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TOSHIHISA KUBO

Barchini, Kable, and Zierau constructed a number of conformally invariant
systems of differential operators associated to Heisenberg parabolic subal-
gebras in simple Lie algebras. The construction was systematic, but the
existence of such a system was left open in two cases, namely, the �3 system
for type A2 and type D4. Here, such a system is shown to exist for both
cases. The construction of the system may also be interpreted as giving an
explicit homomorphism between generalized Verma modules.

1. Introduction

Conformally invariant systems of differential operators on a smooth manifold M
on which a Lie algebra g acts by first order differential operators were studied by
Barchini, Kable, and Zierau in [BKZ08] and [BKZ09]. To recall the definition of
the conformally invariant systems from [BKZ09], let g0 be a real Lie algebra. A
smooth manifold M is a g0-manifold if there exists a g0-homomorphism

5M : g0→ C∞(M)⊕X(M),

where X(M) is the space of smooth vector fields on M . Given a g0-manifold M ,
write 5M(X) = 50(X) + 51(X) with 50(X) ∈ C∞(M) and 51(X) ∈ X(M).
Let D(V) denote the space of differential operators on a vector bundle V→ M . A
vector bundle V→M is a g0-bundle if there exists a g0-homomorphism5V : g0→

D(V) so that in D(V)[5V(X), f ] =51(X) • f for all X ∈ g0 and all f ∈C∞(M),
where the dot • denotes the action of the differential operator 51(X). We regard
any smooth functions f on M as elements in D(V) by identifying them with the
multiplication operator they induce. Then, given a g0-bundle V→ M , a list of
differential operators D1, . . . , Dm ∈ D(V) is said to be a conformally invariant
system on V with respect to 5V if the following two conditions are satisfied:
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(S1) The list D1, . . . , Dm is linearly independent at each point of M .

(S2) For each Y ∈ g0 there is an m ×m matrix C(Y ) of smooth functions on M
so that in D(V),

[5V(Y ), D j ] =

m∑
i=1

Ci j (Y )Di .

By extending the g0-homomorphisms 5M and 5V C-linearly, the definitions of
a g0-manifold, a g0-bundle, and a conformally invariant system can be applied
equally well to the complexified Lie algebra g= g0⊗R C.

A general theory of conformally invariant systems is developed in [BKZ09],
and examples of such systems of differential operators associated to the Heisen-
berg parabolic subalgebras of any complex simple Lie algebras are constructed in
[BKZ08]. The purpose of this paper is to answer a question left open in [BKZ08]
concerning the existence of certain conformally invariant systems of third-order
differential operators. This is done by constructing the required systems.

This result may be interpreted as giving an explicit homomorphism between two
generalized Verma modules, one of which is nonscalar. See [BKZ09, Section 6] for
the general theory. In this paper we describe it explicitly in a less general setting
(see the discussion after Lemma 3.4). The problem of constructing and classi-
fying homomorphisms between scalar generalized Verma modules has received
a lot of attention. For example, Matumoto [2006] classifies the nonzero U(g)-
homomorphisms between scalar generalized Verma modules associated to maximal
parabolics of non-Hermitian symmetric type. For the Hermitian symmetric cases,
Boe [1985] solved the existence problem for scalar generalized Verma modules
of maximal parabolic type. However, much less is known about maps between
generalized Verma modules that are not necessarily scalar.

To explain our main results, we briefly review the results of [BKZ08]. To begin,
let g be a complex simple Lie algebra and q = l⊕ n be the parabolic subalgebra
of Heisenberg type, that is, n is a two-step nilpotent algebra with one-dimensional
center. Denote by γ the highest root of g. For each root α let {X−α, Hα, Xα} be
a corresponding sl(2)-triple, normalized as in [BKZ08, Section 2]. Then ad(Hγ )
on g has eigenvalues −2, −1, 0, 1, 2, and the corresponding eigenspace decompo-
sition of g is denoted by

(1.1) g= z(n)⊕ V−⊕ l⊕ V+⊕ z(n).

Let D[n] be the Weyl algebra of n, that is, the algebra of partial differential opera-
tors on n with polynomial coefficients. Then each system of k-th order differential
operators constructed in [BKZ08] derives from a C-linear map�k :g(2−k)→D[n]

with 1 ≤ k ≤ 4 and g(2− k) the 2− k eigenspace of ad(Hγ ). Let 5s : g→ D[n]
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be the Lie algebra homomorphism constructed in [BKZ08, Section 4]. Here s is
a complex parameter, which indexes line bundles L−s over a real flag manifold
G0/Q0, where G0 is a real Lie group with Lie algebra g0 and Q0 is a parabolic
subgroup of G0 with complexified Lie algebra q opposite to q. We say that the �k

system has special value s0 when the system is conformally invariant under 5s0 .
In [BKZ08] the special values of s are determined for the �k systems with

k = 1, 2, 4 for all complex simple Lie algebras, but only exceptional cases are
considered for the �3 system. A table in [BKZ08, Section 8.10] lists the special
values of s. (Beware that the entries in the columns for the systems�big

