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We give a classification of embedded smooth projective varieties swept out
by rational homogeneous varieties whose Picard number and codimension
are one.

1. Introduction

A central problem in the theory of polarized varieties is to classify smooth projec-
tive varieties admitting special varieties A as ample divisors. In [Watanabe 2008],
we investigated this problem in the case where A is a homogeneous variety. On
the other hand, related to the classification problem of polarized varieties, several
authors have studied the structure of embedded projective varieties swept out by
special varieties [Beltrametti and Ionescu 2008; Muñoz and Solá Conde 2009;
Sato 1997; Watanabe 2010]. Inspired by these results, we give a classification of
embedded smooth projective varieties swept out by rational homogeneous varieties
whose Picard number and codimension are one. Our main result is:

Theorem 1.1. Let X ⊂ PN be a complex smooth projective variety of dimension
n ≥ 3 and A an (n− 1)-dimensional rational homogeneous variety with Pic(A)∼=
Z[OA(1)]. Assume that X satisfies either of the following properties.

(a) Through a general point x ∈ X, there is a subvariety Zx ⊂ X such that
(Zx ,OZx (1)) is isomorphic to (A,OA(1)).

(b) There is a subvariety Z ⊂ X such that (Z ,OZ (1)) is isomorphic to (A,OA(1))
and the normal bundle NZ/X is nef.

Then we have one of the following:

(i) X is a projective space Pn;
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(ii) X is a quadric hypersurface Qn;

(iii) X is the Grassmannian of lines G(1,Pm);

(iv) X is an E6 variety E6(ω1), where E6(ω1) ⊂ P26 is the projectivization of the
highest weight vector orbit in the 27-dimensional irreducible representation
of a simple algebraic group of Dynkin type E6; or

(v) X admits an extremal contraction of a ray ϕ : X→C to a smooth curve whose
general fibers are projectively equivalent to (A,OA(1)).

In cases (i)–(iv), the corresponding rational homogeneous variety A is one of those
in Theorem 2.2.

We outline the proof of Theorem 1.1. A significant step is to show the existence
of a covering family K of lines on X induced from lines on rational homogeneous
varieties of codimension one (Claim 3.2). Then we see that the rationally connected
fibration associated to K is an extremal contraction of the ray R≥0[K]. By applying
results from [Watanabe 2008], we obtain our theorem. In this paper, we work over
the field of complex numbers.

2. Preliminaries

We denote a simple linear algebraic group of Dynkin type G simply by G, and
for a dominant integral weight ω of G, the minimal closed orbit of G in P(Vω) by
G(ω), where Vω is the irreducible representation space of G with highest weight
ω. For example, E6(ω1) is the minimal closed orbit of an algebraic group of type
E6 in P(Vω1), where ω1 is the first fundamental dominant weight in the standard
notation of Bourbaki [1968]. For any rational homogeneous variety X of Picard
number one, there exists a simple linear algebraic group G and a dominant integral
weight ω of G such that X is isomorphic to G(ω). A rational homogeneous variety
A is a Fano variety, that is, the anticanonical divisor of A is ample. If the Picard
number of A is one, we have Pic(A)∼=Z[OA(1)], where OA(1) is a very ample line
bundle on A. We recall two results on rational homogeneous varieties.

Theorem 2.1 [Hwang and Mok 2005, Main Theorem; 1998, 5.2]. Let A be a
rational homogeneous variety of Picard number one. Let ρ : X → Z be a smooth
proper morphism between two varieties. Suppose for some point y on Z , the fiber
X y is isomorphic to A. Then, for any point z on Z , the fiber Xz is isomorphic to A.

Theorem 2.2 [Watanabe 2008]. Let X be a smooth projective variety and A a
rational homogeneous variety of Picard number one. If A is an ample divisor on X ,
(X, A) is isomorphic to (Pn,Pn−1), (Pn, Qn−1), (Qn, Qn−1), (G(2,C2l),Cl(ω2))

or (E6(ω1), F4(ω4)).
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For a numerical polynomial P(t) ∈ Q[t], write HilbP(t)(X) for the Hilbert
scheme of X relative to P(t). More generally, for an m-tuple of numerical poly-
nomials P(t) := (P1(t), . . . , Pm(t)), denote by FHP(t)(X) the flag Hilbert scheme
of X relative to P(t) [Sernesi 2006, Section 4.5]. For the Hilbert polynomial of
a line P1(t), an irreducible component of HilbP1(t)(X) is called a family of lines
on X . Let Univ(X) be the universal family of Hilb(X) with the associated mor-
phisms π :Univ(X)→Hilb(X) and ι :Univ(X)→ X . For a subset V of Hilb(X),
ι(π−1(V )) is denoted by Locus(V ) ⊂ X . A covering family of lines K means an
irreducible component of F1(X) satisfying Locus(K) = X . For a covering family
of lines, we have the following fibration.

Theorem 2.3 [Campana 1992; Kollár et al. 1992]. Let X ⊂ PN be a smooth pro-
jective variety and K a covering family of lines. Then there exists an open subset
X0
⊂ X and a proper morphism ϕ : X0

→ Y 0 with connected fibers onto a normal
variety, such that any two points on the fiber of ϕ can be joined by a connected
chain of finite K-lines.

We shall call the morphism ϕ a rationally connected fibration with respect to K.

