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NIKOLAI NIKOLOV AND RAFAEL RAFAILOV

We consider an extremal problem in geometry. Let λ be a real number
and let A, B and C be arbitrary points on the unit circle 0. We give a
full characterization of the extremal behavior of the function f (M, λ) =

MAλ+MB λ+MC λ, where M is a point on the unit circle as well. We also in-
vestigate the extremal behavior of

∑n
i=1 XPi , where the Pi , for i = 1, . . . , n,

are the vertices of a regular n-gon and X is a point on 0, concentric to
the circle circumscribed around P1 . . . Pn. We use elementary analytic and
purely geometric methods in the proof.

1. Introduction

The question of placing electrical charges on a sphere in such a way that the poten-
tial energy of the system obtains its extremal values has long been of importance
to physics. Problems of this kind have also been considered in classical potential
theory.

The planar case of this question is answered by the general solution of placing
n points Mi , i = 1, . . . , n on the unit circle in such a way as to obtain the extreme
values of the sum ∑

0≤i< j≤n

|MiMj |
λ,

where λ is a given real number, the concrete case being λ = −1. (We denote the
distance between two points P and Q by |P Q|, or by P Q when there is no danger
of confusion.)

There is a growing amount of literature on this problem, which we can regard
as a discrete analog of questions studied in classical potential theory. This has led
to the development of the problem of placing a point M on the unit circle in such
a way to obtain the extremal values of

n∑
i=1

MM λ
i
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for a given point set Mi , i = 1, . . . , n. This has proven to be a difficult question
and in general it remains open.

Here we consider the case n = 3 and prove:

Theorem 1.1. Let λ be a real number and let A, B and C be arbitrary points on
the unit circle 0.

(1) If λ < 0, there is always a point M on 0 such that f (M, λ)≤ 2+ 2λ.

(2) If λ ∈ [0; 2], there is always a point M on 0 such that f (M, λ)≥ 2+ 2λ.

(3) If λ ∈ (2; 4), there is always a point M on 0 such that f (M, λ)≥ 2
√

3 λ.

(4) If λ≥ 4, there is always a point M on 0 such that f (M, λ)≥ 2+ 2λ.

These bounds are sharp if and only if A, B and C are the vertices of an equilateral
triangle.

Or, equivalently,

(1) minA,B,C∈0 maxM∈0 f (M, λ)= 2+ 2λ for λ ∈ [0; 2] ∪ [4;∞).

(2) minA,B,C∈0 maxM∈0 f (M, λ)= 2
√

3 λ for λ ∈ (2; 4).

(3) maxA,B,C∈0 minM∈0 f (M, λ)= 2+ 2λ for λ < 0.

In the last case, the order of the maximum and the minimum is reversed. We
are not interested in the maximum of the function f (M, λ) when λ< 0, since it is
infinity when M approaches A, B or C .

Prior to the present article, the exact extremal values of f (M, λ), established
in [Stolarsky 1975], were only known for λ ∈ [0; 2]. We also give another (more
elementary) proof of the results obtained in that article.

The question of the extremal behavior of the function

fn(M,−2)=
n∑

i=1

MM−2
i

is considered in [Ambrus and Ball 2011], where it is proved that there always exists
a point M ∈ 0 such that

fn(M,−2)≤ 1
4 n2.

This bound is sharp if and only if the Mi are the vertices of a regular n-gon. This
agrees with our results when n = 3.

We also consider the case when there are n points Pi , i = 1, . . . , n on the unit
circle that are the vertices of a regular n-gon, and a point X on a circle 0, concentric
to the circumscribed circle of P1 . . . Pn . We study the extremal values of

Rn(X, λ)=
n∑

i=1

XP λ
i ,

where X ∈ 0.
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This problem was considered by Stolarsky [1975], who solved it for 0≤ λ< 2n,
where 0 is the circumscribed circle of the polygon, and by Mushkarov [1982], who
found λ for which the sum does not depend on the position of X on 0, again where
0 is circumscribed around P1 . . . Pn , and gave a trigonometric representation for
higher powers. In this paper we characterize the extremal behavior of the sum∑n

i=1 XP λ
i and prove:

Theorem 1.2. Let Pi , i = 1, . . . , n be the vertices of a regular n-gon inscribed in
the unit circle. Now let 0 be a circle concentric to the circumscribed circle. Put
Bi = O Pi ∩0, where O is the center of the n-gon.