2 and�small
2

for types Br and Cr should be transposed.) [BKZ09, Theorem 21] then shows that
the �3 system does not exist for Ar with r ≥ 3, Br with r ≥ 3, and Dr with r ≥ 5.
There remain two open cases, namely, the �3 system for type A2 and type D4.
The aim of this paper is to show that the �3 system does exist for both cases (see
Theorem 4.1 and Theorem 5.6). To achieve the result we use several facts from
[BKZ08] and [BKZ09]. By using these facts, we significantly reduce the amount
of computation to show the existence of the system.

There are two differences between our conventions and those used in [BKZ08].
One is that we choose the parabolic Q0 = L0 N0 for the real flag manifold, while
the opposite parabolic Q0 = L0 N 0 is chosen in [BKZ08]. Because of this, our
special values of s are of the form s =−s0, where s0 are the special values found
in [BKZ08, Section 8.10]. The other is that we identify (V+)∗ with V− by using
the Killing form, while (V+)∗ in [BKZ08] is identified with V+ by using the
nondegenerate alternating form 〈 · , · 〉 on V+ defined by [X1, X2]=〈X1, X2〉Xγ for
X1, X2 ∈ V+. Because of this difference the right action R, which will be defined
in Section 2, will play the role played by �1 in [BKZ08]. In addition to these
notational differences, there are also some methodological differences between
[BKZ08] and here. These stem from the fact that we make systematic use of the
results of [BKZ09] to streamline the process of proving conformal invariance.

We now outline the remainder of this paper. In Section 2, we review the setting
and results of [BKZ09, Section 5], simultaneously specializing them to the situa-
tion considered here. In Section 3, we specialize further by taking g to be simply
laced. We fix a suitable Chevalley basis and define the�t

3 system by�t
3= �̃3+tC3

for t ∈ C. A remark on notation might be helpful here. In [BKZ08], a system �′3
is initially defined. It is then shown to decompose as a sum of a leading term �̃3

and a correction term C3. These two are recombined with different coefficients
to give �3, which is finally shown to be conformally invariant for exceptional
algebras. Thus, the �3 system is defined to exist if there exists t0 ∈ C so that the
�t0

3 system is conformally invariant.
In Section 4, we take g to be of type A2 and show that the �3 system(s) exists

over the line bundle L0. The Heisenberg parabolic subalgebra coincides with the
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Borel subalgebra in this case. Thus V− decomposes as the direct sum of two one-
dimensional l-submodules. This implies that there will be two�3 systems, each of
the operators will be conformally invariant all by itself. The conformal invariance
of these operators is shown in Theorem 4.1.

In Section 5, we take g to be of type D4. For type D4, the data on p. 831 and
Theorem 6.1 of [BKZ08] suggest that the complex parameter t0 for the �t

3 system
to be conformally invariant is t0 = 0, so that the correction term C3 is discarded
completely. For this reason, we simply proceed to show that �̃3 is conformally
invariant. This is done in Theorem 5.6.

2. A specialization of the theory

The purpose of this section is to introduce the g-manifold and the g-bundle studied
in this paper. Let G0 be a connected real semisimple Lie group with Lie algebra g0

and complexified Lie algebra g. Let Q0 be a parabolic subgroup of G0 and Q0 =

L0 N0 a Levi decomposition of Q0. By the Bruhat decomposition, the subset N 0 Q0

of G0 is open and dense in G0, where N 0 is the nilpotent subgroup of G0 opposite
to N0. Let n and q be the complexifications of the Lie algebras of N 0 and Q0,
respectively; we have the direct sum g= n⊕q. For Y ∈ g, write Y =Yn+Yq for the
decomposition of Y in this direct sum. Similarly, write the Bruhat decomposition
of g ∈ N 0 Q0 as g= n(g)q(g) with n(g)∈ N 0 and q(g)∈ Q0. For Y ∈ g0, we have

Yn =
d
dt

n(exp(tY ))
∣∣
t=0,

and a similar equality holds for Yq.
Consider the homogeneous space G0/Q0. Let Cχ−s be the one-dimensional

representation of L0 with character χ−s with s ∈ C, where χ is a real-valued
character of L0. The representation χ−s is extended to a representation of Q0 by
making it trivial on N0. For any manifold M , denote by C∞(M,Cχ−s ) the smooth
functions from M to Cχ−s . The group G0 acts on the space

C∞χ (G0/Q0,Cχ−s )

=
{

F ∈ C∞(G0,Cχ−s )
∣∣ F(gq)= χ−s(q−1)F(g) for all q ∈ Q0 and g ∈ G0

}
by left translation, and the action 5s of g on C∞χ (G0/Q0,Cχ−s ) arising from this
action is given by

