{w} of graded codimension $\sigma \cdot w 0$ and define

$$
\tilde{\operatorname{Gr}}_{Q, \sigma}\left(v, p^{w}\right)=\left\{V \in \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right) \mid p^{w, \sigma} \subseteq V\right\}
$$

Proposition 7.5. Fix $\sigma \in \mathscr{W}$ and $v, w \in \mathbb{N} Q_{0}$. Then $\tilde{\operatorname{Gr}}_{Q, \sigma}\left(v, p^{w}\right)$ is isomorphic to the Demazure quiver variety $\mathfrak{L}_{\sigma}(v, w)$.
Proof. This follows directly from Definitions 3.5 and 7.4 and Proposition 7.2.
7B. Relation between the projective and injective constructions. We now suppose Q is of finite type and let \mathfrak{g} be the Kac-Moody algebra whose Dynkin diagram is the underlying graph of Q. Let σ_{0} be the longest element of the Weyl group of \mathfrak{g}. There is a unique Dynkin diagram automorphism θ such that $-w_{0}\left(\alpha_{i}\right)=\alpha_{\theta(i)}$. Extend θ to an automorphism of the root lattice $\bigoplus_{i \in Q_{0}} \mathbb{Z} \alpha_{i}$ by linearly extending the map $\alpha_{i} \mapsto \alpha_{\theta(i)}$. We also have an involution of $\mathbb{N} Q_{0}$ given by $w \mapsto \theta(w)$ where $\theta(w)_{i}=w_{\theta(i)}$.
Definition 7.6 (Chevalley involution). The Chevalley involution ζ of \mathfrak{g} is given by

$$
\zeta\left(E_{i}\right)=F_{i}, \quad \zeta\left(F_{i}\right)=E_{i}, \quad \zeta\left(H_{i}\right)=-H_{i} .
$$

For any representation V of \mathfrak{g}, let ${ }^{\zeta} V$ be the representation with the same underlying vector space as V, but with the action of \mathfrak{g} twisted by ζ. More precisely, the \mathfrak{g}-action on ${ }^{\zeta} V$ is given by $(a, v) \mapsto \zeta(a) \cdot v$.

For a dominant weight λ of \mathfrak{g}, let L_{λ} denote the corresponding irreducible highest-weight representation and let v_{λ} be a highest weight vector. Recall that an isomorphism of irreducible representations is uniquely determined by the image of v_{λ}. The following lemma is well known.
Lemma 7.7. The lowest weight of L_{λ} is $\sigma_{0}(\lambda)=-\theta(\lambda)$. If $v_{-\theta(\lambda)}$ denotes a lowest weight vector, then the map $v_{\lambda} \mapsto v_{-\theta(\lambda)}$ induces an isomorphism ${ }^{\zeta} L_{\lambda} \cong L_{\theta(\lambda)}$.
Lemma 7.8. We have $\operatorname{dim}_{Q_{0}} p^{w}=\operatorname{dim}_{Q_{0}} q^{w}=\sigma_{0} \cdot w$.
Proof. Since the lowest weight of the representation $L(w)$ is $\sigma_{0}(w)$, the result follows immediately from Theorem 4.4 and Proposition 7.2.
Lemma 7.9. For $w \in \mathbb{N} Q_{0}$, we have $\sigma_{0} \cdot w 0=\sigma_{0} \cdot \theta(w)$. Furthermore, $\theta\left(\sigma_{0} \cdot w 0\right)=$ $\sigma_{0} \cdot w 0$.
Proof. Let $v=\sigma_{0} \cdot w$. Then $\alpha_{v}=\omega_{w}-\sigma_{0}\left(\omega_{w}\right)=\omega_{w}+\theta\left(\omega_{w}\right)$ and the results follow easily from the fact that $\theta^{2}=\mathrm{Id}$.
Proposition 7.10. If Q is a quiver of finite type and $w \in \mathbb{N} Q_{0}$, then $p^{w} \cong q^{\theta(w)}$.

Proof. Since $p^{w}=\bigoplus_{i \in Q_{0}}\left(p^{i}\right)^{\oplus w_{i}}$ and $q^{w}=\bigoplus_{i \in Q_{0}}\left(q^{i}\right)^{\oplus w_{i}}$, it suffices to prove the result for w equal to i for arbitrary $i \in Q_{0}$.

Let $v=\sigma_{0} \cdot{ }_{w} 0=\operatorname{dim}_{Q_{0}} p^{i}$. In the geometric realization of crystals via quiver varieties [Saito 2002], the point $\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right) \cong \mathfrak{L}(v, w)$ corresponds to the lowest weight element of the crystal $B_{\omega_{i}}$. The lowest weight of the representation $L_{\omega_{i}}$ is $\sigma_{0}\left(\omega_{i}\right)=-\omega_{\theta(i)}$. Therefore, it follows from the geometric description of the crystals that $\operatorname{dim}_{Q_{0}}$ socle $p^{i}=\theta(i)$. By Lemmas 7.8 and 7.9 , we have

$$
\operatorname{dim}_{Q_{0}} p^{i}=\sigma_{0} \cdot w 0=\sigma_{0} \cdot \theta(w) 0=\operatorname{dim}_{Q_{0}} q^{\theta(i)}
$$

Thus, by Proposition 4.9, we have $p^{i} \cong q^{\theta(i)}$.
Corollary 7.11. Suppose Q is a quiver of finite type, $w \in \mathbb{N} Q_{0}$, and $\sigma \in \mathscr{W}$. Then $q^{w, \sigma} \cong p^{\theta(w), \sigma \sigma_{0}}$.

Proof. Let $\tau=\sigma \sigma_{0}$ (and so $\sigma=\tau \sigma_{0}$). In light of Propositions 4.9, 7.3 and 7.10 and Definitions 4.10 and 7.4, it suffices to prove that the codimension of $q^{w, \sigma}$ in q^{w} is $\tau \cdot \theta(w) 0$.

Let $y=\tau \cdot \theta(w) 0$, so that $\tau(\theta(w))=\theta(w)-\alpha_{y}$, that is,

$$
\alpha_{y}=\theta(w)-\tau(\theta(w))
$$

Next, let

$$
v=\operatorname{dim}_{Q_{0}} q^{w}=\sigma_{0} \cdot w \quad \text { and } \quad u=\operatorname{dim}_{Q_{0}} q^{w, \sigma}=\sigma \cdot w 0
$$

which implies $\sigma_{0}(w)=w-\alpha_{v}$ and $\sigma(w)=w-\alpha_{u}$. Then

$$
\sum_{i \in Q_{0}}\left(v_{i}-u_{i}\right) \alpha_{i}=-\sigma_{0}(w)+\sigma(w)=\theta(w)+\tau \sigma_{0}(w)=\theta(w)-\tau(\theta(w))
$$

and so $y=v-u$ as desired.
Proposition 7.12. If Q is a quiver of finite type, then

$$
\operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right) \cong \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(\left(\sigma_{0} \cdot{ }_{w} 0\right)-u, p^{\theta(w)}\right)
$$

Proof. Let (x, V) be the quiver representation corresponding to the \mathscr{P}-module q^{w} and let $v=\operatorname{dim}_{Q_{0}} V=\sigma_{0} \cdot w$. By Proposition 7.10, (x, V) also corresponds to the \mathscr{P}-module $p^{\theta(w)}$. By Remark 2.10, $\mathscr{P}_{n} \cdot p^{w}=0$ for sufficiently large n. Therefore

$$
\begin{aligned}
\operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right) & =\{U \subseteq V \mid x(U) \subseteq U, \operatorname{dim} U=u\} \\
& =\left\{U \subseteq V \mid x(U) \subseteq U, \operatorname{dim}_{Q_{0}} V / U=v-u\right\} \\
& \cong \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v-u, p^{\theta(w)}\right) .
\end{aligned}
$$

By Proposition 7.12, we have

$$
\begin{align*}
& \mathfrak{L}(u, w)<\stackrel{\phi_{w}(u)}{=} \operatorname{Gr}_{\mathscr{P}}\left(u, q^{w}\right) \cong \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(\left(\sigma_{0} \cdot{ }_{w} 0\right)-u, p^{\theta(w)}\right) \tag{7-1}\\
& \xrightarrow[\psi_{\theta(w)}\left(\left(\sigma_{0} \cdot w\right)-u\right)]{=} \mathfrak{L}\left(\left(\sigma_{0} \cdot{ }_{w} 0\right)-u, \theta(w)\right),
\end{align*}
$$

where $\phi_{w}(u)$ is the isomorphism of Theorem 4.4 (see Corollary A.6), and $\psi_{\theta(w)}(u)$ is the isomorphism of Proposition 7.2. Define

$$
\begin{aligned}
& \phi_{w}=\left(\phi_{w}(u)\right)_{u}: \operatorname{Gr}_{\mathscr{P}}\left(q^{w}\right) \rightarrow \bigsqcup_{u} \mathfrak{L}(u, w), \\
& \psi_{w}=\left(\psi_{w}(u)\right)_{u}: \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(p^{w}\right) \rightarrow \bigsqcup_{u} \mathfrak{L}(u, w) .
\end{aligned}
$$

Theorem 7.13. The isomorphism $\psi_{\theta(w)} \circ \phi_{w}^{-1}$ induces the involution ζ. More precisely, we have $a \circ\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*}=\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*} \circ \zeta(a), a \in \mathfrak{g}$, as operators on L_{w}, where $\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*}$ denotes the pullback of functions along $\psi_{\theta(w)} \circ \phi_{w}^{-1}$.

Proof. For $u, u^{\prime} \in \mathbb{N} Q_{0}$, define

$$
\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(u, u^{\prime}, p^{\theta(w)}\right)=\left\{\left(U, U^{\prime}\right) \in \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(u, p^{\theta(w)}\right) \times \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(u^{\prime}, p^{\theta(w)}\right) \mid U^{\prime} \subseteq U\right\}
$$

The map $\psi_{\theta(w)}$ induces a isomorphism

$$
\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(u, u^{\prime}, p^{\theta(w)}\right) \xrightarrow{\cong} \mathfrak{F}\left(u, \theta(w) ; u-u^{\prime}\right)
$$

for all $u, u^{\prime} \in \mathbb{N} Q_{0}$ and we will also denote this collection of isomorphisms by $\psi_{\theta(w)}$. Then we have the commutative diagram

where $\Xi=\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(\left(\sigma_{0} \cdot{ }_{w} 0\right)-u,\left(\sigma_{0} \cdot{ }_{w} 0\right)-(u-i), p^{\theta(w)}\right)$. It follows that, for f in $\bigoplus_{u} M(\mathfrak{L}(u, w))$, we have

$$
\begin{aligned}
& E_{i} \circ\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*}(f)=\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*} \circ F_{i}(f), \\
& F_{i} \circ\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*}(f)=\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*} \circ E_{i}(f)
\end{aligned}
$$

Furthermore, $\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*}$ maps the constant function on $\mathfrak{L}(0, w)$ with value one to the constant function on $\mathfrak{L}\left(\sigma_{0} \cdot{ }_{w} 0, \theta(w)\right)$ with value one. The result follows.
Remark 7.14. Note that the middle isomorphism in (7-1) depends on our identification of q^{w} and $p^{\theta(w)}$. The isomorphism $\phi_{w}(u)$ also depends on our fixed retract $\pi: q^{w} \rightarrow s^{w}$. By Proposition 4.1, all such choices are related by the natural action of Autop q^{w}; see Definition 2.16. A similar group action appears in the identification of $\tilde{\operatorname{Gr}}_{\mathscr{P} P}\left(\left(\sigma_{0} \cdot{ }_{w} 0\right)-u, p^{\theta(w)}\right)$ with $\mathfrak{L}\left(\left(\sigma_{0} \cdot{ }_{w} 0\right)-u, \theta(w)\right)$; see [Lusztig 2000]. Via the isomorphisms $\phi_{w}(u)$, the group $\operatorname{Aut}_{\mathcal{P}} q^{w}$ acts on the space of constructible functions on $\bigsqcup_{v} \mathfrak{L}(v, w)$ and L_{w} is a subspace of the space of invariant functions. The pullback $\left(\psi_{\theta(w)} \circ \phi_{w}^{-1}\right)^{*}$ acting on the space of invariant functions is independent of the choice of π and the chosen identification of q^{w} with $p^{\theta(w)}$.

Appendix: Isomorphisms of varieties

After an earlier version of the current paper was released [Savage and Tingley 2009], Shipman proved [2010] that the grassmannian type varieties $\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right)$ defined by Lusztig are indeed isomorphic as algebraic varieties to the lagrangian Nakajima quiver varieties $\mathfrak{L}(v, w)$. A simple "duality" map gives an isomorphism of varieties between the quiver grassmannian $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ and $\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right)$. The purpose of this appendix is to describe this map precisely, and from there to conclude that the map from $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ to $\mathfrak{L}(v, w)$ constructed in Theorem 4.4 is in fact an isomorphism of algebraic varieties. An alternative approach (not pursued here) would be an injective version of the argument of [Shipman 2010] that would directly show that $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ is isomorphic to $\mathfrak{L}(v, w)$.

Let $i \in Q_{0}$ and fix a nondegenerate bilinear pairing

$$
\langle\cdot, \cdot\rangle_{s^{i}}: s^{i} \times s^{i} \rightarrow \mathbb{C}
$$

and a retract $\pi: q^{i} \rightarrow s^{i}$ of \mathscr{P}_{0}-modules. For a path $\beta=a_{1} \cdots a_{n}$ in the double quiver \tilde{Q}, let

$$
\begin{equation*}
\beta^{\vee}=\bar{a}_{n} \cdots \bar{a}_{1} \tag{A-1}
\end{equation*}
$$

be the reverse path. Extending by linearity, this defines an algebra anti-involution of $\mathbb{C} \tilde{Q}$ that induces an algebra anti-involution of \mathscr{P}. Then define a bilinear pairing

$$
\begin{equation*}
\langle\cdot, \cdot\rangle: \tilde{q}^{i} \times p^{i} \rightarrow \mathbb{C}, \quad\left\langle v, \beta e_{i}\right\rangle=\left\langle\pi\left(\beta^{\vee} v\right), e_{i}\right\rangle_{s^{i}} \tag{A-2}
\end{equation*}
$$

For $n \geq 0$, let

$$
\begin{aligned}
p_{n}^{i} & =\mathscr{P}_{\geq n} e_{i} \subseteq p^{i} \\
q_{n}^{i} & =\left\{v \in q^{i} \mid \mathscr{P}_{n} \cdot v=0\right\}=\left\{v \in \tilde{q}^{i} \mid \mathscr{P}_{n} \cdot v=0\right\},
\end{aligned}
$$

where the last equality holds since \tilde{q}^{i} contains all nilpotent elements of q^{i} by Lemma 4.14. Note that each q_{n}^{i} is finite-dimensional. We have the obvious inclusions

$$
q_{0}^{i} \subseteq q_{1}^{i} \subseteq q_{2}^{i} \subseteq \cdots,
$$

and it follows from Lemma 4.14 and Theorem 4.15 that $\tilde{q}^{i}=\bigcup_{n=0}^{\infty} q_{n}^{i}$. It is clear from the definitions that

$$
\left\langle q_{n}^{i}, p_{n+1}^{i}\right\rangle=0, \quad \text { for all } n \geq 0
$$

Thus we have the induced bilinear pairing on $q_{n}^{i} \times\left(p^{i} / p_{n+1}^{i}\right)$.
Lemma A.1. The pairing

$$
\langle\cdot, \cdot\rangle: q_{n}^{i} \times\left(p^{i} / p_{n+1}^{i}\right) \rightarrow \mathbb{C}
$$

is nondegenerate.
Proof. Since q_{n}^{i} is nilpotent of degree n and has socle s^{i}, for all nonzero $v \in q_{n}^{i}$, there exists $\beta \in \mathscr{P}_{\leq n}$ such that $0 \neq \beta \cdot v \in s^{i}$. Then $\left\langle v, \beta^{\vee} e_{i}\right\rangle \neq 0$. Thus, it suffices to show that $\operatorname{dim}\left(p^{i} / p_{n+1}^{i}\right) \leq \operatorname{dim} q_{n}^{i}$. Now, $\left(p^{i} / p_{n+1}^{i}\right)^{*}$ is naturally a right \mathscr{P}-module. Via the anti-involution (A-1), this becomes a nilpotent left \mathscr{P}-module with socle s^{i}. Therefore, by Proposition 4.1, $\left(p^{i} / p_{n+1}^{i}\right)^{*}$ injects into \tilde{q}^{i}. It is clear that the image of this injection is contained in q_{n}^{i} and thus the result follows since q_{n}^{i} is finite-dimensional.

We then have the following corollary, whose proof is immediate.
Corollary A.2. The pairing (A-2) is nondegenerate. Furthermore,

$$
\tilde{q}^{i} \cong\left\{f \in \operatorname{Hom}_{\mathbb{C}}\left(p^{i}, \mathbb{C}\right)|f|_{p_{n}^{i}}=0 \text { for } n \gg 0\right\}
$$

as \mathscr{P}-modules, where the \mathscr{P}-module structure on the right-hand side is given by

$$
\left(\beta \cdot f^{\prime}\right)(v)=f^{\prime}\left(\beta^{\vee} \cdot v\right)
$$

for $\beta \in \mathscr{P}, v \in p^{i}$, and $f^{\prime} \in\left\{f \in \operatorname{Hom}_{\mathbb{C}}\left(p^{i}, \mathbb{C}\right)|f|_{p_{n}^{i}}=0\right.$ for $\left.n \gg 0\right\}$.
Remark A.3. One should compare this result to Definition 2.7 and Lemma 2.8 in finite type.

Recall that, for $w=\sum_{i} w_{i} i \in \mathbb{N} Q_{0}$, we have

$$
s^{w}=\bigoplus_{i}\left(s^{i}\right)^{\oplus w_{i}}, \quad p^{w}=\bigoplus_{i}\left(p^{i}\right)^{\oplus w_{i}}, \quad \tilde{q}^{w}=\bigoplus_{i}\left(\tilde{q}^{i}\right)^{\oplus w_{i}} .
$$

By declaring distinct summands to be orthogonal, we have a nondegenerate bilinear pairing

$$
\begin{equation*}
\langle\cdot, \cdot\rangle: \tilde{q}^{w} \times p^{w} \rightarrow \mathbb{C} \tag{A-3}
\end{equation*}
$$

For a subspace U of \tilde{q}^{w}, define the subspace

$$
U^{\perp}=\left\{v \in p^{w} \mid\left\langle v^{\prime}, v\right\rangle=0 \text { for all } v^{\prime} \in U\right\}
$$

of p^{w}. Similarly, for a subspace U of p^{w}, define the subspace U^{\perp} of \tilde{q}^{w}.
Proposition A.4. For $U \in \operatorname{Gr}_{\mathscr{P}}\left(v, \tilde{q}^{w}\right)$, we have $U^{\perp} \in \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right)$, and the map

$$
\operatorname{Gr}_{\mathscr{P}}\left(v, \tilde{q}^{w}\right) \rightarrow \tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right), \quad U \mapsto U^{\perp}
$$

is an isomorphism of algebraic varieties.
Proof. It follows from the definition of the pairing (A-3) that U is a submodule of \tilde{q}^{w} if and only if U^{\perp} is a submodule of p^{w}. Also, note that $U \subseteq \tilde{q}^{w}$ is finite-dimensional if and only if $U \subseteq q_{n}^{w}$ for some n. Therefore, it follows from Lemma A. 1 that the maps $U \mapsto U^{\perp}$ (in either direction) are mutually inverse bijections between $\operatorname{Gr}_{\mathscr{P}}\left(v, \tilde{q}^{w}\right)$ and $\tilde{\operatorname{Gr}}_{\mathscr{P}}\left(v, p^{w}\right)$. Since these maps are clearly algebraic, the result follows.
Theorem A.5. The quiver grassmannian $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ is isomorphic to the lagrangian Nakajima quiver variety $\mathfrak{L}(v, w)$ as an algebraic variety.

Proof. This follows from the isomorphisms of algebraic varieties

$$
\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)=\operatorname{Gr}_{\mathscr{P}}\left(v, \tilde{q}^{w}\right) \cong \tilde{\operatorname{Gr}} \mathbf{r}_{\mathscr{P}}\left(v, p^{w}\right) \cong \mathfrak{L}(v, w)
$$

Recall that all finite-dimensional submodules of q^{w} are submodules of \tilde{q}^{w}. This gives the first equality. The first isomorphism is Proposition A. 4 and the second is Proposition 7.2.

Corollary A.6. The map $\bar{\imath}: \operatorname{Gr} \mathscr{P}\left(v, q^{w}\right) \rightarrow \mathfrak{L}(v, w)$ of Theorem 4.4 is an isomorphism of algebraic varieties.
Proof. By Theorem A.5, we know that $\operatorname{Gr}_{\mathscr{P}}\left(v, q^{w}\right)$ and $\mathfrak{L}(v, w)$ are isomorphic as algebraic varieties. Since $\bar{\imath}$ is a bijective algebraic map by Theorem 4.4, the result follows by [Kaliman 2005, Lemma 1] (while the result there is stated for irreducible varieties, the proof applies to reducible ones - the only difference is that the normalization is now a disjoint union of components).

Acknowledgements

The authors would like to thank B. Leclerc who, after hearing some of the preliminary results of the current paper, suggested extending these results to graded/cyclic versions. They are also grateful to W. Crawley-Boevey for many helpful discussions and for suggesting the proof of Proposition 2.11. Furthermore, they would like to thank P. Etingof, A. Hubery, H. Nakajima, M. Roth, O. Schiffmann, and I. Shipman for useful conversations and S.-J. Kang, Y.-T. Oh, and the Korean

Mathematical Society for the invitation to participate in the 2008 Global KMS International Conference in Jeju, Korea, where the ideas in this paper were originally developed.

References

[Anderson and Fuller 1992] F. W. Anderson and K. R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics 13, Springer, New York, 1992. MR 94i:16001 Zbl 0765.16001
[Auslander et al. 1995] M. Auslander, I. Reiten, and S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995. MR 98e: 16011 Zbl 0834.16001
[Baer 1940] R. Baer, "Abelian groups that are direct summands of every containing abelian group", Bull. Amer. Math. Soc. 46 (1940), 800-806. MR 2,126i Zbl 0024.14902
[Baer et al. 1987] D. Baer, W. Geigle, and H. Lenzing, "The preprojective algebra of a tame hereditary Artin algebra", Comm. Algebra 15:1-2 (1987), 425-457. MR 88i:16036 Zbl 0612.16015
[Caldero and Chapoton 2006] P. Caldero and F. Chapoton, "Cluster algebras as Hall algebras of quiver representations", Comment. Math. Helv. 81:3 (2006), 595-616. MR 2008b:16015 ZBL 1119.16013
[Caldero and Keller 2006] P. Caldero and B. Keller, "From triangulated categories to cluster algebras. II", Ann. Sci. École Norm. Sup. (4) 39:6 (2006), 983-1009. MR 2008m: 16031 Zbl 1115.18301
[Caldero and Reineke 2008] P. Caldero and M. Reineke, "On the quiver Grassmannian in the acyclic case", J. Pure Appl. Algebra 212:11 (2008), 2369-2380. MR 2009f:14102 Zbl 1153.14032
[Crawley-Boevey 1996] W. Crawley-Boevey, "On homomorphisms from a fixed representation to a general representation of a quiver", Trans. Amer. Math. Soc. 348:5 (1996), 1909-1919. MR 96i: 16022 Zbl 0855.16014
[Crawley-Boevey 2000] W. Crawley-Boevey, "On the exceptional fibres of Kleinian singularities", Amer. J. Math. 122:5 (2000), 1027-1037. MR 2001f:14009 Zbl 1001.14001
[Crawley-Boevey 2001] W. Crawley-Boevey, "Geometry of the moment map for representations of quivers", Compositio Math. 126:3 (2001), 257-293. MR 2002g:16021 Zbl 1037.16007
[Deng et al. 2008] B. Deng, J. Du, B. Parshall, and J. Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs 150, American Mathematical Society, Providence, RI, 2008. MR 2457938 Zbl 1154.17003
[Derksen et al. 2009] H. Derksen, J. Weyman, and A. Zelevinsky, "Quivers with potentials and their representations, II: applications to cluster algebras", preprint, 2009. arXiv 0904:0676
[Fedotov 2010] S. Fedotov, "Framed moduli and Grassmannians of submodules", preprint, 2010. arXiv 1010.4761
[Frenkel and Savage 2003] I. B. Frenkel and A. Savage, "Bases of representations of type A affine Lie algebras via quiver varieties and statistical mechanics", Int. Math. Res. Not. 2003:28 (2003), 1521-1547. MR 2004j:17010 Zbl 1023.17010
[Geiss et al. 2006] C. Geiss, B. Leclerc, and J. Schröer, "Verma modules and preprojective algebras", Nagoya Math. J. 182 (2006), 241-258. MR 2007m:17037 Zbl 1137.17021
[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977. MR 57 \#3116 Zbl 0367.14001
[Jategaonkar 1976] A. V. Jategaonkar, "Certain injectives are Artinian", pp. 128-139 in Noncommutative ring theory (Kent, OH, 1975), Lecture Notes in Math. 545, Springer, Berlin, 1976. MR 55 \#5688 Zbl 0343.16021
[Kac 1990] V. G. Kac, Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990. MR 92k:17038 Zbl 0716.17022
[Kaliman 2005] S. Kaliman, "On a theorem of Ax", Proc. Amer. Math. Soc. 133:4 (2005), 975-977. MR 2006a:14104 Zbl 1060.14002
[Lam 1999] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics 189, Springer, New York, 1999. MR 99i:16001 Zbl 0911.16001
[Lusztig 1991] G. Lusztig, "Quivers, perverse sheaves, and quantized enveloping algebras", J. Amer. Math. Soc. 4:2 (1991), 365-421. MR 91m:17018 Zbl 0738.17011
[Lusztig 1998] G. Lusztig, "On quiver varieties", Adv. Math. 136:1 (1998), 141-182. MR 2003f: 16016 Zbl 0915.17008
[Lusztig 2000] G. Lusztig, "Remarks on quiver varieties", Duke Math. J. 105:2 (2000), 239-265. MR 2002b:20072 Zbl 1017.20040
[McConnell and Robson 2001] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, rev. ed., Graduate Studies in Mathematics 30, American Mathematical Society, Providence, RI, 2001. MR 2001i:16039 Zbl 0980.16019
[Nakajima 1994] H. Nakajima, "Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras", Duke Math. J. 76:2 (1994), 365-416. MR 95i:53051 Zbl 0826.17026
[Nakajima 1996] H. Nakajima, "Varieties associated with quivers", pp. 139-157 in Representation theory of algebras and related topics (Mexico City, 1994), edited by R. Bautista et al., CMS Conf. Proc. 19, Amer. Math. Soc., Providence, RI, 1996. MR 97m:16022 Zbl 0870.16008
[Nakajima 1998] H. Nakajima, "Quiver varieties and Kac-Moody algebras", Duke Math. J. 91:3 (1998), 515-560. MR 99b:17033 Zbl 0970.17017
[Nakajima 2001] H. Nakajima, "Quiver varieties and finite-dimensional representations of quantum affine algebras", J. Amer. Math. Soc. 14:1 (2001), 145-238. MR 2002i:17023 Zbl 0981.17016
[Nakajima 2003] H. Nakajima, "Reflection functors for quiver varieties and Weyl group actions", Math. Ann. 327:4 (2003), 671-721. MR 2004k:16036 Zbl 1060.16017
[Nakajima 2004] H. Nakajima, "Quiver varieties and t-analogs of q-characters of quantum affine algebras", Ann. of Math. (2) 160:3 (2004), 1057-1097. MR 2006k:17029 Zbl 1140.17015
[Reineke 2008] M. Reineke, "Framed quiver moduli, cohomology, and quantum groups", J. Algebra 320:1 (2008), 94-115. MR 2009d:16021 Zbl 1153.14033
[Reiten 1997] I. Reiten, "Dynkin diagrams and the representation theory of algebras", Notices Amer. Math. Soc. 44:5 (1997), 546-556. MR 98i:16014 Zbl 0940.16009
[Ringel 1998] C. M. Ringel, "The preprojective algebra of a quiver", pp. 467-480 in Algebras and modules (Geiranger, 1996), vol. 2, edited by I. Reiten et al., CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998. MR 99i:16031 Zbl 0928.16012
[Saito 2002] Y. Saito, "Crystal bases and quiver varieties", Math. Ann. 324:4 (2002), 675-688. MR 2004a:17023 Zbl 1041.17018
[Savage 2006a] A. Savage, "Finite-dimensional algebras and quivers", pp. 313-320 in Encylopedia of Mathematical Physics, vol. 2, edited by J.-P. Françoise et al., Elsevier, Oxford, 2006.
[Savage 2006b] A. Savage, "Geometric and combinatorial realizations of crystal graphs", Algebr. Represent. Theory 9:2 (2006), 161-199. MR 2238365 Zbl 1138.17006
[Savage 2006c] A. Savage, "A geometric realization of spin representations and Young diagrams from quiver varieties", J. Algebra 297:1 (2006), 186-207. MR 2206854 Zbl 1141.17004
[Savage 2006d] A. Savage, "Quiver varieties and Demazure modules", Math. Ann. 335:1 (2006), 31-46. MR 2008j:16052 Zbl 1101.17010
[Savage and Tingley 2009] A. Savage and P. Tingley, "Quiver grassmannians, quiver varieties and the preprojective algebra", preprint, 2009. arXiv 0909.3746v1
[Schofield 1992] A. Schofield, "General representations of quivers", Proc. London Math. Soc. (3) 65:1 (1992), 46-64. MR 93d:16014 Zbl 0795.16008
[Shipman 2010] I. Shipman, "On representation schemes and grassmanians of finite dimensional algebras and a construction of Lusztig", Math. Res. Lett. 17:5 (2010), 969-976.
[Szántó 2009] C. Szántó, "On the cardinalities of Kronecker quiver grassmannians", preprint, 2009. arXiv 0903.1928
[Wolf 2009] S. Wolf, "The Hall algebra and the composition monoid", preprint, 2009. arXiv0907. 1106

Received June 23, 2010. Revised January 21, 2011.

```
Alistair Savage
Department of Mathematics and Statistics
University of Ottawa
585 King Edward Avenue
Ottawa, ON K1N 6N5
CANADA
alistair.savage@uottawa.ca
http://www.mathstat.uottawa.ca/~asavag2
Peter Tingley
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
CAMbRIDGE, MA 02139-4307
United States
ptingley@math.mit.edu
http://www-math.mit.edu/~ptingley/
```


NONAUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS

Martin Schechter

We study the existence of periodic solutions for a second order nonautonomous dynamical system. We make no assumptions on the gradient other than continuity. This allows both sublinear and superlinear problems. We also study the existence of nonconstant solutions.

1. Introduction

We consider the following problem. One wishes to solve

$$
\begin{equation*}
-\ddot{x}(t)=\nabla_{x} V(t, x(t)), \tag{1-1}
\end{equation*}
$$

where

$$
\begin{equation*}
x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right) \tag{1-2}
\end{equation*}
$$

is a map from $I=[0, T]$ to \mathbb{R}^{n} such that each component $x_{j}(t)$ is a periodic function in H^{1} with period T, and the function $V(t, x)=V\left(t, x_{1}, \ldots, x_{n}\right)$ is continuous from \mathbb{R}^{n+1} to \mathbb{R} with

$$
\begin{equation*}
\nabla_{x} V(t, x)=\left(\partial V / \partial x_{1}, \ldots, \partial V / \partial x_{n}\right) \in C\left(\mathbb{R}^{n+1}, \mathbb{R}^{n}\right) \tag{1-3}
\end{equation*}
$$

For each $x \in \mathbb{R}^{n}$, the function $V(t, x)$ is periodic in t with period T.
We shall study this problem under several sets of assumptions. First, we make no assumption on $\nabla_{x} V(t, x)$ other than (1-3). This allows both sublinear and superlinear problems.

Theorem 1.1. Assume:
(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

[^7](2) There are positive constants α, m such that
$$
\int_{0}^{T} V(t, x) d t \leq \alpha, \quad|x| \leq m, x \in \mathbb{R}^{n}
$$

Then the system

$$
\begin{equation*}
-\ddot{x}(t)=\beta \nabla_{x} V(t, x(t)) \tag{1-4}
\end{equation*}
$$

has a solution for almost all values of β satisfying $\beta \leq 6 \mathrm{~m}^{2} / \alpha T$. If, in addition, there are a constant $\gamma>0$ and a function $W(t) \in L^{1}(I)$ such that

$$
V(t, x) \geq \gamma|x|^{2}-W(t)
$$

then the system (1-4) has a nonconstant solution for almost all β satisfying

$$
\frac{2 \pi^{2}}{\gamma T^{2}} \leq \beta \leq \frac{6 m^{2}}{\alpha T}
$$

Corollary 1.2. Assume:
(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

(2) There are positive constants α, m such that

$$
V(t, x) \leq \alpha, \quad|x| \leq m, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for almost all values of β satisfying $0 \leq \beta \leq$ $6 m^{2} / \alpha T^{2}$.

Theorem 1.3. Assume:
(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

(2) There is a constant $q>2$ such that

$$
V(t, x) \leq C\left(|x|^{q}+1\right), \quad t \in I, x \in \mathbb{R}^{n}
$$

(3) there are constants $m>0, \alpha>0$ such that

$$
V(t, x) \leq \alpha|x|^{2}, \quad|x| \leq m, t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for almost all β satisfying $0 \leq \beta \leq 2 \pi^{2} / \alpha T^{2}$.

Theorem 1.4. Assume:

(1) The function V satisfies

$$
0 \leq \int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty, x \in \mathbb{R}^{n}
$$

(2) There are a constant $\alpha>0$ and a function $W(t) \in L^{1}(I)$ such that

$$
V(t, x) \leq \alpha|x|^{2}+W(t), \quad t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for almost all $0 \leq \beta \leq 2 \pi^{2} / \alpha T^{2}$. If we assume

$$
B:=\int_{I} W(t) d t<0
$$

then (1-4) has a nonconstant solution for almost all such β.
Theorem 1.5. The conclusions of Theorem 1.4 are valid if we replace condition (2) with:
(2') There is a constant $\alpha>0$ such that

$$
\sup _{|x|<m} \int_{0}^{T} V(t, x) d t \leq \alpha m^{2}+B \quad \text { for every } m>0
$$

and require $0 \leq \beta \leq 6 / \alpha T$.
The advantage of these theorems is that we obtain solutions under very weak hypotheses. In fact, we make no assumption on $\nabla_{x} V(t, x)$ other than (1-3). The disadvantage is that we do not obtain a solution for any particular value of β. If we wish to prove existence for every such β, we will have to make assumptions concerning $\nabla_{x} V(t, x)$ as well. We now present additional hypotheses which guarantee existence of solutions for all values of β in the given intervals. We do this for Theorems 1.1 and 1.3. The hypotheses are:
(1) $0 \leq V(t, x) /|x|^{2} \rightarrow \infty$ as $|x| \rightarrow \infty$.
(2) There are a constant C and a function $W(t) \in L^{1}(I)$ such that

$$
H(t, \theta x) \leq C(H(t, x)+W(t)), \quad 0 \leq \theta \leq 1, t \in I, x \in \mathbb{R}^{n},
$$

where

$$
H(t, x):=\nabla_{x} V(t, x) \cdot x-2 V(t, x)
$$

Theorem 1.6. Assume:
(1) $0 \leq V(t, x) /|x|^{2} \rightarrow \infty$ as $|x| \rightarrow \infty$.
(2) There are positive constants α, m such that

$$
\int_{0}^{T} V(t, x) d t \leq \alpha, \quad|x| \leq m, x \in \mathbb{R}^{n}
$$

(3) There are a constant C and a function $W(t) \in L^{1}(I)$ such that

$$
H(t, \theta x) \leq C(H(t, x)+W(t)), \quad 0 \leq \theta \leq 1, t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for all values of β satisfying $0<\beta<6 \mathrm{~m}^{2} / \alpha T$.
Theorem 1.7. Assume:
(1) $0 \leq V(t, x) /|x|^{2} \rightarrow \infty$ as $|x| \rightarrow \infty$.
(2) There is a constant $q>2$ such that

$$
V(t, x) \leq C\left(|x|^{q}+1\right), \quad t \in I, x \in \mathbb{R}^{n}
$$

(3) There are constants $m>0, \alpha>0$ such that

$$
V(t, x) \leq \alpha|x|^{2}, \quad|x| \leq m, t \in I, x \in \mathbb{R}^{n}
$$

(4) There are a constant C and a function $W(t) \in L^{1}(I)$ such that

$$
H(t, \theta x) \leq C(H(t, x)+W(t)), \quad 0 \leq \theta \leq 1, t \in I, x \in \mathbb{R}^{n}
$$

Then the system (1-4) has a solution for all β satisfying $0<\beta<2 \pi^{2} / \alpha T^{2}$.
The periodic nonautonomous problem

$$
\begin{equation*}
\ddot{x}(t)=\nabla_{x} V(t, x(t)) \tag{1-5}
\end{equation*}
$$

has an extensive history in the case of singular systems (see, for example, [Ambrosetti and Coti Zelati 1993]). The first to consider it for potentials satisfying (1-3) were Berger and the author [1977]. We proved the existence of solutions to (1-4) under the condition that

$$
V(t, x) \rightarrow \infty \quad \text { as }|x| \rightarrow \infty
$$

uniformly for a.e. $t \in I$. Subsequently, Willem [1981], Mawhin [1987], Mawhin and Willem [1989], Tang [1995; 1998], Tang and Wu [1999; 2001; 2002] and others (see the references therein) proved existence under various conditions.

