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A MEAN CURVATURE ESTIMATE
FOR CYLINDRICALLY BOUNDED SUBMANIFOLDS

LUIS J. ALÍAS AND MARCOS DAJCZER

In an earlier article in coauthorship with G. P. Bessa, we obtained an esti-
mate for the mean curvature of a cylindrically bounded proper submanifold
in a product manifold where one factor is a Euclidean space. Here we extend
this estimate to a general product ambient space endowed with a warped
product structure.

Let (L`, gL) and (Pn, gP) be complete Riemannian manifolds of dimension
` and n, respectively, where L` is noncompact. Then let N n+`

= L` ×ρ Pn be
the product manifold L` × Pn endowed with the warped product metric ds2

=

dgL + ρ
2dgP for some positive warping function ρ ∈ C∞(L).

Let BP(r0) denote the geodesic ball with radius r0 centered at a reference point
o ∈ Pn . Assume that the radial sectional curvatures in BP(r0) along the geodesics
issuing from o are bounded as K rad

P ≤ b for some constant b ∈ R, and that 0 <
r0 <min{injP(o), π/2

√
b}, where injP(o) is the injectivity radius at o and π/2

√
b

is replaced by +∞ if b ≤ 0. Then the mean curvature of the geodesic sphere
SP(r0)=∂BP(r0) can be estimated from below by the mean curvature of a geodesic
sphere of a space form of curvature b, that is,

Cb(t)=


√

b cot(
√

b t) if b > 0,

1/t if b = 0,
√
−b coth(

√
−b t) if b < 0.

This is a direct consequence of the comparison theorems for the Riemannian dis-
tance, since the Hessian (respectively, Laplacian) of the distance function is nothing
but the second fundamental form (respectively, mean curvature) of the geodesic
spheres. A classical reference on this topic is [Greene and Wu 1979]. We also
refer the reader to [Petersen 2006] or [Pigola et al. 2008] for a modern approach
to the Hessian and Laplacian comparison theorems.

MSC2010: 53C40, 53C42.
Keywords: Cylindrically bounded submanifolds, Omori–Yau maximum principle, proper

immersions.
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2 LUIS J. ALÍAS AND MARCOS DAJCZER

By a cylinder in the warped space N n+`, we mean a closed subset of the form

Cr0 = {(x, y) ∈ N n+`
: x ∈ L` and y ∈ BP(r0)}.

Since the submanifolds L`×{p0} ⊂ N n+` are totally geodesic, we have

|ρHCr0
| ≥

n−1
`+n−1

Cb(r0),

where HCr0
is the mean curvature vector field of the hypersurface L`× Sp(r0).

The following theorem extends the result in [Alías et al. 2009], where the cylin-
ders under consideration are contained in product spaces R`× Pn . After the state-
ment, we recall from [Alías et al. 2011] the concept of an Omori–Yau pair on a
Riemannian manifold and discuss some implications of its existence.

Theorem 1. Let f : Mm
→ L`×ρ Pn be an isometric immersion, where L` car-

ries an Omori–Yau pair for the Hessian and the functions ρ and |grad log ρ| are
bounded. If f is proper and f (M)⊂ Cr0 , then supM |H | = +∞ or

(1) sup
M
ρ|H | ≥ m−`

m
Cb(r0),

where H is the mean curvature vector field of f .

In the proof, we see that the existence in L` of an Omori–Yau pair for the Hessian
provides conditions, in a function-theoretic form, that guarantee the validity of the
Omori–Yau maximum principle on Mm in terms of the corresponding property of
L` and the geometry of the immersion.

Definition 2. The pair of functions (h, γ ), for h : R+→ R+ and γ : M→ R+, is
an Omori–Yau pair for the Hessian in M if

(a) h(0) > 0 and h′(t)≥ 0, for all t ∈ R+;

(b) lim sup
t→+∞

th
(√

t
)
/h(t) <+∞;

(c)
∫
+∞

0

dt
√

h(t)
=+∞;

(d) the function γ is proper;

(e) |grad γ | ≤ c
√
γ for some c > 0 outside a compact subset of M ; and

(f) Hess γ ≤ d
√
γ h(
√
γ ) for some d > 0 outside a compact subset of M .

Similarly, the pair (h, γ ) is an Omori–Yau pair for the Laplacian in M if it satisfies
conditions (a)–(e) and

(f ′) 1γ ≤ d
√
γ h(
√
γ ) for some d > 0 outside a compact subset of M .
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We say that the Omori–Yau maximum principle for the Hessian holds for M if
for any function g ∈C∞(M) bounded from above there exists a sequence of points
{pk}k∈N in M such that

(a) limk→∞ g(pk)= supM g,

(b) |grad g(pk)| ≤ 1/k,

(c) Hess g(pk)(X, X)≤ (1/k)gM(X, X) for all X ∈ Tpk M .

Similarly, the Omori–Yau maximum principle for the Laplacian holds for M if
these properties are satisfied with (c) replaced by

(c′) 1g(pk)≤ 1/k.

The following theorem of Pigola, Rigoli, and Setti gives sufficient conditions
for an Omori–Yau maximum principle to hold for a Riemannian manifold.

Theorem 3 [Pigola et al. 2005]. Assume that a Riemannian manifold M carries an
Omori–Yau pair for the Hessian (resp. Laplacian). Then the Omori–Yau maximum
principle for the Hessian (resp. Laplacian) holds in M.

Example 4. Let Mm be a complete but noncompact Riemannian manifold, and
write r(y)= distM(y, o) for some reference point o ∈ Mm . Assume that the radial
sectional curvature of Mm satisfies K rad

≥ −h(r), where the smooth function h
satisfies (a)–(c) in Definition 2 and is even at the origin, that is, h(2k+1)(0) = 0
for k ∈ N. Then, as shown in [Pigola et al. 2005], the functions (h, r2) form an
Omori–Yau pair for the Hessian. As for the function h, one can choose

h(t)= t2
N∏

j=1

(log( j)(t))2, t � 1,

where log( j) stands for the j-th iterated logarithm.

To conclude this section, we observe that Theorem 1 is sharp. This is clear from
(1) by taking as Pn a space-form and as M the hypersurface L`× SP(r0) in N n+`.
In view of Example 4, it also follows that by taking L` = R` and constant ρ we
recover the result in [Alías et al. 2009].

The proof

We first introduce some additional notations, and then recall a few basic facts on
warped product manifolds.

Let 〈 , 〉 denote the metrics in N n+`, L` and Mm , while ( , ) stands for the metric
in Pn . The corresponding norms are | | and ‖ ‖. In addition, let ∇ and ∇̃ denote
the Levi-Civita connections in Mm and N n+`, respectively, and ∇L and ∇ P the
ones in L` and Pn .
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We always denote vector fields in TL by T, S and in T P by X, Y . Also, we
identify vector fields in TL and T P with basic vector fields in TN by taking
T (x, y)= T (x) and X (x, y)= X (y).

For the Lie-brackets of basic vector fields, we have that [T, S]∈TL and [X, Y ]∈
T P are basic and that [X, T ] = 0. Then we have

∇̃ST =∇L
S T,

∇̃X T = ∇̃T X = T (%)X,

∇̃X Y =∇ P
X Y −〈X, Y 〉gradL%,

where the vector fields X, Y and T are basic and % = log ρ.
Our proof follows the main steps in [Alías et al. 2011], where the geometric

situation considered differs from ours in that f (M) there is contained in a cylinder
of the form

{(x, y) ∈ N n+`
: x ∈ BL(r0) and y ∈ Pn

}.

In fact, a substantial part of the argument is to show that the Omori–Yau pair for the
Hessian in L` induces an Omori–Yau pair for the Laplacian for a noncompact Mm

when |H | is bounded. Thus the Omori–Yau maximum principle for the Laplacian
holds in Mm , and the proof follows from an application of the latter.

Suppose that Mm is noncompact, and let (h, 0) be an Omori–Yau pair for the
Hessian in L`. For p ∈ Mm , write f (p) = (x(p), y(p)). Set 0̃(x, y) = 0(x) for
(x, y) ∈ N n+` and

γ (p)= 0̃( f (p))= 0(x(p)).

We show next that (h, γ ) is an Omori–Yau pair for the Laplacian in Mm . First
we argue that the function γ is proper. To see this, let pk ∈ Mm be a divergent
sequence, that is, pk → ∞ in Mm as k → +∞. Thus, f (pk) → ∞ in N n+`

because f is proper. Because f (M) lies inside a cylinder, x(pk) → ∞ in L`.
Hence, γ (pk)→+∞ as k→+∞ because 0 is proper, and thus γ is proper.

It remains to verify conditions (e) and (f ′) in Definition 2. We have from
0̃(x, y)= 0(x) that

〈gradN 0̃(x, y), X〉 = 0.

Thus
gradN 0̃(x, y)= gradL0(x).

Since γ = 0̃ ◦ f , we obtain

(2) gradN 0̃( f (p))= gradMγ (p)+ gradN 0̃( f (p))⊥,

where ( )⊥ denotes taking the normal component to f . Then

|gradMγ (p)| ≤ |gradN 0̃( f (p))| = |gradL0(x(p))| ≤ c
√
0(x(p))= c

√
γ (p)

outside a compact subset of Mm , and thus (e) holds.
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We have that
∇̃T gradN 0̃ =∇L

T gradL0.

Hence Hess 0̃(T, S)= Hess 0(T, S) and Hess 0̃(T, X)= 0. Also,

∇̃X gradN 0̃ = ∇̃X gradL0 = gradL0(%)X.

Hence
Hess 0̃(X, Y )= 〈gradL0, gradL%〉〈X, Y 〉.

For a unit vector e ∈ Tp M , set e = eL
+ eP , where eL

∈ Tx(p)L and eP
∈ Ty(p)P .

Then

Hess 0̃( f (p))(e,e)=Hess 0(x(p))(eL,eL)+
〈
gradL0(x(p)),gradL%(x(p))

〉
|eP
|
2.

Also, an easy computation using (2) yields

Hess γ (p)(e, e)= Hess 0̃( f (p))(e, e)+
〈
gradL0(x(p)), α(p)(e, e)

〉
,

where α denotes the second fundamental of f with values in the normal bundle.
Thus,

Hess γ (p)(e, e)= Hess 0(x(p))(eL , eL) +
〈
gradL0(x(p)), gradL%(x(p))

〉
|eP
|
2

+
〈
gradL0(x(p)), α(p)(e, e)

〉
.

Since Hess 0 ≤ d
√
0h(
√
0) for some positive constant d outside a compact subset

of L` and the immersion is proper, we have

Hess 0(x(p))(eL , eL)≤ d
√
γ (p)h(

√
γ (p))|eL

|
2
≤ d

√
γ (p)h(

√
γ (p))

outside a compact subset of Mm . From |gradL0| ≤ c
√

0h(
√
0) for some c outside

a compact subset of L` and supL |gradL%|<+∞, we have〈
gradL0(x(p)), gradL%(x(p))

〉
|eP
|
2
≤ c′

√
γ (p)

for some positive constant c′ outside a compact subset of Mm . Since γ is proper
and h is unbounded, by (a) and (b) in Definition 2, we have

√
γ ≤

√
γ h(
√
γ )

outside a compact subset of Mm , because γ→+∞ as p→∞ and limt→+∞ h(t)=
+∞. Thus we obtain

(3) Hess γ (e, e)≤ d1

√
γ h(
√
γ )+

〈
gradL0(x), α(e, e)

〉
for some constant d1 > 0, outside a compact subset of Mm .

On the other hand, we may assume that

(4) |H | ≤ c
√

h(
√
γ )
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for some constant c > 0, outside a compact subset of Mm . Otherwise, there exists
a sequence {pk}k∈N in Mm such that pk→∞ as k→+∞ and

|H(pk)|> k
√

h(
√
γ (pk)).

With γ being proper and h unbounded from (a) and (b) in Definition 2, we conclude
that supM |H | = +∞, in which case we are done with the proof of the theorem.

We obtain from (3) using (4) that 1γ ≤ c1
√
γ h(
√
γ ) for some constant c1 > 0

outside a compact subset of Mm , and thus (f ′) has been proved.
Consider the distance function r(y) = distP(y, o) in BP(r0) and define r̃ ∈

C∞(N ) by r̃(x, y)= r(y). Then

〈gradN r̃(x, y), T 〉 = 0.

Thus
ρ2(x)gradN r̃(x, y)= gradPr(y).

We obtain that

∇̃T gradN r̃ = ∇̃T (ρ
−2gradPr)=−ρ−2T (%)gradPr.

Therefore
Hess r̃(T, S)= 0

and
Hess r̃(T, X)=−ρ−2T (%)〈gradPr, X〉 = −T (%)(gradPr, X).

Also,

∇̃X gradN r̃ = ∇̃X (ρ
−2gradPr)= ρ−2(

∇
P
X gradPr −〈X, gradPr〉gradL%

)
.

Hence

Hess r̃(X, Y )= ρ−2
〈∇

P
X gradPr, Y 〉 = (∇ P

X gradPr, Y )= Hess r(X, Y ).

For e ∈ T M , we have

Hess r̃(e, e)=−2〈gradL%, e〉(gradPr, eP)+Hess r(eP , eP).

From the Hessian comparison theorem (see [Pigola et al. 2008, Chapter 2] for a
modern approach) we obtain

Hess r(eP , eP)≥ Cb(r)(‖eP
‖

2
− (gradPr, eP)2).

Therefore,

(5) Hess r̃(e, e)≥−2〈gradL%, e〉(gradPr, eP)+Cb(r)(‖eP
‖

2
− (gradPr, eP)2).

We define u ∈ C∞(M) by

u(p)= r(y(p)).
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Thus, u = r̃ ◦ f and

(6) gradN r̃( f (p))= gradM u(p)+ gradN r̃( f (p))⊥.

This gives

Hess u(ei , e j )= Hess r̃(ei , e j )+〈gradN r̃ , α(ei , e j )〉,

where e1, . . . , em is an orthonormal frame of TM . Thus

(7) 1u =
m∑

j=1

Hess r̃(e j , e j )+m〈gradN r̃ , H〉.

We have from e j = eL
j + eP

j that 1= 〈e j , e j 〉 = ρ
2
‖eP

j ‖
2
+
∑̀
k=1
〈e j , Tk〉

2, where
T1, . . . , T` is an orthonormal frame for TL . Hence

m = ρ2
m∑

j=1

‖eP
j ‖

2
+

∑̀
k=1

|T>k |
2,

where T> is the tangent component of T . We obtain

(8)
m∑

j=1

‖eP
j ‖

2
≥ (m− `)ρ−2.

Since (gradPr, eP
j )= 〈gradN r̃ , eP

j 〉 = 〈gradN r̃ , e j 〉 = 〈gradM u, e j 〉, we get from
(5) that

Hess r̃(e j , e j )≥−2〈gradL%, e j 〉〈gradM u, e j 〉+Cb(u)(‖eP
j ‖

2
−〈gradM u, e j 〉

2).

Taking the trace and using (8) gives

m∑
j=1

Hess r̃(e j , e j )≥−2〈gradL%, gradM u〉+Cb(u)
(
(m− `)ρ−2

− |gradM u|2
)
.

Because 〈gradN r̃ , gradN r̃〉 = ρ2(ρ−2gradPr, ρ−2gradPr)= ρ−2, we have

〈gradN r̃ , H〉 ≥ −ρ−1
|H |.

Using (7), we conclude that

1u ≥−2〈gradL%, gradM u〉+Cb(u)
(
(m− `)ρ−2

− |gradM u|2
)
−mρ−1

|H |.

Thus

ρ|H | ≥ m−`
m

Cb(u)−
ρ2

m
(
1u+ 2|gradL%||gradM u| +Cb(u)|gradM u|2

)
.
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If Mm is compact, the proof follows easily by computing the inequality at a
point of maximum of u. Thus, we may now assume that Mm is noncompact and
that (4) holds.

Since f (M) ⊂ Cr0 , we have u∗ = supM u ≤ r0 < +∞. By the Omori–Yau
maximum principle, there is a sequence {pk}k∈N in Mm such that u(pk)>u∗−1/k,
|gradM u(pk)|< 1/k, and 1u(pk) < 1/k. By assumption, we have supL ρ = K1 <

+∞ and supL |gradL%| = K2 <+∞. Hence

sup
M
ρ|H | ≥ ρ(pk)|H(pk)| ≥

m− `
m

Cb(u(pk))−
K 2

1

m

(1+ 2K2

k
+

1
k2 Cb(u(pk))

)
.

Letting k→+∞, we obtain

sup
M
ρ|H | ≥ m−`

m
Cb(u∗)≥

m−`
m

Cb(r0),

and this concludes the proof of the theorem.
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WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C

JENNIFER BEINEKE, BENJAMIN BRUBAKER AND SHARON FRECHETTE

We develop the theory of Weyl group multiple Dirichlet series for root sys-
tems of type C. For a root system of rank r and a positive integer n,
these are Dirichlet series in r complex variables with analytic continuation
and functional equations isomorphic to the associated Weyl group. They
conjecturally arise as Whittaker coefficients of Eisenstein series on a meta-
plectic group with cover degree n. For type C and n odd, we construct an
infinite family of Dirichlet series and prove they satisfy the above analytic
properties in many cases. The coefficients are exponential sums built from
Gelfand–Tsetlin bases of certain highest weight representations. Previous
attempts to define such series by Brubaker, Bump, and Friedberg required
n sufficiently large, so that coefficients were described by Weyl group orbits.
We demonstrate that these two radically different descriptions match when
both are defined. Moreover, for n = 1, we prove our series are Whittaker
coefficients of Eisenstein series on SO(2r + 1).

1. Introduction

Let 8 be a reduced root system of rank r . Weyl group multiple Dirichlet series
(associated to 8) are Dirichlet series in r complex variables which initially con-
verge on a cone in Cr , possess analytic continuation to a meromorphic function on
the whole complex space, and satisfy functional equations whose action on Cr is
isomorphic to the Weyl group of 8.

For various choices of 8 and a positive integer n, infinite families of Weyl
group multiple Dirichlet series defined over any number field F containing the
2n-th roots of unity were introduced in [Chinta and Gunnells 2007; 2010; Brubaker
et al. 2007; 2008]. The coefficients of these Dirichlet series are intimately related
to the n-th power reciprocity law in F . It is further expected that these families
are related to metaplectic Eisenstein series as follows. If one considers the split,
semisimple, simply connected algebraic group G over F whose Langlands L-group

Beineke was supported by NSF grant number DMS-0502730 and Brubaker by DMS-0702438 and
DMS-0652529.
MSC2000: primary 11F70, 11F68; secondary 05E10.
Keywords: Weyl group multiple Dirichlet series, metaplectic group, Eisenstein series,

Gelfand–Tsetlin pattern.

11
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has root system 8, then it is conjectured that the families of multiple Dirichlet
series associated to n and8 (or the dual root system, depending on n) are precisely
the Fourier–Whittaker coefficients of minimal parabolic Eisenstein series on the n-
fold metaplectic cover of G. See Remark 3 for more details.

In light of this suggested relationship with Eisenstein series, one should be able
to provide definitions of multiple Dirichlet series for any reduced root system8 and
any positive integer n having the desired analytic properties. However a satisfactory
theory of the connections between various Dirichlet series and their relation to
metaplectic Eisenstein series has only recently emerged for type A. This paper
improves the current theory by developing some of the corresponding results for
type C , suggesting that such representations of Eisenstein series should hold in
great generality.

We begin by describing the basic shape of the Weyl group multiple Dirichlet
series, which can be done uniformly for any reduced root system 8 of rank r .
Given a number field F containing the 2n-th roots of unity and a finite set of
places S of F (chosen with certain restrictions described in Section 2.2), let OS

denote the ring of S-integers in F and O×S the units in this ring. Then to any r -
tuple of nonzero OS integers m= (m1, . . . ,mr ), we associate a Weyl group multiple
Dirichlet series in r complex variables s = (s1, . . . , sr ) of the form

(1) Z9(s1, . . . , sr ;m1, . . . ,mr )= Z9(s;m)=
∑

c=(c1,...,cr )

∈(OS/O
×

S )
r

H (n)(c;m)9(c)
|c1|2s1 · · · |cr |

2sr
,

where the coefficients H (n)(c;m) carry the main arithmetic content. The func-
tion 9(c) guarantees the numerator of our series is well-defined up to O×S units
and is defined precisely in Section 2.3. Finally |ci | = |ci |S denotes the norm of the
integer ci as a product of local norms in FS =

∏
v∈S Fv.

The coefficients H (n)(c;m) are not multiplicative, but nearly so and (as we will
demonstrate in (17) and (19) of Section 2.4) can nevertheless be reconstructed from
coefficients of the form

(2) H (n)(pk
; pl) := H (n)(pk1, . . . , pkr ; pl1, . . . , plr ),

where p is a fixed prime in OS and ki = ordp(ci ), li = ordp(mi ).
There are two approaches to defining these prime-power contributions. Chinta

and Gunnells [2007; 2010] use a remarkable action of the Weyl group to define
the coefficients H (n)(pk

; pl) as an average over elements of the Weyl group for
any root system 8 and any integer n ≥ 1, from which functional equations and
analytic continuation of the series Z follow. By contrast, for 8 of type A and any
n ≥ 1, Brubaker, Bump, and Friedberg [2007] define the prime-power coefficients
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as a sum over basis vectors in a highest weight representation for GL(r+1,C) as-
sociated to the fixed r -tuple l in (2). They subsequently prove functional equations
and analytic continuation for the multiple Dirichlet series via intricate combina-
torial arguments in [Brubaker et al. 2009; 2011b]. It is therefore natural to ask
whether a definition in the mold of [Brubaker et al. 2007] exists for the prime-
power coefficients H (n)(pk

; pl) for every root system 8.
For 8 of type C , we present a positive answer to this question, in the form of

the following conjecture and its subsequent proof in many special cases.

Conjecture. For 8 = Cr for any r and for n odd, the Dirichlet series Z9(s;m)
described in (1), with coefficients of the form H (n)(pk

; pl) as defined in Section 3,
has the following properties:

(I) Z9(s;m) possesses analytic continuation to a meromorphic function on Cr

and satisfies a group of functional equations isomorphic to W (Sp(2r)), the
Weyl group of Sp(2r), of the form (24), where the W action on Cr is as given
in (21).

(II) Z9(s;m) is the Whittaker coefficient of a minimal parabolic Eisenstein series
on an n-fold metaplectic cover of SO(2r + 1, FS).

Part (II) of this conjecture would imply part (I) according to the general Lang-
lands–Selberg theory of Eisenstein series extended to metaplectic covers as in
[Mœglin and Waldspurger 1995]. In practice, other methods to prove part (I)
have resulted in sharp estimates for the scattering matrix involved in the func-
tional equations that would be difficult to obtain from the general theory; see, for
example, [Brubaker et al. 2006] .

In this paper, we make progress toward this general conjecture by proving the
following two results, which will be restated more precisely in later sections once
careful definitions have been given.

Theorem 1. For n sufficiently large (as given in (41)), Z9(s;m) matches the mul-
tiple Dirichlet series defined in [Brubaker et al. 2008] for the root system 8= Cr .
Therefore, for such odd n, the multiple Dirichlet series possess the analytic prop-
erties cited in part (I) of the Conjecture.

