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We investigate the rationality problem for purely monomial actions of finite
groups. We solve it affirmatively in the following case: K is a field with
char K 6= 2 and G is a subgroup of GL(n; Z) isomorphic to (C2)

n, where
n > 0. Then the fixed field of K (x1, . . . xn) under the purely monomial
action of G is rational over K .

1. Introduction

We investigate the rationality problem for purely monomial actions of finite groups,
solving it affirmatively for groups of a special kind (Theorem 1.2). The main point
of this paper is not only our main theorem itself, but also the method of proof.

The problem is formulated as follows. Let K be a field, n a natural number, and
K (x1, . . . , xn) the rational function field in n variables x1, . . . , xn over K . Let G
be a finite subgroup of GL(n;Z). We define a G-action on K (x1, . . . , xn) by

σ(x j )=

n∏
i=1

xai, j
i for 1≤ j ≤ n, if σ = [ai, j ]1≤i, j≤n ∈ G.

We call σ the purely monomial action of G.

Problem 1.1. Let G be a finite subgroup of GL(n;Z). Let K (x1, . . . , xn)
G be

the fixed field of K (x1, . . . xn) under the purely monomial action of G. Then is
K (x1, . . . , xn)

G rational (i.e., purely transcendental) over K ?

The main result of this paper is the following statement, in which (C2)
n denotes

the direct product of n copies of the cyclic group of order two.

Theorem 1.2 (Main result). Let K be a field of char K 6= 2, let n be a natural
number, and let G be a subgroup of GL(n;Z) isomorphic to (C2)

n . The fixed field
K (x1, . . . , xn)

G under the purely monomial action of G is rational over K .
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Next, we review some known cases of Problem 1.1 and compare our result
with them. If n = 2 or 3, Problem 1.1 has been solved affirmatively for any finite
subgroup of GL(n;Z) and any field K in [Hajja 1983, 1987; Hajja and Kang 1992,
1994; Hoshi and Rikuna 2008]. (See also [Kang and Prokhorov 2010; Yamasaki
2010; Hoshi et al. 2011; Hoshi and Kang 2010] for the rationality problem for
general twisted monomial group actions.)

If n ≥ 4, then Problem 1.1 is still open and there are some examples of negative
answers to Problem 1.1. For example, Q(x1, x2, x3, x4)

G is not rational over Q if

G =
〈[

−1
1

1
1

]〉
;

see [Hajja 1990]. In the aforementioned papers that treated the cases n = 2, 3,
the problem is solved by complicated case-by-case calculations using the known
list of GL(n;Z)-conjugacy classes for each n. The result of Problem 1.1 depends
only on GL(n;Z)-conjugacy classes since a GL(n;Z)-conjugation corresponds to
a change of the basis {x1, . . . , xn} of K (x1, . . . , xn).

As far as the author knows, the complete list of GL(n;Z)-conjugacy classes is
known for n ≤ 6 (see [Brown et al. 1978] for n ≤ 4). However, it seems to be
almost impossible to obtain the whole result of Problem 1.1 for higher n in the
same manner as for n ≤ 3 because there are as many as 710 conjugacy classes
when n = 4 and the number grows rapidly with the degree n. So it is quite natural
to aim to obtain general results independent of degree n.

To make the problem tractable, we restrict ourselves to groups of exponent two.
Problem 1.1 has an affirmative answer for any degree n and any group isomorphic
to (C2)

1; see [Hajja 1981, Theorem 1.3]. Theorem 1.2 is a step in our attempt to
obtain similar results for other groups.

Next, we explain our method to prove Theorem 1.2. Our method is divided
into two steps. The first one is to consider how we can describe, with n gen-
eral, all GL(n;Z)-conjugacy classes that are isomorphic to (C2)

n . The number of
GL(n;Z)-conjugacy classes that are isomorphic to (C2)

n for each n is as follows:1

n 1 2 3 4 5 6 7 8
no. 1 2 4 8 16 36 80 194

(The two classes of n = 2 are given by G1 and G2 in [Hajja 1987], and the four
classes of n = 3 are given by W3(187), W4(187), W5(187) and W6(187) in [Hajja
and Kang 1992].)

