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We consider the integral equation

u(x)=

∫
Rn
+

G(x, y) f (u( y)) d y,

where G(x, y) is the Green’s function of the corresponding polyharmonic
Dirichlet problem in a half-space. We prove by the method of moving planes
in integral form that, under some integrability conditions, the solutions are
axially symmetric with respect to some line parallel to the xn-axis and non-
decreasing in the xn direction, which further implies the nonexistence of so-
lutions. We also show similar results for a class of systems of integral equa-
tions. This appears to be the first paper in which the moving plane method
in integral form is employed in a half-space to derive axial symmetry.

We also obtain the regularity of the integral equation in a half-space

u(x)=

∫
Rn
+

G(x, y)|u( y)| p−1u( y) d y

by the regularity lifting method. As a corollary, we prove the nonexistence
of nonnegative solutions to this equation. Moreover, we show that the non-
negative solutions in this equation only depend on xn if u ∈ L2n/(n−2m)

loc (Rn
+)

and 1 < p < (n+ 2m)/(n− 2m).

1. Introduction

We study the properties of nonnegative solutions of the following integral equations
in a half-space:

(1) u(x)=
∫

Rn
+

G(x, y) f (u) dy,

where Rn
+
={x ∈Rn

|xn>0}, n>2m is the dimension of the half-space, and G(x, y)
is the Green’s functions of (−1)m related to a Dirichlet boundary condition in Rn

+
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that will be presented in Section 2. We also assume that f (u(x)) satisfies

( f1) f : [0,∞)→ R is increasing, f (0)≥ 0,

and one of the following:

( f2) |∂ f (u)/∂u| ≤ C1|u|β1 +C2|u|β2 , where uβ1, uβ2 ∈ Ln/(2m)(Rn
+
), β1 is some

nonnegative constant, β2 is some nonpositive constant and C1,C2 are non-
negative constants, or

( f̃2) f ′( · ) is nondecreasing and f ′(u) ∈ Ln/(2m)(Rn
+
).

Obviously, we should assume that f 6≡ 0.

We prove the following theorem by the method of moving planes in integral
form.

Theorem 1. If ( f1) and either ( f2) or ( f̃2) hold, and the function u ∈ Lr (Rn
+
) for

some r > n/(n− 2m) is a nonnegative solution of (1), then u is trivial.

The integral equation (1) is closely related to the higher order elliptic equations

(2)

(−1)
mu = f (u) in Rn

+
,

u = ∂u
∂xn
= · · · =

∂m−1u
∂xm−1

n
= 0 on xn = 0.

The weak solutions of (2) in the Sobolev space H m
0 (R

n
+
) satisfy

(3) 〈u, v〉m =
∫

Rn
+

f (u(x))v(x) dx for all v ∈ H m
0 (R

n
+
),

where

〈u, v〉m =


∫

Rn
+

1m/2u1m/2v dx m even,∫
Rn
+

51(m−1)/2u∇1(m−1)/2v dx m odd.

Under the conditions that u ∈C2m−1(R̄n
+
)∩W 2m,p

loc (Rn
+
) for some p> (n)/2m and

u and all partial derivatives of u of order less than or equal to 2m−1 are bounded,
Reichel and Weth [2009] prove that (2) implies (1). Therefore, Theorem 1 implies
the following:

Corollary 1. Suppose ( f1) and either ( f2) or ( f̃2) hold, p > n/(2m), u ∈ Lr (Rn
+
)

for some r > n/(n − 2m) and u ∈ C2m−1(R̄n
+
) ∩ W 2m,p

loc (Rn
+
) is a nonnegative

solution of (2). Moreover, suppose that u and all the partial derivatives of u of
order less than or equal to 2m− 1 are bounded. Then u is trivial.

We also consider the properties of nonnegative solutions of the following sys-
tems of integral equations:

(4) ui (x)=
∫

Rn
+

G(x, y) fi (y′, yn, u1, . . . , uN )) dy, i = 1, . . . , N ,



SYMMETRY AND REGULARITY OF SOLUTIONS TO AN INTEGRAL EQUATION 457

where y′ = (y1, . . . , yn−1). Assume fi (x ′, xn, u1, . . . , uN ) (i = 1, . . . , N ) is non-
decreasing with respect to every u j ( j = 1, . . . , N ), nonincreasing with respect
to |x ′| and nondecreasing with respect to xn . Moreover, assume that fi satisfies

( f 1
i ) fi : [0,∞)→ R, fi (x ′, xn, 0)≥ 0,

and either of the following:

( f 2
i ) |∂ fi/∂u j | ≤ C0

i j‖u‖
β0

i j +C1
i j‖u‖

β1
i j + gi j (x), or

( f̃ 2
i ) ∂ fi/∂u j is nondecreasing with respect to u j and ∂ fi/∂u j ∈ Ln/(2m)(Rn

+
).

In these conditions, ‖u‖ :=
√

u2
1+ · · ·+ u2

N and we have assumed that

‖u‖β
0
i j , ‖u‖β

1
i j , gi j ∈ Ln/(2m)(Rn

+
),

C0
i j and C1

i j are nonnegative constants, β0
i j is a nonnegative constant and β1

i j is a
nonpositive constant. Obviously, we also assume that fi 6≡ 0 for i = 1, . . . , N .

