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We prove triviality results for Einstein warped products with noncompact
bases. These extend previous work by Kim and Kim. The proofs, from the
viewpoint of quasi-Einstein manifolds introduced by Case, Shu and Wei,
rely on maximum principles at infinity and Liouville-type theorems.

1. Introduction

The main purpose of this note is to prove the following triviality result for Einstein
warped products, which extends a theorem by Kim and Kim [2003] to the case of
noncompact bases.

Theorem 1. Let N n+m
= Mn

×u Fm , with m > 1, be a complete Einstein warped
product with nonpositive scalar curvature NS≤0, warping function u(x)=e− f (x)/m

satisfying infM f = f∗ > −∞ and complete Einstein fibre F. Then N is simply a
Riemannian product if either of these conditions is satisfied:

(a) The function f has a local minimum.

(b) The base manifold M is complete and noncompact, the warping function sat-
isfies

∫
M | f |

pe− f/m dvol < +∞, for some 1 < p < +∞, and f (x0) ≤ 0 for
some point x0 ∈ M.

If M is compact, from (a) we recover the main result in [Kim and Kim 2003].
Our proof of Theorem 1 will rely on the link between Einstein warped product

metrics and the quasi-Einstein metrics recently introduced by Case, Shu and Wei
[2011]. In the spirit of [Pigola et al. 2011], that is, using methods from stochastic
analysis and L p-Liouville-type theorems, we shall prove scalar curvature estimates
and triviality results for a complete quasi-Einstein manifold that largely extend pre-
vious theorems in [Case et al. 2011]. The main theorem will follow immediately.

In a final section, using similar techniques, we extend another triviality result
for Einstein warped products obtained in [Case 2010]. A nonexistence result is
also discussed.
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2. Quasi-Einstein manifolds

Consider the weighted manifold (Mn, gM , e− f dvol), where M is a complete n-
dimensional Riemannian manifold, f is a smooth real valued function on M and
dvol is the Riemannian volume density on M . A natural extension of the Ricci
tensor to weighted manifolds is the m-Bakry–Emery Ricci tensor

Ricm
f = Ric+Hess( f )− 1

m
d f ⊗ d f, for 0< m ≤∞.

When f is constant this is the usual Ricci tensor, and when m=∞ this is the Ricci
Bakry–Emery tensor Ric f . We call a metric m-quasi-Einstein if the m-Bakry–
Emery Ricci tensor satisfies the equation

(1) Ricm
f = λgM ,

for some λ ∈ R. This equation is especially interesting in that when m =∞, it is
exactly the gradient Ricci soliton equation. When f is constant, it gives the Einstein
equation and we call the quasi-Einstein metric trivial. When m is a positive integer,
it corresponds to warped product Einstein metrics.

Indeed, Case et al. [2011], elaborating on [Kim and Kim 2003], gave the fol-
lowing characterization of quasi-Einstein metrics.

Theorem 2. Let Mn
×u Fm be an Einstein warped product with Einstein constant

λ, warping function u = e− f/m and Einstein fibre Fm . Then the weighted mani-
fold (Mn, gM , e− f dvol) satisfies the quasi-Einstein equation (1). Furthermore the
Einstein constant µ of the fibre satisfies

(2) 1 f − |∇ f |2 = mλ−mµe(2/m) f .

Conversely if the weighted manifold (Mn, gM , e− f dvol) satisfies (1), then f satis-
fies (2) for some constant µ∈R. Consider the warped product N n+m

=Mn
×u Fm

with u = e− f/m , and Einstein fibre F with F Ric = µgF . Then N is Einstein with
N Ric= λgN .

3. Scalar curvature estimates

In this section, in the spirit of Theorem 3 of [Pigola et al. 2011], we generalize the
scalar curvature estimates in Proposition 3.6 of [Case et al. 2011] to quasi-Einstein
manifolds with non-constant scalar curvature. Possible rigidity at the endpoints is
also discussed.

Theorem 3. Let (Mn, gM , e− f dvol) be a geodesically complete m-quasi-Einstein
manifold, 1< m <+∞, with scalar curvature S, and let S∗ = infM S.
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(a) If λ > 0, then M is compact and

(3) n(n−1)
m+n−1

λ < S∗ ≤ nλ.

