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We study the problem of finding complete conformal metrics determined by
some symmetric function of the modified Schouten tensor on compact man-
ifolds with boundary; which reduces to a Dirichlet problem. We prove the
existence of the solution under some suitable conditions. In particular, we
prove that every smooth compact n-dimensional manifold with boundary,
with n ≥ 3, admits a complete Riemannian metric g whose Ricci curvature
Ricg and scalar curvature Rg satisfy

det(Ricg − Rg g)= const.

This result generalizes Aviles and McOwen’s in the scalar curvature case.

1. Introduction

Let (Mn, g), for n≥ 3, be a compact, n-dimensional smooth Riemannian manifold
with smooth boundary ∂M . Let M = M \∂M be the interior of M , and denote the
Ricci tensor and the scalar curvature by Ric and R (or Ricg and Rg to emphasize the
metric), respectively. In [2003], Gursky and Viaclovsky introduced the modified
Schouten tensor

Aτg :=
1

n−2

(
Ricg −

τ

2(n−1)
Rgg

)
,

where τ ∈ R. We are interested in deforming the metric in the conformal class [g]
of a fixed back ground metric g to certain complete metric ḡ satisfying

det(ḡ−1 Aτḡ)= const in M.

More generally, let 0+ be an open convex cone in Rn with vertex at the origin
satisfying 0+n ⊂ 0

+
⊂ 0+1 , where

0+k = {κ = (κ1, . . . , κn) ∈ Rn
| σ j (κ) > 0, 1≤ j ≤ k},
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and
σk(κ)=

∑
i1<···<ik

κi1 · · · κik .

Let F : Rn
→ R be a smooth symmetric function that satisfies some structure

conditions in 0+, to be listed later. We ask, Does there exist a complete metric ḡ
in the conformal class [g] such that

(1-1) F(ḡ−1 Aτḡ)= f (x) in M

for some given smooth function f ∈ C∞(M)? In this paper, we give a partial
answer in the case τ > n− 1. We remark that, if F = σ1, then (1-1) becomes

(2− τ)n− 2
2(n− 1)(n− 2)

Rḡ = f (x).

In the case τ > n− 1 and f (x) is positive, some results have appeared in [Aviles
and McOwen 1988].

To find a complete conformal metric satisfying (1-1), we need to solve the
Dirichlet problem for (1-1) with larger and larger boundary data. We first write this
curvature equation as a partial differential equation. Recall the following formula
for the transformation of Aτ under a conformal change of metric ḡ = e2ug:

(1-2) Aτḡ =
τ−1
n−2

(1u)g−∇2u+ du⊗ du+ τ−2
2
|∇u|2g+ Aτg.

From (1-2) we may write (1-1) as

F
(
τ−1
n−2

(1u)g−∇2u+ du⊗ du+ τ−2
2
|∇u|2g+ Aτg

)
= f (x)e2u .

In this paper, we study a more general equation. Let h(x, z) : Mn
×R be some

smooth positive function. Let’s consider

(1-3) F(λ(1u)g−∇2u+ a(x)du⊗ du+ b(x)|∇u|2g+ B)= h(x, u),

where λ > 1, B is a symmetric 2-tensor, and a(x) and b(x) are smooth functions
on M . Suppose F is homogeneous of degree one, F = 0 on ∂0+, and F satisfies
the following in 0+:

(C1) F is positive;

(C2) F is concave (that is, ∂2 F
∂κi∂κ j

is negative semidefinite);

(C3) F is monotone (that is, ∂F
∂κi

is positive).

For convenience, we define

W [u] := ∇2
confu+ B,
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and
∇

2
confu = λ(1u)g−∇2u+ adu⊗ du+ b|∇u|2g

in the sequel. We call u is admissible if g−1W [u] ∈ 0+.

Theorem 1.1. For n ≥ 3, let (Mn, g) be a smooth, compact Riemannian manifold
with boundary ∂M. If

(1) B ∈ 0+;

(2) h > 0 on M × R, ∂zh(x, z) > 0 on M × R, limz→+∞ h(x, z)→ +∞ and
limz→−∞ h(x, z)→ 0 in M ×R; and

(3) a(x) is positive on M and λa(x)+ b(x) is nonnegative in M ,

then there exists a unique admissible function u ∈ C∞(M) solving the Dirichlet
problem

(1-4)

{
F(W [u])= h(x, u) in M,

u = ϕ on ∂M,

where ϕ is a smooth function defined on a neighborhood of ∂M.

We may apply Theorem 1.1 to the elementary symmetric functions and their
quotients (σk/σl)

1/(k−l) on 0+k , with 0≤ l < k ≤ n and σ0 = 1:

Corollary 1.2. For n ≥ 3, let (Mn, g) be a smooth, compact Riemannian manifold
with boundary ∂M. Let f ∈ C∞(M), let f > 0, and let S be a Riemannian metric
on ∂M that is conformal to g|∂M . If Aτg ∈ 0

+

k and τ > n − 1, then there exists a
smooth metric ĝ ∈ [g] on M satisfying(σk

σl

)1/(k−l)
(Aτĝ)= f in M and ĝ|∂M = S,

where 0≤ l < k ≤ n.

Recently Gursky, Streets and Warren [2011] proved that any Riemannian man-
ifold with boundary admits a negative Ricci curvature metric; see also Lohkamp
[1994] and Guan [2008]. Once Ricg<0, we have A2(n−1)

g =
1

n−2(Ricg −Rgg)∈0+k .
Therefore:

Corollary 1.3. For n ≥ 3, every smooth compact n-dimensional manifold with
boundary admits a Riemannian metric g with its Ricci tensor Ric and scalar cur-
vature R satisfying

σk(g−1(Ric−Rg))= const> 0,

where 1≤ k ≤ n. In the case k = n, we have

det(Ric−Rg)= const> 0.
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By solving the infinite boundary data Dirichlet problem, we can produce com-
plete metrics with constant σk-Aτg curvature, where τ > n− 1.

