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Let X ⊂ PN be an irreducible, nondegenerate projective variety and let
X∗ ⊂ PN∗ be its projective dual. Let L ⊂ PN be a linear space such that
〈L, TX,x〉 6=PN for all x ∈ Xsmooth and such that the lines in X meeting L do
not cover X . If x ∈ X is general, we prove that the multiplicity of X∗ at a
general point of 〈L, TX,x〉

⊥ is strictly greater than the multiplicity of X∗ at
a general point of L⊥. This is a strong refinement of Bertini’s theorem.

1. Introduction

1.1. Multiplicities of the projective dual. Let X ⊂PN be an irreducible projective
variety over the field of complex numbers. Let X∗⊂PN ∗ be its projective dual, let
L ⊂ PN be a linear space and H be a general hyperplane containing L . Bertini’s
classical theorem asserts that the tangency locus of H with X is included in X ∩L .
Very little is known about the hyperplanes whose tangency locus with X lies outside
L ∩ X . It is tempting to think that the multiplicity in X∗ of such a hyperplane is
strictly larger than the multiplicity of a general hyperplane containing L . The
following example shows that this is not true for every L .

Example 1.1.1. Let X ⊂P4 be a smooth hyperplane section of P1
×P2
⊂P5. The

variety X is a ruled surface of degree 3. Its dual is a hypersurface of degree 3 in
P4∗ which does not contain any points of multiplicity higher than 2. Let L be the
exceptional section of X . If H ⊂ P4 is a general hyperplane which contains L ,
then H ∩ X = L∪D1∪D2, where D1 and D2 are two distinct lines on X such that
D1.D2 = 0 and L .Di = 1 for i = 1, 2. As a consequence, a general point of L⊥ is
of multiplicity 2 in X∗. Now, let D ⊂ X be a line such that D.L = 1 and let x ∈ D
such that x 6∈ L . The hyperplane containing L and TX,x is a point of multiplicity
exactly 2 in X∗, that is, the multiplicity of a general point of L⊥.

This example shows that, even for general x ∈ X , the multiplicity in X∗ of a
hyperplane containing L and tangent to X at x may well be equal to the multiplicity
of a general hyperplane containing L . Thus, without extra hypotheses on L , it
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seems hopeless to say something about the multiplicity in X∗ of special points of
L⊥. For this purpose, we introduce a definition:

Definition 1.1.2. Let X ⊂ PN be an irreducible projective variety and let L ⊂ PN

be a linear space. Consider the conormal diagram

I (X/PN ) := {(H, x) ∈ PN ∗× Xsmooth : TX,x ⊂ H}
q
↙

p
↘

X∗ ⊂ PN ∗ X ⊂ PN

Let F1, . . . , Fm be all the irreducible components of q−1(L⊥) such that the
restrictions

q|Fi : Fi → L⊥

are surjective. The contact locus of L with X , which we denote by Tan(L , X), is
the union of the p(Fi ), for 1≤ i ≤ m.

In the case where L is a hyperplane, the contact locus Tan(L , X) is called the
tangency locus of L with X . A tangent hyperplane to X is a hyperplane H ⊂ PN

such that Tan(H, X) 6=∅.
The contact locus Tan(L , X) can be thought as the variety covered by the tan-

gency loci of general hyperplanes containing L . In case L⊥ 6⊂ X∗, this locus is
empty. We always have the inclusion

{x ∈ Xsmooth : TX,x ⊂ L} ⊂ Tan(L , X),

but if dim(L)< N−1 or if X is not smooth, the former locus can be strictly smaller
than the latter. Note also that Bertini’s theorem says that Tan(L , X) ⊂ L ∩ X .
Finally, the contact locus is well behaved. If for a general hyperplane H ′ containing
L , we have dim Tan(H ′, X) > 0, then

Tan(H ∩ L , H ∩ X)= H ∩Tan(L , X),

for any general hyperplane H ⊂ PN .

Example 1.1.3. If X ⊂PN is such that X∗ is a hypersurface and L = TX,x , where
x ∈ X is a general point, then Tan(L , X)= x .

– If X = G(1, 7) ⊂ P27 and L = 〈TX,y1, TX,y2〉, where y1, y2 ∈ G(1, 7) are
two general points, then Tan(L , X) = {x ∈ X : TX,x ⊂ L} is a 4-dimensional
quadric, the entry locus of a general point z ∈ 〈y1, y2〉.

– If X = G(1, 4) ⊂ P9 and L = TX,y , for any y ∈ X , then dim Tan(L , X) > 0,
whereas {x ∈ X : TX,x ⊂ L} = {y}.
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Definition 1.1.4. Let X ⊂PN be an irreducible projective variety, and let L ⊂PN

be a linear subspace. The shadow of L on X , which we denote by ShX (L), is the
closed variety covered by the linear spaces M ⊂ X such that dim(M)= def(X)+1
and dim(M ∩Tan(L , X))= def(X).

Here def(X) = codim(X∗) − 1. The shadow is also well behaved. Namely,
assume that def(X) > 0; then

ShL(X)= X ⇐⇒ ShH∩L(H ∩ X)= H ∩ X,

for any general hyperplane H ⊂ PN . Note also that if x ∈ X is a general point
and L = TX,x , then ShL(X) 6= X , unless X is a linear space. Indeed, if X∗ is a
hypersurface, this is obvious since Tan(TX,x , X) = x for general x ∈ X . If X∗ is
not a hypersurface, take enough general hyperplane sections of X passing through
x , so that the corresponding dual is a hypersurface.

