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RYO HANAKI, RYO NIKKUNI, KOUKI TANIYAMA AND AKIKO YAMAZAKI

We say that a graph is intrinsically knotted or completely 3-linked if every
embedding of the graph into the 3-sphere contains a nontrivial knot or a
3-component link each of whose 2-component sublinks is nonsplittable. We
show that a graph obtained from the complete graph on seven vertices by
a finite sequence of 4Y-exchanges and Y4-exchanges is a minor-minimal
intrinsically knotted or completely 3-linked graph.

1. Introduction

Throughout this paper we work in the piecewise linear category. Let f be an
embedding of a finite graph G into the 3-sphere. Then f is called a spatial em-
bedding of G and f (G) is called a spatial graph. We denote the set of all spatial
embeddings of G by SE(G). We call a subgraph γ of G that is homeomorphic to
the circle a cycle of G. For a positive integer n, let 0(n)(G) denote the set of all
cycles of G if n = 1 and the set of all unions of n mutually disjoint cycles of G if
n≥ 2. For simplicity, we also write 0(G) for 0(1)(G). For an element λ in 0(n)(G)
and a spatial embedding f of G, f (λ) is a knot if n = 1 and an n-component link
if n ≥ 2.

A graph G is said to be intrinsically linked (IL) if for every spatial embedding f
of G, f (G) contains a nonsplittable 2-component link. Conway and Gordon [1983]
and Sachs [1984] showed that K6 is IL, where Km denotes the complete graph on
m vertices. Also, IL graphs have been completely characterized as follows. For
a graph G and an edge e of G, we denote the subgraph G \ int e by G − e. Let
e= uv be an edge of G that is not a loop. We call the graph obtained from G−e by
identifying the end vertices u and v the edge contraction of G along e, and denote
it by G/e. A graph H is called a minor of a graph G if there exists a subgraph
G ′ of G and edges e1, e2, . . . , em of G ′ such that H is obtained from G ′ by a
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sequence of edge contractions along e1, e2, . . . , em . A minor H of G is called a
proper minor if H does not equal G. Let P be a property for graphs that is closed
under minor reductions; that is, for any graph G that does not have P, all minors
of G also do not have P. A graph G is said to be minor-minimal with respect to
P if G has P but all proper minors of G do not have P. Note that G has P if and
only if G has a minor-minimal graph with respect to P as a minor. By the famous
theorem of Robertson and Seymour [2004], there are finitely many minor-minimal
graphs with respect to P. Nešetřil and Thomas [1985] showed that IL is closed
under minor reductions, and Robertson, Seymour and Thomas [Robertson et al.
1995] showed that the set of all minor-minimal graphs with respect to IL equals
the Petersen family, which is the set of all graphs obtained from K6 by a finite
sequence of 4Y-exchanges and Y4-exchanges. A 4Y-exchange is the left-to-right
operation shown here:

u

vw

x

u

vw

Y

Y

G GY

That is, a graph G4 containing a three-edge cycle 4 is changed into a new graph
GY by removing the edges of the cycle and adding a new vertex x connected to
each of the vertices of the deleted cycle, thus forming a Y. A Y4-exchange is the
reverse of this operation. 4Y- and Y4-exchanges preserve IL: if G4 is IL, so is
GY [Motwani et al. 1988], and if GY is IL, so is G4 [Robertson et al. 1995].

The Petersen family contains seven graphs, including the Petersen graph P10:

K6 Q Q8

P 8 P 9

7

P 7 P 10

(An arrow between two graphs indicates the application of a single4Y-exchange.)
A graph G is said to be intrinsically knotted (IK) if for every spatial embedding

f of G, f (G) contains a nontrivial knot. Conway and Gordon [1983] showed
that K7 is IK. Fellows and Langston [1988] showed that IK is closed under minor
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reductions. Motwani, Raghunathan, and Saran [Motwani et al. 1988] showed that
K7 is a minor-minimal IK graph, and additional minor-minimal IK graphs were
given in [Kohara and Suzuki 1992] and [Foisy 2002; 2003].

IK graphs have not been completely characterized yet. If G4 is IK then GY is
also IK [Motwani et al. 1988], but if GY is IK then G4 may not always be IK. That
is, the Y4-exchange does not preserve IK in general. Flapan and Naimi [2008]
showed that there exists a graph G F N obtained from K7 by five 4Y-exchanges
and two Y4-exchanges that is not IK. We call the set of all graphs obtained from
K7 by a finite sequence of 4Y and Y4-exchanges the Heawood family.1 This
family contains exactly twenty graphs, as illustrated in Figure 1; of these, C14 is
the Heawood graph (Remark 4.7).

Kohara and Suzuki [1992] showed that a graph G in the Heawood family is a
minor-minimal IK graph if G is obtained from K7 by a finite sequence of 4Y-
exchanges, that is, if G is one of fourteen graphs K7, H8, H9, . . . , H12, F9, F10,
E10, E11 and C11,C12, . . . ,C14.2 On the other hand, N ′10 is isomorphic to G F N ,
that is, N ′10 is not IK. Our first purpose in this paper is to determine completely
when a graph in the Heawood family is IK.

Theorem 1.1. For a graph G in the Heawood family, the following are equivalent:

(1) G is IK.

(2) G is obtained from K7 by a finite sequence of 4Y-exchanges.

(3) 0(3)(G) is the empty set.

Hence the members N9, N10, N11, N ′10, N ′11 and N ′12 of the Heawood family are not
IK, and only they contain a union of three mutually disjoint cycles.

Our second purpose is to show that any of the graphs in the Heawood family
is a minor-minimal graph with respect to a certain kind of intrinsic nontriviality
even if it is not IK. We say that a graph G is intrinsically knotted or completely
3-linked — I(K or C3L) for short — if for every spatial embedding f of G, f (G)
contains a nontrivial knot or a 3-component link all of whose 2-component sublinks
are nonsplittable. An IK graph is I(K or C3L). As we show in Proposition 2.2, I(K
or C3L) is closed under minor reductions.

Theorem 1.2. All graphs in the Heawood family are minor-minimal I(K or C3L)
graphs.

As we have seen, N9, N10, N11, N ′10, N ′11 and N ′12 are not IK, but they are but
I(K or C3L) and are minor-minimal with respect to I(K or C3L).