The periodic problem (1-1) was studied by Mawhin and Willem [1986; 1989], Long [1995], Tang and Wu [2003] and others. Tang and Wu [2003] proved existence of solutions of problem (1-1) under the following hypotheses:
(I) $V(t, x) \rightarrow \infty$ as $|x| \rightarrow \infty$ uniformly for a.e. $t \in I$.
(II) There exist $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left(0, T, \mathbb{R}^{+}\right)$such that

$$
|V(t, x)|+|\nabla V(t, x)| \leq a(|x|) b(t) \quad \text { for all } x \in \mathbb{R}^{n} \text { and a.e. } t \in[0, T]
$$

and the superquadraticity condition:
(III) There exist $0<\mu<2, M>0$ such that $V(t, x)>0, H_{\mu}:=\nabla V(t, x) \cdot x-\mu V(t, x) \leq 0 \quad$ for all $|x| \geq M$ and a.e. $t \in[0, T]$.

Rabinowitz [1980] proved existence under stronger hypotheses. In particular, in place of (I), he assumed:
(I') There exist constants $a_{1}, a_{2}>0, \mu_{0}>1$ such that

$$
V(t, x) \geq a_{1}|x|^{\mu_{0}}+a_{2} \quad \text { for all } x \in \mathbb{R}^{n} \text { and a.e. } t \in[0, T]
$$

In place of (III), he assumed:
(III') There exist $0<\mu<2, M>0$ such that

$$
0<\nabla V(t, x) \cdot x \leq \mu V(t, x) \quad \text { for all }|x| \geq M \text { and a.e. } t \in[0, T] .
$$

Mawhin and Willem [1986] proved existence for the case of convex potentials, while Long [1995] studied the problem for even potentials. They assumed that $V(t, x)$ is subquadratic in the sense that

$$
\begin{aligned}
& \text { there exist } a_{3}<(2 \pi / T)^{2} \text { and } a_{4} \text { such that } \\
& |V(t, x)| \leq a_{3}|x|^{2}+a_{4} \text { for all } x \in \mathbb{R}^{n} \text { and a.e. } t \in[0, T] \text {. }
\end{aligned}
$$

Mawhin and Willem [1989] also studied the problem for a bounded nonlinearity. Tang and Wu [2003] also proved existence of solutions if one replaces (I) with

$$
\int_{0}^{T} V(t, x) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty
$$

and $V(t, x)$ is γ-subadditive with $\gamma>0$ for a.e. $t \in[0, T]$. All of these authors studied only the existence of solutions.

All of the results mentioned above concerned the existence of solutions, which might be constants. Little was done concerning nonconstant solutions of problem (1-1). For the homogeneous case, Ben-Naoum, Troestler and Willem [Ben-Naoum et al. 1994] proved the existence of a nonconstant solution. For the case $T=2 \pi$, Theorem 1.7, with substantially stronger hypotheses, was proved by Nirenberg; see [Ekeland and Ghoussoub 2002]. Among other things, they assumed

$$
V(t, x) \leq \frac{3}{2 \pi^{2}}, \quad|x| \leq 1, t \in \mathbb{R}, x \in \mathbb{R}^{n}
$$

and the superquadraticity condition

$$
V(t, x)>0, \quad H_{\mu}(t, x) \leq 0, \quad|x| \geq C, t \in \mathbb{R}, x \in \mathbb{R}^{n}
$$

for some $\mu>2$, which implies our hypotheses, and

$$
V(t, x) \geq C|x|^{\mu}-C^{\prime}, \quad x \in \mathbb{R}^{n}, C>0
$$

among other things. These results were generalized in [Schechter 2006a; 2006b]. Further results, involving some of the hypotheses used in these last two papers, were obtained in [Wang et al. 2009].

We shall prove Theorems 1.1-1.5 in Section 5, and Theorems 1.6 and 1.7 in Section 7. We use linking and sandwich methods of critical point theory and then apply the monotonicity trick introduced by Struwe [1988; 1996] for minimization problems. (This trick was also used by others to solve Landesman-Lazer type problems, for bifurcation problems, for Hamiltonian systems and Schrödinger equations.)

Jeanjean [1999] shows that for a specific class of functionals having a mountainpass (MP) geometry, almost every functional in this class has a bounded PalaisSmale sequence at the (MP) level. This theorem is used to obtain, for a given functional, a special Palais-Smale sequence possessing extra properties that help to ensure its convergence. Subsequently, these abstract results are applied to prove the existence of a positive solution for a problem of the form (P) $-\Delta u+K u=$ $f(x, u), u \in H^{1}\left(R^{N}\right), K>0$. He assumed that the functional associated to (P) has an (MP) geometry. His results cover the case where the nonlinearity f satisfies (i) $f(x, s) s^{-1} \rightarrow a \in(0, \infty]$ as $s \rightarrow+\infty$ and (ii) $f(x, s) s^{-1}$ is nondecreasing as a function of $s \geq 0$, a.e. $x \in R^{N}$.

Here, we obtain a bounded Palais-Smale sequences for functionals that need not have (MP) geometry. We then apply the theory to situations in which the (MP) geometry is not present. In particular, we apply it to situations where there is linking without the (MP) geometry. We also apply it to situations in which there are sandwich pairs which do not link.

The theory of sandwich pairs began in [Silva 1991; Schechter 1992; 1993] and was developed in subsequent publications such as [Schechter 2008; 2009].

2. Flows

Let E be a Banach space, and let Σ be the set of all continuous maps $\sigma=\sigma(t)$ from $E \times[0,1]$ to E such that
(1) $\sigma(0)$ is the identity map,
(2) for each $t \in[0,1], \sigma(t)$ is a homeomorphism of E onto E,
(3) $\sigma^{\prime}(t)$ is piecewise continuous on $[0,1]$ and satisfies

$$
\begin{equation*}
\left\|\sigma^{\prime}(t) u\right\| \leq \text { constant }, \quad u \in E \tag{2-1}
\end{equation*}
$$

The mappings in Σ are called flows.
Remark 2.1. If σ_{1}, σ_{2} are in Σ, define $\sigma_{3}=\sigma_{1} \circ \sigma_{2}$ by

$$
\sigma_{3}(s)= \begin{cases}\sigma_{1}(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \sigma_{2}(2 s-1) \sigma_{1}(1) & \text { if } \frac{1}{2}<s \leq 1\end{cases}
$$

Then $\sigma_{1} \circ \sigma_{2} \in \Sigma$.

3. Sandwich systems

Let E be a Banach space. Define a nonempty collection \mathscr{K} of nonempty subsets $K \subset E$ to be a sandwich system if \mathscr{K} has the following property:

$$
\sigma(1) K \in \mathscr{K}, \quad \sigma \in \Sigma, K \in \mathscr{K} .
$$

Theorem 3.1. Let \mathscr{K} be a sandwich system, and let $G(u)$ be a C^{1} functional on E. Define

$$
\begin{equation*}
a:=\inf _{K \in \mathscr{K}} \sup _{K} G, \tag{3-1}
\end{equation*}
$$

and assume that a is finite. Assume, in addition, that there is a constant C_{0} such that for each $\delta>0$ there is a $K \in \mathscr{K}$ satisfying

$$
\begin{equation*}
\sup _{K} G \leq a+\delta \tag{3-2}
\end{equation*}
$$

such that the inequality

$$
\begin{equation*}
G(u) \geq a-\delta, \quad u \in K \tag{3-3}
\end{equation*}
$$

implies $\|u\| \leq C_{0}$. Then there is a bounded sequence $\left\{u_{k}\right\} \subset E$ such that

$$
\begin{equation*}
G\left(u_{k}\right) \rightarrow a, \quad\left\|G^{\prime}\left(u_{k}\right)\right\| \rightarrow 0 \tag{3-4}
\end{equation*}
$$

Theorem 3.2. Let \mathscr{K} be a sandwich system, and let $G(u)$ be a C^{1} functional on E. Assume that there are subsets A, B of E such that

$$
\begin{equation*}
a_{0}:=\sup _{A} G<\infty, \quad b_{0}:=\inf _{B} G>-\infty, \tag{3-5}
\end{equation*}
$$

$A \in \mathscr{K}$ and

$$
\begin{equation*}
B \cap K \neq \varnothing, \quad K \in \mathscr{K} . \tag{3-6}
\end{equation*}
$$

Assume, in addition, that there is a constant C_{0} such that for each $\delta>0$ there is a $K \in \mathscr{K}$ satisfying (3-2) such that the inequality (3-3) implies $\|u\| \leq C_{0}$. Then the value a given by (3-1) satisfies $b_{0} \leq a \leq a_{0}$ and there is a bounded sequence $\left\{u_{k}\right\} \subset E$ such that

$$
\begin{equation*}
G\left(u_{k}\right) \rightarrow a, \quad\left\|G^{\prime}\left(u_{k}\right)\right\| \rightarrow 0 \tag{3-7}
\end{equation*}
$$

Definition 3.3. We shall say that sets A, B in E form a sandwich pair if A is a member of a sandwich system \mathscr{K} and B satisfies (3-6).

Theorem 3.4. Let N be a finite dimensional subspace of a Banach space E, and let p be any point of N. Let F be a continuous map of E onto N such that $F=I$ on N. Then $A=N$ and $B=F^{-1}(p)$ form a sandwich pair.

Corollary 3.5. Let N be a closed subspace of a Hilbert space E and let $M=N^{\perp}$. Assume that at least one of the subspaces M, N is finite dimensional. Then M, N form a sandwich pair.

Corollary 3.6. Let N be a finite dimensional subspace of a Hilbert space E with complement $M^{\prime}=M \oplus\left\{v_{0}\right\}$, where v_{0} is an element in E having unit norm, and let δ be any positive number. Let $\varphi(t) \in C^{1}(\mathbb{R})$ be such that

$$
0 \leq \varphi(t) \leq 1, \varphi(0)=1 \quad \text { and } \quad \varphi(t)=0,|t| \geq 1
$$

Let
(3-8) $F\left(v+w+s v_{0}\right)=v+\left(s+\delta-\delta \varphi\left(\|w\|^{2} / \delta^{2}\right)\right) v_{0}, \quad v \in N, w \in M, s \in \mathbb{R}$.
Then $A=N^{\prime}=N \oplus\left\{v_{0}\right\}$ and $B=F^{-1}\left(\delta v_{0}\right)$ form a sandwich pair.
Proof. One checks that the mapping F given by (3-8) satisfies the hypotheses of Theorem 3.4 for N^{\prime}.

4. The parameter problem

Let E be a reflexive Banach space with norm $\|\cdot\|$, and let A, B be two closed subsets of E. Suppose that $G \in \mathscr{C} 1(E, \mathbb{R})$ is of the form $G(u):=I(u)-J(u), u \in E$, where $I, J \in \mathscr{C}^{1}(E, \mathbb{R})$ map bounded sets to bounded sets. Define

$$
G_{\lambda}(u)=\lambda I(u)-J(u), \quad \lambda \in \Lambda,
$$

where Λ is an open interval contained in $(0,+\infty)$. Assume one of the following alternatives holds.
$\left(H_{1}\right) \quad I(u) \geq 0$ for all $u \in E$ and $I(u)+|J(u)| \rightarrow \infty$ as $\|u\| \rightarrow \infty$.
$\left(H_{2}\right) \quad I(u) \leq 0$ for all $u \in E$ and $|I(u)|+|J(u)| \rightarrow \infty$ as $\|u\| \rightarrow \infty$.
Furthermore, we suppose that \mathscr{K} is a sandwich system satisfying
$\left(H_{3}\right) a(\lambda):=\inf _{K \in \mathscr{K}} \sup _{K} G_{\lambda}$ is finite for each $\lambda \in \Lambda$.
Theorem 4.1. Assume that $\left(H_{1}\right)\left(\right.$ or $\left.\left(H_{2}\right)\right)$ and $\left(H_{3}\right)$ hold.
(1) For almost all $\lambda \in \Lambda$ there exists a constant $k_{0}(\lambda):=k_{0}$ (depending only on λ) such that for each $\delta>0$ there exists a $K \in \mathscr{K}$ such that

$$
\begin{equation*}
\|u\| \leq k_{0} \quad \text { whenever } u \in K \quad \text { and } \quad G_{\lambda}(u) \geq a(\lambda)-\delta \tag{4-1}
\end{equation*}
$$

(2) For almost all $\lambda \in \Lambda$ there exists a bounded sequence $u_{k}(\lambda) \in E$ such that

$$
\left\|G_{\lambda}^{\prime}\left(u_{k}\right)\right\| \rightarrow 0, \quad G_{\lambda}\left(u_{k}\right) \rightarrow a(\lambda):=\inf _{K \in \mathscr{K}} \sup _{K} G_{\lambda} \quad \text { as } k \rightarrow \infty
$$

Corollary 4.2. The conclusions of Theorem 4.1 hold if we replace Hypothesis $\left(H_{3}\right)$ with:
$\left(H_{3}^{\prime}\right)$ There is a sandwich pair A, B such that for each $\lambda \in \Lambda$,

$$
\begin{equation*}
a_{0}:=\sup _{A} G_{\lambda}<\infty, \quad b_{0}:=\inf _{B} G_{\lambda}>-\infty \tag{4-2}
\end{equation*}
$$

Corollary 4.3. The conclusions of Theorem 4.1 hold if we replace Hypothesis $\left(H_{3}\right)$ with:
$\left(H_{3}^{\prime \prime}\right)$ There are sets A, B such that A links B and for each $\lambda \in \Lambda$,

$$
\begin{equation*}
a_{0}:=\sup _{A} G_{\lambda} \leq b_{0}:=\inf _{B} G_{\lambda} . \tag{4-3}
\end{equation*}
$$

5. Proofs of the theorems

We now give the proof of Theorem 1.4.
Proof. Let X be the set of vector functions $x(t)$ described above. It is a Hilbert space with norm satisfying

$$
\|x\|_{X}^{2}=\sum_{j=1}^{n}\left\|x_{j}\right\|_{H^{1}}^{2}
$$

We also write

$$
\|x\|^{2}=\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}
$$

where $\|\cdot\|$ is the $L^{2}(I)$ norm.
Let

$$
N=\left\{x(t) \in X: x_{j}(t) \equiv \text { constant for } 1 \leq j \leq n\right\}
$$

and set $M=N^{\perp}$. The dimension of N is n, and $X=M \oplus N$. See, for example, [Mawhin and Willem 1989, Proposition 1.3] for details on the following lemma.

Lemma 5.1. If $x \in M$, then

$$
\|x\|_{\infty}^{2} \leq \frac{T}{12}\|\dot{x}\|^{2} \quad \text { and } \quad\|x\| \leq \frac{T}{2 \pi}\|\dot{x}\|
$$

Define

$$
\begin{equation*}
G(x)=\|\dot{x}\|^{2}-2 \int_{I} V(t, x(t)) d t, \quad x \in X \tag{5-1}
\end{equation*}
$$

For each $x \in X$ write $x=v+w$, where $v \in N, w \in M$. For convenience, we shall follow [Mawhin and Willem 1989] and use the equivalent norm for X :

$$
\|x\|_{X}^{2}=\|\dot{w}\|^{2}+\|v\|^{2} .
$$

Let

$$
I(x)=\|\dot{x}\|^{2}, \quad J(x)=2 \int_{I} V(t, x(t)) d t
$$

By Hypothesis (1),

$$
J(v) \rightarrow \infty \quad \text { as }\|v\| \rightarrow \infty, v \in N
$$

Hence,

$$
I(x)+|J(x)| \rightarrow \infty \quad \text { as }\|x\|_{X} \rightarrow \infty
$$

Let

$$
\begin{equation*}
G_{\lambda}(x)=\lambda\|\dot{x}\|^{2}-2 \int_{I} V(t, x(t)) d t=\lambda I(x)-J(x), \quad x \in X . \tag{5-2}
\end{equation*}
$$

Hypothesis (1) implies

$$
\begin{equation*}
\sup _{N} G_{\lambda}(v)=-\inf _{N} J(v)<\infty \tag{5-3}
\end{equation*}
$$

If $x \in M$, we have by Hypothesis (2) and Lemma 5.1 that

$$
\begin{align*}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \int \alpha|x(t)|^{2} d t-B \tag{5-4}\\
& \geq\left(\frac{4 \pi^{2} \lambda}{T^{2}}-2 \alpha\right)\|x\|^{2}-B \geq-B
\end{align*}
$$

provided

$$
\begin{equation*}
\lambda \geq \alpha T^{2} / 2 \pi^{2} \tag{5-5}
\end{equation*}
$$

By Corollary 3.5, M and N form a sandwich pair. Then by Corollary 4.2, for almost every λ satisfying (5-5) there is a bounded sequence $\left\{x^{(k)}\right\} \subset X$ such that

$$
\begin{align*}
G_{\lambda}\left(x^{(k)}\right) & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-2 \int_{I} V\left(t, x^{(k)}(t)\right) d t \rightarrow c \geq-B, \tag{5-6}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), z\right) / 2 & =\lambda\left(\dot{x}^{(k)}, \dot{z}\right)-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot z(t) d t \rightarrow 0, \quad z \in X, \tag{5-7}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), x^{(k)}\right) / 2 & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot x^{(k)} d t \rightarrow 0 . \tag{5-8}
\end{align*}
$$

Since

$$
\rho_{k}=\left\|x^{(k)}\right\|_{X} \leq C,
$$

there is a renamed subsequence such that $x^{(k)}$ converges to a limit $x \in X$ weakly in X and uniformly on I. From (5-7) we see that

$$
\left(G_{\lambda}^{\prime}(x), z\right) / 2=\lambda(\dot{x}, \dot{z})-\int_{I} \nabla_{x} V(t, x(t)) \cdot z(t) d t=0, \quad z \in X
$$

from which we conclude easily that x is a solution of (1-4) with $\beta=1 / \lambda$, proving the first statement of the theorem. To prove the second, note that (5-4) implies

$$
G_{\lambda}(x) \geq-B, \quad x \in M .
$$

Consequently, if $B<0$, we see that

$$
b_{0}=\inf _{M} G_{\lambda}(x)>0
$$

Thus, the solution x satisfies $G_{\lambda}(x) \geq b_{0}>0$. If x were a constant, we would have $G_{\lambda}(x)=-J(x) \leq 0$, a contradiction. This gives the result.

The proof of Theorem 1.5 is similar to that of Theorem 1.4 with the exception of the inequality (5-4) resulting from Hypothesis (2). In its place we reason as follows: If $x \in M$ and $\|\dot{x}\|^{2}=12 m^{2} / T$, then $|x| \leq m$ by Lemma 5.1. Thus, we have by Hypothesis (2'),

$$
\begin{aligned}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \alpha m^{2}-B \\
& \geq(12 \lambda-2 \alpha T) m^{2} / T-B \geq-B
\end{aligned}
$$

provided $\lambda \geq \alpha T / 6$. The remainder of the proof is essentially the same.
In proving Theorem 1.1, we follow the proof of Theorem 1.4. Hypothesis (1) implies

$$
\begin{equation*}
G_{\lambda}(v) \leq 0, \quad v \in N \tag{5-9}
\end{equation*}
$$

If $x \in M$ and

$$
\|\dot{x}\|^{2}=\rho^{2}=\frac{12}{T} m^{2}
$$

then Lemma 5.1 implies that $\|x\|_{\infty} \leq m$, and we have by Hypothesis (2) that $\int_{0}^{T} V(t, x) d t \leq \alpha$. Hence,

$$
\begin{align*}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \int_{0}^{T} V(t, x) d t \tag{5-10}\\
& \geq \lambda \rho^{2}-2 \alpha \geq 0
\end{align*}
$$

provided $\lambda \geq \alpha T / 6 m^{2}$.
If we take

$$
A=M \cap B_{\rho}, \quad B=N
$$

then A links B by [Schechter 1999, Corollary 13.5]. Thus, we see that Hypothesis $\left(H_{3}^{\prime \prime}\right)$ of Corollary 4.3 holds with G_{λ} replaced with $-G_{\lambda}$. By that corollary, there is a bounded sequence satisfying (5-6)-(5-8). The first result now follows as before. To prove the second, let

$$
y(t)=v+s w_{0},
$$

where $v \in N, s \geq 0$, and

$$
w_{0}=(\sin (2 \pi t / T), 0, \ldots, 0)
$$

Then $w_{0} \in M$, and

$$
\left\|w_{0}\right\|^{2}=T / 2, \quad\left\|\dot{w}_{0}\right\|^{2}=2 \pi^{2} / T
$$

Note that

$$
\|y\|^{2}=\|v\|^{2}+s^{2} T / 2=T|v|^{2}+T s^{2} / 2
$$

Consequently,

$$
\begin{aligned}
G_{\lambda}(y) & =\lambda s^{2}\left\|\dot{w}_{0}\right\|^{2}-2 \int_{I} V(t, y(t)) d t \leq 2 \lambda \pi^{2} s^{2} / T-2 \gamma \int_{I}|y(t)|^{2} d t+B \\
& \leq 2 \lambda \pi^{2} s^{2} / T-2 \gamma\left(\|v\|^{2}+T s^{2} / 2\right)+B \\
& \leq\left(2 \lambda \pi^{2}-\gamma T^{2}\right) s^{2} / T-2 T \gamma|v|^{2}+B \rightarrow-\infty \text { as } s^{2}+|v|^{2} \rightarrow \infty
\end{aligned}
$$

Take

$$
\begin{aligned}
& A=\{v \in N: \mid v \| \leq R\} \cup\left\{s w_{0}+v: v \in N, s \geq 0,\left\|s w_{0}+v\right\|=R\right\} \\
& B=\partial B_{\rho} \cap M, 0<\rho<R
\end{aligned}
$$

where

$$
B_{\sigma}=\left\{x \in X:\|x\|_{X}<\sigma\right\} .
$$

By [Schechter 1999, Example 3, page 38], A links B. Moreover, if R is sufficiently large,

$$
\begin{equation*}
\sup _{A} G_{\lambda} \leq 0 \leq \inf _{B} G_{\lambda} \tag{5-11}
\end{equation*}
$$

Hence, we may apply [Schechter 1999, Corollary 2.8.2] and Corollary 4.3 to conclude that there is a sequence $\left\{x^{(k)}\right\} \subset X$ such that

$$
\begin{align*}
G_{\lambda}\left(x^{(k)}\right) & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-2 \int_{I} V\left(t, x^{(k)}(t)\right) d t \rightarrow c \geq 0, \tag{5-12}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), z\right) / 2 & =\lambda\left(\dot{x}^{(k)}, \dot{z}\right)-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot z(t) d t \rightarrow 0, \quad z \in X, \tag{5-13}\\
\left(G_{\lambda}^{\prime}\left(x^{(k)}\right), x^{(k)}\right) / 2 & =\lambda\left\|\dot{x}^{(k)}\right\|^{2}-\int_{I} \nabla_{x} V\left(t, x^{(k)}\right) \cdot x^{(k)} d t \rightarrow 0 .
\end{align*}
$$

Since

$$
\rho_{k}=\left\|x^{(k)}\right\|_{X} \leq C
$$

there is a renamed subsequence such that $x^{(k)}$ converges to a limit $x \in X$ weakly in X and uniformly on I. From (5-13) we see that

$$
\left(G_{\lambda}^{\prime}(x), z\right) / 2=\lambda(\dot{x}, \dot{z})-\int_{I} \nabla_{x} V(t, x(t)) \cdot z(t) d t=0, \quad z \in X
$$

from which we conclude easily that x is a solution of (1-1). By (5-12) we see that

$$
G_{\lambda}(x) \geq c \geq 0,
$$

showing that $x(t)$ is not a constant. For if $c>0$ and $x \in N$, then

$$
G_{\lambda}(x)=-2 \int_{I} V(t, x(t)) d t \leq 0
$$

If $c=0$, we know that $d\left(x^{(k)}, B\right) \rightarrow 0$ by [Schechter 1999, Theorem 2.1.1]. Hence, there is a sequence $\left\{y^{(k)}\right\} \subset B$ such that $x^{(k)}-y^{(k)} \rightarrow 0$ in X. If $v \in N$, then

$$
(x, v)=\left(x-x^{(k)}, v\right)+\left(x^{(k)}-y^{(k)}, v\right) \rightarrow 0
$$

since $y^{(k)} \in M$. Thus $x \in M$. This completes the proof.
To prove Theorem 1.3, note that Hypothesis (1) implies

$$
\begin{equation*}
G_{\lambda}(v) \leq 0, \quad v \in N \tag{5-15}
\end{equation*}
$$

If $x \in M$, we have by Hypothesis (2)

$$
\begin{aligned}
G_{\lambda}(x) & \geq \lambda\|\dot{x}\|^{2}-2 \int_{|x|<m} \alpha|x(t)|^{2} d t-C \int_{|x|>m}\left(|x|^{q}+1\right) d t \\
& \geq \lambda\|\dot{x}\|^{2}-2 \alpha\|x\|^{2}-C\left(1+m^{2-q}+m^{-q}\right) \int_{|x|>m}|x|^{q} d t \\
& \geq\|\dot{x}\|^{2}\left(\lambda-\left(2 \alpha T^{2} / 4 \pi^{2}\right)\right)-C^{\prime} \int_{|x|>m}|x|^{q} d t \\
& \geq\left(\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)\right)\|x\|_{X}^{2}-C^{\prime \prime} \int_{I}\|x\|_{X}^{q} d t \\
& \geq\left(\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)\right)\|x\|_{X}^{2}-C^{\prime \prime \prime}\|x\|_{X}^{q}=\left(\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)-C^{\prime \prime \prime}\|x\|_{X}^{q-2}\right)\|x\|_{X}^{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
G_{\lambda}(x) \geq \varepsilon\|x\|_{X}^{2}, \quad\|x\|_{X} \leq \rho, x \in M \tag{5-16}
\end{equation*}
$$

for $\rho>0$ sufficiently small, where $\varepsilon<\lambda-\left(\alpha T^{2} / 2 \pi^{2}\right)$ is positive. If we take

$$
A=M \cap B_{\rho}, \quad B=N
$$

then A links B by [Schechter 1999, Corollary 13.5]. Thus, Hypothesis $\left(H_{3}^{\prime \prime}\right)$ of Corollary 4.3 holds with G_{λ} replaced with $-G_{\lambda}$. By that corollary, there is a bounded sequence satisfying (5-6)-(5-8). The result now follows as before.

6. Finding the sequences

Proof of Theorem 3.1. Let $M=C_{0}+1$. Then

$$
\|\sigma(1) v\| \leq M
$$

whenever $\sigma \in \Sigma$ satisfies $\left\|\sigma^{\prime}(t)\right\| \leq 1$ and $v \in E$ satisfies $\|v\| \leq C_{0}$. If the theorem were false, then there would be a $\delta>0$ such that

$$
\begin{equation*}
\left\|G^{\prime}(u)\right\| \geq 3 \delta \tag{6-1}
\end{equation*}
$$

when

$$
\begin{equation*}
u \in\{u \in E:\|u\| \leq M+1,|G(u)-a| \leq 3 \delta\} \tag{6-2}
\end{equation*}
$$

Take $\delta<1 / 3$. Since $G \in C^{1}(E, \mathbb{R})$, for each $\theta<1$ there is a locally Lipschitz continuous mapping $Y(u)$ of $\hat{E}=\left\{u \in E: G^{\prime}(u) \neq 0\right\}$ into E such that

$$
\begin{equation*}
\|Y(u)\| \leq 1, \quad \theta\left\|G^{\prime}(u)\right\| \leq\left(G^{\prime}(u), Y(u)\right), \quad u \in \hat{E} \tag{6-3}
\end{equation*}
$$

(see, for example, [Schechter 1999]). Take $\theta>2 / 3$. Let

$$
\begin{aligned}
Q_{0} & =\{u \in E:\|u\| \leq M+1,|G(u)-a| \leq 2 \delta\} \\
Q_{1} & =\{u \in E:\|u\| \leq M,|G(u)-a| \leq \delta\} \\
Q_{2} & =E \backslash Q_{0}, \\
\eta(u) & =d\left(u, Q_{2}\right) /\left(d\left(u, Q_{1}\right)+d\left(u, Q_{2}\right)\right)
\end{aligned}
$$

It is easily checked that $\eta(u)$ is locally Lipschitz continuous on E and satisfies

$$
\begin{cases}\eta(u)=1 & \text { if } u \in Q_{1} \tag{6-4}\\ \eta(u)=0 & \text { if } u \in \bar{Q}_{2} \\ \eta(u) \in(0,1) & \text { otherwise }\end{cases}
$$

Let

$$
W(u)=-\eta(u) Y(u) .
$$

Then

$$
\|W(u)\| \leq 1, \quad u \in E
$$

By [Schechter 2009, Theorem 4.5], for each $v \in E$ there is a unique solution $\sigma(t) v$ of the system

$$
\begin{equation*}
\sigma^{\prime}(t)=W(\sigma(t)), t \in \mathbb{R}^{+}, \quad \sigma(0)=v \tag{6-5}
\end{equation*}
$$

We have

$$
\begin{align*}
d G(\sigma(t) v) / d t & =-\eta(\sigma(t) v)\left(G^{\prime}(\sigma(t) v), Y(\sigma(t) v)\right) \tag{6-6}\\
& \leq-\theta \eta(\sigma)\left\|G^{\prime}(\sigma)\right\| \leq-3 \theta \delta \eta(\sigma)
\end{align*}
$$

Let $K \in \mathscr{K}$ satisfy the hypotheses of the theorem. Let v be any element of $K \cap Q_{1}$. Then $\|v\| \leq C_{0}$. If there is a $t_{1} \leq 1$ such that $\sigma\left(t_{1}\right) v \notin Q_{1}$, then

$$
\begin{equation*}
G(\sigma(1) v)<a-\delta \tag{6-7}
\end{equation*}
$$

since $\|\sigma(1) v\| \leq M$,

$$
G(\sigma(1) v) \leq G\left(\sigma\left(t_{1}\right) v\right)
$$

and the right hand side cannot be greater than $a+\delta$ by (6-6). On the other hand, if $\sigma(t) v \in Q_{1}$ for all $t \in[0,1]$, then we have by (6-6)

$$
G(\sigma(1) v) \leq a+\delta-3 \delta \theta<a-\delta
$$

If $v \in K \backslash Q_{1}$, then we must have

$$
G(\sigma(1) v) \leq G(v)<a-\delta
$$

since $G(v) \geq a-\delta$ would put v into Q_{1}. Hence

$$
\begin{equation*}
G(\sigma(1) v)<a-\delta, \quad v \in K \tag{6-8}
\end{equation*}
$$

By hypothesis, $\widetilde{K}=\sigma(1) K \in \mathscr{K}$. This means that

$$
\begin{equation*}
G(w)<a-\delta, \quad w \in \widetilde{K} \tag{6-9}
\end{equation*}
$$

But this contradicts the definition (3-1) of a. Hence (6-1) cannot hold for u satisfying (6-2). This proves the theorem.
Proof of Theorem 3.2. Since $A \in \mathscr{K}$, clearly $a \leq a_{0}$. Moreover, for any $K \in \mathscr{K}$, we have

$$
b_{0}=\inf _{B} G_{\lambda} \leq \inf _{B \cap K} G_{\lambda} \leq \sup _{B \cap K} G_{\lambda} \leq \sup _{K} G_{\lambda}
$$

Hence, $b_{0} \leq a$. Apply Theorem 3.1.
Proof of Theorem 3.4. Define

$$
\mathscr{K}=\{\sigma(1) A: \sigma \in \Sigma\}
$$

Then \mathscr{K} is a sandwich system. To see this, let $K=\widetilde{\sigma}(1) A$ be a set in \mathscr{K}. If $\sigma \in \Sigma$, then $\sigma \circ \tilde{\sigma}$ is also in Σ. Thus, \mathscr{K} is a sandwich system. Let $B=F^{-1}(p)$. If we can show that B satisfies (3-6), then the result will follow from Theorem 3.2. Now (3-6) is equivalent to

$$
F^{-1}(p) \cap \sigma(1) N \neq \varnothing, \quad \sigma \in \Sigma
$$

Let $\Omega_{R}(p)$ be a ball in N with radius R and center p, and let $\sigma(t)$ be any flow in Σ. Since

$$
\begin{equation*}
\sigma(t) u-u=\int_{0}^{t} \sigma^{\prime}(\tau) u d \tau \tag{6-10}
\end{equation*}
$$

we have

$$
\|\sigma(t) u-\sigma(s) u\| \leq C|t-s|
$$

If $u \in A_{R}=\partial \Omega_{R}(p)$, and $v \in B$, we have

$$
h(s):=d(\sigma(s) u, B) \leq\|\sigma(s) u-v\| \leq\|\sigma(t) u-v\|+C|t-s|
$$

This implies

$$
\begin{equation*}
h(s) \leq h(t)+C|t-s| . \tag{6-11}
\end{equation*}
$$

Moreover, by [Schechter 2009, Lemmas 4.3 and 4.8], $h(s)$ satisfies

$$
h(s) \geq m(R) \rightarrow \infty \quad \text { as } R \rightarrow \infty, \quad 0 \leq s \leq 1, u \in \partial \Omega_{R}(p)
$$

Thus,

$$
\left\|\sigma(s) u-F^{-1}(p)\right\| \geq h(s) \geq m(R) \rightarrow \infty, \quad u \in A_{R}
$$

Consequently,

$$
\begin{equation*}
F^{-1}(p) \cap \sigma(1) A_{R}=\varnothing, \quad \sigma \in \Sigma \tag{6-12}
\end{equation*}
$$

for R sufficiently large. Now A_{R} links B; see, for example, [Schechter 1999]. For $\Gamma \in \Phi$, define

$$
\Gamma_{1}(s)= \begin{cases}\sigma(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \sigma(1) \Gamma(2 s-1) & \text { if } \frac{1}{2}<s \leq 1\end{cases}
$$

Clearly, $\Gamma_{1} \in \Phi$. Consequently, there is a $t_{0} \in[0,1]$ such that

$$
\Gamma_{1}\left(t_{0}\right) A_{R} \cap B \neq \varnothing
$$

If $t_{0} \leq \frac{1}{2}$, then

$$
\sigma\left(2 t_{0}\right) A_{R} \cap B \neq \varnothing,
$$

contradicting (6-12). If $t_{0}>\frac{1}{2}$, then

$$
\sigma(1) \Gamma\left(2 t_{0}-1\right) A_{R} \cap B \neq \varnothing \text {. }
$$

Take $\Gamma(s) u=(1-s) u$. Then $\Gamma \in \Phi$ and $\Gamma\left(2 t_{0}-1\right) A_{R} \subset N$. Hence,

$$
\sigma(1) N \cap B \neq \varnothing .
$$

Thus (3-6) holds, and the theorem is proved.

7. The monotonicity trick

Proof of Theorem 4.1. We prove conclusion (1) assuming the first of the alternative hypotheses, $\left(H_{1}\right)$.