Definition (see [Jin and Li 2006]). Functions f1, . . . , fN are essentially related if
l0∑

l=1

fil (x
′, xn, u1, u2, . . . , uN ) 6=

l0∑
l=1

fil (x
′, xn, v1, v2, . . . , vN ),

provided that ui ≤vi for i=1, . . . , N and u j <v j for j ∈ S, where S={1, . . . , N }\
{i1, . . . , il0}.

With this definition, the systems cannot be divided into independent subsystems.
We prove the following theorem with the moving plane method in integral form.

Theorem 2. If ( f 1
i ) and either ( f 2

i ) or ( f̃ 2
i ) hold and the function ui ∈ Lr (Rn

+
)

for some r > n/(n − 2m) is a nonnegative solution of (4), then ui is trivial for
i = 1, . . . , N.

Similarly, the system (4) of integral equations is closely related to following
system of higher order elliptic equations:

(5)

(−1)
mui = fi (x ′, xn, u1, . . . , uN ) in Rn

+
, i = 1, · · · , N ,

ui =
∂ui
∂xn
= · · · =

∂m−1ui

∂xm−1
n
= 0 on xn = 0.

It is well known that the moving plane method was first developed by the Soviet
mathematician Alexandrov in the 1950s. It was further developed by Serrin [1971],
Gidas, Ni and Nirenberg [1979], Caffarelli, Gidas and Spruck [1989], Chen and
Li [1991], Chang and Yang [1997], Wei and Xu [1999] and many others. Re-
cently, Chen, Li and Ou [2005; 2006] applied the moving plane method to integral
equations to obtain the symmetry, monotonicity and nonexistence properties of the
solutions to the integral equations. Instead of extensive use of the maximum prin-
ciple of differential equations, the moving plane method in integral form explores
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various specific features of the integral equation itself. (See also the work of Li
[2004] on the moving sphere method in integral form.) Subsequently, more work
has been done in the direction of the moving plane method in integral form: see
[Jin and Li 2006; Ma and Chen 2006; 2008; Qing and Raske 2006; Hang 2007;
Li and Ma 2008] and others. Nevertheless, all work on the moving plane method
in integral form has been on the whole space Rn (or on a ball in [Chen and Zhu
2011]). In this paper, we will adapt the moving plane method in integral form in
a half-space to prove the axial symmetry of nonnegative solutions to a class of
integral equations associated to the Dirichlet problem of polyharmonic equations
on a half-space.

By virtue of the Hardy–Littlewood–Sobolev inequality or its general form, the
weighted Hardy–Littlewood–Sobolev inequality, and comparison of the solution
and its reflection with the plane, we can start moving the plane from infinity. Fur-
thermore the plane must be moved to a critical point. As a result, symmetry and
monotonicity properties are derived.

We also obtain regularity results for

(6) u(x)=
∫

Rn
+

G(x, y)|u|p−1u dy

in the case of n > 2m and p > n/(n − 2m). The method we use here is called
“regularity lifting” based on the contraction mapping theorem. It is an elegant and
powerful tool in obtaining regularity of solutions. (See [Chen and Li 2010], and
also Section 3 below for more details.)

Theorem 3. Let u(x) be a solution of (6). Assume that p > n/(n − 2m) and
u(x) ∈ L(p−1)n/(2m)(Rn

+
). Then u is bounded in Rn

+
and moreover in Ls(Rn

+
) for

s > n/(n− 2m).

Next, we consider the nonnegative solutions in (6), that is,

(7) u(x)=
∫

Rn
+

G(x, y)u p(y) dy.

Corollary 2. Assume p > n/(n − 2m) and let u(x) be the nonnegative solution
in (7) and u(x) ∈ L(p−1)n/(2m)(Rn

+
). Then u is trivial.

We further study the properties of solutions in (7) under the weaker assumption
that u ∈ L2n/(n−2m)

loc (Rn
+
). We obtain that

Theorem 4. Let u(x) be the nonnegative solution in (7) with u ∈ L2n/(n−2m)
loc (Rn

+
)

and assume 1< p < (n+ 2m)/(n− 2m). Then u(x) only depends on xn .

The paper is arranged as follows. In Section 2, we present some properties of
Green’s function for polyharmonic operators in a half-space. Section 3 is devoted
to the proof of Theorem 1 using the method of moving planes in integral form.
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In Section 4, we verify Theorem 2 with a similar technique of moving planes in
integral form. We establish Theorem 3 by the contraction mapping method in
Section 5. Theorem 4 is obtained in Section 6. In this paper C denotes a positive
constant, which may vary from line to line.

2. Properties of Green’s function

In this section, we introduce some results about the Green’s function G = G(x, y)
of (−1)m in Rn

+
corresponding to a Dirichlet boundary condition. For fixed y∈RN

+
,

(8)

(−1)
mG(x, y)= δ(x − y) in Rn

+
,

G = ∂G
∂xn
= · · · =

∂m−1G
∂xm−1

n
= 0 on xn = 0.

