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Let G be a finite nilpotent group and K a number field with torsion rela-
tively prime to the order of G. By a sequence of central group extensions
with cyclic kernel we obtain an upper bound for the minimum number of
prime ideals of K ramified in a Galois extension of K with Galois group
isomorphic to G. This sharpens and extends results of Geyer and Jarden
and of Plans. Alternatively, we show how to use Fröhlich’s result on realiz-
ing the Schur multiplicator in order to realize a family of groups given by
central extensions with minimal ramification.

1. Introduction

Given a number field K and a finite group G an important problem is to find
a Galois extension L of K such that its Galois group Gal(L/K ) is isomorphic
to G. Scholz and Reichardt (see [Serre 1992] for a modern account) proved in-
dependently that any l-group G, l an odd prime, occurs as the Galois group of an
extension of the rationals. Shafarevich [1954] has shown for any solvable group G
and number field K that there exists a Galois extension L/K with G ∼=Gal(L/K ).
In this paper we ask, for given K and nilpotent G, what is the minimum number

min ramK (G)

of prime ideals of K ramified in L as L runs over extensions of K that satisfy
Gal(L/K ) ∼= G? We rephrase the question for l-groups G: For a given finite set
S of prime ideals of K , let K (l, S) denote the maximal l-extension of K that is
unramified outside S. How large must S be so that G is isomorphic to a quotient
group of Gal(K (l, S)/K ) for some S?

One knows from [Serre 1992] that min ramQ(G)≤ n if G is an l-group of order
ln , where l 6= 2. If G is an abelian group, an application of class field theory
(Theorem 5.2) shows min ramK (G)≤ d(G) := minimum number of generators of
G. In fact for the case K = Q, Boston’s conjecture [Boston and Markin 2009]
implies that min ramQ(G)≤ d(G) for all finite groups G.
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Suppose G is a nilpotent group and the field K is such that, for each prime l
dividing the order |G| of G,

(1) K does not contain a primitive l-th root of unity ζl , and

(2) K has no ideal classes of order l2.

Then Theorem 8.4 states that

min ramK (G)≤
∑
i≥1

d(Gi/Gi+1)+ t (K ).

Here {Gi } is the lower central series of G and t (K ) is a constant depending only
on K . This extends Plans’ result [2004] on min ramQ(G) to all number fields K
satisfying conditions (1) and (2) above. Secondly, Geyer and Jarden [1998] obtain
the bound min ramK (G)≤ n+ t (K ), where the l-group G has order ln and ζl /∈ K .
We obtain an improved bound by considering central embedding problems with
a cyclic kernel, not just a kernel of prime order. Note that without condition (2),
the methods of Section 8 still generalize the results of [Geyer and Jarden 1998] to
nilpotent groups, giving a weaker bound for a nilpotent group G of order

∏
l | |G|

lnl ,
namely

min ramK (G)≤max
l | |G|
{nl}+ t (K ).

We generalize Geyer and Jarden’s definition of an exceptional set T of primes
to the prime power setting in Section 4; this provides the technical tool for con-
structing idèle class characters with strictly controlled ramification.

The realization of l-groups is carried out in three steps, similarly to [Geyer and
Jarden 1998; Serre 1992; Plans 2004]. The first step involves solving an embedding
problem given a Scholz extension; in the second we remove ramification in the
solution outside the set of exceptional primes, and in the third step we force the
solution to be Scholz at the cost of one extra ramifying prime. Finally in Section 8,
for G nilpotent this prime is chosen to be the same for all primes l dividing the
order of G.

We take another approach to the problem of realization of Galois groups with
minimal ramification in Section 9. Take K = Q or an imaginary quadratic field
with ζl /∈ K . We consider a family of l-extensions of K obtained from central
extensions by the Schur multiplicator and observe that a result of Fröhlich [1983]
for K = Q, extended to imaginary quadratic fields by Watt [1985], realizes the
corresponding family of groups with minimal ramification.

2. The embedding problem

Fix an algebraic closure K̄ of a number field K and let G K = Gal(K̄/K ) denote
the absolute Galois group of K . An embedding problem (G K , ρ, α) for G K (see
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[Neukirch et al. 2000], for example) is a diagram with an exact sequence of finite
groups and epimorphism ρ:

(2-1)

G K
φ

��~
~

~
~
ρ

��
1 // C // G

α
// Ḡ // 1.

A solution φ of the embedding problem is a homomorphism φ : G K → G such
that α ◦φ = ρ; a solution is proper if φ is surjective. If G, Ḡ are l-groups with the
same number of generators, it is easily seen that every solution is proper. When
the kernel group C is contained in the center of G, the embedding problem ((2-1))
is called a central embedding problem. Every nilpotent group can be realized as
a Galois group by solving a sequence of central embedding problems. For every
prime p of K , fix a prime of K̄ above p and let Dp and Ip denote its decomposition
and inertia subgroups in G K .

Let

(2-2)

Dp

φp

��~
~

~
~
ρp

��
1 // C // Gp αp

// Ḡp
// 1

denote the corresponding local embedding problem, where Ḡp = ρ(Dp), Gp =

α−1(Ḡp), and αp, ρp are restrictions of α, ρ.
In this section we assume in (2-1) that G is an l-group and the kernel C has

prime order. Let S0 be any finite set of primes of K containing the infinite primes,
the prime divisors of l, and the prime divisors of a set of ideals representing the
ideal classes of K . (In Section 8, where G is any finite nilpotent group, S0 will
contain in addition the divisors of the order of G.) It is known from [Geyer and
Jarden 1998] that a solution to a global embedding problem (2-1) exists if and
only for every prime p of K there exists a solution to the local embedding problem
(2-2). The local embedding problem is solvable if ρ(Ip) = 1, since Dp/Ip ∼= Ẑ is
a free group; the Scholz condition ensures solvability at the ramified primes. Let
Ram(ρ)= {p of K | ρ(Ip) 6= 1}.