1Van der Holst [2006] calls the set of all graphs obtained from K7 or K3,3,1,1 by a finite sequence
of 4Y-exchanges and Y4-exchanges the Heawood family, where K3,3,1,1 is the complete 4-partite
graph on 3+ 3+ 1+ 1 vertices.

2One edge of F10 in [Kohara and Suzuki 1992, Figure 5] is wanting.
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K7

H8

H9 F 9

H10 F 10 E 10

H11 E 11 C11

C12

C13

C14

H12

N10

N9

N11 N'11

N'12

N'10

Figure 1. The Heawood family. An arrow between two graphs
indicates the application of a single 4Y-exchange.

Remark 1.3. A graph G is said to be intrinsically n-linked (InL) if for every spatial
embedding f of G, f (G) contains a nonsplittable n-component link [Flapan et al.
2001a; 2001b]. I2L coincides with IL. Let G be a graph in the Heawood family
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that is not IK. Then we show in Example 4.6 that there exists a spatial embedding
f of G such that f (G) does not contain a nonsplittable 3-component link. That is,
G is neither IK nor I3L.

Remark 1.4. A graph G is called intrinsically knotted or 3-linked — I(K or 3L)
for short — if for every spatial embedding f of G, f (G) contains a nontrivial knot
or a nonsplittable 3-component link. Clearly I(K or C3L) implies I(K or 3L), but
the converse is not true: [Foisy 2006] exhibits an I(K or 3L) graph G and a spatial
embedding f of G such that f (G) contains no nontrivial knot and all nonsplittable
3-component links contained in f (G) have split 2-component sublinks.

The rest of this paper is organized as follows. Section 2 contains general results
about graph minors, 4Y-exchanges and spatial graphs. We prove Theorem 1.1 in
Section 3 and Theorem 1.2 in Section 4.

2. Graph minors, 4Y-exchanges and spatial graphs

Let H be a minor of a graph G. Then there exists a natural injection

9(n)
=9

(n)
H,G : 0

(n)(H)−→ 0(n)(G)

for any positive integer n. We write9 for9(1). Let f be a spatial embedding of G
and e an edge of G that is not a loop. Then by contracting f (e) into one point, we
obtain a spatial embedding ψ( f ) of G/e. Similarly, we can also obtain a spatial
embedding ψ( f ) of H from f . Thus we obtain a map

ψ = ψG,H : SE(G)−→ SE(H).

Then we immediately have:

Proposition 2.1. For a spatial embedding f of G and an element λ in 0(n)(H),
ψ( f )(λ) is ambient isotopic to f (9(n)(λ)). �

Proposition 2.2. I(K or C3L) is closed under minor reductions.

Proof. Let G be a graph that is not I(K or C3L), and H be a minor of G. Let f be
a spatial embedding of G that contains neither a nontrivial knot nor a 3-component
link all of whose 2-component sublinks are nonsplittable. Then by Proposition 2.1,
ψ( f ) has the same property. This implies that H is not I(K or C3L). �

Remark 2.3. Proposition 2.1 also implies that IK, InL and I(K or 3L) are closed
under minor reductions.

Let G4 and GY be two graphs such that GY is obtained from G4 by a single
4Y-exchange, as in the previous section. Let λ be an element in 0(n)(G4) that
does not contain 4. Then there exists an element 8(n)(λ) in 0(n)(GY) such that
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λ \4 =8(n)(λ) \Y. Thus we obtain a map

8(n) =8
(n)
G4,GY

: {λ ∈ 0(n)(G4) | λ 6⊃ 4} −→ 0(n)(GY),

for any positive integer n. We denote 8(1) by 8. Note that 8(n) is surjective and
the inverse image of λ by 8(n) contains at most two elements in 0(n)(G4) for any
element λ in 0(n)(GY). The surjectivity of 8(n) implies Proposition 2.4.

Proposition 2.4. For n ≥ 2, if 0(n)(G4)=∅, then 0(n)(GY)=∅. �

Let f be a spatial embedding of GY, and let D be a 2-disk in the 3-sphere such
that D∩ f (GY)= f (Y) and ∂D∩ f (GY)= { f (u), f (v), f (w)}. (Throughout the
paper we use u, v, w, x for the vertices of the Y of interest, as in the first figure on
page 408), Let ϕ( f ) be a spatial embedding of G4 such that ϕ( f )(x)= f (x) for
x ∈ GY \Y and ϕ( f )(G4)= ( f (GY) \ f (Y))∪ ∂D. Then we obtain a map

ϕ = ϕGY,G4 : SE(GY)−→ SE(G4),

and we immediately have Proposition 2.5.

Proposition 2.5. For a spatial embedding f of GY and an element λ in 0(n)(GY),
f (λ) is ambient isotopic to ϕ( f )(λ′) for each element λ′ in the inverse image of λ
by 8(n). �

Lemma 2.6. If G4 is I(K or C3L), then GY is also I(K or C3L).

Proof. Assume that GY is not I(K or C3L), that is, that there exists a spatial
embedding f of GY that contains neither a nontrivial knot nor a 3-component link
all of whose 2-component sublinks are nonsplittable. We show that ϕ( f )(G4) also
has the same property.

Let γ be an element in 0(G4). If γ is not 4, then ϕ( f )(γ ) is ambient isotopic
to f (8(γ )) by Proposition 2.5, and f (8(γ )) is a trivial knot by the assumption.
Since ϕ( f )(4) is also a trivial knot, it follows that ϕ( f )(G4) does not contain a
nontrivial knot. Let λ be an element in 0(3)(G4). If λ does not contain 4, then
ϕ( f )(λ) is ambient isotopic to f (8(3)(λ)) by Proposition 2.5, and f (8(3)(λ)) is a
3-component link that contains a split 2-component sublink by the assumption. If λ
contains 4, then ϕ( f )(λ) is a split 3-component link. Thus we see that ϕ( f )(G4)
does not contain a 3-component link with a nonsplittable 2-component sublink. �

Lemma 2.7. If GY is minor-minimal for I(K or C3L), then G4 is also minor-
minimal for I(K or C3L).