Define
d(x, y)= |x − y|2 for x, y ∈ Rn

+
,

θ(x, y)=
{

xn yn if x, y ∈ Rn
+
,

0 x 6∈ Rn
+

or y 6∈ Rn
+
.

(9)

Using a rescaling argument from the Green’s function of a polyharmonic elliptic
equation in the ball [Boggio 1905] (see also [Bachar et al. 2004]), G = G(x, y)
has the form

G(x, y)= K m
n |x − y|2m−n

∫ 4θ(x,y)/|x−y|2

0

zm−1

(z+1)n/2
dz

= K m
n H(d(x, y), θ(x, y)).

Here K m
n is a positive constant and

H : (0, ∞)×[0, ∞)→ R, H(s, t)= sm−n/2
∫ 4t/s

0

zm−1

(z+1)n/2
dz

with

d(x, y)= s, θ(x, y)= t.

We now introduce some notation which will be used extensively in this paper.
Let x = {x1, . . . , xi , . . . , xn} for 1 ≤ i ≤ n, let T i

λ = {x | xi = λ} and let x i
λ =

{x1, . . . , 2λ− xi , . . . , xn} be the reflection of the point x about the plane T i
λ . Set

6i
λ = {x ∈ Rn

+
| xi < λ}. If 1 ≤ i < n then λ can be any real number. For i = n,

since we will move the plane from xn = 0 to positive infinity, we only consider the
case that λ is positive. In this case, we introduce (6n

λ)
C
= {xλ | x ∈6n

λ}.
To simplify the presentation, we will drop the superscript i from T i

λ , 6i
λ, x i

λ, etc.
when 1≤ i < n or i = n is given and no confusion is caused.
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We will prove the following properties for G(x, y) in a half-space which will be
used in next section. See [Berchio et al. 2008; Chen and Zhu 2011] for a similar
lemma on Green’s function on a ball.

Lemma 1. (i) Let λ ∈ (−∞, 0). For any x, y ∈6λ, x 6= y,

G(xλ, yλ) >max{G(xλ, y),G(x, yλ)},(10)

G(xλ, yλ)−G(x, y)= G(xλ, y)−G(x, yλ)= 0 if 1≤ i < n.(11)

(ii) Let λ ∈ (0, ∞). For any x, y ∈6λ, x 6= y,

(12) G(xλ, yλ)−G(x, y) > |G(xλ, y)−G(x, yλ)| if i = n.

(iii) Let λ ∈ (0,∞). For any x ∈6λ, y ∈ Rn
+
\ (6λ ∪6

C
λ ),

(13) G(x, y) < G(xλ, y) if i = n.

Proof. (i) For x, y ∈6λ, obviously d(xλ, yλ)< d(x, yλ). Since θ is only dependent
on the n-th variable, in the case 1≤ i < n,

(14) θ(xλ, yλ)= θ(x, yλ)= θ(xλ, y)= θ(x, y).

In the case i = n,

(15) θ(xλ, yλ) >max(θ(x, yλ), θ(xλ, y))≥min(θ(x, yλ), θ(xλ, y)) > θ(x, y).

We compute

H(s, t)= sm−n/2
∫ 4t/s

0

zm−1

(z+1)n/2
dz,

=

∫ 4t

0

zm−1

(z+s)n/2
dz.

For s, t > 0,

∂H
∂s
=−

n
2

∫ 4t

0

zm−1

(z+s)n/2+1 dz < 0,(16)

∂H
∂t
=

4(4t)m−1

(4t + s)n/2
> 0,(17)

∂2 H
∂t∂s

=
−2n(4t)m−1

(t + s)n/2+1 < 0.(18)

From (14), (15), (16) and (17), we arrive at (10).
In the case 1 ≤ i < n, since d(xλ, yλ) = d(x, y) and d(x, yλ) = d(xλ, y), and

moreover, θ(x, y) is a function in xn and yn , it is easy to verify (11).
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(ii) If i = n, from (15), (18),

G(xλ, yλ)−G(x, y)= K m
n

∫ θ(xλ,yλ)

θ(x,y)

∂H(d(x, y), t)
∂t

dt

> K m
n

∫ θ(xλ,yλ)

θ(x,y)

∂H(d(xλ, y), t)
∂t

dt

≥ K m
n

∫ max(θ(x,yλ),θ(xλ,y))

min(θ(x,yλ),θ(xλ,y))

∂H(d(xλ, y), t)
∂t

dt

= K m
n

∣∣H(d(xλ, y), θ(xλ, y))− H(d(x, yλ), θ(x, yλ))
∣∣

= |G(xλ, y)−G(x, yλ)|,

which confirms (12).

(iii) For i = n, if x ∈6λ and y ∈ Rn
+
\ (6λ ∪6

C
λ ), we have

d(x, y) > d(xλ, y)

and

θ(x, y) < θ(xλ, y).

Then (13) follows immediately from (16) and (17). �

3. Proof of Theorem 1

Let uλ(x)= u(xλ). Once again, we have dropped the superscript i from x i
λ, etc. . . .

Lemma 2. The following equality holds:

u(x)− u(xλ)≤
∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)(
f (u(y))− f (uλ(y))

)
.

