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THE NAVIER–STOKES FLOW AROUND A ROTATING BODY

REINHARD FARWIG, GIOVANNI P. GALDI AND MADS KYED

Consider a body, B, rotating with constant angular velocity ω and fully sub-
merged in a Navier–Stokes liquid that fills the whole space exterior to B. We
analyze the flow of the liquid that is steady with respect to a frame attached
to B. Our main theorem shows that the velocity field v of any weak solution
(v, p) in the sense of Leray has an asymptotic expansion with a suitable
Landau solution as leading term and a remainder decaying pointwise like
1/|x|1+α as |x|→∞ for any α∈ (0, 1), provided the magnitude of ω is below
a positive constant depending on α. We also furnish analogous expansions
for ∇v and for the corresponding pressure field p. These results improve
and clarify a recent result of R. Farwig and T. Hishida.

1. Introduction

Consider a rigid body rotating with prescribed constant angular velocity ω ∈R3 in
a Navier–Stokes liquid that fills the whole space exterior to the body. We assume
that the motion of the liquid with respect to a frame S attached to the body is
steady. Then, after a suitable nondimensionalization, the relevant equations for the
liquid in the frame S become

(1-1)


−1v+ v · ∇v−ω∧ x · ∇v+ω∧ v+∇ p = 0 in �,

div v = 0 in �,
v = ω∧ x on ∂�,

lim
|x |→∞

v(x)= 0,

where v is the velocity field, p the corresponding pressure, and �⊂R3 the region
exterior to the body. We assume that � is an exterior domain with a C2-smooth
(compact) boundary.
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Significant effort has been devoted to the analysis of the fundamental mathemat-
ical properties of solutions to (1-1), including existence, uniqueness, asymptotic
behavior, and stability. Without pretending to furnish an exhaustive bibliography,
we refer the reader to [Borchers 1992; Farwig 1992; 2006; Galdi 2003; Farwig
et al. 2004; Galdi and Silvestre 2007a; 2007b; Hishida 2007; Hishida and Shibata
2007; 2009; Farwig and Neustupa 2008; Kračmar et al. 2008; Deuring et al. 2011]
and to the references cited therein.

One important question that deserves special attention is the behavior of the
velocity and pressure fields at large distances. In particular, the precise asymptotic
structure of these fields and the identification of their leading terms have great
relevance. Beside its intrinsic mathematical significance, this analysis is also im-
portant in several applications, as well as in numerical computations, mainly in the
estimation of the error made by approximating the infinite region of flow with a
necessarily bounded domain; see, for example, [Deuring and Kračmar 2004].

The problem of the asymptotic structure of solutions to (1-1) appears to be par-
ticularly challenging. Even in the simpler case ω = 0 (and a nonzero right-hand
side of compact support in (1-1)1) it has been effectively solved, for small data at
least, only lately [Korolev and Šverák 2011].

Farwig and Hishida [2009; 2011b] have recently given a first answer to the ve-
locity field question for smooth solutions to (1-1). More specifically, let T (v, p) :=
−pI+∇v+(∇v)T denote the Cauchy stress tensor with I the identity tensor. They
have shown that the velocity field of any (smooth) solution to (1-1) having norm
in a suitable Lorentz space sufficiently small and for which the quantity1(∫

∂�

T (v, p) · n dS
)
·
ω

|ω|

is also small can be represented at large distances as

(1-2) v(x)=U (x)+ R(x),

where U = U (x) is the velocity field of a particular Landau solution and R is a
“remainder” with R ∈ Lq(�) for some q ∈ ( 3

2 , 3). Since U (x) behaves like 1/|x |
for large |x |, the relation (1-2) indicates that U is the leading term in the Lebesgue
summability sense. The Landau solution involved in (1-2) is a field U ∈ D′(R3)

solution to the Navier–Stokes system

(1-3)

{
−1U +U · ∇U +∇P =

((∫
∂�

T (v, p) · n dS
)
·
ω

|ω|

)
ω

|ω|
δ,

div U = 0,

1This quantity represents the force exerted by the liquid on the “body” (the complement of �,
that is) in the direction of ω.
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where δ denotes the delta distribution supported at 0∈R3; see, for example, [Farwig
and Hishida 2011b] and (3-2) below for an explicit form of (U, P). We only note
that U is smooth away from the origin and satisfies U = O(1/|x |) and ∇U =
O(1/|x |2) as |x | →∞.

