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For a subgroup of the quasiconformal mapping class group of a Riemann
surface in general, we give an algebraic condition which guarantees its dis-
creteness in the compact-open topology. Then we apply this result to its
action on the Teichmüller space.

1. Introduction

We consider a Riemann surface R in general, not necessarily topologically finite,
and a subgroup G consisting of quasiconformal mapping classes of R. Such a
group usually appears as acting on the infinite dimensional Teichmüller space
of R and in particular discreteness of its orbit is often discussed. In this case,
the discreteness of G is understood through the action on the Teichmüller space.
In this paper however, we first start from a more basic viewpoint on G as surface
homeomorphisms and then look into its action on the Teichmüller space.

Throughout this introduction, we assume that a Riemann surface R has no ideal
boundary at infinity ∂R for the sake of simplicity. The quasiconformal mapping
class group MCG(R) of R is the group of all quasiconformal automorphisms g of R
modulo homotopy equivalence. We introduce a topology for this group induced
by the compact-open topology of homeomorphisms of R. Then a subgroup G
of MCG(R) is defined to be discrete if it is discrete in this topology. Our main
theorem refers to a certain algebraic condition under which G is always discrete.
Here we say that a group G is polycyclic if G is solvable and if every subgroup
of G is finitely generated.

Theorem 2.4. If a subgroup G of MCG(R) is polycyclic, then G is discrete.

This result is sharp in a sense that there is a counterexample for either a finitely
generated solvable group or an infinitely generated abelian group.
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In the first of the application of this theorem, we deal with stationary mapping
class subgroups and consider their action on Teichmüller spaces. The quasiconfor-
mal mapping class group MCG(R) acts on the Teichmüller space T (R) of a Rie-
mann surface R biholomorphically and isometrically. A subgroup G ⊂MCG(R)
is called stationary if there exists a compact subsurface V of R such that every
representative g of every mapping class [g] ∈ G satisfies g(V )∩ V 6=∅.

A basic nature of stationary subgroups in connection with their discreteness
in the compact-open topology and discontinuity of the action on the Teichmüller
space is that, if G ⊂ MCG(R) is stationary and discrete, then G acts discontinu-
ously on T (R). Then we have the following consequence from the main theorem.
Recall that we assume ∂R =∅ until the end of this section.

Corollary 4.2. If a polycyclic subgroup G of MCG(R) is stationary, then G acts
discontinuously on T (R).

We expect that this result should be valid for every finitely generated stationary
subgroup G ⊂MCG(R).

In the second application of Theorem 2.4, we deal with asymptotically confor-
mal mapping class subgroups. We say that a quasiconformal homeomorphism of a
Riemann surface R is asymptotically conformal if its complex dilatation vanishes
at infinity of R. We say that a subgroup G⊂MCG(R) is asymptotically conformal
if there exists some p ∈ T (R) such that every element of G can be realized as an
asymptotically conformal automorphism of the Riemann surface Rp corresponding
to p. We denote by MCGp(R) the subgroup of MCG(R) having this property for
p ∈ T (R).

Theorem 5.1. If an asymptotically conformal subgroup G of MCGp(R) for p ∈
T (R) is polycyclic, then the orbit G(p) is a discrete set in T (R).

One may ask a question about how the algebraic assumption on G can be relaxed
for this statement.

2. Discreteness of mapping class subgroups

We always assume that a Riemann surface R is hyperbolic, that is, R is represented
by a Fuchsian group F acting on the unit disk D and is endowed with the hyperbolic
metric. The quasiconformal mapping class group MCG(R) for R is the group
of all homotopy classes [g] of quasiconformal automorphisms g of R. Here the
homotopy is considered to be relative to the ideal boundary at infinity ∂R of R,
where ∂R = (∂D−3(F))/F for the limit set 3(F) of F . This means that, when
∂R 6=∅, two quasiconformal automorphisms g0 and g1 are regarded as homotopic
if there is a homotopy 8 : R×[0, 1]→ R between g0 =8( · , 0) and g1 =8( · , 1)
such that its extension to each x ∈ ∂R is constant over [0, 1].
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The compact-open topology on the space of all homeomorphic automorphisms
of R induces a topology on MCG(R). More precisely, we say that a sequence of
mapping classes [gn] ∈MCG(R) converges to a mapping class [g] ∈MCG(R) in
the compact-open topology if we can choose representatives gn ∈ [gn] and g ∈ [g]
satisfying that gn converges to g locally uniformly on R. When R has the ideal
boundary at infinity ∂R, we further require that the extensions gn of the quasi-
conformal automorphisms gn to ∂R converge to the extension g of g in such a
way that gn is identical with g on a compact subset Wn ⊂ ∂R, where {Wn}