Proof. First consider the case 1≤ i < n. In this situation,

u(x)=
∫
6λ

G(x , y) f (u(y)) dy+
∫
6λ

G(x , yλ) f (uλ(y)) dy,

uλ(x)=
∫
6λ

G(xλ , y) f (u(y)) dy+
∫
6λ

G(xλ , yλ) f (uλ(y)) dy.

Combining this with (11) in Lemma 1, we derive

u(x)− u(xλ)=
∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)(
f (u(y))− f (uλ(y))

)
dy.
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Now assume i = n.

u(x)=
∫
6λ

G(x , y) f (u(y)) dy+
∫
6λ

G(x , yλ) f (uλ(y)) dy

+

∫
Rn
+\(6λ∪6

C
λ )

G(x, y) f (u(y)) dy,

uλ(x)=
∫
6λ

G(xλ , y) f (u(y)) dy+
∫
6λ

G(xλ , yλ) f (uλ(y)) dy

+

∫
Rn
+\(6λ∪6

C
λ )

G(xλ, y) f (u(y)) dy.

From (12), (13) in Lemma 1 and the property of fi , we derive

u(x)− u(xλ)≤
∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)(
f (u(y))− f (uλ(y))

)
dy.

This completes the proof of the lemma. �

Lemma 3 (equivalent form of the Hardy–Littlewood–Sobolev inequality). Assume
0< α < n and �⊂ Rn . Let g ∈ Lnp/(n+αp)(�) for n/(n−α) < p <∞. Define

T g(x)=
∫
�

1
|x−y|n−α

g(y) dy.

Then

(19) ‖T g‖L p(�) ≤ C(n, p, α)‖g‖Lnp/(n+αp)(�).

The proof of this lemma is standard and follows from the Lnp/(n+αp)
→ L p

boundedness for the fractional integral operator of order α when p > n/(n − α)
(see, for example, [Stein 1970]).

Next we will prove u(x) is axially symmetric. In the proof of nonexistence of
solutions, we only need to show that u(x) is increasing in the xn direction. For the
sake of completeness, we present the whole picture in half-space of the moving
plane method in integral form. This way of showing axial symmetry is also is used
in proof of Theorem 4. We first show that u(x) is radially symmetric with respect
to some x0 ∈ Rn−1 for any fixed xn . Then we prove that u(x) is nondecreasing in
the xn direction. To prove radial symmetry, there are two steps in carrying out the
process of moving planes. In Step 1, we need to show that the plane can be moved
near infinity, that is, we will show that u(x)≤ u(xλ) for sufficiently negative λ. In
Step 2, we prove that the plane has to move to a critical point. By a contradiction
argument, radial symmetry is obtained. To prove u(x) is nondecreasing, we only
need to carry out Step 1 in the xn direction.

Lemma 4. If ( f1) and either ( f2) or ( f̃2) hold, u∈ Lr (Rn
+
) for some r>n/(n−2m)

is a nonnegative solution of (1), then u is axially symmetric with respect to some
line parallel to the xn-axis and u(x) is nondecreasing in the xn direction.
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Proof. First consider the case 1≤ i < n. Without loss of generality, let i = 1. Start
to move the plane in the x1 coordinate. Proving the symmetry of solutions in the
x1 coordinate and taking the same steps with all coordinates except xn gives radial
symmetry of solutions with respect to some x0 ∈ Rn−1 with fixed xn .

Step 1: Define

6−λ = {x ∈6λ | u(x) > uλ(x)},

wλ(x)= u(x)− uλ(x).

By (10) in Lemma 1, positivity of the Green’s function, the properties of f and
Lemma 2,

u(x)− u(xλ)≤
∫
6λ\6

−

λ

(
G(xλ, yλ)−G(x, yλ)

)(
f (u(y))− f (uλ(y))

)
dy

+

∫
6−λ

(
G(xλ, yλ)−G(x, yλ)

)(
f (u(y))− f (uλ(y))

)
dy

≤

∫
6−λ

G(xλ, yλ)
(

f (u(y))− f (uλ(y))
)

dy

≤C
∫
6−λ

|x−y|2m−n
∫ 4xn yn/|x−y|2

0

zm−1

(z+1)n/2
dz
(

f (u(y))− f (uλ(y))
)

dy

≤ C
∫
6−λ

|x − y|2m−n( f (u(y))− f (uλ(y))
)

dy.

By the Hardy–Littlewood–Sobolev inequality, the mean value theorem, and the
assumption that u ∈ Lr (Rn

+
) for some r > n/(n− 2m), we deduce

‖wλ‖Lr (6−λ )
≤ C

∥∥∥∥∂ f (θu+ (1− θ)uλ)
∂u

wλ
∥∥∥∥

Lnr/(n+2mr)(6−λ )

,

where 0< θ < 1. Furthermore, by Hölder’s inequality, we get

(20) ‖wλ‖Lr (6−λ )
≤ C

∥∥∥∥∂ f (θu+ (1− θ)uλ)
∂u

∥∥∥∥
Ln/(2m)(6−λ )

‖wλ‖Lr (6−λ )
.