The objective of the present paper is to improve and clarify these results of
[Farwig and Hishida 2009; 2011b].

We establish our findings in the class of Leray solutions, which are defined as
solutions (v, p) to (1-1) such that

(1-4) ∇v ∈ L2(�) and v ∈ L6(�)

and that satisfy the energy inequality

(1-5) 2
∫
�

|Dv|2 dx ≤
∫
∂�

(
T (v, p) · n

)
· (ω∧ x) dS,

where Dv := 1
2

(
∇v + (∇v)T

)
is the stretching tensor of the liquid. As is well

known, the class of Leray solutions is nonempty for any ω ∈R3 (see, for example,
[Borchers 1992]). Moreover, by classical elliptic regularity, any Leray solution is
smooth [Galdi 1994].

We will prove that, for sufficiently small |ω|, the velocity field v of any Leray
solution (v, p) to (1-1) must obey an asymptotic expansion of the type (1-2),
where, unlike [Farwig and Hishida 2009; 2011b], R(x) is estimated pointwise, with
|R(x)|≤O(1/|x |1+α) for some α∈ (0, 1).2 We also show an analogous (improved)
pointwise estimate for ∇v, with ∇U as leading term. As far as the pressure field
p is concerned, we furnish a similar asymptotic expansion. However, the leading
term in this expansion is not the pressure P of the Landau solution, but P plus an
additional term that depends on the component orthogonal to ω of the force exerted
by the liquid on the body. More precisely, we prove:

Theorem 1.1 (main theorem). Let α ∈ (0, 1). There is an ε = ε(α) > 0 so that if
|ω|< ε, then any Leray solution (v, p) to (1-1) obeys the asymptotic expansion

v(x)=U (x)+ O
(

1
|x |1+α

)
as |x | →∞,(1-6)

∇v(x)=∇U (x)+ O
(

1
|x |2+α

)
as |x | →∞,(1-7)

and (after possibly adding a constant to p)

(1-8) p(x)= P(x)+ x
4π |x |3

·

(
I − ω⊗ω
|ω|2

)
·F+ O

(
1
|x |2+α

)
as |x | →∞,

2Clearly, R ∈ Lq for large |x |, with some q = q(α) ∈ ( 3
2 , 3).



370 REINHARD FARWIG, GIOVANNI P. GALDI AND MADS KYED

where

(1-9) F :=

∫
∂�

(
T (v, p)− v⊗ v

)
· n dS,

and (U, P) is the Landau solution (U b, Pb) given by (3-2) corresponding to the
parameter b := (F ·ω)ω/|ω|2.

Remark 1.2. Note that F is equal to the (negative) force exerted by the liquid on
the body B. We emphasize that the leading terms in the expansions (1-6) and
(1-7) of v and ∇v, respectively, depend only on the component of F directed
along ω, whereas the leading term in the expansion (1-8) of p also depends on
the component of F orthogonal to ω.

Remark 1.3. It is not known in general if one can take α=1 in the above estimates.
However, if R3

\� possesses suitable rotational symmetry, then α = 1 is allowed.
However, in such a case, the leading term in the asymptotic expansion is no longer
a Landau solution; see [Galdi ≥ 2011].

Remark 1.4. The formula (1-6) elucidates in a pointwise fashion the result proved
in [Farwig and Hishida 2009; 2011b] in Lebesgue spaces. However, in those papers
no information was provided on the asymptotic structure of ∇v and p. Therefore,
(1-7) and (1-8) are new.

The proof of Theorem 1.1 relies on the following two crucial results concerning
the linearized version of (1-1) in the whole space, which is obtained by suppressing
the nonlinear term v ·∇v in (1-1) and by adding a suitable (given) function f , say,
on its right-hand side. The first result, Lemma 2.1, is the proof of existence of
solutions with a suitable decay order, under the assumption that f is of compact
support and orthogonal (in the L2 scalar product) to the direction of ω. This lemma
can be viewed as a corollary to a very general result proved in [Farwig and Hishida
2011a]. The second result, Lemma 2.2, concerns the existence, uniqueness, and
corresponding estimates of solutions that converge to zero pointwise, with a spe-
cific order of decay, under appropriate decay hypotheses on f . This lemma is
obtained by using the time-dependent transformation and the associated method
introduced in [Galdi 2003].