Let X ∈ 0 and

Rn(X, λ)=
n∑

i=1

XP λ
i .

(1) Suppose λ < 0. The minimum of Rn(X, λ) is achieved when X bisects the arc
between consecutive vertices of B1 . . . Bn , and the maximum when X ≡ Bi . In
the case when 0 is the circumscribed circle around P1 . . . Pn , this function is not
bounded when X→ Bi for some i .

(2) Suppose 0 ≤ λ < 2n. If λ is an even integer, then Rn(X, λ) is independent of
the position of X on 0.

Otherwise let m be such an integer that 2m ≤ λ≤ 2m+ 2.
If m is even (resp. odd), then Rn(X, λ) is maximal (resp. minimal) if and only

if X bisects the arc between consecutive vertices of B1 . . . Bn . Also Rn(X, λ) is
minimal (resp. maximal) if and only if M ≡ Bi .

(3) 2n ≤ λ. If n is even (resp. odd), the maximum (resp. minimum) of Rn(X, λ) is
obtained when X coincides with one of the vertices of B1 . . . Bn , and the minimum
(resp. maximum) is achieved when X bisects the arc between consecutive vertices.

Remark 1.3. A case of conclusion (2) of the theorem is proved in [Stolarsky 1975],
when 0 is the circle circumscribed around P1 . . . Pn . However, it seems possible
that the general result of (2) can be proved in the same manner.

It is easy to see that (3) is actually true for λ > 2n− 2.

We begin by considering the regular n-gon, since we use the result later.

2. The regular n-gon

We say that y is a root of degree k of an equation f (x) = 0, where f is k-times
differentiable, if f (y)= 0 and f t(y)= 0 for t = 1, . . . , k−1 and f k(y) 6= 0, where
f t(x) denotes the t-th derivative of f .
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Lemma 2.1. Let a1, a2, . . . , an be real numbers and b1, b2, . . . , bn be nonnegative
numbers. Then the function

ϕ(λ)=

n∑
i=1

ai bλi

is either identically zero or has at most n − 1 real zeros counted with their multi-
plicities.

Proof. We proceed by induction on the number of summands. For n = 1, we have
abλ = 0, which does not have solutions if both a and b are nonzero. If either of
them is zero, then abλ is identically zero. Now assume the statement to be true
for all k < n. For k = n, if either of ai or bi is zero, then we use the induction
hypothesis.

Now let bi , ai be nonzero. Since all of bi are nonzero, we can divide each term
by bλ1 to get

n∑
i=1

ai

( bi

b1

)λ
= 0.

Assume that this equation is not identically zero, and that its solutions are
y1, . . . , yk with multiplicities t1, . . . , tk and

∑k
i=1 ti > n− 1.

Differentiating this with respect to λ, we get

n∑
i=2

ai ln
bi

b1

( bi

b1

)λ
= 0=

n∑
i=2

a′i b
′λ
i ,

where a′i = ai ln(bi/b1) and b′i = bi/b1. Assume that this expression is identically
zero; then

∑n
i=1 ai bλi = 0 must be a constant, and the claim follows. Assume that

the derivative does not vanish for all λ. Now by the induction hypothesis, the deriv-
ative has at most n−2 zeros. But y1, . . . , yk are solutions to the above equation with
multiplicities t1−1, . . . , tk−1; also, by Rolle’s theorem, the derivative has at least
one root in each interval (yi ; yi+1), and thus we obtain k−1+

∑k
i=1 ti−1 solutions

(counted with their multiplicities), which is greater than n− 2; a contradiction. It
follows that

∑k
i=1 ti ≤ n− 1. �

We continue with another problem, which is a part of Theorem 1.2.