However, what we need in order to prove Theorem 1.2 is a description for
general n. The main point of the first step of our proof is to use the idea of this

1This table was obtained by Markus Kirschmer using the program “sublattices” in the computer
algebra system MAGMA.
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algorithm with n general, and obtain the necessary information. We will explain the
method generally in Section 2A and consider the cases of (C2)

n in Section 3. The
second step is to prove rationality for the purely monomial actions corresponding
to the GL(n;Z)-conjugacy classes obtained in the first step. This is not easy, since
the GL(n;Z)-conjugacy classes are described in a general form.

We therefore introduce a conversion method, implicit in [Hoshi et al. 2011],
which allows us to prove rationality successfully. We will explain this method in
Section 2B and use it to prove Theorem 1.2 in Section 3. The aforementioned two
methods seem to be effective in many cases other than Theorem 1.2 in studying
the rationality problem for purely monomial actions, but we will discuss them on
another occasion since the situation would become more complicated.

Remarks. (1) Purely monomial actions are also widely known as multiplicative
actions. As a background reference on this general topic, refer to [Lorenz
2005]. Our Problem 1.1 is discussed as Problem 12 on page 159 therein.

(2) A related question asks if the rationality problem for multiplicative actions
of finite subgroups G ⊂ GL(n;Z) depends only on the GL(n;Q)-conjugacy
class of G and not on the actual GL(n;Z)-conjugacy classes in the Q-class.
Our Theorem 1.2 depends only on the Q-class, but the author does not know
whether this is generally true.

(3) Our Theorem 1.2 requires the assumption charK 6= 2, since our conversion
method in our proof does not work if charK = 2. There are some individual
cases where we can prove rationality easily for a fixed n even if charK = 2,
but definite results for general n are not known as far as the author knows.

2. Methods

In this section, we explain the two methods used in the proof of Theorem 1.2 in
Section 3. The first is a method to determine how a given GL(n;Q)-conjugacy
class of finite subgroups of GL(n;Q) splits into GL(n;Z)-conjugacy classes. As
mentioned, we will use this method to determine all GL(n;Z)-conjugacy classes
isomorphic to (C2)

n with n general. The second method converts Problem 1.1
corresponding to a given GL(n;Z)-conjugacy class into the problem corresponding
to another GL(n;Z)-conjugacy class. We will use this method to prove rationality
with respect to all the GL(n;Z)-conjugacy classes together.

2A. Splitting a Q-class into Z-classes. In this subsection, we consider generally
how a given GL(n;Q)-conjugacy class of finite subgroups of GL(n;Q) splits into
GL(n;Z)-conjugacy classes. For example, we put

G :=
〈[
−1 0 0

0 −1 0
0 0 1

]
,
[
−1 0 0

0 1 0
0 0 −1

]〉
.
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Then it is known that the subgroups of GL(3;Z) that are not GL(3;Z)-conjugate
but are GL(3;Q)-conjugate to G are given, up to GL(3;Z)-conjugation, by G,
P−1

1 G P1, P−1
2 G P2, and P−1

3 G P3, where

P1 =

[ 1 1 0
1 −1 0
0 0 1

]
, P2 =

[
0 1 1
1 0 1
1 1 0

]
, P3 =

[ 1 −1 −1
1 −1 1
1 1 −1

]
.

How can we find such P’s that give all GL(n;Z)-conjugacy of a given group? For
this purpose, we use some fundamental facts (Lemmas 2.1 and 2.2 below) from
crystallography [Opgenorth et al. 1998].

We denote by Qn the vector space consisting of row vectors of degree n. We
call the Z-module consisting of the Z-linear combinations of a Q-basis of Qn a full
Z-lattice, and we denote the set of all full Z-lattices in Qn by Zn . Then GL(n;Q)
acts on Zn by g ·L := {gl | l ∈ L} for any g ∈GL(n;Q) and L ∈Zn . The following
lemma means that any finite subgroup of GL(n;Q) is GL(n;Q)-conjugate to a
subgroup of GL(n;Z).

Lemma 2.1. Let G be a finite subgroup of GL(n;Q). Then

FixG(Zn) := {L ∈ Zn | g · L = L for all g ∈ G}

is not empty.