Before discussing some preliminaries in Section 2, recalling the definition of
Landau solution along with its basic properties in Section 3, and presenting the
proof of our main results in Section 4, we introduce some basic notation. Let
G ⊂ R3 be any domain, and denote its exterior normal unit vector by n.

• ‖ ·‖r,G =‖·‖r is the norm in the Lebesgue space Lr (G), 1≤ r ≤∞; ‖ ·‖k,r,G
is the norm in the usual Sobolev space W k,r (G), k ∈ N, 1≤ r ≤∞.

• D1,2(G) := {v ∈ L1
loc(G) | |v|1,2 <∞} and |v|1,2 :=

( ∫
G |∇v|

2 dx
)1/2.
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• For β ∈ R, define [[v]]β,G := ess supx∈G |v(x)|(1+ |x |)
β .

• For β ∈ R, m ∈ N∪ {0} let [[v]]m,β,G :=
∑

0≤k≤m[[∇
kv]]β+k,G .

• Xm
β (G) := {v ∈ L1

loc(G) | [[v]]m,β,G <∞}.

• R3
T := R3

× (0, T ), and R3
∞
:= R3

× (0,∞) when T =∞.

• BR = {x ∈ R3
| |x |< R} and B R

= R3
\ B R , where | · | denotes the Euclidean

norm of R3.

For functions u :R3
T→R, we set div u(x, t) :=divx u(x, t),1u(x, t) :=1x u(x, t),

and so on. That is, unless otherwise indicated, differential operators act in the
spatial variables only. Constants in capital letters are global, and constants in small
letters are local.

2. Preliminaries

The proof of our main result relies on two crucial observations concerning the
whole space linear problem

(2-1)
{
−1w−ω∧ x · ∇w+ω∧w+∇q = f in R3,

divw = 0 in R3.

The first observation is due to Farwig and Hishida [2011b, Lemma 3.4]:

Lemma 2.1. If f ∈ C∞0 (R
3)3 with

(2-2)
(∫

R3
f (x) dx

)
·ω = 0,

then there exists a solution (w, q) ∈ X1
2(R

3)3×X0
2(R

3) to (2-1).

Proof. We obtain directly from [Farwig and Hishida 2011b, (3.21) and Lemma 3.4]
the existence of a solution (w, q) ∈ X0

2(R
3)3 × X0

2(R
3). Moreover, by elliptic

regularity theory for the Stokes operator, w ∈ C∞(R3). It remains to show that
[[∇w]]3,R3 < ∞. This, however, follows by the same argument used in Lemma
3.7 of that reference to prove that |w(x)| ≤ c1|x |−2. This argument relies on the
fact that the fundamental solution 0 to (2-1) (see (3.20) in the same paper for an
explicit expression) satisfies, after setting ω = e3 without loss of generality, the
following expansion for |y| ≤ R and |x | →∞:

0(x, y)=8(x)+ O
( 1
|x |2

)
, 8(x) := 1

8π |x |3

0 0 x1x3

0 0 x2x3

0 0 x2
3 + |x |

2

 ,
and

(2-3) w(x)=
∫

R3
0(x, y) f (y) dy.
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By analogy to the proof of [Farwig and Hishida 2011a, Propositions 4.1 and 4.2]
one can show that for |y| ≤ R and |x | →∞,

∇0(x, y)=∇8(x)+ O
( 1
|x |3

)
.

Thus, after differentiating in (2-3) and exploiting (2-2) where we have set ω = e3,
it follows that |∇w(x)| ≤ c2|x |−3, which implies [[∇w]]3,R3 <∞. �

The second observation concerns the solvability of (2-1) in weighted spaces for
more general f :

Lemma 2.2. Let α ∈ (0, 1). If 3 f ∈ C∞(R3)3 and f = div F with4

(2-4) [[F]]2+α + [[div F]]3+α ≡
3∑

i, j=1

[[Fi j ]]2+α +

3∑
i=1

[[∂k Fki ]]3+α <∞,

then there exists a unique solution (w, q) ∈ X1
1+α(R

3)3 × X0
2+α(R

3) to (2-1) that
satisfies

(2-5) [[w]]1,1+α + [[q]]2+α ≤ C1 ([[F]]2+α + [[div F]]3+α),

where C1 = C1(α) is independent of ω.