Theorem 1.4. For n ≥ 3, let (Mn, g) be a smooth, compact Riemannian manifold
with boundary ∂M. Choose any smooth positive function f ∈ C∞(M). If B ∈ 0+,
a(x) is positive on M , and λa(x)+ b(x) is nonnegative in M , then there exists an
admissible solution u ∈ C∞(M) to the equation

(1-5)

{
F(W [u])= f (x)e2u in M,

u =+∞ on ∂M.

Moreover, there exist some constants C > 0 and 0< γ ≤ 1, depending on

n, λ, | f |C2(M), |a|L∞(M), |b|L∞(M), |B|g(M)

and the geometry of (M, g), such that

−C − γ log d(x)≤ u(x)≤− log d(x)+C near ∂M,

where d(x) denotes the distance to ∂M with respect to the metric g.

We can combine this with the result of [Gursky et al. 2011]:

Corollary 1.5. For n ≥ 3, every smooth compact n-dimensional manifold with
boundary admits a complete metric g whose Ricci curvature satisfies

σk(g−1(Ric−Rg))= const> 0,

where 1≤ k ≤ n. In the case k = n, we have

det(Ric−Rg)= const> 0.

When we consider the modified Schouten tensor with τ ≤ 0, it seems reasonable
to consider the negative cone, by seeking a complete conformal metric ḡ in the
conformal class [g], such that σk(−ḡ Aτḡ)= const> 0. There are some interesting
results, and we refer the reader to [Guan 2008] and [Gursky et al. 2011]. In the
case τ = 1, A1

g is just the classical Schouten tensor. In [2005], Schnürer fixes the
metric at the boundary and realizes a prescribed value for the product of the eigen-
values of the Schouten tensor in the interior, provided there exists a subsolution.
In [2007], Guan proved the existence of a conformal metric given its value on the
boundary as a prescribed metric conformal to the (induced) background metric,
with a prescribed curvature function of the Schouten tensor.

For compact manifolds without boundary, the problem of finding conformal
metrics in 0+k of constant σk curvature (that is, of finding g ∈ [g0] such that
A1

g ∈ 0
+

k and σk(g−1 A1
g) = const) — known as the higher order k-Yamabe prob-

lem for k ≥ 2 — has attracted enormous interest since the work [Viaclovsky 2000]
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appeared. It can be viewed as a fully nonlinear version of the Yamabe problem,
which was solved by Trudinger [1968], Aubin [1976] and Schoen [1984]. The
solvability of the higher order k-Yamabe problem was shown for k = 2 in [Sheng
et al. 2007] (see also [Chang et al. 2002; Ge and Wang 2006]), for k = n/2 in
[Trudinger and Wang 2010], for k > n/2 in [Gursky and Viaclovsky 2007], and
for locally conformally flat manifolds in [Guan and Wang 2003a; Li and Li 2003;
Sheng et al. 2007]. For results concerning the modified Schouten tensor on closed
manifolds, see [Gursky and Viaclovsky 2003; Li and Sheng 2005] for the case
τ < 1, and [Sheng and Zhang 2007] for the case τ ≥ n− 1.

Our primary task is to solve the Dirichlet problem (1-4). The proof goes via
the continuity method and a priori estimates. This paper is organized as follows.
In Section 2, we show (1-3) is elliptic at any admissible solution. In Section 3,
4 and 5, we establish a priori estimates that are essential in proving the existence
result. We then complete the proof of Theorem 1.1 in Section 6 and solve the
infinite boundary data Dirichlet problem (1-5) in Section 7.

2. Ellipticity

In order to discuss the ellipticity properties of Equation (1-3), we define

A[u] := F(g−1W [u])− h(x, u).

We then suppose that u ∈ C2(M) satisfies A[u] = 0. Let us = u + sψ , then the
linearized operator of A is

Lψ :=
d
ds

A[us]|s=0

= F(g−1W [u])i j (λ(1ψ)gi j −ψi j + 2auiψ j + 2b 〈∇u,∇ψ〉 gi j )

− hz(x, u)ψ.

Defining

(2-1) Qi j
= λ

∑
l

(F ll)δi j
− F i j ,

we have

(2-2) Lψ = Qi jψi j + 2F i j (auiψ j + b 〈∇u,∇ψ〉 gi j )− hz(x, u)ψ.

Proposition 2.1. Equation (1-3) is elliptic at any admissible solution.

Proof. Since F i j is positive definite in 0+, we have

Qi j
≥ (λ− 1)

∑
l

(F ll)δi j > 0.

Therefore, (1-3) is elliptic by (2-2). �
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If ∂zh(x, z) is positive on M ×R, then the coefficient of ψ in the zeroth-order
term of (2-2) is strictly negative, and we have this:

Corollary 2.2. If ∂zh(x, z) is positive on M ×R, then at any admissible solution
of (1-3), the linearized operator L : C2,α(M)→ Cα(M) is invertible.

3. The global C0 estimates

Proposition 3.1. If B ∈ 0+ and limz→+∞ h(x, z)→+∞, limz→−∞ h(x, z)→ 0.
Then there exists some positive constant C0, depending only upon h, B and ϕ, such
that for any C2(M) admissible solution u of (1-4), we have

|u|C0(M) ≤ C0.

Proof. Since M is compact, we may suppose x̃ is a minimum of the function u. If
x̃ ∈ M , we have

h(x̃, u(x̃))= F(λ(1u)(x̃)g−∇2u(x̃)+ B(x̃))

≥min
M

F(B) > 0.

Using limz→−∞ h(x, z)→ 0, we get the lower bound of u. Otherwise x̃ ∈ ∂M , we
get u ≥min∂M ϕ.

The upper bound of u follows by considering a maximum of the function u and
using the fact that limz→+∞ h(x, z)→+∞. �

4. Gradient estimates

We first establish the interior gradient estimates.

Lemma 4.1. Suppose B ∈0+ and λa(x)+b(x) is nonnegative in M. If u ∈C3(Br )

is an admissible solution of (1-4) in a ball Br ⊂ M , then there is a constant C
depending only on |a|C1(M), |b|C1(M), maxM×[−C0,C0]|h|C1 , |g|C2(M), λ, |B|C1(M)
and |u|C0(Br ), such that

sup
Br/2

|∇u| ≤ C.