∞

n=1
is some compact exhaustion of ∂R, that is, an increasing sequence of compact
subsets of ∂R satisfying that the closure of the union of all Wn is ∂R. We call this
topology on MCG(R) the compact-open topology relative to the boundary. If [gn]

converges to [g] in the compact-open topology relative to the boundary, then there
are quasisymmetric automorphisms g̃n and g̃ of the unit circle ∂D corresponding
to [gn] and [g] respectively such that the sequence g̃n converges uniformly to g̃.

Definition. We say that a subgroup G of MCG(R) is discrete if it is a discrete set in
MCG(R) with respect to the compact-open topology relative to the boundary. The
discreteness is equivalent to the condition that, if a sequence of mapping classes
{[gn]}

∞

n=1⊂MCG(R) converges to [id], then [gn] = [id] for all sufficiently large n.

Concerning the discreteness of the full mapping class group MCG(R), we have
a simple characterization.

Proposition 2.1. The quasiconformal mapping class group MCG(R) is discrete if
and only if R is analytically finite, that is, R is a compact Riemann surface from
which at most finitely many points are removed.

Proof. Assume that R is analytically finite. In this case, there are a finite number
of simple closed geodesics {ci }

k
i=1 such that, if [g] ∈MCG(R) satisfies that g(ci )

is freely homotopic to ci for every i , then [g] = [id]. If a sequence of mapping
classes {[gn]}

∞

n=1 converges to [id], then gn(ci ) is freely homotopic to ci for every i
and for all sufficiently large n. This implies that MCG(R) is discrete.

Conversely, assume that R is not analytically finite. If R is topologically finite,
that is, the fundamental group π1(R) of R is finitely generated, then R should
have the ideal boundary at infinity and clearly MCG(R) is not discrete in this
case. If R is not topologically finite, then there is an infinite sequence of simple
closed geodesics {cn}

∞

n=1 diverging to the infinity of R, in other words, escaping
from any compact subset of R. Let [τn] be the mapping class caused by the Dehn
twist along cn . Then [τn] 6= [id] and {[τn]}

∞

n=1 converges to [id]. This implies that
MCG(R) is not discrete. �

We will consider the discreteness of countable subgroups of MCG(R). Note that
MCG(R) is uncountable in many cases when R is analytically infinite [Matsuzaki
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2005]. An uncountable subgroup G of MCG(R) is not discrete, as the following
proposition asserts.

Proposition 2.2. Assume that R has no ideal boundary at infinity ∂R. If a sub-
group G ⊂MCG(R) is uncountable, then G is not discrete.

Proof. Let {ci }
∞

i=1 be the family of (free homotopy classes of) all simple closed
geodesics on R. We first consider the images of c1 under G. Since G is uncountable
whereas {ci } is countable, there are uncountably many elements of G that map c1

to simple closed curves freely homotopic to each other. Then, by composing the
inverse of one of these elements, we have uncountably many elements of G that
keep c1 in its free homotopy class. Next we consider the images of c2 under this
uncountable subset of G and obtain uncountably many elements of G that keep
c1 and c2 in their free homotopy classes. By continuing this process and then by
taking the diagonal, we can choose a sequence {[gn]}

∞

n=1 of elements in G such
that gn(ci ) is freely homotopic to ci for all i = 1, 2, . . . , n and for each n. This
implies that {[gn]} converges to [id]. �

In this section, we investigate an algebraic condition on a countable subgroup G
of MCG(R) under which G is always discrete. Our fundamental result is the fol-
lowing. The proof will be given in the next section.

Theorem 2.3. If G ⊂ MCG(R) is a finitely generated abelian group, then G is
discrete.