Theorem 2.4 [Bonavero et al. 2007, Theorem 2]. Under the conditions and no-
tation of Theorem 2.3, assume that 3 ≥ dim Y 0. Then R≥0[K] is extremal in the
sense of Mori theory and the associated contraction yields a rationally connected
fibration with respect to K.

3. Proof of Theorem 1.1

For a subset V ⊂ X , denote the closure by V . Let P1(t), P2(t) be the Hilbert
polynomials of a line (A,OA(1)) and set P(t) := (P1(t), P2(t)). We denote the
natural projections by

(1) pi : FHP(t)(X)→ HilbPi (t)(X), where i = 1, 2.

Let H be the open subscheme of HilbP2(t)(X) parametrizing smooth subvarieties
of X with Hilbert polynomial P2(t). Now we work under the assumption that X
satisfies (a) or (b) in Theorem 1.1.

Claim 3.1. In both cases (a) and (b), there exists a curve C ⊂ H that contains a
point o corresponding to a subvariety isomorphic to (A,OA(1)).

Proof. If the assumption (a) holds, there exists an irreducible component H0 of H

that contains o := [Zx ] for some x ∈ X and satisfies Locus(H0) = X . Then we
can take a curve C ⊂ H0 that contains o. If the assumption (b) holds, we see that
h1(NZ/X )= 0 and h0(NZ/X )≥ 1. Since there is no obstruction in the deformation
of Z in X , it turns out that H is smooth at o := [Z ] and dim[Z ]H ≥ 1. Then we
can also take a curve C ⊂H0 that contains o. �
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From now on, we shall not use the assumptions (a) and (b) except through
the property proved in Claim 3.1. Locus(C) = X . Denote by H0 an irreducible
component of H that contains C . For the universal family π : U0 → H0 and
the normalization ν : C̃ → C ⊂ H0, we denote C̃ ×H0 U0 by UC̃ and a natural
projection by π̃ : UC̃ → C̃ . Let (UC̃)red be the reduced scheme associated to UC̃
and 5 : (UC̃)red→ C̃ the composition of π̃ and (UC̃)red→UC̃ . Then we have the
following diagram:

(UC̃)red //

5
##

UC̃
//

π̃

��

U0

π

��
C̃ ν

// H0

Now we have an isomorphism between scheme theoretic fibers

π̃−1(p)∼= π−1(ν(p))

for any closed point p ∈ C̃ . In particular, π̃−1(p) is a smooth projective variety
and π̃−1(õ) ∼= A for a point õ ∈ C̃ corresponding to o ∈ C . Moreover, a natural
morphism5−1(p)→ π̃−1(p) is a homeomorphic closed immersion for any closed
point p ∈ C̃ . Since π̃−1(p) is reduced, we see that 5−1(p) ∼= π̃−1(p). Thus
we conclude that 5 is a proper flat morphism whose fibers on closed points are
smooth projective varieties, that is, a proper smooth morphism. Because 5 admits
a central fiber 5̃−1(õ)∼= A, it follows that every fiber 5̃−1( p̃) is isomorphic to A
from Theorem 2.1. Hence it turns out that every fiber of π over a closed point in C
is isomorphic to A. Let consider a constructible subset p1(p−1

2 (C))⊂HilbP1(t)(X).
Since C parametrizes subvarieties isomorphic to (A,OA(1)) which is covered by
lines, we see that

Locus(p1(p−1
2 (C)))= X.

Claim 3.2. There exists a covering family of lines K on X satisfying the following
property: Through a general point x ∈ X , there is a subvariety Sx ⊂ X such that
(Sx ,OSx (1))∼= (A,OA(1)) and any line lying in Sx is a member of K.

Proof. Take an irreducible component K0 of p1(p−1
2 (C)) such that Locus(K0)= X .

Through a general point x on X , there is a line [lx ] in K0 that is not contained in
any irreducible component of p1(p−1

2 (C)) except K0. There is also a subvariety
[Sx ] in C containing lx . Because p1(p−1

2 ([Sx ])) is the Hilbert scheme of lines on
Sx , it is irreducible [Landsberg and Manivel 2003, Theorem 4.3; Strickland 2002,
Theorem 1]). Therefore p1(p−1

2 ([Sx ])) is contained in an irreducible component
of p1(p−1

2 (C)). Since p1(p−1
2 ([Sx ])) contains [lx ], this implies that p1(p−1

2 ([Sx ]))

is contained in K0. Thus we put K as an irreducible component of HilbP1(t)(X)
containing K0. �
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Two points on Sx ∼= A can be joined by a connected chain of lines in K. This im-
plies that the relative dimension of the rationally connected fibration ϕ : X · · ·→ Y
with respect to K is at least n − 1. According to Theorem 2.4, R≥0[K] spans an
extremal ray of NE(X) and ϕ is its extremal contraction. In particular, ϕ is a
morphism that contracts Sx to a point. If dim Y = 0, we see that the Picard number
of X is one. This implies that Sx is a very ample divisor on X . From Theorem 2.2,
X is Pn , Qn , G(1,Pm) or E6(ω1). If dim Y = 1, then Y is a smooth curve C and
a general fiber of ϕ coincides with Sx . Therefore ϕ is an A-fibration on a smooth
curve C . Hence Theorem 1.1 holds.
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