From property ( f2) of the function f , if λ is sufficiently negative,

C
∥∥∥∥∂ f (θu+ (1− θ)uλ)

∂u

∥∥∥∥
Ln/(2m)(6−λ )

≤
1
2 ,

then

‖wλ‖Lr (6−λ )
≤

1
2‖w

λ
‖Lr (6−λ )

,
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which implies that ‖wλ‖Lr (6−λ )
= 0. Therefore,6−λ must be of measure zero. Thus,

u(x)≤ uλ(x) a.e. in 6λ for sufficiently negative λ.

Step 2: Continue to move the plane x1 = λ to the right as long as Step 1 holds. We
claim that there exists some critical point

(21) λ0 = supλ{u
λ(x)≥ u(x) | −∞< λ < 0, x ∈6λ}

such that wλ0 ≡ 0.
If λ0 = 0 in Step 1, then u(x) ≤ u(xλ0) in 6λ0 . Move the plane from positive

infinity to the origin and argue in the same way as in Step 1. If λ0 = 0 again, it is
obvious that u(x)≡ u(xλ0). Hence, wλ0(x)≡ 0.

If λ0 < 0, we claim that

wλ0(x) < 0 or wλ0(x)≡ 0 for x ∈6λ0 .

Suppose that there exists some x0 in 6λ0 such that wλ0(x0) = 0, but wλ0 6≡ 0.
By (11) in Lemma 1,

u(x0)− uλ0(x0)=

∫
6λ0

(
G(xλ0, yλ0)−G(x, yλ0)

)(
f (u(y))− f (uλ0(y))

)
dy.

Moreover, by (10), f (u(y)) ≡ f (u(yλ0). This contradicts with the fact that the
function f satisfies ( f1), which verifies the claim.

Next, we show the plane can be moved to the right a little bit farther ifwλ0(x)<0.
By the assumption ( f2) on the function f , for any small ε, there exists a large
enough ball BR(0) such that∥∥∥∥∂ f (θu+ (1− θ)uλ)

∂u

∥∥∥∥
Ln/(2m)(Rn

+\BR)

< ε.

From Lusin’s theorem, for any δ, there exists a closed set Fδ such that wλ0 |Fδ is
continuous, with Fδ ⊂ E := BR(0)∩6λ0 and m(E − Fδ) < δ. As wλ0(x) < 0 in
the interior of 6λ0 , wλ0(x) < 0 in Fδ.

Choosing ε1 sufficiently small, for any λ ∈ [λ0, λ0+ ε1), we have

wλ(x) < 0 for all x ∈ Fδ

by continuity. It follows that for such λ,

6−λ ⊂ M := (Rn
+
\BR(0))∪ (E \ Fδ)∪

(
(6λ \6

−

λ0
)∩BR(0)

)
.

Choosing ε, δ and ε1 small enough and using absolute continuity of integration,
we derive

C
∥∥∥∥∂ f (uλ+ θwλ)

∂u

∥∥∥∥
Ln/(2m)(M)

≤
1
2 .
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Consequently from (20), ‖wλ(x)‖Lq (6−λ )
= 0. Then, 6−λ must be of measure zero,

which contradicts the definition of λ0. Hence, wλ0 ≡ 0.

This completes Steps 1 and 2 for 1≤ i < n.
For the case i = n, start moving the plane from xn = 0 as in the case 1≤ i < n.

Choosing λ > 0 sufficiently small, Step 1 is carried out similarly, which implies
that wλ(x)≤ 0. Next we prove that if wλ(x) 6≡ 0,

λ0 = supλ{u
λ(x) > u(x), λ > 0, x ∈6λ} =∞.

If not, then λ0 <∞. It is known that wλ0(x) < 0 or wλ0(x) ≡ 0 for any x ∈ 6λ0 .
Hence, wλ(x) < 0 for any λ. If wλ(x) ≡ 0, since u(x ′, xn) = 0 on xn = 0, then
u(x) ≡ 0. Therefore u(x) is nondecreasing in the xn direction. Thus we have
completed the proof of Lemma 4. �

Proof of Theorem 1. Since u(x) is nondecreasing in the xn direction by Lemma 4
and u ∈ Lr (Rn

+
) for some r > n/(n− 2m) by assumption, then for any a ∈ R+,∫

Rn
+

|u(x ′, xn)|
r dx ′ dxn ≥

∫
Rn−1

∫
∞

a
|u(x ′, a)|r dx ′ dxn.

The integrability of nonnegative u implies u(x ′, a) = 0 for any a and x ′ ∈ Rn−1.
Hence u(x)= 0 in Rn

+
. �

4. Proof of Theorem 2

Lemma 5. If ( f 1
i ) and either ( f 2

i ) or ( f̃ 2
i ) hold and ui ∈ Lr (Rn

+
) for some r >

n/(n − 2m) is the nonnegative solution of (4), then ui is axially symmetric with
respect to some line parallel to the xn-axis and ui (x) is nondecreasing in the xn

direction for i = 1, . . . , N.

Proof. Step 1: We proceed with the same process as in the proof of Theorem 1.
First consider all coordinates except xn . Without loss of generality, move the plane
in the x1 coordinate. Let

6
j
λ = {x ∈6λ | u j (x) > u j (xλ)},

wλi (x)= ui (x)− ui (xλ).

