
Pacific
Journal of
Mathematics

ON A NEUMANN PROBLEM WITH p-LAPLACIAN AND
NONCOERCIVE RESONANT NONLINEARITY

SALVATORE A. MARANO AND NIKOLAOS S. PAPAGEORGIOU

Volume 253 No. 1 September 2011



PACIFIC JOURNAL OF MATHEMATICS
Vol. 253, No. 1, 2011

ON A NEUMANN PROBLEM WITH p-LAPLACIAN AND
NONCOERCIVE RESONANT NONLINEARITY

SALVATORE A. MARANO AND NIKOLAOS S. PAPAGEORGIOU

Using variational techniques and Morse theory, we establish three exis-
tence results for a Neumann boundary-value problem with p-Laplacian and
Carathéodory reaction term, which can be ( p−1)-asymptotically linear or
sublinear at infinity. The hypotheses taken on permit resonance and make
the corresponding energy functional noncoercive.

Introduction

Let � be a bounded domain in RN , N ≥ 3, having a smooth boundary ∂� and let
1 < p < +∞. This paper treats the existence of weak solutions û ∈ W 1,p(�) to
the boundary value problem

(P)

−1pu = j (x, u) in �,
∂u
∂np
= 0 on ∂�,

where1pu :=div(|∇u|p−2
∇u), the reaction term j :�×R→R satisfies Carathéo-

dory conditions, and ∂u/∂np := |∇u|p−2
∇u · n, with n(x) being the outward unit

normal vector to ∂� at the point x ∈ ∂�.
Let {λn} be the sequence of eigenvalues of (−1p,W 1,p(�)). It is known that

0 = λ1 < λ2. Three existence results are established here; see Theorems 2.1– 2.3
below. The first of them allows resonance with respect to λ1 and requires that
t 7→ j (x, t) be (p − 1)-asymptotically super-linear at zero. In Theorem 2.2 the
function t 7→ j (x, t) is (p− 1)-asymptotically linear both at zero and at infinity,
but resonance cannot occur. Finally, the third result examines the case p=2, where
the reaction term behaves — roughly speaking — as in Theorem 2.2, and resonance
with respect to λ2 is allowed.

From a technical point of view, the approach adopted combines variational
methods of min-max type with Morse theory. Standard regularity arguments then
provide û ∈ C1(�).
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Noncoercive, linear or sublinear Neumann problems have been widely investi-
gated in the framework of semilinear equations (i.e., for p = 2) under sign condi-
tions, monotonicity assumptions, and hypotheses of Landesman–Lazer type. We
refer the reader to [Tang 2001] and the bibliography therein.

The p-Laplacian operator 1p arises from a variety of physical phenomena. For
instance, it is employed in the mathematical modeling of non-Newtonian fluids,
some reaction-diffusion problems, as well as flows through porous media. Never-
theless, no much attention has been payed to Neumann problems with p-Laplacian
until few years ago. Previous results on this topic can be found in [Marano and
Papageorgiou 2006; Motreanu et al. 2009] and the references mentioned there.

1. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. If V is a subset of X , we write V for the
closure of V and ∂V for the boundary of V . Given ρ > 0, the symbol Bρ indicates
the open ball of radius ρ centered at the origin of X . We denote by X∗ the dual
space of X , while 〈·, ·〉 stands for the duality pairing between X and X∗. Let
8 : X → R. The function 8 is called locally Lipschitz continuous when to every
x ∈ X there corresponds a neighborhood Vx of x and a constant L x ≥ 0 such that

|8(z)−8(w)| ≤ L x‖z−w‖ ∀ z, w ∈ Vx .

If lim‖x‖→+∞8(x)=+∞ then we say that 8 is coercive. Define

8c
:= {x ∈ X : 8(x)≤ c}, c ∈ R.

Now, let 8 ∈C1(X). The classical Palais–Smale condition for 8 reads as follows.

(PS)8 Every sequence {xn} ⊆ X such that {8(xn)} is bounded and that

lim
n→+∞

‖8′(xn)‖X∗ = 0

has a convergent subsequence.

We shall employ also the next compactness hypothesis, which includes (PS)8.

(C)8 Every sequence {xn} ⊆ X such that {8(xn)} is bounded and that

lim
n→+∞

(1+‖xn‖)‖8
′(xn)‖X∗ = 0

has a convergent subsequence.

Finally, K (8) indicates the critical set of 8 while

Kc(8) := {x ∈ K (8) : 8(x)= c}.

The critical point result below is a very special case of [Bonanno and Marano 2010,
Theorem 2.2]; see also [Livrea and Marano 2009, Theorem 3.1].
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Let Q be a compact topological manifold in X having a nonempty boundary
Q0. Set

0 :=
{
γ ∈ C0(Q, X) : γ |Q0 = id |Q0

}
, c := inf

γ∈0
sup
x∈Q

8(γ (x)).

Theorem 1.1. Suppose 8 satisfies condition (C)8 and there exists a nonempty
closed subset F of X such that

(γ (Q)∩ F) \ Q0 6=∅ ∀ γ ∈ 0 and sup
x∈Q0

8(x)≤ inf
x∈F

8(x).

Then Kc(8) 6=∅. Moreover, Kc(8)∩ F 6=∅ as soon as infx∈F 8(x)= c.

Let (A, B) be a topological pair fulfilling B ⊂ A ⊆ X . The symbol Hk(A, B),
k ∈N0, indicates the k-th relative singular homology group of (A, B) with integer
coefficients. If x0 ∈ Kc(8) is an isolated point of K (8) then

Ck(8, x0) := Hk(8
c
∩U,8c

∩U \ {x0}) , k ∈ N0,

are the critical groups of 8 at x0. Here, U stands for any neighborhood of x0 such
that K (8)∩8c

∩U = {x0}. By excision, critical groups turn out to be independent
of U . When 8|K (8) is bounded below and c < infx∈K (8)8(x) we define

Ck(8,∞) := Hk(X,8c), k ∈ N0.