Theorem 2.2. Let P1, . . . , Pn be the vertices of a regular polygon, given a circle
0, concentric to the circle circumscribed around P1 P2 . . . Pn; then

∑n
i=1 PP2k

i is
independent of the position of P ∈ 0 for k ∈ {1, . . . , n− 1}.

Proof. We use complex numbers. We may assume that the circumscribed circle
around P1 . . . Pn is the unit circle and that the radius of 0 is R. Let us assign to the
vertices of the n-gon the complex numbers ξ, ξ 2, . . . , ξ n , where ξ is a primitive
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n-th root of unity. We wish to prove that
∑n

i=1 |x − ξ
i
|
2k
= const for all x with a

fixed norm R and all k ∈ {1, . . . , n− 1}. We have
n∑

i=1

|x − ξ i
|
2k
=

n∑
i=1

(x − ξ i )k(x − ξ i )k =

n∑
i=1

(x − ξ i )k
( R

x
−

1
ξ i

)k
.

After multiplying, out we obtain

(x − ξ i )k
( R

x
−

1
ξ i

)k
=

k∑
j=−k

c jξ
−i j x j

= Pi (x)

for all x with |x | = R. We now have

n∑
i=1

|x − ξ i
|
2k
=

n∑
i=1

Pi (x)=
k∑

j=−k

n∑
i=1

c jξ
−i j x j ,

but
n∑

i=1
ξ−i j
= 0 for all j except j = mn, where m is an integer, so

n∑
i=1

|x − ξ i
|
2k
= nc0. �

Remark 2.3. One can prove that this is a characteristic property of the regular
n-gon. Given n different points in the plane A1, . . . , An and a circle 0, such that∑n

i=1 P A2k
i is independent of the position of P on 0 for every k ∈ {1, . . . , n−1},

then these points are the vertices of a regular n-gon. It is conjectured that this
remains true if the condition holds only for k = 2n− 2, and this has been verified
for n = 3 and n = 4, but the authors have no proof for higher values of n.

Proof of Theorem 1.2. We may assume X ∈ B̂1 M , where M is the midpoint of
arc B̂1 B2, because of symmetry.

After we position ourselves in a Cartesian coordinate system without loss of
generality, we can assume that P1 has coordinates (1, 0). Thus the coordinates of Pi

are
(
cos((i−1)2π/n), sin((i−1)2π/n)

)
, and X has coordinates (a cos x, a sin x),

where x ∈ [0; 2π/n].
We can now write the sum

n∑
i=1

|Pi X |λ =
n∑

i=1

((
a cos x − cos (i−1)2π

n

)2

+

(
a sin x − sin (i−1)2π

n

)2 )λ/2
= F(x, λ).

We differentiate this with respect to x to obtain

∂F(x, λ)
∂x

=

n∑
i=1

λ|Pi X |λ−1 d|Pi X |
dx

.
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The partial derivative exists for x ∈ (0; 2π/n). Now fix x and consider this as
a function of λ. As we are interested only in the sign of the derivative, we can
consider only

n∑
i=1

|Pi X |λ−1 d|Pi X |
dx

for λ 6= 0.
As proved earlier, F(x, λ) is constant for λ= 2, 4, . . . , 2n−2, so ∂F(x, λ)/∂x

vanishes for these values of λ. But from Lemma 2.1, this expression is either iden-
tically zero or has at most n− 1 solutions for λ, counted with their multiplicities.

We prove that this expression as a function of λ is not identically zero for fixed
x ∈ (0; 2π/n). For the sake of contradiction, assume otherwise. Let x ∈ (0; 2π/n).
It is easy to see that for the point X corresponding to this x , the distances |Pi X |
are all different. Now take i such that |Pi X | is maximized subject to the condition
that d|Pi X |/dx is nonzero. If |Pi X |> 1, then

lim
λ→∞

∣∣∣∂F(x, λ)
∂x

∣∣∣=∞.
On the other hand, if |Pi X |≤1, choose i instead so that |Pi X | is minimized subject
to the condition that d|Pi X |/dx is nonzero. In this case |Pi X |< 1; otherwise there
must be two distances Pi X that are equal (or else n − 1 among the d|Pi X |/dx
vanish, which is not possible). Indeed, as X describes the arcs P̂ ′i P ′′i and P̂ ′′i P ′i ,
where P ′i , P ′′i are the two intersections of 0 with the line through O and Pi , the
distance Pi X increases along one arc and decreases along the other. It is obvious
that P ′i and P ′′i either coincide with some of Bi or are midpoints of some arc
between consecutive vertices of B1 . . . Bn .