By $\left(H_{1}\right)$, the map $\lambda \mapsto a(\lambda)$ is nondecreasing. Hence, $a^{\prime}(\lambda):=d a(\lambda) / d \lambda$ exists for almost every $\lambda \in \Lambda$. From this point on, we consider those λ where $a^{\prime}(\lambda)$ exists. For fixed $\lambda \in \Lambda$, let $\lambda_{n} \in(\lambda, 2 \lambda) \cap \Lambda, \lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. Then there exists $\bar{n}(\lambda)$ such that

$$
\begin{equation*}
a^{\prime}(\lambda)-1 \leq \frac{a\left(\lambda_{n}\right)-a(\lambda)}{\lambda_{n}-\lambda} \leq a^{\prime}(\lambda)+1 \quad \text { for } n \geq \bar{n}(\lambda) \tag{7-1}
\end{equation*}
$$

Next, there exist $K_{n} \in \mathscr{K}_{Q}, k_{0}:=k_{0}(\lambda)>0$ such that

$$
\begin{equation*}
\|u\| \leq k_{0} \quad \text { whenever } \quad G_{\lambda}(u) \geq a(\lambda)-\left(\lambda_{n}-\lambda\right) \tag{7-2}
\end{equation*}
$$

In fact, by the definition of $a\left(\lambda_{n}\right)$, there exists K_{n} such that

$$
\begin{equation*}
\sup _{K_{n}} G_{\lambda}(u) \leq \sup _{K_{n}} G_{\lambda_{n}}(u) \leq a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right) \tag{7-3}
\end{equation*}
$$

If $G_{\lambda}(u) \geq a(\lambda)-\left(\lambda_{n}-\lambda\right)$ for some $u \in K_{n}$, then, by (7-1) and (7-3), we have that

$$
\begin{align*}
I(u) & =\frac{G_{\lambda_{n}}(u)-G_{\lambda}(u)}{\lambda_{n}-\lambda} \tag{7-4}\\
& \leq \frac{a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right)-a(\lambda)+\left(\lambda_{n}-\lambda\right)}{\lambda_{n}-\lambda} \\
& \leq a^{\prime}(\lambda)+3
\end{align*}
$$

and it follows that

$$
\begin{align*}
J(u) & =\lambda_{n} I(u)-G_{\lambda_{n}}(u) \tag{7-5}\\
& \leq \lambda_{n}\left(a^{\prime}(\lambda)+3\right)-G_{\lambda}(u) \\
& \leq \lambda_{n}\left(a^{\prime}(\lambda)+3\right)-a(\lambda)+\left(\lambda_{n}-\lambda\right) \\
& \leq 2 \lambda\left(a^{\prime}(\lambda)+3\right)-a(\lambda)+\lambda .
\end{align*}
$$

On the other hand, by $\left(H_{1}\right),(7-1)$, and (7-3),

$$
\begin{align*}
J(u) & =\lambda_{n} I(u)-G_{\lambda_{n}}(u) \tag{7-6}\\
& \geq-G_{\lambda_{n}}(u) \\
& \geq-\left(a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right)\right) \\
& \geq-\left(a(\lambda)+\left(\lambda_{n}-\lambda\right)\left(a^{\prime}(\lambda)+2\right)\right) \\
& \geq-a(\lambda)-\lambda\left|a^{\prime}(\lambda)+2\right| .
\end{align*}
$$

Combining (7-4)-(7-7) and $\left(H_{1}\right)$, we see that there exists $k_{0}(\lambda):=k_{0}$ (depending only on λ) such that (7-2) holds.

By the choice of K_{n} and (7-1), we see that

$$
\begin{aligned}
G_{\lambda}(u) & \leq G_{\lambda_{n}}(u) \leq \sup _{K_{n}} G_{\lambda_{n}}(u) \\
& \leq a\left(\lambda_{n}\right)+\left(\lambda_{n}-\lambda\right) \\
& \leq\left(a^{\prime}(\lambda)+1\right)\left(\lambda_{n}-\lambda\right)+a(\lambda)+\left(\lambda_{n}-\lambda\right) \\
& \leq a(\lambda)+\left(a^{\prime}(\lambda)+2\right)\left(\lambda_{n}-\lambda\right)
\end{aligned}
$$

for all $u \in K_{n}$. Take n sufficiently large to ensure that $\left|a^{\prime}(\lambda)+2\right|\left(\lambda_{n}-\lambda\right)<\delta$. This proves conclusion (1). Conclusion (2) now follows from Theorem 3.1. The proof under Hypothesis $\left(H_{2}\right)$ is similar, and is omitted.

In proving Corollary 4.3, we shall make use of the following results of linking. Let E be a Banach space. The set Φ of mappings $\Gamma(t) \in C(E \times[0,1], E)$ is to have following properties:
(a) For each $t \in[0,1), \Gamma(t)$ is a homeomorphism of E onto itself and $\Gamma(t)^{-1}$ is continuous on $E \times[0,1)$.
(b) $\Gamma(0)=I$.
(c) For each $\Gamma(t) \in \Phi$ there is a $u_{0} \in E$ such that $\Gamma(1) u=u_{0}$ for all $u \in E$ and $\Gamma(t) u \rightarrow u_{0}$ as $t \rightarrow 1$ uniformly on bounded subsets of E.
(d) For each $t_{0} \in[0,1)$ and each bounded set $A \subset E$ we have

$$
\sup _{\substack{0 \leq t \leq t_{0} \\ u \in A}}\left\{\|\Gamma(t) u\|+\left\|\Gamma^{-1}(t) u\right\|\right\}<\infty
$$

A subset A of E links a subset B of E if $A \cap B=\varnothing$ and, for each $\Gamma(t) \in \Phi$, there is a $t \in(0,1]$ such that $\Gamma(t) A \cap B \neq \varnothing$.

Theorem [Schechter 1999, Theorem 2.1.1]. Let G be a C^{1}-functional on E, and let A, B be subsets of E such that A links B and

$$
a_{0}:=\sup _{A} G \leq b_{0}:=\inf _{B} G .
$$

Assume that

$$
a:=\inf _{\Gamma \in \Phi} \sup _{\substack{0 \leq s \leq 1 \\ u \in A}} G(\Gamma(s) u)
$$

is finite. Then there is a sequence $\left\{u_{k}\right\} \subset E$ such that

$$
G\left(u_{k}\right) \rightarrow a, \quad G^{\prime}\left(u_{k}\right) \rightarrow 0
$$

If $a=b_{0}$, then we can also require that

$$
d\left(u_{k}, B\right) \rightarrow 0
$$

Proof of Corollary 4.3. Let

$$
\mathscr{K}=\{\Gamma(s) A: \Gamma \in \Phi, s \in I\} .
$$

Then \mathscr{K} is a sandwich system. In fact, if $\sigma \in \Sigma$ and $\Gamma \in \Phi$, define

$$
\Gamma_{1}(s)= \begin{cases}\sigma(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \sigma(1) \Gamma(2 s-1) & \text { if } \frac{1}{2}<s \leq 1\end{cases}
$$

Then $\Gamma_{1} \in \Phi$. Thus,

$$
\sigma(1) K \in \mathscr{K}, \quad \sigma \in \Sigma, K \in \mathscr{K} .
$$

Since A links B, we have for each $\Gamma(t) \in \Phi$, there is a $t \in(0,1]$ such that $\Gamma(t) A \cap B \neq \varnothing$. Consequently,

$$
\begin{equation*}
B \cap K \neq \varnothing, \quad K \in \mathscr{K} . \tag{7-7}
\end{equation*}
$$

Thus, A, B form a sandwich pair. Let

$$
a(\lambda):=\inf _{\Gamma \in \Phi} \sup _{\substack{0 \leq s \leq 1 \\ u \in A}} G_{\lambda}(\Gamma(s) u)
$$

Then $a(\lambda):=\inf _{K \in \mathscr{K}} \sup _{K} G_{\lambda}$ is finite for any $\lambda \in \Lambda$. This shows that Hypothesis $\left(H_{3}^{\prime \prime}\right)$ implies Hypothesis $\left(H_{3}\right)$. We can now apply Theorem 4.1.
Proof of Theorem 1.6. Take $\lambda=1 / \beta$. Let $\lambda_{0}=\alpha T / 6 m^{2}$, and let $v<\infty$. By Theorem 1.1, for a.e. $\lambda \in\left(\lambda_{0}, \nu\right)$, there exists u_{λ} such that $G_{\lambda}^{\prime}\left(u_{\lambda}\right)=0, G_{\lambda}\left(u_{\lambda}\right)=$ $a(\lambda) \geq a\left(\lambda_{0}\right)$. Let λ satisfy $\lambda_{0}<\lambda<\nu$. Choose $\lambda_{n} \rightarrow \lambda, \lambda_{n}>\lambda$. Then there exists x_{n} such that

$$
G_{\lambda_{n}}^{\prime}\left(x_{n}\right)=0, \quad G_{\lambda_{n}}\left(x_{n}\right)=a\left(\lambda_{n}\right) \geq a\left(\lambda_{0}\right) .
$$

Therefore,

$$
\int_{\Omega} \frac{2 V\left(t, x_{n}\right)}{\left\|x_{n}\right\|_{X}^{2}} d t \leq C
$$

Now we prove that $\left\{x_{n}\right\}$ is bounded. If $\left\|x_{n}\right\|_{X} \rightarrow \infty$, let $w_{n}=x_{n} /\left\|x_{n}\right\|_{X}$. Then there is a renamed subsequence such that $w_{n} \rightarrow w$ weakly in X, strongly in $L^{\infty}(\Omega)$ and a.e. in Ω.

Let Ω_{0} be the set where $w \neq 0$. Then $\left|x_{n}(t)\right| \rightarrow \infty$ for $t \in \Omega_{0}$. If Ω_{0} had positive measure, then we would have

$$
C \geq \int_{\Omega} \frac{2 V\left(t, x_{n}\right)}{\left\|x_{n}\right\|_{X}^{2}} d t=\int_{\Omega} \frac{2 V\left(t, x_{n}\right)}{x_{n}^{2}}\left|w_{n}\right|^{2} d t \geq \int_{w \neq 0} \frac{2 V\left(t, x_{n}\right)}{x_{n}^{2}}\left|w_{n}\right|^{2} d t \rightarrow \infty
$$

showing that $w=0$ a.e. in Ω. Hence, $w_{n} \rightarrow 0$. Since

$$
\left\|\dot{w}_{n}\right\|^{2}+\left\|w_{n}\right\|^{2}=1
$$

we have $\left\|\dot{w}_{n}\right\| \rightarrow 1$. Define $\theta_{n} \in[0,1]$ by

$$
G_{\lambda_{n}}\left(\theta_{n} x_{n}\right)=\max _{\theta \in[0,1]} G_{\lambda_{n}}\left(\theta x_{n}\right)
$$

For any $c>0$ and $\bar{w}_{n}=c w_{n}$, we have

$$
\int_{\Omega} V\left(t, \bar{w}_{n}\right) d t \rightarrow 0
$$

(see, for example, [Schechter 2008, page 64]). Thus,

$$
G_{\lambda_{n}}\left(\theta_{n} x_{n}\right) \geq G_{\lambda_{n}}\left(c w_{n}\right)=c^{2} \lambda_{n}\left\|\dot{w}_{n}\right\|^{2}-2 \int_{\Omega} V\left(t, \bar{w}_{n}\right) d t \rightarrow \lambda c^{2}, \quad n \rightarrow \infty
$$

Hence, $G_{\lambda_{n}}\left(\theta_{n} x_{n}\right) \geq \lambda c^{2} / 2$ for n sufficiently large. That is, $\lim _{n \rightarrow \infty} G_{\lambda_{n}}\left(\theta_{n} x_{n}\right)=$ ∞. If there is a renamed subsequence such that $\theta_{n}=1$, then

$$
\begin{equation*}
G_{\lambda_{n}}\left(x_{n}\right) \rightarrow \infty \tag{7-8}
\end{equation*}
$$

If $0 \leq \theta_{n}<1$ for all n, then we have $\left(G_{\lambda_{n}}^{\prime}\left(\theta_{n} x_{n}\right), x_{n}\right) \leq 0$. Therefore,

$$
\begin{aligned}
\int_{\Omega} H\left(t, \theta_{n} x_{n}\right) d t & =\int_{\Omega^{\prime}}\left(\nabla_{x} V\left(t, \theta_{n} x_{n}\right) \theta_{n} x_{n}-2 V\left(t, \theta_{n} x_{n}\right)\right) d t \\
& =G_{\lambda_{n}}\left(\theta_{n} x_{n}\right)-\left(G_{\lambda_{n}}^{\prime}\left(\theta_{n} x_{n}\right), \theta_{n} x_{n}\right) \\
& \geq G_{\lambda_{n}}\left(\theta_{n} x_{n}\right) \rightarrow \infty
\end{aligned}
$$

By hypothesis,

$$
G_{\lambda_{n}}\left(x_{n}\right)=\int_{\Omega} H\left(t, x_{n}\right) d x \geq \int_{\Omega} H\left(t, \theta_{n} x_{n}\right) d t / C-\int_{\Omega} W(t) d t \rightarrow \infty
$$

Thus, (7-8) holds in any case. But

$$
G_{\lambda_{n}}\left(x_{n}\right)=a\left(\lambda_{n}\right) \leq a(v)<\infty,
$$

Thus, $\left\|x_{n}\right\|_{X} \leq C$. It now follows that for a renamed subsequence,

$$
G_{\lambda}^{\prime}\left(x_{n}\right) \rightarrow 0, \quad G_{\lambda}\left(x_{n}\right) \rightarrow a(\lambda) \geq a\left(\lambda_{0}\right)
$$

Applying [Schechter 1999, Theorem 3.4.1, page 64] gives the desired solution.
Proof of Theorem 1.7. This time we take $\lambda_{0}=\alpha T^{2} / 2 \pi^{2}$, apply Theorem 1.3 and follow the proof of Theorem 1.6.

References

[Ambrosetti and Coti Zelati 1993] A. Ambrosetti and V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differentials Equations and their Appl. 10, Birkhäuser, Boston, 1993. MR 95b:58054 Zbl 0785.34032
[Ben-Naoum et al. 1994] A. K. Ben-Naoum, C. Troestler, and M. Willem, "Existence and multiplicity results for homogeneous second order differential equations", J. Differential Equations 112:1 (1994), 239-249. MR 95g:58036 Zbl 0808.58013
[Berger and Schechter 1977] M. S. Berger and M. Schechter, "On the solvability of semilinear gradient operator equations", Advances in Math. 25:2 (1977), 97-132. MR 58 \#17997 Zbl 0354.47025
[Ekeland and Ghoussoub 2002] I. Ekeland and N. Ghoussoub, "Selected new aspects of the calculus of variations in the large", Bull. Amer. Math. Soc. (N.S.) 39:2 (2002), 207-265. MR 2003b:35048 Zbl 1064.35054
[Jeanjean 1999] L. Jeanjean, "On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbf{R}^{N ", ~ P r o c . ~ R o y . ~ S o c . ~ E d i n b u r g h ~ S e c t . ~ A ~ 129: 4 ~(1999), ~}$ 787-809. MR 2001c:35034 Zbl 0935.35044
[Long 1995] Y. M. Long, "Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials", Nonlinear Anal. 24 (1995), 1665-1671. MR 96h:34079 Zbl 0824.34042
[Mawhin 1987] J. Mawhin, "Semicoercive monotone variational problems", Acad. Roy. Belg. Bull. Cl. Sci. (5) 73:3-4 (1987), 118-130. MR 89e:49005 Zbl 0647.49007
[Mawhin and Willem 1986] J. Mawhin and M. Willem, "Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance", Ann. Inst. H. Poincaré Anal. Non Linéaire 3:6 (1986), 431-453. MR 88a:35023 Zbl 0678.35091
[Mawhin and Willem 1989] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Math. Sciences 74, Springer, New York, 1989. MR 90e:58016 Zbl 0676.58017
[Rabinowitz 1980] P. H. Rabinowitz, "On subharmonic solutions of Hamiltonian systems", Comm. Pure Appl. Math. 33:5 (1980), 609-633. MR 81k:34032 Zbl 0425.34024
[Schechter 1992] M. Schechter, "A generalization of the saddle point method with applications", Ann. Polon. Math. 57:3 (1992), 269-281. MR 94c:58028 Zbl 0780.35001
[Schechter 1993] M. Schechter, "New saddle point theorems", pp. 213-219 in Generalized functions and their applications (Varanasi, 1991), edited by R. S. Pathak, Plenum, New York, 1993. MR 94i:58034 Zbl 0846.46027
[Schechter 1999] M. Schechter, Linking methods in critical point theory, Birkhäuser, Boston, 1999. MR 2001f:58032 Zbl 0915.35001
[Schechter 2006a] M. Schechter, "Periodic nonautonomous second-order dynamical systems", J. Differential Equations 223:2 (2006), 290-302. MR 2007d:34081 Zbl 1099.34042
[Schechter 2006b] M. Schechter, "Periodic solutions of second-order nonautonomous dynamical systems", Bound. Value Probl. 2006 (2006), Art. ID 25104. MR 2007g:34085 Zbl 1140.34366
[Schechter 2008] M. Schechter, "Sandwich pairs in critical point theory", Trans. Amer. Math. Soc. 360:6 (2008), 2811-2823. MR 2008k:35090 Zbl 1143.35061
[Schechter 2009] M. Schechter, Minimax systems and critical point theory, Birkhäuser, Boston, 2009. MR 2010e:58009 Zbl 1186.35043
[Silva 1991] E. A. d. B. e. Silva, "Linking theorems and applications to semilinear elliptic problems at resonance", Nonlinear Anal. 16:5 (1991), 455-477. MR 92d:35108 Zbl 0731.35042
[Struwe 1988] M. Struwe, "The existence of surfaces of constant mean curvature with free boundaries", Acta Math. 160:1-2 (1988), 19-64. MR 89a:53012 Zbl 0646.53005
[Struwe 1996] M. Struwe, Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, 2nd ed., Ergebnisse der Math. und ihrer Grenzgebiete (3) 34, Springer, Berlin, 1996. MR 98f:49002 Zbl 0864.49001
[Tang 1995] C. Tang, "Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential", J. Math. Anal. Appl. 189:3 (1995), 671-675. MR 96a:34090 Zbl 0824.34043
[Tang 1998] C.-L. Tang, "Periodic solutions for nonautonomous second order systems with sublinear nonlinearity", Proc. Amer. Math. Soc. 126 (1998), 3263-3270. MR 99a:34122 Zbl 0902.34036
[Tang and Wu 2001] C.-L. Tang and X.-P. Wu, "Periodic solutions for second order systems with not uniformly coercive potential", J. Math. Anal. Appl. 259:2 (2001), 386-397. MR 2002e:34070 Zbl 0999.34039
[Tang and Wu 2002] C.-L. Tang and X.-P. Wu, "Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems", J. Math. Anal. Appl. 275:2 (2002), 870-882. MR 2003j:37092 Zbl 1043.34045
[Tang and Wu 2003] C.-L. Tang and X.-P. Wu, "Notes on periodic solutions of subquadratic second order systems", J. Math. Anal. Appl. 285:1 (2003), 8-16. MR 2004g:34074 Zbl 1054.34075
[Wang et al. 2009] Z. Wang, J. Zhang, and Z. Zhang, "Periodic solutions of second order nonautonomous Hamiltonian systems with local superquadratic potential", Nonlinear Anal. 70:10 (2009), 3672-3681. MR 2010b:37168 Zbl 1179.34037
[Willem 1981] M. Willem, "Oscillations forcées systèmes hamiltoniens", Public. Sémin. Analyse Non Linéarie, University of Besançon, 1981.
[Wu and Tang 1999] X.-P. Wu and C.-L. Tang, "Periodic solutions of a class of nonautonomous second order systems", J. Math. Anal. Appl. 236 (1999), 227-235. MR 2000g:34069 Zbl 0971.34027

Received May 4, 2010.

Martin Schechter

Department of Mathematics
University of California, Irvine
IRVINE CA 92697-3875
United States
mschecht@math.uci.edu

GENERIC FUNDAMENTAL POLYGONS FOR FUCHSIAN GROUPS

Akira Ushijima

Abstract

A Dirichlet fundamental polygon for a Fuchsian group is said to be generic if its combinatorial shape is stable under any small permutation of the center of the polygon. Almost all points in the hyperbolic plane are known to be centers of generic fundamental polygons. We prove that the same property holds for points in the boundary of the hyperbolic plane.

1. Introduction

For a given topological space with a group action, a fundamental region is a subset consisting of representatives of the orbits of a given point by the action. In general, it is chosen to be connected. Such regions are used for the study of groups and their actions on spaces; they give tessellation of the spaces, which imply presentations of the groups.

When a metric is given to the space and the group is discrete, the Dirichlet domain (also known as the Voronoi cell) is an example of a fundamental region; for a point p free under the group action, the Dirichlet domain for p is the set of all points closer to p than any other point in the orbit of p. For discrete groups acting on the hyperbolic plane, such domains are also called Dirichlet fundamental polygons with center p. We simply call them fundamental polygons in what follows.

One interesting question about fundamental polygons is how many different combinatorial shapes of such polygons are obtained from a given hyperbolic surface. This problem was considered for closed surfaces of genus two by Fricke and Klein [1897], and, independently, by Jørgensen and Näätänen [1982]. They showed that there were exactly eight types of "generic" fundamental polygons. Though the precise definition will be given in Section 3, a generic fundamental polygon has a property of stability of its combinatorial shape under any small perturbation of its center. Generic fundamental polygons are therefore in a sense far from the so-called canonical polygons of Fricke [Fricke and Klein 1897; Keen

[^8]1966]. For closed surfaces of genus two, each generic fundamental polygon has 18 edges, while each canonical polygon has 8 edges.

Besides genus two, there are known facts about numbers of combinatorial shapes of admissible generic fundamental polygons for closed surfaces. The complete list of generic fundamental polygons of genus three was obtained in [Nakamura 2004]. Each such polygon has 30 edges. The formula to calculate possible numbers of combinatorial shapes of generic fundamental polygons for closed surfaces of any genus was obtained in [Bacher and Vdovina 2002]. Counting number of possible types is related to the study of extremal discs in a surface. For further results on this subject, see [Girondo and Nakamura 2007; Vdovina 2008].

Once we have known the number of combinatorial shapes of admissible generic fundamental polygons for a surface, it is also interesting to think about how these fundamental polygons are related to each other. Such a question was proposed in [Näätänen and Penner 1991] as follows: what kind of decomposition is given on a surface by a relation that two points on the surface are equivalent if they are centers of the fundamental polygon with the same combinatorial shape.

A local figure of such a decomposition of a closed surface of genus two was given in [Näätänen 1985]. In this figure, the set of points corresponding to nongeneric fundamental polygons seems to have measure zero. Beardon proved [1983, Theorem 9.4.5] that this is true for any Fuchsian group; for any given such group, almost all points in the hyperbolic plane are centers of generic fundamental polygons. A corresponding result for three-dimensional hyperbolic geometry, that is, for Kleinian groups, was proposed in [Jørgensen and Marden 1988]. However, the proof of Lemma 3.1 in that article, which plays an important role in the proof of the main result, is incomplete.

As a first try to give a complete proof of Jørgensen and Marden's result, we applied their strategy to the case for Fuchsian groups in [Díaz and Ushijima 2009]. We obtained an alternative proof of the result of Beardon there.

The idea of fundamental polygons can be generalized to the case where the center lies on the boundary of the hyperbolic plane. The main purpose of this paper is to show, again following the strategy of Jørgensen and Marden, that Beardon's result holds even when the centers lie in the boundary of the hyperbolic plane.

2. Preliminaries

Let $\mathbb{H}^{2}:=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ be the upper half-plane model of the two-dimensional hyperbolic space. It is given as a subset of the complex plane \mathbb{C}, but it is also regarded as contained in the Riemann sphere $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$, where ∞ denotes the point at infinity. The boundary $\partial \mathbb{H}^{2}$ of \mathbb{H}^{2} is considered in $\widehat{\mathbb{C}}$ so that it consists of the real axis \mathbb{R} plus ∞. We set $\overline{\mathbb{H}^{2}}:=\mathbb{H}^{2} \cup \partial \mathbb{H}^{2}$.

A circle in $\widehat{\mathbb{C}}$ means either a Euclidean circle in \mathbb{C} or a Euclidean line in \mathbb{C}, as a circle through ∞. Hyperbolic lines in \mathbb{M}^{2} (resp. in $\overline{\mathbb{M}^{2}}$) are obtained as the intersection of \mathbb{H}^{2} (resp. \mathbb{Z}^{2}) and circles in $\widehat{\mathbb{C}}$ which are perpendicular to \mathbb{R}. For two distinct points z and w in $\overline{\mathbb{H}^{2}}$, we denote by $[z, w]$ the hyperbolic line segment with endpoints z and w in $\overline{\mathbb{H}^{2}}$.

The orientation-preserving isometry group of \mathbb{H}^{2} is known to be isomorphic to the following projective special linear group:

$$
\operatorname{PSL}_{2}(\mathbb{R}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c=1\right\} /\{ \pm I\}
$$

where I denotes the identity matrix. The action of an element T in $\operatorname{PSL}_{2}(\mathbb{R})$ on $\widehat{\mathbb{C}}$ is a Möbius transformation

$$
T(z):=\frac{a z+b}{c z+d}, \quad z \in \widehat{\mathbb{C}}
$$

The restriction of this action on \mathbb{H}^{2} is orientation-preserving and isometric with respect to the hyperbolic metric. We denote the set of the fixed points of T in $\overline{\mathbb{H}^{2}}$ by $\operatorname{Fix}(T)$. Any nontrivial element of $\mathrm{PSL}_{2}(\mathbb{R})$ is classified into three types according to the number of elements in $\operatorname{Fix}(T)$; a nontrivial element T in $\operatorname{PSL}_{2}(\mathbb{R})$ is said to be elliptic if $\operatorname{Fix}(T)$ coincides with $\operatorname{Fix}(T) \cap \mathbb{Q}^{2}$ that is a one point set, parabolic if $\operatorname{Fix}(T)$ coincides with $\operatorname{Fix}(T) \cap \partial \Vdash^{2}$ that is a one point set, and hyperbolic if $\operatorname{Fix}(T)$ coincides with $\operatorname{Fix}(T) \cap \partial \Vdash^{2}$ that consists of two points. For hyperbolic T, the axis $\operatorname{Ax}(T)$ is defined to be the hyperbolic line whose endpoints are the fixed points of T.

For an element T in $\operatorname{PSL}_{2}(\mathbb{R})$ and a point z in $\mathbb{H}^{2}-\operatorname{Fix}(T)$, let

$$
\mathrm{B}(z ; T):=\left\{w \in \mathbb{H}^{2} \mid d(w, z)=d(w, T(z))\right\}
$$

be the set of points in \mathbb{H}^{2} that are equidistant from z and $T(z)$ with respect to the hyperbolic distance $d(\cdot, \cdot)$. It is a hyperbolic line, the perpendicular bisector of $[z, T(z)]$. We remark that our definition of $\mathrm{B}(z ; T)$, as in [Díaz and Ushijima 2009], differs from the one given in [Jørgensen and Marden 1988]; there $\mathrm{B}(z ; T)$ was defined as the perpendicular bisector of $\left[z, T^{-1}(z)\right]$.

The definition of $\mathrm{B}(z ; T)$ generalizes to the case that the point z lies in $\partial \mathbb{H}^{2}$. For a point p in $\partial \Vdash^{2}-\operatorname{Fix}(T)$, a hyperbolic line $\mathrm{B}(p ; T)$ is defined to be the limit of $\mathrm{B}(z ; T)$ as z converges to p. In particular, if p is taken to be ∞, then $\mathrm{B}(\infty ; T)$ is the isometric semicircle for T^{-1}.

We denote by $\overline{\mathrm{B}(z ; T)}$ the closure of $\mathrm{B}(z ; T)$ in $\overline{\mathbb{H}^{2}}$. For further properties and a proof of the following proposition [Jørgensen and Marden 1988, Section 2].

Proposition 1. Let T be a nontrivial element in $\operatorname{PSL}_{2}(\mathbb{R})$.
(1) If T is elliptic, then $\mathrm{B}(z ; T)$ contains the fixed point of T for any point z in $\overline{\mathbb{M}^{2}}-\operatorname{Fix}(T)$.
(2) If T is parabolic, then $\overline{\mathrm{B}(z ; T)}$ contains the fixed point of T for any point z in $\overline{\mathbb{H}^{2}}-\operatorname{Fix}(T)$. If the point z approaches the fixed point ζ of T conically, then $\overline{\mathrm{B}(z ; T)}$ converges to ζ.
(3) If T is hyperbolic, then $\overline{\mathrm{B}(z ; T)}$ does not contain any fixed point of T for any point z in $\overline{\mathbb{M}^{2}}-\mathrm{Fix}(T)$. Furthermore it intersects perpendicularly with $\mathrm{Ax}(T)$. If the point z approaches a fixed point ζ of T, then $\overline{\mathrm{B}(z ; T)}$ converges to ζ.
Fuchsian groups are discrete subgroups of the orientation-preserving isometry group of \mathbb{H}^{2}. We regard them as subgroups of $\mathrm{PSL}_{2}(\mathbb{R})$ in what follows. For a given Fuchsian group Γ and a point w in \mathbb{H}^{2}, we define a subset $\mathscr{P}_{0}(w)$ in \mathbb{H}^{2} as follows:

$$
\mathscr{P}_{0}(w):=\left\{z \in \mathbb{W}^{2} \mid d(z, w) \leq d(z, T(w)) \text { for all } T \in \Gamma\right\}
$$

when w is in \mathbb{M}^{2}, and

$$
\mathscr{P}_{0}(w):=\left\{\begin{array}{l|l}
z \in \mathbb{M}^{2} & \begin{array}{l}
\text { for any } T \in \Gamma-\{I\}, \text { the point } z \text { lies in the closure of } \\
\text { the component of } \mathbb{H}^{2}-\mathrm{B}(w ; T) \text { that is adjacent to } w
\end{array}
\end{array}\right\}
$$

when w is in $\partial \mathbb{H}^{2}$. The subset $\mathscr{P}_{0}(w)$ is a fundamental polygon for Γ when w is taken from $\mathbb{H}^{2}-\bigcup_{T \in \Gamma} \operatorname{Fix}(T)$. Then $\mathscr{P}_{0}(w)$ is called a (Dirichlet) fundamental polygon for Γ. For a point w in $\partial \mathbb{H}^{2}$, on the other hand, the subset $\mathscr{P}_{0}(w)$ is not always a fundamental polygon. Let $\Omega(\Gamma)$ be the ordinary set for Γ in $\widehat{\mathbb{C}}$. It is shown in [Beardon 1983, Theorem 9.5.2] that $\mathscr{P}_{0}(w)$ is a fundamental polygon when w is taken from $\Omega(\Gamma)$. When such w is taken to be ∞, the fundamental polygon $\mathscr{P}_{0}(w)$ is known as the Ford fundamental region. Set $\mathscr{P}(w):=\overline{\mathscr{P}_{0}(w)} \cap \Omega(\Gamma)$, where $\overline{\mathscr{P}_{0}(w)}$ means the closure of $\mathscr{P}(w)$ in $\frac{\mathbb{H}^{2}}{}$. The point w is called the center of $\mathscr{P}_{0}(w)$, or of $\mathscr{P}(w)$.

3. Generic fundamental polygons and the main result

Since the polygon $\mathscr{P}(w)$ is defined to be the intersection of $\overline{\mathscr{P}_{0}(w)}$ with $\Omega(\Gamma)$, the vertices of $\mathscr{P}_{0}(w)$, or the endpoints in $\Omega(\Gamma)$ of edges of $\mathscr{P}_{0}(w)$, are vertices of $\mathscr{P}(w)$. Fixed points of elliptic elements of order two on edges of $\mathscr{P}_{0}(w)$ are also called vertices of $\mathscr{P}(w)$. Vertices in \mathbb{H}^{2} are called inner vertices, and those in $\Omega(\Gamma)$ are called boundary vertices.

A cusp of $\mathscr{P}(w)$ is a parabolic fixed point lying in $\overline{\mathscr{P}(w)}$. Cusps are not boundary vertices, since any parabolic fixed point belongs to the limit set, which is the complement of $\Omega(\Gamma)$ in $\widehat{\mathbb{C}}$.

The edges of $\mathscr{P}(w)$ are either those of $\mathscr{P}_{0}(w)$ or closed segments in $\mathscr{P}(w) \cap \partial \Vdash^{2}$. An edge of $\mathscr{P}_{0}(w)$ as a hyperbolic polygon is decomposed into two edges of $\mathscr{P}(w)$
if it has a vertex corresponding to the fixed point of an elliptic element of order two. The edges of $\mathscr{P}(w)$ which come from those of $\mathscr{P}_{0}(w)$ are also called inner edges. We denote by $\ell(e)$ the hyperbolic line containing an inner edge e of $\mathscr{P}_{0}(w)$.

An inner vertex v of $\mathscr{P}(w)$ said to have a vertex cycle of length k if there is a sequence $T_{1}=I, T_{2}, T_{3}, \ldots, T_{k}, T_{k+1}=T_{1}=I$ of elements in Γ such that the sequence $T_{1}(\mathscr{P}(w))=\mathscr{P}(w), T_{2}(\mathscr{P}(w)), \ldots, T_{k}(\mathscr{P}(w))$ of polygons is a cyclic arrangement around v in the Γ-orbit of $\mathscr{P}(w)$. In other words, the length of a vertex cycle is the number of disjoint vertices of $\mathscr{P}_{0}(w)$ that are equivalent to v under Γ if v is not fixed by elliptic elements in Γ. The sequence $T_{1}, T_{2}, \ldots, T_{k}$ is called the vertex cycle of v.

Definition. For a Fuchsian group Γ, the fundamental polygon $\mathscr{P}(w)$ centered at w in $\mathbb{M}^{2} \cup \Omega(\Gamma)$ is said to be generic if it satisfies the following conditions:
(1) For an inner vertex, if the length of its vertex cycle is greater than three, then the vertex is the fixed point of an elliptic element in Γ.
(2) For an inner edge e, if $\overline{\ell(e)}$ contains the fixed point of an elliptic or a parabolic element in Γ, the element of Γ defining $\ell(e)$ as the bisector is an elliptic or a parabolic element fixing the point in question. Similarly, if $\ell(e)$ intersects perpendicularly with the axis of a hyperbolic element in Γ, the element of Γ defining $\ell(e)$ as the bisector is a hyperbolic element fixing the axis in question.
(3) Every boundary vertex is an endpoint of exactly one inner edge.
(4) If two inner edges share an endpoint on $\partial \Vdash^{2}$, then the endpoint is a cusp that is the fixed point of a parabolic element gluing these inner edges.
Analogous notions have been studied before. Our definition of generic fundamental polygons is the two-dimensional counterpart of the definition of generic fundamental polyhedra in [Jørgensen and Marden 1988]. Our Conditions (1), (3), and (4) correspond to those defining Dirichlet polygons in [Beardon 1983, Theorem 9.4.5].

The conditions for generic fundamental polygons have geometric interpretations. Condition (1) and (2) together imply that, if a vertex v is fixed by an elliptic element in Γ, its vertex cycle coincides with the cyclic elliptic subgroup with fixed point v. Another interpretation is that any cone singularity of the surface \mathbb{W}^{2} / Γ is cut by the image of exactly one inner edge. Similarly, Conditions (2) and (3) mean that any border (open end) of \mathbb{H}^{2} / Γ is also cut by the image of exactly one inner edge, and Condition (4) means that any cusp of \mathbb{H}^{2} / Γ is also cut by the image of exactly one inner edge.
Theorem. For a Fuchsian group Γ, there is a subset \mathcal{N}_{Γ} in $\partial \mathbb{H}^{2}$ of measure zero such that, for any point w in $\left(\Omega(\Gamma) \cap \partial \Vdash^{2}\right)-\mathcal{N}_{\Gamma}$, the fundamental polygon $\mathscr{P}(w)$ is generic.