Note that both assumptions that G is finitely generated and that G is abelian are
necessary for the above theorem as examples below show. However, we cannot
have the converse statement to the theorem. In fact, for any countable group G,
there exists a discrete subgroup of MCG(R) for some Riemann surface R that is
isomorphic to G. Indeed, we can construct R so that its conformal automorphism
group, which is always discrete unless π1(R) is abelian, contains such a subgroup.

Examples. (1) First we give an indiscrete G ⊂ MCG(R) that is abelian but not
finitely generated. Let R be a Riemann surface with an infinite family of mutually
disjoint simple closed geodesics {cn}

∞

n=1 and G a subgroup of MCG(R) generated
by all the mapping classes [τn] caused by the Dehn twist along cn for each integer
n ≥ 1. Since [τn] converges to [id], G is not discrete though G is abelian.

(2) Next we give an indiscrete G ⊂ MCG(R) that is finitely generated but not
abelian. Assume that there are a simple closed geodesic c0 on R and a mapping
class [g] ∈MCG(R) such that the images {gn(c0)}n∈Z of c0 under the iteration of
a representative g ∈ [g] are mutually disjoint. Define cn to be the simple closed
geodesic freely homotopic to gn(c0) and [τn] to be the mapping classes caused
by the Dehn twist along cn . Let G be a subgroup of MCG(R) generated by two
elements [g] and [τ0]. Since [g]n[τ0]= [τn][g]n for every integer n ∈Z, we see that
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G contains the subgroup G ′ generated by all such [τn]. Hence G is not discrete as
Example (1) shows.

In the second example above, the group G is solvable since the commutator
subgroup [G,G] is contained in the abelian subgroup G ′. Although G itself is
finitely generated, G ′ is not, so G is not discrete. Hence we consider the following
stronger condition than solvability which requires all its subgroups to be finitely
generated.

Definition. We say that a group G is polycyclic if G is solvable and if every sub-
group of G is finitely generated.

See [Wolf 1968] for other equivalent conditions for G to be polycyclic. This
name comes from the fact that G is polycyclic if and only if G has a finite normal
chain of subgroups G = G0 FG1 F · · · F Gm = {1} such that each quotient group
Gi−1/Gi (i = 1, . . . ,m) is cyclic. We can say that G is polycyclic when G is
obtained in finitely many simple steps from finitely generated abelian groups.

Theorem 2.4. If G ⊂MCG(R) is a polycyclic group, then G is discrete.

This extension of Theorem 2.3 is obtained by an inductive argument which is
easily seen from the following assertion.

Lemma 2.5. Assume that every subgroup of G ⊂MCG(R) is finitely generated. If
G is not discrete, then neither is the commutator subgroup [G,G].

Proof. Since G is not discrete, there is a sequence {[gn]}
∞

n=1 in G that converges to
[id] as n→∞. Then we see that for every n0 ≥ 1, there exist m, n ≥ n0 such that
[gm] and [gn] do not commute. Indeed, if not, there is n0 such that [gm] and [gn]

commute for any m, n ≥ n0. Then a subgroup G ′ of G generated by {[gn]}n≥n0 is
abelian and G ′ is not discrete. By assumption, G ′ is finitely generated. However,
this contradicts Theorem 2.3.

Fix some n0≥1. We choose m1, n1≥n0 such that [h1] :=[[gm1], [gn1]] is not the
identity [id]. Then we choose m2, n2≥max{m1, n1} such that [h2] := [[gm2], [gn2]]

is not the identity. Inductively, for each i ≥ 1, we choose mi , ni ≥max{mi−1, ni−1}

such that [hi ] := [[gmi ], [gni ]] is not the identity. Then every [hi ] belongs to the
commutator subgroup [G,G] of G and [hi ] converges to [id] as i → ∞. This
implies that [G,G] is not discrete. �

3. Restraint of mapping class groups

In this section, we will prove Theorem 2.3. The proof uses a certain property of
mapping class groups, not necessarily satisfied for abstract groups in general. We
first explain this situation by the following example.
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Example. Let S∞ be the infinite symmetric group acting on a countable set X =
{1, 2, . . .} as permutations. We consider an element g = (1)(23)(456) · · · of S∞
which gives a cyclic permutation on mutually disjoint subsets of n points in X
where n runs over all positive integers. Then we see that gn! converges to id in the
compact-open topology with respect to the discrete topology on X . In particular,
the cyclic subgroup 〈g〉 is not discrete.