Proof. (This lemma has already been proven in more general form [Ozawa and
Tsutsumi 2007, Lemma 3.1, Exercise 3.2], but we prove it here for convenience.)
We show that for any edge e of G4 that is not a loop, there exist a spatial embedding
f of G4− e and a spatial embedding g of G4/e such that each of f (G4− e) and
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g(G4/e) contains neither a nontrivial knot nor a 3-component link all of whose
2-component sublink are nonsplittable. If e is not one of the edges uv, vw or wu
of the4 then there exist a spatial embedding f ′ of GY−e and a spatial embedding
g′ of GY/e such that both f ′(GY − e) and g′(GY/e) contain neither a nontrivial
knot nor a 3-component link all of whose 2-component sublinks are nonsplittable.
The graph GY − e is obtained from G4 − e, and likewise GY/e from G4/e, by
a single 4Y-exchange at the same 4. Then we see that each of ϕ( f ′)(G4 − e)
and ϕ(g′)(G4/e) contains neither a nontrivial knot nor a 3-component link hav-
ing only nonsplittable 2-component sublinks, in a way similar to the proof of
Lemma 2.6. If e is one of uv, vw and wu, we may assume that e = uv without
loss of generality. Now there exists a spatial embedding f ′ of GY/xw such that
f ′(GY/xw) contains neither a nontrivial knot nor a 3-component link having only
nonsplittable 2-component sublinks. Then we can see that G4 − uv = GY/xw.
On the other hand, there exists a spatial embedding g′ of GY/xv/xu such that
g′(GY/xv/xu) contains neither a nontrivial knot nor a 3-component link having
only nonsplittable 2-component sublink. Take a 2-disk D′ in the 3-sphere such that
D′ ∩ g′(GY/xv/xu)= g′(uw) and ∂D′ ∩ g′(GY/xv/xu)= {g′(u), g′(w)}. Then
(g′(GY/xv/xu)\ int g′(uw))∪∂D′ may be regarded as the image of a spatial em-
bedding of G4/uv, denoted by g. Clearly g(G4/uv) contains neither a nontrivial
knot nor a 3-component link having only nonsplittable 2-component sublink. �

3. Proof of Theorem 1.1

Lemma 3.1. Each of the graphs N9, N10, N11, N ′10, N ′11 and N ′12 in the Heawood
family is not IK.

Proof. For N ′10, see [Flapan and Naimi 2008]. We show that N9, N10, N11, N ′11 and
N ′12 are not IK. Let f9 be the spatial embedding of N9 illustrated in Figure 2. It
can be checked directly that f9(N9) does not contain a nontrivial knot. Thus N9 is

*

*

*

*

f  (N  )99 f    (N   )1010 f   (N   )1111

f ' (N'  )1111 f '  (N'  )1212

Figure 2
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not IK. Let f10 be the spatial embedding of N10 illustrated in Figure 2. Let ϕN10,N9

be the map from SE(N10) to SE(N9) induced by the Y4-exchange from N10 to N9

at the Y-fork marked ∗ in Figure 2. Then clearly ϕ( f10)= f9. Since f9(N9) does
not contain a nontrivial knot, by Proposition 2.5 it follows that f10(N10) also does
not contain a nontrivial knot. Thus, N10 is not IK. By repeating this argument, we
can see that each of the graphs N11, N ′11 and N ′12 is also not IK; see Figure 2. �

Proof of Theorem 1.1. First we show that (1) and (2) are equivalent. Since we
already know that (2) implies (1), we show that (1) implies (2). If G is IK, then
by Lemma 3.1 we see that G is not one of N9, N10, N11, N ′10, N ′11 or N ′12. Thus G
is obtained from K7 by a finite sequence of 4Y-exchanges. Next we show that (2)
and (3) are equivalent. Assume that G is obtained from K7 by a finite sequence of
4Y-exchanges. 0(3)(K7) is the empty set. Thus, by Proposition 2.4, we see that
0(3)(G) is the empty set. Conversely, if G is one of N9, N10, N11, N ′10, N ′11, and
N ′12, then 0(3)(G) is not the empty set. This completes the proof. �

Remark 3.2. Let f ′11 be the spatial embedding of N ′11 illustrated in Figure 2, and
let f ′10 be the spatial embedding of N ′10 illustrated in the figure below. Let ϕN ′11,N

′

10

be the map from SE(N ′11) to SE(N ′10) induced by the Y4-exchange from N ′11 to
N ′10 at the Y-fork marked ∗∗. Then clearly ϕ( f ′11) = f ′10. Also, we can see that
f ′10 coincides with Flapan and Naimi’s example [2008] of a spatial embedding of
N ′10 whose image does not contain a nontrivial knot, as illustrated in the leftmost
diagram:

6 5

3

82

10

4
1

9

7

6

5

3

2

8

10

4

1

97

~=
**

f '  (N'  )1010 f ' (N'  )1111

4. Proof of Theorem 1.2

Lemma 4.1 [Conway and Gordon 1983; Taniyama and Yasuhara 2001]. Let G be
a graph in the Petersen family and f a spatial embedding of G. Then there exists
an element λ in 0(2)(G) such that lk( f (λ)) is odd, where lk denotes the linking
number in the 3-sphere.

Let D4 be the graph illustrated on the right. We denote the set of

D  4

all cycles of D4 with exactly four edges by 04(D4). For a spatial
embedding f of D4, we define

α( f )≡
∑

γ∈04(D4)

a2( f (γ )) (mod 2),
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where a2 denotes the second coefficient of the Conway polynomial. Note that
a2(K ) of a knot K is congruent to the Arf invariant modulo 2 [Kauffman 1983].

Lemma 4.2 [Taniyama and Yasuhara 2001]. Let f be a spatial embedding of D4

and λ, λ′ all elements in 0(2)(D4). If both lk( f (λ)) and lk( f (λ′)) are odd, then
α( f )= 1.

Let G be a graph that contains D4 as a minor and f a spatial embedding of G.
Then we define

α( f )≡
∑

γ∈04(D4)

a2
(

f (9D4,G(γ ))
)
(mod 2).

Lemma 4.3. Let G be a graph that contains D4 as a minor and let f be a spatial
embedding of G. For two elements µ and µ′ in 9(2)

D4,G(0
(2)(D4)), if both lk( f (µ))

and lk( f (µ′)) are odd, then α( f )= 1.