Moreover S∗ 6= nλ unless M is Einstein.

(b) If λ = 0 and infM f = f∗ > −∞ then S∗ = 0. Moreover, either S > 0 or
S(x) ≡ 0. In the latter case, either f is constant (and M is trivial), or M is
isometric to the Riemannian product R×6, where 6 is a Ricci-flat, totally
geodesic hypersurface.

(c) If λ < 0 and infM f = f∗ >−∞, then

(4) nλ≤ S∗ ≤
n(n−1)
m+n−1

λ

and S(x) > nλ unless M is Einstein.

The proof of Theorem 3 will require the following formula obtained in [Case et al.
2011], which generalizes to the case m < +∞ similar formulas for Ricci soli-
tons (m = +∞) obtained previously by Petersen and Wylie [2009]. Following
the terminology introduced in [Petersen and Wylie 2010], the f -Laplacian on the
weighted manifold (M, gM , e− f dvol) is the diffusion-type operator defined by
1 f u = e f div(e−f

∇u). It is clearly a symmetric operator on L2(M, e− f dvol).

Lemma 4. Let Ricm
f = λgM , for some λ∈R and m <+∞. Set f̃ = m+2

m
f . Then

(5) 1
21 f̃ S =−m−1

m

∣∣∣Ric−1
n

SgM

∣∣∣2− m+n−1
mn

(S− nλ)
(

S− n(n−1)
m+n−1

λ
)
.

Proof of Theorem 3. First we show that infM S>−∞. According to Qian’s version
of Myers’ theorem, this is obvious if λ > 0 because M is compact; see also the
Appendix. In the general case, λ ∈ R, we proceed as follows. Since

−

∣∣∣Ric−1
n

SgM

∣∣∣2 =−|Ric |2+ S2

n
,

from (5) we obtain

(6)

1
21 f̃ S =− m−1

m
|Ric |2− 1

m
S2
+

m+2n−2
m

λS− n(n−1)
m

λ2

≤−
1
m

S2
+

m+2n−2
m

λS.

Let S−(x)=max{−S(x), 0}. Then

(7) 1 f̃ S− ≥
2
m

S2
−
+

2(m+2n−2)
m

λS−.

Now, from Qian’s estimates of weighted volumes [1997] (see also [Mari et al. 2010,
Section 2 and references]), since vol f̃ (Br )≤ e−(2/m) f∗ vol f (Br ), we can apply the a
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priori estimate in [Pigola et al. 2011, Theorem 12] to inequality (7) on the complete
weighted manifold (M, gM , e− f̃ dvol), and we obtain that S− is bounded from
above, or equivalently, S∗ = infM S > −∞. Again from the volume estimates in
[Qian 1997] and by Theorem 9 in [Pigola et al. 2011] applied to (M, gM , e− f̃ dvol),
the weak maximum principle at infinity for the f̃ -Laplacian holds on M . This
produces a sequence {xk}, such that 1 f̃ S(xk)≥−1/k and S(xk)→ S∗. Taking the
lim inf in (5) along {xk} shows that, for m > 1,

(8) 0≤−m+n−1
mn

(S∗− nλ)
(

S∗−
n(n−1)
m+n−1

λ
)
.

We now distinguish three cases.

(a) Assume λ > 0, so that M is compact. Equation (8) yields

n(n−1)
m+n−1

λ≤ S∗ ≤ nλ.

Assume now that S∗ = nλ > 0. Then S ≥ nλ≥ n(n−1)
m+n−1

λ, and from (5) we get

1
21 f̃ S ≤−m+n−1

mn
(S− nλ)

(
S− n(n−1)

m+n−1
λ
)
≤ 0.

Since M is compact, S must be constant. Hence, S = S∗ = nλ. Substituting in (5),
we obtain that Ric= (1/n)SgM , and thus that M is Einstein.