Definition 2.1 [Geyer and Jarden 1998, §3.2]. Let K be a number field, G an l-
group, and N a positive integer such that l N is divisible by the exponent of G.
Denote by T a set of l N -exceptional primes as defined in Section 4. An epimor-
phism φ : G K → G is l N -Scholz if

• for p ∈ Ram(φ)∪ T , φ(Dp)= φ(Ip);

• for p ∈ Ram(φ), the absolute norm N (p)≡ 1 (mod l N );

• for p ∈ S0, φ(Dp)= 1.
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The last condition is an example of local data of [Geyer and Jarden 1998]. We will
also say the extension L/K is l N -Scholz, where L is the subfield of K̄ fixed by
kerφ.

The definition of l N -Scholz does not depend on the choice of prime of K̄ above
each p. Clearly an l N -Scholz homomorphism is lk-Scholz for all integers k ≤ N .

3. Existence of solutions

Theorem 3.1 (existence). Let (G K , ρ, α) be a central embedding problem, with
Ḡ = ρ(G K ) an l-group and C = kerα cyclic of order le. Suppose ρ is l N -Scholz
(the exponent of G divides l N ) and ζl /∈ K . Then the embedding problem

(3-1)

G K
ψ0

��~
~

~
~
ρ

��
1 // C // G

α
// Ḡ // 1.

has a solution.

Proof. If G is a split extension of Ḡ, we may apply Proposition 5.3, so assume the
extension is Frattini, i.e., C is contained in the Frattini subgroup of G. We may
break (3-1) into a sequence of e embedding problems each with kernel group of
order l, which we may solve by Proposition 7.3 of [Geyer and Jarden 1998] at the
cost of one ramified prime at each step. We obtain an l N -Scholz solution ψ0 to
(3-1) such that

Ram(ψ0)∪ T = Ram(ρ)∪ T ∪ {e primes of K } �

In Sections 5–7 we will show that the embedding problem (3-1) has an l N -
Scholz solution at the cost of only one additional ramified prime (assuming K has
no ideal classes of order l2 if |C |> l).

4. The exceptional set of primes

The key result, Lemma 4.2, was originally proved in a different way in [Markin
2006]. The next lemma below generalizes [Gras 2003, Chapter II, Theorem 6.3.2]
and [Rubin 1991, Lemma 4.1, p. 361].

Lemma 4.1. Let L/K be a Galois l-extension, K̃ = K (µm), L̃ = L(µm), where m
is a power of l. If ζl /∈ K , then the canonical map

K×/K×m
→ L̃×/L̃×

m

is injective.
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Proof. From Kummer theory, we have H 1(Gal(K̄/K ), µm) ∼= K×/K×m and
H 1(Gal(K̄/L̃), µm)∼= L̃×/L̃×

m
, where K̄ denotes an algebraic closure of K . The

extensions K ⊆ L̃ ⊆ K̄ give the following exact sequence of cohomology groups
via the restriction-inflation maps

1→ H 1(Gal(L̃/K ), µγm)→ H 1(Gal(K̄/K ), µm)→ H 1(Gal(K̄/L̃), µm),

where γ = Gal(K̄/L̃). It suffices to prove H 1(Gal(L̃/K ), µγm) = 0; note that
µ
γ
m =µm . By a second application of the restriction-inflation sequence, now to the

extensions K ⊆ L ⊆ L̃ , we have the exact sequence

1→ H 1(0/1,µ1m)→ H 1(0, µm)→ H 1(1,µm),

where 0 = Gal(L̃/K ), 1 = Gal(L̃/L). The cohomology group H 1(0/1,µ1m)

vanishes since µ1m = µm ∩ L = {1} (we have ζl /∈ K and L/K is an l-extension).
Since 1 is cyclic, by Herbrand theory, the orders of the Tate cohomology groups
H i (1,µm) are equal for i = 0, 1. But H 0(1,µm) = µ

1
m/Norms = 0. This com-

pletes the proof. �

Let KS be the group of S-units of K , where S contains the infinite primes of K .
By Dirichlet’s unit theorem, the Z-rank of KS is

u := rkZ(KS)= |S| − 1.

Lemma 4.2. Assume ζl /∈ K . With the notation of Lemma 4.1, let M be an abelian
extension of L containing L̃. There are isomorphisms

Gal(K̃ ( m
√

KS)/K̃ )
f1
∼= Gal(L̃( m

√
KS)/L̃)

f2
∼= Gal(M( m

√
KS)/M)∼= (Z/mZ)u .

Proof. Apply Lemma 4.1 restricted to the image of KS in L̃× to conclude that f1

is an isomorphism. Next we show f2 is an isomorphism. Let F = L̃( m
√

KS)∩M .
We show F = L̃ , so that f2 would be an isomorphism. Since F ⊂M , the extension
F/L is abelian. And L̃ ⊂ F ⊂ L( m

√
KS). If F is not L̃ , then F contains a cyclic

extension F0/L̃ , [F0 : L̃] = l. From Kummer theory, F0 = L̃( l
√

b), b ∈ KS . But
Gal(L̃( l

√
b)/L) is not abelian; thus F = L̃ . �

The corollary below will be used in Section 8.