Proof. The existence of a weak solution

(2-6) (w, q) ∈
(
D1,2(R3)3 ∩ L6(R3)3

)
× L2

loc(R
3)

to (2-1) can be shown by a standard Galerkin approximation argument; see, for
example, [Silvestre 2004]. We will now prove that this weak solution belongs to
the space X1

1+α(R
3)3×X0

2+α(R
3). To this aim, for t > 0, put

Q(t) := exp(ω̂t), with ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
and set

u(x, t) := Q(t)w
(
QT (t)x

)
, p(x, t) := q

(
QT (t)x

)
,

G(x, t) := Q(t)F
(
QT (t)x

)
.

In particular, u( · , 0)= w in the sense that limt→0‖u( · , t)−w‖6 = 0. Then

(2-7)


∂t u−1u+∇p= div G in R3

∞
,

div u = 0 in R3
∞
,

u( · , 0)= w in R3,

and u ∈ L6(R3
T )

3 for all T > 0.

3We take f smooth for simplicity only; this assumption can be substantially weakened.
4Throughout this paper, we shall use the summation convention over repeated indexes.
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To get an integral representation of u, recall the fundamental solution to the time-
dependent Stokes problem, that is, the solution (in the sense of distributions) to{

∂t0i j −10i j + ∂ jγi = δi jδ(t)δ(x),
∂k0ik = 0, i, j = 1, 2, 3,

where δi j denotes the Kronecker symbol and δ( · ) the Dirac delta distribution. The
fundamental solution takes the form (see [Oseen 1927, Section 5])

0i j := −δi j19 + ∂i∂ j9, γi := ∂i (1− ∂t)9,

with

9(x, t) := 1
4π3/2t1/2

∫ 1

0
e−|x |

2r2/(4t) dr.

Using 0 we can write the unique (in the class L6(R3
T )

3, T > 0) solution to (2-7) as

(2-8) ui (x, t)= 1
(4π t)3/2

∫
R3

e−|x−y|2/(4t)wi (y) dy

−

∫ t

0

∫
R3
∂ j0ih(x − y, t − τ) G jh(y, τ ) dy dτ

=: I1(x, t)− I2(x, t);

see [Galdi and Kyed 2011b, Section 3]. Then, since w ∈ L6(R3)3, Hölder’s in-
equality yields

(2-9) |I1(Q(t)x, t)| = O(t−1/4) as t→∞, uniformly in x ∈ R3.

It is easy to verify that the estimate on
∫
∞

0 |∇0(x, t)| dt from Lemma 3.1 of that
reference also holds in the present case of vanishing velocity at infinity (the case
R= 0 there). Thus

(2-10) |I2(x, t)| ≤ c1 [[F]]2+α

∫
R3

1
|x−y|2(1+|y|)2+α

dy.

From [Galdi 1994, Lemma II.7.2] we conclude that

(2-11) |I2(x, t)| ≤ [[F]]2+α
c2

(1+ |x |)1+α
, uniformly in t > 0,

with c2= c2(α). Since |w(x)| = |u(Q(t)x, t)| ≤ |I1(Q(t)x, t)|+|I2(Q(t)x, t)| for
all t > 0, from (2-9) and (2-11) we obtain

(2-12) [[w]]1+α,R3 ≤ c3 [[F]]2+α.

Differentiating (2-8) gives ∂ku(x, t) = ∂k I1(x, t)+ ∂k I2(x, t). Then another stan-
dard application of Hölder’s inequality yields

(2-13) |∂k I1(x, t)| = O(t−3/4) as t→∞, uniformly in x ∈ R3.
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Moreover, we have

(2-14) ∂k I2(x, t)=
∫ t

0

∫
R3
∂k0ih(x − y, t − τ) ∂ j G jh(y, τ ) dy dτ.

Now fix 0 6= x ∈ R3 and let R = 1
2 |x |. Then

(2-15) ∂k I2(x, t)=
∫ t

0

∫
BR

∂ j∂k0ih(x − y, τ ) G jh(y, t − τ) dy dτ

+

∫ t

0

∫
∂ BR

∂k0ih(x − y, τ ) G jh(y, t − τ) n j dS(y) dτ

+

∫ t

0

∫
BR
∂k0ih(x − y, τ ) ∂ j G jh(y, t − τ) dy dτ

=: J1+ J2+ J3.