Proof. Consider the auxiliary function

H(x)= ζ(x)veφ(u),

where ζ(x) ∈ C∞0 (Br ) is a cutoff function to be chosen later, v = (1+ 1
2 |∇u|2g),

φ : R−→R is a function of the form φ(s) = α(β + s)p, and |s| ≤ |u|C0(Br ). The
constants α, β and p depend only on |u|C0(Br ) and |a|L∞ , such that the function φ(s)
satisfies φ′(s) > 0 and φ′′(s)−φ′2(s)− |a|L∞φ′(s)≥ ε1 > 0 for some constant ε1

depending on |u|C0(Br ) and |a|L∞ . It is proved in [Gursky and Viaclovsky 2003] that
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such a function φ always exists in the case |a|L∞ = 1. With a slight modification,
the proof still works for our case.

Suppose the maximum of H occurs at an interior point x̃ ∈ Br . Take a nor-
mal coordinate system (x1, . . . , xn) at x̃ with respect to g such that W [u]i j (x̃) is
diagonal. Then at x̃ we have

0= Hi = (vζi + ζuli ul + vζφ
′ui )eφ(u),

that is,

(4-1) ζuli ul =−v(ζi + ζφ
′ui ),

and

(4-2) 0≥ Hi j = ζ(ululi j + uli ul j + ul(ui ul j + uli u j )φ
′)eφ(u)

+vζ((φ′2+φ′′)ui u j +φ
′ui j )eφ(u)

+ ul(ul jζi + uliζ j )eφ(u)+ v(ζi j +φ
′(uiζ j + ζi u j ))eφ(u).

Recall that Qi j
= λ(

∑
l F ll)δi j

− F i j . Since F i j is positive definite in 0+, one
obtains λ(

∑
l F ll)δi j

≥ Qi j
≥ ε0(

∑
l F ll)δi j > 0, where ε0 = λ− 1. Then (4-2)

implies

0≥ ζQi j (ululi j + uli ul j + 2ui ulul jφ
′)

+ vζQi j ((φ′2+φ′′)ui u j +φ
′ui j )

+ 2ul Qi j uliζ j + vQi j (ζi j + 2φ′uiζ j ).

By the Ricci identity, we have uli j = ui jl+R jli pu p, where Ri jlp is the Riemannian
curvature tensor of (M, g). Then

(4-3) 0≥ ζQi j(ului jl + R jli pu pul + 2ululi u jφ
′
+ v((φ′2+φ′′)ui u j +φ

′ui j )
)

+ 2ul Qi j uliζ j + vQi j (ζi j + 2φ′uiζ j ).

Using h(x, u)= F(W [u])= F i j W [u]i j and hl + hzul = F i j W [u]i j;l , we obtain

(4-4) Qi j ui j =−F i j (aui u j + b|∇u|2gi j + Bi j )+ h(x, u),

and

(4-5) ul Qi j ui jl

=−F i j (alului u j + 2aui u jlul + blul |∇u|2gi j + 2bukulkul gi j + ul Bi jl)

+ hlul + hz|∇u|2.
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Plugging (4-4) and (4-5) into (4-3), we have

0≥ − ζ F i j (alului u j + 2aui u jlul + blul |∇u|2gi j + 2bukulkul gi j + ul Bi jl)

− ζvφ′F i j (aui u j + b|∇u|2gi j + Bi j )

+ ζQi j (R jli pu pul + 2ululi u jφ
′
+ v(φ′2+φ′′)ui u j )

+ ζ(hlul + hz|∇u|2+ vφ′h(x, u))

+ 2ul Qi j uliζ j + 2vφ′Qi j uiζ j + vQi jζi j .

Without loss of generality, we may assume 1
2 |∇u|2 ≤ v ≤ |∇u|2, and using (4-1),

we derive

(4-6)

0≥ ζvφ′F i j (aui u j + b|∇u|2gi j )+ ζv(φ
′′
−φ′2)Qi j ui u j

− ζ F i j (alului u j + blul |∇u|2gi j + ul Bi jl)

− ζvφ′F i j Bi j + ζQi j R jli pu pul

+ ζ(hlul + hz|∇u|2+ vφ′h(x, u))

− 2vφ′Qi jζi u j + 2v(aF i j
+ b(

∑
F ll)δi j )ζi u j

+ vQi jζi j − 2(v/ζ )Qi jζiζ j

≥ ζv(φ′′−φ′2− aφ′)Qi j ui u j

+ ζvφ′(λa(x)+ b(x))(
∑

F ll)|∇u|2−Cζ(
∑

F ll)(v3/2
+ 1)

−Cζ(v+ 1)−C(
∑

F ll)(|∇ζ |v3/2
+ |∇

2ζ |v+ (|∇ζ |2/ζ )v),

in the second inequality, we have used the definition of Qi j to get

aζvφ′F i j ui u j = λaζφ′(
∑

l F ll)|∇u|2− aζvφ′Qi j ui u j .

Now we choose ζ to satisfy, as in [Guan and Wang 2003b],

0≤ ζ ≤ 1, |∇ζ | ≤ b0ζ
1/2, |∇2ζ | ≤ b0

for some constant b0 > 0 and

ζ(x)= 1 in Br/2 and ζ(x)= 0 outside Br .

By virtue of (4-6), we then have

0≥ (
∑

l F ll)(ε0ε1ζv
2
−Cζv3/2

−Cζ )−Cζ(v+ 1)−C(
∑

l F ll)(ζ 1/2v3/2
+ v).

Multiplying by ζ on both sides and using that 0≤ ζ ≤ 1, we have

(4-7) 0≥ (
∑

l F ll)(ε0ε1ζ
2v2
−Cζ 3/2v3/2

−Cζv−C)−C(ζv+ 1).
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Note that Euler formula and concavity of F imply

(
∑

l F ll)(κ)= F(κ)+
∑

i F i i (κ)(1− κi )≥ F(e) > 0 in 0+,

where e = (1, . . . , 1). From (4-7), if ε0ε1ζ
2v2
− Cζ 3/2v3/2

− Cζv − C ≤ 0, we
have (ζv)(x̃)≤ C . Otherwise, we have

0≥ F(e)(ε0ε1ζ
2v2
−Cζ 3/2v3/2

−Cζv−C)−C(ζv+ 1).