Corollary 4.3. Let K be a number field, S a finite set of primes of K and let a > 1
be an integer. For each l | a let L l/K be a Galois l-extension. Suppose that ζl 6∈ K
for each l dividing a. Set Ml = L l(ζl N , ζa) and M =

∏
l Ml . Then we have a series

of isomorphisms

Gal
(
K
(

l N√
KS
)
/K (ζl N )

)
∼= Gal

(
L l
(

l N√
KS
)
/L l(ζl N )

)
∼= Gal

(
Ml
(

l N√
KS
)
/Ml

)
∼= Gal

(
M
(

l N√
KS
)
/M

)
.
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The diagram below contains the fields involved in these isomorphisms.

K ( l N√KS)
// L l(

l N√KS)
// Ml(

l N√KS)
// M( l N√KS)

K (ζl N ) //

OO

L l(ζl N ) //

OO

Ml //

OO

M

OO

Proof. The first two isomorphisms follow from Lemma 4.2. To show the rightmost
isomorphism note that Ml(

l N√KS)/Ml is an l-extension, while l - [M : Ml]. �

Lemma 4.4. For each l dividing a, assume that ζl /∈ K . Let Rl denote the field
L l(

l N√KS) and let σl ∈ Gal(Rl/L l(µl N )). Define R =
∏

l|a Rl . Then there exists
σ ∈ Gal(R/K (µa)) such that σ |Rl = σl for all l|a.

Proof. By Corollary 4.3, each σl extends to an element, say σ̂l , of Gal(Rl Ml/Ml).
The latter group is a subgroup of the l-group Gal(Rl Ml/K (µa)). Now observe
that Gal(R/K (µa)) ∼=

∏
l|a Gal(Rl Ml/K (µa)). Therefore we may define σ ∈

Gal(R/K (µa)) as σ =
∏

l|a σ̂l . �

For an abelian group A and a prime number l, let Al = {a ∈ A : al
= 1}. We

define a subgroup of K× by

V = V (l) := {a ∈ K× : (a)= al for a fractional ideal a of K }.

We have the following split exact sequence (see [Koch 1970, §11.2], for example):

1→ E/E l
→ V/K×l

→ Cl(K )l→ 1,

where E denotes the group of units of K and the right hand map sends a mod K×l

to the ideal class of a, where (a)= al . Similarly,

1→ E/E l N
→ EV l N−1

/K×l N
→ Cl(K )l→ 1.

Let w1, . . . , ws be a Z-basis of E mod torsion. As in [Geyer and Jarden 1998],
choose ideles α1, . . . , αr ∈ J whose images are an Fl-basis of the l-torsion subgroup
(J/K×U )l of the ideal class group of K . Then for j = 1, . . . , r

αl
j = a−1

j ε j , a j ∈ K×, ε j = (ε j,v) ∈U, ε j,v ∈Uv.

For all j and all primes v of K , a j and ε j,v have the same image in K×v /K×v
l .

Taken mod K×l , the set {w1, . . . , ws, a1, . . . , ar } is a basis of V/K×l .
We define a governing field �l as follows (compare [Gras 2003, Chapter 5] or

[Geyer and Jarden 1998] for N = 1):

(4-1) �l = K (µl N ,
l N√

EV l N−1
)= K (µl N ,

l N√
E, l
√

V )

= K (µl N , l N√
wi ,

l
√

a j : 1≤ i ≤ s, 1≤ j ≤ r).
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It follows from Lemma 4.2 that the Kummer extension satisfies

Gal(�l/K (µl N ))∼= (Z/l N Z)s ⊕ (Z/lZ)r .

Of course, if K =Q, we have r = s = 0.
Define subfields of �l by

Ni = K
(
µl N , l N√

wk, l
√

a j : 1≤ k ≤ s, k 6= i, 1≤ j ≤ r
)
, 1≤ i ≤ s,

N ′j = K
(
µl N ,

l N√
E, l
√

ak : 1≤ k ≤ r, k 6= j
)

1≤ j ≤ r.

Then Gal(�l/Ni ) is cyclic of order l N , while Gal(�l/N ′j ) has order l.

Definition 4.5. (Compare [Geyer and Jarden 1998, (5.5)] for N = 1.) A set Tl =

{p1, . . . , ps, q1, . . . qr } of prime ideals of K such that Tl ∩ S0 = ∅ is called l N -
exceptional if

Gal(�l/Ni )= Dpi (�l/K ) for 1≤ i ≤ s

and
Gal(�l/N ′j )= Dq j (�l/K ) for 1≤ j ≤ r.

(This property is independent of the primes of �l above pi and q j , since Ni and
N ′j are normal extensions of K .)

For a prime ideal p of K unramified in a Galois extension F/K , Frob(p, F/K )
denotes the conjugacy class in Gal(F/K ) consisting of the Frobenius elements of
all prime ideals of F above p.

Choose σi (l) ∈ Frob(pi (l),�l/K ) for 1 ≤ i ≤ s and τ j (l) ∈ Frob(q j (l),�l/K )
for 1≤ j ≤ rl ; here we make the dependence on l explicit. Note that{

σi (l), τ j (l) : 1≤ i ≤ s, 1≤ j ≤ rl
}

is a minimal generating set of the abelian group Gal(�l/K (µl N )). Further if
a is the product of the primes dividing |G|, the latter group is isomorphic to
Gal(�l(µaN )/K (µaN )) by Lemma 4.2.