We denote the normalizer of G in GL(n;Q) by NGL(n;Q)(G). Then we can
obtain (at least theoretically) all GL(n;Z)-conjugacy classes contained in a given
GL(n;Q)-conjugacy class by the following lemma.

Lemma 2.2. Let G be a finite subgroup of GL(n;Q). The set of orbits

NGL(n;Q)(G)\FixG(Zn)

is in bijection with the set of all GL(n;Z)-conjugacy classes contained in the
GL(n;Q)-conjugacy class of G.

However, in practice, the determination of NGL(n;Q)(G)\FixG(Zn) is much more
difficult than expected. 2 So we restrict ourselves to obtaining the minimum infor-
mation necessary for the application to Problem 1.1. For our purpose, we do not
necessarily require the complete classification.

Let G be a finite subgroup of GL(n;Z). We take P ∈ GL(n;Q) such that
P−1G P is a subgroup of GL(n;Z), and we assume that P−1G P is not GL(n;Z)-
conjugate to G. In Section 3, we will consider transforming P into its simplest
form. We can multiply P from the right by an element of GL(n;Z) and from the
left by an element of NGL(n;Q)(G). The following standard normal form is suitable
for our study.

2Prof. Kirschmer informed the author that this set can be determined for a given G if n ≤ 9 by
the program “sublattices” in the computer algebra system MAGMA.
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Definition. A square matrix H = [hi, j ] with integer entries is in Hermite normal
form if the following conditions are satisfied:

(1) hi, j = 0 for j > i ,

(2) hi,i > 0 for all i , and

(3) 0≤ hi, j < hi,i for i > j .

Lemma 2.3 (e.g., [Cohen 1993]). Let A be a square matrix of degree n with integer
entries. Then there exists a unique matrix H in Hermite normal form H = AU with
U ∈ GL(n;Z).

2B. Conversion method of a corresponding Z-class. Our conversion method can
be formulated as follows. Let G and G ′ be subgroups of GL(n;Z) that are conju-
gate in GL(n;Q); so G ′ = P−1G P for some matrix P = [pi, j ] ∈ GL(n;Q) with
integer entries. Put

y j :=

n∏
i=1

xi
pi, j = P(x j ) ∈ F := K (x1, . . . , xn) for j = 1, . . . , n.

Then the subfield F ′ := K (y1, . . . , yn) ⊆ F is K -isomorphic to F via the map
F → F ′ given by f 7→ f ′ := P( f ). Moreover, the action of G ′ on F translates
into the action of G on F ′: writing σ ′ = P−1σ P for σ ∈ G, we have

(σ ′( f ))′ = σ( f ′)

for all f ∈ F . In particular, the invariant fields FG ′ and F ′G are K -isomorphic.
The following result is now clear.

Theorem 2.4. Assume that K (y1, . . . , yn) above can be given as the fixed field
K (x1, . . . , xn)

S under the set S of some actions. The fixed field K (x1, . . . , xn)
G ′

under the purely monomial action of G ′ is rational over K if and only if the fixed
field K (x1, . . . , xn)

〈G,S〉 under the purely monomial action of G and the actions of
S is rational over K .

We will prove Theorem 1.2 using Theorem 2.4 simultaneously for all GL(n;Z)-
conjugacy classes isomorphic to (C2)

n .

3. Proof of Theorem 1.2

Any subgroup of GL(n;Z) that is isomorphic to C2×· · ·×C2 (the direct product
of n copies of C2) is GL(n;Q)-conjugate to the group

G :=

〈−1
1
...

1

 , · · · ,
 1

...
1
−1

〉 .
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We take a matrix P = [ai, j ]1≤i, j≤n ∈GL(n;Q) such that P−1G P ⊂GL(n;Z) and
suppose that G is not GL(n;Z)-conjugate to P−1G P . We need to transform P
into its simplest form. We can multiply P by an element of GL(n;Z) from the
right and by an element of NGL(n;Q)(G) from the left. The following lemma does
not give the complete classification of GL(n;Z)-conjugacy, but it is sufficient for
our purpose.

Lemma 3.1. We can transform P into a matrix of the form[
1m 0
A 2 · 1n−m

]
with some integer m (≥1) and some matrix A of size (n−m)×m whose components
are 0 or 1.