For general references on this subject, see [Ambrosetti and Malchiodi 2007; Chang
1993; Granas and Dugundji 2003].

Throughout the paper, � denotes a bounded domain of real Euclidean N -space
(RN , | · |), N ≥ 3, with a smooth boundary ∂�, p ∈ (1,+∞), p′ := p/(p − 1),
‖ · ‖p is the usual norm of L p(�), X :=W 1,p(�), and

‖u‖ :=
(
‖∇u‖p

p +‖u‖
p
p
)1/p

, u ∈ X,

where

‖∇u‖p :=

(∫
�

|∇u(x)|p dx
)1/p

.

Write p∗ for the critical exponent of the Sobolev embedding W 1,p(�) ⊆ Lq(�).
Recall that p∗ = N/(N − p) if p< N , p∗ =+∞ otherwise, and the embedding is
compact whenever 1≤ q < p∗. The symbol m(E) indicates the Lebesgue measure
of E . If m(E) > 0, then we say that E is nonnegligible. Set, for any w : �→ R,
w− :=max{−w, 0} and w+ :=max{w, 0}.

Let A : X→ X∗ be the nonlinear operator defined by

〈A(u), v〉 :=
∫
�

|∇u(x)|p−2
∇u(x) · ∇v(x) dx ∀ u, v ∈ X.
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A standard argument [Chabrowski 1997, p. 3] yields this auxiliary result:

Proposition 1.1. Assume un ⇀ u in X and lim supn→+∞〈A(un), un−u〉≤ 0. Then
un→ u in X.

We shall employ some facts on the spectrum σ(−1p) of the operator−1p with
homogeneous Neumann boundary conditions, i.e., (−1p, X). The situation looks
very nice when p = 2 (linear case), whereas it is more involved if p 6= 2. In fact,
consider the nonlinear eigenvalue problem

(1-1)

−1pu = λ|u|p−2u in �,
∂u
∂np
= 0 on ∂�.

Lyusternik–Schnirelman theory still provides a strictly increasing sequence {λn} ⊆

R+0 of eigenvalues for (1-1). However, we do not know whether they are all
the eigenvalues of the operator (−1p, X). When p = 2, denote by E(λn) the
eigenspace corresponding to λn , n ∈ N. If p 6= 2 then we can characterize E(λ1)

only. Proposition 3 in [Motreanu and Papageorgiou 2007] ensures that:

(p1) λ1 = inf
{
‖∇u‖p

p

‖u‖p
p
: u ∈ X, u 6= 0

}
= 0.

Further, λ1 is isolated, simple, and E(λ1)= R.

(p2) The functions ±û0 given by

(1-2) û0(x) := m(�)−1/p
∀ x ∈�,

are the only constant-sign L p-normalized eigenfunctions of (−1p, X) cor-
responding to λ1.

From [Motreanu and Papageorgiou 2007, Proposition 4] we next obtain:

(p3) Define

(1-3) C(p)=:
{

u ∈ X :
∫
�

|u(x)|p−2u(x) dx = 0
}
.

Then

λ2 = inf
{
‖∇u‖p

p

‖u‖p
p
: u ∈ C(p), u 6= 0

}
= inf{λ ∈ σ(−1p) : λ > 0}.

A different characterization of λ2 will be used in Section 2. For the proof we
refer the reader to [Aizicovici et al. 2009, Proposition 2].

(p4) Write

(1-4) S := {u ∈ X : ‖u‖p = 1},

00 := {γ0 ∈ C0([−1, 1], S) : γ0(−1)=−û0, γ0(1)= û0}.
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Then
λ2 = inf

γ∈00
sup

t∈[0,1]
‖∇γ (t)‖p

p.

Finally, let m ∈ L∞(�)\{0} satisfy m≥0 in�. Consider the weighted nonlinear
eigenvalue problem

(1-5)

−1pu = λ̂m(x)|u|p−2u in �,
∂u
∂np
= 0 on ∂�.

As before, the Lyusternik–Schnirelman theory gives a strictly increasing sequence
{λ̂n(m)} of eigenvalues for (1-5). Moreover, one has [Aizicovici et al. 2009, Section
3]:

(p̂1) λ̂1(m)= 0 and E(λ̂1(m))= R.

(p̂2) If m′,m′′ ∈ L∞(�) \ {0} and 0≤ m′ < m′′ in � then λ̂2(m′′) < λ̂2(m′).

(p̂3) If m′,m′′ ∈ L∞(�) \ {0}, 0 ≤ m′ ≤ m′′ in �, m′ < m′′ on a nonnegligible
subset of �, and p = 2 then λ̂n(m′′) < λ̂n(m′) for all n ∈ N.

2. Existence results

The following hypotheses on the function j : � × R → R will be used in the
sequel. To avoid unnecessary technicalities, “for every x ∈ �” takes the place of
“for almost every x ∈�”.

( j1) x 7→ j (x, t) is measurable for all t ∈ R.

( j2) t 7→ j (x, t) is continuous and j (x, 0)= 0 for every x ∈�.

( j3) There exists a constant a1 > 0 such that

| j (x, t)| ≤ a1
(
1+ |t |p−1)

∀ (x, t) ∈�×R.

For (x, ξ) ∈�×R, define

J (x, ξ) :=
∫ ξ

0
j (x, t)dt.