We then obtain (ζv)(x̃)≤ C . Hence H ≤ C in Br ; therefore supBr/2
|∇u| ≤ C . �

We now derive a priori bounds for the boundary gradient of solutions to (1-4)
with smooth Dirichlet data ϕ. Without loss of generality, we may assume that
ϕ ∈ C∞(M) in the sequel. The method is to construct barrier functions near ∂M
using the boundary distance function. Let d(x)= distg(x, ∂M) for x ∈ M , and set

Mδ = {x ∈ M | d(x) < δ} for δ > 0.

Since ∂M is smooth and |∇d| = 1 on ∂M , we choose δ > 0 sufficiently small so
that d is smooth and 1

2 ≤ |∇d| ≤ 2 in Mδ.
Consider the locally defined auxiliary function

w− := ϕ+ θ log δ2

d+δ2 ,

where θ is some small positive constant. We may directly check that

(4-8)
{

w−|∂M = ϕ,

ϕ+ θ log(δ/2)≤ w−|{d(x)=δ} ≤ ϕ+ θ log δ.

Since
∇w− =∇ϕ−

θ

d+δ2∇d,

∇
2w− =∇2ϕ−

θ

d+δ2∇
2d + θ

(d+δ2)2
∇d ⊗∇d,

we obtain

W [w−]i j =
(λ+ bθ)θ
(d + δ2)2

|∇d|2gi j +
aθ2

(d + δ2)2
di d j −

θ

(d + δ2)2
di d j

−
θ

d + δ2 (λ1dgi j − di j + a(ϕ j di +ϕi d j )+ 2b 〈∇ϕ,∇d〉 gi j )

+ λ1ϕgi j −ϕi j + aϕiϕ j + b|∇ϕ|2gi j + Bi j

≥
(ε0− (|a|L∞(M)+ |b|L∞(M))θ)θ

(d + δ2)2
|∇d|2gi j −

θ

d+δ2 C ′gi j −C ′′gi j ,

where C ′ and C ′′ are some sufficiently large constants, depending only on |ϕ|C2(M̄),
λ, |a|L∞(M), |b|L∞(M̄), |B|g(M) and the geometric quantities of (M, g), independent
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of δ. Choosing

θ ≤
ε0

2(|a|L∞(M)+ |b|L∞(M))
and δ ≤min

{
1,

ε0

16C ′
,
ε0θ

64C ′′

}
,

by virtue of |∇d|> 1/2 in Mδ, we derive

(4-9)

W [w−]i j ≥
ε0θ

8(d + δ2)δ
gi j −

θ

d + δ2 C ′gi j −C
′′

gi j

=
θ

d+δ2

( ε0

16δ
−C ′

)
gi j −C

′′

gi j +
θε0

16δ(d + δ2)
gi j

≥
θε0

32δ
gi j −C

′′

gi j

=
θε0

64δ
gi j +

( θε0

64δ
−C ′′

)
gi j ≥

θε0

64δ
gi j ,

in the first inequality we have used the fact d + δ2
≤ 2δ, while in the second, we

have used that d + δ2
≤ 2.

To estimate the boundary gradient, we need the following maximum principle.
We first give a standard definition.

Definition 4.2. We say a subsolution w of (1-3) is admissible and

F(W [w])≥ h(x, w) in M.

Changing the direction of the inequality, one gets the definition of the supsolution
of (1-3).

Lemma 4.3. Suppose that w1 and w2 are smooth sub- and supersolutions (respec-
tively) of (1-3) withw1|∂M <w2|∂M . If ∂zh(x, z) is positive in M×R, thenw1≤w2

on M.

Proof. We argue by contradiction. Set w̃=w2−w1. Suppose w̃(x̃)=minM w̃ < 0
for some x̃ ∈ M ; then x̃ must be an interior point. At this point,

∇w2(x̃)=∇w1(x̃) and ∇
2w2(x̃)≥ ∇2w1(x̃).

Consequently

F(W [w2])(x̃)= Qi j
∇

2
i jw2(x̃)+ F i j (a∇iw2∇ jw2+ b|∇w2|

2gi j + Bi j )(x̃)

≥ Qi j
∇

2
i jw1(x̃)+ F i j (a∇iw1∇ jw1+ b|∇w1|

2gi j + Bi j )(x̃)

= F(W [w1])(x̃).

We therefore have

h(x̃, w2(x̃))≥ F(W [w2])(x̃)≥ F(W [w1])(x̃)≥ h(x̃, w1(x̃)),

which contradicts that w1(x̃) > w2(x̃) and ∂zh(x, z) is positive in M ×R. �
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Let x0 be an arbitrary point on ∂M . We pick local coordinates in Mδ so that
∂M is the plane xn = 0, and let {eγ, en}

n−1
γ=1 be the corresponding coordinate vector

fields, where en(x0) denotes the interior normal vector and eγ(x0) the tangential
direction.

Lemma 4.4. Let u be a C2(M) admissible solution of (1-4). If B ∈ 0+ and
∂zh(x, z) is positive in M ×R, then there exists a constant C depending on

C0, λ, |ϕ|C2(M), |a|L∞(M), |b|L∞(M), |B|g(M)

and the geometric quantities of (M, g), such that

∂nu|∂M >−C.

Proof. Recalling (4-8) and (4-9), we have

w−|∂M = ϕ and F(W [w−])= F i j W [w−]i j ≥
ε0θ

64δ
F(e) on Mδ.

We choose δ smaller, so that

F(W [w−])≥ max
M×[minM ϕ,maxM ϕ]

h(x, z)≥ h(x, w−) on Mδ.