Theorem 2. For n = 1, Z9(s;m) is a multiplicative function whose prime-power
coefficients match those of the Casselman–Shalika formula for Sp(2r). Hence
Z9(s;m) agrees with the minimal parabolic (nonmetaplectic) Eisenstein series
for SO(2r + 1, FS). Thus both parts of the Conjecture hold for n = 1.

These theorems are symplectic analogs of those proven for type A in [Brubaker
et al. 2007; 2008]. Theorem 2 is proved using a combinatorial identity from [Hamel
and King 2002]. Theorem 1, our main result, also has a combinatorial proof using
rather subtle connections between the Weyl group and Gelfand–Tsetlin patterns
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(henceforth GT-patterns) that parametrize basis vectors for highest weight repre-
sentations of Sp(2r,C), the Langlands dual group of SO(2r + 1).

Remark 3. The restriction that n must be odd is natural in light of earlier work by
Savin [1988] showing that the structure of the Iwahori–Hecke algebra depends on
the parity of the metaplectic cover and by Bump, Friedberg, and Ginzburg [2006]
on conjectural dual groups for metaplectic covers. Indeed, though the construction
of the Dirichlet series we propose in Section 3 makes sense for any n, attempts to
prove functional equations for n even and m fixed using the techniques of [Beineke
et al. 2010] suggest the coefficients have the wrong shape. In view of this evidence,
we expect a similar combinatorial definition to hold for n even, but making use of
the highest weight representation theory for SO(2r + 1,C) (in contrast with the
case n odd, and weights from Sp(2r,C) as in the Conjecture and the two subsequent
theorems).

As noted above, the analog of the Conjecture is known for type A for any n≥ 1.
Its proof, completed in [Brubaker et al. 2009; 2011b], makes critical use of the
outer automorphism of the Dynkin diagram for type A. Thus mimicking the proof
techniques to obtain results for type C is not possible. However, given any fixed
m and n, one can verify the functional equations and meromorphic continuation
with a finite amount of checking. See [Beineke et al. 2010] for the details of this
argument in a small rank example.

The type A analog of part (II) of the Conjecture is proved in [Brubaker et al.
2011a] by computing the Fourier–Whittaker coefficients of Eisenstein series di-
rectly by inducing from successive maximal parabolics. The result is essentially a
complicated recursion involving exponential sums and lower rank Eisenstein series.
Then one checks the definition given in [Brubaker et al. 2007] satisfies the recur-
sion. A similar approach should be possible in type C , and this will be the subject
of future work. Such an approach depends critically on having a proposed solution
to satisfy the recursion, so the methods of this paper are a necessary first step.

The precise definition of the prime-power coefficients (2) for type C is somewhat
complicated, so we postpone it until Section 3. As alluded to earlier, coefficients
H (n)(pk

; pl) will be described in terms of basis vectors for highest weight rep-
resentations of Sp(2r,C) with highest weight corresponding to l . As noted in
Remark 6, the definition produces Gauss sums which encode subtle information
about Kashiwara raising/lowering operators in the crystal graph associated to the
highest weight representation. As such, this paper offers the first evidence that mys-
terious connections between metaplectic Eisenstein series and crystal bases may
hold in much greater generality, persisting beyond the type A theory in [Brubaker
et al. 2007; 2011a; 2011b]. These connections may not be properly understood
until a general solution to our problem for all root systems 8 is obtained.
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Finally, the results of this paper give infinite classes of Dirichlet series with
analytic continuation. One can then use standard Tauberian techniques to extract
mean-value estimates for families of number-theoretic quantities appearing in the
numerator of the series (or the numerator of polar residues of the series). For the
n-cover of Ar , this method yielded the mean-value results of [Chinta 2005] for r =
5, n=2 and [Brubaker and Bump 2006b] for r=3, n=3. It would be interesting to
explore similar results in type C (remembering that our Conjecture may be verified
for any given example with n, r , and m fixed with only a finite amount of checking,
as sketched in [Beineke et al. 2010]).

Note. Since the initial submission of this paper, Chinta and Offen [2009] have
given a proof in type A that the multiple Dirichlet series constructed by Chinta and
Gunnells is in fact a metaplectic Whittaker coefficient. This argument has been
extended in great generality by McNamara [2011]. Further, Ivanov [2010] has used
the results of this paper to give an alternate definition of the prime-power coeffi-
cients (2) in terms of two-dimensional lattice models defined by Kuperberg [2002].
In the case n = 1, his methods give an alternate proof of Theorem 2. All of these
results make a resolution of the Conjecture given above more desirable.

2. Definition of the multiple Dirichlet series

In this section, we present general notation for root systems and the corresponding
Weyl group multiple Dirichlet series.

2.1. Root systems. Let 8 be a reduced root system contained in V , a real vector
space of dimension r . The dual vector space V∨ contains a root system 8∨ in
bijection with 8, where the bijection switches long and short roots. Writing the
dual pairing

(3) V × V∨→ R, (x, y) 7→ B(x, y),

then B(α, α∨) = 2. Moreover, the simple reflection σα : V → V corresponding
to α is given by

σα(x)= x − B(x, α∨)α.

Note that σα preserves 8. Similarly, define a dual reflection σα∨ : V∨→ V∨ by
σα∨(x)= x − B(α, x)α∨ with σα∨(8∨)=8∨.

For our purposes, without loss of generality, we may take 8 to be irreducible
(that is, there do not exist orthogonal subspaces 81,82 with 81∪82 =8). Then
set 〈 · , · 〉 to be the Euclidean inner product on V and ‖α‖=

√
〈α, α〉 the Euclidean

norm, where we normalize so that 2〈α, β〉 and ‖α‖2 are integral for all α, β ∈ 8.
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With this notation,

(4) σα(β)= β −
2〈β, α〉
〈α, α〉

α for any α, β ∈8.

Partition 8 into positive roots 8+ and negative roots 8− and denote by 1 =
{α1, . . . , αr } ⊂8

+ the subset of simple positive roots. Further, denote the funda-
mental dominant weights by εi for i = 1, . . . , r satisfying

(5)
2〈εi , α j 〉

〈α j , α j 〉
= δi j ,

where δi j is the Kronecker delta. Any dominant weight λ is expressible in terms
of the εi , and a distinguished role in the theory is played by the Weyl vector ρ,
defined by

(6) ρ =
1
2

∑
α∈8+

α =

r∑
i=1

εi .

2.2. Algebraic preliminaries. Keeping with the established foundations on Weyl
group multiple Dirichlet series (see [Brubaker et al. 2006; 2008]), we define our
Dirichlet series as indexed by integers rather than ideals. By using this approach,
the coefficients of the Dirichlet series will closely resemble classical exponential
sums, but some care needs to be taken to ensure the resulting series remains well-
defined up to units.

Given a fixed positive odd integer n, let F be a number field containing the
2n-th roots of unity, and let S be a finite set of places containing all ramified places
over Q, all archimedean places, and enough additional places so that the ring of
S-integers OS is a principal ideal domain. Recall that the OS integers are defined as

OS = {a ∈ F | a ∈ Ov ∀v 6∈ S}

and can be embedded diagonally in

FS =
∏
v∈S

Fv.

There exists a pairing

( · , · )S : F×S × F×S → µn defined by (a, b)S =
∏
v∈S

(a, b)v,

where the (a, b)v are local Hilbert symbols associated to n and v.
Further, to any a ∈ OS and any ideal b ⊆ OS , we may associate the n-th power

residue symbol (a
b )n as follows. For prime ideals p, the expression (a

p )n is the
unique n-th root of unity satisfying the congruence(a

p

)
n
≡ a(N (p)−1)/n (mod p).
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Extend the symbol to arbitrary ideals b by multiplicativity, with the convention that
the symbol is 0 whenever a and b are not relatively prime. Since OS is a principal
ideal domain by assumption, we will write(a

b

)
n
=

(a
b

)
n

for b= bOS

and often drop the subscript n on the symbol when the power is understood from
context.

Then if a, b are coprime integers in OS , we have the n-th power reciprocity law
(see [Neukirch 1999, Theorem 6.8.3])

(7)
(a

b

)
= (b, a)S

(b
a

)
,

which, in particular, implies that if ε ∈ O×S and b ∈ OS , then(
ε

b

)
= (b, ε)S.

Finally, for a positive integer t and a, c∈OS with c 6=0, we define the Gauss sum
gt(a, c) as follows. First, choose a nontrivial additive character ψ of FS trivial on
the OS integers (see [Brubaker and Bump 2006a] for details). Then the n-th power
Gauss sum is given by

(8) gt(a, c)=
∑

d mod c

(d
c

)t

n
ψ
(ad

c

)
,

where we have suppressed the dependence on n in the notation on the left. The
Gauss sum gt is not multiplicative, but rather satisfies

(9) gt(a, cc′)=
( c

c′
)t

n

(c′

c

)t

n
gt(a, c)gt(a, c′)

for any relatively prime pair c, c′ ∈ OS .

2.3. Kubota’s rank-1 Dirichlet series. Many of the definitions for Weyl group
multiple Dirichlet series are natural extensions of those from the rank-1 case, so
we begin with a brief description of these.

A subgroup � ⊂ F×S is said to be isotropic if (a, b)S = 1 for all a, b ∈ �. In
particular,�=OS(F×S )

n is isotropic (where (F×S )
n denotes the n-th powers in F×S ).

Let Mt(�) be the space of functions 9 : F×S → C that satisfy the transformation
property

(10) 9(εc)= (c, ε)−t
S 9(c) for any ε ∈�, c ∈ F×S .
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For 9 ∈Mt(�), consider the generalization of Kubota’s Dirichlet series:

(11) Dt(s, 9, a)=
∑

06=c∈Os/O
×
s

gt(a, c)9(c)
|c|2s .

Here |c| is the order of OS/cOS , gt(a, c) is as in (8) and the term gt(a, c)9(c)|c|−2s

is independent of the choice of representative c, modulo S-units. Standard esti-
mates for Gauss sums show that the series is convergent if R(s) > 3

4 . Our func-
tional equation computations will hinge on the functional equation for this Kubota
Dirichlet series. Before stating this result, we require some additional notation. Let

(12) Gn(s)= (2π)−2(n−1)sn2ns
n−2∏
j=1

0

(
2s− 1+

j
n

)
.

In view of the multiplication formula for the Gamma function, we may also write

Gn(s)= (2π)−(n−1)(2s−1)0(n(2s− 1))
0(2s− 1)

.

Let

(13) D∗t (s, 9, a)= Gm(s)[F :Q]/2ζF (2ms−m+ 1)Dt(s, 9, a),

where m=n/ gcd(n, t), 1
2 [F :Q] is the number of archimedean places of the totally

complex field F , and ζF is the Dedekind zeta function of F .
If v ∈ Sfin let qv denote the cardinality of the residue class field Ov/Pv, where

Ov is the local ring in Fv and Pv is its prime ideal. By an S-Dirichlet polynomial
we mean a polynomial in q−s

v as v runs through the finite number of places in Sfin.
If 9 ∈Mt(�) and η ∈ F×S , denote

(14) 9̃η(c)= (η, c)S 9(c−1η−1).

Then we have the next result, which follows from [Brubaker and Bump 2006a].

Theorem [Brubaker et al. 2008, Theorem 1]. Let 9 ∈ Mt(�) and a ∈ OS . Let
m=n/gcd(n, t). Then D∗t (s, 9, a) has meromorphic continuation to all s, analytic
except possibly at s = 1/2±1/(2m), where it might have simple poles. There exist
S-Dirichlet polynomials P t

η(s) depending only on the image of η in F×S /(F
×

S )
n

such that

(15) D∗t (s, 9, a)= |a|1−2s
∑

η∈F×S /(F
×

S )
n

P t
aη(s)D

∗

t (1− s, 9̃η, a).

This result, based on ideas of Kubota [1969], relies on the theory of Eisenstein
series. The case t = 1 is handled in [Brubaker and Bump 2006a]; the general
case follows as discussed in the proof of [Brubaker et al. 2006, Proposition 5.2].
Notably, the factor |a|1−2s is independent of the value of t .
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2.4. The form of higher rank multiple Dirichlet series. We now begin explicitly
defining the multiple Dirichlet series, retaining our previous notation. By analogy
with the rank-1 definition in (10), given an isotropic subgroup �, let M(�r ) be the
space of functions 9 : (F×S )

r
→ C that satisfy the transformation property

(16) 9(εc)=
( r∏

i=1

(εi , ci )
‖αi‖

2

S

∏
i< j

(εi , c j )
2〈αi ,α j 〉

S

)
9(c)

for all ε = (ε1, . . . , εr ) ∈�
r and all c= (c1, . . . , cr ) ∈ (F×S )

r .
Recall from the introduction that, given a reduced root system8 of fixed rank r ,

an integer n ≥ 1, m ∈ Or
S , and 9 ∈ M(�r ), we consider a function of r complex

variables s = (s1, . . . , sr ) ∈ Cr of the form

Z9(s1, . . . , sr ;m1, . . . ,mr )= Z9(s;m)=
∑

c=(c1,...,cr )

∈(OS/O
×

S )
r

H (n)(c;m)9(c)
|c1|2s1 · · · |cr |

2sr
.

The function H (n)(c;m) carries the main arithmetic content. It is not defined as
a multiplicative function, but rather a “twisted multiplicative” function. For us, this
means that for S-integer vectors c, c′ ∈ (OS/O

×

S )
r with gcd(c1 · · · cr , c′1 · · · c

′
r )= 1,

(17) H (n)(c1c′1, . . . , cr c′r ;m)= µ(c, c′)H (n)(c;m)H (n)(c′;m),

where µ(c, c′) is an n-th root of unity depending on c, c′. It is given precisely by

(18) µ(c, c′)=
r∏

i=1

(ci

c′i

)‖αi‖
2

n

(c′i
ci

)‖αi‖
2

n

∏
i< j

( ci

c′j

)2〈αi ,α j 〉

n

( c′i
c j

)2〈αi ,α j 〉

n

where ( ·· )n is the n-th power residue symbol defined in Section 2.2. In the special
case 8= A1, the twisted multiplicativity in (17) and (18) agrees with the identity
for Gauss sums in (9) in accordance with the numerator for the rank-1 case in (11).

Remark 4. We often think of twisted multiplicativity as the appropriate generaliza-
tion of multiplicativity for the metaplectic group. In particular, for n= 1 we reduce
to the usual multiplicativity on relatively prime coefficients. Moreover, many of
the global properties of the Dirichlet series follow (upon careful analysis of the
twisted multiplicativity and associated Hilbert symbols) from local properties, for
example, functional equations as in [Brubaker et al. 2006; 2008]. For more on this
perspective, see [Friedberg 2010].

The transformation property of functions in M(�r ) in (16) is motivated by the
identity

H (n)(εc;m)9(εc)= H (n)(c;m)9(c) for all ε ∈ Or
S, c,m ∈ (F×S )

r .

The proof can be verified using the n-th power reciprocity law from Section 2.2.
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Now, given any m,m′, c ∈ Or
S with gcd(m′1 · · ·m

′
r , c1 · · · cr )= 1, let

(19) H (n)(c;m1m′1, . . . ,mr m′r )=
r∏

i=1

(m′i
ci

)−‖αi‖
2

n
H (n)(c;m).

The definitions in (17) and (19) imply that it is enough to specify the coefficients
H (n)(pk1, . . . , pkr ; pl1, . . . , plr ) for any fixed prime p with li = ordp(mi ) in order
to completely determine H (n)(c;m) for any pair of S-integer vectors m and c.
These prime-power coefficients are described in terms of data from highest-weight
representations associated to (l1, . . . , lr ) and will be given precisely in Section 3.

2.5. Weyl group actions. In order to precisely state a functional equation for the
Weyl group multiple Dirichlet series, we require an action of the Weyl group W
of 8 on the complex parameters (s1, . . . , sr ). This arises from the linear action
of W , realized as the group generated by the simple reflections σα∨ , on V∨. From
the perspective of Dirichlet series, it is more natural to consider this action shifted
by ρ∨, half the sum of the positive coroots. Then each w ∈ W induces a transfor-
mation V∨

C
= V∨⊗C→ V∨

C
(still denoted by w) if we require that

B
(
wα,w(s)− 1

2ρ
∨
)
= B

(
α, s− 1

2ρ
∨
)
.

We introduce coordinates on V∨
C

using simple roots1={α1, . . . , αr } as follows.
Define an isomorphism V∨

C
→ Cr by

(20) s 7→ (s1, s2, . . . , sr ), si = B(αi , s).

This action allows us to identify V∨
C

with Cr , and so the complex variables si

that appear in the definition of the multiple Dirichlet series may be regarded as
coordinates in either space. It is convenient to describe this action more explicitly
in terms of the si , and it suffices to consider simple reflections which generate W .
Using the action of the simple reflection σαi on the root system 8 given in (4) in
conjunction with (20) above gives:

Proposition 5. The action of σαi on s = (s1, . . . , sr ) defined implicitly in (20) is
given by

(21) s j 7→ s j −
2〈α j , αi 〉

〈αi , αi 〉

(
si −

1
2

)
, j = 1, . . . , r.

In particular, σαi : si 7→ 1− si .

2.6. Normalizing factors and functional equations. The multiple Dirichlet series
must also be normalized using Gamma and zeta factors in order to state precise
functional equations. Let

n(α)= n
gcd(n, ‖α‖2)

, α ∈8+.
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For example, if 8=Cr and we normalize short roots to have length 1, this implies
that n(α)= n unless α is a long root and n is even (in which case n(α)= n/2). By
analogy with the zeta factor appearing in (13), for any α ∈8+, let

ζα(s)= ζ
(
1+ 2n(α)B(α, s− 1

2ρ
∨)
)
,

where ζ is the Dedekind zeta function attached to the number field F . Further,
for Gn(s) as in (12), we may define

(22) Gα(s)= Gn(α)
(1

2 + B(α, s− 1
2ρ
∨)
)
.

Then for any m ∈ Or
S , the normalized multiple Dirichlet series is given by

(23) Z∗9(s;m)=
( ∏
α∈8+

Gα(s)ζα(s)
)

Z9(s,m).

By considering the product over all positive roots, we guarantee that the other zeta
and Gamma factors are permuted for each simple reflection σi ∈W , and hence for
all elements of the Weyl group.

Given any fixed n, m and root system8, we seek to define H (n)(c;m) (or equiv-
alently, given twisted multiplicativity, to define H at prime-power coefficients) so
that Z∗9(s;m) satisfies functional equations of the form

(24) Z∗9(s;m)= |mi |
1−2si Z∗σi9

(σi s;m)

for all simple reflections σi ∈W . Here, σi s is as in (21) and the function σi9, which
essentially keeps track of the rather complicated scattering matrix in this functional
equation, is defined as in [Brubaker et al. 2008, (37)]. As noted in [Brubaker et al.
2008, Section 7], given functional equations of this type, one can obtain analytic
continuation to a meromorphic function of Cr with an explicit description of polar
hyperplanes.

3. Definition of the prime-power coefficients

In this section, we give a precise definition of the coefficients H (n)(pk
; pl) needed

to complete the description of the multiple Dirichlet series for root systems of
type Cr and n odd. All the previous definitions are stated in sufficient generality
for application to multiple Dirichlet series for any reduced root system 8 and any
positive integer n. Only the prime-power coefficients require specialization to our
particular root system 8 = Cr , though this remains somewhat complicated. We
summarize the definition at the end of the section.

The vector l = (l1, l2, . . . , lr ) appearing in H (n)(pk
; pl) can be associated to a

dominant weight for Sp2r (C) of the form

(25) λ= (l1+ l2+ · · ·+ lr , . . . , l1+ l2, l1).
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The contributions to H (n)(pk
; pl) will then be parametrized by basis vectors of the

highest weight representation of highest weight λ+ρ, where ρ is the Weyl vector
for Cr defined in (6), so that

(26) λ+ ρ = (l1+ l2+ · · ·+ lr + r, . . . , l1+ l2+ 2, l1+ 1)=: (Lr , . . . , L1).

In [Brubaker et al. 2007], prime-power coefficients for multiple Dirichlet series
of type A were attached to Gelfand–Tsetlin patterns, which parametrize highest
weight vectors for SLr+1(C) (see [Gelfand and Tsetlin 1950]). Here, we use
an analogous basis for the symplectic group, according to branching rules given
in [Zhelobenko 1962]. We will continue to refer to the objects comprising this
basis as Gelfand–Tsetlin patterns, or GT-patterns.

More precisely, a GT-pattern P has the form

(27) P =

a0,1 a0,2 · · · a0,r

b1,1 b1,2 · · · b1,r−1 b1,r

a1,2 · · · a1,r
. . .

. . .
...

ar−1,r

br,r

where the ai, j , bi, j are nonnegative integers and the rows of the pattern interleave.
That is, for all ai, j , bi, j in the pattern P above,

min(ai−1, j , ai, j )≥ bi, j ≥max(ai−1, j+1, ai, j+1),

min(bi+1, j−1, bi, j−1)≥ ai, j ≥max(bi+1, j , bi, j ).

The set of all patterns with top row (a0,1, . . . , a0,r ) = (Lr , . . . , L1) form a basis
for the highest weight representation with highest weight λ+ ρ. Hence, we will
consider GT-patterns with top row (Lr , . . . , L1) as in (26), and refer to this set of
patterns as GT(λ+ ρ).

The contributions to each H (n)(pk
; pl) with both k and l fixed come from a

single weight space corresponding to k = (k1, . . . , kr ) in the highest weight rep-
resentation λ+ ρ corresponding to l . We first describe how to associate a weight
vector to each GT-pattern. Let

(28) sa(i) :=
r∑

m=i+1

ai,m and sb(i) :=
r∑

m=i

bi,m

be the row sums for the respective rows of a’s and b’s in P . (Here we under-
stand that sa(r)= 0 corresponds to an empty sum.) Then define the weight vector
wt(P)= (wt1(P), . . . ,wtr (P)) by

(29) wti = wti (P)= sa(r − i)− 2sb(r + 1− i)+ sa(r + 1− i), i = 1, . . . , r.
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As the weights are generated in turn, we begin at the bottom of the pattern P and
work our way up to the top. Our prime-power coefficients will then be supported
at (pk1, . . . , pkr ) with

(30) k1 =
1
2

r∑
j=1

wt j +L j , ki =

r∑
j=i

(
wt j +L j

)
, i = 2, . . . , r,

so that in particular, the ki are nonnegative integers.
In terms of the GT-pattern P , the reader may check that

k(P)= (k1(P), k2(P), . . . , kr (P)),

with

k1(P)= sa(0)−
r∑

m=1

(sb(m)− sa(m)) ,

ki (P)= sa(0)− 2
r+1−i∑
m=1

(sb(m)− sa(m))− sa(r + 1− i)+
r+1−i∑
m=1

a0,m

(31)

for 1< i ≤ r .
Then we define

(32) H (n)(pk
; pl)= H (n)(pk1, . . . , pkr ; pl1, . . . , plr )=

∑
P∈GT(λ+ρ)

k(P)=(k1,...,kr )

G(P),

where the sum is over all GT-patterns P with top row (Lr , . . . , L1) as in (26) sat-
isfying the condition k(P)= (k1, . . . , kr ) and G(P) is a weighting function whose
definition depends on the following elementary quantities. To each pattern P ,
define the corresponding data

(33) vi, j =

j∑
m=i

(ai−1,m − bi,m), wi, j =

r∑
m= j

(ai,m − bi,m), ui, j = vi,r +wi, j ,

where we understand the entries ai, j or bi, j to be 0 if they do not appear in the
pattern P .