Proof. To obtain the subset \mathcal{N}_{Γ}, we define three families of subsets in $\partial \mathbb{H}^{2}$. For T_{1}, T_{2}, T_{3} in $\operatorname{PSL}_{2}(\mathbb{R})$, define a subset $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$ in $\partial \mathbb{H}^{2}$ as

$$
\mathscr{V}_{T_{1}, T_{2}, T_{3}}:=\left\{p \in \partial \mathbb{M}^{2} \mid \overline{\mathrm{B}\left(p ; T_{1}\right)} \cap \overline{\mathrm{B}\left(p ; T_{2}\right)} \cap \overline{\mathrm{B}\left(p ; T_{3}\right)} \neq \varnothing\right\} .
$$

For T_{1}, T_{2} in $\mathrm{PSL}_{2}(\mathbb{R})$, define $\mathscr{T}_{T_{1}, T_{2}}$ as

$$
\mathscr{T}_{T_{1}, T_{2}}:=\left\{p \in \partial \mathbb{H}^{2} \mid \overline{\mathrm{B}\left(p ; T_{1}\right)} \cap \overline{\mathrm{B}\left(p ; T_{2}\right)} \cap \partial \mathbb{M}^{2} \neq \varnothing\right\}
$$

For T_{1}, T_{2} in $\mathrm{PSL}_{2}(\mathbb{R})$, define $\mathscr{F}_{T_{1}, T_{2}}$ as

$$
\mathscr{F}_{T_{1}, T_{2}}:=\left\{p \in \partial \Vdash^{2} \mid \operatorname{Fix}\left(T_{1}\right) \cap \overline{\mathrm{B}\left(p ; T_{2}\right)} \neq \varnothing\right\}
$$

when T_{1} is elliptic or parabolic, and

$$
\mathscr{F}_{T_{1}, T_{2}}:=\left\{p \in \partial \mathbb{H}^{2} \mid \mathrm{B}\left(p ; T_{2}\right) \text { intersects perpendicularly with the axis of } T_{1}\right\}
$$

when T_{1} is hyperbolic.
Using these subsets, we define

$$
\mathcal{N}_{\Gamma}:=\left(\bigcup_{\left\{T_{1}, T_{2}, T_{3}\right\}} \mathscr{V}_{T_{1}, T_{2}, T_{3}}\right) \cup\left(\bigcup_{\left\{T_{4}, T_{5}\right\}} \mathscr{T}_{T_{4}, T_{5}}\right) \cup\left(\bigcup_{\left(T_{6}, T_{7}\right)} \mathscr{F}_{T_{6}, T_{7}}\right)
$$

where $\left\{T_{1}, T_{2}, T_{3}\right\}$ runs over all triples in Γ that are mutually distinct, nontrivial and neither elliptic with a common fixed point nor parabolic with a common fixed point, $\left\{T_{4}, T_{5}\right\}$ runs over all pairs in Γ that are distinct, nontrivial and not parabolic with a common fixed point, and (T_{6}, T_{7}) runs over all ordered pairs of nontrivial elements in Γ such that $\operatorname{Fix}\left(T_{7}\right)$ and $\operatorname{Fix}\left(T_{6}\right)$ are different.

Each of the indexes in the definition of \mathcal{N}_{Γ} runs over countably many triples and pairs, because Γ is a discrete group (see [Beardon 1983, Exercise 2.3.3], for example,). To see that \mathcal{N}_{Γ} has measure zero, it is thus enough to see that the subsets $\mathscr{V}_{T_{1}, T_{2}, T_{3}}, \mathscr{T}_{T_{4}, T_{5}}$ and $\mathscr{F}_{T_{6}, T_{7}}$ have measure zero. These are shown in Propositions 5, 7 and 9 , respectively.

We next use case analysis to show that the fundamental polygon $\mathscr{P}(w)$ is generic for any w in $\left(\Omega(\Gamma) \cap \partial \Vdash^{2}\right)-\mathcal{N}_{\Gamma}$.

For Condition (1), take a vertex v of $\mathscr{P}_{0}(w)$. Let S_{v} be the vertex cycle of v, and k_{v} the length of S_{v}. Suppose $k_{v}>3$. Then there are at least three nontrivial and distinct elements, say T_{a}, T_{b} and T_{c}, in S_{v}. Though w is not in $\bigcup_{\left\{T_{1}, T_{2}, T_{3}\right\}} \mathscr{V}_{T_{1}, T_{2}, T_{3}}$, the bisectors $\mathrm{B}\left(w ; T_{a}\right), \mathrm{B}\left(w ; T_{b}\right)$ and $\mathrm{B}\left(w ; T_{c}\right)$ contain v. This means that the three elements T_{a}, T_{b} and T_{c} are either elliptic with a common fixed point or parabolic with a common fixed point. If they are parabolic, then $\overline{\mathrm{B}\left(w ; T_{a}\right)}, \overline{\mathrm{B}\left(w ; T_{b}\right)}$ and $\overline{\mathrm{B}\left(w ; T_{c}\right)}$ contain a common fixed point in $\partial \mathbb{H}^{2}$. This contradicts the assumption that v is in \mathbb{H}^{2}. If they are elliptic with a common fixed point, S_{v} is in a cyclic subgroup of Γ by the discreteness of Γ. Then the cyclic subgroup is generated by an elliptic element, which fixes v.

For Condition (2), take an inner edge e of $\mathscr{P}(w)$. Let T_{e} be an element in Γ such that $\ell(e)$ coincides with $\mathrm{B}\left(w ; T_{e}\right)$. Suppose that an endpoint of $\ell(e)$ coincided with the fixed point of a parabolic element, say T. This means that $\operatorname{Fix}(T) \cap \overline{\mathrm{B}\left(w ; T_{e}\right)}$ is nonempty. Since w is not in $\bigcup_{\left(T_{6}, T_{7}\right)}{ }^{\mathscr{F}} T_{6}, T_{7}$, the set $\operatorname{Fix}\left(T_{e}\right)$ coincides with $\operatorname{Fix}(T)$. The same argument is applied to the cases that T_{e} is either elliptic or hyperbolic.

For Conditions (3), and (4), take a vertex (in the ordinary sense) v^{*} of $\overline{\mathscr{P}(w)}$ that is in $\partial \mathbb{H}^{2}$. Suppose that v^{*} is the endpoint of two inner edges, say a and b, of $\mathscr{P}_{0}(w)$. Let T_{a} and T_{b} are elements in Γ such that $\ell(a)$ and $\ell(b)$ coincide with $\mathrm{B}\left(w ; T_{a}\right)$ and $\mathrm{B}\left(w ; T_{b}\right)$ respectively. Since w is not in $\bigcup_{\left\{T_{4}, T_{5}\right\}} \mathscr{T}_{T_{4}, T_{5}}$, the elements T_{a} and T_{b} are parabolic with a common fixed point. Then v^{*} is their common fixed point so that it is a cusp of $\mathscr{P}(w)$ given as the endpoint of a and b that are glued together by $T_{a}=T_{b}{ }^{-1}$.

Furthermore, the argument above implies that a vertex v^{*} in $\Omega(\Gamma)$ is an endpoint of exactly one inner edge, for any parabolic fixed point is not in $\Omega(\Gamma)$. Such a vertex is a boundary vertex by definition.

We have thus shown that $\mathscr{P}(w)$ is generic for any w in $\left(\Omega(\Gamma) \cap \partial \mathbb{H}^{2}\right)-\mathcal{N}_{\Gamma}$.
This theorem is a generalization of [Beardon 1983, Theorem 9.4.5] and [Díaz and Ushijima 2009, Corollary 3.11]. The algebraic equations defining $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$, $\mathscr{T}_{T_{4}, T_{5}}$ and $\mathscr{F}_{T_{6}, T_{7}}$ can be regarded as defined on \mathbb{C}, so the set \mathcal{N}_{Γ} can be extended to one in $\overline{\mathbb{M}^{2}}$. Both \mathcal{N}_{Γ} and its extension have measure zero, so their complements
 every point w in \mathbb{H}^{2} and $\Omega(\Gamma) \cap \partial \mathbb{H}^{2}$.

4. Propositions

To prove the propositions used in the proof of the theorem, we use the projective disc model D^{2} of two-dimensional hyperbolic space. As a set it is the open unit disc centered at the origin in two-dimensional real projective space $\mathbb{R} \mathbb{P}^{2}$. We choose the isometry from \Vdash^{2} to D^{2} so that $0,1, \infty \in \partial \Vdash^{2}$ are mapped, respectively, to $(0,-1),(1,0),(0,1)$ in $\mathbb{R P}^{2}$.

Given an element $T=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ in $\operatorname{PSL}_{2}(\mathbb{R})$ and a point z in $\overline{\mathbb{H}^{2}}-\operatorname{Fix}(T)$, let $\mathrm{C}(z ; T)$ be the pole in $\mathbb{R P}^{2}$ of the projective line containing the image of $\mathrm{B}(z ; T)$ in D^{2}. For a point $p \in \mathbb{R} \subset \partial \mathbb{H}^{2}$, a formula in [Jørgensen and Marden 1988, §2.9] tells us the coordinate of $\mathrm{C}(p ; T)$:

$$
\begin{align*}
\mathrm{C}(p ; T)= & \frac{1}{(a p+b)^{2}+(c p+d)^{2}-p^{2}-1} \tag{*}\\
& \quad \times\left(2((a p+b)(c p+d)-p),(a p+b)^{2}-(c p+d)^{2}-p^{2}+1\right)
\end{align*}
$$

Using this formula, we have the following proposition, which is a key in proving others.

Proposition 2. For distinct and nontrivial elements T_{1}, T_{2} and T_{3} in $\operatorname{PSL}_{2}(\mathbb{R})$, the following two conditions are equivalent:
(1) The three points $\mathrm{C}\left(p ; T_{1}\right), \mathrm{C}\left(p ; T_{2}\right)$ and $\mathrm{C}\left(p ; T_{3}\right)$ are collinear in $\mathbb{R P}^{2}$ for any point p in $\partial \mathbb{H}^{2}-\bigcup_{i=1}^{3} \operatorname{Fix}\left(T_{i}\right)$.
(2) The elements T_{1}, T_{2} and T_{3} either
(a) have the same fixed point set, or
(b) up to conjugation by an element of $\operatorname{PSL}_{2}(\mathbb{R})$, satisfy

$$
T_{1}(z)=a z, \quad T_{2}(z)=b z+1-b, \quad T_{3}(z)=\frac{a z}{(a-b) z+b}
$$

for some a, b in $\mathbb{R}-\{0,1\}$.
Proof. This result is closely related to Theorem 4.3 in [Díaz and Ushijima 2009], which says that Condition (2) of the proposition holds if and only if, for any $z \in \mathbb{M}^{2}$, the points $z, T_{1}(z), T_{2}(z)$ and $T_{3}(z)$ are cocyclic in $\widehat{\mathbb{C}}$. We will see in Proposition 3 that this condition is equivalent to $\mathrm{C}\left(z ; T_{1}\right), \mathrm{C}\left(z ; T_{2}\right)$ and $\mathrm{C}\left(z ; T_{3}\right)$ being collinear for any $z \in \mathbb{H}^{2}-\bigcup_{i=1}^{3} \operatorname{Fix}\left(T_{i}\right)$. This shows the implication (2) \Rightarrow (1).

Moreover the collinearity of $\mathrm{C}\left(z ; T_{1}\right), \mathrm{C}\left(z ; T_{2}\right)$ and $\mathrm{C}\left(z ; T_{3}\right)$ is an algebraic condition (see proof of the theorem just cited). If T_{1}, T_{2} and T_{3} are not one of the triples listed in Condition (2), the algebraic equation is proper, that is, the solution set is nowhere dense in \mathbb{C}. This, however, does not guarantee that \mathbb{R} is not contained in the solution set. Thus the implication $(1) \Rightarrow(2)$ is not proved yet.

Let T_{1}, T_{2}, T_{3} be distinct nontrivial elements of $\operatorname{PSL}_{2}(\mathbb{R})$ satisfying (1). Then the determinant $\Delta(p)$ of the 2×2 matrix with columns $\mathrm{C}\left(p ; T_{1}\right)-\mathrm{C}\left(p ; T_{2}\right)$ and $\mathrm{C}\left(p ; T_{1}\right)-\mathrm{C}\left(p ; T_{3}\right)$ vanishes wherever it is defined - that is, for any $p \in \mathbb{R}$ such that the points $\mathrm{C}\left(p ; T_{1}\right), \mathrm{C}\left(p ; T_{2}\right), \mathrm{C}\left(p ; T_{3}\right)$ are not on the line at infinity of \mathbb{R}^{2}. (Here of course the $\mathrm{C}\left(p ; T_{i}\right)$ are given by the formula (*).)

Now, as p runs over $\partial \mathbb{H}$, each $\mathrm{B}\left(p ; T_{i}\right)$ describes a projective line; we can assume without loss of generality that none of these three lines is the line at infinity. (If it is, we conjugate T_{1}, T_{2}, T_{3} by an element of $\mathrm{PSL}_{2}(\mathbb{R})$, which is allowed since desired conclusion, Condition (2), is insensitive to conjugation.) Thus the determinant $\Delta(p)$ is defined - and, by assumption, vanishes - for all but finitely many values of p. Hence, in any expression $N(p) / D(p)$ of $\Delta(p)$ as a rational function of p, the numerator $N(p)$ is the zero polynomial. We will show, by analyzing the possible cases, that this implies the desired conclusion.

Case 1. One of T_{i} (say T_{1}) is hyperbolic and another (say T_{2}) is not elliptic.
We first consider the case that the set $\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right)$ is not empty. By conjugation, we can assume that T_{1} fixes 0 and ∞, and T_{2} fixes ∞. The matrix
presentations in $\mathrm{SL}_{2}(\mathbb{R})$ of these elements are

$$
T_{1}=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & 1 / a_{1}
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & 1 / a_{2}
\end{array}\right), \quad T_{3}=\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right) .
$$

The constant term of N is then $4 a_{2} b_{2} b_{3}\left(a_{2} b_{2} d_{3}-b_{3}\right)$. Since a_{2} is not zero, we have either $b_{2}=0, b_{3}=0$ or $a_{2} b_{2} d_{3}=b_{3}$.

When $b_{2}=0$, the coefficient of p^{2} is $-4 b_{3} d_{3}\left(a_{1}^{2}-a_{2}^{2}\right)\left(a_{2}^{2}-1\right)$. We have $T_{1}=T_{2}$ in $\operatorname{PSL}_{2}(\mathbb{R})$ when $a_{1}^{2}=a_{2}^{2}$, we have T_{1} is trivial when $a_{2}^{2}=1$, and the case that $b_{3}=0$ will be discussed later. So d_{3} is to be 0 , which together with $\operatorname{det} T_{3}=1 \mathrm{implies}-b_{3} c_{3}=1$. The coefficient of p^{3} is then $8\left(a_{1}^{2}-a_{2}^{2}\right)\left(a_{2}^{2}-1\right)$. All of the possible cases when it is zero have already been discussed.

When $b_{3}=0$, we have $d_{3}=1 / a_{3}$, for $\operatorname{det} T_{3}=1$. The coefficient of p^{3} is then $8 a_{2} b_{2} c_{3}\left(a_{2}^{2} a_{3}^{2}-a_{1}^{2}\right) / a_{3}$. It is a straightforward calculation that there will be no new possible cases when either b_{2} or c_{3} is zero. We thus assume $a_{3}=a_{1} / a_{2}$ without loss of generality. The polynomial N is then expressed as

$$
N(p)=\frac{4}{a_{2}}\left(\left(a_{1}^{2}-a_{2}^{2}\right)\left(a_{2}^{2}-1\right)+a_{1} a_{2}^{2} b_{2} c_{3}\right)\left(b_{2}-a_{1} c_{3} z^{2}\right) p^{2} .
$$

We thus have $c_{3}=\left(a_{1}^{2}-a_{2}^{2}\right)\left(1-a_{2}^{2}\right) /\left(a_{1} a_{2}^{2} b_{2}\right)$. The point $a_{2} b_{2} /\left(1-a_{2}^{2}\right)$ is fixed by T_{2}. After normalizing this fixed point to be 1 , three elements T_{1}, T_{2} and T_{3} coincide with the ones in (2b).

When $a_{2} b_{2} d_{3}=b_{3}$, we have $c_{3}=\left(a_{3} d_{3}-1\right) /\left(a_{2} b_{2} d_{3}\right)$, for $\operatorname{det} T_{3}=1$. The coefficient of p is then $8 a_{2}^{2} b_{2}^{2}\left(a_{2}^{2} d_{3}^{2}-1\right)$, which implies $T_{2}=T_{3}$, contrary to assumption.

We next consider the case that $\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right)$ is the empty set; here T_{1} can be assumed to fix 0 and ∞, and T_{2} to fix 1 . The matrix presentations in $\mathrm{SL}_{2}(\mathbb{R})$ of these elements are

$$
T_{1}=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & \frac{1}{a_{1}}
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
a_{2} & \frac{1}{a_{2}-c_{2}}-a_{2} \\
c_{2} & \frac{1}{a_{2}-c_{2}}-c_{2}
\end{array}\right), \quad T_{3}=\left(\begin{array}{cc}
a_{3} & \frac{a_{3} d_{3}-1}{c_{3}} \\
c_{3} & d_{3}
\end{array}\right)
$$

The coefficient of p^{6} is then $-4 a_{1}^{2} c_{2} c_{3}^{3}\left(a_{2}-c_{2}\right)^{2}\left(a_{2} c_{3}-a_{3} c_{2}\right)$. When it is zero, we have $a_{2} c_{3}-a_{3} c_{2}=0$, otherwise we are in the case already considered. This implies $T_{2}=T_{3}$.

Case 2. Two of T_{i} (say T_{1} and T_{2}) are parabolic.
We first consider the case that $\operatorname{Fix}\left(T_{1}\right)$ coincides with $\operatorname{Fix}\left(T_{2}\right)$; the common fixed point of T_{1} and T_{2} is assumed to be ∞. The matrix presentations in $\mathrm{SL}_{2}(\mathbb{R})$ of these
elements are

$$
T_{1}=\left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
1 & b_{2} \\
0 & 1
\end{array}\right), \quad T_{3}=\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right)
$$

where $a_{3} d_{3}-b_{3} c_{3}=1$. It is then a straightforward calculation that there will be no new possible cases.

We next consider the case that the set $\operatorname{Fix}\left(T_{1}\right) \cap \operatorname{Fix}\left(T_{2}\right)$ is empty; T_{1} is assumed to fix ∞ and T_{2} is assumed to fix 0 . The matrix presentations in $\mathrm{SL}_{2}(\mathbb{R})$ of these elements are

$$
T_{1}=\left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
1 & 0 \\
c_{2} & 1
\end{array}\right), \quad T_{3}=\left(\begin{array}{cc}
a_{3} & b_{3} \\
\frac{a_{3} d_{3}-1}{b_{3}} & d_{3}
\end{array}\right)
$$

The constant term is then $8 b_{3}{ }^{3}\left(b_{1} d_{3}-b_{3}\right)$, which implies $T_{1}=T_{3}$.
Case 3. Two of the T_{i} are elliptic.
We assume T_{1} fixes $\sqrt{-1}$ and T_{2} fixes $h \sqrt{-1}$, for some $h>0$. The matrix presentations in $\mathrm{SL}_{2}(\mathbb{R})$ of these elements are

$$
T_{1}=\left(\begin{array}{cc}
\cos \theta_{1} & \sin \theta_{1} \\
-\sin \theta_{1} & \cos \theta_{1}
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
\cos \theta_{2} & h \sin \theta_{2} \\
-\frac{1}{h} \sin \theta_{2} & \cos \theta_{2}
\end{array}\right), \quad T_{3}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

where $\theta_{1}, \theta_{2} \in \mathbb{R}$ and $a d-b c=1$. Recall $\sin \theta_{i} \neq 0$ for $i=1,2$ since both T_{1} and T_{2} are not trivial.

Let $p_{21}:=h\left(-1+\cos \theta_{2}\right) / \sin \theta_{2}$ and $p_{22}:=h\left(1+\cos \theta_{2}\right) / \sin \theta_{2}$. These points satisfy $\sqrt{-1} \in \mathrm{~B}\left(p_{2 i} ; T_{2}\right)$ for $i=1$, 2. Since we are assuming (1), we also have $\sqrt{-1} \in \mathrm{~B}\left(p_{2 i} ; T_{3}\right)$ for $i=1,2$, which means $\mathrm{C}\left(p_{2 i} ; T_{3}\right) \notin \mathbb{R}^{2} \subset \mathbb{R P}^{2}$.

Let D_{i} be the denominator of $\mathrm{C}\left(p_{2 i} ; T_{3}\right)$ for $i=1,2$. They then satisfy

$$
D_{1}-D_{2}=\frac{-4 h}{\sin ^{2} \theta_{2}} d_{1}, \quad D_{1}+D_{2}=\frac{4 h \cos \theta_{2}}{\sin ^{2} \theta_{2}} d_{1}+2 d_{2}
$$

where $d_{1}:=(a b+c d) \sin \theta_{2}+h\left(a^{2}+c^{2}-1\right) \cos \theta_{2}$ and $d_{2}:=h^{2}\left(a^{2}+c^{2}-1\right)+$ $\left(b^{2}+d^{2}-1\right)$. Since $\mathrm{C}\left(p_{2 i} ; T_{3}\right) \notin \mathbb{R}^{2}$, we have $D_{1}=D_{2}=0$. This implies, by the equations above, $d_{1}=d_{2}=0$.

Similarly, there are points $p_{1 i}$ in $\partial \mathbb{H}^{2}$ satisfying $h \sqrt{-1} \in \mathrm{~B}\left(p_{1 i} ; T_{1}\right)$ for $i=1,2$. Let

$$
H:=\left(\begin{array}{cc}
\sqrt{h} & 0 \\
0 & 1 / \sqrt{h}
\end{array}\right)
$$

We then have $\operatorname{Fix}\left(H^{-1} T_{1} H\right)=\{\sqrt{-1} / h\}$ and $\operatorname{Fix}\left(H^{-1} T_{2} H\right)=\{\sqrt{-1}\}$. Applying similar calculations as before we have $d_{3}=d_{4}=0$, where

$$
\begin{aligned}
d_{3} & :=(a b+c d h) \sin \theta_{1}+\left(a^{2}+c^{2} h^{2}-1\right) \cos \theta_{1} \\
d_{4} & :=\left(a^{2}+b^{2}-1\right)+\left(c^{2}+d^{2}-1\right) h^{2}
\end{aligned}
$$

When $c=0$, we have $a=1 / d$ and $b=h\left(d^{2}-1\right) \cos \theta_{2} /\left(d \sin \theta_{2}\right)$. Substitute them for both d_{2} and d_{4} and we have $d_{4}-d_{2}=\left(d^{4}-1\right)\left(h^{2}-1\right) \sin ^{2} \theta_{2}$. The condition $d_{4}-d_{2}=0$ implies that T_{3} is trivial.

When $c \neq 0$, we have $b=(a d-1) / c$. Substitute it for both d_{2} and d_{4} and we have $d_{2}-d_{4}=c^{2}\left(a^{2}-d^{2}\right)\left(h^{2}-1\right)$. When $h^{2}=1$ or $a=d$, a straightforward calculation shows that T_{1}, T_{2} and T_{3} have a common fixed point. When $a=-d$, we have the following expression of d_{1} :

$$
d_{1}=-a\left(a^{2}+c^{2}+1\right) \sin \theta_{2}+c h\left(a^{2}+c^{2}-1\right) \cos \theta_{2}
$$

Suppose $a^{2}+c^{2}-1 \neq 0$, otherwise we have no new triple. Then h is expressed as

$$
h=\frac{a\left(a^{2}+c^{2}+1\right) \sin \theta_{2}}{c\left(a^{2}+c^{2}-1\right) \cos \theta_{2}}
$$

Substitute them for d_{2} and we have the expression of $\sin ^{2} \theta_{2}$ as

$$
\sin ^{2} \theta_{2}=\frac{\left(a^{2}+c^{2}-1\right)\left(\left(a^{2}+c^{2}-1\right)\left(a^{2}-1\right)+4 a^{2}\right)}{4 c^{2}-\left(a^{2}+c^{2}+1\right)}
$$

Similarly, substitute them for d_{3} and we have the expression of $\sin ^{2} \theta_{1}$ as

$$
\sin ^{2} \theta_{1}=\frac{(2 a c)^{2}}{\left(a^{2}+c^{2}+1\right)-4 c^{2}}
$$

These expressions imply, after a few more calculations, that there will be no new triple in this case. This concludes the proof of Proposition 2.

Proposition 3. For $i=1,2$, let B_{i} be the perpendicular bisector of the hyperbolic line segment $\left[z_{0}, z_{i}\right]$ with endpoints z_{0} and z_{i} in \mathbb{H}^{2}, and C_{i} the pole in $\mathbb{R P}^{2}$ of the projective line containing the image of B_{i}. In each of the following triples of statement, the three conditions are equivalent:
(1-1) The points z_{0}, z_{1} and z_{2} are on a hyperbolic circle with center $w \in \mathbb{H}^{2}$.
(1-2) The projective lines B_{1} and B_{2} intersect at $w \in \mathbb{H}^{2}$.
(1-3) The projective line in $\mathbb{R P}^{2}$ through C_{1} and C_{2} does not intersect $\overline{D^{2}}$, and its pole corresponds to $w \in \mathbb{H}^{2}$.
(2-1) The points z_{0}, z_{1} and z_{2} are on a horocycle with center $w \in \partial \mathbb{H}^{2}$.
(2-2) The projective lines $\overline{\mathrm{B}_{1}}$ and $\overline{\mathrm{B}_{2}}$ intersect at $w \in \partial \Vdash^{2}$.
(2-3) The projective line in $\mathbb{R} \mathbb{P}^{2}$ through C_{1} and C_{2} touches ∂D^{2}, and the tangential point corresponds to $w \in \partial \mathbb{H}^{2}$.
(3-1) The points z_{0}, z_{1} and z_{2} are on an equidistant point set whose axis is ℓ.
(3-2) The projective lines $\overline{\mathrm{B}_{1}}$ and $\overline{\mathrm{B}_{2}}$ intersect perpendicularly with ℓ.
(3-3) The projective line in $\mathbb{R P}^{2}$ through C_{1} and C_{2} intersects with D^{2}, and it contains the image of ℓ.

Proof. For $j=1,2,3$, the equivalence between $(j-2)$ and $(j-3)$ comes from the duality for the pole and the projective line in \mathbb{R}^{2}.

Suppose that (1-1) holds. Since any point on \mathbf{B}_{1} is equidistant from z_{0} and z_{1}, the center w lies on B_{1}, and so does on B_{2}. Thus (1-3) holds, and the converse is also true by the same argument. The equivalence between (2-1) and (2-2) comes by a continuity argument from the equivalence above. The equivalence between (3-1) and (3-2) comes from Proposition 1 (3).

Lemma 4. Let T_{1}, T_{2} and T_{3} be mutually distinct and nontrivial elements in a Fuchsian group. Suppose that three points $\mathrm{C}\left(p ; T_{1}\right), \mathrm{C}\left(p ; T_{2}\right)$ and $\mathrm{C}\left(p ; T_{3}\right)$ are collinear in $\mathbb{R} P^{2}$ for any p in $\partial \Vdash^{2}-\bigcup_{i=1}^{3} \operatorname{Fix}\left(T_{i}\right)$, and that there is a point p_{0} in $\partial \mathbb{H}^{2}-\bigcup_{i=1}^{3} \operatorname{Fix}\left(T_{i}\right)$ such that the set

$$
\mathrm{B}\left(p_{0} ; T_{1}\right) \cap \mathrm{B}\left(p_{0} ; T_{2}\right) \cap \mathrm{B}\left(p_{0} ; T_{3}\right) \quad\left(\text { resp. } \overline{\mathrm{B}\left(p_{0} ; T_{1}\right)} \cap \overline{\mathrm{B}\left(p_{0} ; T_{2}\right)} \cap \overline{\mathrm{B}\left(p_{0} ; T_{3}\right)}\right)
$$

is not empty. Then T_{1}, T_{2} and T_{3} belong to a cyclic elliptic (resp. parabolic) subgroup.
Proof. Suppose that $\mathrm{C}\left(p ; T_{1}\right), \mathrm{C}\left(p ; T_{2}\right)$ and $\mathrm{C}\left(p ; T_{3}\right)$ are collinear in $\mathbb{R} P^{2}$ for any p in $\partial \Vdash^{2}-\bigcup_{i=1}^{3} \operatorname{Fix}\left(T_{i}\right)$. Since Proposition 2(2b) does not occur from elements in a Fuchsian group, the elements T_{1}, T_{2} and T_{3} have the same fixed point set. Furthermore, they belong to a cyclic subgroup generated by, say T, since they come from a Fuchsian group.

We first consider the case that T is hyperbolic; in particular, the axis of T is assumed to be contained in the imaginary axis of \mathbb{C}. The circle in $\widehat{\mathbb{C}}$ through $p, T_{1}(p), T_{2}(p)$ and $T_{3}(p)$ is a Euclidean line through the origin for any p in $\partial \Vdash^{2}-\{0, \infty\}$. Then the hyperbolic lines $\mathrm{B}\left(p ; T_{i}\right)$ are ultraparallel by Proposition 3 so that there is no such point p_{0} in question.

We next consider the case that T is parabolic; in particular, T is assumed to fix ∞. For each $i=1,2,3$, the hyperbolic line $\mathrm{B}\left(p ; T_{i}\right)$ is contained in a vertical Euclidean line for any p in $\partial \mathbb{H}^{2}-\{\infty\}$. The set

$$
\overline{\mathrm{B}\left(p ; T_{1}\right)} \cap \overline{\mathrm{B}\left(p ; T_{2}\right)} \cap \overline{\mathrm{B}\left(p ; T_{3}\right)}
$$

then coincides with $\{\infty\}$.
Finally, if T is elliptic, then the four points are on a hyperbolic circle centered at the fixed point of T for any p in $\partial \Vdash^{2}$.

Proposition 5. Let T_{1}, T_{2} and T_{3} be elements in a Fuchsian group. Suppose that they are mutually distinct, nontrivial and neither elliptic with a common fixed point nor parabolic with a common fixed point. Then $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$ has measure zero.

Proof. We first consider the case that T_{1}, T_{2} and T_{3} belong to a cyclic subgroup of a given Fuchsian group Γ. By the assumption, the subgroup is generated by a hyperbolic element T. By Proposition 1, the set $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$ coincides with the fixed point set $\operatorname{Fix}(T)$ of T, which consists of two points. So $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$ has measure zero.

We next consider the case that T_{1}, T_{2} and T_{3} do not belong to any cyclic subgroup of Γ. Define

$$
\mathscr{V}_{T_{1}, T_{2}, T_{3}}^{\prime}:=\left\{p \in \partial \mathbb{H}^{2} \mid \mathrm{C}\left(p ; T_{1}\right), \mathrm{C}\left(p ; T_{2}\right) \text { and } \mathrm{C}\left(p ; T_{3}\right) \text { are collinear in } \mathbb{R} P^{2}\right\} .
$$

As is mentioned in the proof of Proposition 2, the set $\mathscr{V}_{T_{1}, T_{2}, T_{3}}^{\prime}$ is the solution set of a real algebraic equation with variable p. By the assumption together with Proposition 2, the equation is proper. So $\mathscr{V}_{T_{1}, T_{2}, T_{3}}^{\prime}$ has measure zero in $\partial \mathbb{H}^{2}$. By Proposition 3 the set $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$ is contained in $\mathscr{V}_{T_{1}, T_{2}, T_{3}}^{\prime}$; when the projective line through $\mathrm{C}\left(p ; T_{1}\right), \mathrm{C}\left(p ; T_{2}\right)$ and $\mathrm{C}\left(p ; T_{3}\right)$ intersects with D^{2}, the point p is not contained in $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$. The set $\mathscr{V}_{T_{1}, T_{2}, T_{3}}$ then has measure zero in $\partial \mathbb{H}^{2}$ as well.

Lemma 6. Let T_{1} and T_{2} be distinct and nontrivial elements in $\mathrm{PSL}_{2}(\mathbb{R})$. Suppose that they are not parabolic with a common fixed point. Then there is a point p_{0} in $\partial \mathbb{\Vdash}^{2}-\left(\operatorname{Fix}\left(T_{1}\right) \cup \operatorname{Fix}\left(T_{2}\right)\right)$ such that $\overline{\mathrm{B}\left(p_{0} ; T_{1}\right)}$ and $\overline{\mathrm{B}\left(p_{0} ; T_{2}\right)}$ do not share their endpoints.

Proof. We first consider the case that both T_{1} and T_{2} are elliptic. Take the hyperbolic line ℓ through their fixed points (choose any hyperbolic line which contains the fixed point if their fixed points are identical). Then there is a point p_{0} in $\partial \mathbb{H}^{2}$ such that ℓ coincides with $\mathrm{B}\left(p_{0} ; T_{1}\right)$. On the other hand, $\mathrm{B}\left(p_{0} ; T_{2}\right)$ always contains the fixed point of T_{2} by Proposition 1. $\mathrm{So} \mathrm{B}\left(p_{0} ; T_{2}\right)$ intersects with $\mathrm{B}\left(p_{0} ; T_{1}\right)=\ell$ at the fixed point of T_{2}. If ℓ happen to coincide with $\mathrm{B}\left(p_{0} ; T_{2}\right)$, then take another point p_{0} satisfying the same condition, or switch T_{1} and T_{2} and do the same argument. Then you can find a point in question on $\partial \Vdash^{2}$ since T_{1} and T_{2} are different.

We next consider the case that T_{1} is elliptic and that T_{2} is either parabolic or hyperbolic. For any point in $\mathbb{H}^{2}-\operatorname{Fix}\left(T_{2}\right)$, there is p in $\partial \mathbb{H}^{2}-\operatorname{Fix}\left(T_{2}\right)$ such that $\mathrm{B}\left(p ; T_{2}\right)$ contains the point. So there is a point p_{0} in $\partial \mathbb{H}^{2}$ such that $\mathrm{B}\left(p_{0} ; T_{2}\right)$ contains the fixed point of T_{1}, which is on $\mathrm{B}\left(p_{0} ; T_{1}\right)$ since T_{1} is elliptic.

We then consider the case that both T_{1} and T_{2} are not elliptic. Suppose first that their fixed point sets are different. Let p_{1} be a fixed point of T_{1} which is not fixed by T_{2}, for example. Since T_{1} and T_{2} are not elliptic, $\mathrm{B}\left(p ; T_{1}\right)$ converges to p_{1} when p approaches to p_{1}. A point p close enough to p_{1} is mapped to another point $T_{2}(p)$ by T_{2}, which is not close to p_{1}. Then the endpoints of $\overline{\mathrm{B}\left(p ; T_{2}\right)}$ are
not close to p_{1} as well, which means that $\overline{\mathrm{B}\left(p ; T_{1}\right)}$ and $\overline{\mathrm{B}\left(p ; T_{2}\right)}$ do not share their endpoints.

If T_{1} and T_{2} are not elliptic and their fixed point sets coincide with each other, then they are hyperbolic by the assumption. Then $\overline{\mathrm{B}\left(p ; T_{1}\right)}$ and $\overline{\mathrm{B}\left(p ; T_{2}\right)}$ are ultraparallel for any p in $\partial \Vdash^{2}-\left(\operatorname{Fix}\left(T_{1}\right) \cup \operatorname{Fix}\left(T_{2}\right)\right)$ by Proposition 3.

Proposition 7. Let T_{1} and T_{2} be distinct and nontrivial elements in $\mathrm{PSL}_{2}(\mathbb{R})$. Suppose that they are not parabolic with a common fixed point. Then $\mathscr{T}_{T_{1}, T_{2}}$ has measure zero.

Proof. The set $\mathscr{T}_{T_{1}, T_{2}}$ is defined as the solution set of an algebraic equation. Actually it is given by calculating the Euclidean distance between the origin in D^{2} and the projective line through $\mathrm{C}\left(p ; T_{1}\right)$ and $\mathrm{C}\left(p ; T_{2}\right)$. See [Jørgensen and Marden 1988, Lemma 3.3]. Lemma 6 means that the equation is proper. So $\mathscr{T}_{T_{1}, T_{2}}$ has measure zero.

Lemma 8. Let T be a nontrivial element in $\operatorname{PSL}_{2}(\mathbb{R})$. If there is a point w in $\overline{\mathbb{M}^{2}}$ such that $\overline{\mathrm{B}(p ; T)}$ contains w for any p in $\partial \Vdash^{2}-\operatorname{Fix}(T)$, then T is either elliptic or parabolic and w is its fixed point. Similarly, for a hyperbolic line ℓ, if $\mathrm{B}(p ; T)$ intersects perpendicularly with ℓ for any p in $\partial \Vdash^{2}-\operatorname{Fix}(T)$, then T is hyperbolic and ℓ is its axis.

Proof. Suppose that T fixes w. Then the statement holds only if T is elliptic or parabolic by Proposition 1.