By the Chebotarev density theorem, there exists an l N -exceptional set of primes
disjoint from any given set of primes of K of density 0. Note that since v splits
completely in K (µl N )/K for all v ∈ Tl , we have ζl N ∈ Kv for all v ∈ Tl .

It follows from Kummer theory for primes pi , q j ∈ Tl that

• wi not an l-th power in Upi ;

• wi ∈U l N

v for all v ∈ Tl distinct from pi ;

• a j not an l-th power in Uq j ;

• a j ∈U l
v for all v ∈ Tl distinct from q j .
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If Tl is l N -exceptional, then Tl is lk-exceptional for all 1 ≤ k ≤ N . We will
therefore fix a set Tl of l N -exceptional primes, where l N is divisible by the exponent
of the l-group G. From now on until Section 8 we will let T denote Tl , as the prime
l is implicit.

5. The split case

We begin with a generalization of [Geyer and Jarden 1998, Lemma 4.2]. If K =Q

and b is an integer greater than one, the result follows at once from the fact there
are infinitely many primes q ≡ 1 (mod b), and we take subfield M of Q(µq) of
degree b.

Lemma 5.1. Given an integer b > 1 and a number field K , there are infinitely
many prime ideals q of K and cyclic extensions M = M(q) of K of degree b such
that q is the unique ramified prime of M/K , q is totally ramified, and q does not
divide b.

Proof. Let S be a finite set of primes of K containing S0 and prime divisors of b
and let�= K ( b

√
K S). By Chebotarev’s theorem there exist infinitely many primes

q of K , q /∈ S, such that q splits completely in �/K . For such q, � is contained in
the completion Kq and so KS ⊂ (K×q )

b.
Define

JS =
∏
v∈S

K×v ×
∏
v /∈S

Uv ⊂ J.

By class field theory, cyclic extensions of K are given by idèle class characters.
Since J/K× ∼= JS/KS , we want to define an epimorphism χ : JS/KS → µb with
χ(KS) = {1}. The group Uq/U b

q is cyclic of order b, so there is an epimorphism
χq : Uq → µb with kernel U b

q . For α = (αv) ∈ JS , define χ(α) = χq(αq). Note
χ(KS) = {1} and χ(K×v ) = {1}, v ∈ S. By class field theory, χ corresponds to a
cyclic, degree b extension M(q)/K in which q is totally and tamely ramified and
the other primes of K are unramified. �

Theorem 5.2. Let A be a finite abelian group with d generators. There exist infin-
itely many Galois extensions N/K such that Gal(N/K )∼= A and exactly d primes
of K ramify in N. Such N is its own genus field relative to K .

Proof. Write A as a direct product of d cyclic groups and apply Lemma 5.1 to
each factor. The resulting extensions M(qi ), 1 ≤ i ≤ d are linearly disjoint over
K by ramification considerations. Take N to be the composite of the fields M(qi ).
These qi are not to be confused with the ones defined in Definition 4.5. �

Proposition 5.3 (split case). Let G be an l-group of exponent dividing l N . Suppose
the homomorphism ρ :G K→ Ḡ is l N -Scholz and the central exact sequence is split:

1→ C→ G→ Ḡ→ 1,
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where the kernel C of α : G→ Ḡ is cyclic. There is an l N -Scholz solution φ to the
embedding problem (G K , ρ, α) and a prime q not in S = Ram(ρ) ∪ S0 ∪ T such
that Ram(φ)= Ram(ρ)∪ {q}.

Proof. We apply the argument in Lemma 5.1 with b = |C |, � = L(µl N , b
√

KS),
where L is the subfield of K̄ fixed by ker ρ, to obtain q and an idèle class character
χ of order b; q splits completely in�/K . By the Reciprocity law χ corresponds to
an epimorphism η :G K →C . Then φ= (ρ, η) :G K → Ḡ×C , σ 7→ (ρ(σ ), η(σ )),
is a proper solution to the embedding problem. It remains to check that φ is l N -
Scholz, given that ρ is l N -Scholz.

If v ∈ S0, then φ(Dv)= 1 since ρ(Dv)= 1 (given) and η(Dv)= 1 for v ∈ S.
If v ∈ T , then φ(Dv) = φ(Iv) since ρ(Dv) = ρ(Iv) (given) and η(Dv) = 1 for

v ∈ S.
Suppose v ∈ Ram(φ)= Ram(ρ)∪ {q}.
If v = q, then q splits completely in K (µl N )/K , hence N (q) ≡ 1 (mod l N ).

Since q splits completely in L/K , ρ(Dq)= 1. As η(Iq)= C for η : G K → C , we
have η(Dq)= η(Iq). Thus φ(Dq)= φ(Iq).

If v ∈ Ram(ρ), then N (v) ≡ 1 (mod l N ) and ρ(Dv) = ρ(Iv) (given). But
η(Dv)= 1 since v ∈ Ram(ρ)⊂ S. Thus φ(Dv)= φ(Iv) for v ∈ Ram(φ).

We conclude φ = (ρ, η) is an l N -Scholz solution with one additional ramified
prime. �

6. Removing ramification

Lemma 6.1. Let K be a number field not containing ζl , and assume N ≥ e≥ 1. Let
S be a finite set of primes disjoint from an l N -exceptional set T , and χv :Uv→µle ,
for v ∈ S, be characters, at least one of which is onto. Assume K has no ideal
classes of order l2 when e > 1. There exists an idèle class character

χ : J/K×→ µle

such that χ |Uv
= χv for all v ∈ S and χ |Uv

= 1 for all v /∈ S ∪ T .