Remark 6. The integers ui, j and vi, j have representation-theoretic meaning in
terms of Kashiwara raising and lowering operators in the crystal graph associ-
ated to the highest weight representation of highest weight λ+ ρ for Uq(sp(2r)),
the quantized universal enveloping algebra of the Lie algebra sp(2r). See [Littel-
mann 1998] for details, particularly Corollary 2 of Section 6. See also [Brubaker
et al. 2011a; 2011b] for a more complete description in crystal language, focus-
ing mainly on type A. We find this interpretation quite striking in light of the
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connection to Whittaker models on the metaplectic group. Ultimately, this can
be seen as another instance of connections between quantum groups and principal
series representations in the spirit of [Lusztig 2003]. This is not a perspective we
emphasize here, but this line of inquiry is discussed further in [Beineke et al. 2010].

To each entry bi, j in P , associate

(34) γb(i, j)

=


gδ jr+1(pvi, j−1, pvi, j ) if bi, j = ai−1, j+1,

φ(pvi, j ) if ai−1, j < bi, j < ai−1, j+1, n | vi, j · (δ jr + 1),
0 if ai−1, j < bi, j < ai−1, j+1, n - vi, j · (δ jr + 1),
qvi, j if bi, j = ai−1, j ,

where gt(pα, pβ) is an n-th power Gauss sum as in (8), φ(pa) is the Euler phi func-
tion for OS/paOS , q = |OS/pOS|, and δ jr is the Kronecker delta function. These
cases may be somewhat reduced, using elementary properties of Gauss sums, to

(35) γb(i, j)=
{

qvi, j if bi, j = ai−1, j ,

gδ jr+1(pvi, j+bi, j−ai−1, j+1−1, pvi, j ) else.

To each entry ai, j in P , with i ≥ 1, we may associate

(36) γa(i, j)=


g1(pui, j−1, pui, j ) if ai, j = bi, j−1,

φ(pui, j ) if bi, j < ai, j < bi, j−1, n | ui, j ,

0 if bi, j < ai, j < bi, j−1, n - ui, j ,

qui, j if ai, j = bi, j ,

which can similarly be compacted to

(37) γa(i, j)=
{

qui, j if ai, j = bi, j ,

g1(pui, j−ai, j+bi, j−1−1, pui, j ) else.

We introduce terminology to describe relationships between elements in a pat-
tern P:

Definition 7. A GT-pattern P is minimal at bi, j if bi, j = ai−1, j . It is maximal
at bi, j if 1 ≤ j < r and bi, j = ai−1, j+1, or if bi,r = 0. If none of these equalities
holds, we say P is generic at bi, j .

Likewise, P is minimal at ai, j if ai, j = bi, j , and maximal at ai, j if ai, j = bi, j−1.
If neither equality holds, we say P is generic at ai, j .

Definition 8. A GT-pattern P is strict if its entries are strictly decreasing across
each horizontal row.
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Define the coefficients

(38) G(P)=
{∏

1≤i≤ j≤r γa(i, j)γb(i, j) if P is strict,
0 otherwise,

where we again understand γa(r, r) to be 1 since ar,r is not in the pattern P . Com-
bining these definitions gives a definition of the prime-power coefficients in the
series:

Definition 9 (summary of definitions for H ). Given any prime p, define

(39) H (n)(pk
; pl)=

∑
P∈GT(λ+ρ)

k(P)=k

G(P),

where the sum is over all GT-patterns with top row corresponding to λ+ ρ and
row sums fixed according to (31), and G(P) is given as in (38) above with γa(i, j)
and γb(i, j) of (37) and (35), respectively, defined in terms of vi, j and ui, j in (33).

In the right-hand side of (39), we have suppressed the dependence on n. This
is appropriate since the expressions in (35) and (37) are given in terms of Gauss
sums, which are defined uniformly for all n.

The coefficients H (n)(c;m) appearing in (1) are now implicitly defined by (39)
together with the twisted multiplicativity given in (17) and (19). The resulting
multiple Dirichlet series Z9(s;m) is initially absolutely convergent for <(si ) suf-
ficiently large. Indeed, if a pattern P has weight k = (k1, . . . , kr ), then

|G(P)|< qk1+···+kr ,

and the number of patterns in a given weight space is bounded as a function of m
corresponding to the highest weight vector.

4. Comparison in the stable case

We now compare our multiple Dirichlet series, having p-th-power coefficients as
defined in (39), with the multiple Dirichlet series defined for arbitrary root sys-
tems 8 in [Brubaker et al. 2008], when n is sufficiently large. In this section,
we determine the necessary lower bound on n explicitly, according to a stability
assumption introduced in [Brubaker et al. 2006]. With this lower bound, we can
then prove that for n odd, the two prescriptions agree.

Let m = (m1, . . . ,mr ) be a fixed r -tuple of nonzero OS integers. To any fixed
prime p in OS , set li = ordp(mi ) for i = 1, . . . , r . Then define λp as in (25), so
that in terms of the fundamental dominant weights εi , we have

λp =

r∑
i=1

liεi .
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Then we may define the function dλp on the set of positive roots 8+ by

(40) dλp(α)=
2〈λp + ρ, α〉

〈α, α〉
.

For ease of computation in the results that follow, normalize the inner product 〈 , 〉
so that ‖α‖2 = 〈α, α〉 = 1 if α is a short root, while ‖α‖2 = 2 if α is a long root.

Stability Assumption. Let α=
∑r

i=1 tiαi be the largest positive root in the partial
ordering for 8. Then for every prime p, we require that the positive integer n
satisfies

(41) n ≥ gcd(n, ‖α‖2) · dλp(α)= gcd(n, ‖α‖2) ·
r∑

i=1

ti (li + 1).

When the Stability Assumption holds, we say we are “in the stable case.” This
is well-defined since li = 0 for all i = 1, . . . , r for all but finitely many primes p.
For the remainder of this section, we work with a fixed prime p, and so write λ in
place of λp when no confusion can arise.

For 8 = Cr , let α1 denote the long simple root, so the largest positive root is
α1+

∑r
i=2 2αi . Moreover if n is odd, the condition (41) becomes

(42) n ≥ l1+ 1+
r∑

i=2

2(li + 1).

For any w ∈ W (8), define the set 8w = {α ∈ 8+ | w(α) ∈ 8−}. Following
[Brubaker et al. 2006; 2008], the p-th-power coefficients of the multiple Dirichlet
series in the stable case are given by

(43) H (n)
st (p

k1, . . . , pkr ; pl1, . . . , plr )=
∏
α∈8w

g‖α‖2(p
dλ(α)−1, pdλ(α)),

where the dependence on n occurs only in the n-th-power residue symbol in the
Gauss sums. In [Brubaker et al. 2008], it was established that the above defini-
tion of H (n)

st (p
k
; pl) produces a Weyl group multiple Dirichlet series Z∗(s,m)

with analytic continuation and functional equations (of the form in the Conjecture)
provided the Stability Assumption on n holds. The proof works for any reduced
root system 8. In this section, we demonstrate that our definition H (n)(pk

; pl) in
terms of GT-patterns as in (39) matches that in (43) for n satisfying the (41) of the
Stability Assumption.

Definition 10. If P ∈ GT(λ+ ρ) is a GT-pattern and G(P) is defined as in (38),
then P is said to be stable if G(P) 6= 0 for some (odd) n satisfying (41) of the
Stability Assumption.
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As we will see in the following result, if P is stable for one such n, then G(P) is
nonzero for all n satisfying (41). These are the relevant patterns we must consider in
establishing the equivalence of the two definitions H (n)

st (p
k
; pl) and H (n)(pk

; pl)

in the stable case, and we begin by characterizing all such patterns.

Proposition 11. A pattern P ∈ GT(λ+ ρ) is stable if and only if , in each pair of
rows in P with index i (that is, pattern entries {bi, j , ai, j }

r
j=i ), the ordered set

{bi,i , bi,i+1, . . . , bi,r , ai,r , ai,r−1, . . . , ai,i+1}

has an initial string in which all elements are minimal (as in Definition 7) and all
remaining elements are maximal.

Proof. If any element ai, j or bi, j in the pattern P is neither maximal nor min-
imal, that is, is “generic” in the sense of Definition 7, then γa(i, j) (or γb(i, j),
respectively) is nonzero if and only if n | ui, j according to (36) (or n | vi, j (δ jr + 1)
according to (34), respectively). But one readily checks that n is precisely chosen
in the Stability Assumption so that n>maxi, j {ui, j , (δ jr+1)vi, j } and hence neither
divisibility condition can be satisfied. Therefore all entries of any stable P must
be maximal or minimal. The additional necessary condition that P be strict (as
in Definition 8) so that G(P) is not always zero according to (38) guarantees that
neighboring entries in the ordered set can never be of the form (maximal,minimal),
which gives the result. �

The number of stable patterns P is thus 2rr ! = |W (Cr )|, the order of the Weyl
group of Cr .

4.1. Action of W on Euclidean space. In demonstrating the equality of the two
prime-power descriptions, it was necessary to use an explicit coordinatization of
the root system embedded in Rr ; it would be desirable to find a coordinate-free
proof. Let ei be the standard basis vector (1 in i-th component, 0 elsewhere) in Rr .
Choose the following coordinates for the simple roots of Cr :

(44) α1 = 2e1, α2 = e2− e1, . . . , αr = er − er−1.

Consider an element w ∈ W (Cr ), the Weyl group of Cr . As an action on Rr , this
group is generated by all permutations σ of the basis vectors e1, . . . , er and all
reflections ei 7→ −ei for i = 1, . . . , r . Thus we may describe the action explicitly
using ε(i)w ∈ {+1,−1} for i = 1, 2, . . . , r so that

(45) w(t1, t2, . . . , tr )= (ε(1)w tσ−1(1), ε
(2)
w tσ−1(2), . . . , ε

(r)
w tσ−1(r)).

In the following proposition, we associate a unique Weyl group element w with
each GT-pattern P that is stable. In this result, and in the remainder of this section,
it will be convenient to refer to the rows of P beginning at the bottom rather than
the top. We will therefore discuss rows ar−i , for 1≤ i ≤ r , for instance.
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Proposition 12. Let P be a stable strict GT-pattern with top row Lr Lr−1 · · · L1,
hence with associated dominant weight vector λ =

∑r
i=1 `iεi . Let nonnegative

integers k1(P), . . . , kr (P) be defined as in (31), and let kr+1(P) = 0. Then there
exists a unique element w ∈W (Cr ) such that

(46) λ+ ρ−w(λ+ ρ)= (2k1− k2, k2− k3, . . . , kr−1− kr , kr )=

r∑
i=1

kiαi .

In fact, for i = 2, . . . , r ,

(47) ki+1− ki + L i =−wti = ε(i)w Lσ−1(i),

where Lσ−1(i) is the unique element in row ar−i that is not in row ar+1−i , and the
weight coordinate wti is as in (29). Similarly,

(48) k2− 2k1+ L1 =−wt1 = ε(1)w Lσ−1(1),

where Lσ−1(1) is the unique element in row ar−1 that is not in row ar .

Proof. The definitions for ρ and λ give λ+ρ = (L1, . . . , Lr ) in Euclidean coordi-
nates. Compute the coordinates of (λ+ ρ)−

∑r
i=1 kiαi using (31) gives

(49) L1+ k2− 2k1 =−
(
sa(r − 1)− 2sb(r)+ sa(r)

)
=−wt1

and similarly, for i = 2, . . . , r ,

(50) L i + ki+1− ki =−
(
sa(r − i)− 2sb(r + 1− i)+ sa(r + 1− i)

)
=−wti ,

so that

(51) λ+ ρ−

r∑
i=1

kiαi =−(wt1,wt2, . . . ,wtr ).

Each pattern P has a unique weight vector. Since P is a stable pattern, it is easy
to see that the i-th weight consists of the unique entry that is in row ar−i but not in
row ar+1−i , with a negative sign if this entry is present in row br+1−i , or a positive
sign if not. Thus the weight vector is simply a permutation of the entries in the top
row, with a choice of sign in each entry. We may find a unique w (whose action is
described above), for which

(52) w(λ+ ρ)= (ε(1)w Lσ−1(1), . . . , ε
(r)
w Lσ−1(r))=−(wt1,wt2, . . . ,wtr ).

Thus Lσ−1(i) is the unique element in row ar−i that is not present in row ar+1−i . �

Corollary 13. Let P be a stable strict GT-pattern with top row Lr Lr−1 · · · L1.
For 1≤ i ≤ r , the set of elements in row ar−i satisfies

(53) {ar−i,r+1−i , ar−i,r+2−i , . . . , ar−i,r } = {Lσ−1(i), Lσ−1(i−1), . . . , Lσ−1(1)}.
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Proof. From Proposition 12, Lσ−1( j) is the unique element in row ar− j that is not in
row ar+1− j . Working downwards, eliminate these elements for j = i, i+1, . . . , r ,
in order to reach row ar− j . This leaves the remaining set. �

4.2. Agreement of the multiple Dirichlet series.

Theorem 1. Let 8 = Cr and choose a positive integer n such that (41) of the
Stability Assumption holds.

(i) Let P be a stable strict GT-pattern, and let G(P) be the product of Gauss
sums defined in (38) in Section 2. Let w be the Weyl group element associated
to P as in Proposition 12. Then

G(P)=
∏
α∈8w

g‖α‖2(p
dλ(α)−1, pdλ(α)),

matching the definition given in (43), with dλ(α) as defined in (40).

(ii) Hst(c1, . . . , cr ;m1, . . .mr )= H (n)(c1, . . . , cr ;m1, . . .mr ).

That is, the Weyl group multiple Dirichlet series in the twisted stable case is identi-
cal to the series defined by the Gelfand–Tsetlin description for n sufficiently large.

Remark 14. The Conjecture presented in the introduction states that n should be
odd. In fact, the proof of Theorem 1 works for any n satisfying the Stability As-
sumption, regardless of parity. However, we believe this is an artifact of the relative
combinatorial simplicity of the “stable” coefficients. As noted in Remark 3, one
expects a distinctly different combinatorial recipe than the one presented in this
paper to hold uniformly for all even n.

Proof. It is clear that part (i) implies part (ii), since both coefficients are obtained
from their prime-power parts by means of twisted multiplicativity.

In proving part (i), let P be the GT-pattern with top row Lr Lr−1 · · · L1 associ-
ated to w by Proposition 12. Since P is stable, we have ui, j = 0 if P is minimal
at ai, j , and vi, j = 0 if P is minimal at bi, j . Thus

G(P)=
∏

ai, j maximal

g1(pui, j−1, pui, j )
∏

bi, j maximal

gδ jr+1(pvi, j−1, pvi, j ).

It suffices to show that the set of Gauss sum exponents ui, j and vi, j at maximal
entries in P coincides with the set of dλ(α) as α runs over 8w. (In fact, we show a
slightly sharper statement, which matches Gauss sum exponents at maximal entries
in pairs of rows of P with values of dλ(α) as α runs over certain subsets of 8w.)

The number of maximal elements in a pair of rows br+1−i and ar+1−i is de-
scribed in the next result. First, we say that (i, j) is an i -inversion for w−1 if j < i
and σ−1( j) > σ−1(i). The number of these pairs, as well as the number of those
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for which the inequality is preserved rather than inverted, will play an important
role in counting Gauss sums. To this end, define the quantities

invi (w
−1)= #{(i, j) | σ−1( j) > σ−1(i) and j < i},

pri (w
−1)= #{(i, j) | σ−1( j) < σ−1(i) and j < i}.

(54)

Proposition 15. Let P be a stable strict GT-pattern with top row Lr Lr−1 · · · L1,
and let w ∈ W be the Weyl group element associated to P as in Proposition 12.
Let invi (w) and pri (w) be as defined in (54), and let mi (P) denote the number of
maximal entries in rows br+1−i and ar+1−i together. Then,

(55) mi (P)=
{

invi (w
−1) if ε(i)w =+1,

i + pri (w
−1) if ε(i)w =−1.

Proof. Recall from our means of associating w to P that ε(i)w is opposite in sign
from the i-th Gelfand–Tsetlin weight. Consider row br+1−i together with the rows
immediately above and below:

ar−i,r+1−i ar−1,r+2−i · · · · · · ar−i,r

br+1−i,r+1−i · · · · · · br+1−i,r

ar+1−i,r+2−i · · · · · · ar+1−i,r

Suppose ε(i)w =+1, so Lσ−1(i) is missing from row ar+1−i but present in row br+1−i .
Then there are no maximal entries in row br+1−i , and mi maximal entries in
row ar+1−i , so

br+1−i,r+ j−i = ar−i,r+ j−i for 1≤ j ≤ i,(56)

ar+1−i,r+( j+1)−i =

{
br+1−i,r+ j−i for 1≤ j ≤ mi ,

br+1−i,r+( j+1)−i for mi + 1≤ j ≤ i.
(57)

Moreover, the entry Lσ−1(i) in row br+1−i marks the switch from maximal to min-
imal as we move from left to right in row ar+1−i . That is, all entries in row ar+1−i

to the left of Lσ−1(i) are maximal, while all those to the right are minimal. By
Corollary 13, row ar+1−i consists of the elements in the set {Lσ−1( j) | j < i}. Since
the rows of P are strictly decreasing, this means the maximal entries in row ar+1−i

are given by

{Lσ−1( j) | j < i and σ−1( j) > σ−1(i)}.

This set clearly has order invi (w
−1).

Now suppose ε(i)w = −1, so that Lσ−1(i) is missing from both row ar+1−i and
row br+1−i . Then all entries in row ar+1−i are maximal, and the last mi − i + 1



WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C 31

entries in row br+1−i are maximal, so

ar+1−i,r+( j+1)−i = br+1−i,r+ j−i for 1≤ j ≤ i − 1,(58)

br+1−i,r+ j−i =


ar−i,r+ j−i for 1≤ j ≤ 2i − 1−mi ,

ar−i,r+( j+1)−i for 2i −mi ≤ j ≤ i − 1,
0 for j = i.

(59)

The entry Lσ−1(i) in row ar−i marks the switch from minimal to maximal as we
move to the right in row br+1−i . That is, all entries below and to the left of Lσ−1(i)
are minimal, while those below and to the right are maximal. Since rows br+1−i and
ar+1−i are identical, the entries of row br+1−i are {Lσ−1( j) | j < i}, by Corollary 13.
Moreover, since rows are strictly decreasing, the maximal entries in row br+1−i are
given by

{Lσ−1( j) | j < i and σ−1( j) < σ−1(i)} ∪ {0}.

This set has order pri (w
−1)+1. Counting maximal entries in both rows, we obtain

mi = (i − 1)+ pri (w
−1)+ 1= i + pri (w

−1). �

Next, we establish a finer characterization of 8w = {α ∈8+ |w(α) ∈8−}. For
8 = Cr , the roots in 8+ take different forms; the positive long roots are 2e` for
1 ≤ ` ≤ r , while the positive short roots are em ± e` for 1 ≤ ` < m ≤ r . We will
express 8w as a disjoint union of subsets indexed by i ∈ {1, 2, . . . , r}. To this end,
let i be fixed, and let j be any positive integer such that j < i . Consider positive
roots of the following three types:

Type L: αi,w := 2eσ−1(i).

Type S+: α+i, j,w := eσ−1( j)+ eσ−1(i).

Type S−: α−i, j,w :=

{
eσ−1( j)− eσ−1(i) if σ−1( j) > σ−1(i),

eσ−1(i)− eσ−1( j) if σ−1( j) < σ−1(i).

Clearly we encounter each positive root exactly once as i and j vary as indicated.
Let 8(i)w ⊆8w denote the set of all αi,w, α+i, j,w, α−i, j,w belonging to 8w. The next
lemma completely characterizes 8(i)w .

Lemma 16. Let i ∈ {1, 2, . . . , r} be fixed, let j be any positive integer with j < i ,
and let 8(i)w be as defined above.

(1) αi,w ∈8
(i)
w if and only if ε(i)w =−1.

(2) α−i, j,w ∈8
(i)
w if and only if σ−1( j)<σ−1(i) and ε(i)w =−1, or σ−1( j)>σ−1(i)

and ε(i)w =+1.

(3) α+i, j,w ∈8
(i)
w if and only if ε(i)w =−1.

Consequently, |8(i)w | = mi (P), as defined in Proposition 15.
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Proof. As defined in (45), w acts on a basis vector e` simply as w(e`)= ε
(`)
w eσ(`),

and this action extends linearly to each of the roots. Part (1) is immediate from the
definition of 8w.

For part (2), if σ−1( j) < σ−1(i) then

w(α−i, j,w)= ε
(i)
w ei − ε

( j)
w e j .

If ε(i)w = +1, then since j < i , we have w(α−i, j,w) ∈ 8
+ regardless of the value

of ε( j)
w . Thus α−i, j,w /∈ 8

(i)
w . Similarly, if ε(i)w = −1, then since j < i , we have

w(α−i, j,w) ∈8
− regardless of the value of ε( j)

w . Thus α−i, j,w ∈8
(i)
w .

On the other hand, if σ−1( j) > σ−1(i) then

w(α−i, j,w)= ε
( j)
w e j − ε

(i)
w ei .

Considering the cases ε(i)w = +1,−1 in turn, we find that regardless of the value
of ε( j)

w , we have w(α−i, j,w) ∈8
(i)
w if and only if ε(i)w =+1.

For part (3), we have

w(α+i, j,w)= ε
( j)
w e j + ε

(i)
w ei .

Using a similar argument, we see that independently of the value of ε( j)
w , w(α+i, j,w)

is a negative root when ε(i)w is negative, and a positive root otherwise.
Finally, we count elements in 8(i)w . If ε(i)w =+1, the conditions yield invi (w

−1)

elements of type S−, and zero elements of types L and S+. On the other hand, if
ε
(i)
w =−1, there is one element of type L, i−1 elements of type S+, and pri (w

−1)

elements of type S−. In either case, |8(i)w | = mi (P). �

For each of the roots in 8(i)w , we compute the corresponding dλ (as defined
in (40)) below.

Lemma 17. With the notation as above, we have

(1) dλ(αi,w)= Lσ−1(i).

(2) dλ(α−i, j,w)=

{
Lσ−1( j)− Lσ−1(i) if σ−1( j) > σ−1(i),
Lσ−1(i)− Lσ−1( j) if σ−1( j) < σ−1(i).

(3) dλ(α+i, j,w)= Lσ−1( j)+ Lσ−1(i).