Let X = {ci }
∞

i=1 be the family of (free homotopy classes of) all simple closed
geodesics on a Riemann surface R. The quasiconformal mapping class group
MCG(R) acts faithfully on the countable set X by the correspondence of the free
homotopy class g(c) to [g] · c for any [g] ∈ MCG(R) and for any c ∈ X . In this
way, we can represent MCG(R) as a subgroup of S∞. As the above example
shows, an arbitrary subgroup of S∞ cannot have the required property which we
want to prove in Theorem 2.3. The nature in which MCG(R) ⊂ S∞ originates
from R gives a certain restriction on the action of MCG(R) and we must use this
constraint in order to prove our theorem. The following lemma can be regarded as
one of such properties of MCG(R).

Lemma 3.1. For every element [g] ∈ MCG(R) of infinite order, there exists ei-
ther a compact subsurface V in R or a compact subset V ′ in an arbitrarily given
compact exhaustion of the ideal boundary at infinity ∂R such that either the re-
striction gn

|V is homotopic to id|V on R or the extension gn is the identity on V ′

for no positive integer n ∈ N.

Proof. Suppose to the contrary that there is no such compact subsurface V in R
nor compact subset V ′ in the compact exhaustion of ∂R. Then, for any compact
subsurface V1⊂ R, there is n1∈N such that gn1 |V1 is homotopic to id|V1 on R. Also,
for any compact subset V ′1 in the compact exhaustion of ∂R, there is n′1 ∈ N such
that gn′1 is the identity on V ′. Set h= gn1n′1 . Since h is not homotopic to the identity
on R relative to ∂R, there is either some compact subsurface V2 ⊂ R including V1

such that h|V2 is not homotopic to id|V2 on R or some compact subset V ′2 in the
compact exhaustion of ∂R including V ′1 such that h is not the identity on V ′2. We
assume that the first case occurs. The argument for the second case is similar.

For that compact subsurface V2, there is n2 ∈ N such that gn2 |V2 is homotopic
to id|V2 on R. We may assume that n2 is a proper multiple of n1n′1, that is,
n2= kn1n′1 for some integer k>1. Then h|V1∼ id|V1 , h|V2 6∼ id|V2 and hk

|V2∼ id|V2 ,
where ∼ means that they are homotopic to each other on R. However, this is
impossible, as we see in the following. Represent the Riemann surface R by a
Fuchsian group F acting on the unit disk D and take a subgroup F1 of F corre-
sponding to the subsurface V1. Choose a quasisymmetric automorphism h̃ of ∂D

corresponding to h so that h̃ is the identity on the limit set3(F1)⊂ ∂D of F1. Also,
take a subgroup F2 of F corresponding to the subsurface V2 which contains F1.
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Then the quasisymmetric automorphism h̃ is not the identity on the limit set3(F2)

containing 3(F1). This implies that there is a point x ∈ 3(F2)−3(F1) that is
moved by h̃. Since the movement of x is towards one direction in some interval
contained in ∂D−3(F1), it cannot return to the original place under the iteration
of h̃. Thus h̃k(x) 6= x , which violates the condition that hk

|V2 ∼ id|V2 . �

Although the following fact is not special for mapping class groups, the property
of discreteness is shared with a subgroup of finite index as in usual arguments. We
also use this fact in the proof of Theorem 2.3.

Proposition 3.2. Let G ′ be a subgroup of G ⊂ MCG(R) of finite index. If G ′ is
discrete, then so is G.

Proof. If G is not discrete, there is a sequence of distinct elements [gn] of G that
converges to [id]. Since the index of G ′ in G is finite, we may assume that the [gn]

are all in the same coset, say, G ′[h] for some [h] ∈ G. Then [g′n] = [gn] · [h]−1

belong to G ′ and converge to [h]−1. This contradicts the assumption that G ′ is
discrete. �

Now we are ready to prove our fundamental result.