Employing [Galdi and Kyed 2011b, Lemma 3.1] as above, this time to estimate∫
∞

0 |∇
20(x, τ )| dτ , we find

|J1| ≤ c4

∫
BR

[[F]]2+α
|x − y|3(1+ |y|)2+α

dy(2-16)

≤ c5
1
|x |3

∫
BR

[[F]]2+α
(1+ |y|)2+α

dy ≤ [[F]]2+α
(
c6|x |−(2+α)+ c7|x |−3).

Furthermore, by the same lemma, we have

(2-17) |J2| ≤ c8

∫
∂ BR

[[F]]2+α
|x − y|2|y|2+α

dS(y)≤ c9 [[F]]2+α|x |−(2+α).

Finally, using again the same lemma, as well as [Galdi 1994, Lemma II.7.2], we
estimate

|J3| ≤ c10

∫
BR

[[div F]]3+α
|x − y|2|y|3+α

dy(2-18)

≤ c10
1
R

∫
BR

[[div F]]3+α
|x − y|2|y|2+α

dy ≤ c11 [[div F]]3+α|x |−(2+α).

Since |∇w(x)| = |∇u(Q(t)x, t)| ≤ |∇ I1(Q(t)x, t)| + |∇ I2(Q(t)x, t)|, t > 0, we
deduce from (2-13)–(2-18) that

(2-19) ess sup
|x |>1

|∇w(x)|(1+ |x |)2+α ≤ c12
(
[[F]]2+α + [[div F]]3+α

)
.

To complete the estimate for∇w, recall (2-14) and estimate, using [Galdi and Kyed
2011b, Lemma 3.1],

|∂k I2(x, t)| ≤ c13 [[div F]]3+α

∫
R3

1
|x−y|2(1+|y|)3+α

dy.
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It follows that |∂k I2(x, t)| ≤ c14 [[div F]]3+α for |x | ≤ 1 and all t > 0. Combining
this estimate with (2-13), we conclude that ess sup|x |≤1 |∇w(x)| ≤ c15 [[div F]]3+α.
This, together with (2-19), yields

(2-20) [[∇w]]2+α,R3 ≤ c16
(
[[F]]2+α + [[div F]]3+α

)
.

We now turn our attention to the pressure term q. Taking div in (2-1)1 we get

1q =−∂i∂ j Fi j in R3.

From the fact that F ∈ L3/2(R3)3×3, by standard Calderón–Zygmund estimates,
it follows that, after possibly modifying q by adding a constant, q ∈ L3/2(R3).
Together with the summability properties of div F , this yields the validity of the
representation

(2-21) q(x)=−
∫

R3
∂ j E(y− x) ∂i Fi j (y) dy,

where E denotes the fundamental solution to the Laplace equation. Now fix R =
1
2 |x |> 0 and split

q(x)=−
∫

BR

∂i E(y− x) ∂ j Fi j (y) dy−
∫

BR
∂i E(y− x) ∂ j Fi j (y) dy =: K1+ K2.

We can estimate

|K1| ≤

∣∣∣∣ ∫
∂ BR

∂i E(y− x) Fi j (y) n j dS(y)
∣∣∣∣+ ∣∣∣∣ ∫

BR

∂ j∂i E(y− x) Fi j (y) dy
∣∣∣∣

≤ c17

(∫
∂ BR

[[F]]2+α
|x − y|2|y|2+α

dS(y)+
∫

BR

[[F]]2+α
|x − y|3(1+ |y|)2+α

dy
)

≤ [[F]]2+α
(
c18|x |−(2+α)+ c19|x |−3).

Moreover, using again [Galdi 1994, Lemma II.7.2], we obtain

|K2| ≤

∫
BR

[[div F]]3+α
|x − y|2|y|3+α

dy

≤
1
R

∫
BR

[[div F]]3+α
|x − y|2|y|2+α

dy ≤ c20 [[div F]]3+α|x |−(2+α).

It follows that

(2-22) ess sup
|x |>1

|q(x)|(1+ |x |)2+α ≤ c21
(
[[F]]2+α + [[div F]]3+α

)
.