Proof. First, we compute dλ(αi,w)= dλ(2eσ−1(i)). Using (44), we have

(60) αi,w = α1+

σ−1(i)∑
k=2

2αk,
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where we regard the sum to be 0 if σ−1(i) = 1. Since 〈αi,w, αi,w〉 = 〈α1, α1〉 = 2
and 〈αk, αk〉 = 1 for k = 2, . . . , r , we have

(61) dλ(αi,w)=
2〈λ+ ρ, αi,w〉

〈αi,w, αi,w〉
=

r∑
m=1

(lm + 1)
σ−1(i)∑

k=1

2〈εm, αk〉

〈αk, αk〉
= Lσ−1(i).

Next, we compute dλ(α−i, j,w) = dλ(eσ−1(i)− eσ−1( j)) if σ−1( j) < σ−1(i). (The
computations if σ−1( j) > σ−1(i) are analogous.) In this case, (44) gives

(62) α−i, j,w =

σ−1(i)∑
k=σ−1( j)+1

αk,

where the sum is nonempty as σ−1( j) < σ−1(i). Since 〈α−i, j,w, α
−

i, j,w〉 = 1,

(63) dλ(α−i, j,w)=

r∑
m=1

(lm + 1)
σ−1(i)∑

k=σ−1( j)+1

2〈εm, αk〉

〈αk, αk〉
= Lσ−1(i)− Lσ−1( j).

Finally, we compute dλ(α+i, j,w)= dλ(eσ−1(i)+ eσ−1( j)). Here, (44) gives

(64) α+i, j,w = α1+

σ−1( j)∑
k=2

2αk +

σ−1(i)∑
k=σ−1( j)+1

αk,

where the first sum is 0 if σ−1( j)= 1. Since 〈α+i, j,w, α
+

i, j,w〉 = 1 as well, we have

dλ(α+i, j,w)=

r∑
m=1

(lm + 1)
( σ−1( j)∑

k=1

4〈εm, αk〉

〈αk, αk〉
+

σ−1(i)∑
k=σ−1( j)+1

2〈εm, αk〉

〈αk, αk〉

)
(65)

= Lσ−1(i)+ Lσ−1( j),

which completes the proof. �

Now let Di ={dλ(α) |α ∈8
(i)
w }. By Lemmas 16 and 17, we see that if ε(i)w =+1,

then

(66) Di = {Lσ−1( j)− Lσ−1(i) | j < i and σ−1( j) > σ−1(i)},

while if ε(i)w =−1, then

(67) Di = {Lσ−1(i)} ∪ {Lσ−1( j)+ Lσ−1(i) | j < i}

∪ {Lσ−1(i)− Lσ−1( j) | j < i and σ−1( j) < σ−1(i)}.

Now we examine the Gauss sums obtained from the GT-pattern P with top row
Lr Lr−1 · · · L1 associated to w. Suppose there are mi = mi (P) maximal entries



34 JENNIFER BEINEKE, BENJAMIN BRUBAKER AND SHARON FRECHETTE

in rows br+1−i and ar+1−i combined. First, suppose there are no maximal entries
in row br+1−i . Then the first mi entries in row ar+1−i (reading from the left) are
maximal. Since there are i − 1 entries in row ar+1−i , in this case we have mi < i .
We may apply (56) and (57) to compute the sums defining uk,` and vk,`. These
sums telescope, and we have

vr+1−i,r+ j−i = 0 for 1≤ j ≤ i − 1,

ur+1−i,r+( j+1)−i =

{
0 for mi + 1≤ j ≤ i,
ar−i,r+ j−i − br+1−i,r+(mi+1)−i for 1≤ j ≤ mi .

By Proposition 12, br+1−i,r+(mi+1)−i = Lσ−1(i), so to compute ur+1−i,r+( j+1)−i as
j varies, we must determine the set of values for ar−i,r+ j−i with 1≤ j ≤mi . Recall
that by Corollary 13, the entries in row ar−i are given by

(68) {Lσ−1( j) | 1≤ j ≤ i}.

The rows are strictly decreasing, so the entries appearing left of ar−1,r+(mi+1)−i =

Lσ−1(i) have an index greater than σ−1(i). That is,

(69) {ar−i,r+ j−i | 1≤ j ≤ mi } = {Lσ−1( j) | j < i and σ−1( j) > σ−1(i)}.

Thus the nonzero Gauss sum exponents for rows br+1−i and ar+1−i are given by
ur+1−i,r+( j+1)−i = Lσ−1( j) − Lσ−1(i) with j < i and σ−1( j) > σ−1(i). Finally,
ε
(i)
w =+1, since there are no maximal entries in row br+1−i in this case. Thus our

set of nonzero Gauss sum exponents matches the set Di as given in (66).
Second, suppose there are maximal entries in row br+1−i . Consequently, all

entries in row ar+1−i are maximal, so there are ni := mi − i + 1 maximal entries
in row br+1−i . We may apply (58) and (59) to compute the sums defining uk,` and
vk,`. These sums telescope, and we have

vr+1−i,r+ j−i =


0 for 1≤ j ≤ i − ni ,

ar−i,r+1−ni − ar−i,r+( j+1)−i for i + 1− ni ≤ j ≤ i − 1,
ar−i,r+1−ni for j = i,

ur+1−i,r+( j+1)−i = ar−i,r+1−ni + ar+1−i,r+( j+1)−i for 1≤ j ≤ i − 1.

By Proposition 12, ar+1−i,r+1−ni = Lσ−1(i), and thus vr+1−i,r= Lσ−1(i). To compute
the remaining exponents vr+1−i,r+ j−i as j varies, we again appeal to (68). Since
the rows are strictly decreasing, the entries appearing to the right of Lσ−1(i) in
row ar−1 must have an index smaller than σ−1(i). That is,

{ar−i,r+( j+1)−i | i + 1− ni ≤ j ≤ i − 1} = {Lσ−1( j) | j < i and σ−1(i) > σ−1( j)}.

Thus vr+1−i,r+ j−i = Lσ−1(i)−Lσ−1( j) with i+1−ni ≤ j < i and σ−1(i)>σ−1( j).
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To compute the exponents ur+1−i,r+( j+1)−i , we note that by Corollary 13, the
entries in row ar+1−i are the Lσ−1( j) for which 1≤ j ≤ i − 1. Thus

(70) ur+1−i,r+( j+1)−i = Lσ−1(i)+ Lσ−1( j),

with 1 ≤ j ≤ i − 1. Finally, ε(i)w = −1, since there are maximal entries in row
br+1−i . Combining the cases above, we match the set Di given in (67).

This completes the proof of Theorem 1. �

5. Comparison with the Casselman–Shalika formula

The main focus of this section is the proof of Theorem 2, using a generating func-
tion identity given in [Hamel and King 2002]. This identity may be regarded as
a deformation of the Weyl character formula for Sp(2r), though it is stated in the
language of symplectic, shifted tableaux (whose definition we will soon recall) so
we postpone the precise formulation. Recall that our multiple Dirichlet series take
the form

Z9(s;m)=
∑

c=(c1,...,cr )∈(OS/O
×

S )
r

H (n)(c;m)9(c)
|c1|2s1 · · · |cr |

2sr
.

In brief, we show that for n= 1 our formulas for the prime-power supported contri-
butions of Z9(s,m) match one side of Hamel and King’s identity, while the other
side of the identity is given in terms of a character of a highest weight representation
for Sp(2r). By combining the Casselman–Shalika formula with Hamel and King’s
result, we will establish Theorem 2.

5.1. Specialization of the multiple Dirichlet series for n = 1. Many aspects of
the definition Z9 are greatly simplified when n = 1. First, we may take 9 to be
constant, since the Hilbert symbols appearing in the definition (16) are trivial for
n = 1. Moreover, the coefficients H (n)(c;m) for n = 1 are perfectly multiplicative
in both c and m. That is, according to (18),

H (1)(c · c′;m)= H (1)(c;m)H (1)(c′;m) when gcd(c1 · · · cr , c′1 · · · c
′

r )= 1,

and according to (19),

H (1)(c;m ·m′)= H (1)(c;m) when gcd(m′1 · · ·m
′

r , c1 · · · cr )= 1.

Hence the global definition of Z9(s;m) for fixed m is easily recovered from its
prime-power supported contributions as follows:

(71) Z9(s;m)=
∏
p∈OS

( ∑
k=(k1,...,kr )

H (1)(pk
; pl)

|p|2k1s1 · · · |p|2kr sr

)
,
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with l = (l1, . . . , lr ) given by ordp(mi ) = li for i = 1, . . . , r . The sum on the
right-hand side runs over the finite number of vectors k for which H (n)(pk

; pl)

has nonzero support for fixed l according to (39).
We now simplify our formulas for H (n)(pk

; pl) when n = 1. As before, set
q = |OS/pOS|. With definitions as given in (34) and (36), let

γ̃a(i, j) := q−ui, jγa(i, j) and γ̃b(i, j) := q−vi, jγb(i, j).

Then by analogy with the definitions (38) and (39), define

G̃(P) :=
∏

1≤i≤ j≤r

γ̃a(i, j)γ̃b(i, j),

H̃ (1)(pk
; pl)= H̃ (1)(pk1, . . . , pkr ; pl1, . . . , plr ) :=

∑
k(P)=(k1,...,kr )

G̃(P),

where again the sum is taken over GT-patterns P with fixed top row (Lr , . . . , L1)

as in (26). By elementary properties of Gauss sums, when n = 1 we have, for a
strict GT-pattern P ,

(72) γ̃a(i, j)=


1 if P is minimal at ai, j ,

1− 1/q if P is generic at ai, j ,

−1/q if P is maximal at ai, j ,

recalling the language of Definition 7 and similarly,

(73) γ̃b(i, j)=


1 if P is minimal at bi, j ,

1− 1/q if P is generic at ai, j ,

−1/q if P is maximal at bi, j .

When P is generic at ai, j (respectively bi, j ), the condition n | ui, j (respectively
n | vi, j ) is trivially satisfied, since n = 1.

We claim that

(74) H (1)(pk
; pl)= H̃ (1)(pk

; pl) qk1+···+kr .

This equality follows from the definitions of H (1)(pk
; pl) and H̃ (1)(pk

; pl), after
matching powers of q on each side by applying the following combinatorial lemma.

Lemma 18. For each GT-pattern P ,

(75)
r∑

i=1

ki (P)=
r∑

i=1

( r∑
j=i

vi, j +

r∑
j=i+1

ui, j

)
.
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Proof. We proceed by expanding each side in terms of the entries ai, j and bi, j in
the GT-pattern P , using the definitions above. Applying (31), we have

r∑
i=1

ki (P)=
(

r sa(0)+
r−1∑
m=1

sa(m)+
r∑

i=2

r+1−i∑
m=1

(2 sa(m)+a0,m)−

r∑
i=2

sa(r+1− i)
)

−

( r∑
m=1

sb(m)+
r∑

i=2

r+1−i∑
m=i

2 sb(m)
)
.

Since
∑r

i=2 sa(r+1−i)=
∑r−1

m=1 sa(m), the corresponding terms in the first paren-
theses cancel. After interchanging order of summation and evaluating sums over i ,
we obtain

r∑
i=1

ki (P)= r sa(0)+
r∑

m=1

(r −m) a0,m

+

r−1∑
m=1

2(r −m) sa(m)−
r∑

m=1

(1+ 2(r −m)) sb(m).

Finally, applying (28) and combining the first two terms, we conclude that

(76)
r∑

i=1

ki (P)=
r∑

m=1

(2r −m) a0,m +

r−1∑
m=1

r∑
`=m+1

2(r −m) am,`

−

r∑
m=1

r∑
`=m

(1+ 2(r −m)) bm,`.

On the other hand, from (33), after recombining terms we have
r∑

i=1

( r∑
j=i

vi, j +

r∑
j=i+1

ui, j

)

=−

r∑
i=1

(
bi,i +

r∑
j=i+1

(
bi, j + 2

r∑
m=i

bi,m

))

+

r∑
i=1

(
ai−1,i +

r∑
j=i+1

( j∑
m=i

2 ai−1,m +

r∑
m= j+1

ai−1,m +

r∑
m= j

ai,m

))
.

After interchanging order of summation and evaluating sums on j , this equals
r∑

i=1

(
(1+ 2(r − i)) ai−1,i +

r∑
m=i+1

(2r + 1− (i +m)) ai−1,m +

r∑
m=i+1

(m− i) ai,m

)
−

r∑
i=1

r∑
m=i

(1+ 2(r − i)) bi,m .
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The i = 1 terms from the first two summands in the big parentheses evaluate to∑r
m=1(2r−m) a0,m , the first term in (76). After reindexing, the remaining terms in

the parentheses give
∑r−1

i=1
∑r

m=i+12(r− i) ai,m . Relabeling indices where needed
gives the result. �

We now manipulate the prime-power supported contributions to the multiple
Dirichlet series as in (71). Setting yi = |p|−2si for i = 1, . . . , r and using (74) gives

(77)
∑

k=(k1,...,kr )

H (1)(pk1, . . . , pkr )

|p|2k1s1 · · · |p|2kr sr

=

∑
k=(k1,...,kr )

H̃ (1)(pk1, . . . , pkr ) (qy1)
k1 · · · (qyr )

kr .

After making the change of variables

qy1 7→ x2
1 , qy2 7→ x−1

1 x2, . . . , qyr 7→ x−1
r−1xr ,

the right-hand side of (77) becomes∑
(k1,...,kr )

H̃ (1)(pk1, . . . , pkr ) x2k1
1 (x−1

1 x2)
k2 · · · (x−1

r−1xr )
kr .

By the relationship between the coordinates ki and the weight coordinates wti given
in (30), this is just

x L1
1 · · · x

Lr
r

∑
(k1,...,kr )

H̃ (1)(pk1, . . . , pkr ) xwt1
1 · · · x

wtr
r ,

where the L i relate to li as in (26). Finally, letting

gen(P)= #{generic entries in P} and max(P)= #{maximal entries in P}

and using the simplifications for n = 1 in (72) and (73) for H̃ (1) in terms of G̃(P),
then

(78)
∑

k=(k1,...,kr )

H (1)(pk1, . . . , pkr )

|p|2k1s1 · · · |p|2kr sr

= x L1
1 · · · x

Lr
r

∑
(k1,...,kr )

(
−1
q

)max(P)(
1− 1

q

)gen(P)
xwt1

1 · · · x
wtr
r ,

with the xi given in terms of |p|−2si by the composition of the above changes of
variables. The right-hand side of (78) is now amenable to comparison with the
identity of Hamel and King.



WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C 39

5.2. Symplectic shifted tableaux. In order to state the needed identity of Hamel
and King, we introduce some additional terminology. To each strict GT-pattern P ,
we may associate an Sp(2r)-standard shifted tableau of shape λ+ ρ. Below, we
follow [Hamel and King 2002], specializing Definition 2.5 to our circumstances.
Consider the partition µ of λ+ρ, whose parts are given by µi = l1+· · · li+r−i+1
for i = 1, . . . , r . (These are simply the entries in the top row of the pattern P
in GT(λ+ ρ).) Such a partition defines a shifted Young diagram constructed as
follows: |µ| boxes are arranged in r rows of lengths µ1, µ2, . . . , µr , and the rows
are left-adjusted along a diagonal line. For instance, if µ = (7, 4, 2, 1), then our
tableau has the following shape:

It remains to define how the tableau is to be filled. The alphabet will consist of the
set A= {1, 2, . . . , r}∪{1, 2, . . . r}, with ordering 1< 1< 2< 2< · · ·< r < r . We
place an entry from A in each of the boxes of the tableau so that the entries are:
(1) weakly increasing from left to right across each row and from top to bottom
down each column, and (2) strictly increasing from top-left to bottom-right along
each diagonal.

An explicit correspondence between Sp(2r)-standard shifted tableaux and strict
GT-patterns is given in [Hamel and King 2002, Definition 5.2]. Below we de-
scribe the prescription for determining SP , the tableau corresponding to a given
GT-pattern P , with notation as in (27).

(1) For j = i, . . . , r , the entries ai−1, j of P count, respectively, the number of
boxes in the ( j−i+1)–st row of SP whose entries are less than or equal to the
value r − i + 1.

(2) For j = i, . . . , r , the entries bi, j of P count, respectively, the number of boxes
in the ( j−i+1)–st row of SP whose entries are less than or equal to the value
r − i + 1.

An example of this bijection is given in Figure 1.
We also associate the following statistics to any symplectic shifted tableau S:

(1) wt(S)= (wt1(S),wt2(S), . . . ,wtr (S)) for wti (S)= #(i entries)−#(ı̄ entries).

(2) conk(S) is the number of connected components of the ribbon strip of S con-
sisting of all the entries k.

(3) rowk(S) is the number of rows of S containing an entry k, and similarly
rowk(S) is the number of rows of S containing an entry k.
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9 6 5 3 2
7 6 5 3 2

7 5 4 2
5 4 3 1

5 3 1
4 2 1

4 2
3 2

3
1

←→

1 1 1 2 3 4 4 5 5
2 2 3 4 4 5

3 4 4 4 5
4 4 5

5 5

Figure 1. The bijection between GT-patterns and symplectic
shifted tableaux.

(4) str(S) is the total number of connected components of all ribbon strips of S.

(5) bar(S) is the total number of barred entries in S.

(6) hgt(S)=
∑r

k=1(rowk(S)− conk(S)− rowk(S)).

It is easy to see that the weights associated with the tableaux SP are identical to
the previously defined weights associated with the pattern P .

Theorem [Hamel and King 2002, Theorem 1.2]. Let λ be a partition into at most
r parts, and let ρ = (r, r − 1, . . . , 1). Then defining

(79) DSp(2r)(x; t)=
r∏

i=1

xr−i+1
i

r∏
i=1

(1+ t x−2
i )

∏
1≤i< j≤r

(1+ t x−1
i x j )(1+ t x−1

i x−1
j ),

and letting spλ(x) := spλ(x1, . . . , xr ) be the character of the highest weight repre-
sentation of Sp(2r) with highest weight λ, we have

(80) DSp(2r)(t x; t) spλ(x)=
∑

S∈STλ+ρ(Sp(2r))

thgt(S)+r(r+1)/2(1+ t)str(S)−r xwt(S),

where STλ+ρ(Sp(2r)) denotes the set of all Sp(2r)-standard shifted tableaux of
shape λ+ ρ.

Remark 19. The identity appears in the theorem cited in the form

(81) DSp(2r)(x; t) spλ(x; t)=
∑

S∈STλ+ρ(Sp(2r))

thgt(S)+2 bar(S)(1+ t)str(S)−r xwt(S),

where spλ(x; t) is a simple deformation of the usual symplectic character given
in [Hamel and King 2002, (1.13)]. To relate (81) to (80), put xi → t xi for each
i = 1, . . . , r , which introduces a factor of t

∑
wti (S) on the right-hand side. From
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the definition of wt(S) and the correspondence with P , we see that

(82)
r∑

i=1

wti (S)=
r(r + 1)

2
− 2 bar(S)+

r∑
i=1

(r − i + 1)li .

Moreover, it is a simple exercise to show that

(83) spλ(t x; t)= t
∑
(r−i+1)li spλ(x).

Applying the previous two identities to (81) gives (80).

We now show that the right-hand side of (80) may be expressed in terms of the
right-hand side of (78), leading to an expression for the generating function for
H(pk1, . . . , pkr ) in terms of a symplectic character. The following lemma relates
the exponents in this equation back to our GT-pattern P and the statistics of (78).

Lemma 20. Let P be a strict GT-pattern of rank r and SP its associated standard
shifted tableau. Then we have the following relationships:

(a) gen(P)= str(SP)− r .

(b) max(P)= hgt(SP)+ r(r + 1)/2.

This is stated without proof implicitly in [Hamel and King 2002, Corollary 5.3],
using slightly different notation. The proof is elementary, but we include it in the
next section for completeness. Assuming the lemma, letting t =−1/q in (80), and
using (78) with |p| = q , we see that

(84)
∑

(k1,...,kr )

H(pk1, . . . , pkr )q−2k1s1 · · · q−2kr sr

= x L1
1 · · · x

Lr
r DSp(2r)(−x1/q, . . . ,−xr/q;−1/q) spλ(x1, . . . , xr ),

with the identification

(85) q1−2s1 = x2
1 , q1−2s2 = x−1

1 x2, . . . , q1−2sr = x−1
r−1xr .

One checks by induction on the rank r that, with xi assigned as above,

x1x2
2 · · · x

r
r DSp(2r)(−x1/q, . . . ,−xr/q;−1/q)=

∏
α∈8+

(1− q−(1+2B(α,s−(1/2)ρ∨)))

with B(α, s − 1
2ρ
∨) as defined in (3). Moving this product to the left-hand side

of (84), we can rewrite that equality as

(86)
∏
α∈8+

(1− q−(1+2B(α,s−(1/2)ρ∨)))−1
∑

(k1,...,kr )

H(pk1, . . . , pkr )q−2k1s1 · · · q−2kr sr

= x L1−1
1 · · · x Lr−r

r spλ(x1, . . . , xr ).
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The terms in the product are precisely the Euler factors for the normalizing zeta
factors of Z∗9(s;m) defined in (23) for the case n = 1. Hence, the terms on the
left-hand side of (86) constitute the complete set of terms in the multiple Dirichlet
series Z∗9(s;m) supported at monomials of the form |p|−k1s1−···−kr sr .

Finally, we can restate and prove our second main result.

Theorem 2. Let m = (m1, . . . ,mr ) ∈ OS with mi nonzero for all i . For each
prime p ∈ OS , let ordp(mi ) = li . Let H (n)(pk1, . . . , pkr ; pl1, . . . , plr ) with n = 1
be defined as in Section 5.1. Then the resulting multiple Dirichlet series Z∗9(s;m)
agrees with the (m1, . . . ,mr )-th Fourier–Whittaker coefficient of a minimal para-
bolic Eisenstein series on SO2r+1(FS).

Proof. In the case n=1, the multiple Dirichlet series Z∗9(s;m) is Eulerian. Indeed,
the power residue symbols used in the definition of twisted multiplicativity in (17)
and (19) are all trivial. Hence it suffices to check that the Euler factors for Z∗9
match those of the corresponding minimal parabolic Eisenstein series at each prime
p ∈ OS .

The Euler factors for the minimal parabolic Eisenstein series can be computed
using the Casselman–Shalika formula [1980, Theorem 5.4]. We briefly recall the
form of this expression for a split, reductive group G over a local field Fv with
usual Iwasawa decomposition G= AN K = BK . Let χ be an unramified character
of the split maximal torus A and consider the induced representation indG

B (χ).
Given an unramified additive character ψ of the unipotent N−(Fv), opposite the
unipotent N of B, there is an associated Whittaker functional

(87) Wψ(φ)=

∫
N−(Fv)

φ(n)ψ(n) dn,

where φ(ank) := χ(a)δB(a)1/2 is the normalized spherical vector with δB is the
modular quasicharacter. The associated Whittaker function is given by setting
Wφ(g) :=W (gφ) and is determined by its value on π−λ for λ ∈ X∗, the coweight
lattice and π a uniformizer for Fv. Then the Casselman–Shalika formula states
that Wφ(π

−λ)= 0 unless λ is dominant, in which case

(88) δB(π
−λ)1/2Wφ(π

−λ)=

( ∏
α∈8+

(1− q−1 t−α
∨

)

)
chλ(t),

where chλ is the character of the irreducible representation of the Langlands dual
group G∨ with highest weight λ and t denotes a diagonal representative of the
semisimple conjugacy class in G∨ associated to indG

B (χ) by Langlands via the Sa-
take isomorphism (see [Borel 1979] for details). In the special case G=SO(2r+1),
for relations with the above multiple Dirichlet series, we determine t= (x1, . . . , xr )

according to (85) where |π |−1
v = q . Since G∨ = Sp(2r) in this case, the character

chλ(t) in (88) is just spλ(x1, . . . , xr ) as in the right-hand side of (86). Furthermore,
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the product over positive roots in (88) matches the Euler factors for the normalizing
zeta factors of Z∗9 appearing on the left-hand side of (86).