Proof of Theorem 2.3. By Proposition 3.2, we may assume that G is isomorphic
to a free abelian group Zm of rank m ≥ 1. We will prove the statement of the
theorem by induction with respect to m. First, we show that the statement is valid
when m = 1. Assume that G ∼= Z is not discrete, that is, there is a sequence of
elements in G converging to [id]. When R has the ideal boundary at infinity ∂R,
some compact exhaustion of ∂R is associated to this converging sequence. For a
generator [g] ∈ MCG(R) of G, Lemma 3.1 gives either a compact subsurface V
of R or a compact subset V ′ in the exhaustion of ∂R as in its statement. However,
since G is not discrete, there is some n ∈ N such that gn

|V is homotopic to id|V
on R and the extension gn of gn to ∂R is the identity on V ′. This contradicts the
choice of V and V ′.

We assume that the statement is true for any subgroup of MCG(R) isomorphic
to Z j for every integer j with 1 ≤ j ≤ m − 1. Let G be a subgroup of MCG(R)
isomorphic to Zm ; we prove that G is discrete. Suppose to the contrary that G
is not discrete. Then we have a sequence [gn] ∈ G converging to [id] as well
as a compact exhaustion of ∂R associated with this sequence. We will choose
a subsequence of [gn] so that any m elements in the subsequence generates a
subgroup isomorphic to Zm . To this end, first observe that all the elements [gn]

in the convergent sequence cannot be contained in a finite union of subgroups
of G that are isomorphic to Z j with 1 ≤ j ≤ m − 1, by the induction assumption.
Then choose a subsequence [gn(i)] in the following way. The first m − 1 entries
[gn(1)], . . . , [gn(m−1)] are chosen so that they are linearly independent over Z. Sup-
pose that we have already chosen l entries Gl = {[gn(1)], . . . , [gn(l)]} for l ≥m−1.
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Then take the (l+1)-st entry [gn(l+1)] so that any m − 1 elements of Gl together
with [gn(l+1)] are linearly independent over Z, in other words, [gn(l+1)] belongs to
no maximal proper subgroup (∼=Zm−1) of G containing m−1 elements of Gl . The
reason why we can choose such [gn(l+1)] is that, if not, all [gn]must be contained in
the union of the finite number of subgroups of G determined by any m−1 elements
of Gl . By this construction, it is clear that any m elements in the subsequence [gn(i)]

generate a subgroup isomorphic to Zm .
Fix an arbitrary nontrivial element [g0] ∈ G. By Lemma 3.1, we take either a

compact subsurface V of R such that gn
0 |V 6∼ id|V or a compact subset V ′ in the

exhaustion of ∂R such that gn
0|V ′ 6= id|V ′ for all n ∈ N. We only consider the first

case. The second case is similar. Since we are assuming that [gn(i)] converges
to [id], there is some i0 such that gn(i)|V ∼ id|V for every i ≥ i0. Take m arbitrary
elements [gn(i)] with i ≥ i0 and rename them as [gi ] (i = 1, . . . ,m). Since they
generate a subgroup of G isomorphic to Zm , a linear combination of [gi ] (i =
1, . . . ,m) over Z yields some multiple of any element of G. This implies that
[g0]

n for some n ∈N is represented by [g1]
k1 · · · [gm]

km for some ki ∈Z. However,
this forces gn

0 |V ∼ id|V , which contradicts the choice of V . �

4. Discontinuity of the action on the Teichmüller space

We apply our theorem to the action of mapping class subgroups on Teichmül-
ler spaces. For a Riemann surface R, the Teichmüller space T (R) is defined to
be the set of all equivalence classes [ f ] of quasiconformal homeomorphisms f
of R. Here we say that two quasiconformal homeomorphisms f1 and f2 of R
are equivalent if there exists a conformal homeomorphism h : f1(R) → f2(R)
such that f −1

2 ◦ h ◦ f1 is homotopic to the identity on R, where the homotopy is
considered to be relative to the ideal boundary at infinity ∂R. The Teichmüller
distance between two points [ f1] and [ f2] in T (R) is defined by dT ([ f1], [ f2]) =

(1/2) log K ( f ), where f is an extremal quasiconformal homeomorphism in the
sense that its maximal dilatation K ( f ) is minimal in the homotopy class of f2◦ f −1

1 .
Then dT is a complete distance on T (R). The Teichmüller space T (R) can be
embedded in the complex Banach space of all bounded holomorphic quadratic
differentials on R′, where R′ is the complex conjugate of R. In this way, T (R) is
endowed with a complex structure. Consult [Lehto 1987; Nag 1988; Gardiner and
Lakic 2000] for the theory of Teichmüller spaces.