To complete the estimate for q , we estimate directly from (2-21)

|q(x)| ≤ c22 [[div F]]3+α

∫
R3

1
|x−y|2(1+|y|)3+α

dy,
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from which it follows that ess sup|x |≤1 |q(x)| ≤ c23 [[div F]]3+α. Combined with
(2-22) we thus have

(2-23) [[q]]2+α ≤ c24
(
[[F]]2+α + [[div F]]3+α

)
.

Summarizing (2-12), (2-20), and (2-23) we get (2-5). It remains to show unique-
ness of the solution in the class X1

1+α(R
3)3×X0

2+α(R
3). Since (2-1) is a linear prob-

lem, we consider only the case f =0 and a solution (w,q)∈X1
1+α(R

3)3×X0
2+α(R

3).
Dot-multiplying the first equation in (2-1) by w, integrating over BR , and then
letting R→∞, we obtain ∇w = 0. Consequently, (w, q)= (0, 0). �

3. Landau solution

The Landau solution (U b, Pb), corresponding to a parameter b ∈ R3, is a solution
in D′(R3)3×D′(R3) to

(3-1)
{
−1U +U · ∇U +∇P = b δ,

div U = 0,

axially symmetric about the axis bR and (−1)-homogeneous. Here δ denotes the
delta distribution. The Landau solution can be given explicitly. Assume for sim-
plicity that b = k e3, k ∈ R. Then

(3-2)

U b(x)=
2
|x |

(
c(x3/|x |)− 1
(c− x3/|x |)2

x
|x |
+

1
c−x3/|x |

e3

)
for x ∈ R3

\ {0},

Pb
=

4
|x |2

(c(x3/|x |)− 1)
(c− x3/|x |)2

for x ∈ R3
\ {0},

where

(3-3) k = m8πc3(c2
− 1)

(
2+ 6c2

− 3c(c2
− 1) log c+1

c−1

)
.

As one may easily verify, for each k ∈ R \ {0}, there exists a unique c ∈ R with
|c|> 1 so that (k, c) satisfies (3-3). Hence, for each b ∈R3

\{0}, a Landau solution
(U b, Pb) to (3-1) is given. Moreover, we have b = k e3 → 0 as |c| → ∞. The
Landau solution was originally constructed in [Landau 1944]. For the explicit
calculation of the expressions above, refer to [Cannone and Karch 2004].

An important observation concerning the rotating body case is that

b∧ x · ∇U b
− b∧U b

= 0 in R3
\ {0},

since U b is symmetric about bR (see [Farwig and Hishida 2011b]).
We conclude from the above that (U b, Pb) is a solution to

(3-4)
{
−1U b

+U b
· ∇U b

− b∧ x · ∇U b
+ b∧U b

+∇Pb
= 0 in R3

\ {0},
div U b

= 0 in R3
\ {0},



LERAY SOLUTIONS TO THE NAVIER–STOKES FLOW AROUND A ROTATING BODY 377

satisfying

(3-5) |U b(x)| ≤
κ1(b)
|x |

and |∇U b(x)| ≤
κ2(b)

|x |2
for x ∈ R3

\ {0},

with

(3-6) lim
b→0

κ1(b)= 0 and lim
b→0

κ2(b)= 0.

Properties (3-4), (3-5), and (3-6) are all we need in order to prove Theorem 1.1.

4. Proof of the main theorem

Before proving Theorem 1.1, we outline the idea behind the proof.
Let (v, p) be a Leray solution to (1-1) satisfying the energy inequality (1-5). If
|ω| is sufficiently small, it was proved in [Galdi and Kyed 2011a] that

(4-1) [[v]]1+ [[∇v]]2+ [[p]]2 <∞.

Moreover, elliptic regularity implies v, p∈C∞(�). Now let R>diam(R3
\�) and

χR ∈C∞0 (R
3) be a “cut-off” function with χR=0 in BR and χR=1 in R3

\B2R . Put

w := χRv−B(∇χR · v), q := χR p,

where
B : C∞0 (B2R)→ C∞0 (B2R)

3

is the Bogovskiı̆ operator, defined by the property that div B( f ) = f whenever∫
B2R

f (x) dx = 0. (See [Galdi 1994, Theorem III.3.2] for details.) In the case
above, ∫

B2R

∇χR · v dx =
∫
∂ B2R

v · n dS =
∫
∂�

ω∧ x · n dS = 0.