Main Theorem 1.1.5. Let X ⊂ PN be an irreducible, nondegenerate projective
variety. Let L ⊂ PN be a linear space such that ShX (L) 6= X. Then, for all x ∈
Xsmooth such that x /∈ ShX (L) and such that 〈L , TX,x 〉 6=PN , the multiplicity in X∗

of a general hyperplane containing 〈L , TX,x 〉 is strictly larger than the multiplicity
in X∗ of a general hyperplane containing L.

If X is the ruled cubic surface considered in Example 1.1.1 and L is the directrix
of X , one notices easily that ShX (L)= X . This shows that the hypothesis ShX (L) 6=
X can not be withdrawn. Here is an obvious consequence of Main Theorem 1.1.5:

Corollary 1.1.6. Let X ⊂ PN be an irreducible, nondegenerate projective variety.
Let L ⊂ PN be a linear space such that 〈L , TX,x 〉 6= PN for general x ∈ X , and
such that the lines in X meeting L do not cover X. Then, for general x ∈ X , the
multiplicity in X∗ of a general hyperplane containing 〈L , TX,x 〉 is strictly larger
than the multiplicity in X∗ of a general hyperplane containing L.

1.2. Variety of multisecant spaces and duals.

Definition 1.2.1. Let X ⊂ PN be an irreducible projective variety. Let

Sk
X

0
=

{
(x0, . . . , xk, u)∈ X×· · ·×X×PN

: dim〈x0, . . . , xk〉= k, u ∈ 〈x0, . . . xk〉
}
,

and let Sk
X be its Zariski closure in X ×· · ·× X ×PN . Denote by φ the projection

onto PN . The variety Sk(X)= φ(Sk
X ) is the k-th secant variety to X .

Theorem 1.2.2 (Terracini’s lemma [Zak 1993]). Let X ⊂ PN be an irreducible
projective variety, and let (x0, . . . , xk) ∈ X × · · · × X , be general points. If u is
general in 〈x0, . . . , xk〉, we have the equality

〈TX,x0, . . . , TX,xk 〉 = TSk(X),u .



4 ROLAND ABUAF

Definition 1.2.3. Let X ⊂ PN be an irreducible, nondegenerate projective variety,
and let k be an integer such that Sk(X) 6= PN . We say that X is dual k-defective
if def(Sk(X)) > t (Sk(X)), where t (Sk(X)) is the dimension of the general fiber of
the Gauss map of Sk(X).

Note that when X is smooth, then dual 0-defectiveness is the classical dual de-
fectiveness. I don’t know if there exist smooth varieties which are dual k-defective
for some k≥ 1, but which are not dual 0-defective. I believe it would be interesting
to find some examples of such varieties.

Note also that the notion of dual k-defectiveness seems to be related to that of
Rk regularity explored in [Chiantini and Ciliberto 2010].

Here is a consequence of the Main Theorem 1.1.5 and Terracini’s lemma:

Proposition 1.2.4. Let X ⊂PN be an irreducible, nondegenerate, smooth, projec-
tive variety. Assume moreover that for all k such that Sk(X) 6=PN the variety X is
not dual k− 1-defective. Then, for any such k, we have

Sk(X)
∗
⊂ X∗k+1,

where X∗k+1 is the set of points which have multiplicity at least k+ 1 in X∗.

Proof. The case k = 0 is the definition of S0(X)∗ = X∗. Let k ≥ 1 be an integer
such that Sk(X) 6= PN , let z ∈ Sk−1(X) be a general point and H be a general
hyperplane containing TSk−1(X),z . Let’s prove that

Tan(H, X)= {x ∈ X : TX,x ⊂ TSk−1(X),z}.

Let x0, . . . , xk−1 be k general points in Tan(H, X). Let z′ be a general point in
〈x0, . . . , xk−1〉, by Terracini’s lemma we have

TSk−1(X),z′ = 〈TX,x0, . . . , TX,xk−1〉.

So z′ ∈ Tan(H, Sk−1(X)). But def(Sk−1(X)) = t (Sk−1(X)) by hypothesis, and
this implies

z′ ∈ {y ∈ Sk−1(X)smooth : TSk−1(X),y = TSk−1(X),z},

so that x0, . . . , xk−1 ∈ {x ∈ X : TX,x ⊂ TSk−1(X),z}.

We now prove that ShX (TSk−1(X),z) 6= X . The argument above shows that

Tan(TSk−1(X),z, X)= {x ∈ X : TX,x ⊂ TSk−1(X),z}.

Assume ShX (TSk−1(X),z)= X . For all x ′′ ∈ X , there is x ′ ∈ {x ∈ X : TX,x ⊂ TSk(X),z}

such that the line 〈x ′′, x ′〉 lies in X . But since X is smooth, this line 〈x ′′, x ′〉 lies
in TX,x ′ . So we have X ⊂ TSk−1(X),z , which contradicts the nondegeneracy.
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As a consequence of Main Theorem 1.1.5, we get that for a general x ∈ X , the
multiplicity in X∗ of a general hyperplane containing 〈TSk−1(X),z, TX,x 〉 is strictly
larger than the multiplicity in X∗ of a general hyperplane containing TSk−1(X),z . We
apply Terracini’s lemma to find that Sk(X)∗ ⊂ X∗k+1. This concludes the proof. �

A stronger result than Proposition 1.2.4 has been stated for the first time in [Zak
2004], but no proof was given there.