(2.1) (5s(Y ) • F)(g)= d
dt

F(exp(−tY )g)
∣∣
t=0

for Y ∈ g0, where the dot • denotes the action of 5s(Y ). This action is extended
C-linearly to g and then naturally to the universal enveloping algebra U(g). We
use the same symbols for the extended actions.
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The restriction map C∞χ (G0/Q0,Cχ−s )→C∞(N 0,Cχ−s ) is an injection. Define
the action of U(g) on the image of the restriction map by5s(u)• f = (5s(u)•F)|N 0

for u ∈U(g) and F ∈ C∞χ (G0/Q0,Cχ−s ) with f = F |N 0
. Define a right action R

of U(n) on C∞(N 0,Cχ−s ) by

(R(X) • f )(n)= d
dt

f (n exp(t X))
∣∣
t=0

for X ∈ n0 and f ∈ C∞(N 0,Cχ−s ). A direct computation shows that

(2.2) (5s(Y ) • f )(n)=−s dχ((Ad(n−1)Y )q) f (n)− (R((Ad(n−1)Y )n) • f )(n)

for Y ∈ g and f in the image of the restriction map

C∞χ (G0/Q0,Cχ−s )→ C∞(N 0,Cχ−s ).

Equation (2.2) implies that the representation 5s extends to a representation of
U(g) on the whole space C∞(N 0,Cχ−s ). For all Y ∈ g, the linear map 5s(Y ) is in
C∞(N 0)⊕X(N 0). This property of 5s(Y ) makes N 0 a g-manifold.

Let L−s be the trivial bundle of N 0 with fiber Cχ−s . Then the space of smooth
sections of L−s is identified with C∞(N 0,Cχ−s ). For Y ∈ g and f ∈ C∞(N 0), a
computation shows that in D(L−s),

([5s(Y ), f ])(n)=−(R((Ad(n−1)Y )n) • f )(n).

This verifies that 5s gives L−s the structure of a g-bundle.
Now define

D(L−s)
n
= {D ∈ D(L−s) | [5s(X), D] = 0 for all X ∈ n}.

Proposition 2.1 [BKZ09, Proposition 13]. Let D1, . . . , Dm be a list of operators
in D(L−s)

n. Suppose that the list is linearly independent at e and that there is a
map b : g→ gl(m,C) such that

([5s(Y ), Di ] • f )(e)=
m∑

j=1

b(Y ) j i (D j • f )(e)

for all Y ∈ g, f ∈ C∞(N 0,Cχ−s ), and 1 ≤ i ≤ m. Then D1, . . . , Dm is a confor-
mally invariant system on L−s . The structure operator of the system is given by
C(Y )(n)= b(Ad(n−1)Y ) for all n ∈ N 0 and Y ∈ g.

As shown in [BKZ09, pp. 801–802] the differential operators in D(L−s)
n can

be described in terms of elements of the generalized Verma module

Mq(Cs dχ )=U(g)⊗U(q) Cs dχ ,
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where Cs dχ is the q-module derived from the Q0-representation (χ s,C). By iden-
tifying Mq(Cs dχ ) as U(n)⊗Cs dχ , the map Mq(Cs dχ )→U(n) given by u⊗1 7→ u
is an isomorphism. The composition

(2.3) Mq(Cs dχ )→U(n)→ D(L−s)
n

is then a vector-space isomorphism, where the map U(n)→ D(L−s)
n is given by

u 7→ R(u).
Suppose that f ∈ C∞(N 0,Cχ−s ) and l ∈ L0. Then define an action of L0 on

C∞(N 0,Cχ−s ) by
(l · f )(n)= χ−s(l) f (l−1nl).

This action agrees with the action of L0 by left translation on the image of the re-
striction map C∞χ (G0/Q0,Cχ−s )→C∞(N 0,Cχ−s ). In terms of this action, define
an action of L0 on D(L−s) by

(l · D) • f = l · (D • (l−1
· f )).

One can check that l ·R(u)= R(Ad(l)u) for l ∈ L0 and u ∈U(n); in particular, this
L0-action stabilizes the subspace D(L−s)

n. Define an action of L0 on Mq(Cs dχ )

by l · (u ⊗ z) = Ad(l)u ⊗ z. With these actions, the isomorphism (2.3) is L0-
equivariant. For D ∈D(L−s), denote by Dn the linear functional f 7→ (D • f )(n)
for f ∈ C∞(N 0,Cχ−s ). The following result is the specialization of [BKZ09,
Theorem 15] to the present situation.