While the Casselman–Shalika formula is stated for principal series over a local
field, because the global Whittaker coefficient is Eulerian, there is no obstacle
to obtaining the analogous global result for FS from the local result via passage
to the adele group. Moreover, the minimal parabolic Eisenstein series Whittaker
functional∫

N (A)/N (F)
Eφ(ng)ψm(n) dn =

∫
N (A)/N (F)

∑
γ∈B(F)\G(F)

φ(γ ng)ψm(n) dn

can be shown to match the integral in (87) with ψ = ψm by the usual Bruhat
decomposition for G(F) and a standard unfolding argument.

Hence according to (86), the Euler factor for Z∗9(s;m) matches that of the
Fourier–Whittaker coefficient except possibly up to a monomial in the |p|−2si with
i = 1, . . . , r . This disparity arises from the fact that the Whittaker functions in the
Casselman–Shalika formula are normalized by the modular quasicharacter δ1/2

B ,
whereas our multiple Dirichlet series should correspond to unnormalized Whit-
taker coefficients in accordance with the functional equations σi as in (21) sending
si 7→ 1− si . Hence, to check that the right-hand side of (86) exactly matches the
unnormalized Whittaker coefficient of the Eisenstein series, it suffices to verify that

x L1−1
1 · · · x Lr−r

r spλ(x1, . . . , xr )

satisfies a local functional equation σ j given in (21) as Dirichlet polynomials in
|p|−2si for i = 1, . . . , r . �

5.3. Proof of Lemma 20. For part (a) of the lemma, we induct on the rank. When
r = 2, there are at most six connected components among all the ribbon strips
of SP , since 1 and 1 may only appear in the top row. Moreover, since P is strict
there must be at least two connected components. Thus 0 ≤ str(SP)− 2 ≤ 4. At
each of the four entries in P below the top row, one shows that if the given entry
is generic, it increases the count str(SP) by 1.

Suppose that for a GT-pattern of rank r − 1, each of the r2 entries below the
top row increases the count str(P) by 1. Then consider a GT-pattern P of rank r ,
and consider the collection of entries ai, j , bi, j below the double line. These entries
control the number of connected components consisting of copies of 1, 1, . . . , r−1,
and r−1 in P , in precisely the same way as the full collection of entries below the
top row in a pattern of rank r−1. Thus inductively, for each generic entry ai, j with
2≤ i ≤ r − 1 and 3≤ j ≤ r or bi, j with 2≤ i, j ≤ r , the count str(P) is increased
by 1. Finally, for i = 1, one easily checks that the value of str(SP) is increased
by 1 for every generic a1, j or b1, j .
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For (b), we first establish the correct range for hgt(SP)+r(r+1)/2. For each k,
it is clear that 0≤ rowk(SP)−conk(SP)≤ k−1 and 0≤ rowk(SP)≤ k. Combining
these inequalities and summing over k, we have 0≤ hgt(SP)+r(r+1)/2≤ r2. We
proceed by showing that each of the maximal entries increases the count hgt(S)
by 1. The cases are as follows.

(1) If ai, j is maximal, then ai, j = bi, j−1, hence there are no r + 1− i entries in
row j−i of the tableau. This decreases

∑r
k=1 rowk(SP) by 1, hence increasing

hgt(SP) by 1.

(2) If bi,r is maximal, then bi,r = 0, which implies there are no r + 1− i entries
in row r − i + 1. This similarly increases hgt(SP) by 1.

(3) If bi, j is maximal with 1 ≤ j ≤ r − 1, then bi, j = ai−1, j+1. Since P is a
strict pattern, it must follow that bi, j < ai−1, j and bi, j+1 < ai−1, j+1. By these
strict inequalities, r+1−i occurs in both row j + 1− i and row j + 2− i .
However, by the equality defining bi, j as maximal, the occurrences in each
of these two rows form one connected component. (See, for instance, the 4
component in the example in Figure 1.) This decreases

∑r
k=1 conk(SP) by 1,

hence increasing hgt(SP) by 1. �
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MILNOR OPEN BOOKS OF LINKS
OF SOME RATIONAL SURFACE SINGULARITIES

MOHAN BHUPAL AND BURAK OZBAGCI

We determine Legendrian surgery diagrams for the canonical contact struc-
tures of links of rational surface singularities that are also small Seifert
fibered 3-manifolds. Moreover, we describe an infinite family of Milnor
fillable contact 3-manifolds so that, for each member of this family, the Mil-
nor genus and Milnor norm are strictly greater than the support genus and
support norm of the canonical contact structure. For some of these contact
structures we construct supporting Milnor open books.

1. Introduction

The link of a normal complex surface singularity carries a canonical contact struc-
ture ξcan (also known as the Milnor fillable contact structure) which is supported
by any Milnor open book on this link [Caubel et al. 2006]. The canonical contact
structure ξcan is known to be Stein fillable [Bogomolov and de Oliveira 1997] and
therefore it is tight [Eliashberg and Gromov 1991]. In fact, ξcan is universally tight,
that is, the pullback to the universal cover is tight [Lekili and Ozbagci 2010].

Etnyre and Ozbagci [2008] defined three numerical invariants of contact struc-
tures in terms of open books supporting the contact structures. These invariants are
the support genus sg(ξ) (the minimal genus of a page of a supporting open book
for ξ ), the binding number bn(ξ) (the minimal number of binding components of
a supporting open book for ξ with minimal genus pages) and the support norm
sn(ξ) (minus the maximal Euler characteristic of a page of a supporting open book
for ξ ).

Altınok and Bhupal [2008] derived a new set of invariants specifically for the
canonical contact structure ξcan on the link of a complex surface singularity by
restricting the set of open books to only Milnor open books on the link at hand.
In this article we will call these invariants the Milnor genus Mg(ξcan), the Milnor

Ozbagci was partially supported by the 107T053 and BIDEP-2219 research grants of the Scientific
and Technological Research Council of Turkey and the Marie Curie International Outgoing Fellow-
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MSC2010: 32S25, 32S55, 53D10, 57R17.
Keywords: contact structure, Milnor open book, support genus, surface singularity, Milnor fillable,

Milnor genus.
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binding number Mb(ξcan), and the Milnor norm Mn(ξcan) of the canonical con-
tact structure ξcan. The well-known Milnor number corresponds to the first Betti
number of the page of the Milnor open book in our context.

It follows by definition that sg(ξcan)≤Mg(ξcan) and sn(ξcan)≤Mn(ξcan), since
the set of Milnor open books is a subset of all open books on the link of a surface
singularity. (No such inequality exists in general, however, between bn(ξcan) and
Mb(ξcan).) In Section 9, we show that for each positive integer k, there is a rational
surface singularity whose canonical contact structure ξcan satisfies

k ≤Mg(ξcan)− sg(ξcan) and k ≤Mn(ξcan)− sn(ξcan).

An immediate consequence is the existence of links of surface singularities carrying
open books that are not isomorphic to Milnor open books. As another consequence,
we deduce that Milnor open books are neither norm- nor genus-minimizing, al-
though our aim originally was to show that the support genus of a Milnor fillable
contact structure is realized by a Milnor open book. We find this result interesting
since there are other instances in geometric topology where the “complex represen-
tatives” are minimizers. Most notably, the link of a complex plane curve singularity
bounds a smooth complex curve of genus equal to its Seifert genus.

The aforementioned examples are the canonical contact structures on links of
some rational surface singularities which are also small Seifert fibered 3-manifolds.
In Section 8, we identify the canonical contact structures on all such manifolds via
their Legendrian surgery diagrams. A Legendrian surgery diagram is perhaps the
most efficient way of describing a contact structure from a topological point of
view, since it also allows one to calculate many invariants of the contact struc-
ture (for example, the Euler class of the underlying oriented plane field) by easily
converting the diagram into a smooth handlebody diagram.

2. Open books and contact structures

A complete exposition of the correspondence between open books and contact
structures can be found in the lecture notes of Etnyre [2006]. In this section, we
recall some basic definitions.

Suppose that for an oriented link B in a closed and oriented 3-manifold Y , the
complement Y \ B fibers over the circle as p : Y \ B→ S1 such that p−1(t)= 6t

is the interior of a compact surface with ∂6t = B for all t ∈ S1. Then (B, p) is
called an open book decomposition (or just an open book) of Y . For each t ∈ S1,
the surface 6t is called a page, while B is referred to as the binding of the open
book.

The monodromy of the fibration p is defined as the diffeomorphism of a fixed
page which is given by the first return map of a flow that is transverse to the
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pages and meridional near the binding. The isotopy class of this diffeomorphism
is independent of the chosen flow and is called the monodromy of the open book
decomposition. In order to describe the monodromy of an open book explicitly,
one usually writes it as a product of Dehn twists along some curves on the page.
In this paper, we will denote a right-handed (respectively left-handed) Dehn twist
along a curve α as α (respectively α−1), for simplicity.

An open book can also be described as follows. First consider the mapping torus

6φ =
(
[0, 1]×6

)
/
(
(1, x)∼ (0, φ(x))

)
,

where 6 is a compact oriented surface with r boundary components and φ is an
element of the mapping class group06 of6. Since φ is the identity map on ∂6, the
boundary ∂6φ of the mapping torus6φ can be canonically identified with r copies
of T 2

= S1
× S1, where the first S1 factor is identified with [0, 1]/(0∼ 1) and the

second one comes from a component of ∂6. Now we glue in r copies of D2
× S1

to cap off 6φ so that ∂D2 is identified with S1
= [0, 1]/(0 ∼ 1) and the S1 factor

in D2
× S1 is identified with a boundary component of ∂6. Thus we get a closed

3-manifold Y =6φ∪r D2
× S1 equipped with an open book decomposition whose

binding is the union of the core circles of the copies of D2
× S1 that we glue to 6φ

to obtain Y . In conclusion, an element φ ∈ 06 determines a 3-manifold together
with an abstract open book decomposition on it. By conjugating the monodromy φ
of an open book on a 3-manifold Y by an element in 06 , we get an isomorphic
open book on a 3-manifold Y ′ which is diffeomorphic to Y .

It has been known for a long time that every closed and oriented 3-manifold
admits an open book decomposition. A new interest in open books on 3-manifolds
arose recently from their connection to contact structures, which we will describe
very briefly.

Recall that a (positive) contact structure ξ on an oriented 3-manifold is locally
the kernel of a 1-form α such that α ∧ dα > 0. In this paper we assume ξ is
coorientable, that is, α is a global 1-form.

Definition 2.1. An open book decomposition (B, p) of a 3-manifold Y is said to
support a contact structure ξ on Y if ξ can be represented by a contact form α such
that α evaluates positively on B and dα is a symplectic form on every page.

Thurston and Winkelnkemper [1975] associated a contact structure to every open
book. This contact structure is in fact supported by the underlying open book.
(Definition 2.1 was not available at the time.) To state the converse we need a little
digression.

Suppose that an open book decomposition with page 6 is specified by φ ∈ 06 .
Attach a 1-handle to the surface 6 connecting two points on ∂6 to obtain a new
surface 6′. Let γ be a closed curve in 6′ going over the new 1-handle exactly
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once. Define a new open book decomposition with

φ′ = φ ◦ tγ ∈ 06′,

where tγ denotes the right-handed Dehn twist along γ . The resulting open book
decomposition is called a positive stabilization of the one defined by φ. Although
the resulting monodromy depends on the chosen curve γ , the 3-manifold specified
by (6′, φ′) is diffeomorphic to the 3-manifold specified by (6, φ). A converse to
Thurston and Winkelnkemper’s result is:

Theorem 2.2 [Giroux 2002]. Every contact structure on a 3-manifold is supported
by an open book. Two open books supporting the same contact structure admit a
common positive stabilization. Moreover two contact structures supported by the
same open book are isotopic.

3. Legendrian surgery diagrams

Recall that a knot in a contact 3-manifold is called Legendrian if it is everywhere
tangent to the contact planes. In order to have a better understanding of the topo-
logical constructions in the later sections, we discuss a standard way to visualize
Legendrian knots in R3 (and therefore S3) equipped with the standard contact struc-
ture ξst = ker(dz+ x dy).

Now consider a Legendrian knot L ⊂ (R3, ξst) and take its front projection, that
is, its projection to the yz-plane. This projection has no vertical tangencies since
−dz/dy = x 6= ∞, and for the same reason, at a crossing the strand with smaller
slope is in front. It turns out that L can be C2-approximated by a Legendrian knot
for which the projection has only transverse double points and cusp singularities
(see [Geiges 2008], for example). Conversely, a knot projection with these prop-
erties gives rise to a unique Legendrian knot in (R3, ξst) by defining x from the
projection as −dz/dy. Since any projection can be isotoped to satisfy the above
properties, every knot in S3 can be isotoped (nonuniquely) to a Legendrian knot.

Two classical invariants of a Legendrian knot L are the Thurston–Bennequin
number tb(L) and the rotation number rot(L). Recall that tb(L) is the contact
framing of L (measured with respect to the Seifert framing in S3), which can be
easily computed from a front projection of L . Define the writhe w(L) of L as
the sum of signs of the double points. For this to make sense, we need to fix an
orientation on the knot, but the result is independent of this choice. If c(L) is the
number of cusps, then tb(L)= w(L)− 1

2 c(L).
The rotation number rot(L) is defined by trivializing ξst along a Seifert surface6

whose oriented boundary is L and then taking the winding number of T L with
respect to this trivialization. For this invariant to make sense we need to orient L ,
and the result changes sign by reversing the orientation. Since H 2(S3

;Z)= 0, this
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number is independent of the chosen trivialization. If cd(L) and cu(L) denote the
number of down and up cusps in the projection, then rot(L)= 1

2(cd(L)− cu(L)).
To describe the Stein fillable contact structures dealt with in this paper, we

use Legendrian knots (actually their front projections) as follows: Consider the
standard Stein 4-ball B4 with the induced standard contact structure on its bound-
ary. Then attach Weinstein 2-handles [1991] along an arbitrary Legendrian link in
∂B4
= S3 to this ball. By [Eliashberg 1990], the Stein structure on B4 extends over

the 2-handles as long as the attaching framing of each 2-handle is one less than the
Thurston–Bennequin number. The resulting Stein domain has an induced contact
structure on its boundary which can be represented by the front projection of the
Legendrian link along which we attach the 2-handles. Such a front projection is
called a Legendrian surgery diagram (see [Gompf 1998] for a thorough discus-
sion). Legendrian surgery is equivalent to performing contact (−1)-surgery along
the given Legendrian link in the standard contact S3 [Ding and Geiges 2004]. To
describe all Stein fillable contact structures in general, one needs 1-handles as well,
but those will not appear in our discussion.

4. Milnor open books and canonical contact structures

Let (X, x) be an isolated normal complex surface singularity (see [Némethi 1999]).
Fix a local embedding of (X, x) in (CN , 0). Then a small sphere S2N−1

ε ⊂ CN

centered at the origin intersects X transversely, and the complex hyperplane dis-
tribution ξcan on M = X ∩ S2N−1

ε induced by the complex structure on X is called
the canonical contact structure. It is known that, for sufficiently small radius ε,
the contact manifold is independent of ε and the embedding, up to isomorphism.
The 3-manifold M is called the link of the singularity and (M, ξcan) is called the
contact boundary of (X, x). While Y denotes a general 3-manifold, we use M for
those which are Milnor-filled.

Definition 4.1. A contact manifold (Y, ξ) is said to be Milnor fillable and the
germ (X, x) is called a Milnor filling of (Y, ξ) if (Y, ξ) is isomorphic to the contact
boundary (M, ξcan) of some isolated complex surface singularity (X, x). In addi-
tion, we say that a closed and oriented 3-manifold Y is Milnor fillable if it carries
a contact structure ξ so that (Y, ξ) is Milnor fillable. Such a contact structure ξ is
called a Milnor fillable contact structure.

By a theorem in [Mumford 1961], if a contact 3-manifold is Milnor fillable, then
it can be obtained by plumbing oriented circle bundles over surfaces according to
a weighted graph with negative definite intersection matrix. Conversely, it follows
from a well-known theorem of [Grauert 1962] that any 3-manifold that is given
by plumbing oriented circle bundles over surfaces according to a weighted graph



52 MOHAN BHUPAL AND BURAK OZBAGCI

with negative definite intersection matrix is Milnor fillable. As for the uniqueness
of Milnor fillable contact structures, we have the fundamental result:

Theorem 4.2 [Caubel et al. 2006]. Any closed and oriented 3-manifold has at most
one Milnor fillable contact structure up to isomorphism.

In summary, Milnor fillability of a closed and oriented 3-manifold Y is deter-
mined entirely by its topology and if Y is Milnor fillable, then it carries a canonical
contact structure ξcan which is unique up to isomorphism.

Since the groundbreaking result (Theorem 2.2) of [Giroux 2002], the geometry
of contact structures is often studied via their topological counterparts, namely
open book decompositions. In the realm of surface singularities this fits nicely
with [Milnor 1968].

Definition 4.3. Given an analytic function f : (X, x)→ (C, 0) vanishing at x , with
an isolated singularity at x , the open book decomposition OB f of the link M of
(X, x) with binding L = M ∩ f −1(0) and projection π = f/| f | : M \ L→ S1

⊂C

is called the Milnor open book induced by f .

Such functions f exist and one can talk about many Milnor open books on the
singularity link M . Therefore, there are many Milnor open books on any given
Milnor fillable contact 3-manifold (Y, ξ), since, by definition, it is isomorphic to
the link (M, ξcan) of some isolated complex surface singularity (X, x).

A Milnor open book on a Milnor fillable 3-manifold Y has two essential features
as shown in [Caubel et al. 2006]:

(i) It supports the canonical contact structure ξcan.

(ii) It is horizontal when considered on the plumbing description of Y .

Suppose that the 3-manifold Y is obtained by plumbing oriented circle bun-
dles Mi → Si , for i = 1, 2, . . . , r . For any r -tuple of nonnegative integers n =
(n1, n2, . . . , nr ), a vertical link of type n consists of a disjoint union of ni generic
fibers from each bundle Mi → Si . An open book on Y is called horizontal if
its binding is a vertical link and its pages are transverse to the fibers. We also
require that the orientation induced on the binding by the pages coincides with the
orientation of the fibers induced by the fibration.

5. Rational surface singularities

Let (X, x) be a germ of a normal complex surface having a singularity at x .
Recall that (X, x) is called rational [Artin 1966] if the geometric genus pg :=

dimC H 1(X̃ ,OX̃ ) is equal to zero, where X̃ → X is a resolution of the singular
point x ∈ X . This definition does not depend on the resolution.

Now fix a resolution π : X̃ → X and denote the irreducible components of
the exceptional divisor E = π−1(x) by

⋃r
i=1 Ei . The fundamental cycle of E is
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by definition the componentwise smallest nonzero effective divisor Z =
∑

zi Ei

satisfying Z · Ei ≤ 0 for all 1≤ i ≤ r .
The singularity (X, x) is rational if each irreducible component Ei of the ex-

ceptional divisor E is isomorphic to CP1 and

Z · Z +
r∑

i=1

zi (−E2
i − 2)=−2,

where Z =
∑

zi Ei is the fundamental cycle of E . Once a dual resolution graph
of a surface singularity is given, then the so-called Laufer algorithm [1972] can be
applied to calculate the corresponding fundamental cycle. Therefore the criterion
in the equation above makes it particularly simple to identify the given singularity
as rational.

Suppose that (X, x) is a germ of a normal complex surface having a rational
singularity at x .

Theorem 5.1 [Altınok and Bhupal 2008]. Both the page-genus and the page-genus
plus the number of binding components of the Milnor open book OB f are min-
imized when f is taken to be the restriction of a generic linear form on CN to
(X, x) for some local embedding of (X, x) in (CN , 0).

If OBmin denotes the Milnor open book given by taking the restriction of a
generic linear form on CN to (X, x) for some local embedding of (X, x) in (CN , 0),
then Theorem 5.1 implies that Mg(ξcan) = g(OBmin) and Mb(ξcan) = bc(OBmin),
where g(OB) (respectively bc(OB)) denotes the page-genus (respectively the num-
ber of binding components) of the open book OB. We will call OBmin the minimal
Milnor open book. For the Milnor norm, from the definition,

Mn(ξcan)=min
(
2g(OB)− 2+ bc(OB)

)
,

where the minimum is taken over all supporting Milnor open books OB. Hence it
also follows from Theorem 5.1 that

Mn(ξcan)= 2g(OBmin)− 2+ bc(OBmin)= 2 Mg(ξcan)− 2+Mb(ξcan).

Remark 5.2. The equation sn(ξ)= 2 sg(ξ)− 2+ bn(ξ) is not necessarily true for
an arbitrary contact structure ξ , as illustrated in [Baldwin and Etnyre 2011; Etgü
and Lekili 2010].

Suppose that π : X̃→ X is a good resolution of (X, x) and let E1, . . . , Er denote
the irreducible components of the exceptional divisor E . Given an analytic function
f : (X, x)→ (C, 0) vanishing at x , with an isolated singularity at x , the open book
decomposition OB f is a horizontal open book with binding a vertical link of type
n= (n1, . . . , nr ), where the ni are defined as follows: Consider the decomposition
( f ◦π)= ( f ◦π)e+ ( f ◦π)s of the divisor ( f ◦π) ∈ Div(X̃) into its exceptional
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and strict parts such that ( f ◦π)e is supported on E and dim(|( f ◦π)s ∩ E |) < 1.
Then ni is the number of components of ( f ◦ π)s which cut Ei . It is known that
the r -tuple n = (n1, . . . , nr ) satisfies

(5-1) I (0(π))mt
=−nt

for some r -tuple m = (m1, . . . ,mr ) of positive integers, where I (0(π)) denotes
the intersection matrix of the dual resolution graph 0(π) associated to π and t is
used for transpose. In [Altınok and Bhupal 2008, Lemma 3.1] it is proved that

(5-2) g(OB f )= 1+
r∑

i=1

(vi − 2)mi + (mi − 1)ni

2
,

where vi denotes the number of irreducible curves E j , j 6= i , in E intersecting Ei

for i = 1, . . . , r . Also

bc(OB f )=

r∑
i=1

ni .

On the other hand, it follows from [Artin 1966] that for any r -tuple n of nonneg-
ative integers which satisfies (5-1) for some r -tuple m of positive integers there
is a Milnor open book decomposition of the boundary of (X, x) whose binding is
equivalent to a vertical link of type n.