Proof. It suffices to prove the result when S = {v0} and then take the product of
the resulting characters. Let I = T ∪ {v0}.

Step 1: Defining f on U K×/K×. We define an epimorphism f : U → µle of the
form

f =
∏
v∈I

χv,

with f |Uv
= 1 for v /∈ I . The character χv0 is given and the characters χv, v ∈ T ,

are to be defined suitably. Each character χv is trivial for v /∈ I .
By the definition of an l N -exceptional set of primes, the image of each unit wi

generates Upi /U
le

pi
, pi ∈ T , hence we can define χpi : Upi → µle , 1 ≤ i ≤ s, to
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satisfy
χpi (wi )χv0(wi )= 1.

Similarly ε j,q j generates Uq j /U l
q j

(hence also modulo U le

q j
) and we can define

χq j :Uq j → µle , 1≤ j ≤ r , to satisfy

χq j (ε j,q j )χv0(ε j,v0)= 1.

Next we establish the “off-diagonal” vanishing of
∏
v∈I χv. Recall that ε j,v ∈U l

v

for q j 6= v ∈ T for each j , and wi ∈U le

v for pi 6= v ∈ T for each i . Thus we have∏
v∈I

χv(wi )= χpi (wi )χv0(wi )
∏

pi 6=v∈T

χv(wi )= 1

and ∏
v∈I

χv(ε
le−1

j,v )= χq j (ε
le−1

j,q j
)χv0(ε

le−1

j,v0
)
∏

q j 6=v∈T

χv(ε
le−1

j,v )= 1.

It follows that
∏
v∈I χv is trivial on the image of E⊕

(⊕r
j=1〈ε j 〉

)
in
∏
v∈I Uv/U le

v .
Letting 1 : K×→ J be the diagonal embedding, we thus have f (1(E)) = 1, so
f is defined on U/1(E), which we write as U/E ∼=U K×/K×.

If l does not divide the class number of K , then f already provides the desired
idèle class character since the l-part of the ideal class group J/K×U will be trivial.
Otherwise we must extend f from K×U/K× to J/K×.

Step 2: Characters of order l. Define f1 :U→µl by f1= f le−1
. By the techniques

of the proof of Lemma 6.1 of [Geyer and Jarden 1998], f1 extends to an idèle class
character χ1 of order l with χ1|Uv

= χ le−1

v , for v ∈ I and χ1|Uv
= 1 if v /∈ I . This

follows from the trivial fact that an le-exceptional set T is l-exceptional.
We have

K×U
K× ker f1

∩
K× kerχ1

K× ker f1
≡ 1.

Also, |J/K× ker f1| = |J/K×U | · |K×U/K× ker f1| = h · l, where h is the class
number of K , which we may assume is a power of l. Thus

|K× kerχ1/K× ker f1| =
|J/K× ker f1|

|J/K× kerχ1|
=

h · l
l
= |J/K×U |.

This implies that the exact sequence

1→
K×U

K× ker f1
→

J
K× ker f1

→ J/K×U → 1

splits, with (K× kerχ1)/(K× ker f1) mapping isomorphically onto J/K×U . The
image J/K×U has exponent l by assumption and the kernel is cyclic of order l.
Hence J/(K× ker f1) has exponent l.
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Step 3: Extending to a character of order le. We use the following fact about finite
abelian l-groups: If 0 is a finite abelian l-group and γ ⊆ 0 is a cyclic subgroup of
order le such that 0/γ l has exponent l, then γ is a direct summand of 0.

Indeed, the exponent of 0 is le, since for any element g ∈ 0 we have gl
∈ γ l

and hence gle
= 1. Therefore γ is a subgroup generated by an element of maximal

order, and hence is a direct summand.
Now consider the following diagram with exact rows and columns:

1

��

1

��
(K×U )l K× ker f

K× ker f
= //

��

(K×U )l K× ker f
K× ker f

��

1 // γ :=
K×U

K× ker f
//

��

0 :=
J

K× ker f
//

��

J
K×U

//

=

��

1

1 // K×U
K× ker f1

//

��

J
K× ker f1

//

��

J
K×U

// 1

1 1

It follows from the diagram that 0/γ l is isomorphic to J/K× ker f1, which by
assumption has exponent l. Applying the fact just proved about abelian groups,
we see that γ is a direct summand of 0. Thus we can extend f to a character χ :
J/K×→µle by defining χ to agree with f on U and to be trivial on a complement
of K×U/K× ker f . �

Theorem 6.2 (removing ramification). Suppose K has no ideal classes of order
l2 and does not contain ζl . If the Frattini embedding problem (G K , ρ, α) has a
solution ψ0, then it has a solution ψ : G K → G with Ram(ψ)⊂ Ram(ρ)∪ T .

Proof. The proof is similar to that of [Geyer and Jarden 1998, Lemma 6.2], except
that we twist ψ0 by a character of order le. Let S = Ram(ψ0) \ {Ram(ρ)∪ T }, so
if v ∈ S, then ψ0(Iv)⊆ C . Set le

=max{|ψ0(Iv)| : v ∈ S}.
For v ∈ S we define χv := ψ0|Iv viewed as χv : Uv → µle by reciprocity. By

Lemma 6.1 there exists an idèle class character χ of order le with certain local
properties. We identify χ with η : G K → C via reciprocity and set ψ = ψ0η

−1.
Since the embedding problem (G K , ρ, α) is Frattini, ψ is surjective. �
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Remark 6.3. If e= 1, the hypothesis on the order of ideal classes in Theorem 6.2
can be dropped.