Each element [g] ∈MCG(R) acts on T (R) from the left as [g] · [ f ] = [ f ◦g−1
]

for [ f ] ∈ T (R). It is evident from the definition that MCG(R) acts on T (R) iso-
metrically with respect to the Teichmüller distance. It also acts biholomorphically
on T (R). Except for few cases where the dimension of T (R) is lower, the action
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of MCG(R) on T (R) is faithful. Then MCG(R) can be represented in the group
of all isometric biholomorphic automorphisms of T (R).

We say that a subgroup G ⊂MCG(R) acts at p = [ f ] ∈ T (R) discontinuously
if there exists a neighborhood U of p such that the number of the elements [g] ∈G
satisfying [g](U ) ∩U 6= ∅ is finite. We denote the orbit of p under G by G(p)
and the stabilizer subgroup of G at p by StabG(p). Then G acts discontinuously
at p if and only if G(p) is a discrete set and StabG(p) is a finite group. If G
acts discontinuously at every point p in T (R), then we say that G acts discontinu-
ously on T (R). When R is analytically finite, MCG(R) itself acts discontinuously
on T (R). However, for a Riemann surface in general, this is not always true. See
[Fujikawa 2004] regarding the discontinuity of the action of mapping class groups
on Teichmüller spaces.

We consider mapping class subgroups by imposing a stationary property on
them in the following sense.

Definition. We call a subgroup G of MCG(R) stationary if there exists a compact
subsurface V of R such that every representative g of every mapping class [g] ∈G
satisfies g(V )∩ V 6=∅.

The stationary property puts a certain normalization on a family of quasicon-
formal automorphisms of R. Under this condition, the discreteness of G in the
compact-open topology affects the behavior of its orbit on the Teichmüller space.

Lemma 4.1. Let G be a stationary subgroup of MCG(R) for a Riemann surface R
with ∂R =∅. If G is discrete then the orbit G(p) for any p ∈ T (R) diverges to the
infinity of T (R), and in particular, G acts discontinuously on T (R).

Proof. Compactness of a family of normalized quasiconformal homeomorphisms
with uniformly bounded dilatations yields that if there is a sequence [gn] in a sta-
tionary subgroup G of MCG(R) such that [gn](p) is bounded in T (R), then a
subsequence of some representatives gn ∈ [gn] converges to some quasiconformal
automorphism of R locally uniformly. However, if G is discrete in the compact-
open topology, then there is no such sequence. This implies that [gn](p) is bounded
in T (R) for no sequence [gn] ∈ G, that is, the orbit G(p) diverges to the infinity
of T (R). �

Combining Theorem 2.4 and Lemma 4.1 immediately yields the following.

Corollary 4.2. Let G be a stationary subgroup of MCG(R) for a Riemann sur-
face R with ∂R =∅. If G is polycyclic, then G acts discontinuously on T (R).

We expect that this corollary is valid for every finitely generated stationary sub-
group G of MCG(R).

Conjecture. If a finitely generated subgroup G ⊂MCG(R) is stationary, then G
is discrete.
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If R is analytically finite, then MCG(R) is finitely generated and stationary.
In this case, MCG(R) is discrete and acts on T (R) discontinuously. The above
conjecture can be regarded as a generalization of this property for mapping class
groups of analytically finite Riemann surfaces.

There is an example of an infinitely generated (countable) stationary subgroup G
such that G does not act discontinuously on T (R). This is obtained similarly to
Example (1) in Section 2 but we must further assume that the lengths of the simple
closed geodesics cn in the example tend to zero as n→∞.

Remark. If we assume a bounded geometry condition on the hyperbolic metric
on R, then we do not have to impose any algebraic condition on a stationary sub-
group G for the discontinuity of its action on T (R). This result was proved in
[Fujikawa 2004; Fujikawa et al. 2004]. See also these papers for the definition of
the bounded geometry condition, to which we add ∂R =∅.