Proof. For two elements λ and λ′ in 0(2)(D4), we see that both lk
(

f (9(2)
D4,G(λ))

)
and lk

(
f (9(2)

D4,G(λ
′))
)

are odd by the assumption. Then by Proposition 2.1, it
follows that lk(ψG,D4( f )(λ)) and lk(ψG,D4( f )(λ′)) are also odd. Therefore, by
Lemma 4.2, we have that

α( f )≡
∑

γ∈04(D4)

a2
(

f (9D4,G(γ ))
)
=

∑
γ∈04(D4)

a2(ψG,D4( f )(γ ))≡ 1 (mod 2). �

The next theorem is the most important part of the proof of Theorem 1.2.

Theorem 4.4. Let G be N9 or N ′10. For every spatial embedding f of G, there
exists an element γ in 0(G) such that a2( f (γ )) is odd, or there exists an element λ
in 0(3)(G) such that each 2-component sublink of f (λ) has an odd linking number.

Proof. We will denote by [i1 i2 . . . ik] the cycle i1i2 ∪ i2i3 ∪ · · · ∪ ik−1ik ∪ iki1 of
G. We label each vertex of G as follows:

N9 N'10
1

2 3

4

5 6

7

8 9

1

2

3

4

5 6

7

8
9

10

First we show the case of G = N9. Let f be a spatial embedding of N9. Note
that N9 contains K6 as the proper minor

(((N9− 7 8)− 8 9)− 9 7)/4 7/5 8/6 9.

By Lemma 4.1, there is thus an element ν in 0(2)(K6) such that lk(ψN9,K6( f )(ν))
is odd. Hence, by Proposition 2.1, there exists an element µ in 9(2)

K6,N9
(0(2)(K6))

such that lk( f (µ)) is odd. 9(2)
K6,N9

(0(2)(K6)) consists of ten elements, and by the
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symmetry of N9, we may assume that µ = [1 7 4 3] ∪ [2 6 5 8] or [1 2 3] ∪ [4 5 6]
without loss of generality.

Case 1. Let µ= [1 7 4 3]∪ [2 6 5 8]. Note that N9 contains P7 as the proper minor

(((((N9− 6 1)− 6 2)− 6 4)− 6 5)− 6 9)/3 9.

Thus, by Lemma 4.1, there is an element ν ′ in 0(2)(P7) such that lk(ψN9,P7( f )(ν ′))
is odd. Hence, by Proposition 2.1, there exists an element µ′ in 9(2)

P7,N9
(0(2)(P7))

such that lk( f (µ′)) is odd. 9(2)
P7,N9

(0(2)(P7)) consists of the nine elements

µ′1 = [3 4 5] ∪ [1 2 8 7], µ′2 = [1 5 4 7] ∪ [2 3 9 8], µ′3 = [2 8 5 4] ∪ [3 1 7 9],

µ′4 = [1 2 4 7] ∪ [3 5 8 9], µ′5 = [1 2 3] ∪ [4 7 8 5], µ′6 = [1 2 8 5] ∪ [3 4 7 9],

µ′7 = [2 3 4] ∪ [1 5 8 7], µ′8 = [7 8 9] ∪ [1 2 4 5], µ′9 = [1 5 3] ∪ [2 8 7 4].

For i = 1, 2, . . . , 9, let J i be the subgraph of N9 that is µ ∪ µ′i ∪ 6 9 if i = 3, 6
and µ∪µ′i if i 6= 3, 6. Assume that lk( f (µ′i )) is odd for some i 6= 8. Then it can
be easily seen that J i contains a graph Di as a minor, such that Di is isomorphic
to D4 and {µ,µ′i } = 9

(2)
Di ,J i (0

(2)(Di )). Since both lk( f (µ)) and lk( f (µ′i )) are
odd, by Lemma 4.3 there exists an element γ in 0(J i ) such that a2( f (γ )) is odd.
Next assume that lk( f (µ′8)) is odd. We denote two elements [7 8 9]∪ [1 2 6 5] and
[7 8 9]∪[4 2 6 5] in 0(2)(J 8) byµ′8,1 andµ′8,2, respectively. We denote the subgraph
µ∪µ′8, j of J 8 by J 8, j ( j = 1, 2). Then it can be easily seen that J 8, j contains
a graph D8, j as a minor, such that D8, j is isomorphic to D4 and {µ,µ′8, j } =

9
(2)
D8, j ,J 8, j (0

(2)(D8, j )) ( j = 1, 2). Note that

[1 2 4 5] = [1 2 6 5] + [4 2 6 5]

in H1(J 8
;Z2), where H∗(· ;Z2) denotes the homology group with Z2-coefficients.

Then, by the homological property of the linking number, we have that

1≡ lk( f (µ′8))≡ lk( f (µ′8,1))+ lk( f (µ′8,2)) (mod 2).

Thus we see that lk( f (µ′8,1)) is odd or lk( f (µ′8,2)) is odd. In either case, by
Lemma 4.3 there exists an element γ in 0(J 8, j ) such that a2( f (γ )) is odd.

Case 2. Let µ= [1 2 3] ∪ [4 5 6]. Note that N9 contains P9 as the proper minor

(((((N9− 1 2)− 2 3)− 3 1)− 4 5)− 5 6)− 6 4.

Thus, by Lemma 4.1, there is an element ν ′ in 0(2)(P9) such that lk(ψN9,P9( f )(ν ′))
is odd. Hence by Proposition 2.1, there exists an element µ′ in 9(2)

P9,N9
(0(2)(P9))

such that lk( f (µ′)) is odd. 9(2)
P9,N9

(0(2)(P9)) consists of seven elements, and by the
symmetry of N9, we may assume, without loss of generality, that µ′ = [1 5 8 7] ∪
[2 6 9 3 4] or [7 8 9]∪[1 5 3 4 2 6]. Denote by J the subgraph µ∪µ′ of N9. Assume
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that µ′ = [1 5 8 7] ∪ [2 6 9 3 4]. We denote the two elements [1 5 8 7] ∪ [4 3 2] and
[1 5 8 7] ∪ [6 9 3 2] in 0(2)(J ) by µ′1 and µ′2, respectively. We denote the subgraph
µ∪µ′i of J by J i (i = 1, 2). Then J i contains a graph Di as a minor such that Di

is isomorphic to D4 and

{µ,µ′i } =9
(2)
Di ,J i (0

(2)(Di )) (i = 1, 2).

Since [2 6 9 3 4] = [4 3 2] + [6 9 3 2] in H1(J ;Z2), it follows that

1≡ lk( f (µ′))≡ lk( f (µ′1))+ lk( f (µ′2)) (mod 2).