Now we show that S∗ >
(
n(n − 1)/(m + n − 1)

)
λ. Suppose that S attains its

minimum
(
n(n− 1)/(m+ n− 1)

)
λ. Because the nonnegative function

v(x)= S(x)− n(n−1)
m+n−1

λ

satisfies
1
21 f̃ v ≤−

m+n−1
mn

v2
+ λv ≤+λv,

and v attains its minimum v(x0) = 0, it follows from the minimum principle
[Gilbarg and Trudinger 1983, page 35] that v vanishes identically. Hence,

S ≡ n(n−1)
m+n−1

λ

is constant, and substituting in (5), we get that M is Einstein with

Ric= n−1
m+n−1

λgM .

Using this information with (1) we obtain that

Hess( f )= 1
m

d f ⊗ d f + m
m+n−1

λgM > 0,

but this is clearly impossible because M is compact.
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(b) Assume λ = 0. From (8) we conclude that S∗ = 0. Note that, according to
(5), 1 f̃ S ≤ 0. Therefore, by the minimum principle, either S(x) > 0 on M or
S(x) ≡ 0. In the latter case, substituting in (5), we obtain that M is Ricci-flat
and the m-quasi-Einstein equation reads Hess( f )−(1/m)d f ⊗d f = 0. Therefore,
either f is constant and M is Einstein, or the nonconstant function u = e− f/m

satisfies Hess(u) = 0. A Cheeger–Gromoll-type argument now shows that M is
isometric to the Riemannian product R×6 along the Ricci-flat, totally geodesic
hypersurface 6 of M .

(c) Assume λ < 0. From (8) we deduce that nλ ≤ S∗ ≤ (n(n− 1)/(m + n− 1))λ.
Suppose that S(x0) = nλ < 0 for some x0 ∈ M . Since the nonnegative function
w(x)= S(x)− nλ satisfies

1
21 f̃w ≤−

m+n−1
mn

w2
− λw ≤−λw,

and w attains its minimum w(x0)= 0, it follows from the minimum principle that
w vanishes identically. Hence, S ≡ nλ is constant, and substituting in (5) we get
that M is Einstein. �

4. Triviality results under L p conditions

It is well known that steady or expanding compact Ricci solitons are necessarily
trivial. The same result is proven in [Kim and Kim 2003] for quasi-Einstein metrics
on compact manifolds with finite m. For Ricci solitons, a generalization to the
complete, noncompact setting is obtained in [Pigola et al. 2011].

In this section, using the scalar curvature estimates of Theorem 3, we get trivi-
ality for (not necessarily compact) quasi-Einstein metrics with m <+∞, λ≤ 0.

Theorem 5. Let (Mn, gM , e− f dvol) be a geodesically complete noncompact m-
quasi-Einstein manifold, 1<m <+∞. If the quasi-Einstein constant λ is nonpos-
itive and f satisfies, for some 1< p <+∞,

(9) f ∈ L p(M, e− f/m dvol),

and infM f = f∗ >−∞, then either f ≡ const≤ 0 and M is Einstein or f > 0.

Proof of Theorem 5. Tracing (1) and letting f̂ = (1/m) f , we have

(10) 1 f̂ f = nλ− S.

Since λ ≤ 0 and f∗ > −∞, from (4) of Theorem 3 we obtain that 1 f̂ f ≤ 0.
Applying [Pigola et al. 2011, Theorem 14] to f−=max{− f, 0}∈ L p(M, e− f̂ dvol),
gives that f− is constant. Hence, if there exists a point x0 ∈M , such that f (x0)≤ 0,
then f ≡ f (x0)≤ 0. �
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Remark 6. From the proof, it follows that if either M is compact or f attains its
absolute minimum, then f ≡ const. Actually, it was pointed out to us by Dezhong
Chen that the same conclusion holds if we merely assume that f attains a local
minimum at some point x0 ∈ M . The following proposition holds.

Proposition 7. Let (M, gM , e− f dvol) be a geodesically complete noncompact m-
quasi-Einstein manifold, 1<m <+∞. If the quasi-Einstein constant λ is nonpos-
itive and f satisfies f∗>−∞, then any local minimum of f is actually an absolute
minimum.