5. Discreteness of the orbit on a fiber over the asymptotic Teichmüller space

In this section, we impose a certain analytic condition on a subgroup of the quasi-
conformal mapping class group and show the discreteness of its orbit in the Teich-
müller space. Our condition also generalizes certain properties of the mapping
class group of an analytically finite Riemann surface.

A quasiconformal homeomorphism f of a Riemann surface R is called asymp-
totically conformal if, for every ε > 0, there exists a compact subsurface V of R
such that the maximal dilatation of f restricted to R − V is less than 1+ ε. The
asymptotic Teichmüller space AT(R) of R is defined by replacing the words “con-
formal automorphisms” with “asymptotically conformal automorphisms” in the
definition of the Teichmüller space T (R). Since a conformal automorphism is
asymptotically conformal, there is a projection α : T (R)→ AT(R). We denote the
fiber of α containing p ∈ T (R) by Tp, that is, Tp = α

−1(α(p)). Consult [Earle
et al. 2000; 2002; 2004; Gardiner and Lakic 2000] for the theory of asymptotic
Teichmüller spaces.

The quasiconformal mapping class group MCG(R) acts on T (R) preserving the
fiber structure of α. Hence it acts on AT(R). We define MCGp(R) to be the sub-
group of MCG(R) consisting of all elements keeping the fiber Tp invariant. Every
element of MCGp(R) can be realized as an asymptotically conformal automor-
phism of the Riemann surface Rp corresponding to p. We say that a subgroup G
of MCG(R) is asymptotically conformal if G is a subgroup of MCGp(R) for some
p ∈ T (R). When R is analytically finite, AT(R) consists of a single point and
MCGp(R) coincides with the full MCG(R) for every p ∈ T (R).

We will show the following theorem concerning the discreteness of the orbit of
an asymptotically conformal subgroup.
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Theorem 5.1. For a Riemann surface R with ∂R = ∅, if an asymptotically con-
formal subgroup G of MCGp(R) is polycyclic, then the orbit G(p) is a discrete set
in T (R).

We first prove this theorem in the case that G is a finitely generated abelian
group. Before the proof, we give the definition of an escaping sequence of mapping
classes. A sequence {[gn]}

∞

n=1 of mapping classes in MCG(R) is stationary if
there exists a compact subsurface V of R such that every representative gn of
each mapping class [gn] satisfies gn(V )∩ V 6=∅. If a subgroup G of MCG(R) is
stationary in the previous sense, then every sequence in G is stationary in this sense.
On the contrary, a sequence {[gn]}

∞

n=1 is called escaping if, for every compact
subsurface V of R, there exists some representative gn of each mapping class [gn]

such that {gn(V )} diverges to the infinity of R (that is, escapes from every compact
subset of R) as n→∞. Remark that a sequence {[gn]} ⊂MCG(R) can be neither
stationary nor escaping, but we can always choose a subsequence either stationary
or escaping.

The following lemma is crucial for considering an escaping sequence in an
asymptotically conformal mapping class group. The proof has been given in [Mat-
suzaki 2007; 2010, Theorem 5.6].

Lemma 5.2. Assume that the fundamental group π1(R) of R is noncyclic. Let G
be an abelian subgroup of MCGp(R) having an escaping sequence [gn] such that
[gn](p)→ p as n→∞. Then [g](p)= p for every [g] ∈ G.

Then the following inductive step gives the full statement of Theorem 5.1 as we
have done in Section 2.

Lemma 5.3. Assume that ∂R=∅ and every subgroup of G⊂MCGp(R) is finitely
generated. If the orbit G(p) is not a discrete set, then neither is the orbit G1(p) of
the commutator subgroup G1 = [G,G].

Proof of Theorem 5.1. Let G be a finitely generated abelian subgroup of MCGp(R).
If G is stationary, then Corollary 4.2 gives that G acts discontinuously on T (R),
and in particular, the orbit G(p) is a discrete set in T (R). This is also true for
a stationary sequence in G. If G contains an escaping sequence {[gn]} such that
[gn](p)→ p as n →∞, then Lemma 5.2 implies that G(p) = {p} is a discrete
set. Hence, if G is a finitely generated abelian subgroup, then the statement of the
theorem is valid. For the general case that G is polycyclic, we apply Lemma 5.3
to obtain the statement. �

Proof of Lemma 5.3. If G(p) is not a discrete set, then we find a sequence
{[gn]}