Theorem 2.2. Suppose that F is a finite-dimensional q-submodule of the general-
ized Verma module Mq(Cs dχ ). Let f1, . . . , fk be a basis of F and define constants
ari (Y ) by

Y fi =

k∑
r=1

ari (Y ) fr

for 1 ≤ i ≤ k and Y ∈ q. Let D1, . . . , Dk ∈ D(L−s)
n correspond to the elements

f1, . . . , fk ∈ F. Then for all Y ∈ g, 1≤ i ≤ k, and n ∈ N 0,

[5s(Y ), Di ]n =

k∑
r=1

ari
(
(Ad(n−1)Y )q

)
(Dr )n − s dχ

(
(Ad(n−1)Y )q

)
(Di )n.

3. The �t
3 system

Let G be a complex simple Lie group with Lie algebra g simply laced. In this
section we specialize to the situation where G0 is a real form of G that contains a
real parabolic subgroup of Heisenberg type. In this setting, we construct a system
of differential operators over the line bundle L−s and show some technical facts
that will be used later sections. We first introduce some notation.
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Choose a Cartan subalgebra h of g and let1 be the set of roots of g with respect
to h. Fix 1+ a positive system and denote by S the corresponding set of simple
roots. Write ρ for half the sum of the positive roots. Denote the highest root by γ .
Let Bg denote a positive multiple of the Killing form on g and denote by ( · , · )
the corresponding inner product induced on h∗. The normalization of Bg will be
specified below. Write ‖α‖2 = (α, α) for any α ∈1. For α ∈1, let gα be the root
space of g corresponding to α. For any ad(h)-invariant subspace V ⊂ g, denote by
1(V ) the set of roots α so that gα ⊂ V .

It is known that we can choose Xα ∈ gα and Hα ∈ h for each α ∈ 1 in such a
way that the following conditions (C1)–(C5) hold. Our normalizations are special
cases of those used in [BKZ08].

(C1) For any α ∈ 1+, {X−α, Hα, Xα} is an sl(2)-triple. In particular, we have
[Xα, X−α] = Hα.

(C2) For each α, β ∈1, [Hα, Xβ] = β(Hα)Xβ .

(C3) For α ∈1 we have Bg(Xα, X−α) = 1. In particular, (α, α)= 2.

(C4) For α, β ∈1, we have β(Hα)= (β, α).

(C5) If α, β, α+ β ∈ 1 then there is a nonzero integer Nα,β so that [Xα, Xβ] =
Nα,βXα+β . For Z ∈ l and α ∈1(V+), define a scalar Mα,β(Z) by [Z , Xα] =∑
β∈1(V+) Mα,β(Z)Xβ .

Let q = l⊕ n be the standard parabolic subalgebra of g of Heisenberg type with l

its Levi factor and n its nilpotent radical. Then, the action of ad(Hγ ) on g induces
the eigenspace decomposition (1.1) of g, where γ is the highest root of g. Since
z(n) = gγ is one-dimensional, there is a character χ of L0 so that Ad(l)Xγ =
χ(l)Xγ for all l ∈ L0. Note that Ad(l)X−γ = χ(l)−1 X−γ for all l ∈ L0, as g−γ is
the Bg-dual space of gγ . For the rest of this paper, fix χ so that its differential dχ
is dχ = γ .

Let Dγ (g, h) be the deleted Dynkin diagram associated to the Heisenberg para-
bolic q, that is, the subdiagram of the Dynkin diagram of (g, h) obtained by deleting
the node corresponding to the simple root that is not orthogonal to γ , and the edges
that involve it.

As in [BKZ08, p. 789] the operator �2 is given in terms of R by

(3.1) �2(Z)=−
1
2

∑
α,β∈1(V+)

Nβ,β ′Mα,β ′(Z)R(X−α)R(X−β)

for Z ∈ l. One can check that �2(Ad(l)Z) = χ(l)l ·�2(Z) for all l ∈ L0. This
is different from the Ad(l) transformation law of �2 that appears in [BKZ08],
because the parabolic q is chosen in this paper, while the opposite parabolic q
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is chosen in [BKZ08]. We extend the C-linear maps dχ , R, and �2 to be left
C∞(N 0)-linear so that certain relationships can be expressed more easily.

Now for t ∈ C define an operator �t
3 : V

−
→ D(L−s)

n by

�t
3(Y )= �̃3(Y )+ tC3(Y ),

where the operators �̃3(Y ) and C3(Y ) are defined in terms of R and �2 by

�̃3(Y )=
∑

ε∈1(V+)

R(X−ε)�2([Xε, Y ]),

C3(Y )= R(Y )R(X−γ )

as in [BKZ08, p. 801].

Lemma 3.1. Let W1, . . . ,Wm be a basis for V+ and W ∗1 , . . . ,W ∗m be the Bg-dual
basis of V−. Then

�̃3(Y )=
m∑

i=1

R(W ∗i )�2([Wi , Y ]).