In the second part of this paper we present a proof of Main Theorem 1.1.5, while
in the third part we discuss some consequences and open questions.

2. Proof of the Main Theorem

When Z ⊂ PN , we denote by Cz(Z) ⊂ PN the embedded tangent cone to Z at z
and if H ⊂ PN is a hyperplane, then [h] is the corresponding point in (PN )∗.

The proof of Main Theorem 1.1.5 is obvious if L⊥ 6⊂ X∗. Thus, we only deal with
the case where L⊥ ⊂ X∗. Moreover, we can restrict to the case where X∗ is a
hypersurface. Indeed, assume that X∗ has codimension p≥ 2. Let z ∈ L⊥ and zx ∈

〈L , TX,x 〉
⊥ be general points, let M ⊂PN be a general PN+1−p passing through x ,

let X ′=M∩X and L ′=M∩L . We have ShX ′(L ′) 6= X ′ and 〈TX ′,x , L ′〉 6=PN+1−p.
Moreover, we have

(X ′)∗ = πM⊥(X
∗),

where πM⊥ is the projection from M⊥ in PN ∗. Since M is general, the map πM⊥

is locally an isomorphism around zx . Hence

multz X∗ =multzx X∗ ⇐⇒ multπM⊥ (z)(X
′)∗ =multπM⊥ (zx )(X

′)∗.

Finally, note that πM⊥(z) is a general point of (L ′)⊥ and that πM⊥(zx) is a general
point of 〈L ′, TX ′,x 〉

⊥. As a consequence, it is sufficient to prove the theorem for
X ′, whose dual is a hypersurface.

Let’s start with a plan of the proof. We assume that X∗ has constant multiplicity
along a smooth curve S ⊂ L⊥ passing through 〈L , TX,x 〉

⊥ and through a general
point of L⊥ and we find a contradiction. More precisely:

– We prove that the equimultiplicity of X∗ along S implies that the family of
the tangent cones to X∗ at the points of S is flat.

– Then, we show that the flatness of the family of the tangent cones to X∗ at the
points of S leads to the flatness of the family of the conormal spaces of these
tangent cones. As a consequence, we have |Cs(X∗)|∗ ⊂ L for all s ∈ S.

– Finally, we relate the tangent cone to X∗ at z to the set of tangent hyperplanes
to X∗ at z (when z is a smooth point of X∗; this is the reflexivity theorem
[Kleiman 1986]). Using the fact that ShL(X) 6= X , we deduce that |Cs(X∗)|∗ 6⊂
L for s ∈ 〈L , TX,x 〉

⊥ and thus a contradiction.
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2.1. Normal flatness and Lagrangian specialization principle. Let S ⊂ Z ⊂ PN

be two varieties. We recall some properties of the tangent cones Cs(Z), s ∈ S when
Z is equimultiple along S.

Definition 2.1.1. Let S ⊂ Z be two varieties. We say that Z is equimultiple along
S if the multiplicity of the local ring OZ ,s is constant for s ∈ S.

Proposition 2.1.2 [Hironaka 1964, Corollary 2, p. 197]. Let Z ⊂ PN be a hyper-
surface and S a connected smooth subvariety (not necessarily closed) of Z such
that Z is equimultiple along S.

Then, for all s ∈ S, there exists an open neighborhood U of s in S containing
s and a closed subscheme G(Z) ⊂ PN

× U such that the natural projection p :
G(Z) → U is a flat and surjective morphism whose fiber G(Z)s′ over any s ′ ∈ U
is Cs′(Z).

We assume that our theorem is not true, that is for general x ∈ X , the multiplicity
of X∗ at a general point of 〈L , TX,x 〉

⊥ is equal to the multiplicity at a general point
of L⊥.

Let [h] be a general point of 〈L , TX,x 〉
⊥ and let S ⊂ L⊥ be a smooth (not

necessarily closed) connected curve passing through [h] and through a general
point of L⊥. We apply the proposition to X∗ and S. Then there exists a scheme
G(X∗) ⊂ PN ∗

× S such that the natural projection p : G(X∗)→ S is a flat and
surjective morphism whose fiber over s ∈ S is the tangent cone to X∗ at s. Let
0(X∗)= |G(X∗)|. The induced morphism 0(X∗)→ S is flat and for general s ∈ S
the fiber 0(X∗)s is exactly |Cs(X∗)|.

Now we study the family of the duals of the reduced tangent cones of X∗ at
points of S. Applying the Lagrangian specialization principle [Lê and Teissier
1988; Kleiman 1984] to 0(X∗) and S, we find:

Theorem 2.1.3. Let S ⊂ X∗ be a smooth curve such that X∗ is equimultiple along
S. There esists a variety IS(0(X∗)/PN ∗

× S) with the following properties.