The same technique as in Lemma 2 and properties ( f 1
i ) of the functions fi give

wλi (x)

≤

∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)(
fi (y′, yn, u1, . . . , uN )− fi (y′, yn, uλ1, . . . , uλN )

)
=

N∑
j=1

∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)
Ki, j (y, λ) dy
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=

N∑
j=1

∫
6λ\6

j
λ

(
G(xλ, yλ)−G(x, yλ)

)
Ki, j (y, λ) dy

+

N∑
j=1

∫
6

j
λ

(
G(xλ, yλ)−G(x, yλ)

)
Ki, j (y, λ) dy

≤

N∑
j=1

∫
6

j
λ

G(xλ, yλ)Ki, j (y, λ) dy,

where

Ki, j (y, λ)

= fi (y′, yn, uλ1, . . . , uλj−1, u j , . . . , uN )− fi (y′, yn, uλ1, . . . , uλj−1, uλj , . . . , uN ).

Estimating in the same way as in the proof of Lemma 4,

ui (x)− ui (xλ)≤ C
N∑

j=1

∫
6

j
λ

|x − y|2m−n Ki, j (y, λ) dy.

By the Hardy–Littlewood–Sobolev inequality, the mean value theorem and the
assumption that u ∈ Lr (Rn

+
) for some r > n/(n− 2m), we deduce

‖wλi ‖Lr (6i
λ)
≤ C

N∑
j=1

∥∥∥∥∂ fi (y′, yn, uλ1, . . . , uλj + θ jw
λ
j , . . . , uN )

∂u j
wλj

∥∥∥∥
Lnr/(n+2mr)(6

j
λ)

,

where 0< θ j < 1. Then, from Hölder’s inequality, we have

‖wλi ‖Lr (6i
λ)
≤C

N∑
j=1

∥∥∥∥∂ fi (y′, yn, uλ1, . . . , uλj+θ jw
λ
j , . . . , uN )

∂u j

∥∥∥∥
Ln/(2m)(6

j
λ)

‖wλj ‖Lr (6
j
λ)
.

Moreover, taking the sum from i to N gives

(22)
N∑

i=1

‖wλi ‖Lr (6i
λ)
≤ C

N∑
i=1

N∑
j=1

∥∥∥∥ ∂ fi

∂u j

∥∥∥∥
Ln/(2m)(6

j
λ)

‖wλj ‖Lr (6
j
λ)
.

By virtue of the properties ( f 1
i ) and ( f 2

i ) of the functions fi , we can choose λ
negative enough that

C
N∑

i=1

N∑
j=1

∥∥∥∥ ∂ fi

∂u j

∥∥∥∥
Ln/(2m)(6

j
λ)

≤
1
2 .

This implies that N∑
i=1

‖wλi ‖Lr = 0.

Therefore, 6λi must be of measure zero and ui (x) ≤ uλi (x) a.e. in 6λ for every
1≤ i < n.
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Step 2: We will prove that the plane can be moved to a critical point

λ0 = sup{λ | ui (x)≤ uλi (x), −∞< λ < 0, x ∈6λ, i = 1, . . . , N }

such that wλ0
i ≡ 0.

If λ0 = 0, move the plane from the positive infinity to the origin and argue as
before. Hence assume λ0 < 0, so obviously ui (x)≤ uλ0

i (x). We claim that

ui (x) < uλ0
i (x) or ui (x)≡ uλ0(x)

in6λ0 for i = 1, . . . , N . If not, then there exists some i ∈ {i1, . . . , il0}⊂ {1, . . . , N }
such that ui (x0)= uλ0

i (x
0) for some x0

∈ 6λ0 , but ui (x) 6≡ uλ0
i (x). Therefore

ui (x) < uλ0
i (x) for i ∈ S = {1, . . . , N } \ {i1, . . . , il 0} for any x ∈6λ0 . Now

wλi (x
0)

≤

∫
6λ

(
G(x0

λ, yλ)−G(x0, yλ)
)(

fi (y′, yn, u1, . . . , uN )− fi (y′, yn, uλ1, . . . , uλN )
)

≤ 0,

thus, fi (y′, yn, u1, . . . , uN )≡ fi (y′, yn, uλ1, . . . , uλN ) for i ∈ {i1, . . . , il 0}. Hence

il0∑
i=i1

fi (y′, yn, u1, . . . , uN )≡

il0∑
i=i1

fi (y′, yn, uλ1, . . . , uλN ).

This contradicts the assumption that fi are essentially related, which implies the
claim is true.