( j4) There are constants a2 ∈ [0, λ2), r ∈ [1, p] such that

0≤ lim inf
|ξ |→+∞

pJ (x, ξ)
|ξ |p

≤ lim sup
|ξ |→+∞

pJ (x, ξ)
|ξ |p

≤ a2

and

lim inf
|ξ |→+∞

pJ (x, ξ)− j (x, ξ)ξ
|ξ |r

> 0

uniformly in x ∈�.
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( j5) There exist δ > 0, µ ∈ [1, p), q ∈ (p, p∗), and a3, a4 > 0 such that

j (x, t)t > 0 if x ∈�, 0< |t | ≤ δ

and

µJ (x, ξ)− j (x, ξ)ξ ≥ a3|ξ |
p
− a4|ξ |

q
∀ (x, ξ) ∈�×R.

Example 2.1. A simple verification shows that the function j :�×R→ R given
by setting, for all (x, t) ∈�×R,

j (x, t) :=
{
|t |µ−2t − |t |p−2t + b|t |q−2t if |t | ≤ 1,
a2|t |s−2t + (b− a2)/t otherwise,

where 1< µ< p < q , s < p, and 0< a2 ≤ b, fulfills ( j1)–( j5).
Now, define

8(u) :=
1
p
‖∇u‖p

p −

∫
�

J (x, u(x)) dx ∀ u ∈ X.

Due to ( j1)–( j3) one clearly has 8 ∈ C1(X).

Proposition 2.1. If hypotheses ( j1)–( j4) hold true, 8 satisfies condition (C)8.

Proof. Pick a sequence {un} ⊆ X such that {8(un)} is bounded and

lim
n→+∞

(1+‖un‖)‖8
′(un)‖X∗ = 0.

This implies

(2-1)
∣∣∣∣〈A(un), v〉−

∫
�

j (x, un(x))v(x) dx
∣∣∣∣≤ εn

1+‖un‖
‖v‖ ∀n ∈ N, v ∈ X,

where εn→ 0+. Setting v := un yields

(2-2) ‖∇un‖
p
p −

∫
�

j (x, un(x))un(x) dx ≤ εn.

Since {8(un)} is bounded, there exists c1 > 0 fulfilling

−‖∇un‖
p
p +

∫
�

pJ (x, un(x)) dx ≤ c1 ∀ n ∈ N.

Therefore,

(2-3)
∫
�

[pJ (x, un(x))− j (x, un(x))un(x)] dx ≤ c2, n ∈ N,

where c2 > 0. Combining ( j3) with ( j4) produces constants c3, c4 > 0 such that

c3|ξ |
r
− c4 ≤ pJ (x, ξ)− j (x, ξ)ξ ∀ (x, ξ) ∈�×R.
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So, on account of (2-3), the sequence {un} turns out to be bounded in Lr (�). Since
r ≤ p < p∗ we can find τ ∈ [0, 1) satisfying

1
p
=

1− τ
r
+
τ

p∗
.

The interpolation inequality gives

‖un‖p ≤ ‖un‖
1−τ
r ‖un‖

τ
p∗,

which easily leads to

(2-4) ‖un‖
p
p ≤ c5‖un‖

τp
∀ n ∈ N,

where c5 > 0. By (2-2), ( j3), and (2-4), it follows that

‖∇un‖
p
p ≤ εn +

∫
�

j (x, un(x))un(x) dx ≤ εn +

∫
�

a1(|un(x)| + |un(x)|p) dx

≤ εn + c6m(�)1−1/r
+ a1c5‖un‖

τp, n ∈ N,

for some c6 > 0. Using (2-4) in this inequality one has

‖un‖
p
≤ εn + c6m(�)1−1/r

+ c5(1+ a1)‖un‖
τp
∀ n ∈ N,

namely, the sequence {un} turns out to be bounded in X because τ < 1. We may
thus assume that un ⇀ u in X and un → u in L p(�), where a subsequence is
considered when necessary. Hypothesis ( j3) yields

lim
n→+∞

∫
�

j (x, un(x))(un(x)− u(x)) dx = 0.

Hence, from (2-1) written for v := un − u it follows

lim
n→+∞

〈A(un), un − u〉 = 0,

which, on account of Proposition 1.1, leads to the conclusion. �

From now on, F will denote the closed symmetric cone

(2-5) F := {u ∈ X : ‖∇u‖p
p ≥ λ2‖u‖p

p}.

Proposition 2.2. Let ( j1)–( j4) be satisfied. Then the function 8|F is coercive.
Moreover, infu∈F 8(u) >−∞.

Proof. Hypotheses ( j3)–( j4) provide constants c7 ∈ (0, λ2), c8 > 0 such that

J (x, ξ)≤
c7

p
|ξ |p + c8 ∀ (x, ξ) ∈�×R.
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Consequently, if u ∈ F then

8(u)≥
1
p
‖∇u‖p

p −
c7

p
‖u‖p

p − c8m(�)

≥
1
p

(
1−

c7

λ2

)
‖∇u‖p

p − c8m(�)≥
λ2− c7

p(λ2+ 1)
‖u‖p

− c8m(�).

Since c7 < λ2, we evidently have

lim
‖u‖→+∞

8|F (u)=+∞ as well as inf
u∈F

8(u)≥−c8m(�) >−∞.

This completes the proof. �

Proposition 2.3. If ( j1)–( j4) hold then lim
ξ→±∞

8|R(ξ)=−∞.

Proof. Condition ( j4) yields c9, c10 > 0 such that

d
dt

(
J (x, t)

t p

)
=

j (x, t)t − pJ (x, t)
t p+1 ≤−c9

1
t p−r+1

for any x ∈�, t ≥ c10. Without loss of generality we can assume r < p. So,

J (x, z)
z p −

J (x, ξ)
ξ p ≤

c9

p− r

(
1

z p−r −
1

ξ p−r

)
provided z ≥ ξ ≥ c10. By ( j4) this forces, as z→+∞,

J (x, ξ)≥
c9

p− r
ξ r , ξ ≥ c10.