Since |u|C0(M) < C0, we can regard w− as a local subsolution of (1-3) on Mδ =

{x | d(x)≤ δ}. Applying Lemma 4.3 to Mδ, we have

u(x)− u(x0)

d(x, x0)
≥
w−(x)−w−(x0)

d(x, x0)
for any x0 ∈ ∂M .

That is, ∂nu|∂M ≥ ∂nw
−
|∂M , and our lemma follows. �

We next prove that the ∂nu have an upper bound; the boundary gradient estimates
follow.

Lemma 4.5. Let u be a C2(M) admissible solution of (1-4). If B ∈ 0+ and
∂zh(x, z) is positive in M ×R, then we have

∂nu(x0) < C for any point x0 ∈ ∂M ,

where C is a positive constant depending on C0, λ, |ϕ|C2(M), |a|L∞(M), |b|L∞(M),
|B|g(M̄) and the geometric quantities of (M, g).

Proof. Since u is admissible and 0+ ⊂ 0+1 , we have

c11u+ c2|∇u|2+ tr B ≥ (nλ− 1)1u+ (a+ nb)|∇u|2+ tr B > 0,

where c1 = nλ − 1 and c2 = |a|L∞ + n|b|L∞ . Therefore the proof reduces to
constructing a local supbarrier function of the equation

c11v+ c2|∇v|
2
+ tr B = 0.
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Let’s consider w+ = ϕ+ θ log((d + δ2/δ2)) in Mδ; then

w+i = θ
di

d + δ2 +ϕi ,

w+i j =−θ
di d j

(d + δ2)2
+ θ

di j

d + δ2 +ϕi j .

We therefore have

c11w
+
+ c2|∇w

+
|
2
+ tr B

=−θ(c1− c2θ)
|∇d|2

(d + δ2)2
+ (c11d + 2c2〈∇d,∇ϕ〉) θ

d+δ2

+ c1(1ϕ)+ c2|∇ϕ|
2
+ tr B.

Now we choose θ < c1/(2c2). Then using |∇d|2 > 1
2 in Mδ, we derive

c11w
+
+ c2|∇w

+
|
2
+ tr B ≤−

c1θ

4(d + δ2)2
+C ′ θ

d+δ2 +C ′′

≤

(
−

c1

4δ(1+ δ)
+C ′

)
θ

d+δ2 +C ′′ in Mδ,

where C ′ and C ′′ are two positive constants depending on

|ϕ|C2(M), λ, |a|L∞(M), |b|L∞(M), |B|g(M)

and the geometric quantities of (M, g), independent of δ. Next we choose

δ <min
{

1,
c1

8(C ′+ 1)
,
θ

2C ′′
}
;

then c11w
+
+ c2|∇w

+
|
2
+ tr B < 0 in Mδ.

Note that {
w+|∂M = ϕ,

w+|{x∈M |d(x)=δ} ≥ ϕ+ θ log(1/δ).

Without loss of generality, we can assume δ is small; then |u|C0(M) < C0 and the
maximum principle imply u ≤ w+ in Mδ. Consequently, for any x0 ∈ ∂M ,

u(x)− u(x0)

d(x, x0)
≤
w+(x)−w+(x0)

d(x, x0)
.

That is, ∂nu|∂M ≤ ∂nw
+
|∂M , and our lemma follows. �

Combining Lemma 4.1, Lemma 4.4 and Lemma 4.5, we obtain this:

Proposition 4.6. Suppose B ∈0+, λa(x)+b(x) is nonnegative in M and ∂zh(x, z)
is positive in M ×R. Then for any C3(M) admissible solution u of (1-4), there is
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a constant C1 depending only on

C0, λ, |ϕ|C2(M), |a|C1(M), |b|C1(M), max
M×[−C0,C0]

|h|C1, |B|C1(M)

and the geometric quantities of (M, g), such that |∇u| ≤ C1 on M.

5. Estimates for the second derivative

As in Section 4, we begin by establishing the interior estimates.

Lemma 5.1. Let B ∈ 0+ and a(x) be positive on M. Let u ∈ C4(Br ) be an
admissible solution of (1-4) in a ball Br ⊂M ; there is a constant C depending only
on

|a|C2(M), |b|C2(M), max
M×[−C0,C0]

|h|C2, |g|C2(M), |B|C2(M), λ, |u|C1(Br )

such that supBr/2
|∇

2u| ≤ C.

Proof. Since 0+ ⊂ 0+1 , we obtain

0< tr W [u] = (nλ− 1)(1u)+ (a(x)+ nb(x))|∇u|2+ tr B.

Consequently 1u ≥ −C . For obtaining the upper bound of 1u, we consider the
auxiliary function

G(x)= ζ(x)(1u+3a(x)|∇u|2)

for some large constant3> 1, depending only on |a|L∞ , |b|L∞ and λ, to be chosen
later; here ζ(x) ∈ C∞0 (Br ) is a cutoff function as in Lemma 4.1.

Suppose G achieves a maximum at an interior point x̃ ∈ M . We take a normal
coordinate system (x1, . . . , xn) with respect to g such that W [u]i j (x̃) is diagonal.
Without loss of generality, we may assume G(x̃) ≥ 1 and x̃ ∈ Br . Then, at x̃ , we
have

0= Gi = (1u+3a|∇u|2)ζi + ζ(ulli +3ai |∇u|2+ 23aululi ),

that is,

(5-1) ζulli =−3aiζ |∇u|2− 23aζululi − (1u+3a|∇u|2)ζi ,

and

(5-2) 0≥Gi j = ζ(ulli j+3ai j |∇u|2+23ul(ai ul j+a j uli )+23a(uli ul j+ululi j ))

+ (ulli +3ai |∇u|2+ 23aululi )ζ j

+ (ull j +3a j |∇u|2+ 23aulul j )ζi + (1u+3a|∇u|2)ζi j .