Proof. By multiplying P by a scalar, we can assume P ∈M(n;Z). As the normal-
izer NGL(n;Q)(G) contains all diagonal matrices, we can assume that ai,1, . . . , ai,n

do not have a common divisor for each i .
We denote by gi (1 ≤ i ≤ n) the diagonal matrix of degree n whose (i, i)-

component is −1 and whose other diagonal components are 1. We see from a
direct calculation that the ( j, k)-component of P−1gi P is

1−
21i, j ai,k

det P
if j = k,

−
21i, j ai,k

det P
if j 6= k,

where 1i, j is the (i, j)-cofactor of P . Since P−1gi P ∈ GL(n;Z), we see that

(*)
21i, j ai,k

det P
∈ Z for all 1≤ i, j, k ≤ n.

Let p be an odd prime number. We suppose p l
| det P with an integer l (≥ 1).

Then p l
|1i, j ai,k for all 1≤ i, j, k ≤ n. Since ai,1, . . . , ai,n do not have a common

divisor, we see that p l
| 1i, j for all i and j . Comparing the determinants of both

sides of

det P · P−1
=

[
11,1 ··· 1n,1

...
...

11,n ··· 1n,n

]
,

we see that (det P)n−1 is divisible by (p l)n . So, p l+1
| det P , and this means that

det P is divisible by an arbitrarily large power of p. Hence det P is not divisible by
any odd prime number. If det P = 1, this contradicts the assumption that P−1G P
is not GL(n;Z)-conjugate to G. Hence det P = 2t with an integer t (≥ 1). Again
from the same argument about (*) as above, 1i, j is divisible by 2t−1, and hence
(det P)n−1 is divisible by (2t−1)n . Hence t ≤ n.
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We transform P to its Hermite normal form by multiplying it by an element of
GL(n;Z) from the right. Then its diagonal components are some 2-powers. We
assume that the (i, i)-component is 2l with l ≥ 2. Then 21i,i = 2t−l+1 � 2t . Again
from (*), we see that ai,1, . . . , ai,n are all divisible by 2, but this contradicts the
assumption that ai,1, . . . , ai,n do not have a common divisor. Thus the diagonal
components of P are 1 or 2. Since the normalizer NGL(n;Q)(G) contains all per-
mutation matrices, P can be transformed into the desired form. �

Proof of Theorem 1.2. We use the conversion method explained in Section 2B. We
use P of the form in Lemma 3.1. We denote the (i, j)-component of A by ai, j .
We define K -automorphisms σ1, . . . , σn−m, τ1, . . . , τn by

σi : x j 7→


(−1)ai, j x j if 1≤ j ≤ m,

−x j if j = m+ i,
−x j otherwise

 for i = 1, . . . , n−m;

τ l : x j 7→

{
1/x j if j = l,

x j otherwise

}
for l = 1, . . . , n.

Then the fixed field K (x1, . . . , xn)
〈σ1,...,σn−m〉 is K (y1, . . . , yn), where

y j =

 x j

n−m∏
k=1

xm+k
ak, j if 1≤ j ≤ m,

x j
2 if m+ 1≤ j ≤ n,

and the purely monomial action of P−1G P on K (x1, . . . , xn) coincides with that
of 〈τ1, . . . , τn〉 on K (y1, . . . , yn). Hence the fixed field K (x1, . . . , xn)

P−1G P is ra-
tional over K if and only if the fixed field K (x1, . . . , xn)

〈σ1,...,σn−m ,τ1,...,τn〉 is rational
over K . We put z j := x j + (1/x j ) for j = 1, . . . , n. Then

K (x1, . . . , xn)
〈σ1,...,σn−m ,τ1,...,τn〉 =

(
K (x1, . . . , xn)

〈τ1,...,τn〉
)〈σ1,...,σn−m〉

= K (z1, . . . , zn)
〈σ1,...,σn−m〉.

Since 〈σ1, . . . , σn−m〉 acts on K (z1, . . . , zn) in the same way as on K (x1, . . . , xn),
we see that K (z1, . . . , zn)

〈σ1,...,σn−m〉 is rational over K . Theorem 1.2 has been
proved. �
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