This implies that lk( f (µ′1)) is odd or lk( f (µ′2)) is odd. In both cases, by Lemma 4.3
there exists an element γ in 0(J i ) such that a2( f (γ )) is odd. Next assume that
µ′=[7 8 9]∪[1 5 3 4 2 6]. We denote four elements [7 8 9]∪[3 4 5], [7 8 9]∪[4 5 6],
[7 8 9] ∪ [1 5 6] and [7 8 9] ∪ [2 4 6] in 0(2)(J ) by µ′1, µ

′

2, µ
′

3 and µ′4, respectively.
Since [1 5 3 4 2 6] = [3 4 5] + [4 5 6] + [1 5 6] + [2 4 6] in H1(J ;Z2), we get

1≡ lk(µ′)≡ lk(µ′1)+ lk(µ′2)+ lk(µ′3)+ lk(µ′4) (mod 2).

This implies that lk(µ′i ) is odd for some i=1, 2, 3 or 4. Moreover, by the symmetry
of J , we may assume that lk(µ′1) is odd or lk(µ′2) is odd without loss of generality.
Assume that lk(µ′1) is odd. We denote the subgraph µ ∪µ′1 ∪ 1 7∪ 6 9 of N9 by
J 1. Then J 1 contains a graph D1 as a minor such that D1 is isomorphic to D4

and {µ,µ′1} =9
(2)
D1,J 1(0

(2)(D1)). Since both lk( f (µ)) and lk( f (µ′1)) are odd, by
Lemma 4.3 there exists an element γ in 0(J 1) such that a2( f (γ )) is odd. Next
assume that lk(µ′2) is odd. We denote four elements [7 8 9]∪[1 2 6], [7 8 9]∪[1 2 3],
[7 8 9] ∪ [2 3 4] and [7 8 9] ∪ [1 3 5] in 0(2)(J ) by µ′5, µ

′

6, µ
′

7 and µ′8, respectively.
Since [1 5 3 4 2 6] = [1 2 6] + [1 2 3] + [2 3 4] + [1 3 5] in H1(J ;Z2), we have

1≡ lk(µ′)≡ lk(µ′5)+ lk(µ′6)+ lk(µ′7)+ lk(µ′8) (mod 2).

Thus we see that lk(µ′i ) is odd for some i=5, 6, 7 or 8. Moreover, by the symmetry
of J , we may assume that lk(µ′5) is odd or lk(µ′6) is odd without loss of generality.
Assume that lk(µ′5) is odd. We denote the subgraph µ ∪µ′5 ∪ 4 7∪ 3 9 of N9 by
J 5. Then J 5 contains a graph D5 as a minor such that D5 is isomorphic to D4

and {µ,µ′5} = 9
(2)
D5,J 5(0

(2)(D5)). Since both lk( f (µ)) and lk( f (µ′5)) are odd,
by Lemma 4.3 there exists an element γ in 0(J 5) such that a2( f (γ )) is odd.
Finally, assume that lk(µ′6) is odd. Let us consider the 3-component link L =
f ([1 2 3]∪[4 5 6]∪[7 8 9]). Since all 2-component sublinks of L are f (µ), f (µ′2)
and f (µ′6), each of the 2-component sublinks of L has an odd linking number.

Now we show the case of G = N ′10. Let f be a spatial embedding of N ′10. Note
that N ′10 contains P7 as the proper minor

(((N ′10− 7 8)− 8 9)− 9 7)/4 7/5 8/6 9.
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Thus by Lemma 4.1, there is an element ν in 0(2)(P7) such that lk(ψN ′10,P7( f )(ν))
is odd. Hence by Proposition 2.1, there exists an element µ in 9(2)

P7,N ′10
(0(2)(P7))

such that lk( f (µ)) is odd. 9(2)
P7,N ′10

(0(2)(P7)) consists of nine elements, and by
the symmetry of N ′10, we may assume that µ = [1 7 4 5] ∪ [2 10 3 9 6], [2 4 5 8] ∪
[1 10 3 9 6], [3 10 8 5]∪[1 6 2 4 7], [3 4 5]∪[1 10 2 6] or [2 8 10]∪[1 6 9 3 4 7]without
loss of generality.

Case 1. Let µ = [1 7 4 5] ∪ [2 10 3 9 6]. Note that N ′10 contains P9 as the proper
minor

(((((N ′10− 5 1)− 5 3)− 5 4)− 5 6)− 5 8)− 7 9.

Thus by Lemma 4.1, there is an element ν ′ in 0(2)(P9) such that lk(ψN ′10,P9( f )(ν ′))
is odd. Hence by Proposition 2.1, there exists an element µ′ in 9(2)

P9,N ′10
(0(2)(P9))

such that lk( f (µ′)) is odd. 9(2)
P9,N ′10

(0(2)(P9)) consists of seven elements

µ′1 = [3 10 8 9] ∪ [1 6 2 4 7], µ′2 = [1 7 8 10] ∪ [2 4 3 9 6],

µ′3 = [1 10 2 6] ∪ [3 4 7 8 9], µ′4 = [2 4 3 10] ∪ [1 7 8 9 6],

µ′5 = [2 4 7 8] ∪ [1 10 3 9 6], µ′6 = [2 8 9 6] ∪ [1 10 3 4 7],

µ′7 = [2 8 10] ∪ [1 6 9 3 4 7].

For i = 1, 2, . . . , 7, let J i be the subgraph of N ′10 that is µ∪µ′i ∪ 5 8 if i = 1, 6, 7
and µ ∪ µ′i if i = 2, 3, 4, 5. Assume that lk( f (µ′i )) is odd for some i . Then J i

contains a graph Di as a minor such that Di is isomorphic to D4 and {µ,µ′i } =
9
(2)
Di ,J i (0

(2)(Di )). Because both lk( f (µ)) and lk( f (µ′i )) are odd, by Lemma 4.3
there exists an element γ in 0(J i ) such that a2( f (γ )) is odd.

Case 2. Let µ = [2 4 5 8] ∪ [1 10 3 9 6]. Note that N ′10 contains another P9 as the
proper minor

(((((N ′10− 8 2)− 8 5)− 8 7)− 8 9)− 8 10)− 3 4.