Again considering limλ→−∞ |∂F(x, λ)/∂x | =∞, we obtain the desired result.
As mentioned, for a fixed x , ∂F(x, λ)/∂x vanishes for every λ = 0, 2, 4, . . . ,

2n − 2, and it follows that these are all the solutions for λ and that each of
them — except possibly λ = 0 — must have multiplicity one. Also the derivative
changes sign at λ = 0. For a fixed x , therefore, ∂F(x, λ)/∂x changes sign at
λ= 0, 2, 4, . . . , 2n−2. Now assume that for some λ0 6= 0, 2, 4, . . . , 2n−2, there
exist y and z in the interval (0; 2π/n) such that

∂F(y, λ0)

∂x
∂F(z, λ0)

∂x
< 0;

then since ∂F(x, λ0)/∂x is a continuous function of x , there is t ∈ (0; 2π/n) such
that ∂F(t, λ0)/∂x = 0, and it follows that ∂F(t, λ)/∂x = 0 for all λ, which is a
contradiction. Hence the derivative

∂F(x, λ)
∂x
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does not change when x ∈ (0; 2π/n) for fixed λ; also, for every fixed x ∈ (0, 2π/n)
it changes sign at λ=0, 2, . . . , 2n−2. Thus, since F(x, λ) is a continuous function
of x , we have shown that the minimum and maximum of that function for x ∈
[0; 2π/n] are obtained when x = 0, or x = 2π/n.

Now consider

lim
λ→∞

F(0, λ)
F(2π/n, λ)

.

Assume that n is even; then |B1 Pn/2+1|> |M Pi | for every i , and the limit is∞.
Assume that n is odd; then |M Pdn/2e| > |B1 Pi for every i , and the above limit

becomes 0. This proves part (3) of Theorem 1.2. Now, taking into account parity
and the above observations for the intervals in which ∂F(x, λ)/∂x changes sign,
the conclusion of the theorem easily follows. �

Remark 2.4. When 0 is the circumcircle of the regular polygon, Theorem 1.2(1)
is easily proved by the observation that each of the functions M P λ

i +M P λ
n+1−i is

concave.

3. The case for three base points (proof of Theorem 1.1)

Proof of the case λ < 0. We now consider the case λ < 0.
Let 6 C =max{6 A, 6 B, 6 C}, and let M be the midpoint of the smaller arc ÂB.

We prove that f (M, λ)≤ 2+ 2λ. We consider two cases:

Case 1: 6 C ≥π/2. Then the maximum of the function MAλ
+MB λ

+MC λ when
C travels along the smaller arc ÂB is achieved when C ≡ A or when C ≡ B,
since M D > MA = MB for any point D on the smaller arc ÂB. Now we have
f (M, λ)= 3MAλ

≤ 3
√

2
λ
< 2λ+ 2.

Case 2: 6 C = x < π/2. Then 6 C ∈ [π/3;π/2). Now let C ′ and C ′′ be the points
for which 6 ABC ′ and 6 B AC ′′ equal x . It is easy to see that C belongs to the
smaller arc Ĉ ′C ′′, since 6 C is the largest angle of the triangle. Also, the maximum
of f (M, λ) when C belongs to the arc Ĉ ′C ′′ is obtained exactly when C ≡ C ′ or
C≡C ′′, since MC ′′=MC ′≤MC for every C on Ĉ ′C ′′. Without loss of generality
we can assume that C ≡ C ′. Then we can write

f (M, λ)= 2
(
2 sin 1

2 x
)λ
+
(
2 sin 3

2 x
)λ
= 2λ

(
2 sinλ 1

2 x + sinλ 3
2 x
)
= F(x, λ).