The upshot is that if Z =
∑r

i=1zi Ei is the fundamental cycle of the resolution π ,
then the above construction for the r -tuple m = (z1, . . . , zr ) gives the minimal
Milnor open book OBmin, which we will also denote by OB(m).

Remark 5.3. Némethi and Tosun [2011] (see also [Némethi 2008]) give a gener-
alization of Theorem 5.1 for all Milnor fillable rational homology 3-spheres and
prove

Mg(ξcan)= Z · E − Z · Z and Mb(ξcan)=−Z · E .

6. Tight contact structures on small Seifert fibered 3-manifolds

A small Seifert fibered 3-manifold Y is a closed and oriented 3-manifold which
admits a Seifert fibration over S2 with at most three singular fibers. Equivalently,
such a manifold Y = Y (e0; r1, r2, r3) can be described by the rational surgery
diagram depicted in Figure 1, where e0 ∈ Z and ri ∈ (0, 1)∩Q, for i = 1, 2, 3.

One can also obtain an integral surgery description of Y as follows. Consider
the continued fraction expansion of −1/ri :

−
1
ri
= a(i)1 −

1

a(i)2 −
1

. . . −
1

a(i)ni

, i = 1, 2, 3,
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e0 −
1
r1

−
1
r2

−
1
r3

Figure 1. Rational surgery diagram for the small Seifert fibered
3-manifold Y (e0; r1, r2, r3).

for some uniquely determined integers a(i)1 , . . . , a(i)ni
≤ −2. Let K (i)

0 denote the
unknot with framing e0 in Figure 1, for i = 1, 2, 3. Now replace the unknot
with coefficient−1/ri , by a chain of unknots K (i)

1 , . . . , K (i)
ni

with integral framings
a(i)1 , . . . , a(i)ni

, respectively, so that

lk(K (i)
j , K (i)

k )=

{
±1 if | j − k| = 1,
0 otherwise,

for 0 ≤ j, k ≤ ni and i = 1, 2, 3. As discussed in the next paragraph, this “star-
shaped” integral surgery presentation is very convenient in terms of describing
Stein fillable contact structures on Y .

Wu [2006] classified all tight contact structures on Y up to isotopy under the
assumption that e0 ≤ −3. They are all Stein fillable and can be represented by
Legendrian surgery diagrams which are obtained by all possible Legendrian real-
izations (without double points) of the unknots imposed by the surgery coefficients
in the integral surgery description of Y . Moreover, Ghiggini [2008] showed that
the same classification scheme works for the case e0=−2, as long as Y is assumed
to be an L-space (a rational homology sphere whose Heegaard Floer homology is
as simple as possible, that is, rk ĤF(Y )= |H1(Y ;Z)|).

The link of any rational surface singularity is an L-space by a theorem in [Néme-
thi 2005]. A necessary condition for the 3-manifold Y = Y (e0; r1, r2, r3) to be the
link of a rational singularity is that e0 ≤−2; however, it is not sufficient.

7. Planar Milnor open books

By a weighted plumbing graph we mean a graph such that each vertex is decorated
by some integer “weight”. Such a graph naturally represents a closed oriented 3-
manifold called a graph manifold, which can be described as follows. For each
vertex of the graph, take an oriented circle bundle over S2 whose Euler number is
equal to the weight of that vertex and plumb these bundles together according to
the given graph. In other words, if there is an edge connecting two vertices in 0,
then plumb the circle bundles corresponding to these vertices. More precisely, first
remove a neighborhood of a circle fiber on each circle bundle which is given by the
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preimage of a disk on the base sphere. The resulting boundary torus on each circle
bundle can be identified with S1

× S1 using the natural trivialization of the circle
fibration over the disk that is removed. Now glue these bundles together using the
diffeomorphism that exchanges the two circle factors on the boundary tori.

If the graph is a tree, in particular, then an integral surgery presentation of the
3-manifold is readily available by replacing each vertex by an unknot framed by
the weight of that vertex such that any two of these unknots are linked once if there
is an edge between the vertices they represent and they are unlinked otherwise.

Recall that the degree of a vertex in a graph is the number of edges emanating
from that vertex. A vertex in a weighted plumbing graph is called a bad vertex if
the sum of the weight (the Euler number) and the degree of that vertex is positive.

Proposition 7.1. If Y is the link of a rational surface singularity presented by a
plumbing tree without any bad vertices, then Y carries a planar Milnor open book.

Proof. Let 0 be a plumbing tree for Y with r vertices v1, . . . , vr so that vi has Euler
number ei and degree di . Suppose that 0 has no bad vertices, that is, ei+di ≤ 0 for
i = 1, . . . , r . Etgü and Ozbagci [2006] constructed an explicit planar horizontal
open book OB with binding a vertical link of type

n = (−e1− d1,−e2− d2, . . . ,−er − dr )

on such a graph manifold Y . It is easy to check that for m = (1, 1, . . . , 1), we have

I (0)mt
=−nt ,

where I (0) denotes the intersection matrix of the tree 0 which defines Y . Suppose
that Y is the link of some rational surface singularity (X, x). Then m corresponds
to the fundamental cycle of the minimal resolution of (X, x). As we indicated
in the paragraph preceding Remark 5.3, the binding of the minimal Milnor open
book OBmin is a vertical link of type n as well. Since the open books OB and
OBmin on the rational homology 3-sphere Y have equivalent bindings, by [Caubel
and Popescu-Pampu 2004] it follows that OB is isotopic to OBmin. This proves
that Y carries a planar Milnor open book, that is, Mg(ξcan) = 0. Moreover, since
the binding of OB is a vertical link of type n, we have Mb(ξcan)=−

∑r
i=1(ei+di )

and hence Mn(ξcan)=Mb(ξcan)− 2. �

In the proof of Proposition 7.1 we showed that the horizontal open book OB

constructed in [Etgü and Ozbagci 2006] is isotopic to a Milnor open book, which
implies that the horizontal contact structure supported by OB is isomorphic to ξcan

on such rational singularity links. On the other hand, Legendrian surgery diagrams
of such horizontal contact structures (which are known to be Stein fillable) were
studied in [Ozbagci 2008]. A lens space L(p, q), for example, is given by a linear
plumbing diagram without any bad vertices. Equivalently, an integral surgery
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diagram of L(p, q) is given by a chain of unknots so that the linking number
between every two consecutive unknots is equal to ±1 and the framing of every
unknot is less than or equal to −2.

Proposition 7.2 [Ozbagci 2008, Proposition 3.2]. Orient the unknots in the linear
integral surgery diagram giving L(p, q) so that the linking number is +1 between
any two consecutive unknots. A Legendrian surgery diagram for ξcan on L(p, q)
is obtained by Legendrian realizing each unknot with maximum possible rotation
number imposed by its surgery coefficient.

A Legendrian realization of an unknot with maximum possible rotation num-
ber imposed by its surgery coefficient is given by a front projection without any
double points and with a single up cusp or a single down cusp, depending on
the chosen orientation. Once we orient any knot in the chain describing L(p, q),
the orientations of the other knots are determined uniquely, by the hypothesis
in Proposition 7.2. Hence there are two choices of overall orientations inducing
two Legendrian surgery diagrams for ξcan which are mirror images of each other.
In other words, ξcan is represented by a Legendrian surgery diagram where all
the zigzags of all the Legendrian unknots are on the left or all on the right (see
[Ozbagci 2008, Figure 4]). Nevertheless, these two diagrams induce isomorphic
contact structures, where the underlying plane fields are obtained from each other
by simply reversing the orientations.

There are two key properties used to prove Proposition 7.2: (i) the linear plumb-
ing diagram of L(p, q) does not have any bad vertices and (ii) all the tight contact
structures on L(p, q) are Stein fillable and given by all possible Legendrian re-
alizations (without double points) of the unknots in the plumbing diagram. In
Section 6, we described a star-shaped plumbing diagram of a small Seifert fibered
3-manifold Y = Y (e0; r1, r2, r3) which does not include any bad vertices as long
as e0 ≤ −3. Therefore it is straightforward to generalize Proposition 7.2 to all
rational singularity links which are small Seifert fibered spaces with e0 ≤ −3,
using the methods in [Ozbagci 2008] coupled with Wu’s classification [2006] of
tight contact structures on such manifolds. This generalization is included in the
statement of Theorem 8.1 for which we present a more conceptual proof.

8. Legendrian surgery diagrams for canonical contact structures

Theorem 8.1. Let Y =Y (e0; r1, r2, r3) be a small Seifert fibered 3-manifold that is
diffeomorphic to the link of some rational surface singularity. Orient the unknots
in the star-shaped integral surgery diagram giving Y , so that the linking number
is +1 between any two consecutive unknots in every chain. A Legendrian surgery
diagram for ξcan on Y is obtained by Legendrian realizing each unknot with maxi-
mum possible rotation number imposed by its surgery coefficient.
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Proof. Suppose that (Y, ξcan) is diffeomorphic to the link of the rational surface
singularity (X, x). Then the minimal resolution π : X̃ → X provides a holomor-
phic filling (W, J ) of (Y, ξcan). In particular, W is a regular neighborhood of the
exceptional divisor E =

⋃
E j of π . Since the curves E j are holomorphic, by the

adjunction formula, we have

〈c1(J ), [E j ]〉 = E j · E j − 2 genus(E j )+ 2= E j · E j + 2.

Recall that in Section 6 we discussed the classification of tight contact structures
on a small fibered 3-manifold Y under the assumption that Y is an L-space for
the case e0 = −2, which is satisfied for a rational singularity link. For each such
3-manifold Y , there are finitely many tight contact structures ξ1, . . . , ξm , all of
which are Stein fillable. Moreover, for i = 1, . . . ,m, a Stein filling (W i , J i ) of ξi

is given by taking a Legendrian surgery diagram, obtained from the plumbing tree
describing Y , with the zigzags chosen in a certain way. Denote by U i

j a component
of the corresponding Legendrian link and let Si

j denote the associated surface in the
Stein filling (W i , J i ) obtained by pushing a Seifert surface for U i

j into the 4-ball
and capping off by the core of the corresponding 2-handle (see [Gompf 1998]).
Each W i is diffeomorphic to W by a diffeomorphism which carries Si

j to E j for
each j .

Now, using the well-known identities

Si
j · S

i
j = tb(U i

j )− 1, 〈c1(J i ), [Si
j ]〉 = rot(U i

j )

(see [Gompf 1998] for the second), observe that 〈c1(J i ), [Si
j ]〉= Si

j ·S
i
j+2 precisely

when rot(U i
j ) = tb(U i

j )+ 1. Since the latter equality holds exactly when all the
cusps of U i

j except one are up cusps, it follows that 〈c1(J ), [E j ]〉 = 〈c1(J i ), [Si
j ]〉

for each j precisely when all the extra zigzags are chosen so the additional cusps
are all up cusps, that is, when all the extra zigzags are chosen on the same fixed side
(which is determined by the orientation of the Legendrian unknots). In the finite list
of tight contact structures on Y there is only one such Stein fillable contact structure
up to isomorphism [Wu 2006; Ghiggini 2008], which completes the proof. �

9. Milnor versus support genus

In this section, we describe an infinite family of Milnor fillable contact 3-manifolds
whose canonical contact structure has support genus (respectively norm) strictly
less than its Milnor genus (respectively norm).

Consider the small Seifert fibered 3-manifold

Yp = Y
(
− 2; 1

3
,

2
3
,

p
p+1

)
,
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p curves
p curves
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−1

−2
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−2

−3

−2

−2
−2

Figure 2. The contact structure ξ ∼= ξ1 ∼= ξcan on Yp.

for p ≥ 2. Observe that Yp, whose dual resolution graph 0p is shown in Figure 2,
is the link of a rational complex surface singularity. By the classification of the
tight contact structures on Yp given in [Ghiggini 2008], there are exactly two non-
isotopic tight contact structures ξ1 and ξ2 on Yp, both of which are Stein fillable. A
Legendrian surgery diagram of ξ1 is depicted on the bottom right in Figure 2. By
putting the extra zigzag on the blue curve on the opposite side, we get a diagram
for ξ2.

Proposition 9.1. For i = 1, 2, we have sg(ξi )≤ 1 and sn(ξi )= 2.

Proof. We first construct a supporting elliptic (that is, genus one) open book with
two binding components for some Stein fillable contact structure ξ on Yp following
the recipe in [Etnyre and Ozbagci 2006]. Start from the plumbing diagram on the
top left in Figure 2 (which is equivalent to a smooth surgery diagram including
only unknots linked according to the given tree) and “roll up” this diagram by
appropriately sliding handles to obtain the surgery diagram of Yp on the bottom
left. Next, Legendrian realize the given surgery curves as depicted on the top right
in Figure 2 to obtain the Legendrian surgery diagram for some Stein fillable contact
structure ξ on Yp, which is isomorphic to ξ1 depicted on the bottom right. Refer
to [Etnyre and Ozbagci 2006] for the justification of such statements.

In order to construct an open book of Yp supporting ξ , start from an open book
of S3 and then embed the surgery curves onto the pages as depicted on the left in
Figure 3 (the colors make it easier to follow how the surgery curves are embedded
on the page). The initial page is a torus with one boundary component, and the
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α1
β

γ

α2

δ
∼=

α1

α2

β
δ

Figure 3. The page of an open book compatible with ξ .

monodromy of this open book of S3 before the surgery is given by βα1, where
α1 and β generate the first homology group of the page. Now apply Legendrian
surgeries along the given curves to get an open book of Yp with monodromy
φp = α2γ

3β pβα1δ, where δ is parallel to the small puncture on the torus, which
occurs as a result of stabilizing the page appropriately. Next move β over γ 3 to
the left and use the fact that γβ = βα1 to get φp = α2βα

3
1β

pα1δ. Then use the
well-known braid relations and some simple overall conjugations to obtain a more
symmetrical presentation of the monodromy as

φp = (α2β)
2(α1β)

2β p−2δ.

This describes an abstract open book which is compatible with ξ , where the page
is a torus with two boundary components and monodromy is φp. Note that ξ
is isomorphic to ξ1 (which is isomorphic to ξ2, since one cannot distinguish the
abstract open books corresponding to ξ1 and ξ2). It follows that sg(ξi ) ≤ 1, since
we have already constructed a genus one open book compatible with ξ .

Using the handlebody diagram of Yp depicted on the bottom left in Figure 2, it
is straightforward to calculate that

H1(Yp,Z)=

{
Z3⊕Z3 p = 2 mod 3,
Z9 otherwise.

Moreover, one can show that the Poincaré dual PD(e(ξi ))∈ H1(Yp,Z) of the Euler
class e(ξi ) is a generator of one of the Z3-factors when p is congruent to 2 mod 3.
Similarly PD(e(ξi )) is a generator of H1(Yp,Z) when p is not congruent to 2 mod
3. Therefore the contact structure ξi cannot be compatible with an elliptic open
book with connected binding by [Etnyre and Ozbagci 2008, Lemma 6.1], since
e(ξi ) 6= 0. Note that e(ξ1) = −e(ξ2), which implies that ξ1 is not homotopic to ξ2

as oriented plane fields, although they are isomorphic to each other. In fact, ξ2 is
obtained from ξ1 by reversing the orientation of the underlying plane field.
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Now we claim that sn(ξi )= 2. To prove this, we need to exclude the possibility
that ξi is compatible with a planar open book with less than four binding compo-
nents. Suppose that ξi is compatible with a planar open book, that is, sg(ξi )= 0. If
bn(ξi )≤ 2, then ξi is the unique tight contact structure on the lens space L(n, n−1)
for some n ≥ 0 (see [Etnyre and Ozbagci 2008]) which is indeed impossible since
Yp is not a lens space.

Next we rule out the possibility that bn(ξi ) = 3. Let 6 be the planar surface
with three boundary components. Any diffeomorphism of6 is determined by three
numbers q, r, s that give the number of Dehn twists on curves τ1, τ2, τ3 parallel to
each boundary component. It is easy to see that the 3-manifold determined by the
open book with page 6 and monodromy given by τ q

1 τ
r
2 τ

s
3 is the Seifert fibered

3-manifold Y (0,− 1
q ,−

1
r ,−

1
s ). The first homology group of Y (0,− 1

q ,−
1
r ,−

1
s )

has order qr + qs+ rs.
Suppose that ξi is compatible with an open book with page 6 and monodromy

τ
q
1 τ

r
2 τ

s
3 . The tightness of ξi implies that the integers q, r , and s are all nonnegative,

because otherwise τ q
1 τ

r
2 τ

s
3 is not right-veering [Honda et al. 2007]. Moreover, since

the order of the first homology group of Yp is 9, for all p ≥ 2, we conclude that
(q, r, s) is equal to either (0, 1, 9), (0, 3, 3) or (1, 1, 4). Hence Yp is diffeomorphic
to either L(9, 8), L(3, 2) # L(3, 2) or L(9, 4), which is a contradiction. Hence,
bn(ξi )≥ 4. This finishes the proof of our claim that sn(ξi )= 2. �

One can ask whether or not sg(ξi ) = 1, although it is not essential for the
purposes of this paper. There are two known methods for finding obstructions
to the planarity of a contact structure; see [Etnyre 2004; Ozsváth et al. 2005].
Unfortunately, both fail in our case, because Yp is an L-space and it is not an
integral homology sphere.

Proposition 9.2. For the canonical contact structure ξcan on the rational singular-
ity link Yp, we have Mg(ξcan)= 2 and Mn(ξcan)= 3.

Proof. Enumerate the vertices of the plumbing graph of Yp depicted in Figure 2
from left to right along the top row with the bottom vertex coming last. It is then
easy to check that the (p+4)-tuple of positive integers m corresponding to the
fundamental cycle of the minimal resolution of the singularity of which Yp is the
link is given by m = (1, 2, 3, 3, . . . , 3, 3, 2, 1, 1). The construction in [Bhupal
2009] now gives an open book decomposition OB(m)= OBmin of Yp with binding
a vertical link of type n = (0, 0, 1, 0, . . . , 0), where m and n are related by

I (0p)mt
=−nt .

Using formula (5-2) with r = p + 4 gives Mg(ξcan) = g(OB(m)) = 2 for the
canonical contact structure ξcan on Yp. Also, Mb(ξcan)=bc(OB(m))=

∑p+4
i=1 ni =1

and therefore Mn(ξcan)= 3. �
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−2 −2 −2 −2 −2 −2 −2

n vertices n vertices

−(n+ 1)

Figure 4. The plumbing graph for Pn .

Corollary 9.3. For p ≥ 2, we have sg(ξcan) < Mg(ξcan) and sn(ξcan) < Mn(ξcan)

for the canonical contact structure ξcan on the singularity link Yp.

Proof. Since any Milnor fillable contact structure is Stein fillable, ξcan is isomorphic
to ξi by Ghiggini’s classification [2008]. (It does not make sense to distinguish ξ1

and ξ2 here since they are isomorphic to each other.) Thus Proposition 9.1 coupled
with Proposition 9.2 clearly implies the corollary. �

Remark 9.4. In contrast, Mb(ξcan) = 1 while bn(ξcan) ≥ 2, which shows that the
binding number is not necessarily less than or equal to the Milnor binding number.

We can improve Corollary 9.3 as follows.

Theorem 9.5. For each positive integer k, there exists a Milnor fillable contact
3-manifold such that Mg(ξcan)− sg(ξcan)≥ k and Mn(ξcan)− sn(ξcan)≥ k.

Proof. The small Seifert fibered 3-manifold Pn = Y (−2; 1
n+1 ,

n
n+1 ,

n
n+1) for n ≥ 2

is a rational singularity link, whose dual resolution graph is depicted in Figure 4.
There are exactly n nonisotopic tight contact structures ξ1, . . . , ξn on Pn , each of
which is Stein fillable [Ghiggini 2008]. On the other hand, ξi is supported by an
elliptic open book with n binding components for 1 ≤ i ≤ n [Etnyre and Ozbagci
2006]. This proves that sg(ξcan) ≤ 1 and sn(ξcan) ≤ n since the canonical contact
structure ξcan on Pn is isomorphic to ξi for some 1≤ i ≤ n.

Now enumerate the vertices of the graph in Figure 4 from left to right along
the top row with the bottom vertex coming last and consider the (2n+2)-tuple
m = (1, 2, 3, . . . , n−1, n, n+1, n, n−1, . . . , 3, 2, 1, 1) of positive integers. This
corresponds to the fundamental cycle of the minimal resolution of the singularity
of which Pn is the link. It follows that Mg(ξcan)= n and Mn(ξcan)= 2n−1. Taking
k = n− 1 now proves the theorem. �

10. Final remarks

The minimal Milnor open book OBmin on Y = Y (e0; r1, r2, r3) realizes Mg(ξcan),
Mb(ξcan) and Mn(ξcan). In fact, it follows from the proof of Theorem 5.1 given
in [Altınok and Bhupal 2008] that OBmin is the unique Milnor open book that
realizes Mg(ξcan), Mb(ξcan) and Mn(ξcan). Thus any other Milnor open book on Y
that realizes Mg(ξcan) cannot realize Mb(ξcan) and Mn(ξcan). For example, consider
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α

β

δ1

δ2

α1

α2

β

Figure 5. Pages of two different Milnor open books on Y (−2; 1
2 ,

1
2 ,

1
2).

the 3-manifold Y = Y (−2; 1
2 ,

1
2 ,

1
2), which is the link of the singularity D4. The

pages of two Milnor open books on Y are given in Figure 5. The left pictures the
minimal Milnor open book OBmin = OB((1, 2, 1, 1)) with page a once-punctured
torus and monodromy φ = (αβ)3; the right pictures the Milnor open book OB =

OB((2, 2, 1, 1)) with page a twice-punctured torus and monodromy ψ satisfying
ψ2
= δ1δ2α

2
2 . Using the uniqueness result from [Bonatti and Paris 2009] and the

two-holed torus relation, one can check that ψ = α1α2βα
2
2βα2. It is easy to see

that OB is related to OBmin by a single positive stabilization.
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SIMPLE CLOSED CURVES, WORD LENGTH,
AND NILPOTENT QUOTIENTS OF FREE GROUPS

KHALID BOU-RABEE AND ASAF HADARI

We consider the fundamental group π of a surface of finite type equipped
with the infinite generating set consisting of all simple closed curves. We
show that every nilpotent quotient of π has finite diameter with respect to
the word metric given by this set. This is in contrast with a result of Danny
Calegari that shows that π has infinite diameter with respect to this set. We
also give a general criterion for a finitely generated group equipped with a
generating set to have this property.

1. Introduction

A surface of finite type is a surface whose fundamental group is finitely generated.
Given such a surface, there is no canonical choice of generating set. If one wishes
to define a suitably canonical generating set of a geometric nature, then it becomes
necessary to consider infinite generating sets. One such set is the set of all elements
whose conjugacy class can be represented by a simple closed curve. These are in
some sense the simplest elements of the fundamental group, and are thus a natural
choice for a generating set.

Benson Farb posed the question whether the fundamental group, endowed with
the word metric given by this set, has finite diameter. This question was answered
negatively by Danny Calegari [2008]. In this paper, our goal is to investigate the
same question for some quotients of the fundamental group. In contrast with Cale-
gari’s result, we find the following.