Thus by Lemma 4.1, there is an element ν ′ in 0(2)(P9) such that lk(ψN ′10,P9( f )(ν ′))
is odd. Hence by Proposition 2.1, there exists an element µ′ in 9(2)

P9,N ′10
(0(2)(P9))

such that lk( f (µ′)) is odd. 9(2)
P9,N ′10

(0(2)(P9)) consists of the seven elements

µ′1 = [1 6 9 7] ∪ [2 4 5 3 10], µ′2 = [1 7 4 5] ∪ [2 10 3 9 6],

µ′3 = [3 5 6 9] ∪ [1 10 2 4 7], µ′4 = [1 5 3 10] ∪ [2 4 7 9 6],

µ′5 = [1 10 2 6] ∪ [3 9 7 4 5], µ′6 = [1 5 6] ∪ [2 4 7 9 3 10],

µ′7 = [2 4 5 6] ∪ [1 10 3 9 7].

For i = 1, 2, . . . , 7, let J i be the subgraph of N ′10 that is µ ∪µ′i ∪ 7 8 if i = 1, 7
and µ∪µ′i if i 6= 1, 7. Assume that lk( f (µ′i )) is odd for some i . Then J i contains
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a graph Di as a minor such that Di is isomorphic to D4 and

{µ,µ′i } =9
(2)
Di ,J i (0

(2)(Di )).

Since both lk( f (µ)) and lk( f (µ′i )) are odd, by Lemma 4.3 there exists an element
γ in 0(J i ) such that a2( f (γ )) is odd.

Case 3. Let µ= [3 10 8 5] ∪ [1 6 2 4 7]. Let P9 be the proper minor of N ′10 and µ′i
the element in

9
(2)
P9,N ′10

(0(2)(P9)) (i = 1, 2, . . . , 7)

as in Case 2. For i = 1, 2, . . . , 7, let J i be the subgraph of N ′10 that is µ∪µ′i ∪8 9
if i = 1, 4 and µ ∪ µ′i if i 6= 1, 4. Assume that lk( f (µ′i )) is odd for some i .
Then J i contains a graph Di as a minor such that Di is isomorphic to D4 and
{µ,µ′i } = 9

(2)
Di ,J i (0

(2)(Di )). Because both lk( f (µ)) and lk( f (µ′i )) are odd, by
Lemma 4.3 there exists an element γ in 0(J i ) such that a2( f (γ )) is odd.

Case 4. Letµ=[3 4 5]∪[1 10 2 6]. Note that N ′10 contains another P7 as the proper
minor

(((N ′10− 3 4)− 4 5)− 5 3)/3 9/4 7/5 8.

Thus by Lemma 4.1, there is an element ν ′ in 0(2)(P7) such that lk(ψN ′10,P7( f )(ν ′))
is odd. Hence by Proposition 2.1, there exists an element µ′ in 9(2)

P7,N ′10
(0(2)(P7))

such that lk( f (µ′)) is odd. 9(2)
P7,N ′10

(0(2)(P7)) consists of the nine elements

µ′1 = [5 6 9 8] ∪ [1 10 2 4 7], µ′2 = [3 10 8 9] ∪ [1 6 2 4 7],

µ′3 = [1 5 8 10] ∪ [2 4 7 9 6], µ′4 = [7 8 9] ∪ [1 10 2 6],

µ′5 = [2 8 10] ∪ [1 6 9 7], µ′6 = [2 8 5 6] ∪ [1 10 3 9 7],

µ′7 = [1 7 8 5] ∪ [2 10 3 9 6], µ′8 = [1 5 6] ∪ [2 4 7 9 3 10],

µ′9 = [2 4 7 8] ∪ [1 10 3 9 6].

For i = 1, 2, . . . , 9, let J i be the subgraph of N ′10 that is µ ∪ µ′5 ∪ 4 7 ∪ 5 8
if i = 5 and µ ∪ µ′i if i 6= 5. Assume that lk( f (µ′i )) is odd for some i 6=
4, 8. Then J i contains a graph Di as a minor such that Di is isomorphic to D4

and {µ,µ′i } =9
(2)
Di ,J i (0

(2)(Di )). Since both lk( f (µ)) and lk( f (µ′i )) are odd, by
Lemma 4.3 there exists an element γ in 0(J i ) such that a2( f (γ )) is odd. Next
assume that lk( f (µ′8)) is odd. We denote two elements [1 5 6] ∪ [2 4 3 10] and
[1 5 6] ∪ [3 4 7 9] in 0(2)(J 8) by µ′8,1 and µ′8,2, respectively. We denote the sub-
graph µ∪µ′8,1 of J 8 by J 8,1 and the subgraph µ ∪ µ′8,2 ∪ 8 9 ∪ 8 10 of N ′10 by
J 8,2. Then J 8, j contains a graph D8, j as a minor such that D8, j is isomorphic
to D4 and {µ,µ′8, j } = 9

(2)
D8, j ,J 8, j (0

(2)(D8, j )) ( j = 1, 2). Since [2 4 7 9 3 10] =
[2 4 3 10] + [3 4 7 9] in H1(J 8

;Z2), it follows that

1≡ lk( f (µ′8))≡ lk( f (µ′8,1))+ lk( f (µ′8,2)) (mod 2).
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This implies that lk( f (µ′8,1)) is odd or lk( f (µ′8,2)) is odd. In either case, by
Lemma 4.3 there exists an element γ in 0(J 8, j ) such that a2( f (γ )) is odd. Finally
assume that lk( f (µ′4)) is odd. Note that N ′10 contains another P9 as the proper
minor

(((((N ′10− 2 4)− 2 6)− 2 8)− 2 10)− 5 1)− 5 3.

Thus by Lemma 4.1, there is an element ν ′′ in0(2)(P9) such that lk(ψN ′10,P9( f )(ν ′′))
is odd. Hence by Proposition 2.1, there exists an element µ′′ in 9(2)

P9,N ′10
(0(2)(P9))

such that lk( f (µ′′)) is odd. 9(2)
P9,N ′10

(0(2)(P9)) consists of the seven elements

µ′′1 = [5 6 9 8] ∪ [1 10 3 4 7], µ′′2 = [4 5 8 7] ∪ [1 10 3 9 6],

µ′′3 = [1 7 8 10] ∪ [3 4 5 6 9], µ′′4 = [3 10 8 9] ∪ [1 7 4 5 6],

µ′′5 = [1 6 9 7] ∪ [3 4 5 8 10], µ′′6 = [3 9 7 4] ∪ [1 10 8 5 6],

µ′′7 = [7 8 9] ∪ [1 10 3 4 5 6].