We differentiate with respect to x to get

∂F(x, λ)
∂x

= λ2λ
(
sinλ−1 1

2 x cos 1
2 x + 3

2 sinλ−1 3
2 x cos 3

2 x
)
.

Clearly, both sinλ−1 1
2 x cos 1

2 x and 3
2 sinλ−1 3

2 x cos 3
2 x are decreasing functions in

the interval [π/3;π/2), since λ < 0.
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Then ∂F(x, λ)/∂x is an increasing function of x in this interval since λ < 0,
and hence F(x, λ) is a convex function of x ∈ [π/3;π/2) if λ < 0.

From here it follows that

sup
x∈[π/3;π/2)

F(x, λ)=max
{

F(π/3, λ), lim
x→π/2

F(x, λ)
}

=max{2+ 2λ, 3
√

2 λ
},

since F(x, λ) is continuous in the interval [π/3;π/2]. Then max{2+2λ, 3
√

2
λ
}=

2+ 2λ, and this bound is achievable only for ABC an equilateral triangle; for all
other configurations of the points ABC , the function MAλ

+MB λ
+MC λ is less

than 2+ 2λ for the specified point M .
Now using Theorem 1.2, we get that the minimum of MAλ

+MB λ
+MC λ is

obtained when M bisects the arc between consecutive vertices of the triangle, and
in this case we have MAλ

+MB λ
+MC λ

= 2+ 2λ. This concludes the proof.

Remark 3.1. This case can also be proved using the main approach of [Ambrus
and Ball 2011], which is based on Lemma 1 of that reference, namely, the fact that
the local minima on each of the arcs between consecutive base points must be equal
for all λ < 0. In the case of only three points, one can obtain that the equilateral
triangle is indeed the extremal case. Assume otherwise. Clearly it is not possible
for all of the local minima to be equal when two of the points are closer than

√
2.

Assume now that C is not the midpoint of the arc ÂB. Consider the function

f1 = |MA|λ+ |MB|λ+ |MC1|
λ,

where C1 is the midpoint of ÂB. We may assume that C belongs to the shorter
arc C1 B. By symmetry, the local minima of f1 are equal on the short arcs ÂC1

and B̂C1. Now we have 6 C1OC ≤ π/4. Thus f > f1 on ÂC2 and f < f1 on
B̂C2, where C2 is the midpoint of the arc ĈC1. From here we obtain that the local
minima of f cannot be equal on the shorter arcs ÂC and B̂C . 1

Proof of the case λ > 2 . We first prove that for every three points A, B and C on
the unit circle there exists a point M also on the unit circle, such that f (M, λ) ≥
max{2+ 2λ, 2(

√
3)λ}.

Let AB = min{AB, BC,C A}; now let the bisector of AB intersect the larger
arc AB at M ′. Then 6 B AM ′ = 6 ABM ′ = x and π/3≤ x <π/2. Now by the sine
rule, BM ′ = AM ′ = 2 sin x ≥

√
3, and we have f (M ′, λ)≥ 2(

√
3)λ with equality

only if x = π/3, or, equivalently, if ABC is an equilateral triangle.
It remains to prove that for every triangle there is a point M ′ such that f (M ′, λ)≥

2+2λ. We consider two cases — when ABC is obtuse-angled and when it is acute-
angled.

1The authors thank the referee for suggesting this approach.
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Case 1: Let 6 C = max{ 6 A, 6 B, 6 C} ≥ π/2, and let O be the center of 0. Let
M ′ = CO ∩ 0. We have CM ′ = 2 and f (M ′, λ) = 2λ + BM ′λ + AM ′λ. Now
6 B AM ′, 6 ABM ′ ≤ π/2 and 6 B AM ′+ 6 ABM ′ ≥ π/2.