(i) For general s ∈ S, the following equality holds in PN
×0(X∗)s :

I (|Cs(X∗)|/PN ∗)= IS(0(X∗)/PN ∗
× S)s .

(ii) The morphism IS(0(X∗)/PN ∗
× S)→ S is flat and surjective.

(iii) For all s ∈ S, the conormal space I (|Cs(X∗)|/PN ∗) is a union of irreducible
components of the reduced fiber |IS(0(X∗)/PN ∗

× S)s |.

As a consequence, the image in PN of the fiber IS(0(X∗)/PN ∗
×S)s , for general

s ∈ S, is |Cs(X∗)|∗. Moreover, for any s ∈ S, the image of the reduced fiber
|IS(0(X∗)/PN ∗

× S)s | contains |Cs(X∗)|∗.
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2.2. Polar varieties and duals of tangent cones. We discuss an extension of the
reflexivity theorem proved in [Lê and Teissier 1988]. The main results of this
section will be applied to X∗ when it is a hypersurface, so we restrict our study to
that case.

Definition 2.2.1. Let Z ⊂ PN be a reduced and irreducible hypersurface and let
D ⊂ PN be a linear space. The polar variety of Z associated to D, which we
denote by P(Z , D), is the closure of the set {z ∈ Zsmooth : D ⊂ TZ ,z}.

If D =∅ (that is, D has dimension −1), then we put P(Z , D)= Z .

Remark 2.2.2. If Z is normal, if u = [u0, . . . , uN ] in an homogeneous system of
coordinates on PN and f is an equation of Z in this system then P(Z , u) is given
by the equations f = 0 and u0 ∂ f/∂x0+ · · ·+ uN ∂ f/∂xN = 0.

If Z is not normal, then all irreducible components of Zsing which are of di-
mension N − 2 are irreducible components of the scheme defined by f = 0 and
u0 ∂ f/∂x0 + · · · + uN ∂ f/∂xN = 0, but they are not irreducible components of
P(X, u).

Proposition 2.2.3. Let Z ⊂ PN be a reduced, irreducible hypersurface and let
D ⊂ PN be a general linear space of dimension k. Then P(Z , D) is empty or of
codimension k+ 1 in Z.

We state a result of Lê and Teissier which relates the duals of the tangent cones
at z of some polar varieties of Z with the tangency locus of z⊥ with Z∗. See [Lê
and Teissier 1988, Proposition 2.2.1]. For any z ∈ Z , recall that Tan(z⊥, Z∗) is the
tangency locus of z along Z∗ (see conormal diagram on page 2).

Theorem 2.2.4. Let Z ⊂ PN be a reduced and irreducible hypersurface and let
z ∈ Z be a point.

(i) The dual of |Cz(Z)| is a union of reduced spaces underlying (possibly embed-
ded) components of Tan(z⊥, Z∗).

(ii) Any irreducible component of |Tan(z⊥, Z∗)| is dual to an irreducible com-
ponent of |Cz(P(Z , D))| for general D ∈ G(k, N ) and for some integer k ∈
{−1, . . . , N − 2}.

Remark 2.2.5. Part (ii) of the theorem has to be explained. Assume that there is an
irreducible component (say T ) of |Tan(z⊥, Z∗)| which is not dual to an irreducible
component of |Cz(Z)|. Then, there is k ∈ {0, . . . , N − 2} such that for general
D ∈G(k, N ), we have z ∈ P(Z , D). Moreover, as D varies in a dense open subset
of G(k, D), the cones Cz(P(D, Z)) have a fixed irreducible component in common
whose reduced locus is T ∗.

Note also that if z ∈ Zsmooth then for k ≥ 0 and for D general in G(k, N ), we
have z /∈ P(Z , D). As a consequence of the (ii) of the above theorem, we find
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Tan(z⊥, Z∗)= T⊥Z ,z for z ∈ Zsmooth. This is the way the (obvious corollary of the)
reflexivity theorem is often stated.

When Tan(z⊥, Z∗) is irreducible, one may expect |Cz(Z)|∗ = |Tan(z⊥, Z∗)|.
But this is not true:

Example 2.2.6. Let X ⊂P4 be the smooth ruled surface of degree 3 considered in
example 1.1.1 and let X∗ its dual. The hypersurface X∗ has also degree 3 and its
singular locus is a P2, the dual of the exceptional section of X (which we denote
by L). Let C ⊂ L⊥ = X∗sing be the conic corresponding to the hyperplanes which
are tangent to X along a ruling of X and let z ∈ C .

The tangent cone Cz(X∗) is a doubled P3 so that |Cz(X∗)|∗ 6= Tan(z⊥, X). We
also note that the scheme-theoretic tangency locus of z⊥ along X is a line with an
embedded point. The embedded point is dual to |Cz(X∗)| and the line is dual to
|Cz(P(X∗, u))|, for general u ∈ P4∗.

Notations 2.2.7. Let f : Y → T be a quasiprojective morphism between quasi-
projective schemes, let T ′⊂ T be a smooth variety and let s ∈ T ′ be any point. Let
Y1, . . . , Ym be the irreducible components of f −1(T ′) such that the restrictions

f |Yi : Yi → T ′,

are surjective. Define the scheme

limflat{t→s,t∈T ′} f −1(t) := f |−1
Y1∪···∪Ym

(s).