Hence,
lim

ξ→+∞
J (x, ξ)=+∞ uniformly in x ∈�,

which evidently leads to limξ→+∞8|R(ξ) = −∞. A similar reasoning then gives
limξ→−∞8|R(ξ)=−∞. �

Through Propositions 2.2 and 2.3 we obtain ξ0 > 0 such that

(2-6) 8(±ξ0) < inf
u∈F

8(u).

Define

(2-7) Q0 :={±ξ0}, Q :=[−ξ0, ξ0]⊆R, 0 :={γ ∈C0(Q, X) : γ |Q0= id |Q0}.

Proposition 2.4. Let F be as in (2-5) and let Q, Q0, 0 be as in (2-7). Then

Q0 ∩ F =∅ and γ (Q)∩ F 6=∅ ∀ γ ∈ 0.
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Proof. The first assertion immediately follows from (2-6). Let us next verify that
−ξ0 and ξ0 belong to different path components of X \F . Indeed, if the conclusion
was false then there would exist a continuous function γ̂ : [−1, 1] → X fulfilling

γ̂ (−1)=−ξ0, γ̂ (1)= ξ0, γ̂ ([−1, 1])⊆ X \ F.

Therefore,
‖∇γ̂ (t)‖p

p

‖γ̂ (t)‖p
p
< λ2

for all t ∈ [−1, 1]. However, this contradicts (p4). Now, pick any γ ∈0 and define
γ̂ (t) := γ (tξ0), t ∈ [−1, 1]. Since γ̂ ([−1, 1])∩ ∂(X \ F) 6= ∅ while ∂(X \ F) =
∂F ⊆ F , we actually have γ (Q)∩ F 6=∅, as desired. �

Theorem 2.1. If hypotheses ( j1)–( j5) are satisfied, (P) possesses a nontrivial so-
lution û ∈ C1(�).

Proof. Propositions 2.1 and 2.4, besides (2-6), ensure that 8, Q, Q0, F comply
with all the assumptions of Theorem 1.1. Thus, there is û ∈ X such that 8(û)= c,
8′(û) = 0. Reasoning exactly as in [Marano and Papageorgiou 2006, pp. 1310–
1311] then provides

(2-8) −1pû(x)= j (x, û(x)) a.e. in �,
∂ û
∂np
= 0 on ∂�,

i.e., the function û turns out to be a weak solution of (P). By ( j1)–( j3), (2-8),
and standard results from nonlinear regularity theory one has û ∈ C1(�); see for
instance [Kristály and Papageorgiou 2010, p. 8]. So, it remains to verify that û 6= 0.
Proposition 3.2 in [Kristály and Papageorgiou 2010], which requires ( j5), yields
Cn(8, 0) = 0 for all n ∈ N0. Without loss of generality, suppose Kc(8) isolated.
Thanks to Theorem 1.5 on p. 89 of [Chang 1993] we thus obtain C1(8, û) 6= 0.
Consequently, û 6= 0, and the conclusion follows. �

Because of ( j5) the function ξ 7→ J (x, ξ) grows as |ξ |µ near zero. Thus,

lim
ξ→0

J (x, ξ)
|ξ |p

=+∞ for any x ∈�.

The next result treats the case when this limit is finite, namely j (x, · ) turns out to
be (p− 1)-asymptotically linear at zero.

We shall also assume that:

( j′4) There are constants a5, a6 ∈ (0, λ2) such that

a5 ≤ lim inf
|t |→+∞

j (x, t)
|t |p−2t

≤ lim sup
|t |→+∞

j (x, t)
|t |p−2t

≤ a6

uniformly in �.
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( j′5) For some λ ∈ (λ2,+∞) \ σ(−1p) one has

lim
t→0

j (x, t)
|t |p−2t

= λ

uniformly with respect to x ∈�.

Example 2.2. A simple verification shows that the function j :�×R→ R given
by setting, for all (x, t) ∈�×R,

j (x, t) :=
{
λ|t |p−2t i f |t | ≤ 1,
a6|t |p−2t + (λ− a6)|t |s−2t otherwise,

where 0< a6<λ2<λ, λ 6∈ σ(−1p), while 1< s< p, fulfills ( j′4) and ( j′5) besides
( j1)–( j3).

Proposition 2.5. If ( j1)–( j3) and ( j′4) hold true, 8 satisfies condition (PS)8.

Proof. Pick a sequence {un} ⊆ X such that {8(un)} is bounded and

(2-9) lim
n→+∞

‖8′(un)‖X∗ = 0.

We claim that {un} turns out to be bounded. Indeed, if the assertion was false then,
passing to a subsequence when necessary,

(2-10) lim
n→+∞

‖un‖ = +∞.

Define
wn :=

un

‖un‖
, n ∈ N.

Obviously, we may suppose

(2-11) wn ⇀w in X and wn→ w in L p(�)

because {wn} ⊆ X is bounded. From (2-9) it follows that

(2-12)
∣∣∣∣〈A(wn),v〉−

1
‖un‖

p−1

∫
�

j (x, un(x))v(x) dx
∣∣∣∣≤ εn

‖un‖
p−1 ‖v‖ ∀ v∈ X,

where εn→ 0+. Since, on account of ( j3) and (2-11),

lim
n→+∞

1
‖un‖

p−1

∫
�

j (x, un(x))(wn(x)−w(x)) dx = 0,

inequality (2-12) written for v := wn −w provides

lim
n→+∞

〈A(wn), wn −w〉 = 0.