Proof. Assume that f attains a local minimum x0 ∈ M . Evaluating (10) at x0, we
get

S(x0)≤ nλ.

Since λ≤ 0, by Theorem 3, M is Einstein and S is identically nλ. Thus the quasi-
Einstein equation (1) reads

(11) Hess( f )= (1/m)d f ⊗ d f.

In particular, Hess( f ) is positive semidefinite on M and this implies the thesis. �

5. Proof of the main theorem

Putting together the results of the previous sections, we easily obtain a proof of
Theorem 1.

According to Theorem 2, M is quasi-Einstein. Statement (a) follows immedi-
ately from Remark 6 and Proposition 7. In case (b), since (n+m)λ= NS ≤ 0, we
get by Theorem 5 that f , and therefore u, is a constant function.

6. Other triviality results

Another triviality result for Einstein warped products was obtained by Case [2010].

Theorem 8 [Case 2010]. Let N n+m
= Mn

×u Fm be a complete warped product
with warping function u(x)= e− f (x)/m , scalar curvature NS≥ 0 and complete Ein-
stein fibre F. Then N is simply a Riemannian product, provided the base manifold
M is complete, and the scalar curvature of F satisfies FS ≤ 0.

In the following theorem, we obtain the same conclusion in case the fibers have
nonnegative scalar curvature, assuming an integrability condition on the warping
function u. We observe that nontrivial examples with NS ≤ 0 and FS ≥ 0 are
constructed in [Besse 1987, 9.118]. Thus, the integrabilty assumption is necessary.

Theorem 9. Let N n+m
= Mn

×u Fm be a complete Einstein warped product with
warping function u(x)= e− f (x)/m , scalar curvature NS≤ 0, and complete Einstein
fibre F. Then N is simply a Riemannian product, provided the base manifold M
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is complete, the warping function satisfies
∫

M e−((p+m)/m) f dvol < +∞ for some
1 < p < +∞, and the scalar curvature of F satisfies F S ≥ 0. In this case M and
F are Ricci-flat and M is compact.

Combining Theorem 8 and Theorem 9 immediately gives the following.

Corollary 10. Let N be a complete Ricci-flat warped product with complete Ein-
stein fibre F and warping function u(x)=e− f (x)/m satisfying u∈ L p(M, e− f dvol),
for some 1< p <+∞. Then N is simply a Riemannian product.

Proof of Theorem 9. Just observe that computing the f -Laplacian of u and using
(2), one obtains

(12) 1 f u = µu−1
− λu+ u

m2 |∇ f |2.

Thus, in our assumptions, we obtain that1 f u≥ 0. Since 0< u ∈ L p(M, e− f dvol)
[Pigola et al. 2011, Theorem 14], we obtain the constancy of u. Up to a rescaling
of the metric of F , we can suppose u = 1.

Now, since the Riemannian product M × F is Einstein, both M and F are Ein-
stein manifolds with the same Einstein constant. In particular, MS and FS have
the same sign. By our assumption on the signs of NS and FS, we thus obtain that
both M and F are Ricci-flat. Finally, since u (and thus f ) is constant, from the
integrability condition, we obtain vol(M) < +∞. Thus, by a result of Calabi and
Yau (see [Yau 1976]), we obtain that M is compact. �

We end this section with a nonexistence result. Recall that by the volume esti-
mates in [Qian 1997] and by [Pigola et al. 2011, Theorem 9], the weak maximum
principle for the f -Laplacian holds on (M, gM , e− f dvol), provided Ricm

f = λgM

for some λ ∈ R, m <+∞.

Theorem 11. There is no complete Einstein warped product N = Mn
×u Fm with

warping function u = e− f/m
∈ L∞(M), scalar curvature NS < 0 and Einstein fibre

F with FS ≥ 0.

Proof. Since mµ= FS ≥ 0, from (12) we have

(13) 1 f u ≥−λu.