We have π/4≤max{6 B AM ′, 6 ABM ′} ≤ π/2, and so

BM ′λ+ AM ′λ > (2.1/
√

2)λ ≥ 2

as λ≥ 2, so f (M ′, λ) > 2+2λ. And this bound cannot be achieved for an obtuse-
angled triangle.

Case 2: Let c = 6 C = max{6 A, 6 B, 6 C} < π/2. Now M ′ = CO ∩ 0. We have
CM ′ = 2 and f (M ′, λ)= 2λ+ BM ′λ+ AM ′λ. We prove that BM ′λ+ AM ′λ ≥ 2.
Let 6 ACM ′ = x . By the sine rule, BM ′λ+ AM ′λ = (2 sin x)λ+ (2 sin c− x)λ =
f1(x, λ). We prove that sinλ x + sinλ (c− x) > 2 sinλ (c/2). We have

∂ f1(x, λ)
∂x

= λ2λ
(
sinλ−1 x cos x − sinλ−1(c− x) cos(c− x)

)
= λ2λ−1(sinλ−2 x sin 2x − sinλ−2(c− x) sin(2c− 2x)

)
.

It is now easy to see that for x ∈ [0; c/2), we have sinλ−2 x < sinλ−2(c− x) (for
λ≥ 2) and sin 2x < sin(2c− 2x), and so

∂ f1(x, λ)
∂x

< 0.

With similar arguments it follows that
∂ f1(x, λ)
∂x

= 0 for x =
c
2

, and
∂ f1(x, λ)
∂x

> 0
for x ∈ (c/2; c].

Then minx∈[0;c]( f1(x, λ) + f1(c − x, λ)) = 2 f1(c/2, λ) ≥ 2 f1(π/6, λ) = 2.
Equality holds if and only if ABC is equilateral.

We have 2+ 2λ = 2
√

3 λ for λ ∈ {2, 4}; 2+ 2λ < 2
√

3 λ for λ ∈ (2; 4); and
2+ 2λ > 2

√
3 λ for λ > 4. We prove that for ABC an equilateral triangle, those

bounds are sharp.
Again using Theorem 1.2, we get:

(1) When λ ∈ [2; 4], the maximum of MAλ
+MB λ

+MC λ is achieved when M
coincides with one of A, B,C and is equal to 2

√
3
λ
.

(2) When λ > 4, the maximum of MAλ
+ MB λ

+ MC λ is achieved when M
bisects the arc between consecutive vertices of the triangle ABC and is equal
to 2+ 2λ.

These bounds are sharp.
We also have the minimum of f (M, λ) when ABC is an equilateral triangle,

that is, when λ∈ [2, 4], we have min f (M, λ)= 2+2λ; and min f (M, λ)= 2
√

3 λ

when λ > 4. This concludes the proof. �
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Proof of the case λ ∈ [0; 2]. This case is proved in [Stolarsky 1975], but we give
a new, independent proof.

We now prove that for every three points A, B, C on the unit circle and a
real number λ ∈ (0; 2), there exists a point M also on the unit circle, such that
f (M, λ) = MAλ

+ MB λ
+ MC λ

≥ 2+ 2λ; and this bound is sharp. It is only
achievable when A,B and C are the vertices of a equilateral triangle.

Again let 6 C = max{6 A, 6 B, 6 C} = x . As before, it is easy to see that when
6 C ≥ π/2 (with M chosen as the midpoint of the arc ÂB), we have

f (M, λ)≥ 3
√

2 λ ≥ 2+ 2λ

for λ ∈ [0; 2]. When λ ∈ {0, 2}, we have that MAλ
+ MB λ

+ MC λ is constant.
We can assume that the triangle ABC is acute-angled. Then 6 C ∈ [π/3;π/2], and
again let M be the midpoint of the arc ÂB. Now let C ′ and C ′′ be the points for
which 6 ABC ′ and 6 B AC ′′ respectively equal x . It is easy to see that C belongs
to the smaller arc Ĉ ′C ′′, since C is the largest angle of the triangle. It is also easy
to see that the minimum of f (M, λ) when C belongs to the arc Ĉ ′C ′′ is obtained
exactly when C ≡ C ′ or C ≡ C ′′, since MC ′′ = MC ′ ≤ MC for every C on Ĉ ′C ′′.