7. Finding an m-Scholz solution

We generalize Lemma 7.1 of [Geyer and Jarden 1998] to prime powers.

Lemma 7.1. Suppose given integers N ≥ e ≥ 1, a Galois l-extension L/K , and
characters χv : K×v → µle for all v in a finite set S ⊇ S0. Assume that K does
not contain ζl . There exists a prime ideal q of K outside S and a character χ :
JK /K×→ µle such that

• q splits completely in L(µl N )/K ;

• χ |K×v = χv for all v ∈ S;

• χ(Uq)= µle ;

• χ(Uv)= 1 for all v /∈ S ∪ {q}.

Proof. Since S0 is chosen large enough, we have JS/KS ∼= J/K×. It therefore
suffices to define a character g : JS→ µle such that

g((αv))= χq(αq)×
∏
v∈S

χv(αv) for all (αv) ∈ JS,

for some prime q and some epimorphism χq : Uq → µle chosen so that q splits
completely in L(µl N )/K and g(KS)= {1}.

We define a character h : KS→ µle as the composition

KS
j
→ JS→ µle ,

where the left map j is the embedding of KS in
∏
v∈S K×v and the right map is∏

v∈S χv. Thus for x ∈ KS , g(x) = h(x)χq(x), so χq must be chosen to make
g(x)= 1 for all x ∈ KS .

Case h(KS) = {1}. If q satisfies KS ⊂ U le

q , then for any character χq : Uq→ µle ,
we have χq(KS)= {1}. By Chebotarev’s theorem, there exists a prime ideal q /∈ S
of K which splits completely in

� := L
(
µl N ,

le
√

KS
)
.

Note that q splitting completely in K (µl N )/K implies that the absolute norm
N K

Q
(q) is congruent to 1 (mod l N ). Thus KS ⊆U le

q by Kummer theory.

Case h(KS) 6= {1}. The image h(KS) is cyclic of order lk , 1 ≤ k ≤ e. Thus there
exists x1∈KS with h(x1) of order lk . KS/K lk

S may be generated by {x1, x2, . . . , xu},
with h(xi ) = 1, i > 1. By Burnside’s basis theorem {x1, . . . , xu} also generate
KS/K le

S . We want to pick a prime q /∈ S such that
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• q splits completely in L(µl N )/K ,

• x1 ∈U le−k

q \U le−k+1

q , and

• xi ∈U le

q if i > 1.

To that end let
�k = L

(
µl N , le−k√x1,

le
√

xi : i > 1
)
.

The field �k is a normal extension of K . By Lemma 4.2, Gal(�/L(µl N )) ∼=

(Z/leZ)u and Gal(�/�k) is cyclic of order lk . By Chebotarev’s theorem we may
choose q /∈ S such that Frob(q, �/K ) generates Gal(�/�k), in particular q splits
completely in �k/K . This guarantees that the above three conditions on q are
satisfied.

Having chosen q, we define χq, a character of order le. Choose y ∈Uq such that
yle−k
= x1 ∈Uq. We want χq(y) of order le, then χq(x1) has order lk . If β = h(x1)

is an element of µle of order lk , then β = αle−k
, where α is a generator of µle . Set

χq(y)= α−1. Then χq(x1)= β
−1.

So we have chosen χq so that χq(x1)h(x1) = 1. Thus g(KS) = 1 and we have
proved the lemma for prime power order characters. �

Proposition 7.2. Suppose that the central embedding problem (G K , ρ, α), G an l-
group, is Frattini, ρ is l N -Scholz, and ζl /∈ K . Assume there exists a solution ψ with
Ram(ψ)∪ T = Ram(ρ)∪ T . Then there exists a prime q /∈ S := Ram(ψ)∪ S0 ∪ T
and an l N -Scholz solution ϕ such that Ram(ϕ)= Ram(ψ)∪ {q}.

Proof. Step 1. Define homomorphisms ηv : Dv→ C , v ∈ S. There are two cases.
If v ∈ S \ S0, we lift Frobenius at v to σv ∈ Dv. Since ρ is l N -Scholz and

Ram(ψ)∪ T = Ram(ρ)∪ T , after adjusting the lift σv we may assume ψ(σv) ∈ C
(see [Geyer and Jarden 1998, p. 36]). Then let ηv be the unique homomorphism
Dv→ C satisfying ηv(σv)= ψ(σv) and ηv(Iv)= {1}.

If v ∈ S0, α(ψ(Dv))= ρ(Dv)= {1}, again since ρ is l N -Scholz. Thus ψ(Dv)⊂

kerα = C . So define ηv = ψ |Dv
.

We have defined ηv, for v∈ S; now we apply Lemma 7.1 to get a map η :G K→C
and a prime q /∈ S such that η|Dv

= ηv, v ∈ S, η(Iq) = C , and η unramified for
v /∈Ram(ψ)∪T∪{q}. Finally set ϕ=η−1ψ . Note that ϕ(σv)=1, so ϕ(Dv)=ϕ(Iv)
if v ∈ Ram(ψ)∪ T \ S0.

Step 2. We claim ϕ is unramified outside Ram(ψ)∪ {q}. In fact if v ∈ S \ S0, we
have η(Iv)= ηv(Iv)= {1}, so ϕ(Iv)= ψ(Iv). The result follows.