Since, by assumption, u satisfies supM u = u∗ < +∞, by the weak maximum
principle at infinity for the f -Laplacian, there exists a sequence {xk} ⊂ M , along
which u(xk)≥ u∗−1/k and 1 f u(xk)≤ 1/k. Thus evaluating (13) along {xk} and
taking the limit as k→+∞, we obtain that λu∗ ≥ 0, and since u∗ > 0, we cannot
have λ < 0. �
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Appendix

An extension of Myers’ theorem to weighted manifolds with a positive lower bound
on the m-Bakry–Emery Ricci tensor (m finite) was obtained by Qian [1997]. For
generalizations of Myers’ theorem in a different direction, see [Morgan 2006].

In this section we extend Qian’s theorem by allowing some negativity of the m-
Bakry–Emery Ricci tensor. Our considerations begin with the following Bochner
formula for the m-Bakry–Emery Ricci tensor; see, for example, [Setti 1998].

Let u : Mn
→ R be a smooth function on a complete weighted manifold

(Mn, gM , e− f dvol).
Then

(14) 1
21 f |∇u|2

=
∣∣Hess(u)

∣∣2+ gM(∇u,∇1 f u)+Ricm
f (∇u,∇u)+ 1

m
∣∣gM(∇ f,∇u)

∣∣2.
With this formula one obtains the following generalization of a well-known lemma,
which estimates the integral of Ricci along minimizing geodesics. The proof is
modeled on [Qian 1997].

Lemma 12. Let (Mn, gM , e− f dvol) be a complete weighted manifold, and con-
sider the m-Bakry–Emery Ricci tensor Ricm

f for m finite. Fix o ∈ M and let
r(x)= dist(x, o). For any point q ∈M , let γq : [0, r(q)]→M be a minimizing geo-
desic from o to q, such that |γ̇q |=1. If h∈Liploc(R) is such that h(0)=h(r(q))=0,
then for every q ∈ M , it holds that

(15) 0≤
∫ r(q)

0
(m+ n− 1)(h′)2 ds−

∫ r(q)

0
h2 Ricm

f (γ̇q , γ̇q)ds.

Proof. Fix a point q /∈ cut(o). Straightforward computations show that

(1 f r)2

m+n−1
≤
(1r)2

n−1
+
|gM(∇ f,∇r)|2

m
,(16)

|Hess(r)|2 ≥ (1r)2

n−1
.(17)

Using (16) and (17), from the Bochner formula (14) applied to the distance function
r(x), we obtain that

0≥
(1 f r)2

m+ n− 1
+ gM(∇r,∇1 f r)+Ricm

f (∇r,∇r).

Evaluating this along a minimizing geodesic γq , such that |γ̇q | = 1, we get

(18) 0≥
(1 f r ◦ γq)

2

m+ n− 1
+

d
ds
(1 f (r ◦ γq))+Ricm

f (γ̇q , γ̇q).
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If h ∈ Liploc(R), h ≥ 0, and h(0)= 0, then multiplying (18) by h2 and integrating
on [0, t], we obtain

0≥
∫ t

0
h2 (1 f r ◦ γq)

2

m+ n− 1
ds+

∫ t

0

d
ds
(1 f r ◦ γq)h2 ds+

∫ t

0
h2 Ricm

f (γ̇q , γ̇q)ds.

Since (1 f r ◦ γq)h2
→ 0 as r→ 0, integrating by parts, we have

(19) 0≥
∫ t

0
h2 (1 f r ◦ γq)

2

m+ n− 1
ds+ h2(t)(1 f r ◦ γq)(t)

− 2
∫ t

0
hh′(1 f r ◦ γq)ds+

∫ t

0
h2 Ricm

f (γ̇q , γ̇q)ds.

Since

−2hh′(1 f r ◦ γq)≥
−h2(1 f r ◦ γq)

2

m+ n− 1
− (m+ n− 1)(h′)2,

we deduce that

0≥ h2(t)(1 f r ◦ γq)−

∫ t

0
(m+ n− 1)(h′)2 ds+

∫ t

0
Ricm

f (γ̇q , γ̇q)h2 ds.