Let 6 A = x . Using the sine rule, we now get

f (M, λ)= MAλ
+MB λ

+MC λ
= 2

(
2 sin 1

2 x
)λ
+
(
sin 3

2 x
)λ
= F(x, λ).

We prove that if x ∈ [π/3;π/2], then F(x, λ)≥ 2+ 2λ.
We consider two cases:

Case 1: λ ∈ (0; 1). After differentiating with respect to x , we get

∂F(x, λ)
∂x

= λ2λ
(
sinλ−1 1

2 x cos 1
2 x + 3

2 sinλ−1 3
2 x cos 3

2 x
)
.

It is now easy to see that both sinλ−1 1
2 x cos 1

2 x and sinλ−1 3
2 x cos 3

2 x are de-
creasing functions as λ− 1 < 0. Then F(x, λ) is a concave function of x when
λ ∈ (0; 1). It follows that

min
x∈[π/3;π/2)

F(x, λ)=min
{

F(π/3, λ), lim
x→π/2

F(x, λ)
}

= F(π/3; λ)= 2+ 2λ,

and for every x 6= π/3 we have F(x, λ) > 2+ 2λ. We shall later prove that when
A, B, C are the vertices of an equilateral triangle this bound is sharp.

Case 2: λ ∈ [1; 2). Let CO ∩0 = M . We shall prove that for the point M we have
AM λ

+ BM λ
+CM λ

≥ 2+ 2λ. We have CM = 2λ. We only need to prove that
BM +CM ≥ 2, since

BM λ
+ AM λ

≥ 2
( AM + BM

2

)λ
.
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Lemma 3.2. Let A,B and C be points on the unit circle 0 with center O. Assume
6 C =max{6 A, 6 B, 6 C} and M = CO ∩0 then MA+MB ≥ 2.

Proof. We have

MA+MB = 2(sin x + sin(c− x))=: f (x),

where x = 6 MAC and c=π− 6 AC B <π/2. Then f ′(x)= 2(cos x−cos(c−x));
thus f ′(x) > 0 for x ∈ [0; c/2), while f ′(x) = 0 for x = c/2 and f ′(x) < 0 for
x ∈ (c/2; c].

Now let C ′ and C ′′ be the points for which 6 ABC ′ and 6 B AC ′′ respectively
equal x . It is easy to see that C belongs to the smaller arc Ĉ ′C ′′ as C is the
largest angle of the triangle. The minimum min MAλ

+ MB λ is obtained when
M O ∩0 = C ′ or M O ∩0 = C ′′ as f (x) is concave. Now 6 ABC = 6 BC A = γ .
Then MA+ MB = 2(sin(π/2− γ )+ sin(2γ − π/2)) = cos γ − cos 2γ = f1(γ ).
Differentiating f1(γ )we get f ′1(γ )=2 sin 2γ−sin γ which is a decreasing function
of γ ∈ [π/3;π/2). This gives us that f1(γ ) is a concave function when γ ∈
[π/3;π/2), and it follows that

min f1(γ )= min
γ∈[π/3;π/2)

{
f1(π/3), lim

x→π/2
f1(x)

}
= 2. �

Now

BM λ
+ AM λ

≥ 2
( AM + BM

2

)λ
≥ 2,

with equality only when AM = BM = 1 which is possible only when A,B and C
are the vertices of an equilateral triangle.

In such a way we obtain that when λ ∈ (0; 2) there exists a point M on the unit
circle, such that MAλ

+MB λ
+MC λ

≥ 2+ 2λ and this bound is achievable only
if A, B and C are the vertices of an equilateral triangle.

Now using again the result of Theorem 1.2 one easily obtains that the maximum
of MAλ

+ MB λ
+ MC λ is obtained when M is the midpoint of one of the arcs

between consecutive vertices and it indeed equals 2+ 2λ.
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