Suppose ui (x) < uλ0
i (x) in 6λ0 for i = 1, . . . , N . In the spirit of Lemma 4,

we will show that the plane can move to the right a little bit further. By the
assumption ( f 2

i ), for any small ε, there exists a large enough ball BR(0) such
that ∥∥∥∥ ∂ fi

∂u j

∥∥∥∥
Ln/(2m)(Rn

+\BR)

< ε,

for i, j = 1, . . . , N . From Lusin’s theorem, for any δ, there exists a closed set Fδ
such that wλ0

i |Fδ is continuous for i = 1, . . . , N , with Fδ ⊂ E := BR(0)∩6λ0 and
m(E−Fδ)<δ. Aswλ0

i (x)<0 in the interior of6λ0 , wλ0(x)<0 in Fδ. Choosing ε1

sufficiently small gives that for any λ ∈ [λ0, λ0+ ε1),

wλi < 0 for all x ∈ Fδ

by continuity. It follows that for such λ,

6i
λ ⊂ M := (Rn

+
\BR(0))∪ (E \ Fδ)∪

(
(6λ \6

−

λ0
)∩BR(0)

)
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for i = 1, . . . , N . Choosing ε, δ and ε1 small enough and using absolute continuity
of integration, we conclude that

C
N∑

i=1

N∑
j=1

∥∥∥∥ ∂ fi

∂u j

∥∥∥∥
Ln/(2m)(M)

≤
1
2 .

Then, similarly to (22),
∑N

i=1 ‖w
λ
i ‖Lq =0. Therefore,6i

λ must be of measure zero,
which contradicts the definition of λ0. Hence wλ0

i ≡ 0 in 6λ0 for i = 1, . . . , N .
For the xn-coordinate, start moving the plane from xn = 0 to positive infinity. If

λ > 0 is sufficiently small, then we can show as in Step 1 that wλi (x) < 0.
Next, we prove that, if wλi (x) 6≡ 0, then

λ0 = supλ{u
λ
i (x) > u(x), λ > 0, x ∈6λ, i = 1, . . . , N } =∞.

If not, then λ0 <∞. It is also known that wλ0
i < 0 or wλ0

i ≡ 0 for x ∈ 6λ0 for
i = 1, . . . , N . Hence wλi < 0 for any λ. If wλi (x) ≡ 0, since ui (x ′, xn) = 0 on
xn = 0, then ui (x) ≡ 0. Therefore, ui (x) is nondecreasing in the xn direction for
every i . �

Proof of Theorem 2. By Lemma 5, ui (x) is nondecreasing in the xn direction. By
the assumption that u ∈ Lr (Rn

+
) for some r > n/(n− 2m), for any a ∈ R+, then∫

Rn
+

|ui (x ′, xn)|
r dx ′ dxn ≥

∫
Rn−1

∫
∞

a
|ui (x ′, a)|r dx ′ dxn.

The integrability of nonnegative ui implies ui (x ′, a)= 0 for any a and x ′ ∈ Rn−1.
Thus ui (x)= 0 in Rn

+
for i = 1, . . . , N . �

5. Proof of Theorem 3

In this section, we prove the regularity of the solutions in (6) which is related to the
Dirichlet problems of polyharmonic elliptic equations. For the convenience of the
reader, we present a regularity lifting lemma (Lemma 6), initially used in [Chen
and Li 2010].

Let Z be a given vector space. Let ‖ · ‖X and ‖ · ‖Y be two norms on Z . Define
a new norm ‖ · ‖Z by

‖ · ‖Z =
p
√
‖ · ‖

p
X +‖ · ‖

p
Y .

For simplicity, we assume that Z is complete with respect to the norm ‖ · ‖Z . Let
X and Y be the completions of Z under ‖ · ‖X and ‖ · ‖Y , respectively. Here p can
be chosen between 1 and∞, according to need. It is easy to see that Z = X ∩ Y .

Lemma 6 (regularity lifting lemma). Let T be a contraction map from X into itself
and from Y into itself. Assume that f ∈ X , and that there exists a function g ∈ Z
such that f = T f + g. Then f also belongs to Z.
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Proof of Theorem 3. From the integral representation of G(x, y), we have the
estimates

(23) |G(x, y)| ≤ C |x − y|2m−n.

Define the linear operator

Tuw(x)=
∫

Rn
+

G(x, y)|u|p−1w dy.

For any real number a > 0, define

(24)
{

ua(x)= u(x) if |u(x)|> a or |x |> a,
ua(x)= 0 otherwise.

Let ub(x)= u(x)− ua(x). Since u satisfies (6), it follows that

(25) ua(x)=
∫

Rn
+

G(x, y)|ua|
p−1ua dy+ I (x),

where

(26) I (x)=
∫

Rn
+

G(x, y)|ub|
p−1ub dy− ub(x).

We claim that for any r > n/(n− 2m)

I (x) ∈ L∞(Rn
+
)∩ Lr (Rn

+
).

In order to prove this claim, by the definition of ub, we only need to show that

B(x) :=
∫

Rn
+

G(x, y)|ub|
p−1ub dy ∈ L∞(Rn

+
)∩ Lr (Rn

+
).

By (23),

(27) |B(x)| ≤ C
∫

Rn
+

|x − y|2m−n
|ub|

p dy.

Applying the Hardy–Littlewood–Sobolev inequality to (27) gives that for any r >
n/(n− 2m),

(28) ‖B(x)‖Lr ≤ C‖ub‖Lnr/(n+2mr) <∞

by the definition of ub.
For any x ∈ B2a , we estimate that

(29) |B(x)| ≤ C
∫

Rn
+∩Ba

|x − y|2m−n dy <∞,



470 GUOZHEN LU AND JIUYI ZHU

while for any x 6∈ B2a ,

|B(x)| ≤ C
∫

Rn
+∩Ba

|x − y|2m−n dy ≤ Ca2m−n
∫

Rn
+∩Ba

dy < ∞.