Theorem 1.1. Let 6 be a surface of finite type, π = π1(6), and let S ⊂ π be
any generating set containing at least one element in each conjugacy class that
is represented by a nonseparating simple closed curve. Let ρ : π → N be a
homomorphism into any nilpotent group. Then ρ(π) has finite diameter in the
word metric with respect to the set ρ(S).

MSC2010: primary 57M05; secondary 20E26.
Keywords: Simple closed curves, word length, nilpotent groups.
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In surfaces of genus greater than 1, π has many nilpotent quotients of every
degree of nilpotency. Furthermore, it is residually nilpotent; that is, for every
x ∈ π , there is some nilpotent quotient q : π→ N such that q(x) 6= 1.

We say that a group G is nilpotent-bounded with respect to the set S if any
nilpotent quotient of G has finite diameter with respect to the word metric given
by the image of S. As part of the proof, we prove the following more general result.

Theorem 1.2. Let G be a finitely generated group, and let S ⊂ G be a generating
set such that G/[G,G] has finite diameter with respect to the word metric given
by S. Then G is nilpotent-bounded with respect to S.

2. Nilpotent groups and lower central series

Given a group 0, we define a decreasing sequence of subgroups of 0 called the
lower central series of 0 by the following rule:

00 = 0, 0n+1 = [0,0n].

A group is nilpotent if 0n = 〈1〉 for some n. A group is called n-step nilpotent if
0n = 1 and 0n−1 6= 1. For every n, the group Ln := 0/0n is a nilpotent group.
These groups have the property that any nilpotent quotient of G factors through
one of the projections 0→ Ln .

Put An :=0n−1/0n . It is a standard fact that An< Z(Ln), the center of Ln . Also,
if 0 is finitely generated, then An is also finitely generated. Given a generating set S
of 0, the group An is generated by the images of elements of the form [a1, . . . , an],
where a1, . . . , an ∈ S and [a1, . . . , an] denotes a generalized commutator, that is,

[a1, . . . , an] = [. . . [a1, a2], a3], . . . , an].

In the course of the proof, we require the following technical lemma about gener-
alized commutators in nilpotent groups.

Lemma 2.1. Let 0 be any group, let n, k ∈ N, and let a1, . . . , an ∈ 0. Then

[a1, . . . , an]
k
≡n+1 ([ak

1, . . . , an]),

where ≡i is understood as having equal images in L i .

Proof. First, recall that An < Z(Ln+1). Let x ∈ 0n−1 and y ∈ 0. Note that
[x, y] ∈ 0n . Thus we have that

[xk, y] ≡n+1 xk yx−k y−1
≡n+1 xk y[x, y]k y−1x−k

≡n+1 [x, y]k .

The last equality stems from the fact that [x, y]k is central in Ln+1, and thus is
invariant under conjugation. This proves the claim for the case n = 1. We now
proceed by induction.
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By the case n = 1, we have that:

[a1, . . . , an]
k
≡n+1 [[a1, . . . , an−1], an]

k
≡n+1 [[a1, . . . , an−1]

k, an].

By induction, we can write:

[a1, . . . , an−1]
k
≡n+1 [[a1, . . . , an−2]

k, an−1]γn,

where γn ∈ 0n . Since the image of 0n is central in Ln+1, we have that

[[a1, . . . , an−1]
kγ−1

n , an] ≡n+1 [a1, . . . , an−1]
k, an].

Proceeding similarly, we get the claim of the lemma. �

3. Proof of the main theorems

Lemma 3.1. Let n ∈N and let e1, . . . , e2n be the standard basis for Z2n . Then the
set S= Sp2n(Z) · e1 generates Z2n with finite diameter.

Proof. We prove this fact first for n = 1. In this case, Sp2n(Z) = SL2(Z). Given
a vector v =

( a
b
)
∈ Z2 such that gcd(a, b) = 1, there exist x, y ∈ Z such that

ax + by = 1. In this case,

A =
(a −y

b x

)
∈ SL2(Z)

and A · e1 = v, and thus v ∈ S. For a general vector v =
( a

b
)
, notice that

v =
(a−1

1

)
+

( 1
b−1

)
and that gcd(1, a−1)= gcd(1, b−1)= 1, and thus v ∈ S+S.

Now consider the case n > 1. In this case, we have that D < Sp2n(Z), where
D∼=

∏n
i=1 SL2(Z) is the group of matrices containing n copies of SL2(Z) along the

diagonal and zeroes in all other entries. Also, ê= e1+e3+· · ·+e2n−1 is in S. Given( ai
bi

)n
i=1 ∈ Z2n , by the case n = 1 there are 2n matrices A1, . . . , An, B1, . . . Bn ∈

SL2(Z) such that

Ai · e1 =

(ai−1
1

)
, Bi · e1 =

( 1
bi−1

)
.

Let A = diag(A1, . . . , An) and B = diag(B1, . . . , Bn). Then

v = A · ê+ B · ê.

Thus Z2n is generated by S with finite diameter. �

Lemma 3.2. Let 0 be a finitely generated group, and let n ∈ N. Suppose that
S⊂ 0 generates 0 and generates Ln with finite diameter. Then S generates Ln+1

with finite diameter.
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Proof. By assumption, there exists an N0 such that for any w ∈ 0, there exist
s1, . . . sm ∈ S (with m < N0) such that

(s1 . . . sm)
−1w ∈ 0n.

Thus, it is enough to show that the image of S in Ln+1 generates An with finite
diameter. The group An is a finitely generated abelian group that is generated by
elements of the form [s1, . . . , sn], where s1, . . . sn,∈ S. Choose such a generating
set: γ1, . . . , γp. Consider γ1 = [s1, . . . , sn]. Given any k ∈ N, by Lemma 2.1, we
have that γ k

1 ≡n+1 [sk
1 , . . . , sn]. Further, there exist elements σ1, . . . , σm ∈ S with

m < N0 and an element γ ∈ 0n such that

sk
1 = σ1 · · · σmγ.

The elements σ1, . . . , σm, γ depend on γ1 and k, but their number does not. Thus

γ k
1 ≡n+1 [σ1 · · · σmγ, . . . , sn] ≡n+1 [σ1 · · · σm, . . . , sn],

where the last equality stems from the centrality of 0n . The last expression is a
word in the elements of S, whose length is bounded from above by a number that
does not depend on k. This is true not just for γ1, but for γ2, . . . , γp. Since the
group An is abelian, and every element in it can be written as a product of powers
of γ1, . . . , γp, we get that An is generated by S with finite diameter, as required. �

Proof of Theorem 1.2. It is a direct consequence of Lemma 3.2 and induction. �

Proof of Theorem 1.1. Let H = H1(S,Z). There exists a simple closed curve in π
that is mapped to e1 under this mapping. The mapping class group acts on H , and
it is well-known that this action induces a surjective homomorphism onto Sp2g(Z)

[Farb and Margalit 2012, Proposition 8.4]. Furthermore, the nonseparating simple
closed curves form a single mapping class group orbit. Thus, by Lemma 3.1 and
Theorem 1.2, π is nilpotent-bounded with respect to S. �

4. Finding smaller generating sets

Using Theorem 1.2, it is possible to find smaller generating sets for which π is
nilpotent-bounded. We give one such set here, but it is relatively simple to find
many of them. In order to do so, we need a simple corollary.

Corollary 4.1. Let G be a finitely generated group. Let H=H1(G,Z)∼=G/[G,G].
Suppose that H ∼= H1 ⊕ · · · ⊕ Hk , and that for each i = 1, . . . , k we are given a
set Si ⊂ 6 whose projection to H is contained in Hi and generates Hi with finite
diameter. Then G is nilpotent-bounded with respect to S1 ∪ · · · ∪ Sk .

Proof of Corollary 4.1. This is a direct result of Theorem 1.2 and the fact that any
element of x ∈ H can be written as x = h1+ · · ·+ hk with hi ∈ Hi . �
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An example of an application of Corollary 4.1 is the following. Let 6 be an
orientable surface of genus g> 1. It is common to choose a generating set for π =
π1(6) of the form S ′={α1, β1, . . . , αg, βg}, where all of the above are represented
by simple closed curves, the geometric intersection number of αi and βi is one,
and they can be realized disjointly from all the other curves. Let 0i = 〈αi , βi 〉.
The group 0i is the fundamental group of an embedded torus with one boundary
component. Let H = H1(6), and let Hi be the projection to H of 0i . Then H =
H1⊕· · ·⊕Hg. Thus, if we let S be any set containing at least one representative in
each conjugacy class of a simple closed curve that lies in one of the g tori described
above, then π is nilpotent-bounded with respect to S.

5. Further questions

The contrast between the result in this paper and Calegari’s result that π has infinite
diameter with respect to S gives rise to several questions.

Question 1. Recall that Ln = π/πn . By Theorem 1.1, Ln has finite diameter with
respect to S. Call this diameter dn . The sequence {dn}

∞

n=1 is nondecreasing. Is
this sequence bounded? If so, by what value? If not, what is its asymptotic growth
rate?

If the sequence {dn}
∞

n=1 were indeed unbounded, that would imply that π has
infinite diameter with respect to S. However, the converse implication is not nec-
essarily true. One way to see this is to consider the following example: Suppose
that π is a free group. Choose a free generating set for π , and let | . | be the word
metric given by this set. The set

⋃
∞

i=1 L i is countable. Choose an enumeration of
all of its elements: {`i }

∞

i=1. Each of the `i ’s is a coset of an infinite subgroup of π .
For each i , choose an element li ∈ `i such that |li+1| > 2|li |. Let L = {li }

∞

i=1. The
group π is nilpotent-bounded with respect to the set L. Indeed, by construction, L

surjects onto every nilpotent quotient, and thus generates each nilpotent quotient
with diameter 1. However, by using the triangle inequality for | . |, it is simple to
see that L cannot generate π with finite diameter.

Question 2. The lower central series is but one of the important series of nested
subgroups of π . Another such series is the derived series, whose elements are
quotients of surjections onto solvable groups. This sequence is defined by

0(0) = 0, 0(n+1)
= [0(n), 0(n)].

Is the conclusion of Theorem 1.1 true if we replace the word nilpotent with the
word solvable?
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STRONG SUBMODULES
OF ALMOST PROJECTIVE MODULES

GÁBOR BRAUN AND JAN TRLIFAJ

The structure of almost projective modules can be better understood in the
case when the following Condition (P) holds: The union of each countable
pure chain of projective modules is projective. We prove this condition, and
its generalization to pure-projective modules, for all countable rings, using
the new notion of a strong submodule of the union.

However, we also show that Condition (P) fails for all Prüfer domains of
finite character with uncountable spectrum, and in particular, for the poly-
nomial ring K [x], where K is an uncountable field. One can even prescribe
the 0-invariant of the union. Our results generalize earlier work of Hill,
and complement recent papers by Macías-Díaz, Fuchs, and Rangaswamy.

By a classic theorem of Kaplansky, the structure theory of projective modules
over an arbitrary ring reduces to that of countably generated ones. In stark contrast,
almost projective modules (modules possessing a rich supply of small projective
submodules) generally have a very complex structure. Perhaps the most successful
invariant measuring their complexity is the 0-invariant. A projective module has a
trivial 0-invariant [Eklof 1993; Eklof and Mekler 2002].

There are additional conditions on almost projective modules that guarantee
projectivity. In his work on Whitehead groups, Hill [1970] discovered a remarkable
condition in the particular case of abelian groups: if A is the union of a countable
pure chain of (arbitrarily large) projective groups, then A is projective. Here, we
call the analogous property for modules over an arbitrary ring Condition (P).

In the past decade, several authors have attempted to extend Hill’s result and
establish Condition (P) for large classes of rings, notably for commutative domains
and noetherian rings [Fuchs and Rangaswamy 2011; Fuchs and Salce 2001]. So
far, Macías-Díaz [2010] has obtained the strongest result, that Prüfer domains with
countable spectrum have Condition (P).

Section 1 of our paper gives more motivation for considering Condition (P), by
showing its role in relating various notions of almost projectivity appearing in the
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literature. In Section 2, we prove Condition (P) and some of its generalizations for
all countable rings, using the new notion of a strong submodule.

However, in Section 3, we show that Condition (P) fails completely for all Prüfer
domains of finite character with uncountable spectrum (and thus, for example, for
the polynomial ring K [x], where K is any uncountable field). Here, “completely”
refers to the fact that there are essentially no restrictions on the 0-invariant of A.

In what follows, R denotes a ring (that is, an associative ring with 1), and the
term module means a right R-module.

1. Almost projective modules

The following definition is the analogue of [Eklof and Mekler 2002, IV.1.1] for
general rings, with “free” replaced by “projective”.

Definition 1.1. Let R be a ring and κ a regular uncountable cardinal. A module M
is called κ-projective if there exists a set S consisting of < κ-generated projective
submodules of M such that

(i) each subset of M of cardinality < κ is contained in an element of S, and

(ii) S is closed under unions of well-ordered chains of length < κ .

We recall some other relevant notions for the study of almost projectivity (see,
for example, [Eklof and Mekler 2002, IV.1; Trlifaj 1995]).

Definition 1.2. Let R be a ring and κ a regular uncountable cardinal. A module
M is called weakly κ-projective if each subset of M of cardinality<κ is contained
in a pure submodule N of M that is < κ-generated and projective.

Recall that a module M is flat if the functor M ⊗R − is exact, and that M is
Mittag-Leffler if the canonical map

M ⊗R

∏
i∈I

Qi →
∏
i∈I

(M ⊗R Qi )

is monic for each family of left R-modules (Qi | i ∈ I ).

Lemma 1.3 [Raynaud and Gruson 1971; Herbera and Trlifaj 2009]. Let R be a
ring and M a module. Then the following conditions are equivalent:

(i) M is ℵ1-projective.

(ii) M is weakly ℵ1-projective.

(iii) Each finite subset of M is contained in a projective, countably generated and
pure submodule of M.

(iv) M is flat Mittag-Leffler.
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Also, if κ is a regular uncountable cardinal and M is κ-projective, then M is ℵ1-
projective.

Proof. The equivalence of (i), (ii) and (iii) is proved in [Raynaud and Gruson 1971]
(see also [Drinfeld 2006]), while (i) and (iv) are equivalent by [Herbera and Trlifaj
2009, Theorem 2.9(i)] (see also [Rothmaler 1994; 1997]). The last statement is
[Herbera and Trlifaj 2009, Theorem 2.9(ii)]. �

The implication (i)⇒ (ii) extends to arbitrary regular uncountable cardinals κ:

Lemma 1.4. Let R be a ring, M a module, and κ an infinite cardinal.

(i) Assume that M is ℵ1-projective. Then each subset of M of cardinality ≤ κ is
contained in a ≤ κ-generated pure submodule of M.

(ii) Assume that κ is regular uncountable and M is κ-projective. Then M is
weakly κ-projective.

Proof. (i) We prove the claim by induction on κ . The case of κ = ℵ0 follows by
Lemma 1.3.

Assume κ ≥ℵ1, and let X = {xα | α < κ} be a subset of M of cardinality κ . For
each α < κ , let Xα = {xβ | β < α}. By induction on α, we define an increasing
chain (Pα | α < κ) of < κ-generated pure submodules of M as follows: P0 = 0,
Pα+1 is a < κ-generated pure submodule of M containing Xα ∪ Pα (which exists
by the inductive premise), and Pα =

⋃
β<α Pβ when α < κ is a limit ordinal. Then

P =
⋃
α<κ Pα is a ≤ κ-generated pure submodule of M containing X .

(ii) Let S be as in Definition 1.1, and let X be a subset of M of cardinality < κ .
By condition (i) of Definition 1.1, X is contained in a < κ-generated projective
submodule P0 ∈ S. By the last statement of Lemma 1.3 and by Lemma 1.4(i), P0

is contained in a < κ-generated pure submodule Q0 of M . Proceeding similarly,
we obtain a countable chain

P0 ⊆ Q0 ⊆ P1 ⊆ Q1 ⊆ · · · ⊆ Pn ⊆ Qn ⊆ · · · ,

where Pn ∈S, so Pn is<κ-generated and projective, and Qn is<κ-generated and
pure in M , for all n<ω. Let P =

⋃
n<ω Pn =

⋃
n<ω Qn . Then P ∈S by condition

(ii) of Definition 1.1, and P is pure in M . �

Whatever the cardinality of the ring R, Lemma 1.4(i) makes it possible to purify
a submodule without increasing the number of generators. So in the particular case
when R is a right hereditary ring, κ-projectivity and weak κ-projectivity are equiv-
alent (to the property that each < κ-generated submodule is projective). However,
the converse of Lemma 1.4(ii) fails in general:

Example 1.5. Let κ > ℵ1 be a regular cardinal, let K be a field, and let R denote
the endomorphism ring of a κ-dimensional K -linear space modulo its maximal
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ideal. Then there exists a κ-generated right ideal I in R such that I is weakly
κ-projective, but not κ-projective [Trlifaj 1995, Theorem 8].

Another relevant property is the following (where a chain (Pn | n <ω) is a pure
chain if Pn is a pure submodule of Pn+1 for each n < ω):

Definition 1.6. Let R be a ring. Then R satisfies Condition (P) if for each pure
chain (Pn | n < ω) consisting of projective modules, the module P =

⋃
n<ω Pn is

projective.

Condition (P) yields a characterization of weak κ-projectivity:

Proposition 1.7. Let R be a ring satisfying Condition (P). Let M be a module and
κ a regular infinite cardinal. Then M is weakly κ-projective if and only if there
exists a set S consisting of < κ-generated projective submodules of M such that

(i) each subset of M of cardinality < κ is contained in an element of S, and

(ii) S is closed under unions of countable chains.

Proof. By [Herbera and Trlifaj 2009, Corollary 2.3], assumptions (i) and (ii) assure
ℵ1-projectivity of M , so the “if” implication is proved as in Lemma 1.4. For the
“only if”, let S be the set of all<κ-generated projective and pure submodules of M .
Then (i) holds by the assumption. If M0 ⊆ · · · ⊆ Mn ⊆ Mn+1 ⊆ · · · is a countable
chain of elements of S, then Mω =

⋃
n<ω Mn is projective by Condition (P), so

Mω ∈ S. �

Condition (P) holds for R=Z. This was shown by Hill [1970], who proved thus
the singular compactness of almost free abelian groups of cardinality ℵα, where α
has cofinality ω.

More generally, Condition (P) is known to hold for all Prüfer domains with
countably many maximal ideals [Macías-Díaz 2010, Corollary 15], and hence for
all valuation domains. In Theorem 2.5 below, we prove it for all countable rings.

However, attempts to prove Condition (P) for arbitrary domains in [Fuchs and
Salce 2001, XVI.1.4] and [Fuchs and Rangaswamy 2011, Theorem 1.3] have gaps;
in fact, as we see in Theorem 3.1, Condition (P) fails even for R = K [x], where
K is an uncountable field.

The main goal of the next section is to prove Condition (P), and hence the
equivalence in Proposition 1.7, for all countable rings. Before proceeding to that
point, we note that under additional assumptions on R and M , the equivalence
holds even without assuming Condition (P):

Proposition 1.8. Let κ be an infinite cardinal, and let R be a ring that is either a
domain or is right<κ-noetherian (that is, every right ideal is<κ-generated). Let
M be a module of projective dimension ≤ 1. Then M is weakly κ-projective if and
only if there exists a set S consisting of<κ-generated projective submodules of M
such that
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(i) each subset of M of cardinality < κ is contained in an element of S, and

(ii) S is closed under unions of countable chains.

The following lemma helps in finding projective submodules:

Lemma 1.9. Let M be a module of projective dimension at most 1. Let N be a
tight submodule; that is, let M/N have also projective dimension at most 1. If N
is contained in a projective submodule of M , then N is projective.

Proof. Let P be a projective module such that N ⊆ P ⊆ M . We can estimate the
projective dimensions of various modules built from N , P and M using the long
exact sequence for Ext as follows:

proj.dim M/P ≤max{proj.dim M, proj.dim P + 1} ≤ 2,(1)

proj.dim P/N ≤max{proj.dim M/N , proj.dim M/P − 1} ≤ 1,(2)

proj.dim N ≤max{proj.dim P, proj.dim P/N − 1} ≤ 0.(3)

The last line shows that N is projective. �

Proof of Proposition 1.8. As in the proof of Proposition 1.7, the conditions (i) and
(ii) of Proposition 1.8 imply that M is κ-projective (because neither Condition (P)
nor any of our additional assumptions are needed there).

For the other direction, we note that by the assumptions on R, there is a Hill
family consisting of tight submodules of M : when R is a domain, this follows by
[Fuchs and Salce 2001, Proposition VI.5.1] and [Göbel and Trlifaj 2006, 4.2.6],
and when R is<κ-noetherian, we apply [Göbel and Trlifaj 2006, 4.1.11 and 4.2.6].

Let S be the subfamily of the<κ-generated members of this family. Conditions
(i) and (ii) automatically hold. Finally, the assumption of weak κ-projectivity and
Lemma 1.9 imply that S consists of projective modules. �

2. Hill families of strong submodules

We start this section by considering a general version of Condition (P), where the
chain (Pn | n < ω) is not necessarily pure, and the modules Pn (n < ω) are direct
sums of modules from a given class C consisting of countably presented modules or
modules of countable rank. The relevant notion here is that of a strong submodule.
It is introduced in the following definition, where, for a class of modules C, we
denote by Sum (C) the class of all direct sums of copies of modules from C.

Definition 2.1. Let R be a ring and C a class of modules.
Let (Pn | n < ω) be a countable increasing chain of modules, and suppose

P =
⋃

n<ω Pn . Assume that Pn ∈ Sum (C) for each n < ω; that is, there exists a
decomposition Pn =

⊕
α<κn

Pn,α, where Pn,α is isomorphic to an element of C for
each α < κn .
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We fix these decompositions, and for each n<ω and each subset S⊆ κn , define
P(n, S)=

⊕
α∈S Pn,α. So, in particular, Pn = P(n, κn).

A submodule N of P is called strong if there exist (An |n<ω) such that An⊆κn

and N∩Pn = P(n, An) for each n<ω. The sequence (An | n<ω) is then uniquely
determined by N ; it is the witnessing sequence for N .

In this section, P denotes the union
⋃

n<ω Pn , where (Pn | n<ω) is a countable
increasing chain of modules, as in Definition 2.1.

In the case when C is the class of all countably presented projective modules,
Definition 2.1 covers the setting of Condition (P), because by a classic theorem of
Kaplansky, each projective module is a direct sum of modules in C.

Note that 0 and P are strong submodules of P . Also, unions of chains of strong
submodules are strong, and so are arbitrary intersections of strong submodules.
Indeed, in Theorem 2.9, we prove that strong submodules are abundant.

If N is strong in P and the chain (Pn |n<ω) is pure, then N is a pure submodule
of P , because N =

⋃
n<ω N ∩ Pn and N ∩ Pn is a direct summand in the pure

submodule Pn of P for each n < ω.
For the next lemma, we recall that a ring R is right ℵ0-noetherian provided that

each right ideal of R is countably generated. For example, all right noetherian
rings, and all countable rings, are right ℵ0-noetherian. It is easy to see that a ring
R is right ℵ0-noetherian if and only if each submodule of a countably generated
module is countably generated.