For j = 1, 2, . . . , 7, let J 4, j be the subgraph of N ′10 which is µ′4 ∪ µ
′′

j ∪ 2 4 if
j = 2, 6 and µ′4 ∪µ

′′

j if j 6= 2, 6. Assume that lk( f (µ′′j )) is odd for some j 6= 7.
Then J 4, j contains a graph D4, j as a minor such that D4, j is isomorphic to D4 and
{µ′4, µ

′′

i } =9
(2)
D4, j ,J 4, j (0

(2)(D4, j )). Since both lk( f (µ′4)) and lk( f (µ′′j )) are odd,
by Lemma 4.3 there exists an element γ in 0(J 4, j ) such that a2( f (γ )) is odd.
Next assume that lk( f (µ′′7)) is odd. We denote three elements [7 8 9] ∪ [1 5 3 10],
[7 8 9]∪ [1 5 6] and [7 8 9]∪ [3 4 5] in 0(2)(N ′10) by µ′′7,1, µ′′7,2 and µ′′7,3. We denote
the subgraph µ∪µ′′7,k ∪ 4 7∪ 2 8 of N ′10 by J 4,7,k (k = 1, 2). Then J 4,7,k contains
a graph D4,7,k as a minor such that D4,7,k is isomorphic to D4 and {µ,µ′′7,k} =
9
(2)
D4,7,k ,J 4,7,k (0

(2)(D4,7,k)) (k = 1, 2). Since [1 10 3 4 5 6] = [1 5 3 10] + [1 5 6] +
[3 4 5] in H1(N ′10;Z2), it follows that

1≡ lk( f (µ′7))≡ lk( f (µ′′7,1))+ lk( f (µ′′7,2))+ lk( f (µ′′7,3)) (mod 2).

This implies that lk( f (µ′′7,k)) is odd for some k. If lk( f (µ′′7,1)) is odd or lk( f (µ′′7,2))
is odd, then by Lemma 4.3 there exists an element γ in0(J 4,7,k) such that a2( f (γ ))
is odd. If lk( f (µ′′7,3)) is odd, let us consider the 3-component link

L = f ([3 4 5] ∪ [7 8 9] ∪ [1 10 2 6]).

Since all 2-component sublinks of L are f (µ), f (µ′4) and f (µ′′7,3), each of the
2-component sublinks of L has an odd linking number.

Case 5. Let µ= [2 8 10]∪[1 6 9 3 4 7]. We denote two elements [2 8 10]∪[1 6 9 7]
and [2 8 10]∪[3 9 7 4] in 0(2)(N ′10) by µ1 and µ2, respectively. Since [1 6 9 3 4 7]=
[1 6 9 7] + [3 9 7 4] in H1(N ′10;Z2), it follows that

1≡ lk( f (µ))≡ lk( f (µ1))+ lk( f (µ2)) (mod 2).
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This implies that lk( f (µ1)) is odd or lk( f (µ2)) is odd. By the symmetry of N ′10,
we may assume that lk( f (µ1)) is odd. Note that N ′10 contains another P7 as the
proper minor

(((N ′10− 2 8)− 8 10)− 10 2)/2 6/3 10/5 8.

Thus by Lemma 4.1, there is an element ν ′ in 0(2)(P7) such that lk(ψN ′10,P7( f )(ν ′))
is odd. Hence by Proposition 2.1, there exists an element µ′ in 9(2)

P7,N ′10
(0(2)(P7))

such that lk( f (µ′)) is odd. 9(2)
P7,N ′10

(0(2)(P7)) consists of the nine elements

µ′1 = [3 5 8 9] ∪ [1 6 2 4 7], µ′2 = [1 7 8 5] ∪ [2 4 3 9 6],

µ′3 = [1 5 6] ∪ [3 9 7 4], µ′4 = [3 4 5] ∪ [1 6 9 7],

µ′5 = [5 6 9 8] ∪ [1 10 3 4 7], µ′6 = [4 5 8 7] ∪ [1 10 3 9 6],

µ′7 = [1 5 3 10] ∪ [2 4 7 9 6], µ′8 = [2 4 5 6] ∪ [1 10 3 9 7],

µ′9 = [7 8 9] ∪ [1 10 3 4 2 6].

For i = 1, 2, . . . , 9, let J i be the subgraph of N ′10 that is µ1 ∪ µ
′

3 ∪ 3 10 ∪ 5 8 if
i = 3 and µ1 ∪ µ

′

i if i 6= 3. Assume that lk( f (µ′i )) is odd for some i 6= 4, 9.
Then J i contains a graph Di as a minor such that Di is isomorphic to D4 and
{µ1, µ

′

i } =9
(2)
Di ,J i (0

(2)(Di )). Since both lk( f (µ1)) and lk( f (µ′i )) are odd, by
Lemma 4.3 there exists an element γ in 0(J i ) such that a2( f (γ )) is odd. Next
assume that lk( f (µ′9)) is odd. We denote two elements [7 8 9] ∪ [1 6 2 10] and
[7 8 9] ∪ [2 4 3 10] in 0(2)(J 9) by µ′9,1 and µ′9,2, respectively. We denote the sub-
graph µ1 ∪ µ

′

8,1 of J 9 by J 9,1 and the subgraph µ1 ∪ µ
′

9,2 ∪ 5 3 ∪ 5 1 of N ′10 by
J 9,2. Then J 9, j contains a graph D9, j as a minor such that D9, j is isomorphic to
D4 and

{µ1, µ
′

9, j } =9
(2)
D9, j ,J 9, j (0

(2)(D9, j )) ( j = 1, 2).

Since [1 10 3 4 2 6] = [1 6 2 10] + [2 4 3 10] in H1(J 9
;Z2), it follows that

1≡ lk( f (µ′9))≡ lk( f (µ′9,1))+ lk( f (µ′9,2)) (mod 2).

This implies that lk( f (µ′9,1)) is odd or lk( f (µ′9,2)) is odd. In either case, by
Lemma 4.3 there exists an element γ in 0(J 9, j ) such that a2( f (γ )) is odd. Finally
assume that lk( f (µ′4)) is odd. N ′10 contains another P9 as the proper minor

(((((N ′10− 6 1)− 6 2)− 6 5 )− 6 9)− 8 7)− 8 10.