Proof. Suppose that 1(V+) = {ε1, . . . , εm}. Each Wi then may be expressed by
Wi =

∑m
j=1 ai j Xε j for ai j ∈ C. Let [ai j ] be the change of basis matrix and set

[bi j ] = [ai j ]
−1. Then define W ∗i =

∑m
k=1 bki X−εk for i = 1, . . . ,m. Note that∑m

s=1 aisbs j = δi j with δi j the Kronecker delta. Since Bg(Xεi , X−ε j ) = δi j , it fol-
lows that Bg(Wi ,W ∗j )= δi j . So {W ∗1 , . . . ,W ∗m} is the dual basis of {W1, . . . ,Wm}.
Hence,

m∑
i=1

R(W ∗i )�2([Wi , Y ])=
m∑

j,k=1

( m∑
i=1

bki ai j

)
R(X−εk )�2([Xε j , Y ])

=

m∑
j=1

R(X−ε j )�2([Xε j , Y ]). �

Lemma 3.2. For all l ∈ L0, Z ∈ l, and Y ∈ V−, we have

�t
3(Ad(l)Y )= χ(l)l ·�t

3(Y ),

�t
3
(
[Z , Y ]

)
= dχ(Z)�t

3(Y )+ [5s(Z),�t
3(Y )].

Proof. To obtain the first equality it suffices to show that �̃3 and C3 have the
proposed transformation law. Recall that l · R(u)= R(Ad(l)u) for l ∈ L0 and u ∈
U(n); in particular, we have l ·R(X−γ )=χ(l)−1 R(X−γ ). Therefore χ(l)l ·C3(Y )=
R(Ad(l)Y )R(X−γ ), which is C3(Ad(l)Y ). Since�2(Ad(l)W )=χ(l)l ·�2(W ) for
l ∈ L0 and W ∈ l, it follows that

(3.2) χ(l)l · �̃3(Y )=
∑

ε∈1(V+)

R(Ad(l)X−ε)�2
(
[Ad(l)Xε,Ad(l)Y ]

)
.
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By Lemma 3.1, the value of �̃3(Y ) is independent from a choice of a basis for V+.
Thus the righthand side of (3.2) equals

∑
ε∈1(V+) R(X−ε)�2

(
[Xε,Ad(l)Y ]

)
, which

is �̃3(Ad(l)Y ). The second equality is obtained by differentiating the first. �

Letωt
3(Y ) denote the element in U(n)⊗Cs dχ that corresponds to�t

3(Y ) under R.

Lemma 3.3. For Z ∈ l and Y ∈ V−, we have

ωt
3([Z , Y ])= Zωt

3(Y )+ (1− s) dχ(Z)ωt
3(Y ).

Proof. Lemma 3.2 shows that �t
3(Ad(l)Y ) = χ(l)l · �t

3(Y ) for l ∈ L0. Thus
by [BKZ09, Lemma 18], ωt

3(Ad(l)Y ) = χ(l)Ad(l)ωt
3(Y ). The formula is then

obtained by replacing l by exp(t Z) with Z ∈ l0, differentiating, and setting at
t = 0. �

Let E be an irreducible L0-submodule of V−. We say that the �3|E system
exists if there exist t0, s0 ∈ C so that the list of differential operators �t0

3 |E =

�t0
3 (Xβ1), . . . , �

t0
3 (Xβm ) with 1(E) = {β1, . . . , βm} is conformally invariant over

the line bundle L−s0 . Set Ft(E)= spanC{ω
t
3(Y ) | Y ∈ E}.

Lemma 3.4. If the �t
3|E system is conformally invariant for t = t0 over L−s0 then

n acts on Ft0(E) trivially.

Proof. Since the �t0
3 |E system is conformally invariant over the line bundle L−s0 ,

the space Ft0(E) is a q-submodule of Mq(Cs0 dχ ). By applying Lemma 3.3 with
Z = Hγ , we obtain Hγωt0

3 (Y ) = (2s0 − 3)ωt0
3 (Y ) for all Y ∈ E . For U ∈ V+ we

have HγUωt0
3 (Y )= (2s0− 2)Uωt0

3 (Y ), and Hγ Xγωt0
3 (Y )= (2s0− 1)Xγω2(Y ) for

all Y ∈ E . Therefore if U ∈ n then Uωt0
3 (Y )= 0 for all Y ∈ E , because otherwise

Uωt0
3 (Y ) would have the wrong Hγ -eigenvalue to lie in Ft0(E). �

By using the transformation law ωt
3(Ad(l)Y )= χ(l)Ad(l)ωt

3(Y ) for l ∈ L0 and
Y ∈ V−, one can check that for any s ∈ C the vector space isomorphism

(3.3) E ⊗C(s−1)dχ → Ft(E),

given by Y⊗1 7→ωt
3(Y ), is L0-equivariant with respect to the standard action of L0

on the tensor products E ⊗C(s−1)dχ and Ft(E) ⊂U(n)⊗Cs dχ . In particular, the
L0-module Ft0(E) is irreducible. The L0-action on Ft(E) is given by l · (u⊗1)=
χ s(l)(Ad(l)u ⊗ 1), which is different from the one that is used to establish the
L0-equivariant isomorphism (2.3).