Hence (w, q) satisfies{
−1w+w · ∇w−ω∧ x · ∇w+ω∧w+∇q = Gv in R3,

divw = 0 in R3,

with Gv ∈ C∞0 (R
3), and

(4-2) [[w]]1+ [[∇w]]2+ [[q]]2 <∞.

Next we introduce the Landau solution (U, P) corresponding to the parameter
b := (F ·ω)ω/|ω|2, that is, (U, P) := (U b, Pb). As above, put

Ũ := χRU −B(∇χR ·U ), P̃ = χR P.

Then (Ũ , P̃) satisfies{
−1Ũ + Ũ · ∇Ũ −ω∧ x · ∇Ũ +ω∧ Ũ +∇ P̃ = GU in R3,

div Ũ = 0 in R3,
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with GŨ ∈ C∞0 (R
3), and by (3-5),

(4-3) [[Ũ ]]1+ [[∇Ũ ]]2+ [[P̃]]2 <∞.

A crucial observation now is that since v = ω∧ x on ∂�,∫
R3

Gv dx =
∫

B2R

div
(
−T (w, q)+w⊗w−w⊗ (ω∧ x)+ (ω∧ x)⊗w

)
dx

=

∫
∂ B2R

(
−T (v, p)+ v⊗ v− v⊗ (ω∧ x)+ (ω∧ x)⊗ v

)
· n dS

=

∫
∂�

(
T (v, p)− v⊗ v

)
· n dS,

Similarly, since (U, P)= (U b, Pb) solves (3-4) with right-hand side bδ, we have∫
R3

GU dx =
∫

B2R

div
(
−T (Ũ , P̃)+ Ũ ⊗ Ũ − Ũ ⊗ (ω∧ x)+ (ω∧ x)⊗ Ũ

)
· n dS

=

∫
∂ B2R

(
−T (U, P)+U ⊗U −U ⊗ (ω∧ x)+ (ω∧ x)⊗U

)
· n dS = b,

Consequently, by the definition of b,(∫
R3

(
Gv −GU

)
dx
)
·ω = 0.

Thus, by Lemma 2.1, there exists a solution (V0, P0) to

(4-4)
{
−1V0−ω∧ x · ∇V0+ω∧ V0+∇P0 = Gv −GU in R3,

div V0 = 0 in R3,

satisfying

(4-5) [[V0]]2+ [[∇V0]]3+ [[P0]]2 <∞.

As a consequence of (4-4), 1P0 = div(Gv −GU ), and hence

(4-6) P0(x)=∇E(x) ·
∫

R3

(
Gv(y)−GU (y)

)
dy+ O(|x |−3),

where E denotes the fundamental solution to the Laplace equation. Now consider

(4-7) z := w− Ũ − V0 and π := q − P̃ − P0.

As can easily be verified, (z, π) ∈ X1
1(R

3)3×X0
2(R

3) satisfies the linear problem

(4-8)


−1z−ω∧ x · ∇z+ω∧ z+z · ∇w+ Ũ · ∇z+∇π

=− div(V0⊗w+ Ũ ⊗ V0) in R3,

div z = 0 in R3.
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Our main result, namely, the asymptotic expansions (1-6)–(1-8), now follows if
we can show [[z]]1,1+α + [[π ]]2+α < ∞. To do this, first, we use Lemma 2.2 in
combination with (4-2), (4-3), and (4-5) to establish the existence of a solution to
(4-8) with this property, and, second, we show uniqueness of solutions to (4-8) in
the class X1

1(R
3)3×X0

2(R
3).

Lemma 4.1. Let α ∈ (0, 1). There is an ε= ε(α) > 0 so that if |ω|< ε there exists
a solution (z, π) ∈ X1

1+α(R
3)3×X0

2+α(R
3) to (4-8).

Proof. We shall use a perturbation argument in the space

X := {(z, p) ∈ X1
1+α(R

3)3×X0
2+α(R

3) | div z= 0},

‖(z, p)‖X := [[z]]1,1+α + [[p]]2+α.