Thus, taking t = r(q) and choosing h such that h2(r(q)) = 0, we get (15) for
q /∈ cut(o). To treat the general case, one can use the Calabi trick. Namely, suppose
that q ∈ cut(o). Translating the origin o to oε = γq(ε) so that q /∈ cut(oε), using
the triangle inequality, and finally, taking the limit as ε→ 0, one checks that (15)
also holds in this case. �

From Lemma 12, some Myers-type results can be proven. Here we generalize a
theorem of Galloway [1979].

Theorem 13. Let (Mn, gM , e− f dvol) be a complete weighted manifold. Given
two different points p, q ∈ M , let γp,q be a minimizing geodesic from p to q pa-
rameterized by arc length. Suppose that there exist constants c and G ≥ 0 such
that for each pair of points p, q , it holds that

Ricm
f (γ̇p,q , γ̇p,q)|γp,q (t) ≥ (m+ n− 1)

[
c2
+

d
dt
(g ◦ γp,q)

]
,

for some C1(M) function g satisfing supM |g| ≤ G, m <+∞. Then M is compact
and

(20) diam(M)≤ 1
c

[
2G
c
+

√
4G2

c2 +π
2

]
.

Proof. Define L to be the length of γp,q between p and q and set

h(t) := sin
(
π

L
t
)
.
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Compute∫ L

0
h2(t)dt =

∫ L

0
sin2

(
π

L
t
)

dt = L
2
,

∫ L

0
h′2(t)dt = π

2

L2

∫ L

0
cos2

(
π

L
t
)

dt = π
2

2L
.

Then, applying Lemma 12, we have

(21) π2(m+n−1)
2L

=

∫ L

0
(m+ n− 1)h′2 ≥

∫ L

0
h2 Ricm

f (γ̇p,q , γ̇p,q)|γp,q ds

≥ c2(m+ n− 1)
∫ L

0
h2
+ (m+ n− 1)

∫ L

0
h2 d

dt
(g ◦ γp,q)

=
c2(m+n−1)L

2
+ (m+ n− 1)h2g(γp,q)

∣∣∣L
0

− (m+ n− 1)
[∫ L/2

0

( d
dt

h2
)
(g ◦ γp,q)+

∫ L

L/2

( d
dt

h2
)
(g ◦ γp,q)

]
≥

c2(m+n−1)L
2

− (m+ n− 1)G
[∫ L/2

0

( d
dt

h2
)
+

∫ L

L/2

∣∣∣ d
dt

h2
∣∣∣]

≥
c2(m+n−1)L

2
− 2(m+ n− 1)G.

Finally, this can be written as

c2L2
− 4GL −π2

≤ 0,

which in turn implies (20), because p and q are arbitrary. �

Reasoning as in the classical case [Galloway 1982; Mastrolia et al. 2011], the
validity of (15) and an integration by parts show that the compactness of M depends
on the behavior, and on the position of the zeros, of the solution of the differential
equation along minimizing geodesics

(22) −h′′(t)−
Ricm

f (γ̇ , γ̇ )

m+ n− 1
h(t)= 0.

It remains to find sufficient conditions on Ricm
f for which solutions of the differ-

ential equation (22) have a first zero at finite time. Minor changes to the proofs of
the results contained in [Mastrolia et al. 2011] lead to similar compactness results
in the weighted setting. In particular, we state the following theorem, in which a
Myers-type conclusion is obtained assuming a nonpositive lower bound on Ricm

f .

Theorem 14. Let Ricm
f ≥ −(m + n − 1)B2, for some constant B ≥ 0, m < +∞.

Suppose there is a point q ∈ M such that along each geodesic γ : [0,+∞)→ M
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parameterized by arc length, with γ (0)= q , it holds that either∫ b

a
t
Ricm

f (γ̇ , γ̇ )

m+ n− 1
dt > B

{
b+ a e2Ba

+1
e2Ba−1

}
+

1
4

log
(b

a

)
,(23)

or

(24)
∫ b

a
tα

Ricm
f (γ̇ , γ̇ )

m+ n− 1
(t)dt > B

{
bα + aα e2Ba

+1
e2Ba−1

}
+

α2

4(1−α)
{aα−1

− bα−1
},

for some 0< a < b and α 6= 1. Then M is compact.
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