Suppose that T does not fix w. If T is elliptic, there is a point p_{0} in $\partial \mathbb{H}^{2}$ such that $\mathrm{B}\left(p_{0} ; T\right)$ does not contain w, for the fixed point of T is the unique point that lies in $\mathrm{B}(p ; T)$ for any p in $\partial \mathbb{H}^{2}$. If T is parabolic, then $\overline{\mathrm{B}(p ; T)}$ does not contain w for any point p close enough to the fixed point of T, for $\overline{\mathrm{B}(p ; T)}$ converges to the fixed point. The same argument holds when T is hyperbolic.

For a hyperbolic line ℓ, consider its image in D^{2}. Let C_{ℓ} be the pole of the image of ℓ. Then we interpret the assumption as the projective line L_{p} containing the image of $\mathrm{B}(p ; T)$ contains C_{ℓ} for any p in $\partial \mathbb{H}^{2}-\operatorname{Fix}(T)$. If T is elliptic or parabolic, then L_{p} contains the image of its fixed point for any p in $\partial \mathbb{H}^{2}-\operatorname{Fix}(T)$. If T is hyperbolic, then L_{p} contains the pole of the image of its axis for any p in $\partial \Vdash^{2}-\operatorname{Fix}(T)$. This implies that, if the assumption holds, then T is hyperbolic with axis ℓ.

Proposition 9. Let T_{1} and T_{2} be distinct and nontrivial elements in $\mathrm{PSL}_{2}(\mathbb{R})$. Suppose that $\operatorname{Fix}\left(T_{1}\right)$ and $\operatorname{Fix}\left(T_{2}\right)$ are different. Then $\mathscr{F}_{T_{1}, T_{2}}$ has measure zero.
Proof. Let z_{1} be a point in \mathbb{R}^{2} which corresponds to the fixed point of T_{1} if it is elliptic or parabolic, or to the pole of the axis of T_{1} if it is hyperbolic. We denote by ℓ_{2} the projective line in $\mathbb{R P}^{2}$ containing the image of $\mathrm{B}\left(p ; T_{2}\right)$. Then $\mathscr{F}_{T_{1}, T_{2}}$ is
interpreted as

$$
\mathscr{F}_{T_{1}, T_{2}}=\left\{p \in \partial \mathbb{H}^{2} \mid \ell_{2} \text { contains } z_{1}\right\} .
$$

Using this interpretation, the set $\mathscr{F}_{T_{1}, T_{2}}$ is defined as the solution set of an algebraic equation. To see it, use the Minkowski space model. The equation is given by the Minkowski inner product of p_{1} and the normal vector of ℓ_{2}. Lemma 8 means that this algebraic equation is proper. So the set $\mathscr{F}_{T_{1}, T_{2}}$ has measure zero.

Acknowledgement

The author thanks Professor Raquel Díaz and Professor Makoto Sakuma for fruitful discussion on this research. The author is grateful to the hospitality of Professor Caroline Series and the University of Warwick, and Professor Albert Marden and the University of Minnesota. Thank you also to the referee for his/her valuable suggestions.

References

[Bacher and Vdovina 2002] R. Bacher and A. Vdovina, "Counting 1-vertex triangulations of oriented surfaces", Discrete Math. 246:1-3 (2002), 13-27. MR 2003d:05106 Zbl 0994.05058
[Beardon 1983] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York, 1983. MR 85d:22026 Zbl 0528.30001
[Díaz and Ushijima 2009] R. Díaz and A. Ushijima, "On the properness of some algebraic equations appearing in Fuchsian groups", Topology Proc. Auburn Univ. 33 (2009), 81-106. MR 2010i:30056 Zbl 1179.30039
[Fricke and Klein 1897] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Functionen. Erster Band; Die gruppentheoretischen Grundlagen, B. G. Teubner, Leipzig, 1897.
[Girondo and Nakamura 2007] E. Girondo and G. Nakamura, "Compact non-orientable hyperbolic surfaces with an extremal metric disc", Conform. Geom. Dyn. 11 (2007), 29-43. MR 2007k:30087 Zbl 1185.30047
[Jørgensen and Marden 1988] T. Jørgensen and A. Marden, "Generic fundamental polyhedra for Kleinian groups", pp. 69-85 in Holomorphic functions and moduli, II (Berkeley, 1986), edited by D. Drasin, Math. Sci. Res. Inst. Publ. 11, Springer, New York, 1988. MR 89h:30061 Zbl 0673.30034
[Jørgensen and Näätänen 1982] T. Jørgensen and M. Näätänen, "Surfaces of genus 2: generic fundamental polygons", Quart. J. Math. Oxford Ser. (2) 33:132 (1982), 451-461. MR 84c:51029
[Keen 1966] L. Keen, "Canonical polygons for finitely generated Fuchsian groups", Acta Math. 115 (1966), 1-16. MR 32 \#1349 Zbl 0144.34101
[Näätänen 1985] M. Näätänen, "On the stability of identification patterns for Dirichlet regions", Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 411-417. MR 86k:30054
[Näätänen and Penner 1991] M. Näätänen and R. C. Penner, "The convex hull construction for compact surfaces and the Dirichlet polygon", Bull. London Math. Soc. 23:6 (1991), 568-574. MR 93c:30056
[Nakamura 2004] G. Nakamura, "Generic fundamental polygons for surfaces of genus three", Kodai Math. J. 27:1 (2004), 88-104. MR 2005a:30069 Zbl 1059.30032
[Vdovina 2008] A. Vdovina, "On the number of optimal surfaces", pp. 557-567 in The Zieschang Gedenkschrift, edited by M. Boileau et al., Geom. Topol. Monogr. 14, Geom. Topol., Coventry, 2008. MR 2010a:53055 Zbl 1138.53037

Received May 6, 2010. Revised February 16, 2011.
AKIRA UShiJima
Faculty of Mathematics and Physics
Institute of Science and Engineering
Kanazawa University
KanAZAWA 920-1192
JAPAN
ushijima@kenroku.kanazawa-u.ac.jp

STABILITY OF THE KÄHLER-RICCI FLOW IN THE SPACE OF KÄHLER METRICS

Kai Zheng

We prove that on a Fano manifold M admitting a Kähler-Ricci soliton (ω, X), if the initial Kähler metric $\omega_{\varphi_{0}}$ is close to ω in a certain weak sense, then the weak Kähler-Ricci flow exists globally and converges in the sense of Cheeger and Gromov. In particular, φ_{0} is not assumed to be K_{X}-invariant. The methods used are based on the metric geometry of the space of the Kähler metrics and are potentially applicable to other stability problems of geometric flows near the corresponding critical metrics.

1. Introduction

The Ricci flow was first introduced by Hamilton [1982] and now plays an important role in understanding the geometric and topological structure of the manifolds it lives on. We call the Ricci flow a Kähler-Ricci flow if the underlying manifold is a Kähler manifold. The normalized Kähler-Ricci flow is given by

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \omega=-\operatorname{Ric}+\lambda \omega \tag{1-1}\\
\omega(0)=\omega_{\varphi_{0}}
\end{array}\right.
$$

where $\omega(0)$ stays in the canonical class $2 \pi C_{1}(M)$ and λ is the sign of the first Chern class. Cao [1985] first showed that the Kähler-Ricci flow (1-1) has longtime existence. He also proved that the Kähler-Ricci flow converges to a KählerEinstein metric when the first Chern class is negative or zero. Now we restrict ourselves to the case where the first Chern class is positive. Since the KählerRicci flow preserves the Kähler class, we can rewrite the Kähler-Ricci flow in terms of the Ricci potential:

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi-h_{\omega}+a(t) \tag{1-2}\\
\varphi(0)=\varphi_{0}
\end{array}\right.
$$

where a is a function of t and the Ricci potential h_{ω} of the reference metric ω is

[^9]defined by
\[

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} h_{\omega}=\operatorname{Ric}(\omega)-\omega \quad \text { and } \quad \int_{M} e^{h_{\omega}} \omega^{n}=\operatorname{Vol}(M) \tag{1-3}
\end{equation*}
$$

\]

The convergence of the Kähler-Ricci flow has been studied by many authors. Chen and Tian [2002; 2006] proved it for Kähler-Einstein manifolds under the assumption of positivity of the Ricci curvature along the flow. Perelman (unpublished; see detailed proof in [Sesum and Tian 2008]) obtained an estimate of the Kähler-Ricci flow and proved that it converges to a Kähler-Einstein metric in the sense of Cheeger-Gromov, when one exists for any initial Kähler metric. Tian and Zhu [2007] extended this to the case of a Kähler-Ricci soliton for a K_{X}-invariant initial metric; a Kähler-Ricci soliton is a Kähler metric such that there is a holomorphic vector field X satisfying

$$
\begin{equation*}
L_{X} \omega=\operatorname{Ric}-\omega \tag{1-4}
\end{equation*}
$$

Since the right side of (1-4) is real-valued, we obtain $L_{\operatorname{Im} X} \omega=0$ and $\operatorname{Im} X$, the imaginary part of X, generates a one-parameter isometry group K_{X}. Without assuming that M admits a Kähler-Einstein metric or a Kähler-Ricci soliton, the analytic and geometric conditions of the convergence of the Kähler-Ricci flow are studied in [Phong and Sturm 2006; Phong et al. 2009, 2008; 2011, Tosatti 2010; Székelyhidi 2010; Munteanu 2009; Pali 2009; Chen and Wang 2010; Rubinstein 2009.

In order to study the asymptotic behavior of the Kähler-Ricci flow, we consider the flow's stability problem. That is, on a Kähler manifold M admitting a KählerRicci soliton (ω, X), for what kind of neighborhood of ω does the Kähler-Ricci flow with initial datum in that neighborhood converge (in some sense - maybe exponentially) to the Kähler-Ricci soliton?

This stability problem has been investigated by many people; for references, see [Chen and Li 2009]. That work and [Tian and Zhu 2008] consider perturbing both the initial metric and the complex structure near a Kähler-Einstein metric.

In this paper, we focus on perturbing the initial metric near the Kähler-Ricci soliton without changing the complex structure. The main results of this paper are as follows, where $\mathcal{N}\left(\epsilon_{0} ; B, p\right)$ is a small neighborhood of the zero function, to be specified in Section 6.

First we will give a direct proof, based on the geometry of the space of Kähler metrics, of long-time existence and convergence in the Cheeger-Gromov sense, within the frame of Donaldson's program [2004]. The result is this:
Theorem 1.1. If a Kähler manifold admits a Kähler-Ricci soliton (ω, X), there exists a positive constant ϵ_{0} such that, if the initial potential φ_{0} stays in $\mathcal{N}\left(\epsilon_{0} ; B, p\right)$, the weak Kähler-Ricci flow exists globally and converges in the Cheeger-Gromov
sense. If, moreover, φ_{0} is K_{X}-invariant, the weak modified Kähler-Ricci flow converges exponentially to a unique Kähler-Ricci soliton nearby.

When the Futaki invariant vanishes, it is obvious that the holomorphic vector fields X is zero and the Kähler-Ricci soliton is a Kähler-Einstein metric.

Theorem 1.2. On a Kähler-Einstein manifold, there exists a positive constant ϵ_{0} such that, if the initial potential φ_{0} stays in $\mathcal{N}\left(\epsilon_{0} ; B, p\right)$, the weak Kähler-Ricci flow exists globally and converges exponentially to a unique Kähler-Einstein metric nearby.

Simon [1983] studied the asymptotic behavior of the gradient flow of the variation problem via the Łojasiewicz-Simon inequality, which compares the distance to the critical set with the norm of the gradient of the functional in the L^{2} space under the condition that the functional should be analytic. The underlying idea is to reduce the infinite-dimensional problem to a finite-dimensional problem. Perelman [2002] introduced a new functional, called the μ functional, and pointed out that the Ricci flow is the gradient flow of the μ functional up to a diffeomorphism.

We will not apply the Łojasiewicz-Simon inequality to the μ functional directly. Instead, we provide a new approach to the study of the asymptotic behavior of the flow which is merely a pseudogradient flow of some functional, since in the Kähler setting, geometry gives us more information. To be precise, the critical set in the space of Kähler metrics is a finite-dimensional Riemannian symmetric space, which we will explain later.

Since the Kähler-Ricci flow is the pseudogradient flow of the K-energy, in order to make the mechanism of our proof more clear, we first prove Theorem 1.2 under the assumption that the $C^{2, \alpha}$ norm of φ_{0} is small. Then we generalize our approach to the case of a Kähler-Ricci soliton (Theorem 1.1).

A sketch of the proofs goes as follows. We first prove that the Kähler-Ricci flow (1-2), after pullback by the corresponding holomorphic transformations, will always stay in a small neighborhood of the background Kähler-Einstein metric. When M has no nontrivial holomorphic vector field, it is not necessary to find the transformations; Section 3 gives a proof of this. However, in general, when M admits nontrivial holomorphic vector fields, we need a new method, developed in Section 4A, to pick up the appropriate transformations following the trace of the Kähler-Ricci flow in the space of normalized Kähler potential \mathscr{H}_{0}; see (2-2). It has been shown by Mabuchi [1987], Donaldson [1999] and Semmes [1992] independently that \mathscr{H}_{0} is an infinite-dimensional symmetry space of negative curvature. Later, Chen [2000b] proved \mathscr{H}_{0} is also a metric space. Since the space \mathscr{E}_{0} of potentials of Kähler-Einstein metrics is a totally geodesic submanifold in \mathscr{H}_{0}, the projection ρ minimizing the distance function from the Kähler-Ricci flow to \mathscr{E}_{0} is uniquely determined. The Bando-Mabuchi uniqueness theorem [1987] on
the Kähler-Einstein metric implies that ω_{ρ} is different from the reference KählerEinstein metric by a holomorphic transformation. The projection Kähler-Einstein metric is exactly the new reference metric we've acquired.

Another way to derive a holomorphic transformation (Section 7) of $\varphi \in \mathscr{H}_{0}$ is to minimize in \mathscr{E}_{0} the $I-J$ functional, introduced in [Bando and Mabuchi 1987] to prove the uniqueness of the Kähler-Einstein metric. However, this method cannot be applied in our case directly, since in general the hessian of the $I-J$ functional is not strictly positive; that is, the minimizer is not unique. Nevertheless, as we observed when the $C^{2, \alpha}$ norm of φ is small, the hessian of the $I-J$ functional is indeed strictly positive. Therefore, the holomorphic transformation is uniquely determined.

In Section 5, we prove stability of the Kähler-Ricci flow near a Kähler-Ricci soliton (ω, X), similarly to the case of Kähler-Einstein metric. We use (ω, X) as the background metric. We first prove that the Kähler-Ricci flow (1-2) with small $C^{2, \alpha}$ initial Kähler potential will always stay in a small neighborhood of ω in the Cheeger-Gromov sense. The key idea is to use Perelman's μ functional [2002] instead of the K-energy, since the hessian of the μ functional is nonnegative at a Kähler-Ricci soliton within the canonical class [Tian and Zhu 2008]. Furthermore, we reparametrize the Kähler-Ricci flow (1-1) by the automorphisms $\varsigma(t)$ generated by the real part $\operatorname{Re} X$ of X such that

$$
\left\{\begin{align*}
\frac{\partial}{\partial t} \omega_{\phi} & =-\operatorname{Ric}\left(\omega_{\phi}\right)+\omega_{\phi}+L_{\operatorname{Re} X} \omega_{\phi} \tag{1-5}\\
\omega_{\phi(0)} & =\omega_{\varphi_{0}}
\end{align*}\right.
$$

It is obvious that the Kähler-Ricci soliton is the stationary solution of the modified Kähler-Ricci flow (1-5). Since the Kähler-Ricci soliton (ω, X) is K_{X}-invariant and the Kähler-Ricci flow is also invariant under the holomorphic diffeomorphism, we assume without loss of generality that the initial datum is K_{X}-invariant. Then the exponential convergence of the modified Kähler-Ricci flow follows from [Phong et al. 2011].

Finally, in Section 6, at a fixed time, we show that the $C^{2, \alpha}$ norm of the potential is small when the initial value is small under certain weak conditions. The main idea is to use the estimate introduced in [Chen et al. 2008].

As a corollary of Theorem 1.1, we deduce that the limit metric of the KählerRicci flow is unique. Let $\left\{\varphi\left(t_{i}\right)\right\}$ be a sequence of solutions of the Kähler-Ricci flow converging to a Kähler-Einstein metric or Kähler-Ricci soliton g_{∞}, if one exists; then there exists some $\varphi \in\left\{\varphi\left(t_{i}\right)\right\}$ satisfying the stability condition of Theorem 1.1. According to that condition, the Kähler-Ricci flow with initial value φ converges exponentially to a Kähler-Einstein metric g_{∞}^{1} or Kähler-Ricci soliton, respectively. Further, since we assume that $\left\{\varphi\left(t_{i}\right)\right\} \rightarrow g_{\infty}$, we must have $g_{\infty}^{1}=g_{\infty}$.

We stress that the approach used to prove Theorem 1.1 is also applicable to the case of the general pseudogradient flow: neither the condition that the flow is the gradient flow of some functional, nor Perelman's deep estimate, nor a prior longtime existence of the flow is required. It is possible that our method can be used to solve other, similar problems of geometric flow, such as the stability of the pseudoCalabi flow near a constant scalar curvature Kähler metric in [Chen and Zheng 2010] and of the Calabi flow near a extremal metric in [Huang and Zheng 2010].

The paper is organized as follows: in Section 2 we review known results on the space of Kähler metrics and the well-posedness of the pseudo-Calabi flow obtained in [Chen and Zheng 2010] — see (2-10). In Sections 3 and 4 we prove Theorem 1.2 under the assumption that the $C^{2, \alpha}$ norm of the initial Kähler potential is small. Then we prove Theorem 1.1 under the same assumption in Section 5. Finally, in Section 6 we explain how to weaken the initial condition to the one stated in Theorem 1.2 and Theorem 1.1. In Section 7, we explain another method to choose the holomorphic transformation.

2. Notation and basic results

Let M be a compact Kähler manifold of complex dimension n with positive first Chern class $C_{1}(M)$ and let ω be a Kähler form representing the canonical class $2 \pi C_{1}(M)$. In a local holomorphic coordinate $z_{1}, z_{2}, \ldots, z_{n}$, the form ω is expressed by

$$
\omega=\sqrt{-1} \sum_{i=1}^{n} g_{i \bar{j}} d z^{i} \wedge d z^{\bar{j}}
$$

The corresponding Riemannian metric is given by

$$
g=\sum_{i=1}^{n} g_{i \bar{j}} d z^{i} \otimes d z^{\bar{j}}
$$

For a Kähler metric ω, the volume form is

$$
d V=\omega^{n}=\left(\sqrt{-1}^{n} \operatorname{det}\left(g_{i \bar{j}}\right) d z^{1} \wedge d z^{\overline{1}} \wedge \cdots \wedge d z^{n} \wedge d z^{\bar{n}}\right.
$$

The Ricci form

$$
\operatorname{Ric}=\sqrt{-1} \sum_{i=1}^{n} R_{i \bar{j}} d z^{i} \wedge d z^{\bar{j}}=-\sqrt{-1} \partial \bar{\partial} \log \operatorname{det} \omega^{n}
$$

is a closed real $(1,1)$-form and belongs to $2 \pi C_{1}(M)$. Accordingly, the scalar curvature satisfies

$$
S \omega^{n}=n \operatorname{Ric} \wedge \omega^{n-1}
$$

A direct calculation gives the average scalar curvature:

$$
\underline{S}=\frac{1}{V} \int_{M} S d V=\frac{n}{V} \int_{M} \operatorname{Ric} \wedge \omega^{n-1}=n
$$

Let \mathscr{K} be the set of Kähler forms on M representing $2 \pi C_{1}(M)$ and let \mathscr{E} be the set of Kähler-Einstein metrics in \mathscr{K}. According to the $\partial \bar{\partial}$ lemma, for any Kähler metric ω^{\prime} in \mathscr{K} there exists a smooth real-valued function φ such that $\omega^{\prime}=\omega+\sqrt{-1} \partial \bar{\partial} \varphi$. Then the space of Kähler potentials of \mathscr{K} is given by

$$
\mathscr{H}=\left\{\varphi \in C^{\infty}(M, \mathbb{R}) \mid \omega+\sqrt{-1} \partial \bar{\partial} \varphi \in \mathscr{K}\right\} .
$$

Apparently, we have an isomorphism

$$
T \mathscr{H} \cong \mathscr{H} \times C^{\infty}(M, \mathbb{R})
$$

Mabuchi [1987], Donaldson [1999] and Semmes [1992] independently defined a Riemannian metric on \mathscr{H} by

$$
\int_{M} f_{1} f_{2} \omega_{\varphi}^{n}
$$

for any $f_{1}, f_{2} \in T_{\varphi} \mathcal{H}$. For any path $\varphi(t)(0 \leq t \leq 1)$ in \mathscr{H}, the length is given by

$$
\begin{equation*}
L(\varphi(t))=\int_{0}^{1} \sqrt{\int_{M} \varphi^{\prime}(t)^{2} \omega_{\varphi(t)}^{n}} d t \tag{2-1}
\end{equation*}
$$

and the geodesic equation is

$$
\varphi^{\prime \prime}(t)-\frac{1}{2}\left|\nabla_{t} \varphi^{\prime}(t)\right|_{\varphi(t)}^{2}=0
$$

where ${ }^{\prime}$ denotes differentiation in t and ∇_{t} denotes the covariant derivative for the metric $g_{\varphi(t)}$. The geodesic equation enables us to define the connection on the tangent bundle. For any tangent vector field $\psi(t)$ along the path $\varphi(t)$, the covariant derivative along $\varphi(t)$ is defined by

$$
D_{t} \psi=\frac{\partial \psi}{\partial t}-\frac{1}{2}\left(\nabla_{t} \psi, \nabla_{t} \varphi^{\prime}\right)_{g_{\varphi}}
$$

Then the connection at φ is given by

$$
G(X \mid Y)\left(\psi_{1}, \psi_{2}\right)=-\frac{1}{2}\left(\nabla \psi_{1}, \nabla \psi_{2}\right)_{g_{\varphi}}
$$

for any ψ_{1} and ψ_{2} in $T_{\varphi} \mathcal{H} . G(X \mid Y)$ is torsion-free and metric-compatible.
Theorem 2.1 [Mabuchi 1987; Donaldson 1999; Semmes 1992]. The Riemannian manifold \mathscr{H} is an infinite-dimensional symmetric space; it admits a Levi-Civita connection whose curvature is covariant constant. At a point $\varphi \in \mathscr{H}$ the curvature is given by

$$
R_{\varphi}\left(\delta_{1} \varphi, \delta_{2} \varphi\right) \delta_{3} \varphi=-\frac{1}{4}\left\{\left\{\delta_{1} \varphi, \delta_{2} \varphi\right\}_{\varphi}, \delta_{3} \varphi\right\}_{\varphi}
$$

where $\{,\}_{\varphi}$ is the Poisson bracket on $C^{\infty}(M)$ of the symplectic form ω_{φ}.

Theorem 2.2 [Chen 2000b]. H is a metric space, and is convex by $C^{1,1}$ geodesics.
Calabi and Chen [2002] proved \mathscr{H} is negatively curved in the sense of Alexandroff. We denote the space of normalized Kähler potentials by

$$
\begin{equation*}
\mathscr{H}_{0}=\left\{\varphi \in C^{\infty}(M, R) \mid \omega+\sqrt{-1} \partial \bar{\partial} \varphi>0 \text { and } I(\varphi)=0\right\}, \tag{2-2}
\end{equation*}
$$

where

$$
I(\varphi)=\frac{1}{V} \sum_{p=0}^{n} \frac{1}{(p+1)!(n-p)!} \int_{M} \varphi \omega^{n-p} \wedge(\partial \bar{\partial} \varphi)^{p}
$$

In fact, \mathscr{H} can be naturally split as

$$
\mathscr{H}=\mathscr{H}_{0} \times \mathbb{R} .
$$

This leads to a decomposition of the tangent space:

$$
T_{\varphi}=\left\{f \mid \int_{M} f \omega_{\varphi}^{n}=0\right\} \oplus \mathbb{R}
$$

On a Kähler-Einstein manifold (M, ω), choose ω be the reference metric. It is clear from the definition (1-3) that $h_{\omega}=0$. Substituting this into the potential equation (1-2) of the Kähler-Ricci flow, we obtain

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi+a(t) \tag{2-3}\\
\varphi(0)=\varphi_{0}
\end{array}\right.
$$

If we choose the normalization constant in (2-3) appropriately, namely,

$$
\begin{equation*}
a(t)=-\frac{1}{V} \int_{M}\left(\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi\right) \omega_{\varphi}^{n} \tag{2-4}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\partial_{t} I(\varphi)=\frac{1}{V} \int_{M} \partial_{t} \varphi \omega_{\varphi}^{n}=0 \tag{2-5}
\end{equation*}
$$

We first assume that $\varphi_{0} \in \mathscr{H}_{0}$ satisfies $I\left(\varphi_{0}\right)=0$; the general case will be treated in Section 6. Then (2-5) implies $I(\varphi)=0$, which ensures that the solution φ of (2-3) always stays in \mathscr{H}_{0}.

For any $\varphi \in \mathscr{H}$, Mabuchi [1986] defined the K-energy of (M, ω) as

$$
\begin{equation*}
\nu\left(\omega, \omega_{\varphi}\right)=-\frac{1}{V} \int_{0}^{1} \int_{M} \dot{\varphi}(\tau)\left(S_{\varphi(\tau)}-\underline{S}\right) \omega_{\varphi(\tau)}^{n} d \tau \tag{2-6}
\end{equation*}
$$

where $\varphi(\tau)$ is an arbitrary piecewise smooth path from 0 to φ. An explicit expression of the K-energy is formulated in [Chen 2000a; Tian 2000] as

$$
\begin{align*}
v_{\omega}(\varphi)=\frac{1}{V} \int_{M} & \log \frac{\omega_{\varphi}^{n}}{\omega^{n}} \omega_{\varphi}^{n}+\frac{S}{V} n! \tag{2-7}\\
V & (\varphi) \\
& \quad-\frac{1}{V} \sum_{i=0}^{n-1} \frac{n!}{(i+1)!(n-i-1)!} \int_{M} \varphi \operatorname{Ric} \wedge \omega^{n-1-i} \wedge(\partial \bar{\partial} \varphi)^{i} .
\end{align*}
$$

In later sections we will simply write $\nu(\varphi)$ instead of $\nu_{\omega}(\varphi)$.
Theorem 2.3 [Mabuchi 1987]. If ω is a critical point of $\mathcal{v}(\varphi)$, the second variation of the K-energy satisfies

$$
\left.\frac{d^{2}}{d t^{2}} v\left(\theta_{t}\right)\right|_{t=0} \geq 0
$$

for every smooth path $\left\{\theta_{t} \mid-\epsilon \leq t \leq \epsilon\right\}$ in \mathscr{K} such $\theta_{0}=\omega$.
Let $\operatorname{Aut}(M)$ be the group of holomorphic automorphisms of M and $\operatorname{Aut}_{0}(M)$ its identity component.

Theorem 2.4 [Bando and Mabuchi 1987; Bando 1987]. Assume $\mathscr{E} \neq \varnothing$.
(i) The K-energy is bounded from below on \mathscr{K} and takes its absolute minimum exactly on \mathscr{E}°.
(ii) \mathscr{E} consists a single $\mathrm{Aut}_{0}(M)$-orbit.

Indeed, the normalization constant $a(t)$ can be estimated by the K-energy.
Lemma 2.5. Let φ be the solution of (2-3). The relation between $a(t)$ and the K-energy $\nu(\varphi)$ is given by

$$
\begin{equation*}
a(t)+v(\varphi)=a(0)+v\left(\varphi_{0}\right) \tag{2-8}
\end{equation*}
$$

Proof. We calculate the evolution of $a(t)$ along the Kähler-Ricci flow directly:

$$
V \frac{d}{d t} a(t)=-\int_{M}\left(\triangle_{\varphi}+1\right) \dot{\varphi} \omega_{\varphi}^{n}-\int_{M}\left(\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi\right) \triangle_{\varphi} \dot{\varphi} \omega_{\varphi}^{n}
$$

By Stokes' theorem and (2-5) the first term vanishes identically. Integration by parts and the use of (2-3) gives for the second term

$$
\int_{M}\left(S_{\varphi}-n\right) \dot{\varphi} \omega_{\varphi}^{n}
$$

Since (2-6) implies

$$
\begin{equation*}
\frac{d}{d t} v(t)=-\frac{1}{V} \int_{M}\left(S_{\varphi}-n\right) \dot{\varphi} \omega_{\varphi}^{n} \tag{2-9}
\end{equation*}
$$

we obtain $\frac{d}{d t} a(t)=-\frac{d}{d t} v(t)$. We conclude by integrating both sides with respect to t.

Since the K-energy is decreasing along the Kähler-Ricci flow, we immediately conclude the following according to Theorem 2.4.

Corollary 2.6. On a Kähler-Einstein manifold, $a(t)$ is uniformly bounded along the Kähler-Ricci flow.

Set

$$
X=C^{0}\left([0, T), C^{2+\alpha}(M, g)\right) \cap C^{1}\left([0, T), C^{\alpha}(M, g)\right)
$$

The following theorems asserting short-time existence, regularity and continuous dependence on initial data for the Kähler-Ricci flow were proved by Chen and the author, who defined a new second-order Monge-Ampère flow, called the pseudoCalabi flow and coinciding with the Kähler-Ricci flow when the initial datum is restricted in the canonical Kähler class:

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=-f(\varphi) \tag{2-10}\\
\triangle_{\varphi} f(\varphi)=S(\varphi)-\underline{S}
\end{array}\right.
$$

Theorem 2.7 [Chen and Zheng 2010]. Let $\varphi_{0} \in C^{2, \alpha}(M, g)$ be such that

$$
\lambda \omega \leq \omega_{\varphi_{0}} \leq \Lambda \omega
$$

for two positive constants λ and Λ. Then the pseudo-Calabi flow has a unique solution $\varphi(x, t) \in X$, where T is the maximal existence time.

Theorem 2.8 [Chen and Zheng 2010]. The solution of the pseudo-Calabi flow $\varphi \in X$ is smooth for any $t>0$. More precisely, if $|\varphi(t)|_{C^{2, \alpha}} \leq A$ for any $0 \leq t \leq T$, there exists a constant C (depending on A, g, t_{0} and k) such that $|\varphi(t)|_{C^{k, \alpha}} \leq C$ for any $T-t_{0} \leq t \leq t_{0}<T$.

Theorem 2.9 [Chen and Zheng 2010]. If ϕ is the solution of the pseudo-Calabi flow for an initial datum ϕ_{0} on $[0, T]$, there is a neighborhood U of ϕ_{0} such that the pseudo-Calabi flow has a solution $\varphi(t)$ on $[0, T]$ for any $\varphi_{0} \in U$ and the mapping $\varphi_{0} \mapsto \varphi(t)$ is C^{k} for $k=0,1,2, \ldots$

As a corollary of the continuous dependence on initial data we have:
Theorem 2.10 [Chen and Zheng 2010]. Suppose M admits a constant scalar curvature Kähler metric ω. Let $\varphi_{0} \in C^{2, \alpha}(M, g)$ be such that $\lambda \omega \leq \omega_{\varphi_{0}} \leq \Lambda \omega$ for positive constants λ and Λ. Then for any $T>0$ there exits a positive constant $\epsilon_{0}(T)$ such that, if $\left|\varphi_{0}\right|_{C^{2, \alpha}(M, g)} \leq \epsilon_{0}(T)$, the pseudo-Calabi flow has a unique solution on $[0, T]$ and

$$
|\dot{\varphi}|_{C^{\alpha}(M, g)}+|\varphi|_{C^{2, \alpha}(M, g)} \leq C \epsilon_{0}(T) \quad \text { for all } t \in[0, T]
$$

where C depends on M, g and T. As T goes to infinity, $\epsilon_{0}(T)$ goes to zero.

3. No nontrivial holomorphic vector fields

Let $\eta(M)$ be the set of all holomorphic vector fields on M. We start with the case $\eta(M)=\varnothing$. We shall prove the following proposition in this section.

Proposition 3.1 [Tian and Zhu 2008; Zhu 2009]. Assume M admits a KählerEinstein metric ω and has no holomorphic vector fields. There exits a small positive constant ϵ_{0} such that, if the initial datum satisfies

$$
\left|\varphi_{0}\right|_{C^{2, \alpha}(M)} \leq \epsilon_{0}
$$

then the Kähler-Ricci flow g_{φ} converges smoothly to g.
Proof. We at first show that under the assumption of the proposition, the solution of (2-3) always stays in some small ϵ_{1}-neighborhood of the zero function.

Lemma 3.2. For any $\epsilon_{1}>0$, there exits a small positive constant ϵ_{0} such that, if $\left|\varphi_{0}\right|_{C^{2, \alpha}(M)} \leq \epsilon_{0}$, then $|\varphi(t)|_{2, \alpha} \leq \epsilon_{1}$ for all $t \in[0,+\infty)$.

Proof. Suppose that the conclusion fails; then there exists a sequence of initial data φ_{s}^{0} such that

$$
\left|\varphi_{s}^{0}\right|_{C^{2, \alpha}} \leq \frac{1}{s}
$$

By virtue of Theorem 2.10, we get a sequence of solutions $\varphi_{s}(t)$ satisfying the flow equations (2-3) with $\varphi_{s}(0)=\varphi_{s}^{0}$. Let T_{s} be the first time such that

$$
\begin{equation*}
\left|\varphi_{s}\left(T_{s}\right)\right|_{C^{2, \alpha}}=\epsilon_{1} \quad \text { and } \quad\left|\varphi_{s}(t)\right|_{C^{2, \alpha}}<\epsilon_{1} \text { for } 0 \leq t<T_{s} . \tag{3-1}
\end{equation*}
$$

According to Theorem 2.10 again, we have $T_{s} \geq T_{1}>0$. Moreover, we apply Theorem 2.8 to (2-3) on $\left[T_{s}-2 a, T_{s}\right]$ for fixed a such that $0<a<T_{s} / 2-T_{1} / 4$, then we obtain a uniform higher-order bound for the sequence of solutions:

$$
\left|\varphi_{s}\right|_{C^{k, \alpha}(M)} \leq C\left(k, \epsilon_{1}, a\right) \quad \text { on }\left[T_{s}-a, T_{s}\right], \text { for all } k \geq 0 .
$$

Consequently, there is a subsequence of $\phi_{s}=\varphi_{s}\left(T_{s}\right)$ converges smoothly to ϕ_{∞} satisfying

$$
\begin{equation*}
\left|\phi_{\infty}\right|_{C^{2, \alpha}}=\epsilon_{1} . \tag{3-2}
\end{equation*}
$$

It is obvious that $g_{\phi_{\infty}}$ is still a Kähler metric. Since the K-energy is not only well defined for φ_{s}^{0} by (2-7) but also decreasing along the Kähler-Ricci flow, Theorem 2.4 implies that

$$
0 \leq v_{\omega}\left(\phi_{s}\right) \leq v_{\omega}\left(\varphi_{s}(0)\right) \leq \frac{C}{s}
$$

By passing the limit we obtain

$$
\lim _{s \rightarrow \infty} v_{\omega}\left(\varphi_{s}\right)=v_{\omega}\left(\varphi_{\infty}\right)=0
$$

Using Theorem 2.4, we obtain that $g_{\phi_{\infty}}$ is a Kähler-Einstein metric. From the same theorem we deduce that ϕ_{∞} must be a constant. Furthermore the normalization condition $I\left(\phi_{\infty}\right)=0$ leads to $\phi_{\infty}=0$, which contradicts to (3-2). The lemma follows.

According to Theorem 2.8 and Lemma 3.2, we have $|\varphi(t)|_{C^{k}} \leq C_{k}$ for any $k \geq 3$ away from $t=0$. It follows that for any sequence t_{i} there is a subsequence such that $\phi\left(t_{i}\right)$ converges smoothly to a limit function φ_{∞}. Moreover, since the K-energy has a lower bound and it decays along the flow, $\omega_{\varphi_{\infty}}$ must be a Kähler-Einstein metric. This, together with Theorem 2.4 and the normalization condition, implies that $\varphi_{\infty}=0$. Because the t_{i} can be chosen arbitrarily, we conclude that the KählerRicci flow converges smoothly to the original Kähler-Einstein metric.

4. M admits nontrivial holomorphic vector fields

4A. Choice and estimate of holomorphic transformations. When M admits holomorphic vector fields, we need to find an appropriate holomorphic transformation. Let $\mathscr{E}_{0} \subset \mathscr{H}_{0}$ be the space of Kähler potentials of Kähler-Einstein metrics.