Clearly, (X, ‖·‖X ) is a Banach space. Let (z, p) ∈ X . Consider the system

(4-9)


−1z−ω∧ x · ∇z+ω∧ z+∇π

=−z · ∇w− Ũ · ∇z− div(V0⊗w+ Ũ ⊗ V0) in R3,

div z = 0 in R3.

Note that z · ∇w+ Ũ · ∇z= div(z⊗w+ Ũ ⊗ z), and put

F := z⊗w+ Ũ ⊗ z+ V0⊗w+ Ũ ⊗ V0.

Since [[F]]2+α + [[div F]]3+α <∞, by Lemma 2.2 there exists a unique solution
(z, π) ∈ X1

1+α(R
3)3×X0

2+α(R
3) to (4-9). We now define the map J : X → X by

J(z, p) := (z, π), and show the existence of a fixed point of J by the contraction
mapping theorem. Therefore, consider (z1, p1), (z2, p2) ∈ X and put (z1, π1) :=

J(z1, p1) and (z2, π2) := J(z2, p2). Clearly, (z1− z2, π = π1−π2) satisfies

(4-10)


−1(z1− z2)−ω∧ x · (z1− z2)+ω∧ (z1− z2)+∇π

=− div
(
(z1− z2)⊗w+ Ũ ⊗ (z1− z2)

)
in R3,

div(z1− z2)= 0 in R3.

Lemma 2.2 implies that

[[z1− z2]]1,1+α + [[π1−π2]]2+α ≤ C1(α)[[z1− z2]]1,1+α
(
[[w]]1,1+ [[Ũ ]]1,1

)
.

From [Galdi and Kyed 2011a, Theorem 4.1] we obtain lim|ω|→0[[v]]1,1,�=0. Since
w = χRv−B(∇χR · v), using well-known Lq -estimates for B (see [Galdi 1994,
Chapter III.3]) and Sobolev embedding, one sees easily that lim|ω|→0[[w]]1,1 van-
ishes. The theorem just cited also gives lim|ω|→0 b(ω,v, p) = 0, which, together
with (3-5), (3-6) implies lim|ω|→0[[Ũ ]]1,1 = 0. Consequently, for sufficiently small
|ω|, J is a contraction, and, by the contraction mapping theorem, there exists a
fixed point (z, π) ∈ X1

1+α(R
3)3 ×X0

2+α(R
3) of J. Clearly, by the construction of

J, this fixed point is a solution to (4-8). �
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Lemma 4.2. There is an ε > 0 so that if |ω| < ε then a solution (z, π) to (4-8) in
X1

1(R
3)3×X0

2(R
3) is unique in this class.

Proof. Assume that (z1, π1), (z2, π2) ∈ X1
1(R

3)3×X0
2(R

3) both solve (4-8). Then
(z, π) := (z1− z2, π1−π2) solves

(4-11)
{
−1z−ω∧ x · ∇z+ω∧ z+∇π =− div(z⊗w+ Ũ ⊗ z) in R3,

div z = 0 in R3.

Testing (4-11) with z, integrating over BR , subsequently letting R→∞, and finally
applying the Hardy-type inequality∫

R3

|z|2

(1+ |x |)2
dx ≤ c1

∫
R3
|∇z|2 dx,

we obtain |z|21,2 ≤ c2|z|21,2[[w]]1. As in the proof of Lemma 4.1, we use that
lim|ω|→0[[w]]1 = 0, which in this case yields |z|1,2 = 0 when ω is sufficiently
small. Consequently, (z1, π1)= (z2, π2). �

Combining Lemma 4.1 and Lemma 4.2, we can now prove our main result.

Proof of Theorem 1.1. Since v(x)−U (x)=w(x)− Ũ (x) for |x | ≥ 2R, the expan-
sions (1-6) and (1-7) follow if we can show that [[w − Ũ ]]1,1+α <∞. Similarly,
since p(x)− P(x)= q(x)− P̃(x) for |x | ≥ 2R, and recalling (4-6), the expansion
(1-8) follows if we can show that [[q − P̃ − P0]]2+α < ∞. Since [[V0]]1,2 < ∞,
both of these assertions are consequences of the fact that (z, π) defined by (4-7)
satisfies [[z]]1,1+α+[[π ]]2+α <∞, which follows from Lemma 4.1 and Lemma 4.2,
provided |ω| is sufficiently small. �
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