Recall that Qi j
= λ(

∑
l F ll)δi j

− F i j . Since F i j is positive definite in 0+, one
obtains λ(

∑
l F ll)δi j

≥ Qi j
≥ ε0(

∑
l F ll)δi j > 0, where ε0 = λ− 1. Notice that
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the Ricci identity gives uli j = ui jl +O(|∇u|) and ulli j = ui jll +O(|∇2u|+ |∇u|).
Then (5-2) implies

(5-3)

0≥ Qi j Gi j

= ζQi j(ulli j +3ai j |∇u|2+ 43ulai ul j + 23a(uli ul j + ululi j )
)

+ 2Qi j (ulli +3ai |∇u|2+ 23aululi )ζ j + (1u+3a|∇u|2)Qi jζi j

≥ ζQi j (ui jll + 23a(uli ul j + ului jl))+ 2Qi j ulliζ j

−C3(
∑

l F ll)(|∇2u| + 1).

Using hll+2hlzul+hzull = F i j W [u]i j;ll+ F i j,rs W [u]i j;l W [u]rs;l and the con-
cavity of F , we obtain

(5-4) Qi j ui jll ≥−2aF i j (uilu jl + ui u jll)− 2b(
∑

l F ll)(|∇2u|2+ uklluk)

−C(
∑

l F ll)(|∇2u| + 1)+ hll + 2hlzul + hzull .

On the other hand, (4-5) implies

(5-5) 23aul Qi j ui jl ≥−C3(
∑

l F ll)(|∇2u| + 1)+ 23ahlul + 23ahz|∇u|2.

Plugging (5-4) and (5-5) into (5-3), and employing (5-1) we have

0≥ 23aζQi j uli ul j − 2aζ F i j (uilu jl + ui u jll)+ 2Qi j ulliζ j

− 2bζ(
∑

l F ll)(|∇2u|2+ uklluk)

−C3(
∑

l F ll)(|∇2u| + 1)−C3(|∇2u| + 1)

≥ 2ζ(3aλ− b)(
∑

l F ll)|∇2u|2− 2aζ(3+ 1)F i j uilu jl

−C3(
∑

l F ll)(|∇2u| + 1)−C3(|∇2u| + 1)

≥ 2ζ(ε0a3− a− b)(
∑

l F ll)|∇2u|2

−C3(
∑

l F ll)(|∇2u| + 1)−C3(|∇2u| + 1).

Since a is positive on M , we assume a(x) ≥ ε2 > 0. We now choose 3 >

max{1, 2(|a|L∞ + |b|L∞)/(ε0ε2)}, and multiply ζ on both sides to produce

(5-6) 0≥3(
∑

l F ll)(ε0ε2ζ
2
|∇

2u|2−Cζ |∇2u| −C)−C3(ζ |∇2u| + 1).

It follows that (ζ |∇2u|)(x̃)≤ C . Therefore supBr/2
1u ≤ C .

If 0+ ⊂ 0+2 , then supBr/2
1u ≤ C implies that supBr/2

|∇
2u| ≤ C . To get the

Hessian bounds of u in general, we simply consider the maximum of

ζ(x) max
ξ∈(Tx M∩Sn)

(∇ξ∇ξu+3a(x)(∇ξu)2).

The calculation is similar. �
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We next derive a priori bounds for second derivatives of solutions to (1-4). The
method we use is similar to that of [Guan 2007; Guan 2008; Gursky et al. 2011].
The notation below is the same as in Section 4.

We use a barrier function

v(x)= p(qd2
− d) in Mδ,

where p and q are positive constants. Let’s define a linear operator

(5-7) P(ψ)= Qi jψi j + 2F i j (a(x)uiψ j + b(x) 〈∇u,∇ψ〉 gi j ).

Then
Pd = Qi j di j + 2F i j (aui d j + b 〈∇u,∇d〉 gi j ),

and consequently
|Pd| ≤ C#

∑
l F ll in Mδ,

where C# depends on λ, |u|C1(M), |a|L∞(M̄), |b|L∞(M) and the geometric quantities
of (M, g). On the other hand, we have in Mδ

Pd2
= 2Qi j (di d j )+ 2dPd

≥ 2ε0(
∑

l F ll)|∇d|2− 2dC#
∑

l F ll

≥ (ε0− 2C#δ)
∑

l F ll,

where ε0 = λ− 1 as before. After we choose

q > 2(1+C#)/ε0 and δ <min{ε0/(4C#), 1/(2q)},

the function v satisfies

(5-8) Pv ≥ p{q(ε0− 2C#δ)−C#}
∑

l F ll
≥ p

∑
l F ll,

and

(5-9) v ≤− 1
2 pd in Mδ.

Let x0 be an arbitrary point on ∂M . Let r(x)= distg(x, x0) to denote the distance
from x to x0 with respect to the background metric. Let �δ(x0) = Bδ(x0) ∩ Mδ,
where Bδ(x0) = {x ∈ M | r(x) < δ}. Since δ is small, we assume r2 is smooth
in �δ(x0). A similar calculation implies

(5-10) 1
2ε0

∑
l F ll
≤ Pr2

≤ (2λ+ 1
2ε0)

∑
l F ll in �δ(x0).

Now we pick a local coordinates in Mδ so that ∂M is the plane xn=0, and we let
{eγ, en}

n−1
γ=1 be the corresponding coordinate vector fields, where en(x0) denotes the

interior normal vector and eγ(x0) the tangential direction. Fix some γ and consider
the locally defined function φ= eγ(u−ϕ), where u is a C3(M) admissible solution
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of (1-4). In order to derive the boundary estimates for second derivatives, we need
the following lemma.

Lemma 5.2. In the notation above, there exists a constant C , depending only on
C0, C1, |a|C1(M̄), |b|C1(M), |h|C1(M×[−C0,C0])

and |ϕ|C3(Mδ)
, such that

|Pφ| ≤ C(1+
∑

l F ll).

Proof. Differentiating Equation (1-3) with respect to eγ yields

Qi j ui jγ + 2F i j (auiγu j + bululγgi j )

=−F i j (aγui u j + bγ|∇u|2gi j + Bi jγ)+ hzuγ + hγ.

Exchanging derivatives implies

ui jγ = uγi j + (Rm ∗∇u)i jγ.