If dim(T ′)= 1 and the Yi are all reduced, this is the classical flat limit taken along
a smooth curve. If f | f −1(T ′) : f −1(T ′)→ T ′ is flat, then

limflat{t→s,t∈T ′} f −1(t)= f |−1
f −1(T ′)(s).

Proof of Main Theorem 1.1.5. We recall the setting for the convenience of the
reader. The projective variety X ⊂PN is irreducible and nondegenerate. The linear
space L ⊂ PN is such that ShX (L) 6= X and 〈L , TX,x 〉 6= PN for all x ∈ Xsmooth.
We want to prove that for all x ∈ Xsmooth such that x /∈ ShX (L), the multiplicity
in X∗ of a general hyperplane containing 〈L , TX,x 〉 is strictly greater than that of a
general hyperplane containing L .

The result is obvious if L⊥ 6⊂ X∗ and we have already seen that we can restrict to
the case where X∗ is a hypersurface. So we only consider the case where L⊥⊂ X∗

and X∗ is a hypersurface and we assume that our result is not true. Let x ∈ Xsmooth

with x /∈ ShX (L) and let [h] be a general point in 〈L , TX,x 〉
⊥. By the results of the

previous section, there exists a smooth (not necessarily closed) curve S ⊂ L⊥ with
[h] ∈ S and a flat morphism

IS(0(X∗)/PN ∗
× S)→ S,
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whose fiber IS(0(X∗)/PN ∗
× S)s is the conormal space of |Cs(X∗)|, for general

s∈ S. Further, the conormal space of |Cs(X∗)| is included in |IS(0(X∗)/PN ∗
×S)s |

for all s ∈ S.
Theorem 2.2.4(i) implies that

|Cs(X∗)|∗ ⊂ p(|q−1(s)|),

for all s ∈ S, where p and q are as in the conormal diagram of page 2. The flatness
of IS(0(X∗)/PN ∗

× S)→ S gives the inclusion

|C[h](X∗)|∗ ⊂ p(limflat{s→[h],s∈S} |q−1(s)|).

By Definition 1.1.2, the right-hand side is contained in Tan(L , X)⊂ L .
Let F be an irreducible component of Tan(H, X) passing through x . By Theorem

2.2.4, there is an integer k ∈ {−1, . . . , N−2} such that |F| is dual to an irreducible
component of |C[h](P(X∗, D))|, for general D ∈G(k, N ). Since |C[h](X∗)|∗ ⊂ L ,
we have k ≥ 0.

Let x0 ∈ F be a general point. Duality implies T|C[h](P(X∗,D))|,z ⊂ x⊥0 for some
general z in the irreducible component of C[h](P(X∗, D)) whose reduced locus
is |F|∗. Note that C[h](P(X∗, D)) ⊂ C[h](X∗). Let T|C[h](X∗)|,z be a limit of tan-
gent spaces to |C[h](X∗)| at z. The point z is general in |C[h](P(X∗, D))|, so
T|C[h](P(X∗,D))|,z ⊂ T|C[h](X∗)|,z .

As a consequence of this, we have T|C[h](P(X∗,D))|,z ⊂ x⊥0 ∩ TC[h](X∗),z . That is,

〈x0, T⊥
|C[h](X∗)|,z〉 ⊂ F⊂ X.

But |C[h](X∗)|∗ ⊂ Tan(L , X), so T⊥
|C[h](X∗)|,z ∈ Tan(L , X), and the inclusion above

says that x0 ∈ ShX (L). This is a contradiction. �

3. Corollaries and open questions

We present here some corollaries of the Main Theorem and related open questions.

3.1. Zak’s conjecture on varieties with minimal codegree. Let X ⊂ PN be an
irreducible, nondegenerate projective variety. We recall, following Zak, that the
order of X is ord X = min{k, Sk−1(X) = PN

} and the k-th secant-defect is δk =

dim X + dim Sk−1(X)+ 1− dim Sk(X), for all k ≤ ord X − 1.
Zak [1993] proved an important result related to secant defects.

Theorem 3.1.1 (Zak’s superadditivity theorem). Let X ⊂ PN an irreducible, non-
degenerate projective variety such that δ1 > 0. For all k ≤ ord X − 1, we have the
inequality

δk ≥ δk−1+ δ1.

The varieties on the boundary are called Scorza varieties. More precisely:
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Definition 3.1.2. An irreducible, smooth, nondegenerate projective variety X ⊂
PN is a Scorza variety if the following conditions hold:

(i) δ1 > 0 and N > 2n+ 1− δ1,

(ii) δk = δk−1+ δ1 for all k ≤ ord X − 1,

(iii) ord X − 1= [dim X/δ1], where [ ] denotes the integral part.

Theorem 3.1.3 (Classification of Scorza varieties [Zak 1993]). Any Scorza variety
X is of one of the following types:

(i) X = v2(P
n)⊂ Pn(n+3)/2 (2nd Veronese) and deg X∗ = n+ 1;

(ii) X = Pn
×Pn

⊂ Pn(n+2) and deg X∗ = n+ 1;

(iii) X = G(1, 2n+ 1)⊂ P(32C2n+2) and deg(X∗)= n+ 1;

(iv) X ⊂ P26 is the 16-dimensional variety corresponding to the orbit of highest
weight vector in the lowest nontrivial representation of the group of type E6

and deg X∗ = 3.