Hence, thanks to Proposition 1.1,

(2-13) lim
n→+∞

wn = w in X,



NEUMANN PROBLEM WITH p-LAPLACIAN AND NONCOERCIVE NONLINEARITY 113

which evidently forces

(2-14) ‖w‖ = 1.

By ( j3) again the sequence {‖un‖
−p+1 j ( · , un( · ))}⊆ L p′(�) is bounded. Through

the same arguments exploited in [Motreanu et al. 2007, Proposition 5] we thus
obtain a function α ∈ L∞(�) such that a5 ≤ α ≤ a6 in � and

1
‖un‖

p−1 j ( · , un( · )) ⇀ α|w|p−2w in L p′(�).

Because of (2-12) and (2-13) this implies

〈A(w), v〉 =
∫
�

α(x)|w(x)|p−2w(x)v(x) dx ∀ v ∈ X,

namely the function w turns out to be a weak solution of the problem

−1pu = α(x)|u|p−2u in �,
∂u
∂np
= 0 on ∂�.

Now, recalling that a6 < λ2, property (p2) yields

1= λ̂2(λ2) < λ̂2(α),

namely
0= λ̂1(α) < 1< λ̂2(α).

Consequently w = 0, which contradicts (2-14). The boundedness of {un} leads to

(2-15) un ⇀ u in X, un→ u in L p(�),

where a subsequence is considered when necessary. As we already did for {wn},
through (2-12) and (2-15) we finally achieve un→ u in X . �

Next, let λ ∈ R and let 9(λ) : X→ R be defined by

9(λ)(u) :=
1
p
‖∇u‖p

p −
λ

p
‖u‖p

p ∀ u ∈ X.

Proposition 2.6. C0(9(λ), 0)=C1(9(λ), 0)= 0 for all λ ∈ (λ2,+∞)\σ(−1p).

Proof. Pick λ ∈ (λ2,+∞) \ σ(−1p) and write G := {u ∈ X : ‖∇u‖p
p < λ‖u‖

p
p}.

Obviously, û0 ∈ G, with û0 being as in (1-2). We first claim that the set G turns
out to be path-wise connected. Indeed, let u ∈ G and let Gu the path component
of G containing u. If

mu := inf
w∈Gu

‖∇w‖
p
p

‖w‖
p
p
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then there exists {wn} ⊆ Gu fulfilling

(2-16) ‖wn‖p = 1, ‖∇wn‖
p
p < mu +

1
n2 ∀ n ∈ N.

Along a subsequence when necessary, this gives

(2-17) wn ⇀w0 in X, wn→ w0 in L p(�).

Since 9(λ) is p-homogeneous, we may restrict ourselves to the C1 Banach man-
ifold S defined in (1-4). Set ξ(u) := ‖∇u‖p

p, u ∈ X . By Ekeland’s variational
principle, there exists a sequence {vn} ⊆ Gu ∩ S such that

(i) ξ(vn)≤ ξ(wn) < mu +
1
n2 , ‖vn −wn‖ ≤

1
n
, n ∈ N ,

and

(ii) ξ(vn)≤ ξ(v)+
1
n
‖v− vn‖ ∀ n ∈ N, v ∈ Gu ∩ S.

If vn ∈ ∂(Gu ∩ S) for infinitely many n then Lemma 3.5 of [Cuesta et al. 1999] and
(i) force

λ= ξ(vn)≤ ξ(wn) < mu +
1
n2 < λ,

which is impossible. So, vn ∈ Gu ∩ S for all n large enough. Thus, exploiting (ii)
yields

lim
n→+∞

‖(ξ |S)
′(vn)‖X∗ = 0.

Arguing as in the proof of Proposition 2.1 we see that ξ |S satisfies condition (C)ξ |S .
Therefore, up to subsequences, vn → w0 in X and, a fortiori, w0 ∈ Gu ∩ S. Now,
observe that G∩ S is open in S while Gu∩ S turns out to be a component of G∩ S.
So, if w0 ∈ ∂(Gu∩ S) then, thanks to [Cuesta et al. 1999, Lemma 3.5], w0 6∈G∩ S.
On the other hand, by (2-16)–(2-17) one has

‖w0‖p = 1, ‖∇w0‖
p
p ≤ mu < λ,

i.e., w0 ∈ G ∩ S, a contradiction. Hence, w0 ∈ Gu ∩ S, and the assertion follows
once we show that û0 can be joined with w0 through a path contained in G. This is
an immediate consequence of (p4) as soon as w0 ≤ 0, because in such a case (p2)

yields w0 =−û0. Suppose thus w+0 6= 0 and define

w(t) :=
w+0 − (1− t)w−0
‖w+0 − (1− t)w−0 ‖p

, t ∈ [0, 1].

Since
〈A(w0), v〉 = mu

∫
�

|w0(x)|p−2w0(x)v(x) dx ∀ v ∈ X,



NEUMANN PROBLEM WITH p-LAPLACIAN AND NONCOERCIVE NONLINEARITY 115

choosing v := w+0 and v := −w−0 provides, respectively,

‖∇w+0 ‖
p
p = mu‖w

+

0 ‖
p
p, ‖∇w

−

0 ‖
p
p = mu‖w

−

0 ‖
p
p,

which evidently forces

‖∇w(t)‖p
p = mu‖w(t)‖p

p = mu, t ∈ [0, 1].

Hence, w(t) ∈ G for all t ∈ [0, 1], w(0)= w0, and

w(1)=
w+0

‖w+0 ‖p
= û0

on account of (p2) again. The function t 7→w(t), t ∈ [0, 1], represents the desired
arc. From the path-wise connectedness of G it follows

(2-18) H0(G, ∗)= 0, ∗ ∈ G.

Let ∗ ∈ G. The set 9(λ)0 is contractible, because 9(λ) is p-homogeneous. So,
thanks to [Granas and Dugundji 2003, Section 14, Proposition 4.9], we get

(2-19) Hk(9(λ)
0, ∗)= 0 ∀ k ∈ N0.