Combining this inequality with (29) and (28), we conclude that

B(x) ∈ L∞(Rn
+
)∩ Lr (Rn

+
).

Therefore, we have proved the claim.
Next, we prove Tua is a contraction on Ls(Rn

+
) for any s> n/(n−2m). By (23),

for any s > n/(n− 2m),

‖Tuaw‖Ls(Rn
+)
≤ C

∥∥∥∥∫
Rn
+

|x − y|2m−n
|ua(y)|p−1w(y) dy

∥∥∥∥
Ls(Rn

+)

.

Using the Hardy–Littlewood–Sobolev inequality, then Hölder’s inequality gives

‖Tuaw‖Ls(Rn
+)
≤ C‖|ua|

(p−1)
‖Ln/(2m)(Rn

+)
‖w‖Ls(Rn

+)
.

Since u(x) ∈ L(p−1)n/(2m)(Rn
+
), choosing a large enough, we have

(30) ‖Tuaw‖Ls(Rn
+)
≤

1
2‖w‖Ls(Rn

+)
.

Therefore Tua is a contraction map on Ls(Rn
+
) for any s > n/(n− 2m) when a is

sufficiently large. Applying (30) to the case of s = q = (p− 1)n/(2m) which is
greater than n/(n−2m) when p> n/(n−2m) and to the case of s > n/(n−2m),
the regularity lifting lemma implies that the unique solution ua is in Lq

∩Ls , which
means u ∈ Lq

∩ Ls for any s > n/(n− 2m).
Finally, we claim that u ∈ L∞(Rn

+
).

As in (25) and the definition of ua , it suffices to prove that

A(x) :=
∫

Rn
+

G(x, y)|ua|
p−1ua dy ∈ L∞.

For any x ∈ Rn
+

, by (23),

|A(x)| ≤ C
∫

Rn
+∩Ba(x)

|x − y|2m−n
|ua|

p dy+C
∫

Rn
+\Ba(x)

|x − y|2m−n
|ua|

p dy.

Using Hölder’s inequality and the property that u ∈ Lq
∩Ls for any s> n/(n−2m),

respectively, we obtain, for any fixed a,∫
Rn
+∩B2a(x)

|x − y|2m−n
|ua|

p dy <∞,∫
Rn
+\B2a(x)

|x − y|2m−n
|ua|

p dy <∞.
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These estimates imply that A(x)<∞, therefore u ∈ L∞(Rn
+
), so Theorem 3 holds.

(Actually, we have proved that Ls(Rn
+
)∩ L∞(Rn

+
) for any s > n/(n− 2m).) �

Proof of Corollary 2. From the proof of Theorem 3, we have that u(x) ∈ Lq
∩ Ls0

for any s0 > n/(n − 2m), where q = (p − 1)n/(2m). Then u ∈ L2n/(n−2m). Let
f (u) = u p in (1). Obviously the assumptions of f in Theorem 1 are satisfied.
Therefore, u is trivial in (7). �

6. Proof of Theorem 4

In this section, we sketch the proof of Theorem 4. For a complete proof, refer to
the proofs of Theorems 1 and 2. Let

v(x)= 1
|x |n−2m u

( x
|x |2

)
be the Kelvin transform of u(x) centered at the origin. Then v(x) solves

(31) v(x)=
∫

Rn
+

G(x, y)|y|(n−2m)p−(n+2m)v p(y) dy.

Since u∈ L2n/(n−2m)
loc (Rn

+
), then v∈ L2n/(n−2m)(�′), where�′ is an arbitrary domain

in Rn
+

with dist(�′, 0)>d>0 for some positive d. Moreover, v∈ L(p−1)n/(2m)(�′),
since 1< p < (n+ 2m)/(n− 2m). As in the proofs of Lemma 2 and Theorems 1
and 2, for 1≤ i < n,

v(x)− v(xλ)

=

∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)(
|y|(n−2m)p−(n+2m)v p

− |yλ|(n−2m)p−(n+2m)v
p
λ

)
dy

≤

∫
6λ

(
G(xλ, yλ)−G(x, yλ)

)
|y|(n−2m)p−(n+2m)(v p

− v
p
λ ) dy

≤ C |λ|(n−2m)p−(n+2m)
∫
6−λ

G(xλ, yλ)(v p
− v

p
λ ) dy.

Following the steps in proving the axial symmetry of u in Theorems 1 and 2,
we can show that v(x) is axially symmetric with respect to xn axis. Let (x1, xn)

and (x2, xn) be two points in Rn
+

, where x1, x2 are arbitrary in Rn−1. Let x0 be the
midpoint of the line segment x1x2. Consider the Kelvin transform of u(x) centered
at x∗ = (x0, 0), that is,

v(x)= 1
|x−x∗|n−2m u

( x−x∗

|x−x∗|2
)
.

Then v(x) is axially symmetric with respect to x ′ = x0. In particular, u(x1, xn)=

u(x2, xn). Since x1 and x2 are any two points in Rn−1, the function u(x ′, xn) is
constant for any fixed xn . Therefore, u(x) only depends on xn .
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