Step 3. We claim ϕ is l N -Scholz. Since the extension is Frattini, any solution is
proper. The check of the three points of Definition 2.1 is similar to pg. 37 of [Geyer
and Jarden 1998] except for the proof that ϕ(Dq) = ϕ(Iq). For that, note that q is
chosen to split completely in the fixed field of kerψ , so ψ(Dq)= {1}. Putting this
together with η(Iq)= C , we conclude that ϕ(Dq)= ϕ(Iq). �
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Putting together the existence theorem 3.1, Proposition 5.3, Theorem 6.2, and
Proposition 7.2 we have the next result.

Proposition 7.3. Suppose ζl /∈ K and K has no ideal classes of order l2. Given
a central embedding problem (G K , ρ, α) with G an l-group, cyclic C and ρ l N -
Scholz. If the extension is split or of Frattini type, then there exists an l N -Scholz
solution ϕ and a prime q of K such that

Ram(ϕ)∪ T = Ram(ρ)∪ T ∪ {q}.

Recall that the lower central series {Gi } of G is defined by G1=G and Gi+1 :=

[Gi ,G] for i ≥ 1. If G is nilpotent, the smallest positive integer c such that
Gc+1 = {1} is called the nilpotency class of G. Our main result below gener-
alizes [Plans 2004, Proposition 2.5], which considers only the case K = Q. It
also improves [Geyer and Jarden 1998, Theorem 7.4] when the kernel C of the
embedding problem is not of prime order.

Theorem 7.4. Let a number field K , a prime l, and an l-group G of nilpotency
class c be given. If G is nonabelian, suppose ζl /∈ K and K has no ideal classes of
order l2. Then

min ramK (G)≤ d(G)+ |T | +
c−1∑
i=2

d(Gi/Gi+1).

Remark 7.5. (1) This bound may be achieved by a tamely ramified extension
L/K with G ∼= Gal(L/K ).

(2) If G is of nilpotency class 2,

min ramK (G)≤ d(G)+ |T |.

(3) If we allow K to have ideal classes of order l2, the bound has the form

min ramK (G)≤ g+ |T | when |G| = lg,

as proved in [Geyer and Jarden 1998].

Proof. As in [Plans 2004, Proposition 2.5] we use induction on i for a central
embedding problem

1→ Gi/Gi+1→ G/Gi+1→ G/Gi → 1.

For i = 1, by Proposition 5.3 the embedding problem has an l N -Scholz solution
with at most d(Gab) = d(G) ramified primes. For i ≥ 1, each extension is of
Frattini type, and we may break the i-th problem up into d(Gi/Gi+1) cyclic Frattini
problems. As shown in Proposition 7.3, each such problem may be solved at the
cost of one more ramified prime. And since we can make the solution l N -Scholz
at each stage, it is guaranteed that we may solve the next embedding problem. �
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8. Ramification bound on nilpotent groups

We use the notation that a is the product of the primes dividing the order of G
and integer N satisfies aN is a multiple of the exponent of G. The purpose of this
section is to extend Theorem 7.4 to groups G =

∏
l Gl that are the direct product

of their Sylow l-subgroups Gl , that is nilpotent groups. Assume ζl /∈ K for all l
dividing |G|. We will obtain G by a sequence of central embedding extensions
with cyclic kernel; each of these extensions is a “product” of central extensions
of l-groups as in sections 6 and 7. The nilpotent case was initially handled in the
first author’s thesis [Markin 2006]. In this section we obtain an improved bound
on min ramK (G) for fields K which do not contain ideal classes of order l2, where
l divides |G|.

The first step is to define a set T (as small as possible) of primes of K that
contains an l N -exceptional set Tl of primes for each l dividing |G|.

Let
�l = K

( l N√
E, l
√

V (l)
)

as in (4-1) and let �̂ =
∏

l|a �l . Since Gal(�l(µaN )/K (µaN )) is an l-group, we
have

(8-1) Gal(�̂/K (µaN ))∼=
∏
l|a

Gal(�l(µaN )/K (µaN )).

Using this isomorphism we define elements of Gal(�̂/K (µaN )) by

σi =
∏
l|a

σi (l), 1≤ i ≤ s and τ j =
∏
l|a

τ j (l), 1≤ j ≤ r.

Here r =maxl|a rl and we set τ j (l)= 1 if rl < j ≤ r . By Chebotarev’s theorem, in
K there is a set of s + r prime ideals T = {pi , q j : 1 ≤ i ≤ s, 1 ≤ j ≤ r}, disjoint
from any given finite set and such that

Frob(pi , �̂/K )= C(Gal(�̂/K ), σi ) for 1≤ i ≤ s

and
Frob(q j , �̂/K )= C(Gal(�̂/K ), τ j ) for 1≤ j ≤ r,

where C(Gal(�̂/K ), γ ) denotes the conjugacy class of γ in Gal(�̂/K ). By the
properties of the Frobenius, for each l dividing a, the restriction of σi to�l is σi (l),
and that of τ j is τ j (l).

Lemma 8.1. We keep the notation of Corollary 4.3 and Lemma 4.2. For each l
dividing a, let L l be an l N -Scholz l-extension of K fixed by the kernel of homomor-
phism ρl : G K → Ḡl and let (G K , ρl, αl) be a Frattini central embedding problem
as in (2-1). Assume, for all l dividing a, that ζl is not in K and that the exponent
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of Gl divides l N . When | kerαl | > l, assume additionally that no ideal class of K
has order l2. Then, for each l dividing a, there exists a solution

φl : G K → Gl

for which Ram(φl)⊆ Ram(ρl)∪ T .