Now, Theorem 5.1.33 of [Gasiński and Papageorgiou 2006] ensures that9(λ)0\{0}
and9(λ)−ε are homotopically equivalent. Since the same holds for G= int(9(λ)0)
and 9(λ)−ε whenever ε > 0 is suitably small (see [Granas and Dugundji 2003,
p. 407]), the sets 9(λ)0 \ {0} and G turn out to be homotopically equivalent too.
This implies

(2-20) Hk(9(λ)
0
\ {0}, ∗)= Hk(G, ∗), k ∈ N0.

Gathering (2-18) and (2-20) together we obtain

(2-21) H0(9(λ)
0
\ {0}, ∗)= 0.

On account of Theorem 4.8 in [Granas and Dugundji 2003, Section 14] the reduced
homology sequence

(2-22) . . . Hk(9(λ)
0
\ {0}, ∗)→ Hk(9(λ)

0, ∗)
i∗
→

Hk(9(λ)
0, 9(λ)0 \ {0})

∂∗
→ Hk−1(9(λ)

0
\ {0}, ∗) . . .→ 0,

where i∗ denotes the group homomorphism arising from the inclusion map while
∂∗ stands for the boundary homomorphism, is exact. Therefore, by (2-19),

Ker ∂∗ = Im i∗ = {0} .
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This means that ∂∗ is an isomorphism between Hk(9(λ)
0, 9(λ)0 \ {0}) and a sub-

group of Hk−1(9(λ)
0
\ {0}, ∗). Using (2-21), this results in

C1(9(λ), 0)= H1(9(λ)
0, 9(λ)0 \ {0})= 0.

Finally, due to (2-22), one directly has

C0(9(λ), 0)= H0(9(λ)
0, 9(λ)0 \ {0})= 0,

which completes the proof. �

Write, as usual,

δk,h Z =
{

Z when k = h,
{0} otherwise.

Proposition 2.7. (i) If λ < λ1 then Ck(9(λ), 0)= δk,0 Z for all k ∈ N0.

(ii) If λ ∈ (λ1, λ2) then Ck(9(λ), 0)= δk,1 Z for every k ∈ N0.

Proof. Pick λ < λ1 = 0. The functional 9(λ) is bounded from below and satisfies
condition (PS)c, c ∈ R. Thus, choosing c < infu∈X 9(λ)(u) yields

(2-23) Ck(9(λ),∞) := Hk(X, 9(λ)c)= δk,0 Z , k ∈ N0.

From λ 6∈ σ(−1p) it easily follows K (9(λ)) = {0}. Hence, by [Bartsch and Li
1997, Proposition 3.6] we get

(2-24) Ck(9(λ), 0)= Ck(9(λ),∞).

Now, assertion (i) is an immediate consequence of (2-23)–(2-24).
Let us next verify (ii). Fix λ ∈ (λ1, λ2). It is evident that

9(λ)|R ≤ 0, 9(λ)|C(p)\{0} > 0,

where C(p) is as in (1-3). If U := X , Q := [−û0, û0], Q0 :={±û0}, and F :=C(p),
while i1∗ : H0(Q0)→ H0(U \ F) and i2∗ : H0(Q0)→ H0(Q) denote the group
homomorphisms induced by the corresponding inclusion maps, then

rank(i1∗)− rank(i2∗)= 2− 1= 1.

Therefore, on account of [Perera 1998, Theorem 3.1], one has

(2-25) rank C1(9(λ), 0)≥ 1.

Through the long exact homology sequence

. . . Hk(9(λ)
ε, 9(λ)−ε)−→

i∗ Hk(X, 9(λ)−ε)−→
j∗

Hk(X, 9(λ)ε)−→
∂∗ Hk−1(9(λ)

ε, 9(λ)−ε) . . .
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for the topological pair (9(λ)ε, 9(λ)−ε), where ε > 0 is suitably small, we obtain

rank Hk(X, 9(λ)−ε)= rank Ker j∗+ rank Im j∗ = rank Ker j∗

because rank Hk(X, 9(λ)ε)= 0. Thus, by (2-25),

rank Hk(X, 9(λ)−ε)= rank Im i∗ ≤ 1,

which implies assertion (ii). �

Proposition 2.8. Let hypotheses ( j1)–( j3) and ( j′4) be satisfied. If , moreover,
p ≥ 2, then Ck(8,∞)= δk,1 Z for all k ∈ N0.

Proof. Fix µ ∈ (0, λ2) and define, provided (t, u) ∈ [0, 1]× X ,

h1(t, u) := (1− t)8(u)+ t9(µ)(u), h2(t, u) := t8(u)+ (1− t)9(µ)(u).

We claim that for some R > 0 one has

(2-26) inf
{
‖h1(t, · )′(u)‖X∗ : t ∈ [0, 1], ‖u‖> R

}
> 0.

Indeed, if (2-26) were false then there would exist {tn} ⊆ [0, 1], t ∈ [0, 1], and
{un} ⊆ X fulfilling

lim
n→+∞

tn = t, lim
n→+∞

‖un‖ = +∞, h1(tn, · )′(un)= 0 ∀ n ∈ N.

Write
wn :=

un

‖un‖
, n ∈ N.

The same arguments exploited in the proof of Proposition 2.5 yield a weak solution
w ∈ X to the problem

−1pu = [(1− t)α(x)+ tµ]|u|p−2u in �,
∂u
∂np
= 0 on ∂�

that satisfies (2-14). Since

(1− t)α(x)+ tµ≤ (1− t)a6+ tµ < λ2,

property (p̂2) yields

1= λ̂2(λ2) < λ̂2((1− t)α+ tµ),

namely, on account of (p̂1),

0= λ̂1((1− t)α+ tµ) < 1< λ̂2((1− t)α+ tµ).