Thus, by Lemma 4.1, there is ν ′′ ∈ 0(2)(P9) such that lk(ψN ′10,P9( f )(ν ′′)) is odd.
Hence by Proposition 2.1, there exists µ′′ ∈9(2)

P9,N ′10
(0(2)(P9)) such that lk( f (µ′′))
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is odd. The set 9(2)
P9,N ′10

(0(2)(P9)) consists of the seven elements

µ′′1 = [3 5 8 9] ∪ [1 10 2 4 7], µ′′2 = [3 9 7 4] ∪ [1 5 8 2 10],

µ′′3 = [1 7 4 5] ∪ [2 8 9 3 10], µ′′4 = [2 4 5 8] ∪ [1 10 3 9 7],

µ′′5 = [2 4 3 10] ∪ [1 5 8 9 7], µ′′6 = [1 5 3 10] ∪ [2 4 7 9 8],

µ′′7 = [3 4 5] ∪ [1 10 2 8 9 7].

For j = 1, 2, . . . , 7, let J 4, j be the subgraph of N ′10 that is µ′4∪µ
′′

j ∪2 6 if j = 4, 5
and µ′4 ∪ µ

′′

j if j 6= 4, 5. Assume that lk( f (µ′′j )) is odd for some j 6= 7. Then
J 4, j contains a graph D4, j as a minor such that D4, j is isomorphic to D4 and
{µ′4, µ

′′

i } =9
(2)
D4, j ,J 4, j (0

(2)(D4, j )). Since both lk( f (µ′4)) and lk( f (µ′′j )) are odd,
by Lemma 4.3 there exists an element γ in 0(J 4, j ) such that a2( f (γ )) is odd.
Next assume that lk( f (µ′′7)) is odd. We denote two elements [3 4 5] ∪ [1 10 8 9 7]
and [3 4 5] ∪ [2 8 10] in 0(2)(N ′10) by µ′′7,1 and µ′′7,2, respectively. We denote the
subgraph µ1 ∪µ

′′

7,1 ∪ 2 4∪ 5 6 of N ′10 by J 4,7. Then J 4,7 contains a graph D4,7 as
a minor such that D4,7 is isomorphic to D4 and

{µ1, µ
′′

7,1} =9
(2)
D4,7,J 4,7(0

(2)(D4,7)).

Since [1 10 2 8 9 7] = [1 10 8 9 7] + [2 8 10] in H1(N ′10;Z2), it follows that

1≡ lk( f (µ′7))≡ lk( f (µ′′7,1))+ lk( f (µ′′7,2)) (mod 2).

This implies that lk( f (µ′′7,1)) is odd or lk( f (µ′′7,2)) is odd. If lk( f (µ′′7,1)) is odd,
then by Lemma 4.3 there exists an element γ in 0(J 4,7) such that a2( f (γ )) is odd.
If lk( f (µ′′7,2)) is odd, let us consider the 3-component link

L = f ([3 4 5] ∪ [2 8 10] ∪ [1 6 9 7]).

Since all 2-component sublinks of L are f (µ1), f (µ′4) and f (µ′′7,2), each of the 2-
component sublinks of L has an odd linking number. This completes the proof. �

Proof of Theorem 1.2. A graph in the Heawood family is obtained from one of
K7, N9 and N ′10 by a finite sequence of 4Y-exchanges. Thus by Lemma 2.6,
Theorem 4.4, and the fact that K7 is IK — and thus I(K or C3L) — it follows that
every graph in the Heawood family is I(K or C3L). On the other hand, a graph
in the Heawood family is obtained from one of H12 and C14 by a finite sequence
of Y4-exchanges. Since each of H12 and C14 is a minor-minimal IK graph and
0(3)(H12) and 0(3)(C14) are the empty sets, it follows that H12 and C14 are minor-
minimal I(K or C3L) graphs. By Lemma 2.7, we have the desired conclusion. �

Remark 4.5. A graph is said to be 2-apex if it can be embedded in the 2-sphere
after the deletion of at most two vertices and all of their incidental edges. It is
not hard to see that any 2-apex graph may have a spatial embedding whose image
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contains neither a nontrivial knot nor a 3-component link all of whose 2-component
sublinks are nonsplittable. Thus any 2-apex graph is not I(K or C3L). It is known
that every graph of at most twenty edges is 2-apex [Mattman 2011] (see also [John-
son et al. 2010]). Since the number of all edges of every graph in the Heawood
family is twenty-one, we see that any proper minor of a graph in the Heawood
family is 2-apex, and thus not I(K or C3L). This also implies that any graph in the
Heawood family is minor-minimal for I(K or C3L).

Example 4.6. Let g9 be the spatial embedding of N9 and g′10 the spatial embedding
of N ′10 illustrated here:

*

g  (N  )99 g   (N   )1010 g   (N   )1111

g ' (N'  )1111 g '  (N'  )1212

*

*

*

g ' (N'  )1010

**

Then it can be checked directly that both g9(N9) and g′10(N
′

10) do not contain a
nonsplittable 3-component link. Thus neither N9 nor N ′10 is I3L. Also, we can see
that N10, N11, N ′11 and N ′12 are not I3L in a similar way as the proof of Lemma 3.1
(see figure above).

Remark 4.7. The Heawood graph is IK. The Heawood graph H is the dual graph
of K7, which is embedded in a torus. It is known that there exists a unique graph
C14 obtained from K7 by seven applications of4Y-exchanges [Kohara and Suzuki
1992]. The seven triangles correspond to the black triangles of a black-and-white
coloring of the torus by K7. Then C14 and H are mapped to each other by a
translation of the torus:

Thus they are isomorphic. Since C14 is IK, we have the result.
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Remark 4.8. It is known that all twenty-six graphs obtained from the complete
four-partite graph K3,3,1,1 by a finite sequence of4Y-exchanges are minor-minimal
IK graphs [Kohara and Suzuki 1992; Foisy 2002]. There exist thirty-two graphs
that are obtained from K3,3,1,1 by a finite sequence of 4Y-exchanges and Y4-
exchanges but that cannot be obtained from K3,3,1,1 by a finite sequence of 4Y-
exchanges. Recently, Goldberg, Mattman, and Naimi [2011] announced that these
thirty-two graphs are also minor-minimal IK graphs.
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