Combining these calculations yields

Pφ = Qi j uγi j + 2F i j (aui uγ j + bukuγk gi j )

− Qi jϕγi j − 2F i j (auiϕγ j + bukϕγk gi j )

=−F i j (aγui u j + bγ|∇u|2gi j + Bi jγ)+ hzuγ + hγ

− Qi jϕγi j − 2F i j (auiϕγ j + bukϕγk gi j )− Qi j (Rm ∗∇u)i jγ

Therefore
|Pφ| ≤ C(

∑
l F ll)+C. �

We are now ready to prove the boundary estimates for second derivatives.

Lemma 5.3. Let u ∈ C3(M) be an admissible solution of (1-4). Then

|∇
2u| ≤ C on ∂M,

where the constant C > 0 depends on

C0, C1, |a|C1(M), |b|C1(M), |h|C1(M×[−C0,C0])
, |ϕ|C3(Mδ)

, |B|C1(M)

and the geometric quantities of (M, g).

Proof. We require separate proofs for the different types ∇γ∇ηu, ∇γ∇nu and
∇n∇nu of boundary second derivatives.

Let x0 be an arbitrary point on ∂M . Using that u−ϕ = 0 on ∂M , we obtain

∇γ∇η(u−ϕ)(x0)=−∇n(u−ϕ)5(eγ, eη)(x0),

where 1 ≤ γ, η ≤ n− 1 and 5 denotes the second fundamental form of ∂M . We
therefore have the estimates for the pure tangential second order derivatives.
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Combining (5-8), (5-10) and Lemma 5.2, we have for any positive constant µ

P(φ− v+µr2)≤ (C − p+µ(2λ+ 1
2ε0))

∑
l F ll
+C.

Picking µ large enough and p > µ2, we get

P(φ− v+µr2)≤− 1
2 pF(e)+C < 0.

Thus by the maximum principle, we conclude that the minimum of φ − v +µr2

occurs on the boundary of �δ(x0). It remains to check these boundary values.
There are two components of ∂�δ(x0) to check. Firstly, since φ ≡ 0 and v ≡ 0 on
∂�δ(x0)∩∂M , we get φ−v+µr2

≥ 0 on ∂�δ(x0)∩∂M and (φ−v+µr2)(x0)= 0.
Sinceµ is large, (5-9) implies φ−v+µr2>φ+(p/2)d+µr2>0 on ∂�δ(x0)\∂M .
It follows that the normal derivative of φ− v+µr2 is nonnegative, and therefore
we conclude

∇n∇γu(x0) > ∇n(∇γϕ+ v−µr2)(x0)

=∇n∇γϕ(x0)− p >−C.

However, using Lemma 5.2 again, it is clear that the same argument applies to−φ,
and one deduces the mixed second derivative estimates

|∇n∇γu|< C.

Once we bound ∇γ∇ηu and ∇γ∇nu, to estimate the double normal second de-
rivative ∇n∇nu we only need to bound 1u. Note that W [u]i j ∈ 0

+

1 , that is,

(nλ− 1)(1u)+ (a(x)+ nb(x))|∇u|2+ tr B > 0.

Consequently1u is bounded from below and we have to establish an upper bound

unn ≤ C on ∂M.

Without loss of generality, one can assume unn≥0 on ∂M (otherwise we are done).
Orthogonally decompose the matrix W at x0 ∈ ∂M in terms of eγ and en . Using
the known bounds, we find

W [u]i j (x0)= (λ1ugi j − ui j + aui u j + b|∇u|2gi j + Bi j )(x0)

≥

(
λunn In−1 0

0 (λ− 1)unn

)
(x0)−Cδi j

≥ (ε0unn(x0)−C)δi j ,
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where C depends on |u|C1(M), |a|C0(M), |b|C0(M), |B|C0(M), |∇γ∇ηu| and |∇γ∇nu|.
It is clear that

C > max
M×[−|u|C0(M̄),|u|C0(M)]

|h|

≥ F i j (x0)W [u]i j (x0)

≥ (ε0unn(x0)−C)
∑

l F ll(x0)

≥ (ε0unn(x0)−C)F(e).

Thus we obtain the upper bound as desired. �

Combining Lemma 5.1 and Lemma 5.3, we have the global estimates for the
second derivative.

Proposition 5.4. Suppose B ∈0+ and a(x) is positive on M. Then for any C4(M)
admissible solution u of (1-4), there is a constant C2 depending only on C0, C1, λ,
|a|C2(M̄), |b|C2(M), |h|C2(M×[−C0,C0]), |ϕ|C3(M), |B|C2(M) and the geometric quanti-
ties of (M, g) such that

|∇
2u| ≤ C2 on M .

6. Proof of Theorem 1.1

The proof of Theorem 1.1 is standard. We only sketch it here. For t ∈ [0, 1], we
consider the equations

(?t)
{

F(∇2
confu+ B t)= ht ,

u|∂M = ϕ
t ,

where

B t
= t B+ 1−t

F(e)
g, ht

= (1− t)e2u
+ th(x, u), ϕt

= tϕ.

For t = 0, the admissible solution is u ≡ 0 on M ; for t = 1, it is our desired
Equation (1-4). It is direct to check that

• B t
∈ 0+.

• ht > 0 on M ×R, ∂zht(x, z) > 0 on M ×R, limz→+∞ ht(x, z)→+∞ and
limz→−∞ ht(x, z)→ 0 in M ×R.

• There exists a uniform constant C > 0, independent of t ∈ [0, 1], such that
|B t
|C2(M̄) < C , |ht

|C2(M×[−C,C]) < C and |ϕt
|C3(M) < C .

Applying our a priori estimates Proposition 3.1, 4.6 and 5.4 to (?t) and noting
that F is concave, we obtain, by Evans–Krylov estimates,

|ut |C2,α(M) ≤ C for all t ∈ [0, 1].
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Combining this with Corollary 2.2, we see by standard degree theory that (?t) is
solvable for t = 1. Uniqueness follows by Lemma 4.3.

7. Proof of Theorem 1.4

To solve the Dirichlet problem for large boundary conditions, we need to control
the behavior of the solution near the boundary. We can do this by constructing
barrier functions for some suitable equation.