Let $\sigma_{t}^{*} \omega$ be any curve with $\sigma_{0}=$ id in \mathscr{E}_{0}. The tangent vector at ω is

$$
\left.\frac{d}{d t} \sigma_{t}^{*}\right|_{t=0} \omega=L_{X} \omega
$$

Here $X=\left.\left(\sigma_{t}\right)_{*}^{-1} \partial_{t} \sigma_{t}\right|_{t=0}$ is the real part of some holomorphic vector field. Since $C_{1}(M)>0$ implies that M is simply connected by [Kobayashi 1961], we obtain $L_{X} \omega=\sqrt{-1} \partial \bar{\partial} \theta_{X}$ for some function θ_{X}. Hence, the finite-dimensionalness of the space of holomorphic vector fields implies that of \mathscr{E}_{0}. Moreover, according to [Mabuchi 1987], \mathscr{E}_{0} is also a totally geodesic submanifold of \mathscr{H}_{0}. Then the point $\rho \in \mathscr{E}_{0}$ realizes the shortest distance between φ, and \mathscr{E}_{0} is uniquely determined. In fact, according to Theorem 2.4, we obtain a holomorphic diffeomorphism $\sigma \in \operatorname{Aut}_{0}(M)$ such that $\sigma^{*} \omega=\omega+\sqrt{-1} \partial \bar{\partial} \rho$. The K-energy is invariant under holomorphic transformations:
Lemma 4.1 [Mabuchi 1986]. $v\left(\omega, \omega_{\left(\sigma^{-1}\right)^{*}(\varphi-\rho)}\right)=\nu\left(\omega, \omega_{\varphi}\right)=\nu\left(\omega_{\rho}, \omega_{\varphi}\right)$.
Proof. Since ω and ω_{ρ} are both Kähler-Einstein metrics, Lemma (5.4.1) and Theorem (5.3) of [Mabuchi 1986] yield, respectively, the equalities

$$
\begin{aligned}
v\left(\omega, \omega_{\left(\sigma^{-1}\right)^{*}(\varphi-\rho)}\right) & =v\left(\sigma^{*} \omega, \omega_{\varphi}\right)=v\left(\omega_{\rho}, \omega_{\varphi}\right) \\
& =v\left(\omega_{\rho}, \omega\right)+v\left(\omega, \omega_{\varphi}\right)=v\left(\omega, \omega_{\varphi}\right)
\end{aligned}
$$

We next state two lemmas from [Chen and Zheng 2010] regarding the metric rephrased for economy
geometry of the space of constant scalar curvature Kähler metrics. They show that when metrics stay close to ω, their projection metrics are uniformly bounded.

Lemma 4.2 [Chen and Zheng 2010]. There exists a positive constant ϵ such that $|\rho|_{C^{3, \alpha}} \leq C_{2} \epsilon$ for any ρ satisfying $d(0, \rho) \leq \epsilon$.

Proof. Since \mathscr{E}_{0} is a finite-dimensional Riemannian symmetric space, a small ϵ neighborhood near $\rho=0$ in this submanifold can be pulled back by the exponential map $\exp _{0}$ to the tangent space $T_{0}\left(\mathscr{E}_{0}\right)$ at 0 . Set $\psi=\exp _{0}^{-1}(\rho)$. Then the length from ψ to 0 is ϵ. The norm induced by the distance on $T_{0}\left(\mathscr{C}_{0}\right)$ is equivalent to the $C^{2, \alpha}$ norm, since all norms on a finite-dimensional vector space are equivalent. Thus $\left|\exp _{0}^{-1}(\rho)\right|_{C^{2, \alpha}}$ is bounded by $C_{1} \epsilon$. Since the exponential map is a diffeomorphism in the ϵ neighborhood near $\rho=0$, we obtain $|\rho|_{C^{2, \alpha}} \leq C_{2} \epsilon$ for some constant C_{2}. The lemma follows by an appropriate choice of ϵ.

We can improve this conclusion for C^{k} for fixed $k \geq 0$, not only for $C^{3, \alpha}$ norm.
Lemma 4.3 [Chen and Zheng 2010]. There exists a positive constant ϵ_{1} such that $|\varphi|_{C^{2, \alpha}} \leq \epsilon_{1}$ implies

$$
|\rho|_{C^{3, \alpha}} \leq C_{4} \quad \text { and } \quad|\sigma|_{h} \leq C_{5}
$$

where h is the left invariant metric in $\operatorname{Aut}(M)$.
Proof. Choose a path $\gamma_{t}=t \varphi-I(t \varphi) \in \mathscr{H}_{0}$ for $0 \leq t \leq 1$. Denote $d(0, \varphi)$ the distance between 0 and φ. Using (2-1), we compute

$$
\begin{aligned}
d(0, \varphi) \leq L\left(\gamma_{t}\right) & =\int_{0}^{1}\left(\int_{M}\left(\frac{\partial \gamma_{t}}{\partial t}\right)^{2} \omega_{\gamma_{t}}^{n}\right)^{1 / 2} d t \\
& =\int_{0}^{1}\left(\int_{M}\left(\varphi-\partial_{t} I(t \varphi)\right)^{2} \omega_{\gamma_{t}}^{n}\right)^{1 / 2} d t \leq C_{3} \epsilon_{1}
\end{aligned}
$$

for $|\varphi|_{C^{2, \alpha}} \leq \epsilon_{1}$. Moreover, the choice of the ρ implies

$$
d(0, \rho) \leq d(0, \varphi)+d(\varphi, \rho) \leq 2 d(0, \varphi) \leq C_{3} \epsilon_{1}
$$

by the triangle inequality. From Lemma 4.2, it follows that $|\rho|_{C^{3, \alpha}} \leq C_{4}=C_{2} C_{3} \epsilon_{1}$. Using [Chen and Tian 2006, Lemma 4.6], we derive $|\sigma|_{h} \leq C_{5}$ and the lemma follows.

Remark. Alternatively the holomorphic transformation can be derived by minimizing the $I-J$ functional, as in [Bando and Mabuchi 1987], which will be further discussed in Section 7. Those authors use this minimizer to prove the uniqueness of the Kähler-Einstein metric when the first Chern class is positive. The minimizer of the $I-J$ functional is not unique in general, since the second variation of this functional is not strictly positive. However, when the potential is small enough, the minimizer is unique. We mention also that Corollary 7.2 provides an estimate similar to Lemma 4.3.

4B. Long time existence and Cheeger-Gromov convergence. Set

$$
\mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)=\left\{\varphi|\varphi|_{C^{2, \alpha}} \leq \epsilon_{1} ;|\varphi|_{C^{k, \alpha}(M)} \leq C\left(k, \epsilon_{1}\right)\right\} .
$$

It is obvious that $0 \in \mathscr{S}$. We will show that when the initial potential is small, the solution of (2-3) always stays in $\mathscr{\mathscr { S }}$ after pulling back by a sequence of holomorphic transformations.

Lemma 4.4. For any $\epsilon>0$, there is a small positive constant o depends on ϵ and \mathscr{S} such that, for any $\varphi \in \mathscr{T}$, if $v_{\omega}(\varphi) \leq o$, then $\left|\left(\sigma^{-1}\right)^{*}(\varphi-\rho)\right|_{C^{2, \alpha}}<\epsilon$.

Proof. If the conclusion fails, we take a positive constant ϵ and a sequence of $\varphi_{s} \in \mathscr{S}$ satisfying

$$
v_{\omega}\left(\varphi_{s}\right) \leq \frac{1}{s}
$$

and such that

$$
\begin{equation*}
\left|\left(\sigma_{s}^{-1}\right)^{*}\left(\varphi_{s}-\rho_{s}\right)\right|_{C^{2, \alpha}} \geq \epsilon . \tag{4-1}
\end{equation*}
$$

Since $\varphi_{s} \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)$, we obtain a subsequence $\varphi_{s_{j}}$ of φ_{s} converging smoothly to φ_{∞}. Let $\hat{\varphi}_{s}=\left(\sigma_{s}^{-1}\right)^{*}\left(\varphi_{s}-\rho_{s}\right)$. Lemma 4.3 gives

$$
\left|\rho_{s}\right|_{C^{3, \alpha}} \leq C_{4} \quad \text { and } \quad\left|\sigma_{s}\right|_{h} \leq C_{5}
$$

which implies that there are, by the Arzelà-Ascoli theorem and the BolzanoWeierstrass theorem respectively, subsequences of $\rho_{s_{j}}$ and $\sigma_{s_{j}}$ for which (using the same notation)

$$
\rho_{s_{j}} \rightarrow \rho_{\infty} \text { in } C^{3, \beta} \quad \text { for any } \beta<\alpha
$$

and

$$
\sigma_{s_{j}} \rightarrow \sigma_{\infty} \text { in the left invariant metric. }
$$

Combining with Lemma 4.1, which implies that

$$
v_{\omega}\left(\varphi_{\infty}\right)=v_{\omega}\left(\hat{\varphi}_{\infty}\right)=0
$$

we derive that $\hat{\varphi}_{s_{j}}$ converges to $\hat{\varphi}_{\infty}=\left(\sigma_{\infty}^{-1}\right)^{*}\left(\varphi_{\infty}-\rho_{\infty}\right) \in \mathscr{E}_{0}$ in $C^{3, \beta}$ and $\sigma_{\infty}^{*} \omega=$ $\omega+\partial \bar{\partial} \rho_{\infty}$. Moreover, according to Theorem 2.4, we have $\hat{\varphi}_{\infty}, \varphi_{\infty} \in \mathscr{E}_{0}$.

We claim that

$$
d\left(\varphi_{\infty}, \rho_{\infty}\right)=0
$$

Otherwise, for some sufficient large N, when $s_{j}>N$,

$$
d\left(\varphi_{s_{j}}, \rho_{s_{j}}\right)=d\left(\varphi_{s_{j}}, \mathscr{E}_{0}\right)
$$

has a strictly positive lower bound. Since the distance function is at least C^{1} (see [Chen 2000b]), we have $d\left(\varphi_{\infty}, \mathscr{E}_{0}\right)>0$, contradicting $\varphi_{\infty} \in \mathscr{E}_{0}$. Consequently, the claim holds. It follows that $\hat{\varphi}_{\infty}=0$, in contradiction with the lower bound $\left|\hat{\varphi}_{\infty}\right|_{C^{2, \alpha}} \geq \epsilon$ of (4-1).

Proposition 4.5. Assume M admits a Kähler-Einstein metric ω and has nontrivial holomorphic vector fields. There is a small positive constant ϵ_{0} such that, if $\left|\varphi_{0}\right|_{C^{2, \alpha}(M)} \leq \epsilon_{0}$, there is a unique solution $\varphi(t)$ and a corresponding holomorphic transformation $\varrho(t)$ such that the normalization potential of $\varrho(t)^{*} \omega(t)$ always stays in \mathscr{S}. Moreover, any sequence t_{j} has is a subsequence (still denoted by t_{j}) such that $\varrho\left(t_{j}\right)^{*} \omega\left(t_{j}\right)$ converges smoothly to a Kähler-Einstein metric ω_{∞}.

Proof. We prove this proposition by contradiction. Let ϵ_{1} be as in Lemma 4.3. Using Theorem 2.10, we assume there is a maximal time T such that

$$
|\varphi|_{C^{2, \alpha}}<\epsilon_{1} \text { on }[0, T) \quad \text { and } \quad|\varphi(T)|_{C^{2, \alpha}}=\epsilon_{1}
$$

According to Theorem 2.8 we obtain $|\varphi(T)|_{C^{k, \alpha}} \leq C\left(k, \epsilon_{1}, t_{0}, g\right)$ on $\left[T-t_{0}, T\right]$ for a fixed $T / 2 \leq t_{0} \leq T$. Let the constant $C\left(k, \epsilon_{1}\right)$ be $C\left(k, \epsilon_{1}, t_{0}, g\right)$. So we get

$$
\varphi(T) \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)
$$

There are two situations. If $\varphi(T)$ is a Kähler-Einstein metric, the flow will stop here and our theorem is proved. Otherwise, we will extend the flow as follows.

We first choose ϵ_{0} small enough to guarantee

$$
v_{\omega}\left(\varphi_{0}\right) \leq o\left(\frac{\epsilon_{1}}{2}, \mathscr{P}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)\right)
$$

where the constant $o\left(\epsilon_{1} / 2, \mathscr{P}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)\right)$ is determined in Lemma 4.4. Let the holomorphic transformation σ be the projection of $\varphi(T)$ in \mathscr{E}_{0} with

$$
\sigma^{*} \omega=\omega+\sqrt{-1} \partial \bar{\partial} \rho
$$

We set φ_{1}^{0} be the Kähler potential of the metric pulled back by σ, that is,

$$
\left(\sigma^{-1}\right)^{*} \omega_{\varphi(T)}=\omega+\sqrt{-1} \partial \bar{\partial}\left[\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)\right]=\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{1}^{0}
$$

Since the K-energy decreases along the Kähler-Ricci flow, Lemma 4.1 yields

$$
\begin{equation*}
v_{\omega}\left(\varphi_{1}^{0}\right) \leq o\left(\frac{\epsilon_{1}}{2}, \mathscr{P}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)\right) \tag{4-2}
\end{equation*}
$$

Idea of the proof of Proposition 4.5: solving the equation after pulling back.

Letting $\psi=\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)$, Lemma 4.4 implies that

$$
\begin{equation*}
|\psi|_{C^{2, \alpha}(g)}=\left|\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)\right|_{C^{2, \alpha}(g)}<\frac{\epsilon_{1}}{2} . \tag{4-3}
\end{equation*}
$$

We next show that the Kähler-Ricci flow is invariant under the transformation. Let $\varphi_{1}=\left(\sigma^{-1}\right)^{*}(\varphi(t)-\rho)$. We compute

$$
\begin{aligned}
\frac{\partial}{\partial t} \varphi_{1} & =\left(\sigma^{-1}\right)^{*}\left[\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi-\frac{1}{V} \int_{M}\left(\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi\right) \omega_{\varphi}^{n}\right] \\
& =\left(\sigma^{-1}\right)^{*}\left[\log \frac{\omega_{\varphi}^{n}}{\omega_{\rho}^{n}}+\varphi-\rho-\frac{1}{V} \int_{M}\left(\log \frac{\omega_{\varphi}^{n}}{\omega_{\rho}^{n}}+\varphi-\rho\right) \omega_{\varphi}^{n}\right] \\
& =\left[\log \frac{\omega_{\varphi_{1}}^{n}}{\omega^{n}}+\varphi_{1}-\frac{1}{V} \int_{M}\left(\log \frac{\omega_{\varphi_{1}}^{n}}{\omega^{n}}+\varphi_{1}\right) \omega_{\varphi_{1}}^{n}\right]
\end{aligned}
$$

The second equality follows form the fact that ω_{ρ} is a Kähler-Einstein metric. We conclude that φ_{1} is the solution of an equation of the form

$$
\left\{\begin{align*}
\frac{\partial}{\partial t} \varphi_{1} & =\log \frac{\omega_{\varphi_{1}}^{n}}{\omega^{n}}+\varphi_{1}+a(t) \tag{4-4}\\
\varphi_{1}(0) & =\varphi_{1}^{0}=\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)
\end{align*}\right.
$$

where (4-3) and (4-2) hold. Again, Theorem 2.10 implies (4-4) has a solution on [$0, T_{1}$] with $T_{1} \geq T$ such that

$$
\left|\varphi_{1}\left(T_{1}\right)\right|_{C^{2, \alpha}}=\epsilon_{1}
$$

According to Theorem 2.8, we also obtain

$$
\left|\varphi\left(T_{1}\right)\right|_{C^{k, \alpha}} \leq C\left(k, \epsilon_{1}, t_{0}, g\right) \quad \text { on }\left[T_{1}-t_{0}, T_{1}\right]
$$

So we still have $\varphi\left(T_{1}\right) \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)$. Moreover, if we let

$$
\varphi(t)=\sigma^{*} \varphi_{1}(t-T)+\rho \quad \text { on }\left[T, T+T_{1}\right)
$$

the new $\varphi(t)$ is the solution of (2-3) on [0,T+T].
We repeat the same steps inductively for

$$
\varphi_{s-1}\left(T_{s-1}\right) \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)
$$

with $T_{s-1} \geq T$ obtained in Theorem 2.10, until φ_{s} becomes a Kähler-Einstein at time T_{s}, with $T_{s}<\infty$. If this does not happen, the Kähler-Ricci flow has long-time existence and the solution $\varphi(t)$ for all $t \geq 0$ is given by

$$
\omega_{\varphi(t)}=\prod_{i=0}^{s-1} \sigma_{i}^{*} \omega_{\varphi_{s}(t)} \quad \text { on }\left[\sum_{i=0}^{s-1} T_{i}, \sum_{i=0}^{s} T_{i}\right)
$$

Finally, we prove the convergence of the Kähler-Ricci flow. For any sequence $\left\{\varphi_{t_{j}}\right\}$, there is s such that $\sum_{i=0}^{s-1} T_{i} \leq t_{j} \leq \sum_{i=0}^{s} T_{i}$. Let

$$
\varrho_{j}=\left(\prod_{i=0}^{s-1} \sigma_{i}\right)^{-1}
$$

We have

$$
\left|\varrho_{j}^{*} \omega_{\varphi_{t_{j}}}-\omega\right|_{C^{\alpha}} \leq \epsilon_{1} \quad \text { and } \quad\left|\varrho_{j}^{*} \omega_{\varphi_{t_{j}}}-\omega\right|_{C^{k}} \leq C\left(k, \epsilon_{1}\right)
$$

Therefore all metrics are equivalent and their derivatives are bounded. We set

$$
\omega_{\psi_{t_{j}}}=\varrho_{j}^{*} \omega_{\varphi_{t_{j}}}
$$

It follows that there is a subsequence of $\omega_{\psi_{t_{j}}}$ that converges to a limit metric ω_{∞} (which depends on the choice of the subsequence). Since the K-energy is bounded below, we have $\lim _{s \rightarrow \infty} v\left(\omega, \omega_{\psi_{t_{j}}}\right)=0$. It follows from Theorem 2.4 that g_{∞} is a Kähler-Einstein metric. The proposition is proved.

Let $t_{s}=\sum_{i=0}^{s} T_{i}$. Following the argument in [Chen and Tian 2006], we can first connect each pair of points $\varphi_{t_{s}}$ and $\varphi_{t_{s+1}}$ by a geodesic in the space of KählerEinstein metrics, so

$$
\varrho(t)=\varrho(s) \exp \left((t-s) X_{s}\right) \quad \text { for all } t \in[s, s+1]
$$

with X_{s} uniformly bounded by Lemma 4.3. We then smooth the corner at each point t_{s} by replacing the broken line by a smooth curve in a small neighborhood of t_{s} without changing the value and the t derivative at the endpoints. Hence we have extended the holomorphic transformation to all t, while ensuring Lipschitz continuity in t.

Let $\omega_{\psi(t)}=\varrho(t)^{*} \omega_{\varphi(t)}$. We have already seen that the Kähler-Ricci flow converges to a Kähler-Einstein metric in Cheeger-Gromov sense; i.e., for any sequence $g\left(t_{i}\right)$, there is a subsequence $g\left(t_{i_{j}}\right)$ and a holomorphic transformation $\varrho\left(t_{i_{j}}\right)$ such that $\varrho\left(t_{i_{j}}\right)^{*} g\left(t_{i_{j}}\right)$ converges smoothly to a Kähler-Einstein metric g_{∞}. So we have

$$
\lim _{t \rightarrow \infty} \operatorname{Ric}\left(g_{\psi_{t}}\right)-\omega_{\psi_{t}}=0
$$

which leads to the convergence of the eigenvalue. To obtain the compactness of the sequence of holomorphic transformations $\varrho(t)$ and the exponential convergence of the Kähler-Ricci flow, we use an auxiliary result:

Theorem 4.6 [Phong et al. 2009, Theorem 2 and Remark (7)]. If the Kähler-Ricci flow converges to a Kähler-Einstein metric in Cheeger-Gromov sense. Then the Kähler-Ricci flow must converge exponentially to a unique Kähler-Einstein metric nearby.

5. Kähler-Ricci solitons

In this section we generalize our argument to the Kähler-Ricci solitons. According to [Fujiki 1978], the identity part of holomorphic transformation group $\mathrm{Aut}_{0}(M)$ is meromorphically isomorphic to a linear algebraic group $L(M)$ and the quotient $\operatorname{Aut}_{0}(M) / L(M)$ is a complex torus. Futaki and Mabuchi [1995] used the Chevalley decomposition to $L(M)$ to obtain a semidirect decomposition

$$
\operatorname{Aut}_{0}(M)=\operatorname{Aut}_{r}(M) \ltimes R_{u} .
$$

Here $\operatorname{Aut}_{r}(M)$ is the reductive algebra group, which is the complexification of a maximal compact subgroup K, and R_{u} is the unipotent radical of $\operatorname{Aut}_{0}(M)$. Let η_{r} be the Lie algebra of $\operatorname{Aut}_{r}(M)$. Recall that a Kähler metric ω is called a KählerRicci soliton if there is a holomorphic vector field X such that

$$
\begin{equation*}
L_{X} \omega=\operatorname{Ric}-\omega \tag{5-1}
\end{equation*}
$$

Tian and Zhu [2000] proved the uniqueness of Kähler-Ricci solitons for a fixed X in the Lie algebra of $\operatorname{Aut}_{0}(M)$.

Theorem 5.1 [Tian and Zhu 2000]. If (ω, X) and $\left(\omega^{\prime}, X\right)$ are Kähler-Ricci solitons, there are holomorphic transformations $\sigma \in \operatorname{Aut}_{0}(M)$ and $\tau \in \operatorname{Aut}_{r}(M)$ such that $\sigma^{*} \omega=\tau^{*} \sigma^{*} \omega^{\prime}$ and $\sigma^{*} X \in \eta_{r}$.

Theorem 5.2 [Tian and Zhu 2002]. If (ω, X) and ($\omega^{\prime}, X^{\prime}$) are two Kähler-Ricci solitons, then there is a holomorphic transformation group $\sigma \in \operatorname{Aut}_{0}(M)$ such that $\omega=\sigma^{*} \omega^{\prime}$ and $X=\sigma_{*}^{-1} X^{\prime}$.

Since $L_{\operatorname{Im} X} \omega=0, \operatorname{Im} X$ generates a one-parameter isometric group K_{X}. We further choose K such that $K_{X} \subseteq K$. According to Proposition 2.1 of [Tian and Zhu 2002], X lies in the center of η_{r}.

Now we fix a holomorphic vector field X. By the Hodge theory there is a real value function θ_{X} such that $L_{X} \omega=\sqrt{-1} \partial \bar{\partial} \theta_{X}$ with $\int_{M} e^{\theta_{X}} \omega^{n}=V$. Then the potential equation of the Kähler-Ricci flow (1-2) is

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi-\theta_{X}+a(t) \tag{5-2}\\
\varphi(0)=\varphi_{0}
\end{array}\right.
$$

We choose

$$
a(t)=-\frac{1}{V} \int_{M}\left(\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi-\theta_{X}\right) \omega_{\varphi}^{n}
$$

moreover $I\left(\varphi_{0}\right)=0$, so the Kähler-Ricci flow stays in \mathscr{H}_{0}.

Recall the W-functional of [Perelman 2002], defined by

$$
\mathscr{W}(g, f, \tau)=(4 \pi \tau)^{-n / 2} \int_{M}\left[\tau\left(|\nabla f|^{2}+S\right)+f-n\right] e^{-f} d V
$$

and invariant under diffeomorphisms σ and scaling C :

$$
\begin{equation*}
\mathscr{W}\left(C \sigma^{*} g, \sigma^{*} f, C \tau\right)=\mathscr{W}(g, f, \tau) \tag{5-3}
\end{equation*}
$$

Recall also Perelman's μ functional, defined by

$$
\mu(g, \tau)=\inf \left\{\mathscr{W}(g, f, \tau) \mid(4 \pi \tau)^{-n / 2} \int_{M} e^{-f} d V=1\right\}
$$

and also invariant under diffeomorphism. Its minimum is achieved by some smooth function f satisfying $\tau\left[\left(2 \triangle f-|\nabla f|^{2}\right)+S\right]+f-n=\mu(g, \tau)$. The first variation of $\mu(g, \tau)$ at $g_{i j}^{\prime}=v_{i j}$ for fixed τ is

$$
\mu^{\prime}\left(v_{i j}, \tau\right)=(4 \pi \tau)^{-n / 2} \int_{M}\left\{-\tau\left(v_{i j}, \operatorname{Ric}+D^{2} f-\frac{1}{2 \tau} g\right)\right\} e^{-f} d V_{g}
$$

So the (shrinking) Kähler-Ricci soliton is the critical point of $\mu\left(g, \tau=\frac{1}{2}\right)$. The gradient flow of the μ functional equals to (1-1) with $\lambda=1$ up to a diffeomorphism generated by ∇f. So the μ functional is nondecreasing along the Ricci flow. The second variation of this functional near a Kähler-Ricci soliton in the canonical class has been calculated:
Theorem 5.3 [Tian and Zhu 2008, Proposition 2.1]. We have

$$
\begin{equation*}
\left.\frac{\partial^{2}}{d t^{2}} \mu(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)\right|_{t=0} \leq 0 \tag{5-4}
\end{equation*}
$$

and equality holds if and only if $\dot{\varphi}(0)$ is the real part of the holomorphic potential of some holomorphic vector field.

So the only directions in which the Kähler-Ricci soliton ω in (5-4) vanishes are those tangent to the orbit of ω under the action of $\operatorname{Aut}_{0}(M)$. We thus obtain the following local property of the μ functional:
Lemma 5.4. A Kähler-Ricci soliton is a local maximum of $\mu(g)$ in \mathscr{H}_{0}.
Proof. Near a Kähler-Ricci soliton g, the tangent space $T_{\omega}\left(\mathscr{H}_{0}\right)$ splits as $\eta(M) \oplus N$, where N is the orthonormal part. Due to Theorem 5.3, $\mu\left(g^{\prime}\right)<\mu(g)$ along any direction in N. Moreover, since $\sigma^{*} g$ is still a Kähler-Ricci soliton for any $\sigma \in$ $\operatorname{Aut}_{0}(m)$, we have $\mu\left(g^{\prime}\right) \equiv \mu(g)$ along any direction in $\eta(M)$.

As a result we deduce that a Kähler metric that achieves the maximum value of the $\mu(g)$ functional near a Kähler-Ricci soliton must be a Kähler-Ricci soliton.

Let $\mathscr{E}_{0} \subset \mathscr{H}_{0}$ be the space of potentials of Kähler-Einstein solitons with respect to the holomorphic vector field X. Due to Theorem 5.1, \mathscr{E}_{0} is a single orbit under the action of $\mathrm{Aut}_{r}(M)$.

Lemma 5.5. \mathscr{E}_{0} is a finite-dimensional totally geodesic submanifold of \mathscr{H}_{0}.
Proof. Analogously to the case of the extremal metric in [Calabi 1985], Lemma A. 2 and Theorem A of [Tian and Zhu 2000] imply that the identity component of the holomorphic isometric group of the Kähler-Ricci soliton (ω, X) is a maximal compact subgroup of $\operatorname{Aut}_{r}(M)$ containing K_{X}. So ($\left.\operatorname{Aut}_{r}(M), K\right)$ is a Riemannian symmetric pair and \mathscr{E}_{0} is $\mathrm{Aut}_{r}(M)$-equivariantly diffeomorphic to the Riemannian symmetric space $\operatorname{Aut}_{r}(M) / K$. Then for any $\omega \in \mathscr{E}_{0}$, each geodesic starting at ω in \mathscr{E}_{0} can be written in the form

$$
\gamma(t)=\exp (t \operatorname{Re} Y)^{*} \omega
$$

for some nonzero Y whose imagine part is a Killing vector field. Then Theorem 3.5 and Remark 3.3 in [Mabuchi 1987] show that $\gamma(t)$ is also a geodesic in \mathscr{H}_{0}.

Now choose $\omega_{\rho}=\omega+\partial \bar{\partial} \rho$ such that ρ realizes the shortest distance between ψ and \mathscr{E}_{0}. Clearly, ρ is uniquely determined. In fact, due to Theorem 5.1 we obtain a holomorphic diffeomorphism $\sigma \in \operatorname{Aut}_{r}(M)$ such that

$$
\sigma^{*} \omega=\omega_{\rho}=\omega+\sqrt{-1} \partial \bar{\partial} \rho,
$$

with $\rho \in \mathscr{E}_{0}$. By an argument analogous to the one in Proposition 4.5, but using the μ functional instead of the K-energy, we obtain:
Lemma 5.6. For any $\epsilon>0$, There is a small positive constant o depends on ϵ and \mathscr{S} such that for any $\varphi \in \mathscr{\mathscr { S }}$, if $\mu\left(\omega_{\varphi}\right) \geq \mu(\omega)-o$, then $\left|\left(\sigma^{-1}\right)^{*}(\varphi-\rho)\right|_{C^{2, \alpha}}<\epsilon$.

Proof. If the conclusion fails, take a positive ϵ and a sequence of $\varphi_{s} \in \mathscr{G}$ satisfying

$$
\mu\left(\omega_{\varphi_{s}}\right) \geq \mu(\omega)-\frac{1}{s} \quad \text { and } \quad\left|\left(\sigma_{s}^{-1}\right)^{*}\left(\varphi_{s}-\rho_{s}\right)\right|_{C^{2, \alpha}} \geq \epsilon
$$

Since $\varphi_{s} \in \mathscr{S}$, we obtain a subsequence $\varphi_{s_{j}}$ of φ_{s} converging smoothly to φ_{∞}. Lemma 4.3 gives

$$
\left|\rho_{s}\right|_{C^{3, \alpha}} \leq C_{4} \quad \text { and } \quad\left|\sigma_{s}\right|_{h} \leq C_{5}
$$

which implies that $\left(\sigma_{s_{j}}^{-1}\right)^{*}\left(\varphi_{s_{j}}-\rho_{s_{j}}\right)$ converges in $C^{3, \beta}$ towards

$$
\hat{\varphi}_{\infty}=\left(\sigma_{\infty}^{-1}\right)^{*}\left(\varphi_{\infty}-\rho_{\infty}\right) \in \mathscr{E}_{0}, \quad \text { with } \sigma_{\infty}^{*} \omega=\omega+\partial \bar{\partial} \rho_{\infty}
$$

Then (5-3) implies that $\mu\left(\omega_{\varphi_{\infty}}\right)=\mu\left(\omega_{\hat{\varphi}_{\infty}}\right)=\mu(\omega)$. The rest of this proof is the same as for Lemma 4.4.

Proposition 5.7. Assume M admits a Kähler-Ricci soliton (ω, X). There exits a small constant ϵ_{0} such that, if $\left|\varphi_{0}\right|_{C^{2, \alpha}(M)} \leq \epsilon_{0}$, there is a unique solution $\varphi(t)$ and a corresponding holomorphic transformation $\varrho(t) \in \operatorname{Aut}_{r}(M)$ such that the normalization potential of $\varrho(t)^{*} \omega_{\varphi}(t)$ always stays in \mathscr{S}. Moreover, for any sequence t_{i}, there is a subsequence $t_{i_{j}}$ such that $\varrho\left(t_{i_{j}}\right)^{*} g_{\varphi\left(t_{i j}\right)}$ converges smoothly to g_{∞}.

Proof. The proof, by contradiction, is similar to that of Proposition 4.5. Let ϵ_{1} be as in Lemma 4.3. Applying Theorem 2.10 to the potential equation (5-2), we assume there is a maximal time T such that

$$
|\varphi|_{C^{2, \alpha}}<\epsilon_{1} \quad \text { on }[0, T) \quad \text { and } \quad|\varphi(T)|_{C^{2, \alpha}}=\epsilon_{1}
$$

From Theorem 2.8 we obtain $|\varphi(T)|_{C^{k, \alpha}} \leq C\left(k, \epsilon_{1}, t_{0}, g\right)$ on $\left[T-t_{0}, T\right]$ for a fixed $T / 2 \leq t_{0} \leq T$. Let the constant $C\left(k, \epsilon_{1}\right)$ be $C\left(k, \epsilon_{1}, t_{0}, g\right)$. So we get

$$
\varphi(T) \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right) .
$$

There are two situations. If $\varphi(T)$ is a Kähler-Ricci soliton, the flow will stop here and our theorem is proved. Otherwise, we will extend the flow as in the proof in Proposition 4.5.

We first choose ϵ_{0} small enough to guarantee that

$$
\mu\left(\omega_{\varphi_{0}}\right) \geq \mu(\omega)-o\left(\frac{\epsilon_{1}}{2}, \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)\right)
$$

where the constant $o\left(\epsilon_{1} / 2, \mathscr{P}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)\right)$ is determined in Lemma 4.4. Let the holomorphic transformation σ be the projection of $\varphi(T)$ in \mathscr{E}_{0} with

$$
\sigma^{*} \omega=\omega+\sqrt{-1} \partial \bar{\partial} \rho
$$

Let φ_{1}^{0} be the Kähler potential of the metric pulled back by σ, that is,

$$
\left(\sigma^{-1}\right)^{*} \omega_{\varphi(T)}=\omega+\sqrt{-1} \partial \bar{\partial}\left[\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)\right]=\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{1}^{0}
$$

Since the μ functional is nondecreasing along the Kähler-Ricci flow, we obtain

$$
\begin{equation*}
\mu\left(\omega_{\varphi_{1}^{0}}\right) \geq \mu(\omega)-o\left(\frac{\epsilon_{1}}{2}, \mathscr{P}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)\right) \tag{5-5}
\end{equation*}
$$

Lemma 4.4 implies that

$$
\begin{equation*}
\left|\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)\right|_{C^{2, \alpha}(g)}<\frac{\epsilon_{1}}{2} \tag{5-6}
\end{equation*}
$$

Set $\varphi_{1}(t)=\left(\sigma^{-1}\right)^{*}(\varphi(t)-\rho)$. Combining (5-2) and (5-1), we obtain that φ_{1} is the solution of an equation of the form

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \varphi_{1}=\log \frac{\omega_{\varphi_{1}}^{n}}{\omega^{n}}+\varphi_{1}-\theta_{X}+a(t) \tag{5-7}\\
\varphi_{1}(0)=\varphi_{1}^{0}=\left(\sigma^{-1}\right)^{*}(\varphi(T)-\rho)
\end{array}\right.
$$

where (5-6) and (5-5) hold.
Again, Theorem 2.10 implies that (5-7) has a solution on [0, $\left.T_{1}\right]$, with $T_{1} \geq T$, such that

$$
\left|\varphi_{1}\left(T_{1}\right)\right|_{C^{2, \alpha}}=\epsilon_{1}
$$

From Theorem 2.8, we also obtain $\left|\varphi\left(T_{1}\right)\right|_{C^{k, \alpha}} \leq C\left(k, \epsilon_{1}, t_{0}, g\right)$ on $\left[T_{1}-t_{0}, T_{1}\right]$. So we still have

$$
\varphi\left(T_{1}\right) \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)
$$

If we set $\varphi(t)=\sigma^{*} \varphi_{1}(t-T)+\rho$ on $\left[T, T+T_{1}\right)$, the new $\varphi(t)$ is the solution of (5-2) on [0, T+T T_{1}].

We repeat the same steps inductively for

$$
\varphi_{s-1}\left(T_{s-1}\right) \in \mathscr{S}\left(\epsilon_{1}, C\left(k, \epsilon_{1}\right)\right)
$$

with $T_{s-1} \geq T$ obtained in Theorem 2.10. We thus obtain a sequence of holomorphic transformations σ_{i} and the solution $\varphi(t)$ for all $t \geq 0$ given by

$$
\omega_{\varphi(t)}=\prod_{i=0}^{s-1} \sigma_{i}^{*} \omega_{\varphi_{s}(t)} \quad \text { on }\left[\sum_{i=0}^{s-1} T_{i}, \sum_{i=0}^{s} T_{i}\right) .
$$

Set $\varrho_{j}=\left(\prod_{i=0}^{s-1} \sigma_{i}\right)^{-1}$. We have

$$
\left|\varrho_{j}^{*} \omega_{\varphi_{t_{j}}}-\omega\right|_{C^{\alpha}} \leq \epsilon_{1} \quad \text { and } \quad\left|\varrho_{j}^{*} \omega_{\varphi_{t_{j}}}-\omega\right|_{C^{k}} \leq C\left(k, \epsilon_{1}\right)
$$

It follows that there is a subsequence of $\varrho_{j}^{*} \omega_{\varphi_{t_{j}}}$ converging to a limit metric ω_{∞}. According to Lemma 5.4, the μ functional is bounded above and ω_{∞} is a KählerRicci soliton.