Now suppose that the�t
3|E system is conformally invariant for t = t0 over L−s0 .

Then Ft0(E) is a q-submodule of U(n)⊗ Cs0 dχ . Since Ft0(E) is an irreducible
L0-module and n acts on it trivially by Lemma 3.4, the inclusion map Ft0(E) ↪→
Mq(Cs0 dχ ) induces a nonzero U(g)-homomorphism of generalized Verma modules

Mq(Ft0(E))→Mq(Cs0 dχ )
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that is given by u ⊗ ωt0
3 (Y ) 7→ u · ωt0

3 (Y ). In particular, the two Verma mod-
ules Mq(Ft0(E)) and Mq(Cs0 dχ ) have the same infinitesimal characters. Since we
choose a character χ so that dχ = γ , this implies that if $ is the highest weight
for E then

(3.4) ‖$ + (s0− 1)γ + ρ‖2 = ‖s0γ + ρ‖
2,

This will restrict the possibility of s0 for which the �t
3 is conformally invariant.

4. The �3 system on sl(3, C)

We take the complex Lie group G from Section 3 to be SL(3,C) and show that
the �3 system(s) exists over the line bundle L0. Since the generalized Verma
module Mq(Cs dχ ) is a (ordinary) Verma module in this case, we simply write
M(Cs dχ )=Mq(Cs dχ ) throughout this section.

Let α1 and α2 be the two simple roots for sl(3,C). Then V−=CX−α1⊕CX−α2 ;
each of CX−αi for i = 1, 2 is an L0-submodule of V−. A direct computation shows
that �t

3(X−αi )= �̃3(X−αi )+ tC3(X−αi ) is not identically zero for i = 1, 2 and for
any t ∈ C. Then solving (3.4) with $ = −αi for i = 1, 2 gives that if �t

3(X−αi )

is conformally invariant over L−s0 then the special value s0 of s must be s0 = 0.
Now we show that there exists a unique ti ∈ C so that �ti

3 (X−αi ) is conformally
invariant over L0.

Theorem 4.1. Let g be the complex simple Lie algebra of type A2, and q be the
parabolic subalgebra of Heisenberg type. Then for each i = 1, 2 the operator
�t

3(X−αi ) is conformally invariant over L0 if and only if t = 3
4 .

Proof. Fix αi and denote by αk the other simple root so that S = {αi , αk}. Observe
that ωt

3(X−αi ) is the element in M(C0) that corresponds to �t
3(X−αi ) in D(L0)

n

under the map (2.3). By Theorem 2.2 and Lemma 3.4, it suffices to show that
Cωt

3(X−αi ) is a q-submodule of M(C0) with trivial n action if and only if t = 3
4 .

A direct computation shows that the element in M(C0) that corresponds to
�̃3(X−αi ) may be written as

−
3
2 Nαi ,αk X2

−αi
X−αk ⊗ 1− 3

4 X−αi X−γ ⊗ 1.

As C3(X−αi )= R(X−αi )R(X−γ ), the element in M(C0) corresponding to C3(X−αi )

is X−αi X−γ ⊗ 1. Thus ωt
3(X−αi ) is given by

ωt
3(X−αi )=−

3
2 Nαi ,αk X2

−αi
X−αk ⊗ 1+

(
t − 3

4

)
X−αi X−γ ⊗ 1.

One can easily check that n acts trivially on CX2
−α1

X−α2 ⊗ 1 and CX2
−α2

X−α1 ⊗ 1
and thus both of them are one-dimensional q-submodules of M(C0), while it acts
nontrivially on X−α1 X−γ ⊗ 1 and X−α2 X−γ ⊗ 1 in M(C0). Therefore Cωt

3(X−αi )

is a q-submodule with trivial n action if and only if t = 3
4 . �
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5. The �3 system on so(8, C)

We take the complex Lie group G from Section 3 to be SO(8,C) and show that
the �̃3 system is conformally invariant over the line bundle L1.

Since in this case the parabolic q is maximal, the l-module V− is irreducible
with highest weight −αγ , where αγ is the simple root that is not orthogonal to γ .
Then by solving (3.4) with$ =−αγ , one can see that if the �3 system exists then
the special value s0 of s must be s0 = −1. Thus in the rest of this paper the line
bundle L−s is assumed to be L1, and for simplicity, write 5 for the Lie algebra
action 5s defined in (2.1) for s = −1. As stated in Section 2, for D ∈ D(L−s),
denote by Dn the linear functional f 7→ (D • f )(n) for f ∈ C∞(N 0,Cχ−s ).

Proposition 5.1. For all X ∈ g, Y ∈ V−, and n ∈ N 0, we have

[5(X), R(Y )]n = R
(
[Ad(n−1)X, Y ]V−

)
n − dχ

(
[Ad(n−1)X, Y ]l

)
.