Consequently, w = 0, which contradicts (2-14).
A similar argument ensures that

(2-27) inf
{
‖h2(t, · )′(u)‖X∗ : t ∈ [0, 1], ‖u‖> R

}
> 0
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for any sufficiently large R > 0.
Now, bearing in mind (2-26), Theorem 5.1.19 of [Gasiński and Papageorgiou

2006] can be applied, and there exists a pseudogradient vector field

v̂ := (v0, v) : [0, 1]× (X \ B R)→ [0, 1]× X

such that v0(t, u) = h1( · , u)′(t) and, moreover, v(t, · ) is a locally Lipschitz con-
tinuous pseudogradient vector field of h1(t, · ) for every t ∈ [0, 1]. Observe that
A : X → X∗ turns out to be locally Lipschitz continuous too, because p ≥ 2. So,
setting

w(t, u) := −
|h1( · , u)′(t)|
‖h1(t, · )′(u)‖2X∗

v(t, u), u ∈ X \ B R,

we evidently obtain a locally Lipschitz continuous function. If

(2-28) b < inf{hi (t, u) : (t, u) ∈ [0, 1]× B R} , i = 1, 2,

then, due to (2-26)–(2-27), the constant b is not a critical value of hi (t, · ), t ∈[0, 1].
By ( j′4) the functional8 turns out to be unbounded below. Thus, there exists u0∈ X
such that 8(u0)≤ b. Using Theorem 5.1.21 of the same reference provides a local
flow x(t) of the Cauchy problem

x ′ = w(t, x), x(0)= u0.

Hence, for every t ≥ 0 sufficiently small we have dh1(t, x(t))
dt

≤ 0, which clearly
forces

h1(t, x(t))≤ h1(0, x(0))= h1(0, u0)=8(u0)≤ b.

Bearing in mind (2-28) this implies ‖x(t)‖ > R. Thanks to (2-26) we thus get
h1(t, · )′(x(t)) 6= 0 for any t ≥ 0 small enough. Therefore, the flow x(t) turns out
to be global on [0, 1]. Consequently,

(2-29) 8b
= h1(0, · )b is homeomorphic to a subset of 9(µ)b = h1(1, · )b.

Replacing h1 with h2 then yields

(2-30) 9(µ)b = h2(0, · )b is homeomorphic to a subset of 8b
= h2(1, · )b.

From (2-29)–(2-30) it evidently follows that 8b and 9(µ)b are of the same homo-
topy type. So,

(2-31) Ck(8,∞)= Hk(X,8b)= Hk(X, 9(µ)b)= Ck(9(µ),∞) ∀ k ∈ N0.

Sinceµ∈ (λ1, λ2), the functional9(µ) possesses only one critical point, i.e., u≡0.
By [Bartsch and Li 1997, Proposition 3.6] we have

(2-32) Ck(9(µ),∞)= Ck(9(µ), 0), k ∈ N0.
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At this point the conclusion is a direct consequence of (2-31), (2-32), and assertion
(ii) in Proposition 2.7. �

Theorem 2.2. If p≥ 2 and ( j1)–( j3), ( j′4), and ( j′5) hold true, (P) has a nontrivial
solution û ∈ C1(�).

Proof. Thanks to Proposition 2.5 the functional 8 satisfies condition (PS)8. Thus,
in view of [Perera 2003, Lemma 4.1], there exist 8̂ ∈ C1(X), r > 0 such that

(2-33) 8̂(u)=9(λ)(u) ∀ u ∈ Br , 8̂(u)=8(u) ∀ u ∈ X \ B2r

as well as

(2-34) K (8)∩ B2r = K (8̂)∩ B2r = {0}.

Through (2-26) we easily obtain K (8), K (8̂)⊆ B R for some R > 2r . So, if

c <min
{

inf
u∈B R

8(u), inf
u∈B R

8̂(u)
}
,

then, by (2-33),
Hk(X,8c)= Hk(X, 8̂c), k ∈ N0.

Bearing in mind Proposition 2.8, this implies

(2-35) Ck(8̂,∞)= Ck(8,∞)= δk,1 Z ∀ k ∈ N0.

On the other hand, due to Proposition 2.6 one has

(2-36) Ci (8̂, 0)= Ci (9(λ), 0)= 0, i = 0, 1.

Now, gathering (2-35)–(2-36) together and using [Bartsch and Li 1997, Proposition
3.6], we obtain a point û ∈ K (8̂) \ {0}. By (2-34) one must have ‖û‖ > 2r .
Therefore, on account of (2-33), it follows that û ∈ K (8)\{0}. The same argument
of [Marano and Papageorgiou 2006, pp. 1310–1311] ensures that the function û is
a nontrivial weak solution to (P), namely (2-8) holds true. Finally, by ( j1)–( j3),
(2-8), and standard results of nonlinear regularity theory, we get û ∈ C1(�); see
for instance [Kristály and Papageorgiou 2010, p. 8]. �

There are two interesting questions arising from Theorem 2.2.

(q1) Is it possible to remove the restriction p ≥ 2 and consider differential oper-
ators 1pu which are singular on the set {x ∈� : ∇u(x)= 0}?

(q2) Can the case of resonance at infinity with respect to λ2 be treated?

Both problems remain open in their full generality. However, concerning (q2), a
positive answer can be given when p=2. Indeed, in this case, the eigenfunctions of
−1with homogeneous Neumann boundary conditions, i.e., (−1, H 1(�)), exhibit
the unique continuation property [Gasiński and Papageorgiou 2006, Section 6.6].
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So, the monotonicity of weighted eigenvalues holds true once weights differ only
on a nonnegligible set; cf. (p3).