Assume ς is generated by $\operatorname{Re} X$:

$$
\operatorname{Re} X=\left(\varsigma^{-1}\right)_{*} \frac{\partial}{\partial t} \zeta
$$

Let ϱ and ϕ satisfy $\varsigma^{*} \omega=\omega_{\varrho}$ and $\phi=\varsigma^{*} \varphi+\varrho$. We obtain the modified KählerRicci flow of the form

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \omega_{\phi}=-\operatorname{Ric}\left(\omega_{\phi}\right)+\omega_{\phi}+L_{\operatorname{Re} X} \omega_{\phi} \\
\omega_{\varphi(0)}=\omega_{\varphi_{0}}
\end{array}\right.
$$

We apply [Phong et al. 2011, Theorem 1] to obtain:
Theorem 5.8. If the Kähler-Ricci flow converges to a Kähler-Ricci soliton in the Cheeger-Gromov sense and the initial Kähler potential is K_{X}-invariant, then the modified Kähler-Ricci flow converges exponentially to a unique Kähler-Ricci soliton nearby.

Zhu [2009] also discussed the stability of Kähler-Ricci flow near a Kähler-Ricci soliton by using Perelman's estimate (unpublished) and Chen and Tian's energy method [2002; 2006].

6. Weak flow

In this section we weaken the initial condition. Let $a(t)=0$ in (2-3); the potential equation then reads

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}+\varphi \tag{6-1}\\
\varphi(0)=\varphi_{0}
\end{array}\right.
$$

We defined φ_{0} is the limit of $\varphi_{s} \in \operatorname{PSH}(M, \omega) \cap L^{\infty}(M)$ in L^{∞} norm. Meanwhile, $\omega_{\varphi_{0}} \geq 0$ in the sense of currents. Let the weak solution be a limit of a sequence of approximation solutions by

$$
\varphi(t)=\lim _{s \rightarrow 0} \varphi(s, t)
$$

The Kähler-Ricci flow with weak initial data was studied in [Chen and Ding 2007; Chen and Tian 2008; 2008]. We also have:

Theorem 6.1 [Song and Tian 2009, Proposition 3.2]. If φ_{0} is defined above with $\left|\varphi_{0}\right|_{L^{\infty}} \leq A$ and $\left|\omega_{\varphi_{0}}^{n} / \omega^{n}\right|_{L^{p}(M, \omega)} \leq B$ for $p>1$, there is a unique smooth solution $g_{\varphi}(t)$ of (1-1) for $t>0$ such that

$$
\lim _{t \rightarrow 0^{+}} \varphi(t)=\varphi_{0}
$$

The estimate in Song and Tian's proof is that

$$
\begin{equation*}
|\varphi(t)|_{C^{k}} \leq C(t, T, k, A, B) \quad \text { on }(0, T] \tag{6-2}
\end{equation*}
$$

For fixed B and p, introduce the space

$$
\mathcal{N}\left(\epsilon_{0} ; B, p\right)=\left\{\varphi|\varphi|_{L^{\infty}} \leq \epsilon_{0},\left|\frac{\omega_{\varphi}^{n}}{\omega^{n}}\right|_{L^{p}(M, \omega)} \leq B \text { for some } p>1\right\}
$$

Here B and p should be chosen such that $\mathcal{N}\left(\epsilon_{0} ; B, p\right)$ is not the empty set. Clearly, if $\left|\varphi_{0}\right|_{C^{1,1}} \leq \epsilon_{0}$, then $\varphi_{0} \in \mathcal{N}\left(\epsilon_{0}, 1+\left(2^{n}-1\right) \epsilon_{0}, \infty\right)$. Actually, we have:

Lemma 6.2. Fix $t_{0} \in(0, T]$. For any $\epsilon_{1}>0$ there is a small ϵ_{0} such that for any $\varphi_{0} \in \mathcal{N}\left(\epsilon_{0} ; B, p\right)$ we have $\left|\varphi\left(t_{0}\right)\right|_{C^{2, \alpha}} \leq \epsilon_{1}$.

Proof. If the conclusion fails, choose a sequence of φ_{s} such that

$$
\left|\varphi_{s}\right|_{L^{\infty}} \leq \frac{1}{s} \quad \text { and } \quad\left|\frac{\omega_{\varphi_{s}}^{n}}{\omega^{n}}\right|_{L^{p}(M, \omega)} \leq B
$$

For each corresponding solution $\varphi_{s}(t)$ constructed by Theorem 6.1, we have

$$
\begin{equation*}
\left|\varphi_{s}\left(t_{0}\right)\right|_{C^{2, \alpha}}>\epsilon_{1} \tag{6-3}
\end{equation*}
$$

Setting $g_{a \varphi i \bar{j}}=\int_{0}^{t}\left(g_{i \bar{j}}+a \varphi_{i \bar{j}}\right) d a>0$, we rewrite (6-1) as follows

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=\Delta_{g_{a \varphi} \varphi} \varphi+\varphi \\
\varphi_{s}(0)=\varphi_{s}
\end{array}\right.
$$

From the maximum principle we obtain

$$
\begin{equation*}
\sup _{M}\left|\varphi_{s}\left(t_{0}\right)\right| \leq e^{t_{0}} \sup _{M}\left|\varphi_{s}\right| \tag{6-4}
\end{equation*}
$$

By (6-2), we can pass a subsequence of $\varphi_{s_{i}}\left(t_{0}\right)$ such that $\lim _{i \rightarrow \infty} \varphi_{s_{i}}\left(t_{0}\right)=\varphi_{\infty}\left(t_{0}\right)$ in C^{k} for $k \geq 0$. Let $s=s_{i}$ in (6-4). Then the limit approaches $\sup _{M}\left|\varphi_{\infty}\left(t_{0}\right)\right| \leq 0$, which contradicts (6-3).

Now we have a $C^{2, \alpha}$ small initial datum $\varphi\left(t_{0}\right)$; we normalize it to be $\varphi_{0}-I\left(\varphi_{0}\right)$ which is also $C^{2, \alpha}$ small. Then we can solve Equation (2-3) with this initial datum. Combining Propositions 3.1 and 4.5, Theorem 4.6, and Lemma 6.2, we obtain Theorem 1.2. Analogously, we apply Proposition 5.7, Theorem 5.8 and Lemma 6.2 to obtain Theorem 1.1.

7. Another choice of holomorphic transformations

In this section, we follow the arguments in [Bando and Mabuchi 1987; Chen and Tian 2002] to find a good holomorphic transformation. The I and J functionals are defined as

$$
\begin{aligned}
& I\left(\omega, \omega_{\varphi}\right)=\frac{1}{V} \int_{M} \varphi\left(\omega^{n}-\omega_{\varphi}^{n}\right) \\
& J\left(\omega, \omega_{\varphi}\right)=\frac{1}{V} \sum_{i=0}^{n-1} \int_{M} \frac{i+1}{n+1} \sqrt{-1} \partial \varphi \wedge \bar{\partial} \varphi \wedge \omega^{i} \wedge \omega_{\varphi}^{n-1-i}
\end{aligned}
$$

From [Aubin 1998] we know that I and J are both semipositive functionals and satisfy
(7-1) $\quad 0 \leq I\left(\omega, \omega_{\varphi}\right) \leq(n+1)\left(I\left(\omega, \omega_{\varphi}\right)-J\left(\omega, \omega_{\varphi}\right)\right) \leq n I\left(\omega, \omega_{\varphi}\right) \quad$ for $\varphi \in \mathscr{H}$.
Fix $\varphi \in \mathscr{H}_{0}$. Consider the functional

$$
\Psi(\sigma)=(I-J)\left(\omega_{\varphi}, \sigma^{*} \omega\right)=(I-J)\left(\omega_{\varphi}, \omega_{\rho}\right)
$$

which is defined for any σ in the reductive subgroup $\operatorname{Aut}(M)$ with $\sigma^{*} \omega=\omega+\partial \bar{\partial} \rho$. Since ω_{ρ} is a Kähler-Einstein metric, it satisfies

$$
\begin{equation*}
\log \frac{\omega_{\rho}^{n}}{\omega^{n}}+\rho=0 \quad \text { and } \quad I(\rho)=0 \tag{7-2}
\end{equation*}
$$

If ω_{ρ} is the minimal point of Ψ, for any $u \in \Lambda_{1}\left(\omega_{\rho}\right)$, we have

$$
\begin{equation*}
\int_{M}(\rho-\varphi) u \omega_{\rho}^{n}=0 \tag{7-3}
\end{equation*}
$$

It is known that $\eta(M) \cong \Lambda_{1}(\omega)$ for any Kähler-Einstein metric ω [Matsushima 1957]. To prove that the minimizer of Ψ is always attained, it suffices to prove:

Proposition 7.1 [Bando and Mabuchi 1987]. For all

$$
\rho \in\left\{\rho \mid \sigma^{*} \omega=\omega_{\rho}, \sigma \in \operatorname{Aut}_{r}(M), \Psi(\sigma) \leq r\right\}
$$

we have

$$
|\varphi-\rho|_{C^{2, \alpha}\left(g_{\varphi}\right)} \leq C\left(|\varphi|_{C^{4, \alpha}}\right) .
$$

Proof. Clearly,

$$
-\Delta_{\varphi}(\rho-\varphi)<n \quad \text { and } \quad-\Delta_{\rho}(\rho-\varphi)>-n
$$

A lower bound for the Green function is given by

$$
\begin{equation*}
G_{\varphi} \geq-\gamma \frac{D_{\varphi}^{2}}{\operatorname{Vol}_{\varphi}} \doteq-A_{\varphi} \tag{7-4}
\end{equation*}
$$

since the volume is constant in a fixed Kähler class and the diameter of g_{φ} is bounded by $C \operatorname{diam}(g)$ when $|\varphi|_{C^{2}} \leq C$. Using Green's formula and (7-4), we obtain
(7-5) $\sup _{M}(\rho-\varphi)$

$$
\begin{aligned}
& =\frac{1}{V} \int_{M}(\rho-\varphi) \omega_{\varphi}^{n}-\frac{1}{V} \int_{M} \Delta_{\varphi}(\rho-\varphi)(y)\left(G_{\varphi}(x, y)+A_{\varphi}\right) \omega_{\varphi}^{n}(y) \\
& \leq \frac{1}{V} \int_{M}(\rho-\varphi) \omega_{\varphi}^{n}+n A_{\varphi}
\end{aligned}
$$

Similarly, we deduce that
(7-6) $\quad \inf _{M}(\rho-\varphi)$

$$
\begin{aligned}
& =\frac{1}{V} \int_{M}(\rho-\varphi) \omega_{\rho}^{n}-\frac{1}{V} \int_{M} \Delta_{\rho}(\rho-\varphi)(y)\left(G_{\rho}(x, y)+A_{\rho}\right) \omega_{\rho}^{n}(y) \\
& \geq \frac{1}{V} \int_{M}(\rho-\varphi) \omega_{\rho}^{n}-n A_{\rho}
\end{aligned}
$$

Because $\operatorname{Ric}(\rho)=\omega_{\rho}$, we have $\operatorname{diam}\left(g_{\rho}\right) \leq \sqrt{2 n-1} \pi$ Myers' theorem. Combining (7-5) and (7-6) we get

$$
\begin{equation*}
\operatorname{Osc}_{M}(\rho-\varphi) \geq \frac{1}{V} \int_{M}(\rho-\varphi)\left(\omega_{\varphi}^{n}-\omega_{\rho}^{n}\right)+C\left(|\varphi|_{C^{2}}\right) \tag{7-7}
\end{equation*}
$$

From (7-1) we obtain

$$
\frac{1}{V} \int_{M}(\rho-\varphi)\left(\omega_{\varphi}^{n}-\omega_{\rho}^{n}\right)=I\left(\omega_{\varphi}, \omega_{\rho}\right) \leq(n+1)(I-J)\left(\omega_{\varphi}, \omega_{\rho}\right) \leq(n+1) r
$$

Since ω_{ρ} is a Kähler-Einstein metric, we have

$$
\begin{equation*}
\left(\omega_{\varphi}+\sqrt{-1} \partial \bar{\partial}(\rho-\varphi)\right)^{n}=e^{-(\rho-\varphi)+h_{\varphi}} \omega_{\varphi}^{n}, \tag{7-8}
\end{equation*}
$$

with

$$
\sqrt{-1} \partial \bar{\partial} h_{\varphi}=\operatorname{Ric}\left(\omega_{\varphi}\right)-\omega_{\varphi} \quad \text { and } \quad \int_{M} e^{h_{\varphi}} \omega_{\varphi}^{n}=\operatorname{Vol}(M)
$$

By using the second-order estimate in [Yau 1978], we get

$$
\begin{aligned}
n+\Delta_{\varphi}(\rho-\varphi) & \leq e^{C \operatorname{Osc}_{M}(\rho-\varphi)} C\left(\sup _{M}\left(\inf _{i \neq k}\left|R_{\varphi i \bar{i} k \bar{k}}\right|\right), \inf _{M} S_{\varphi}, \sup _{M} h_{\varphi}\right) \\
& \leq e^{C \operatorname{Osc}_{M}(\rho-\varphi)} C\left(|\varphi|_{C^{4}}\right) .
\end{aligned}
$$

Then the Krylov estimate shows that $\rho-\varphi$ has $C^{2, \alpha}$ bound.
Thus we also obtain a uniform bound for the gauge ρ. Our previous discussion implies:

Corollary 7.2. If $|\varphi|_{C^{4, \alpha}}$ is bounded and ρ is the minimizer of Ψ, then $|\varphi-\rho|_{C^{2, \alpha}}$ and $|\rho|_{C^{2, \alpha}}$ are both bounded.

This implies that g_{ρ} is equivalent to g.
We now turn to the uniqueness of the critical points of the functional Ψ when φ is small. The second variation of Ψ at ρ is given by

$$
\begin{equation*}
D^{2} \Psi_{\rho}(u, v)=\frac{1}{V} \int_{M}\left(1+\frac{1}{2} \Delta_{\rho} \rho\right) u v \omega_{\rho}^{n} \tag{7-9}
\end{equation*}
$$

Lemma 7.3. For all $|\varphi|_{C^{2, \alpha}} \leq \epsilon_{1}$ and $u \in \Lambda_{1}\left(\omega_{\rho}\right)$, the bilinear form $D^{2} \Psi_{\rho}(u, u)$ is positive definite. Hence ρ is unique.

Proof. Note that (7-8) can be rewritten as

$$
\begin{equation*}
\left(\omega_{\rho}+\sqrt{-1} \partial \bar{\partial}(\varphi-\rho)\right)^{n}=e^{-(\varphi-\rho)-h_{\varphi}} \omega_{\rho}^{n} . \tag{7-10}
\end{equation*}
$$

By definition, h_{φ} is given by

$$
h_{\varphi}=-\log \frac{\omega_{\varphi}^{n}}{\omega^{n}}-\varphi-\log \left(\frac{1}{V} \int_{M} e^{-\varphi}\right) \omega^{n} .
$$

We conclude that

$$
\begin{equation*}
\left|h_{\varphi}\right|_{C^{2, \alpha}\left(g_{\rho}\right)} \leq C \epsilon_{1} \leq \delta, \tag{7-11}
\end{equation*}
$$

by the assumption on φ. Let

$$
C_{\perp}^{2, \alpha}(M)=\left\{\varphi \in C^{2, \alpha}(M) \mid \int_{M} \varphi u \omega_{\rho}^{n} \text { for all } u \in \Lambda_{1}\left(\omega_{\rho}\right)\right\}
$$

Define the operator of (7-10) by

$$
\Phi(a, b)=\log \frac{\left(\omega_{\rho}+\sqrt{-1} \partial \bar{\partial} a\right)^{n}}{\omega_{\rho}^{n}}+a+b, \quad C_{\perp}^{2, \alpha}(M) \times C^{\alpha}(M) \rightarrow C^{\alpha}(M)
$$

It is clear from (7-10) that $\Phi\left(\varphi-\rho, h_{\varphi}\right)=0$. The linearized operator of (7-10) at $(a, b)=(0,0)$ is given by

$$
\delta_{a} \Phi(v)=\Delta_{\rho} v+v
$$

We infer that $\delta_{a} \Phi$ is invertible from $C_{\perp}^{2, \alpha}(M)$ to $C_{\perp}^{\alpha}(M)$. The implicit function theorem implies that there is a small δ neighborhood of 0 in $C^{\alpha}(M)$ such that when $\left|h_{\varphi}\right|_{C^{2, \alpha}\left(g_{\rho}\right)} \leq \delta$, we have from (7-3) that

$$
|\varphi-\rho|_{C^{2, \alpha}\left(g_{\rho}\right)} \leq C \delta
$$

Then we use Corollary 7.2 and (7-11) to obtain

$$
|\rho|_{C^{2, \alpha}} \leq|\varphi-\rho|_{C^{2, \alpha}}+|\varphi|_{C^{2, \alpha}} \leq C \epsilon_{1} .
$$

Hence $|\rho|_{C^{2, \alpha}}$ is small if we choose appropriate ϵ_{1} and the bilinear form $D^{2} \Psi_{\rho}(u, u)$ is positive definite.

Acknowledgements

The author is grateful to Professor Xiuxiong Chen, who introduced him to this problem and to Kähler geometry. He is also grateful to Professor Weiyue Ding for his constant encouragement and support. He also thanks Professor Xiaohua Zhu for his interest in this problem and many helpful discussions.

References

[Aubin 1998] T. Aubin, Some nonlinear problems in Riemannian geometry, Springer, Berlin, 1998. MR 99i:58001 Zbl 0896.53003
[Bando 1987] S. Bando, "The K-energy map, almost Einstein Kähler metrics and an inequality of the Miyaoka-Yau type", Tohoku Math. J. (2) 39:2 (1987), 231-235. MR 88k:53092
[Bando and Mabuchi 1987] S. Bando and T. Mabuchi, "Uniqueness of Einstein Kähler metrics modulo connected group actions", pp. 11-40 in Algebraic geometry (Sendai, 1985), edited by T. Oda, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987. MR 89c:53029 Zbl 0641.53065
[Calabi 1985] E. Calabi, "Extremal Kähler metrics, II", pp. 95-114 in Differential geometry and complex analysis, edited by I. Chavel and H. E. Rauch, Springer, Berlin, 1985. MR 86h:53067 Zbl 0574.58006
[Calabi and Chen 2002] E. Calabi and X. X. Chen, "The space of Kähler metrics, II", J. Differential Geom. 61:2 (2002), 173-193. MR 2004i:32039 Zbl 1067.58010
[Cao 1985] H. D. Cao, "Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds", Invent. Math. 81:2 (1985), 359-372. MR 87d:58051 Zbl 0574.53042
[Chen 2000a] X. Chen, "On the lower bound of the Mabuchi energy and its application", Internat. Math. Res. Notices 2000:12 (2000), 607-623. MR 2001f:32042 Zbl 0980.58007
[Chen 2000b] X. Chen, "The space of Kähler metrics", J. Differential Geom. 56:2 (2000), 189-234. MR 2003b:32031 Zbl 1041.58003
[Chen and Ding 2007] X. Chen and W. Ding, "Ricci flow on surfaces with degenerate initial metrics", J. Partial Differential Equations 20:3 (2007), 193-202. MR 2008g:53081 Zbl 1174.53025
[Chen and Li 2009] X. Chen and H. Li, "Stability of Kähler-Ricci Flow", J. Geom. Anal. 20:2 (2009), 306-334. Zbl 1185.53074
[Chen and Tian 2002] X. X. Chen and G. Tian, "Ricci flow on Kähler-Einstein surfaces", Invent. Math. 147:3 (2002), 487-544. MR 2003c:53095 Zbl 1047.53043
[Chen and Tian 2006] X. X. Chen and G. Tian, "Ricci flow on Kähler-Einstein manifolds", Duke Math. J. 131:1 (2006), 17-73. MR 2007c:53083 Zbl 1097.53045
[Chen and Tian 2008] X. X. Chen and G. Tian, "Geometry of Kähler metrics and foliations by holomorphic discs", Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1-107. MR 2009g:32048 Zbl 1182.32009
[Chen and Wang 2010] X. Chen and B. Wang, "Remarks on Kähler Ricci flow", J. Geom. Anal. 20:2 (2010), 335-353. MR 2011b:32036 Zbl 1185.53075
[Chen and Zheng 2010] X. Chen and K. Zheng, "The pseudo-Calabi flow", preprint, 2010. to appear in J. Reine Angew. Math. arXiv 1004.2663
[Chen et al. 2008] X. X. Chen, G. Tian, and Z. Zhang, "On the weak Kähler-Ricci flow", preprint, 2008. arXiv 0802.0809
[Donaldson 1999] S. K. Donaldson, "Symmetric spaces, Kähler geometry and Hamiltonian dynamics", pp. 13-33 in Northern California Symplectic Geometry Seminar, edited by Y. Eliashberg et al., Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., Providence, RI, 1999. MR 2002b:58008 Zbl 0972.53025
[Donaldson 2004] S. K. Donaldson, "Conjectures in Kähler geometry", pp. 71-78 in Strings and geometry, edited by M. Douglas et al., Clay Math. Proc. 3, Amer. Math. Soc., Providence, RI, 2004. MR 2005i:32024 Zbl 1161.32010
[Fujiki 1978] A. Fujiki, "On automorphism groups of compact Kähler manifolds", Invent. Math. 44:3 (1978), 225-258. MR 58 \#1285 Zbl 0367.32004
[Futaki and Mabuchi 1995] A. Futaki and T. Mabuchi, "Bilinear forms and extremal Kähler vector fields associated with Kähler classes", Math. Ann. 301:2 (1995), 199-210. MR 95m:32039 Zbl 0831.53042
[Hamilton 1982] R. S. Hamilton, "Three-manifolds with positive Ricci curvature", J. Differential Geom. 17:2 (1982), 255-306. MR 84a:53050 Zbl 0504.53034
[Huang and Zheng 2010] H. Huang and K. Zheng, "Stability of Calabi flow near extremal metric", preprint, 2010. to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. arXiv 1007.4571
[Kobayashi 1961] S. Kobayashi, "On compact Kähler manifolds with positive definite Ricci tensor", Ann. of Math. (2) 74 (1961), 570-574. MR 24 \#A2922 Zbl 0107.16002
[Mabuchi 1986] T. Mabuchi, " K-energy maps integrating Futaki invariants", Tohoku Math. J. (2) 38:4 (1986), 575-593. MR 88b:53060 Zbl 0619.53040
[Mabuchi 1987] T. Mabuchi, "Some symplectic geometry on compact Kähler manifolds. I", Osaka J. Math. 24:2 (1987), 227-252. MR 88m:53126 Zbl 0645.53038
[Matsushima 1957] Y. Matsushima, "Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne", Nagoya Math. J. 11 (1957), 145-150. MR 20 \#995 ZBL 0091.34803
[Munteanu 2009] O. Munteanu, "A sharp estimate for the bottom of the spectrum of the Laplacian on Kähler manifolds", J. Differential Geom. 83:1 (2009), 163-187. MR 2010j:58071 Zbl 1183.53068
[Pali 2009] N. Pali, "On the solutions of the Aubin equation and the K-energy of Einstein-Fano manifolds", Complex Var. Elliptic Equ. 54:11 (2009), 1019-1054. MR 2011c:32039 Zbl 1181.53038
[Perelman 2002] G. Perelman, "The entropy formula for the Ricci flow and its geometric applications", preprint, 2002. Zbl 1130.53001 arXiv 0211159 v 1
[Phong and Sturm 2006] D. H. Phong and J. Sturm, "On stability and the convergence of the KählerRicci flow", J. Differential Geom. 72:1 (2006), 149-168. MR 2007a:53128 Zbl 1125.53048
[Phong et al. 2008] D. H. Phong, J. Song, J. Sturm, and B. Weinkove, "The Kähler-Ricci flow with positive bisectional curvature", Invent. Math. 173:3 (2008), 651-665. MR 2009f:53103 ZBL 1145. 53050
[Phong et al. 2009] D. H. Phong, J. Song, J. Sturm, and B. Weinkove, "The Kähler-Ricci flow and the $\bar{\partial}$ operator on vector fields", J. Differential Geom. 81:3 (2009), 631-647. MR 2010b:32035 Zbl 1162.32014
[Phong et al. 2011] D. H. Phong, J. Song, J. Sturm, and B. Weinkove, "On the convergence of the modified Kähler-Ricci flow and solitons", Comment. Math. Helv. 86:1 (2011), 91-112.
[Rubinstein 2009] Y. A. Rubinstein, "On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow", Trans. Amer. Math. Soc. 361:11 (2009), 5839-5850. MR 2010i:32021 Zbl 1185.53077
[Semmes 1992] S. Semmes, "Complex Monge-Ampère and symplectic manifolds", Amer. J. Math. 114:3 (1992), 495-550. MR 94h:32022 Zbl 0790.32017
[Sesum and Tian 2008] N. Sesum and G. Tian, "Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman)", J. Inst. Math. Jussieu 7:3 (2008), 575-587. MR 2009c:53092
[Simon 1983] L. Simon, "Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems", Ann. of Math. (2) 118:3 (1983), 525-571. MR 85b:58121
[Song and Tian 2009] J. Song and G. Tian, "The Kähler-Ricci flow through singularities", preprint, 2009. arXiv 0909.4898
[Székelyhidi 2010] G. Székelyhidi, "The Kähler-Ricci flow and K-polystability", Amer. J. Math. 132:4 (2010), 1077-1090. MR 2663648 Zbl 1206.53075
[Tian 2000] G. Tian, Canonical metrics in Kähler geometry, Birkhäuser, Basel, 2000. Notes taken by Meike Akveld. MR 2001j:32024 Zbl 0978.53002
[Tian and Zhu 2000] G. Tian and X. Zhu, "Uniqueness of Kähler-Ricci solitons", Acta Math. 184:2 (2000), 271-305. MR 2001h:32040 Zbl 1036.53052
[Tian and Zhu 2002] G. Tian and X. Zhu, "A new holomorphic invariant and uniqueness of KählerRicci solitons", Comment. Math. Helv. 77:2 (2002), 297-325. MR 2003i:32042 Zbl 1036.53053
[Tian and Zhu 2007] G. Tian and X. Zhu, "Convergence of Kähler-Ricci flow", J. Amer. Math. Soc. 20:3 (2007), 675-699. MR 2007k:53107 Zbl 1185.53078
[Tian and Zhu 2008] G. Tian and X. Zhu, "Perelman's W-functional and stability of Kähler-Ricci flow", preprint, 2008. arXiv 0801.3504
[Tosatti 2010] V. Tosatti, "Kähler-Ricci flow on stable Fano manifolds", J. Reine Angew. Math. 640 (2010), 67-84. MR 2011e:32030 Zbl 1189.53069
[Yau 1978] S. T. Yau, "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I", Comm. Pure Appl. Math. 31:3 (1978), 339-411. MR 81d:53045 Zbl 0369.53059
[Zhu 2009] X. Zhu, "Stability on Kähler-Ricci flow, I", preprint, 2009. arXiv 0908.1488
Received May 23, 2010. Revised November 18, 2010.

Kai Zheng
Academy of Mathematics and Systems Science

Chinese Academy of Sciences

BEIJIng, 100190
China
kaizheng@amss.ac.cn

THE SECOND VARIATION OF THE RICCI EXPANDER ENTROPY

Meng Zhu

Abstract

The critical points of the W_{+}functional introduced by M. Feldman, T. Ilmanen and $\mathrm{L} . \mathrm{Ni}$ are the expanding Ricci solitons, which are special solutions of the Ricci flow. On compact manifolds, expanding solitons coincide with Einstein metrics. In this paper, we compute the first and second variations of the entropy functional of the \mathscr{W}_{+}functional, and briefly discuss the linear stability of compact hyperbolic space forms.

1. Introduction

Perelman [2002] introduced two important functionals, denoted by \mathscr{F} and \mathscr{W}. The corresponding entropy functionals λ and v are monotone along the Ricci flow $\partial g_{i j} / \partial t=-2 R_{i j}$ and are constant precisely on steady and shrinking solitons. H.-D. Cao, R. Hamilton and T. Ilmanen [Cao et al. 2004] presented the second variations of both entropy functionals and studied the linear stabilities of certain closed Einstein manifolds of nonnegative scalar curvature.

To find the corresponding variational structure for the expanding case, M. Feldman, T. Ilmanen and L. Ni [Feldman et al. 2005] introduced the functional W_{+}. Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold, f a smooth function on M, and $\sigma>0$. Define

$$
\begin{aligned}
W_{+}(g, f, \sigma) & =(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\sigma\left(|\nabla f|^{2}+R\right)-f+n\right) d V \\
\mu_{+}(g, \sigma) & =\inf \left\{W_{+}(g, f, \sigma) \mid f \in C^{\infty}(M) \text { with }(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f} d V=1\right\}, \\
v_{+}(g) & =\sup _{\sigma>0} \mu_{+}(g, \sigma)
\end{aligned}
$$

Then v_{+}is nondecreasing along the Ricci flow and constant precisely on expanding solitons.

[^10]In this note, analogous to [Cao et al. 2004], we present the first and second variations of the entropy v_{+}. By computing the first variation of v_{+}, one can see that the critical points are expanding solitons, which are actually negative Einstein manifolds (see [Cao and Zhu 2006], for example). Our main result is this:

Theorem 1.1. Let $\left(M^{n}, g\right)$ be a compact negative Einstein manifold. Let h be a symmetric 2-tensor. Consider the variation of metric $g(s)=g+s h$. Then the second variation of v_{+}is

$$
\left.\frac{\mathrm{d}^{2} v_{+}(g(s))}{\mathrm{d} s^{2}}\right|_{s=0}=\frac{\sigma}{\operatorname{Vol} g} \int_{M}\left\langle N_{+} h, h\right\rangle
$$

where

$$
N_{+} h:=\frac{1}{2} \Delta h+\operatorname{div}^{*} \operatorname{div} h+\frac{1}{2} \nabla^{2} v_{h}+\operatorname{Rm}(h, \cdot)+\frac{g}{2 n \sigma \operatorname{Vol} g} \int_{M} \operatorname{tr} h
$$

here tr is the trace with respect to g and v_{h} is the unique solution of

$$
\Delta v_{h}-\frac{v_{h}}{2 \sigma}=\operatorname{div}(\operatorname{div} h), \quad \int_{M} v_{h}=0
$$

In this case, we may still define the concept of linear stability. We say that an expanding soliton is linearly stable if $N_{+} \leq 0$; otherwise it is linearly unstable. Similar to [Cao et al. 2004], the N_{+}operator is nonpositive definite if and only if the maximal eigenvalue of the Lichnerowicz Laplacian acting on the space of transverse traceless 2-tensors has a certain upper bound. Using the results in [Delay 2002; 2008] or [Lee 2006], one can then see that compact hyperbolic spaces are linearly stable. But unlike the positive Einstein case, it seems hard to find other examples of negative Einstein manifolds which are either linear stable or linear unstable.

2. The first variation of the expander entropy

Recall that in [Perelman 2002], the \mathscr{F} functional is defined by

$$
\mathscr{F}(f, g)=\int_{M}\left(|\nabla f|^{2}+R\right) e^{-f} d V
$$

and its entropy $\lambda(g)$ is

$$
\lambda(g)=\inf \left\{\mathscr{F}(f, g) \mid f \in C^{\infty}(M) \text { with } \int_{M} e^{-f}=1\right\},
$$

where R is the scalar curvature. By [Feldman et al. 2005, Theorem 1.7], we know that $\mu_{+}(g, \sigma)$ is attained by some function f. Moreover, if $\lambda(g)<0$, then $v_{+}(g)$ can be attained by some positive number σ.

Lemma 2.1. If $v_{+}(g)$ is realized by some f and σ, it is necessary that the pair (f, σ) solves the equations

$$
\begin{equation*}
\sigma\left(-2 \Delta f+|\nabla f|^{2}-R\right)+f-n+v_{+}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(4 \pi \sigma)^{-n / 2} \int_{M} f e^{-f} d V=\frac{n}{2}-v_{+} \tag{2}
\end{equation*}
$$

Proof. For fixed $\sigma>0$, suppose that $\mu_{+}(g, \sigma)$ is attained by some function f. Using the Lagrange multiplier method, consider the following functional

$$
\begin{aligned}
& L(g, f, \sigma, \lambda) \\
& =(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\sigma\left(|\nabla f|^{2}+R\right)-f+n\right) d V+\lambda\left((4 \pi \sigma)^{-n / 2} \int_{M} e^{-f} d V-1\right)
\end{aligned}
$$

Denote by δf the variation of f. Then the variation of L is

$$
\begin{aligned}
0= & \delta L \\
= & (4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}(-\delta f)\left(\sigma\left(|\nabla f|^{2}+R\right)-f+n\right) d V \\
& \quad+(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}(2 \sigma \nabla f \nabla(\delta f)-\delta f) d V-(4 \pi \sigma)^{-n / 2} \int_{M} \lambda(\delta f) e^{-f} d V \\
= & (4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}(\delta f)\left(\sigma\left(-2 \Delta f+|\nabla f|^{2}-R\right)\right) d V \\
& \quad+(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}(\delta f)(f-n-1-\lambda) d V
\end{aligned}
$$

Therefore,

$$
\sigma\left(-2 \Delta f+|\nabla f|^{2}-R\right)+f-n-1-\lambda=0
$$

Integrating both sides with respect to the measure $(4 \pi \sigma)^{-n / 2} e^{-f} d V$, we get

$$
-\lambda-1=(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\sigma\left(|\nabla f|^{2}+R\right)-f+n\right) d V=\mu_{+}(g, \sigma)
$$

When σ and f realize $\nu_{+}(g)$, this is just Equation (1).
Now we consider the variations $\delta \sigma$ and δf of both σ and f. We have
(3) $0=(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(-\frac{n}{2 \sigma} \delta \sigma-\delta f\right)\left(\sigma\left(|\nabla f|^{2}+R\right)-f+n\right) d V$

$$
+(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\delta \sigma\left(|\nabla f|^{2}+R\right)+2 \sigma \nabla f \nabla(\delta f)-\delta f\right) d V
$$

and

$$
\begin{equation*}
(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(-\frac{n}{2 \sigma} \delta \sigma-\delta f\right) d V=0 \tag{4}
\end{equation*}
$$

Using (1) and (4), we can write (3) as

$$
\begin{aligned}
0 & =(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\delta \sigma\left(|\nabla f|^{2}+R\right)-\delta f\right) d V \\
& =(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\frac{1}{\sigma} \delta \sigma\left(v_{+}+f-n\right)+\frac{n}{2 \sigma} \delta \sigma\right) d V \\
& =(\delta \sigma) \frac{1}{\sigma}(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(v_{+}+f-\frac{n}{2}\right) d V
\end{aligned}
$$

which gives (2).
Before computing the variations of the v_{+}functional, let's recall some variation formulas for curvatures. By direct computation, we have:

Lemma 2.2. Suppose that h is a symmetric 2-tensor and $g(s)=g+$ sh is a variation of g. Then

$$
\begin{equation*}
\left.\frac{\partial R}{\partial s}\right|_{s=0}=-h_{k l} R_{k l}+\nabla_{p} \nabla_{k} h_{p k}-\Delta \operatorname{tr} h \tag{5}
\end{equation*}
$$

and
(6) $\left.\frac{\partial^{2} R}{\partial s^{2}}\right|_{s=0}=2 h_{k p} h_{p l} R_{k l}-\left.2 h_{k l} \frac{\partial R_{k l}}{\partial s}\right|_{s=0}+\left.g^{k l} \frac{\partial^{2} R_{k l}}{\partial s^{2}}\right|_{s=0}$

$$
\begin{aligned}
= & 2 h_{k p} h_{p l} R_{k l}-h_{k l}\left(2 \nabla_{p} \nabla_{k} h_{p l}-\Delta h_{k l}-\nabla_{k} \nabla_{l} \operatorname{tr} h\right) \\
& -\nabla_{p}\left(h_{p q}\left(2 \nabla_{k} h_{k q}-\nabla_{q} \operatorname{tr} h\right)\right)+\nabla_{k}\left(h_{p q} \nabla_{k} h_{p q}\right) \\
& +\frac{1}{2} \nabla_{p} \operatorname{tr} h\left(2 \nabla_{k} h_{k p}-\nabla_{p} \operatorname{tr} h\right)+\frac{1}{2}\left(\nabla_{k} h_{p q} \nabla_{k} h_{p q}-2 \nabla_{p} h_{k q} \nabla_{q} h_{k p}\right)
\end{aligned}
$$

where ∇ is the Levi-Civita connection of g and $\operatorname{tr} h$ is the trace of h taken with respect to g.