In [Zak 2004] an important consequence of the assertion Sk(X)∗⊂ X∗k+1 (where
X∗k is the set of points of multiplicity at least k in X∗) was discovered. We state
that result in the setting where we are able to prove it.

Proposition 3.1.4. Let X ⊂PN be an irreducible, nondegenerate, smooth, projec-
tive variety. Assume that X is not k dual defective for k < ord X − 1, then

deg X∗ ≥ ord X.

Proof. With the assumptions above, Proposition 1.2.4 implies that there is a point
of multiplicity ord X − 1 in X∗. Since X is nondegenerate, its dual is not a cone
and so deg X∗ ≥ ord X . �

If X is a Scorza variety then deg X∗ = ord X . The converse statement in con-
jectured in [Zak 2004]. We formulate the conjecture in the setting where we can
prove the inequality: deg X∗ ≥ ord X .

Conjecture 3.1.5 [Zak 2004]. Let X ⊂ PN be an irreducible, smooth, nondegen-
erate, projective variety. Assume that X is not k dual defective for all k < ord X
and that deg X∗ = ord X + 1, then X is a hyperquadric or a Scorza variety.

It is proved in [Zak 1993], without any hypothesis on the dual defectiveness of
X , that smooth varieties with deg(X∗) = 3 and ord X = 3 are Severi varieties. In
particular, they are Scorza varieties. Note, however, that the smoothness assump-
tion seems to be necessary in his proof. I believe it would be very interesting to
have a classification of all varieties whose duals have degree 3.
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3.2. Varieties with unexpected equisingular linear spaces. We come back to our
usual setting. Let L ⊂ PN be a linear space such that for all x ∈ Xsmooth, we have
〈L , TX,x 〉 6= PN . We have seen in example 1.1.1 that a hyperplane containing the
join 〈L , TX,x 〉may have the same multiplicity in X∗ as the general hyperplane con-
taining L , even if x is a general point of X . The following definition is convenient
to describe this situation.

Definition 3.2.1. Let X ⊂ PN be an irreducible, nondegenerate projective variety
such that X∗ is a hypersurface. Let L ⊂ PN be a linear space such that for all
x ∈ Xsmooth, we have 〈L , TX,x 〉 6=PN . We say that L⊥ is an unexpected equisingular
linear space in X∗ if for all x ∈ Xsmooth, the general hyperplane containing 〈L , TX,x 〉

has the same multiplicity in X∗ as the general hyperplane containing L .

The variety in Example 1.1.1 is rather special since it is a scroll surface (see
[Zak 2004] for interesting discussions about this variety). It is not a coincidence
that the directrix of this variety is an unexpected equisingular linear space in its
dual. Indeed, we have:

Theorem 3.2.2. Let X ⊂ PN be an irreducible, smooth, nondegenerate projective
variety such that X∗ is a hypersurface. Let L ⊂ X be a linear space with dim(L)=
dim(X) − 1. Assume that L⊥ is an unexpected equisingular linear space in X∗

such that multL⊥ X∗ = 2. Then X is the cubic scroll surface in P4.

Here multL⊥ X∗ denotes the multiplicity in X∗ of a general point of L⊥. Before
diving into the proof of Theorem 3.2.2, we describe the tangency locus of any point
[h] ⊂ X∗, such that mult[h] X∗ = 2.

Proposition 3.2.3. Let X ⊂PN be a smooth, irreducible, nondegenerate projective
variety such that X∗ is a hypersurface. Let [h] ∈ X∗ be such that mult[h] X∗ = 2.
The scheme theoretic tangency locus of H with X is either

(i) an irreducible hyperquadric and in this case |C[h](X∗)|∗ = Tan(H, X),

(ii) the union of two (not necessarily distinct) linear spaces, or

(iii) a linear space with at least one embedded component.

We postpone the proof of this result to the Appendix.

Proof of Theorem 3.2.2. Let H be a general hyperplane containing L . We have
H ∩ X = L ∪ DH , where DH is a divisor such that

DH ∩ L = Tan(H, X).

Let x ∈ X be a general point and let Hx be a general hyperplane containing
〈L , TX,x 〉. Then Tan(Hx , X) contains x and

ξ := p
(

limflat{[h]→[hx ],[h]∈L⊥} q
−1([h])

)
.
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By hypothesis, we have

mult[hx ] X∗ =mult[h] X∗ = 2,

for all [h] ∈ L⊥. Proposition 3.2.3 hence implies that the irreducible component
of Tan(Hx , X) containing x , which we denote by RHx , also contains ξ . Moreover,
ξ ⊂ L , so dim RHx > dim ξ , for general [h] ∈ L⊥. As a consequence, dim RHx =

n− 1.
On the other hand, since

mult[hx ] X∗ =mult[h] X∗ = 2,

for all [h] ∈ L⊥, we have |C[hx ](X
∗)|∗ 6= |RHx |. We apply again Proposition 3.2.3

and we find that |RHx | is necessarily a linear space of dimension n− 1. Thus,

dim〈L , TX,x 〉 = n+ 1.