Proof. Let F be the subspace of Mq(C−dχ ) spanned by X−α ⊗ 1 and 1⊗ 1 with
α ∈ 1(V+). A direct computation shows that F is a q-submodule of Mq(C−dχ )

and that for Z ∈ l and U ∈ n we have

Z(X−α ⊗ 1)= [Z , X−α]⊗ 1− dχ(Z)X−α ⊗ 1,

U (X−α ⊗ 1)=−dχ([U, X−α]l)1⊗ 1.

Then it follows from Theorem 2.2 that if X ∈ g and (Ad(n−1)X)q = Z +U with
Z ∈ l and U ∈ n then for Y ∈ V−,

[5(X), R(Y )]n = R([Z , Y ])n − dχ([U, Y ]).

Since [Z , Y ]= [Ad(n−1)X, Y ]V− and [U, X−α]l=[Ad(n−1)X, Y ]l, this completes
the proof. �

Let ω2(W ) denote the element in U(n)⊗C−dχ that corresponds to �2(W ) un-
der R. Observe that �2(Ad(l)W ) = χ(l)l ·�2(W ) for all l ∈ L0; this is the same
Ad(l) transformation law as �t

3 (see Lemma 3.2). Then Lemma 3.3 with s = −1
implies that for W, Z ∈ l, we have

(5.1) ω2([Z ,W ])= Zω2(W )+ 2dχ(Z)ω2(W ).

Proposition 5.2. For all X ∈ g, W ∈ l, and n ∈ N 0, we have

[5(X),�2(W )]n =�2
(
[Ad(n−1)X,W ]l

)
n − dχ

(
(Ad(n−1)X)l

)
�2(W )n.

Proof. It follows from [BKZ08, Theorem 5.2] and the data tabulated in [BKZ08,
Section 8.10] that each�2 system associated to a singleton component of Dγ (g, h)

is conformally invariant on the line bundle L1. Note here that the special values
of our �2 system are of the form −s0 with s0 the special values of the �2 system
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given in [BKZ08], as the parabolic q is chosen in this paper, while the opposite
parabolic q is chosen in [BKZ08]. Therefore F ≡ spanC{ω2(W ) | W ∈ l} is a q-
submodule of Mq(C−dχ ). The same argument for the proof for Lemma 3.4 shows
that n acts on F trivially. By (5.1), we have

Zω2(W )= ω2([Z ,W ])− 2dχ(Z)ω2(W )

for Z ,W ∈ l. The proposed formula now follows from Theorem 2.2. �

Lemma 5.3. For X ∈ V+ and Y ∈ V−, we have∑
ε∈1(V+)

�2
(
[[X, X−ε], [Xε, Y ]]

)
= 2�2([X, Y ]).

Proof. Since ‖ε‖2 = 2 for all ε ∈ 1(V+), it follows from [BKZ08, Proposition
2.2] that∑

ε∈1(V+)

�2
(
[[X, X−ε], [Xε, Y ]]

)
=

1
2

∑
C

p(D4,C)�2
(
prC([X, Y ])

)
,

where C are the connected components of Dγ (g, h) as in [BKZ08] and prC([X, Y ])
is the projection of [X, Y ] onto l(C), the ideal of [l, l] corresponding to C. (See
[BKZ08, Section 2] for further discussion.) From [BKZ08, Section 8.4] we have
p(D4,C)= 4 for all the components C. Then �2(Hγ )= 0 shows that∑

ε∈1(V+)

�2
(
[[X, X−ε], [Xε, Y ]]

)
= 2�2

(
[X, Y ]

)
. �

Now with the above lemmas and propositions we are ready to show the following
key theorem.

Theorem 5.4. We have [5(X), �̃3(Y )]e = 0 for all X ∈ V+ and all Y ∈ V−.

Proof. Observe that �̃3(Y )=
∑

ε∈1(V+) R(X−ε)�2
(
[Xε, Y ]

)
. Then the commuta-

tor [5(X), �̃3(Y )] is a sum of two terms. One of them is given by

(5.2)
∑

ε∈1(V+)

[5(X), R(X−ε)]�2([Xε, Y ])

=

∑
ε∈1(V+)

R
(
[Ad( ·−1)X, X−ε]V−

)
�2([Xε, Y ])

−

∑
ε∈1(V+)

dχ([Ad( ·−1)X, X−ε]l)�2([Xε, Y ]),

by Proposition 5.1. At e, the first term is zero, since [X, X−ε]V− = 0 for all
ε ∈ 1(V+). By writing out X as a linear combination of Xα with α ∈ 1(V+),
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at the identity the second term in (5.2) evaluates to

−

∑
ε∈1(V+)

dχ([X, X−ε])�2([Xε, Y ])e =−�2([X, Y ])e,

since dχ(Hα)= 1 for α ∈1(V+). The other term is given by

(5.3)
∑

ε∈1(V+)