∞

n=1 ⊂ G such that [gn](p) 6= p converges to p as n →∞. Then we can
apply the same arguments as in the proof of Lemma 2.5. Namely, for every n0≥ 1,
there exist m, n ≥ n0 such that [gm] and [gn] do not commute. Indeed, if not,
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there is n0 such that [gm] and [gn] commute for any m, n ≥ n0. Then the finitely
generated subgroup G ′ of G generated by {[gn]}n≥n0 is abelian and G ′(p) is not a
discrete set. However, this contradicts Theorem 5.1 in the finitely generated abelian
case. Note that this case has been proved without Lemma 5.3.

Fix some n0 ≥ 1. Choose m1, n1 ≥ n0 such that [h1] :=
[
[gm1], [gn1]

]
6= [id].

Then choose m2, n2 ≥ max{m1, n1} such that [h2] :=
[
[gm2], [gn2]

]
6= [id]. Using

induction, for each i ≥ 1, choose mi , ni ≥ max{mi−1, ni−1} such that [hi ] :=[
[gmi ], [gni ]

]
6= [id]. Then every [hi ] belongs to the commutator subgroup [G,G]

of G. Note that all [hi ] are not necessarily distinct. We see that [hi ](p)→ p as
i→∞. Indeed,

d([hi ](p), p)≤ 2d([gmi ](p), p)+ 2d([gni ](p), p)→ 0

as i →∞. If [hi ](p) 6= p for infinitely many i , then we are done by passing to a
subsequence. Hence we have only to consider the case that all but finitely many
[hi ] 6= [id] belong to the stabilizer subgroup H = StabG(p) of G for p, and in
particular the case that H is not trivial.

We may assume that p is the base point of the Teichmüller space T (R). Then
there is a conformal automorphism group of R identified with H . Let Fix(H) be
the fixed point locus of H in T (R), which can be identified with the Teichmüller
space T (R/H) of the orbifold R/H . If [gn](p) does not lie in Fix(H), then there is
some [en] ∈ H such that [en][gn](p) 6= [gn](p). Set [hn]= [en]

−1
[gn]

−1
[en][gn] for

such n, which belongs to [G,G] and satisfies [hn](p) 6= p. If there are infinitely
many such n, we have [hn](p)→ p, which is the desired consequence. Hence
we have only to consider the case that [gn](p) lies in Fix(H) for all but finitely
many n.

The condition [gn](p) ∈ Fix(H) is equivalent to [gn]
−1
[e][gn] ∈ H for every

[e] ∈ H . This is satisfied if and only if the mapping class [gn] ∈MCG(R) descends
to a mapping class [ĝn] of R/H . Consider the subgroup of the mapping class group
MCG(R/H) generated by all {[ĝn]}

∞

n=1. Here [ĝn] belongs to MCGp(R/H) for
p ∈ T (R/H)= Fix(H). In the case where H is a finite group, this is easily seen.
In the case where H is an infinite group, the present situation is possible only when
[gn] belongs to H . Indeed, this follows from the fact that Tp∩Fix(H)={p} for the
infinite group H [Matsuzaki 2010, Theorem 4.2]. However, since we are dealing
with the elements [gn] ∈ G satisfying [gn](p) 6= p, this is not the case. Hence, by
the same reason as before, we can choose a sequence {[hi ]} in [G,G] such that
[hi ](p)→ p as i→∞ and in addition that none of [hi ] belongs to H = StabG(p).
This implies [hi ](p) 6= p converges to p as i→∞, which completes the proof. �

In the remark of the previous section, we mentioned that when R satisfies the
bounded geometry condition, we do not have to impose any algebraic condition
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on G. In particular, G is not necessarily finitely generated. The corresponding
statement for the discreteness of the orbit of an asymptotically conformal mapping
class subgroup will be the following.

Proposition 5.4. Assume that a Riemann surface R satisfies the bounded geometry
condition. If a subgroup G of MCGp(R) is solvable, then the orbit G(p) is a
discrete set in T (R).

However, if G ⊂ MCGp(R) is an infinitely generated (countable) group, for
instance, then the orbit is not necessarily a discrete set. Our question asks for
some algebraic conditions upon G that guarantee this discreteness.
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