Note that Bertini’s theorem implies that

RHx ⊂ 〈L , TX,x 〉 ∩ X,

for general Hx containing 〈L , TX,x 〉. As a consequence RHx is an irreducible com-
ponent of 〈L , TX,x 〉 ∩ X , for general Hx . Thus RHx does not depend on Hx , for
general Hx containing 〈L , TX,x 〉. We deduce that 〈L , TX,x 〉 is tangent to X along a
linear space of dimension n−1. By the theorem on tangencies, we have n−1≤ 1,
that is n = 2 (obviously, X is not a curve). So X ⊂ PN is a nondegenerate surface
containing a distinguished line L , such that for general x ∈ X , there is a P3 tangent
to X along a line passing through x and meeting L . This means that X is the
projection of a scroll of type S1,d−1. By hypothesis, we have multL⊥ X∗ = 2,
hence of [Ciliberto et al. 2008, Proposition 1.6] implies that X = S1,2 ⊂ P4. �

Appendix: Tangency loci of points of multiplicity 2 in the dual

The goal of this appendix is to prove the following proposition.

Proposition 3.2.3. Let X ⊂PN be a smooth, irreducible, nondegenerate projective
variety such that X∗ is a hypersurface. Let [h] ∈ X∗ be such that mult[h] X∗ = 2.
The scheme theoretic tangency locus of H with X is either

(i) an irreducible hyperquadric and in this case |C[h](X∗)|∗ = Tan(H, X),

(ii) the union of two (not necessarily distinct) linear spaces, or

(iii) a linear space with at least one embedded component.

Example A.1. All three cases are encountered in nature:

(i) If X = v2(P
2) ⊂ P5, then for all [h] ∈ v2(P

2∗) ⊂ X∗, we have mult[h] X∗ = 2
and Tan(H, X) is a smooth conic.
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(ii) If X is a complete intersection of large multidegree and large codimension,
then there are points [h1], [h2] ∈ X∗ such that mult[hi ] X∗ = 2 and Tan(H1, X) is
exactly two distinct points, whereas Tan(H2, X) is a single double point.

(iii) If X is the cubic scroll of Example 1.1.1, then there is a conic C⊂ X∗, such that
for all [h] ∈C , we have mult[h] X∗ = 2 and Tan(H, X) is a line with an embedded
point.

A doubled linear space will be considered as the union of two (not distinct)
linear spaces. By Theorem 2.2.4, we know that the irreducible components of
Tan(H, X) are dual to irreducible components of the reduced spaces underlying
some C[h](P(X∗, Dk)) for general Dk ∈G(k, N ). When mult[h] X∗ = 2, the cones
C[h](P(X∗, Dk)) are rather easy to describe. Let’s start with some notation.

Notations A.2. Let Z ⊂ PN be a reduced and irreducible hypersurface. Let D ∈
G(k, N ) and let fZ be an equation for Z in some coordinate system of PN . We de-
note by P( fZ , D) the subscheme of PN whose ideal is generated by the equations

u0
∂ fZ

∂t0
+ · · ·+ uN

∂ fZ

∂tN
,

for u = [u0, . . . , uN ] varying in D.

Let D ∈ G(k, N ) be a general k-plane. Note that if dim(Zsing) < dim P(Z , D)
(that is dim Zsing≤ N−k−3), then P(Z , D)= P( fZ , D)∩Z . In the other case, the
irreducible components of maximal dimension of Zsing are irreducible components
of P( fZ , D)∩ Z .

Lemma A.3. Let Z ⊂ PN be an irreducible and reduced hypersurface. Let z ∈ Z
and let k ∈ {−1, . . . , N − 2}. Then, for general D ∈ G(k, N ), we have

(1) z /∈ P(Z , D), or

(2) multz P(Z , D) = multz(Z).multz P( fZ , D), if dim(Z (z)sing) < dim P(Z , D),

where Z (z)sing is an irreducible component of Zsing of maximal dimension pass-
ing through z, or

(3) multz P(Z , D) < multz(Z).multz P( fZ , D), if dim(Z (z)sing) ≥ dim P(Z , D),

where Z (z)sing is an irreducible component of Zsing of maximal dimension pass-
ing through z.

Proof. If z ∈ P(Z , D) for general D ∈ G(k, N ), we will prove the lemma only in
the case P( fZ , D) is smooth at z, for two reasons. The general case is obtained
by the same methods, this is only more technical, and we will use the result only
in the case P( fZ , D) is smooth at z.

Moreover if z ∈ P(Z , D) for general D, we will only concentrate on the case
dim(Z (s)sing) < dim P(Z , D). In this case, we have locally around z the equality
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P(Z , D) = P( fZ , D)∩ Z for general D ∈ G(k, N ). The situation where an irre-
ducible component Zsing containing z is an irreducible component of P( fZ , D)∩
Z — this is case (3) of the lemma — is dealt with exactly in the same way.

Now, we work locally around z, so that P( fZ , D) ∩ Z = P(Z , D) ⊂ AN , for
general D ∈ G(k, N ). Let (Zi )i∈I be a stratification of Z such that Zi is smooth
and Z is normally flat along Zi , for all i ∈ I . Such a stratification exists, due to
the open nature of normal flatness (see [Hironaka 1964, Chapter II]). Consider the
Gauss map G : Z→ PN ∗. It restricts to a map Gi : Zi → PN ∗. We have

P( fZ , D)∩ Z = P(Z , D)= G−1(D⊥),

so that P( fZ , D)∩ Zi = G−1
i (D⊥), for all i .