From now on, fix X := H 1(�) and let {λn} be the sequence of eigenvalues of
(−1, X). The following assumptions will be used in the sequel.

( j′4) There are β, η ∈ L∞(�) \ {0} such that 0 ≤ η ≤ λ2 in �, η < λ2 on a
nonnegligible subset of �, as well as

0≤ β(x)≤ lim inf
|t |→+∞

j (x, t)
t
≤ lim sup
|t |→+∞

j (x, t)
t
≤ λ2, lim sup

|ξ |→+∞

2J (x, ξ)
ξ 2 ≤ η(x)

uniformly in �.

( j′5) For some θ ∈ L∞(�), k ≥ 2 one has λk ≤ θ ≤ λk+1 in �, λk < θ < λk+1 on
a nonnegligible subset of �, and

lim
t→0

j (x, t)
t
= θ(x)

uniformly in �.

Example 2.3. A simple verification shows that the function j :�×R→ R given
by setting, for all (x, t) ∈�×R,

j (x, t) :=
{

a7t if |t | ≤
√
π/2,

a8t + (λ2− a8)t cos t2
+ a9 otherwise,

where λk < a7 <λk+1 for some k ≥ 2, λ2/2≤ a8 <λ2, while a9 := (a7−a8)
√
π/2,

complies with ( j′4) and ( j′5), besides ( j1)–( j3).

Proposition 2.9. If p ≥ 2 and ( j1)–( j3) and ( j′4) hold true, 8 satisfies condition
(PS)8.

Proof. Reasoning exactly as in the proof of Proposition 2.5, with the same notation,
we obtain a weak solution w ∈ X to the problem

−1u = α(x)u in �,
∂u
∂n2
= 0 on ∂�,

where α ∈ L∞(�) and β ≤ α ≤ λ2 in �, which fulfills (2-13) and (2-14). If
α(x)<λ2 on a nonnegligible subset of� then by (p̂3) one has 1= λ̂2(λ2)< λ̂2(α),
which leads to

0= λ̂1(α) < 1< λ̂2(α).

Consequently w = 0, against (2-14). Otherwise,

(2-37) w ∈ E(λ2)
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and thus w 6= 0. Since {8(un)} is bounded, there exists c11 > 0 fulfilling

(2-38) ‖∇wn‖
2
2−

∫
�

2J (x, un(x))
‖un‖

2 dx ≤
c11

‖un‖
2 ∀ n ∈ N.

Through ( j3) we immediately see that the sequence{
2J ( · , un( · ))

‖un‖
2

}
⊆ L1(�)

is bounded too. Hence, on account of ( j′4), the same argument exploited in [Motre-
anu et al. 2007, Proposition 5] provides a function α̂ ∈ L∞(�) such that α̂ ≤ η in
� and

(2-39)
2J ( · , un( · ))

‖un‖
2 ⇀ α̂w2 in L1(�).

Combining (2-38) with (2-39) results in

‖∇w‖22 ≤

∫
�

α̂(x)w(x)2 dx ≤
∫
�

η(x)w(x)2 dx < λ2‖w‖
2
2.

However, this contradicts (2-37). Therefore, the sequence {un} turns out to be
bounded. The rest of the proof is as that of Proposition 2.5. �

Proposition 2.10. Let p = 2 and let ( j1)–( j3) and ( j′4) be satisfied. Then

Ck(8,∞)= δk,1 Z ∀k ∈ N0.

Proof. Keep the same notation introduced in the proof of Proposition 2.8. We
claim that for suitable c ∈ R, R > 0 one has

(2-40) inf{‖h1(t, · )′(u)‖X∗ : (t, u) ∈ hc
1} ≥ R.

Indeed, if (2-40) were false then there would exist {tn} ⊆ [0, 1], t ∈ [0, 1], and
{un} ⊆ X fulfilling

lim
n→+∞

tn = t, lim
n→+∞

‖un‖ = +∞, lim
n→+∞

h1(tn, un)=−∞

as well as

(2-41) lim
n→+∞

‖h1(t, · )′(un)‖X∗ = 0.

Write wn :=
un

‖un‖
, n ∈ N. Obviously, we may suppose

wn ⇀w in X and wn→ w in L2(�)

because {wn} ⊆ X is bounded. From (2-41) it follows that∣∣∣∣〈A(wn), v〉−
1− tn
‖un‖

∫
�

j (x, un(x))v(x) dx − tnµ
∫
�

wn(x)v(x) dx
∣∣∣∣≤ εn‖v‖
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for all v ∈ X , where εn→ 0+. Arguing exactly as in the proof of Proposition 2.5,
one then obtains a weak solution w ∈ X to the problem{

−1u = α(x)u in �,
∂u
∂n2
= 0 on ∂�,

where α ∈ L∞(�) and β ≤ α ≤ λ2 in �, which fulfills (2-13)–(2-14). However,
this is impossible; see the proof of Proposition 2.9. Hence, (2-40) holds. Through
[Li et al. 2001, Theorem 3.1] we thus achieve

(2-42) Ck(8,∞)= Ck(h1(0, · ),∞)= Ck(h1(1, · ),∞)

= Ck(9(µ),∞) ∀ k ∈ N0.

At this point, the same reasoning exploited to get Proposition 2.8, but with (2-31)
replaced by (2-42), yields the conclusion. �

The next existence result can be established via Propositions 2.9 and 2.10. The
proof is analogous to that of Theorem 2.2. So, we omit it.

Theorem 2.3. If p = 2 and hypotheses ( j1)–( j3), ( j′4), and ( j′5) are satisfied, (P)
possesses a nontrivial solution û ∈ C1(�).
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