Now we are ready to compute the first variation of $v_{+}(g)$.
Proposition 2.3. Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold with $\lambda(g)<0$. Let h be any symmetric covariant 2-tensor on M, and consider the variation

$$
g(s)=g+s h
$$

Then the first variation of $v_{+}(g(s))$ is

$$
\left.\frac{d v_{+}(g(s))}{d s}\right|_{s=0}=(4 \pi \sigma)^{-n / 2} \int_{M} \sigma e^{-f}\left(-R_{i j}-\nabla_{i} \nabla_{j} f-\frac{1}{2 \sigma} g_{i j}\right) h_{i j} d V
$$

where the smooth function f and $\sigma>0$ realize $\nu_{+}(g)$.

Proof. By taking derivatives directly, we have
(7) $\frac{\partial \nu_{+}}{\partial s}=(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} g^{i j} h_{i j}\right)\left(\sigma\left(|\nabla f|^{2}+R\right)\right) d V$

$$
+(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} g^{i j} h_{i j}\right)(-f+n) d V
$$

$$
+(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f} \frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right) d V
$$

$$
-(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\sigma g^{i p} g^{j q} h_{p q} \nabla_{i} f \nabla_{j} f\right) d V
$$

$$
+(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\sigma\left(2 g^{i j} \nabla_{i} f \nabla_{j} \frac{\partial f}{\partial s}+\frac{\partial R}{\partial s}\right)-\frac{\partial f}{\partial s}\right) d V
$$

Since $(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f} d V=1$, we have

$$
\begin{equation*}
(4 \pi \sigma)^{-n / 2} \int_{M}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} g^{i j} h_{i j}\right) e^{-f} d V=0 . \tag{8}
\end{equation*}
$$

Substituting (1), (2) and (8) in (7), we obtain

$$
\begin{aligned}
& \left.\frac{\partial \nu_{+}(s)}{\partial s}\right|_{s=0} \\
& =(4 \pi \sigma)^{-n / 2} \int_{M}\left(2 \sigma\left(|\nabla f|^{2}-\Delta f\right)+v_{+}(0)\right)\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} g^{i j} h_{i j}\right) e^{-f} d V \\
& \quad+(4 \pi \sigma)^{-n / 2} \int_{M}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)-\frac{\partial f}{\partial s}-\sigma h_{i j} \nabla_{i} f \nabla_{j} f\right) e^{-f} d V \\
& \quad+(4 \pi \sigma)^{-n / 2} \int_{M} \sigma\left(2 \frac{\partial f}{\partial s}\left(|\nabla f|^{2}-\Delta f\right)+\nabla_{i} \nabla_{j} h_{i j}-\Delta \operatorname{tr} h-h_{i j} R_{i j}\right) e^{-f} d V \\
& =(4 \pi \sigma)^{-n / 2} \int_{M}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)-\frac{\partial f}{\partial s}-\sigma\left(h_{i j} \nabla_{i} \nabla_{j} f+h_{i j} R_{i j}\right)\right) e^{-f} d V \\
& =(4 \pi \sigma)^{-n / 2} \int_{M}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)+\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}\right) e^{-f} d V \\
& \quad-(4 \pi \sigma)^{-n / 2} \int_{M} \sigma h_{i j}\left(R_{i j}+\nabla_{i} \nabla_{j} f+\frac{1}{2 \sigma} g_{i j}\right) e^{-f} d V \\
& =(4 \pi \sigma)^{-n / 2} \int_{M} \frac{1}{\sigma} \frac{\partial \sigma}{\partial s}\left(f(0)-\frac{n}{2}+v_{+}(0)-2 \sigma\left(|\nabla f|^{2}-\Delta f\right)\right) e^{-f} d V \\
& \quad-(4 \pi \sigma)^{-n / 2} \int_{M} \sigma h_{i j}\left(R_{i j}+\nabla_{i} \nabla_{j} f+\frac{1}{2 \sigma} g_{i j}\right) e^{-f} d V \\
& =-(4 \pi \sigma)^{-n / 2} \int_{M} \sigma h_{i j}\left(R_{i j}+\nabla_{i} \nabla_{j} f+\frac{1}{2 \sigma} g_{i j}\right) e^{-f} d V .
\end{aligned}
$$

Hence, the first variation of v_{+}is

$$
\left.\frac{d v_{+}(g(s))}{d s}\right|_{s=0}=(4 \pi \sigma)^{-n / 2} \int_{M} \sigma e^{-f}\left(-R_{i j}-\nabla_{i} \nabla_{j} f-\frac{1}{2 \sigma} g_{i j}\right) h_{i j} d V
$$

From the proposition, we can see that a critical point of $v_{+}(g)$ satisfies

$$
\mathrm{Rc}+\nabla^{2} f+\frac{1}{2 \sigma} g=0
$$

which means that (M, g) is a gradient expanding soliton.

3. The second variation

Now we compute the second variation of v_{+}. Since any compact expanding soliton is Einstein (see [Cao and Zhu 2006], for example), f is a constant. After adding a constant to f we may assume that $f=n / 2$.

In the following, as in [Cao et al. 2004], we set $\operatorname{Rm}(h, h)=R_{i j k l} h_{i k} h_{j l}, \operatorname{div} \omega=$ $\nabla_{i} \omega_{i},(\operatorname{div} h)_{i}=\nabla_{j} h_{j i}$, and $\left(\operatorname{div}^{*} \omega\right)_{i j}=-\left(\nabla_{i} \omega_{j}+\nabla_{j} \omega_{i}\right)=-\frac{1}{2} L_{\omega^{\#}} g_{i j}$, where h is a symmetric 2-tensor, ω is a 1-tensor, $\omega^{\#}$ is the dual vector field of ω, and $L_{\omega^{\#}}$ is the Lie derivative.

Proof of Theorem 1.1. Let (M, g) be a compact negative Einstein manifold with $f=n / 2$ and $R_{i j}=-1 /(2 \sigma) g_{i j}$. For any symmetric 2 -tensor h, consider the variation $g(s)=g+s h$. By Proposition 2.3, we know that $\left.\left(d v_{+} / d s\right)\right|_{s=0}=0$.

From (1) and (2), we get

$$
\begin{equation*}
\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}(0)-2 \sigma \Delta \frac{\partial f}{\partial s}(0)-\sigma \frac{\partial R}{\partial s}(0)+\frac{\partial f}{\partial s}(0)=0 \tag{9}
\end{equation*}
$$

and

$$
(4 \pi \sigma)^{-n / 2} \int_{M} e^{-n / 2}\left(\frac{n}{2}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}(0)-\frac{\partial f}{\partial s}(0)+\frac{1}{2} \operatorname{tr} h\right)+\frac{\partial f}{\partial s}(0)\right) d V=0
$$

It follows by (8) that

$$
\begin{equation*}
(4 \pi \sigma)^{-n / 2} \int_{M} \frac{\partial f}{\partial s}(0) e^{-n / 2} d V=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}(0)=\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h d V \tag{11}
\end{equation*}
$$

where $(4 \pi \sigma)^{-n / 2} e^{-n / 2}=\frac{1}{\operatorname{Vol} g}$. Thus

$$
\begin{aligned}
\frac{\mathrm{d} \nu_{+}}{\mathrm{d} s}= & (4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} g^{i j} h_{i j}\right)\left(\sigma\left(|\nabla f|^{2}+R\right)-f+n\right) d V \\
& +(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)-\frac{\partial f}{\partial s}\right) d V \\
& +(4 \pi \sigma)^{-n / 2} \int_{M} \sigma e^{-f}\left(-g^{i p} g^{j q} h_{p q} \nabla_{i} f \nabla_{j} f+2 g^{i j} \nabla_{i} f \nabla_{j} \frac{\partial f}{\partial s}+\frac{\partial R}{\partial s}\right) d V \\
= & (4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} g^{i j} h_{i j}\right)\left(2 \sigma\left(|\nabla f|^{2}-\Delta f\right)+v_{+}\right) d V \\
& +(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)-\frac{\partial f}{\partial s}\right) d V \\
& +(4 \pi \sigma)^{-n / 2} \int_{M} \sigma e^{-f}\left(-g^{i p} g^{j q} h_{p q} \nabla_{i} f \nabla_{j} f+2 g^{i j} \nabla_{i} f \nabla_{j} \frac{\partial f}{\partial s}+\frac{\partial R}{\partial s}\right) d V \\
= & (4 \pi \sigma)^{-n / 2} \int_{M} \sigma e^{-f} g^{i j} h_{i j}\left(|\nabla f|^{2}-\Delta f\right) d V \\
& +(4 \pi \sigma)^{-n / 2} \int_{M} e^{-f}\left(\sigma\left(-g^{i p} g^{j q} h_{p q} \nabla_{i} f \nabla_{j} f+\frac{\partial R}{\partial s}\right)-\frac{1}{2} g^{i j} h_{i j}\right) d V
\end{aligned}
$$

where we note that

$$
\int_{M} 2 \sigma e^{-f} g^{i j} \nabla_{i} f \nabla_{j} \frac{\partial f}{\partial s} d V=\int_{M} 2 \sigma e^{-f} \frac{\partial f}{\partial s}\left(|\nabla f|^{2}-\Delta f\right) d V
$$

and

$$
\begin{aligned}
\int_{M} & e^{-f}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)-\frac{\partial f}{\partial s}\right) d V \\
& =\int_{M} e^{-f}\left(\frac{\partial \sigma}{\partial s}\left(|\nabla f|^{2}+R\right)+\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{1}{2} g^{i j} h_{i j}\right) d V \\
& =\int_{M} e^{-f}\left(\frac{1}{\sigma} \frac{\partial \sigma}{\partial s}\left(\sigma\left(|\nabla f|^{2}+R\right)+\frac{n}{2}\right)-\frac{1}{2} g^{i j} h_{i j}\right) d V \\
& =\int_{M} e^{-f} \frac{1}{\sigma} \frac{\partial \sigma}{\partial s}\left(\sigma\left(2|\nabla f|^{2}-2 \Delta f\right)+f-\frac{n}{2}+v_{+}\right) d V-\int_{M} e^{-f} \cdot \frac{1}{2} g^{i j} h_{i j} d V \\
& =-\int_{M} e^{-f} \cdot \frac{1}{2} g^{i j} h_{i j} d V
\end{aligned}
$$

Since $f(0)=\frac{n}{2}$, we have
(12) $\left.\frac{d^{2} v_{+}}{d s^{2}}\right|_{s=0}=-\frac{1}{\operatorname{Vol} g} \int_{M} \sigma \operatorname{tr} h \Delta \frac{\partial f}{\partial s} d V$

$$
\begin{aligned}
& +\frac{1}{\operatorname{Vol} g} \int_{M}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} \operatorname{tr} h\right)\left(\sigma \frac{\partial R}{\partial s}-\frac{1}{2} \operatorname{tr} h\right) d V \\
& +\frac{1}{\operatorname{Vol} g} \int_{M}\left(\frac{\partial \sigma}{\partial s} \frac{\partial R}{\partial s}+\sigma \frac{\partial^{2} R}{\partial s^{2}}+\frac{1}{2}\left|h_{i j}\right|^{2}\right) d V
\end{aligned}
$$

In the following, all quantities are evaluated at $s=0$. First, we have
(13) $\frac{1}{\operatorname{Vol} g} \int_{M} \sigma \frac{\partial^{2} R}{\partial s^{2}} d V$

$$
\begin{aligned}
= & \frac{\sigma}{\operatorname{Vol} g} \int_{M}\left(-\frac{1}{\sigma}\left|h_{i j}\right|^{2}-h_{k l}\left(2 \nabla_{p} \nabla_{k} h_{p l}-\Delta h_{k l}-\nabla_{k} \nabla_{l} \operatorname{tr} h\right)\right. \\
& -\nabla_{p}\left(h_{p q}\left(2 \nabla_{k} h_{k q}-\nabla_{q} \operatorname{tr} h\right)\right)+\nabla_{k}\left(h_{p q} \nabla_{k} h_{p q}\right)
\end{aligned}
$$

$$
\left.+\frac{1}{2} \nabla_{p} \operatorname{tr} h\left(2 \nabla_{k} h_{k p}-\nabla_{p} \operatorname{tr} h\right)+\frac{1}{2}\left(\nabla_{k} h_{p q} \nabla_{k} h_{p q}-2 \nabla_{p} h_{k q} \nabla_{q} h_{k p}\right)\right) d V
$$

$$
=\frac{\sigma}{\operatorname{Vol} g} \int_{M}\left(-\frac{1}{\sigma}\left|h_{i j}\right|^{2}-h_{k l} \nabla_{p} \nabla_{k} h_{p l}-\frac{1}{2}|\nabla h|^{2}-\frac{1}{2}|\nabla \operatorname{tr} h|^{2}\right) d V
$$

$$
=\frac{\sigma}{\operatorname{Vol} g} \int_{M}\left(-\frac{1}{\sigma}\left|h_{i j}\right|^{2}-\frac{1}{2}|\nabla h|^{2}-\frac{1}{2}|\nabla \operatorname{tr} h|^{2}\right) d V
$$

$$
-\frac{\sigma}{\operatorname{Vol} g} \int_{M} h_{k l}\left(\nabla_{k} \nabla_{p} h_{p l}+R_{k q} h_{q l}+R_{p k q l} h_{p q}\right) d V
$$

$$
=-\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2}\left|h_{i j}\right|^{2} d V
$$

$$
+\frac{\sigma}{\operatorname{Vol} g} \int_{M}\left(|\operatorname{div} h|^{2}+\operatorname{Rm}(h, h)-\frac{1}{2}|\nabla h|^{2}-\frac{1}{2}|\nabla \operatorname{tr} h|^{2}\right) d V
$$

Moreover,

$$
\begin{align*}
\frac{1}{\operatorname{Vol} g} \int_{M} \frac{\partial \sigma}{\partial s} \frac{\partial R}{\partial s} d V & =\frac{\sigma}{n} \frac{1}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h d V \frac{1}{\operatorname{Vol} g} \int_{M} \frac{\partial R}{\partial s} d V \tag{14}\\
& =\frac{1}{2 n}\left(\frac{1}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h d V\right)^{2}
\end{align*}
$$

Let v_{h} be the solution to the equation

$$
\Delta v_{h}-\frac{v_{h}}{2 \sigma}=\operatorname{div} \operatorname{div} h=\nabla_{p} \nabla_{q} h_{p q}, \quad \int_{M} v_{h}=0
$$

Then

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol} g} \int_{M}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} \operatorname{tr} h\right) \sigma \frac{\partial R}{\partial s} d V \\
& =\frac{\sigma}{\operatorname{Vol} g} \int_{M}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} \operatorname{tr} h\right)\left(\Delta v_{h}-\frac{v_{h}}{2 \sigma}+\frac{1}{2 \sigma} \operatorname{tr} h-\Delta \operatorname{tr} h\right) d V \\
& =-\left(\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h d V\right)^{2}+\frac{\sigma}{\operatorname{Vol} g} \int_{M} v_{h}\left(-\Delta \frac{\partial f}{\partial s}+\frac{1}{2 \sigma} \frac{\partial f}{\partial s}\right) d V \\
& +\frac{\sigma}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h\left(\Delta \frac{\partial f}{\partial s}-\frac{1}{2 \sigma} \frac{\partial f}{\partial s}\right) d V \\
& +\frac{\sigma}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h\left(\Delta v_{h}-\frac{v_{h}}{2 \sigma}+\frac{1}{2 \sigma} \operatorname{tr} h-\Delta \operatorname{tr} h\right) d V,
\end{aligned}
$$

where we have used (11) to derive the first term in the last equality. Meanwhile,

$$
\begin{aligned}
-\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}\right. & \left.+\frac{1}{2} \operatorname{tr} h\right) \\
& =-\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h\left(-2 \sigma \Delta \frac{\partial f}{\partial s}-\sigma \frac{\partial R}{\partial s}+\frac{1}{2} \operatorname{tr} h\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol} g} \int_{M}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} \operatorname{tr} h\right)\left(\sigma \frac{\partial R}{\partial s}-\frac{1}{2} \operatorname{tr} h\right) d V \\
&=\frac{1}{\operatorname{Vol} g} \int_{M} \sigma \operatorname{tr} h \Delta \frac{\partial f}{\partial s} d V-\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{4}(\operatorname{tr} h)^{2} d V \\
&-\left(\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h d V\right)^{2}+\frac{\sigma}{\operatorname{Vol} g} \int_{M} v_{h}\left(-\Delta \frac{\partial f}{\partial s}+\frac{1}{2 \sigma} \frac{\partial f}{\partial s}\right) d V \\
&+\frac{\sigma}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h\left(\Delta \frac{\partial f}{\partial s}-\frac{1}{2 \sigma} \frac{\partial f}{\partial s}\right) d V \\
&+\frac{\sigma}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h\left(\Delta v_{h}-\frac{v_{h}}{2 \sigma}+\frac{1}{2 \sigma} \operatorname{tr} h-\Delta \operatorname{tr} h\right) d V
\end{aligned}
$$

Now since

$$
\begin{aligned}
\frac{\sigma}{\operatorname{Vol} g} \int_{M} v_{h}\left(-\Delta \frac{\partial f}{\partial s}+\frac{1}{2 \sigma}\right. & \left.\frac{\partial f}{\partial s}\right) d V=\frac{\sigma}{\operatorname{Vol} g} \int_{M} v_{h}\left(-\frac{n}{4 \sigma^{2}} \frac{\partial \sigma}{\partial s}+\frac{1}{2} \frac{\partial R}{\partial s}\right) d V \\
& =\frac{\sigma}{\operatorname{Vol} g} \int_{M} \frac{1}{2} v_{h}\left(\Delta v_{h}-\frac{v_{h}}{2 \sigma}+\frac{1}{2 \sigma} \operatorname{tr} h-\Delta \operatorname{tr} h\right) d V \\
& =\frac{\sigma}{\operatorname{Vol} g} \int_{M}-\frac{1}{2}\left|\nabla v_{h}\right|^{2}-\frac{v_{h}^{2}}{4 \sigma}+\frac{v_{h}}{4 \sigma} \operatorname{tr} h-\frac{1}{2} v_{h} \Delta \operatorname{tr} h d V
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\sigma}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h\left(\Delta \frac{\partial f}{\partial s}-\frac{1}{2 \sigma} \frac{\partial f}{\partial s}\right) d V \\
& \quad=\frac{\sigma}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h\left(\frac{n}{4 \sigma^{2}} \frac{\partial \sigma}{\partial s}-\frac{1}{2} \frac{\partial R}{\partial s}\right) d V \\
& \quad=\left(\frac{1}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h d V\right)^{2}-\frac{\sigma}{\operatorname{Vol} g} \int_{M} \frac{1}{2} \operatorname{tr} h\left(\Delta v_{h}-\frac{v_{h}}{2 \sigma}+\frac{1}{2 \sigma} \operatorname{tr} h-\Delta \operatorname{tr} h\right) d V
\end{aligned}
$$

we have

$$
\begin{align*}
& \frac{1}{\operatorname{Vol} g} \int_{M}\left(-\frac{n}{2 \sigma} \frac{\partial \sigma}{\partial s}-\frac{\partial f}{\partial s}+\frac{1}{2} \operatorname{tr} h\right)\left(\sigma \frac{\partial R}{\partial s}-\frac{1}{2} \operatorname{tr} h\right) d V \tag{15}\\
& =\frac{1}{\operatorname{Vol} g} \int_{M} \sigma \operatorname{tr} h \Delta \frac{\partial f}{\partial s} d V+\frac{\sigma}{\operatorname{Vol} g} \int_{M}\left(-\frac{1}{2}\left|\nabla v_{h}\right|^{2}-\frac{v_{h}^{2}}{4 \sigma}+\frac{1}{2}|\nabla \operatorname{tr} h|^{2}\right) d V
\end{align*}
$$

Substituting (13), (14) and (15) in (12), we get

$$
\begin{aligned}
\left.\frac{\mathrm{d}^{2} v_{+}}{\mathrm{d} s^{2}}\right|_{s=0}= & \frac{\sigma}{\operatorname{Vol} g}\left(\int_{M}\left(|\operatorname{div} h|^{2}+\operatorname{Rm}(h, h)-\frac{1}{2}|\nabla h|^{2}-\frac{1}{2}\left|\nabla v_{h}\right|^{2}-\frac{v_{h}^{2}}{4 \sigma}\right) d V\right) \\
& +\frac{1}{2 n}\left(\frac{1}{\operatorname{Vol} g} \int_{M} \operatorname{tr} h d V\right)^{2} \\
= & \frac{\sigma}{\operatorname{Vol} g} \int_{M}\left\langle N_{+} h, h\right\rangle .
\end{aligned}
$$

As a simple application, we discuss briefly the linear stability of negative Einstein manifolds. In analogy with [Cao et al. 2004], we say that a negative Einstein manifold is linearly stable if $N_{+} \leq 0$, otherwise it is linearly unstable. As in that paper, decompose the space of symmetric 2-tensors as

$$
\text { ker } \operatorname{div} \oplus \operatorname{im} \operatorname{div}^{*},
$$

and further decompose ker div as
$(\text { ker div })_{0} \oplus \mathbb{R} g$,
where (ker div) $)_{0}$ is the space of divergence free 2-tensors h with $\int_{M} \operatorname{tr} h=0$. It is easy to see that N_{+}vanishes on im div*, and on (ker div) ${ }_{0}$

$$
N_{+}=\frac{1}{2}\left(\Delta_{L}-\frac{1}{\sigma}\right)
$$

where $\Delta_{L}=\Delta+2 \operatorname{Rm}(\cdot, \cdot)-2 \mathrm{Rc}$ is the Lichnerowicz Laplacian on symmetric 2-tensors.

Moreover, we may write (ker div) ${ }_{0}$ as

$$
(\text { ker div })_{0}=S_{0} \oplus S_{1},
$$

where S_{0} is the subspace of trace free 2-tensors and

$$
S_{1}=\left\{h \in(\operatorname{ker~div})_{0} \left\lvert\, h_{i j}=\left(-\frac{1}{2 \sigma} u+\Delta u\right) g_{i j}-\nabla_{i} \nabla_{j} u\right., u \in C^{\infty}(M) \text { and } \int_{M} u=0\right\}
$$

see [Buzzanca 1984], for example.
Define

$$
T u:=\left(-\frac{1}{2 \sigma} u+\Delta u\right) g_{i j}-\nabla_{i} \nabla_{j} u .
$$

Since $\Delta_{L}(T u)=T(\Delta u)$ for all smooth functions u and $\operatorname{ker} T=\{0\}$, we can see that the Lichnerowicz Laplacian and the Laplacian on function space have the same eigenvalues. Thus N_{+}is always negative on S_{1}. Therefore, to study the linear stability of negative Einstein manifolds, it remains to look at the behavior of Δ_{L} acting on S_{0} which is the space of transverse traceless 2-tensors.

Example. Suppose that M is an n dimensional compact real hyperbolic space with $n \geq 3$. By [Delay 2002] or [Lee 2006], the biggest eigenvalue of Δ_{L} on trace free symmetric 2-tensors on real hyperbolic space is $-\frac{1}{4}(n-1)(n-9)$. Since on M we have $\operatorname{Rc}=-(n-1) g$, we obtain

$$
\frac{1}{\sigma}=2(n-1)
$$

Thus the biggest eigenvalue of N_{+}on S_{0} is not greater than $-\frac{1}{8}(n-1)^{2}$. This implies that M is linearly stable for $n \geq 3$.

Remarks. (1) When $n=3$, D. Knopf and A. Young [2009] proved that closed 3folds with constant negative curvature are geometrically stable under certain normalized Ricci flow. R. Ye [1993] had obtained a more powerful stability result earlier.
(2) For $n=2$, R. Hamilton [1988] proved that when the average scalar curvature is negative, the solution of the normalized Ricci flow with any initial metric converges to a metric with constant negative curvature. In particular, they are linearly stable. On the other hand, in [Delay 2008] we see that the biggest eigenvalue of the Lichnerowicz Laplacian on trace free symmetric 2-tensors is 2 . Thus N_{+}is nonpositive definite on (ker div) $)_{0}$, which also implies the linear stability.
(3) For the noncompact case, V. Suneeta [2009] proved certain geometric stability of \mathbb{H}^{n} using different methods.

Acknowledgement

The author thanks his advisor, Professor Huai-Dong Cao, for encouragement and suggestions.

References

[Buzzanca 1984] C. Buzzanca, "The Lichnerowicz Laplacian on tensors", Boll. Un. Mat. Ital. B (6) 3:2 (1984), 531-541. MR 86c:58132
[Cao and Zhu 2006] H.-D. Cao and X.-P. Zhu, "A complete proof of the Poincaré and geometrization conjectures: application of the Hamilton-Perelman theory of the Ricci flow", Asian J. Math. 10:2 (2006), 165-492. MR 2008d:53090 Zbl 1200.53057
[Cao et al. 2004] H.-D. Cao, R. Hamilton, and T. Ilmanen, "Gaussian densities and stability for some Ricci solitons", preprint, 2004. arXiv math/0404165
[Delay 2002] E. Delay, "Essential spectrum of the Lichnerowicz Laplacian on two tensors on asymptotically hyperbolic manifolds", J. Geom. Phys. 43:1 (2002), 33-44. MR 2003i:58055 Zbl 1146. 58301
[Delay 2008] E. Delay, "Spectrum of the Lichnerowicz Laplacian on asymptotically hyperbolic surfaces", Math. Phys. Anal. Geom. 11:3-4 (2008), 365-379. MR 2010e:58031 Zbl 1178.35276
[Feldman et al. 2005] M. Feldman, T. Ilmanen, and L. Ni, "Entropy and reduced distance for Ricci expanders", J. Geom. Anal. 15:1 (2005), 49-62. MR 2006b:53091 Zbl 1071.53040
[Hamilton 1988] R. S. Hamilton, "The Ricci flow on surfaces", pp. 237-262 in Mathematics and general relativity (Santa Cruz, CA, 1986), edited by J. A. Isenberg, Contemp. Math. 71, Amer. Math. Soc., Providence, RI, 1988. MR 89i:53029 Zbl 0663.53031
[Knopf and Young 2009] D. Knopf and A. Young, "Asymptotic stability of the cross curvature flow at a hyperbolic metric", Proc. Amer. Math. Soc. 137:2 (2009), 699-709. MR 2009j:53085 Zbl 1168.53034
[Lee 2006] J. M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183:864, Amer. Math. Soc., Providence, RI, 2006. MR 2007m:53047 Zbl 1112.53002
[Perelman 2002] G. Perelman, "The entropy formula for the Ricci flow and its geometric applications", preprint, 2002. Zbl 1130.53001 arXiv math.DG/0211159
[Suneeta 2009] V. Suneeta, "Investigating the off-shell stability of anti-de Sitter space in string theory", Classical Quantum Gravity 26:3 (2009), 035023. MR 2010c:83119 Zbl 1159.83023
[Ye 1993] R. Ye, "Ricci flow, Einstein metrics and space forms", Trans. Amer. Math. Soc. 338:2 (1993), 871-896. MR 93j:58029 Zbl 0804.53054

Received January 30, 2010.
Meng Zhu
Department of Mathematics
Lehigh University
Bethlehem, PA 18015
United States
mez206@lehigh.edu

CONTENTS

Volume 251, no. 1 and no. 2
Patrick Delorme and Vincent Sécherre: An analogue of the Cartan decomposition for p-adic symmetric spaces of split p-adic reductive groups 1
Raúl Felipe: Unital quadratic quasi-Jordan algebras 23
Abigail Folha and Sofia Melo: The Dirichlet problem for constant mean curvature graphs in $\mathbb{H} \times \mathbb{R}$ over unbounded domains 37
Buma L. Fridman and Daowei Ma: Osgood-Hartogs-type properties of power series and smooth functions 67
Bin Guo, Zheng-Chao Han and Haizhong Li: Two Kazdan-Warner-type identities for the renormalized volume coefficients and the Gauss-Bonnet curvatures of a Riemannian metric 257
Zheng-Chao Han with Bin Guo and Haizhong Li 257
Robin Hartshorne and Enrico Schlesinger: Gonality of a general ACM curve in \mathbb{P}^{3} 269
Rung-Tzung Huang: Twisted Cappell-Miller holomorphic and analytic torsions 81
Saïd Ilias and Ola Makhoul: Universal inequalities for the eigenvalues of the biharmonic operator on submanifolds 315
Shin-Yao Jow: Multigraded Fujita approximation 331
Thilo Kuessner: Generalizations of Agol's inequality and nonexistence of tight laminations 109
Haizhong Li with Bin Guo and Zheng-Chao Han 257
Ping Li: Chern numbers and the indices of some elliptic differential operators 173
Qi-Rui Li and Weimin Sheng: Some Dirichlet problems arising from conformal geometry 337
Daowei Ma with Buma L. Fridman 67
Ola Makhoul with Saïd Ilias 315
Katsuhiko Matsuzaki: Polycyclic quasiconformal mapping class subgroups 361
Volodymyr Mazorchuk and Catharina Stroppel: Blocks of the category of cuspidal $\mathfrak{s p}_{2 n}$-modules 183
Sofia Melo with Abigail Folha 37
Ali Mohammadian: On zero-divisor graphs of Boolean rings 375
Sung-ho Park: A constant mean curvature annulus tangent to two identical spheres is Delauney 197
Victoria Powers: Rational certificates of positivity on compact semialgebraic sets 385
Alistair Savage and Peter Tingley: Quiver grassmannians, quiver varieties and the preprojective algebra 393
Martin Schechter: Nonautonomous second order Hamiltonian systems 431
Enrico Schlesinger with Robin Hartshorne 269
Vincent Sécherre with Patrick Delorme 1
Weimin Sheng with Qi-Rui Li 337
Catharina Stroppel with Volodymyr Mazorchuk 183
Sheng-Li Tan, Stephen S.-T. Yau and Fei Ye: A note on the topology of the complements of fiber-type line arrangements in $\mathbb{C P}{ }^{2}$ 207
Peter Tingley with Alistair Savage 393
Akira Ushijima: Generic fundamental polygons for Fuchsian groups 453
Qiaoling Wang and Changyu Xia: Inequalities for the Navier and Dirichlet eigenvalues of elliptic operators 219
XueCheng Wang: A Beurling-Hörmander theorem associated with the Riemann-Liouville operator 239
Changyu Xia with Qiaoling Wang 219
Stephen S.-T. Yau with Sheng-Li Tan and Fei Ye 207
Fei Ye with Sheng-Li Tan and Stephen S.-T. Yau 207
Kai Zheng: Stability of the Kähler-Ricci flow in the space of Kähler metrics 469
Meng Zhu: The second variation of the Ricci expander entropy 499

Guidelines for Authors

Authors may submit manuscripts at pjm.math.berkeley.edu/about/journal/submissions.html and choose an editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration for publication elsewhere. Instructions on manuscript preparation are provided below. For further information, visit the web address above or write to pacific@math.berkeley.edu or to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095-1555. Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or less in English must be included. The abstract should be self-contained and not make any reference to the bibliography. Also required are keywords and subject classification for the article, and, for each author, postal address, affiliation (if appropriate) and email address if available. A home-page URL is optional.

Authors are encouraged to use $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, but papers in other varieties of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and exceptionally in other formats, are acceptable. At submission time only a PDF file is required; follow the instructions at the web address above. Carefully preserve all relevant files, such as ${ }^{\mathrm{LT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ sources and individual files for each figure; you will be asked to submit them upon acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All references in the bibliography should be cited in the text. Use of BibTEX is preferred but not required. Any bibliographical citation style may be used but tags will be converted to the house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality. Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output. Figures containing bitmaps should be generated at the highest possible resolution. If there is doubt whether a particular figure is in an acceptable format, the authors should check with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying no more than three lines of vertical space can be kept in the text ("the curve looks like this:"). It is acceptable to submit a manuscript will all figures at the end, if their placement is specified in the text by means of comments such as "Place Figure 1 here". The same considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal's preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author) at a website in PDF format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may cause publication to be postponed.

PACIFIC JOURNAL OF MATHEMATICS

Volume 251 No. $2 \quad$ June 2011
Two Kazdan-Warner-type identities for the renormalized volume coefficients 257and the Gauss-Bonnet curvatures of a Riemannian metricBin Guo, Zheng-Chao Han and Haizhong Li
Gonality of a general ACM curve in P^{3} 269
Robin Hartshorne and Enrico Schlesinger
Universal inequalities for the eigenvalues of the biharmonic operator on 315 submanifoldsSaïd Ilias and Ola Makhoul
Multigraded Fujita approximation 331
Shin-Yao Jow
Some Dirichlet problems arising from conformal geometry 337
Qi-Rui Li and Weimin Sheng
Polycyclic quasiconformal mapping class subgroups 361
Katsuhiko Matsuzaki
On zero-divisor graphs of Boolean rings 375
Ali Mohammadian
Rational certificates of positivity on compact semialgebraic sets 385
Victoria Powers
Quiver grassmannians, quiver varieties and the preprojective algebra 393
Alistair Savage and Peter Tingley
Nonautonomous second order Hamiltonian systems 431
Martin Schechter
Generic fundamental polygons for Fuchsian groups 453
AKIRA UshiJima
Stability of the Kähler-Ricci flow in the space of Kähler metrics 469
Kai Zheng
The second variation of the Ricci expander entropy 499
Meng Zhu

[^0]: Haizhong Li is supported by NSFC grant number 10971110.
 MSC2000: primary 53C20; secondary 53A30.
 Keywords: renormalized volume coefficients, $v^{(2 k)}$ curvature, conformal transformation, locally conformally flat, σ_{k} curvature, Gauss-Bonnet curvatures, Kazdan-Warner.

[^1]: Hartshorne was partially supported by Gnsaga - Programma Professori visitatori. Schlesinger was partially supported by MIUR PRIN 2005 Spazi di moduli e teoria di Lie and PRIN 2007: Moduli, strutture geometriche e loro applicazioni.
 MSC2000: 14H50, 14H51.
 Keywords: gonality, Clifford index, ACM space curves, multisecant lines.

[^2]: This work was partially supported by the Agence Nationale de la Recherche through the FOG project (ANR-07-BLAN-0251-01).
 MSC2000: 35P15, 58A10, 58C40, 58J50.
 Keywords: eigenvalue, biharmonic operator, universal inequality, submanifold, eigenmap.

[^3]: MSC2000: 14C20.
 Keywords: Fujita approximation, multigraded linear series, Okounkov body.

[^4]: This research was in part supported by a grant from IPM.
 MSC2000: 05C25, 06E20, 16P10.
 Keywords: Boolean ring, reduced ring, zero-divisor graph.

[^5]: MSC2010: primary 11E25, 12D15, 13J30, 14P10; secondary 14Q20.
 Keywords: rational sums of squares, certificates of positivity, Schmüdgen's theorem, Putinar's theorem.

[^6]: Savage's research was supported by the Natural Sciences and Engineering Research Council of Canada. Tingley was supported by Australian Research Council grant DP0879951 and NSF grant DMS-0902649.
 MSC2010: primary 16G20; secondary 17B10.
 Keywords: quiver, preprojective algebra, quiver grassmannian, quiver variety, Kac-Moody algebra,
 Demazure module.

[^7]: MSC2000: 35J20, 35J25, 47J30, 49J40, 58E05.
 Keywords: Hamiltonian, second order, nonautonomous, critical point, linking, dynamical system, periodic solution.

[^8]: This work was supported by a Grant-in-Aid for Young Scientists (B) 21740047, Japan.
 MSC2000: primary 20H10; secondary 57M60.
 Keywords: Fuchsian group, fundamental polygon.

[^9]: MSC2000: primary 32Q20, 53C25; secondary 53C55, 58E11.
 Keywords: Kähler-Ricci flow, space of Kähler metrics, stability.

[^10]: Research is partially supported by NSF grant DMS-0354621.
 MSC2000: 53C21, 53C25, 53C44, 58J60.
 Keywords: entropy functional, v_{+}functional, \mathscr{W}_{+}functional, linear stability, linear variation, negative Einstein manifold, second variation.