Now, we apply Kleiman’s transversality theorem to find that for all i and for
general D ∈G(k, N ), the inverse images G−1

i (D⊥) are either empty or smooth of
the expected dimension.

Let i such that z is in Zi . If z /∈ G−1
i (D⊥) for general D ∈ G(k, N ), then

z /∈ P(Z , D) and we are in the case 1 of the lemma. Otherwise, z is a smooth point
of G−1

i (D⊥), so TP( fZ ,D),z and TZi ,z are transverse.

Assume that multz P(Z , D) > multz Z .multz P( fZ , D). Since P( fZ , D) is
smooth at z, this implies that TP( fZ ,D),z and Cz(Z) are not transverse. In particular,
the linear spaces TP( fZ ,D),z and Vert(Cz(Z)) are not transverse (here Vert(Cz(Z))
is the vertex of the cone Cz(Z)). But Z is normally flat along Zi , so we have
TZi ,z ⊂ Vert(Cz(Z)) (see [Hironaka 1964, Theorem 2, p. 195]). This is a contra-
diction. �

Corollary A.4. Let Z ⊂ PN be a reduced, irreducible hypersurface. Let z ∈ Z
such that multz Z = 2 and let k ∈ {−1, . . . , N−2}. Then, for general D ∈G(k, N ),
we have

multz P(Z , D)≤ 2.

Proof. The result is obvious for k =−1, since in this case P(Z , D)= Z . Assume
that k ≥ 0 and let D ∈G(k, N ) be a general k-plane. Let u ∈ D be a general point
ans let πu be the projection from u. Then, the projections

πu|P(Z ,u) : P(Z , u)→ πu(P(Z , u))

and
πu|P(Z ,D) : P(Z , D)→ πu(P(Z , D))

are locally isomorphisms around z. Moreover, we have the following equality (see
[Teissier 1982]):

πu(P(Z , D))= P(πu(P(Z , u)), πu(D)).
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As a consequence, it is sufficient to prove the result for k = 0. But in this case, this
is an obvious application of the lemma above. Indeed, for general u ∈ PN ,

multz P( fZ , u)=multz Z − 1= 1. �

We also need the following result.

Proposition A.5. Let X ⊂ PN be an irreducible projective variety such that X∗ is
a hypersurface. Let [h] ∈ X∗ be such that Tan(H, X) has m components (some of
which may be embedded components), then there exists k ∈ {−1, . . . , N−2} , such
that for general D ∈ G(k, N ), we have

mult[h] P(X∗, D)≥ m.

Proof. We only prove the result when Tan(H, X) is reduced and pure dimensional.
The general case is done using the same ideas; it’s just more technical.

Assume that
Tan(H, X)= Y1 ∪ · · · ∪ Ym,

where the Yi have the same codimension, say c. Let D⊂PN ∗ be a general PN−1−c.
Then

πD(P(X∗, D))= (D⊥ ∩ X)∗,

where πD is the projection from D. Moreover, we have [h] ∈ P(X∗, D) and

Tan(D⊥ ∩ H, D⊥ ∩ X)= D⊥ ∩Tan(H, X).

As a consequence, Tan(D⊥ ∩ H, D⊥ ∩ X) is a 0-dimensional scheme of degree at
least m. In this case, it is clear that

multπD([h]) πD(P(X∗, D))≥ m.

On the other hand, since D is general, the morphism

πD : P(X∗, D)→ πD(P(X∗, D))

is locally an isomorphism around [h], so that

mult[h] P(X∗, D)≥ m. �

Proof of Proposition 3.2.3. Let T1∪· · ·∪Tm be the decomposition of Tan(H, X) into
irreducible components. If m ≥ 3, then Proposition A.5 implies that mult[h](X∗)≥
3, this is impossible, so that m ≤ 2.

Assume that m = 2. The proof of Proposition A.5 shows that these two irre-
ducible components are scheme-theoretically linear spaces.

Assume that m = 1 and let k ∈ {−1, . . . , N − 2} such that T1 is dual to some
irreducible components of the reduced space underlying C[h]P(X∗, D), for general
D ∈ G(k, N ). By Corollary A.4, the cone C[h]P(X∗, D) is either a hyperquadric
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or a linear space. Assume that it is an irreducible hyperquadric. If k ≥ 0, we
know by Theorem 2.2.4 that |C[h](X∗)|∗ is the reduced space underlying some
embedded component of Tan(H, X). Taking q = dim Tan(H, X) general hyper-
plane sections of Tan(H, X) passing through |C[h](X∗)|∗, we see as in the proof
of Proposition A.5 that for general D′ ∈ G(q − 1, N ), we have

mult[h] P(X∗, D′)≥ 3.

This is impossible by Corollary A.4. Thus, if C[h]P(X∗, D) is an irreducible hy-
perquadric, then k =−1, and we are in the case 1 of the proposition.

Finally, if C[h]P(X∗, D) is a the union of two linear spaces or a unique linear
space, then we are in case 2 or 3 of the proposition. This concludes the proof of
Proposition 3.2.3. �
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