Proof. The existence of any solution is Theorem 3.1. Our set of primes T contains
l N -exceptional subsets Tl , hence we may apply Theorem 6.2 to get a solution φl

such that Ram(φl)⊆ Ram(ρl)∪ T for all primes l | a. �

In the next lemma we apply Lemma 4.4 to find a single prime q that we use to
lift local characters indexed by divisors l of a.

Lemma 8.2. Let S be a finite set of primes of K that contains S0. For each prime l
dividing a, we are given integers el , N ≥el≥1, Galois l-extension L l/K , character
χv,l : K×v → µlel for all v ∈ S. Assume, for each l dividing a, that K does not
contain ζl . There exists a prime ideal q of K outside S and idèle class characters
χl : JK /K×→ µlel such that, for all l dividing a,

• q splits completely in L l(µl N )/K ;

• χl |K×v = χv,l for all v ∈ S;

• χl(Uq)= µlel ;

• χl(Uv)= 1 for all v /∈ S ∪ {q}.

Proof. Let Rl denote the field L l
(

l N√KS
)
, R =

∏
l|a Rl , 0l = Gal(Rl/K ) and 0 =

Gal(R/K ).
In Lemma 7.1, for all l | a we have defined a special prime ql (not to be confused

with the qi defined in Definition 4.5). Define σl ∈0l by Frob(ql, Rl/K )=C(0l, σl).
Next we show that a single prime q can be chosen. By Lemma 4.4 there exists an
element σ ∈ 0 whose restriction to Rl equals σl for all l|a. By Chebotarev’s theo-
rem, there exists a prime q of K outside S such that Frob(q, R/K )=C(0, σ ). By
restriction Frob(q, Rl/K )=C(0l, σl) for all l | a and the conditions of Lemma 8.2
are satisfied. �

Remark 8.3. The method by which we replaced {ql : l | a} by q is similar to that
where we replaced {Tl : l | a} by T .

Theorem 8.4. Given a number field K and a finite nilpotent group G of class c. If
G is nonabelian, suppose gcd(|G|, |µK |) = 1 and assume for all primes dividing
|G| that the ideal class group of K has no elements of order l2. Then

min ramK (G)≤ d(G)+ (r + s)+
c−1∑
i=2

d(Gi/Gi+1).

Here s = Z-rank of units of K and r =maxl | |G|{dim Cl(K )l}.
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Proof. By Theorem 5.2 it remains to prove the result for nonabelian groups G.
Since G is nilpotent, for each l dividing |G|, we may apply Proposition 7.2,
Proposition 7.3, and Theorem 7.4 inductively. By Lemma 8.2 there exists a single
prime q to which Proposition 7.2 may be applied, and the conclusion follows. �

9. Schur extensions

In this section we use Fröhlich’s result on realizing the Schur multiplicator with-
out additional ramification to realize a class of nilpotent groups given by central
extensions

1→M(0)→ G→ 0→ 1.

The group M(0) is the Schur multiplicator of a profinite group 0 as defined in
[Fröhlich 1983].

Definition 9.1. Suppose M⊇ L⊇ K are number fields with M/K and L/K Galois
extensions. Let M ′ be the maximal central extension of L/K in M and let E be
the maximal abelian extension of K in M . Fröhlich defines a certain surjective
homomorphism

(9-1) M(Gal(L/K ))→ Gal(M ′/E L).

If it is an isomorphism, one says that M realizes the multiplicator M(Gal(L/K )).

Remark 9.2. For two central extensions M1 and M2 for L/K , both realizing the
multiplicator of Gal(L/K ), the Galois groups Gal(M1/K ) and Gal(M2/K ) need
not be isomorphic.

Proposition 3.2 of [Fröhlich 1983] says that if L/K is a finite-degree extension,
there is a finite-degree central extension M of L/K that realizes M(Gal(L/K )).

For a prime l and a finite set of primes S of K , K (l, S) denotes the maximal l-
extension field of K with ramification restricted to S, and K (l, S)ab is the maximal
abelian subextension of K (l, S). If S contains no divisors of l, then the degree
[K (l, S)ab

: K ] is finite. From now on suppose L/K is a finite-degree l-extension,
so M(Gal(L/K )) is a finite abelian l-group. Let S be the set of primes of K ramified
in L .

For K =Q or K imaginary quadratic with ζl /∈ K , there exists such an extension
M that is ramified at worst at primes above S. This is [Fröhlich 1983, Corollary 2
of Theorem 3.13] for the case of Q and [Watt 1985, Theorem 3.1] for the quadratic
case. In these cases, Since M is central for L/K , we have M = M ′. Furthermore
if L ⊇ K (l, S)ab, then L ⊇ E , so E L = L and (9-1) asserts that

M(Gal(L/K ))∼= Gal(M/L).

Remark 9.3. Fröhlich does not require L/K to be an l-extension.
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Thus from the results of Fröhlich and Watt we have:

Theorem 9.4. Let K be Q or imaginary quadratic with ζl /∈ K and let L/K be
a finite Galois l-extension tamely ramified only at S; suppose L ⊇ K (l, S)ab.
Then there exists a central extension M of L/K with Ram(M/K ) ⊆ S such that
M(Gal(L/K ))∼= Gal(M/L). �

Remark 9.5. We may apply the theorem repeatedly by replacing the extension
L/K by M/K .

Remark 9.6. Since the number of generators of Gal(K (l, S)/K ) equals the num-
ber of generators of Gal(K (l, S)ab/K ), we have that Gal(L/K ) and Gal(M/K )
have the same number of generators.
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