Recall that F is concave, then

F(κ)≤ ω
∑
κi in 0+

for some uniform constant ω> 0. For any C2(M) admissible function u satisfying

F(W [u])= f (x)e2u in M,

u is a subsolution of the equation

(7-1) b11u+ b2|∇u|2+ b3 = e2u,

where

b1 =
ω(nλ− 1)
minM f

, b2 =
ω(|a|L∞ + n|b|L∞)

minM f
b3 =

ω|tr B|L∞
minM f

.

Before constructing a local supsolution of (7-1), we give some notation. Take a
point y0 ∈ Mδ/4 near the boundary ∂M . Suppose x0 ∈ ∂M is the point that satisfies
d(y0) = distg(x0, y0). Consider a geodesic running from x0, passing through y0,
and going out a small distance to a point z0 with distg(z0, x0) = η. We use r(x)
to denote the distance from z0 to x with respect to the background metric g. We
assume that δ and η are small enough that r2(x)= (distg(x, z0))

2 is smooth in the
ball Bη(z0). We may choose normal coordinates {ek}. Then we have

1r2(z0)= 2n.

We now assume
1≤1r2

≤ 3n in Bη(z0).

Consider the following auxiliary function defined in Bη(z0):

w(x)=− log(η2
− r2)+ θ log

η2
− r2
+ ε

ε
+ log 2+ 1

2 log(nb1+ b2)+ log η,

where θ and ε are constants to be chosen later. It is easy to check that

wi =
2rri

η2− r2 − θ
2rri

η2− r2+ ε
,
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and

wi j =
∇

2
i jr

2

η2− r2 +
4r2rir j

(η2− r2)2
− θ

∇
2
i jr

2

η2− r2+ ε
− θ

4r2rir j

(η2− r2+ ε)2
.

Consequently, using |∇r | = 1 and 1≤1r2
≤ 3n in Bη(z0), we derive

b11w+ b2|∇w|
2
+ b3

= b1
1r2

η2− r2 +
4(b1+ b2)r2

(η2− r2)2
−

b1θ1r2

η2− r2+ ε
−

4(b1− b2θ)θr2

(η2− r2+ ε)2

−
8b2θr2

(η2− r2)(η2− r2+ ε)
+ b3

≤
3nb1η

2
+ (3b1+ 4b2)r2

(η2− r2)2
−

b1θ

η2− r2+ ε
−

4(b1− b2θ)θr2

(η2− r2+ ε)2
+ b3.

Now choosing θ < b1/(2b2), η <
√

b1θ/(2b3), ε < η2, and using r ≤ η, one
obtains

b11w+ b2|∇w|
2
+ b3 ≤

4(nb1+ b2)η
2

(η2− r2)2
≤ e2w.

Since w|∂Bη(z0) =+∞, maximum principle implies

u ≤ w in Bη(z0);

hence

(7-2) u(y0)≤− log d(y0)+ θ log
2ηd(y0)+ ε

ε
+ log 2+ 1

2 log(nb1+ b2).

Now we complete the proof as follows.

Proof of Theorem 2. We use the notation of Section 4. The argument here is similar
to that in [Guan 2008]. Let’s consider the locally defined auxiliary functions

vγm := γ log mδ2

md+δ2 in Mδ,

where γ is some small positive constant to be chosen later and m = 1, 2, 3, . . . . It
is direct to check that

(7-3)
vγm |∂M = γ log m,

γ log 1
2δ ≤ v

γ
m |{d(x)=δ} ≤ γ log δ.
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By a direct computation, we obtain

W [vγm]i j =
(λ+ bγ)γm2

(md + δ2)2
|∇d|2gi j +

aγ2m2

(md + δ2)2
di d j −

γm2

(md + δ2)2
di d j

−
γm

md + δ2 (λ1dgi j − di j )+ Bi j

≥
(ε0− (|a|L∞(M)+ |b|L∞(M))γ)γm2

(md + δ2)2
|∇d|2gi j

−
γm

md + δ2 C ′gi j −C ′′gi j ,

where C ′ and C ′′ are some large constants depending only on λ, |B|g(M) and the
geometric quantities of (M, g), independent of δ. Choosing

γ ≤
ε0

2(|a|L∞(M)+ |b|L∞(M))
and δ ≤min

{
1,

ε0

16C ′
,
ε0γ

64C ′′

}
,

and observing that |∇d|> 1/2 in Mδ, we derive

W [vγm]i j ≥

( ε0m
4(md + δ2)

−C ′
) γm

md + δ2 gi j −C ′′gi j

≥
ε0γm2

8(md + δ2)2
gi j −C ′′gi j

≥
ε0γm2

16(md + δ2)2
gi j .

Consequently, if γ ≤ min{1, 1
2ε0/(|a|L∞(M)+ |b|L∞(M))} and δ is small enough,

then

(7-4)

F(W [vγm])≥
ε0γm2

16(md + δ2)2
F(e)

=
ε0γF(e)

16δ4 exp(2vγm/γ)

≥ f (x)e2vγm

in Mδ. For any integer m ≥ 1, let um ∈ C∞(M) be the admissible solution of the
Dirichlet problem {

F(W [u])= f (x)e2u in M,

u = γ log m on ∂M,

where γ is the constant has been fixed. Then (7-3), (7-4) and Lemma 4.3 imply

(7-5) um ≥ v
γ
m = γ log mδ2

md+δ2 .
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Recalling (7-2), we obtain for any m ≥ 1

(7-6) um ≤− log d +C.

Since um ≤ um+1 for m ≥ 1, and the um have the boundary control (7-5) and (7-6),
the limit

u(x) := lim
m→∞

um(x)

exists for all x ∈ M and satisfies

−C − γ log d ≤ u(x)≤− log d +C

near ∂M .
For any compact subset K ⊂ M , by the boundary control above and the a priori

estimates of Proposition 3.1, Lemma 4.1 and Lemma 5.1, we obtain

|um |C2,α(K ) ≤ C,

where 0<α < 1, C =C(K ) is independent of m. Thus u is a solution of (1-5). �
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