R(X−ε)
[
5(X),�2([Xε, Y ])

]
=

∑
ε∈1(V+)

R(X−ε)�2
(
[Ad( ·−1)X, [Xε, Y ]]l

)
−

∑
ε∈1(V+)

R(X−ε)dχ
(
(Ad( ·−1)X)l

)
�2([Xε, Y ]),

by Proposition 5.2. To further evaluate this expression, we make use of a simple
general observation. Namely, if D is a first order differential operator, φ and ψ
are smooth functions, and φ(e) = 0, then De(φψ) = De(φ)ψ(e). The map n 7→
ad(Ad(n−1)X) is a smooth function on N 0. The left C∞(N 0)-linear extension of
�2 implies that the first term of the righthand side of (5.3) can be expressed as∑

ε∈1(V+)

R(X−ε)
(
ad(Ad( ·−1)X)l ·�2([Xε, Y ])

)
,

where ad(Ad( ·−1)X)l denotes the map Z 7→ [Ad( ·−1)X, Z ]l for Z ∈ g. Since(
R(X−ε) • (Ad( ·−1)X)

)
(e)= [X, X−ε],

[X, [Xε, Y ]]l = 0, and X l = 0, the righthand side of (5.3) then evaluates at the
identity to∑

ε∈1(V+)

�2
(
[[X, X−ε], [Xε, Y ]]

)
e−

∑
ε∈1(V+)

dχ([X, X−ε])�2([Xε, Y ])e,

which is equivalent to∑
ε∈1(V+)

�2
(
[[X, X−ε], [Xε, Y ]]

)
e−�2([X, Y ])e.

Therefore,

[5(X), �̃3(Y )]e =
∑

ε∈1(V+)

�2
(
[[X, X−ε], [Xε, Y ]]

)
e− 2�2([X, Y ])e.

Now it follows from Lemma 5.3 that [5(X), �̃3(Y )]e = 0. �

Proposition 5.5. For Y ∈ V−, we have [5(Xγ ), �̃3(Y )]e = 0.
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Proof. Since z(n)= [V+, V+], it suffices to show that [5([X1, X2]), �̃3(Y )]e = 0
for X1, X2 ∈ V+. We have 5([X1, X2]) = [5(X1),5(X2)], so it follows from
the Jacobi identity that [5([X1, X2]), �̃3(Y )] may be expressed as a sum of two
terms. The first is

[5(X1), [5(X2), �̃3(Y )]] =5(X1)[5(X2), �̃3(Y )] − [5(X2), �̃3(Y )]5(X1).

By (2.2), we have 5(X)e = 0 for all X ∈ n. This fact and Theorem 5.4 imply
[5(X1), [5(X2), �̃3(Y )]]e = 0 since (D1 D2)e = (D1)e D2 for D1, D2 ∈ D(L1).
The second term is

[5(X2), [�̃3(Y ),5(X1)]] =5(X2)[�̃3(Y ),5(X1)] − [�̃3(Y ),5(X1)]5(X2).

By the same argument for the first term, [5(X2), [�̃3(Y ),5(X1)]]e = 0, which
concludes the proof. �

Theorem 5.6. Let g be the complex simple Lie algebra of type D4 and q be the par-
abolic subalgebra of Heisenberg type. Then the �̃3 system is conformally invariant
on the line bundle L1.

Proof. By Proposition 2.1, it is enough to check the conformal invariance of
[5(X), �̃3(Y )] at the identity for all X ∈ g and all Y ∈ V−. It follows from
Lemma 3.2 that

[5(Z), �̃3(Y )]e = �̃3
(
[Z , Y ]

)
e− dχ(Z)�̃3(Y )e

for all Z ∈ l. Also Theorem 5.4 and Proposition 5.5 show that [5(U ), �̃3(Y )] = 0
for all U ∈n. As �̃3(Y ) is an element in D(L1)

n, it is clear that [5(U ), �̃3(Y )]e=0
for all U ∈ n. Since g = n⊕ l⊕ n, this implies that the �̃3 system is conformally
invariant on L1. �

Theorem 5.6 implies that F0(V−)= spanC{ω
0
3(Y ) | Y ∈ V−} is a q-submodule of

Mq(C−dχ ), where ω0
3(Y ) is the element in Mq(C−dχ ) that corresponds to �̃3(Y )=

�0
3(Y ) under R. The argument after Lemma 3.4 then shows that there exists a

nonzero U(g)-homomorphism

Mq(F0(V−))→Mq(C−dχ ).

It follows from Lemma 3.3 that Hγ acts on F0(V−) by −5, while it acts on C−dχ

by −2; in particular, F0(V−) is not equivalent to C−dχ .

Corollary 5.7. Let g be the complex simple Lie algebra of type D4, and q be the
parabolic subalgebra of Heisenberg type. Then the generalized Verma module
Mq(C−dχ ) is reducible.
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