Lemma 2.2. Assume that R is right ℵ0-noetherian and C consists of countably
presented modules, or that R is a commutative domain and C consists of torsion-
free modules of countable rank, respectively. Let N be a strong submodule of P
with witnessing sequence (An | n < ω). Let C be a countable subset of P or a
subset of P such that 〈C〉 has countable rank, respectively.

Then there is a strong submodule N ′ of P such that N ∪C ⊆ N ′, the witnessing
sequence (A′n | n <ω) for N ′ satisfies An ⊆ A′n , and A′n \ An is countable for each
n < ω.

Proof. We simultaneously and recursively construct chains (Cn,i : i <ω) of subsets
of κn .

As a start, for each n < ω, put An ⊆ Cn,0 ⊆ κn , with Cn,0 \ An countable and
C ∩ Pn ⊆ P(n,Cn,0).

For i ≥ 0, let Cn,i ⊆ Cn,i+1 ⊆ κn , with Cn,i+1 \Cn,i countable and

P(m,Cm,i )∩ Pn ⊆ P(n,Cn,i+1)

for all m.
Finally, we define A′n =

⋃
i<ω Cn,i for each n < ω. Then An ⊆ A′n ⊆ κn , and

A′n\An is countable for each n<ω. Let N ′=
⋃

n<ω P(n, A′n)=
⋃

n,i<ω P(n,Cn,i ).
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The P(n,Cn,i ) form an upper directed system of submodules, so their union is a
submodule.

Recall that P(m,Cm,i )∩ Pn ⊆ P(n,Cn,i+1) for all m, n, i <ω, and hence N ′∩
Pn = P(n, A′n). All in all, N ′ is a strong submodule of P with witnessing sequence
(A′n | n < ω).

Since C ∩ Pn ⊆ P(n, A′n) for each n < ω, we conclude that N ∪C ⊆ N ′. �

Lemma 2.2 serves as inductive step for proving the following:

Proposition 2.3. Assume either that R is right ℵ0-noetherian and C consists of
countably presented modules, or that R is a commutative domain and C consists
of torsion-free modules of countable rank, respectively.

Then P is the union of a continuous increasing chain M = (Mα | α < λ) of
strong submodules of P , such that for each α < λ, there is a countably generated
or countable-rank submodule Nα of P , respectively, with Mα+1 = Mα + Nα.

Proof. Let {pα | α < λ} be an R-generating subset of P . Since M0 = 0 is strong,
and the union of a chain of strong submodules is strong, it remains to perform the
nonlimit step of the construction. However, applying Lemma 2.2 for N = Mα and
C = {pα}, we can take Nα =

∑
n<ω P(n, A′n \ An) and Mα+1 = N ′. �

We can prove more in the particular case of countable rings. We consider a class
of modules C to have Property (C) if for each increasing pure chain of modules
(Qn | n <ω) such that Qn ∈ Sum (C) for all n <ω, and each countably presented
pure submodule C of

⋃
n<ω Qn , the module C is C-filtered. Also, C has Property

(C+) if the same assumptions yield the stronger conclusion of C ∈ Sum (C).
For example, the class of all countably presented modules and the class of all

projective modules have Property (C+), because the union of a pure chain of pro-
jective modules is always ℵ1-projective, by Lemma 1.3.

Lemma 2.4. Let R be a countable ring. Let C be a class of countably presented
modules that has Property (C). Let (Pn | n < ω) be an increasing pure chain of
modules such that Pn ∈ Sum (C) for all n < ω, and let P =

⋃
n<ω Pn . Then P is

C-filtered.
Also, if C has Property (C+), then P is the union of a continuous increasing

chain M= (Mα |α<λ) consisting of strong submodules of P such that Mα+1/Mα ∈

Sum (C).

Proof. Let (Pn | n<ω) be an increasing pure chain of modules with Pn ∈ Sum (C)

for all n < ω. Since R is countable, the continuous chain M from Proposition 2.3
can be taken with the additional property of Mα+ Pn being pure in P for all n<ω
and α < κ . This is arranged by improving Lemma 2.2 for countable R: when
for the strong submodule N , all the submodules N + Pn are pure, then N ′ can be
chosen with the N ′+ Pn also pure.
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It follows that for each α < κ , the factor Q = P/Mα is the union of the pure
chain (Qn | n < ω), where Qn = (Mα + Pn)/Mα. Also, Qn ∼= Pn/(Pn ∩ Mα) ∈

Sum (C), because Mα is strong. Similarly, the countably presented submodule
C=Mα+1/Mα is pure in Q, so C is C-filtered by Property (C). Then P=

⋃
α<κ Mα

is C-filtered as well.
Also, if C has Property (C+), then C = Mα+1/Mα ∈ Sum (C). �

The assumptions of Lemma 2.4 are satisfied for R countable and C the class
of all countably generated projective modules. Since in this case C-filtered is the
same as projective, we get:

Theorem 2.5. Let R be a countable ring. Then R satisfies Condition (P).

As another consequence, we obtain the general version of Condition (P) for the
case when R is countable, C has Property (C+), and C consists of finitely presented
modules:

Corollary 2.6. Let R be a countable ring, and let C be a class of finitely presented
modules that has Property (C+). Let (Pn | n < ω) be an increasing pure chain
of modules such that Pn ∈ Sum (C) for all n < ω and that P =

⋃
n<ω Pn . Then

P ∈ Sum (C).

Proof. By Lemma 2.4, P is the union of a continuous increasing chain

M= (Mα | α < λ),

consisting of strong submodules of P such that Mα+1/Mα ∈Sum (C). In particular,
Mα is pure in Mα+1 for each n < ω. As C consists of finitely presented modules,
Mα+1/Mα is pure-projective, and the embedding Mα ↪→ Mα+1 splits. This proves
that P ∈ Sum (C). �

A variation of Corollary 2.6 gives the version of Condition (P) for pure-projective
modules over countable rings.

Theorem 2.7. Let R be a countable ring, (Pn | n<ω) be an increasing pure chain
of pure-projective modules, and P =

⋃
n<ω Pn . Then P is pure-projective.

Proof. By [Raynaud and Gruson 1971, Seconde partie, Corollaire 2.2.2], a count-
ably presented module is pure-projective if and only if it is Mittag-Leffler, and the
latter property is clearly inherited by pure submodules. As in Lemma 2.4, we infer
that P is the union of a continuous chain M consisting of strong submodules of
P such that all consecutive factors in M are pure-projective, and hence P is pure-
projective as well. �

Alternatively, we can deduce Theorem 2.5 from Theorem 2.7, because projective
= flat + pure-projective.
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Of course, the union of a nonpure countable chain of projective modules need
not be projective even for countable rings: just consider R = Z and Q as the union
of the chain of free groups (1/n! ·Z | n < ω).

Also, the general version of Condition (P) for pure chains consisting of modules
from Sum (C) may fail even for countable rings and C having Property (C). That
is, even though P is C-filtered by Lemma 2.4, P /∈ Sum (C) in general:

Example 2.8. Let R be a simple, countable von Neumann regular ring that is not
artinian — for example, let R be the directed union of the full matrix rings M2n (Q)

(n < ω) with the block diagonal embeddings

Q⊆ M2(Q)⊆ M4(Q)⊆ · · · ⊆ M2n (Q)⊆ M2n+1(Q)⊆ · · · .

Consider a simple nonprojective module S, and let C be the class of all finitely
{S}-filtered modules. Then C is a class of countable modules and has Property (C).

Define a chain of finite length modules (Pn | n < ω) such that P0 = S and that
Pn+1 fits in a nonsplit short exact sequence 0→ Pn ⊆ Pn+1 → S → 0 for each
n < ω. This is possible by [Trlifaj 1996, Proposition 3.3]. This chain is pure
because R is von Neumann regular, so all R-modules are flat.

Let P =
⋃

n<ω Pn . Then Pn ∈ C for all n < ω, and P is C-filtered, but P /∈

Sum (C). Indeed, S = P0 is an essential submodule of P , so P is uniform, and
hence indecomposable.

Returning to the general setting and using an idea by Hill, we can extend the
chain M from Proposition 2.3 further, to a large family of strong submodules:

Theorem 2.9. Assume that R is right ℵ0-noetherian and C consists of countably
presented modules, or that R is a commutative domain and C consists of torsion-
free modules of countable rank, respectively. Let M= (Mα :α<λ) be a continuous
increasing chain of strong submodules of P as in Proposition 2.3. There is a family
H of strong submodules of P such that:

(i) M⊆H.

(ii) H is closed under arbitrary sums and intersections; in fact, H is a complete
distributive sublattice of the modular lattice of all submodules of P.

(iii) Let N , N ′ ∈H be such that N ⊆ N ′. Then there exists a continuous increasing
chain (Nβ | β ≤ τ) consisting of elements of H such that τ ≤ λ, N0 = N ,
Nτ = N ′, and for each β < τ there is α < κ such that Nβ+1/Nβ is isomorphic
to Mα+1/Mα.

(iv) Let N ∈H, and let X be a countable subset of P (a subset of P such that 〈X〉
has countable rank, respectively). Then there are N ′ ∈ H and a submodule
Y ⊆ P such that Y is countably generated (of countable rank, respectively)
and N ∪ X ⊆ N ′ = N + Y .
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Proof. For all α < λ and n<ω, let Dα,n = Aα+1,n \ Aα,n , where (Aα,n | n<ω) and
(Aα+1,n |n<ω) are the witnessing sequences for Mα and Mα+1. By the assumption
on the chain M, all the sets Dα,n are countable. Let 1α =

∑
n<ω P(n, Dα,n). Then

1α is countably generated, and Mα+1 = Mα +1α for each α < λ.
As in [Göbel and Trlifaj 2006, §4.2], we call a subset S of σ closed when

1α ∩Mα ⊆

∑
β<α, β∈S

1β

for each α ∈ S. We define H= {
∑

α∈S 1α | S is closed in λ}.
Since each ordinal σ ≤ λ is closed, M ⊆ H, and (i) holds. Properties (ii) and

(iii) are proved in [Göbel and Trlifaj 2006, 4.2.6]. If R is ℵ0-noetherian, then (iv)
is proved in [Göbel and Trlifaj 2006, 4.2.6], while in the domain case, (iv) follows
by [Göbel and Trlifaj 2006, 4.2.8].

It remains to show that all modules in H are strong. Let S be a closed subset
of λ, and let N =

∑
α∈S 1α and Bn =

⋃
α∈S Dα,n . It suffices to prove that N∩Pn =

P(n, Bn) for each n < ω. The inclusion ⊇ is clear from the definitions above.
Assume there exists x ∈ (N ∩ Pn) \ P(n, Bn). Then there is one of the form

x = xα1+· · ·+xαi , where α1< · · ·<αi are elements of S, and xαk ∈1αk \P(n, Bn)

for all 1≤ k ≤ i . Without loss of generality, we can assume that α= αi is minimal.
Since x ∈ Mα+1 ∩ Pn = P(n, Aα+1,n), we also have x = yβ1 + · · · + yβ j , where
β1< · · ·<β j are elements of Aα+1,n and yβl ∈ Pn,βl for each 1≤ l ≤ j . If βl ∈ Dα,n

for some 1≤ l≤ j , then xα−yβl ∈1α\P(n, Bn). Possibly replacing x by x−yβl , we
can assume that βl ∈ Aα,n for all 1≤ l≤ j . But then xα ∈1α∩Mα⊆

∑
β<α,β∈S 1β ,

in contradiction with the minimality of α.
This proves that N is strong in P . �

We can now improve the second part of Lemma 2.4:

Corollary 2.10. Let R be a countable ring. Let C be a class of countably presented
modules that has Property (C+). Let (Pn | n < ω) be an increasing pure chain of
modules such that Pn ∈ Sum (C) for all n < ω, and let P =

⋃
n<ω Pn .

Then P is the union of a continuous increasing pure chain N = (Nα | α < ℵ1)

consisting of strong submodules of P such that Nα+1/Nα ∈Sum (C) for all α<ℵ1.

Proof. Let M be the chain constructed in the second part of Lemma 2.4, and
consider the corresponding family H, as in Theorem 2.9. By [Št́ovíček 2012], one
can select from H an increasing continuous chain N= (Nα | α < ℵ1) of length no
greater than ℵ1, such that Nα+1/Nα is isomorphic to a direct sum of some of the
successive factors of the original chain M, for all α <ℵ1. By Lemma 2.4, all these
factors are in Sum (C). Since H consists of strong (and hence pure) submodules
of P , so does N. �
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3. The failure of Condition (P)

In this section we prove that Condition (P) fails for Prüfer domains of finite charac-
ter with uncountable spectrum, and, notably, for every principal ideal domain with
an uncountable spectrum. We adopt [Eklof and Mekler 2002, Theorem VII.1.4] to
illustrate that failure of Condition (P) has little, if any, restriction on the 0-invariant
of even large almost-projective modules.

Recall from [Fuchs and Salce 2001, Chapter III, Lemma 2.7] that in a Prüfer
domain of finite character, every maximal ideal contains a finitely generated ideal,
which is not contained in any other maximal ideal. Selecting one for every maximal
ideal, we obtain a system of pairwise coprime proper invertible ideals. In fact, all
we need is such a system of ideals:

Theorem 3.1. Let R be a commutative domain with uncountably many pairwise
coprime invertible proper ideals. Let κ be a regular uncountable cardinal, and E
be a nonreflecting stationary subset of κ , all of whose elements have cofinality ω.
Then there is a κ-projective κ-generated R-module M with 0-invariant Ẽ that is a
union of a countable pure chain of projective submodules.

Before proving Theorem 3.1, we follow the suggestion of the referee and present
a simple particular case of the construction.

Example 3.2. Let R be a principal ideal domain with uncountably many maximal
ideals (pα) for 0< α < ℵ1.

We define our module via generators and relations:

(4) P := 〈eα,n : α < ω1, n < ω
∣∣ pαeα,n+1 = eα,n + e0,n+1 : α > 0〉.

(This is an example for the theorem with κ =ℵ1, and E = {α < ℵ1 | cf(α)=ℵ0}.)
We leave it to the reader to verify that for every 0 < α ≤ ℵ1 and i < ω, the

submodule

(5) Nα,i = 〈eβ, j : j ≤ i, β < α〉

is actually free, with a basis formed by the e0, j for j ≤ i and the eβ,i for 0<β <α.
Since

Nα,i+1/Nα,i ∼= 〈R, p−1
β : 0< β < α〉

(with e0,i+1 corresponding to 1 and eβ,i+1 corresponding to p−1
β ) is torsion-free,

Nα,i is a pure submodule of Nα,i+1. Hence, P is a union of a pure chain Pi = Nℵ1,i

of projective submodules.
On the other hand, P is a union of a continuous chain

(6) Nα =
⋃
i<ω

Nα,i = 〈eβ,i : β < α, i < ω〉, 0< α < ℵ1
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of (strong) submodules with nonprojective factors Nα+1/Nα ∼= R[p−1
α ] (with eα,i

corresponding to p−i
α ), and hence is not projective.

The proof of Theorem 3.1 is mostly the same as that of [Eklof and Mekler 2002,
Theorems VII.1.3–4], so we present only the differences. To include the sequence
of submodules in the structure, we work in the category of ω-filtered modules, that
is, modules M together with an increasing sequence (M(n) : n<ω) of submodules
satisfying

⋃
∞

n=0 M(n)=M . A filtered submodule of M is a submodule N together
with the filtration N (n) := M(n) ∩ N . Note that M/N is also a filtered module,
with the filtration (M(n)/N (n)∼= (M(n)+ N )/N : n < ω).

For the free module R(λ×ω), we always use the filtration (R(λ×n)
: n < ω).

For a module N , let N [n] denote the filtered module

(7) N [n](m) :=
{

0, m < n,
N , m ≥ n.

For example, R(λ×ω) =
∞⊕

n=0

R(λ)[n+ 1] as filtered modules.

Proof of Theorem 3.1. We distinguish the cases κ > ℵ1 and κ = ℵ1. To avoid
repetition, we first provide the common part of both cases, and then fill out the
missing parts separately.

We build a continuous increasing chain of ω-filtered modules (Mµ : µ < κ)

whose filtrations consist of pure and projective submodules. By “increasing”, we
mean that Mν is a filtered submodule of Mµ for µ < ν.

The union M of the chain is our κ-projective module with 0-invariant Ẽ .
To ensure that all the Mµ(n) and M(n) are projective, we make the filtrations

of the Mµ+1/Mµ consist of projective modules.
We fix an infinite cardinal λ < κ . For µ /∈ E , let

Mµ+1 := Mµ⊕ Pµ, Pµ := R(λ×ω) =
∞⊕

n=0

R(λ)[n+ 1]eµ,n.

For the case µ ∈ E , we select a template as in [Eklof and Mekler 2002, Corol-
lary VII.1.2], that is, a nonprojective λ-generated module Nµ with an ω-filtration
by projective modules. By adding a projective module, we may assume that the
filtration consists of λ-generated free modules; that is, Nµ(n)∼= R(λ). The filtration
induces a short exact sequence

0→ Kµ→ Fµ→ Nµ→ 0

of ω-filtered modules, where

(8) Fµ :=
∞⊕

n=0

Nµ(n)[n]en, Kµ :=

∞⊕
n=0

Nµ(n)[n+ 1]en ∼= R(λ×ω).
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The embedding of Kµ into Fµ maps xen into xen+1−xen , and the homomorphism
Fµ→ Nµ maps xen into x for any x ∈ Nµ(n) and natural number n. In particular,
the filtrations of Kµ and Fµ consist of direct summands, and hence of pure and
projective submodules. We see that the modules

Fµ/(Kµ(n))=
∞⊕

m=n

Nµ(m)

are projective for all N .
We define Mµ+1 as the pushout of the inclusion Kµ ⊆ Fµ by a suitable embed-

ding Kµ→ Mµ identifying Kµ with the direct summand

∞⊕
n=0

R(λ)[n+ 1]eµn,n

of the filtered submodule
⊕
∞

n=0 Pµn for an increasing sequence of successor ordi-
nals µn with supremum µ. Then

Mµ+1/Mµ
∼= Nµ

as filtered modules, and therefore Mµ+1/Mµ is filtered by projective submodules.
The rest of [Eklof and Mekler 2002, Theorems VII.1.3–4] apply to show that

M is a κ-free module of 0-invariant Ẽ . The filtration of M consists of projective
submodules by construction.

All that is left is to find λ and the Nµ and to verify that the filtration of M
actually consists of pure submodules.

When κ > ℵ1, we choose λ= ℵ1, and let Nµ be an ℵ1-generated nonprojective
module with an ω-filtration by pure and projective submodules. (We may choose
all the Nµ the same.) Such an Nµ exists by the κ = ℵ1 case. Since the filtration
of Nµ is by pure submodules, it follows that all the Mµ(n) and M(n) are pure
submodules.

When κ = ℵ1, we let λ = ℵ0. Let (Iα : α < ℵ1) be a collection of pairwise
coprime invertible proper ideals of R. We define the Nµ as submodules of the
quotient field of R:

(9) Nµ(n) := I−n
µ , Nµ := I−∞µ .

Clearly, Nµ is nonprojective and its filtration is by projective submodules.
To show that the filtration of the Mµ is pure, we show that its localization by

any maximal ideal Q is pure. When Iµ * Q and µ∈ E , then Nµ,Q = RQ[0], so the
short exact sequence Kµ,Q→ Fµ,Q→ Nµ,Q of filtered modules splits, and hence
Mµ+1,Q = Mµ,Q ⊕ Nµ,Q as filtered modules.
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There is at most one µ ∈ E with Iµ ⊆ Q. Hence, by the previous paragraph, if
there is such a µ, then Mν,Q is a direct summand of Mν+1,Q as filtered modules,
for all ν < µ. So

Mµ,Q ∼=
⊕
ν<µ

Mν+1,Q/Mν,Q,

with an arbitrary choice of split preimages of the Mν+1,Q/Mν,Q . Recall that Kµ,Q

is a direct summand of a sum of some of these preimages, so it is actually a direct
summand of Mµ,Q ; that is, Mµ,Q = Kµ,Q ⊕ Hµ. It follows that

Mµ+1,Q = Fµ,Q ⊕ Hµ.

These decompositions of filtered modules show that the filtrations of Hµ and
Mµ+1,Q consist of pure submodules. �

We finish with:

Problem 3.3. Characterize the rings R satisfying Condition (P).
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INTERLACING LOG-CONCAVITY
OF THE BOROS–MOLL POLYNOMIALS

WILLIAM Y. C. CHEN, LARRY X. W. WANG AND ERNEST X. W. XIA

We say a sequence {Pm(x)}m≥0 of polynomials of degree m with positive co-
efficients is interlacingly log-concave if the ratios of consecutive coefficients
of Pm(x) interlace the ratios of consecutive coefficients of Pm+1(x) for any
m ≥ 0. Interlacing log-concavity of a sequence of polynomials is stronger
than log-concavity of the polynomials themselves. We show that the Boros–
Moll polynomials are interlacingly log-concave. Furthermore, we give a
sufficient condition for interlacing log-concavity which implies that some
classical combinatorial polynomials are interlacingly log-concave.

1. Introduction

Let {Pm(x)}m≥0 be a sequence of polynomials, where

Pm(x)=

m∑
i=0

ai (m)xm

is a polynomial of degree m. Let

ri (m)=
ai (m)

ai+1(m)
.

We say that the sequence of polynomials {Pm(x)}m≥0 is interlacingly log-concave
if the ratios ri (m) interlace the ratios ri (m+1), that is,

r0(m+1)≤ r0(m)≤ r1(m+1)≤ r1(m)

≤ · · · ≤ rm−1(m+1)≤ rm−1(m)≤ rm(m+1).

Recall that a sequence {ai }0≤i≤m of positive numbers is said to be log-concave if
a0

a1
≤

a1

a2
≤ · · · ≤

am−1

am
.

It is obvious that interlacing log-concavity implies log-concavity.

This work was supported by the 973 Project, the PCSIRT Project, the Doctoral Program Fund of the
Ministry of Education, and the National Science Foundation of China.
MSC2000: primary 05A20; secondary 33F10.
Keywords: interlacing log-concavity, log-concavity, Boros–Moll polynomial.

89



90 WILLIAM Y. C. CHEN, LARRY X. W. WANG AND ERNEST X. W. XIA

The main objective of this paper is to prove the interlacing log-concavity of the
Boros–Moll polynomials. For the background on these polynomials, see [Boros
and Moll 1999a; 1999b; 1999c; 2001; 2004; Moll 2002; Amdeberhan and Moll
2009]. From now on, we use Pm(x) to denote the Boros–Moll polynomial given by

(1) Pm(x)=
∑
j,k

(2m+1
2 j

)(m− j
k

)(2k+2 j
k+ j

)(x+1) j (x−1)k

23(k+ j) .

Boros and Moll [1999b] derived the following formula for the coefficient di (m)

of x i in Pm(x):

(2) di (m)= 2−2m
m∑

k=i

2k
(2m−2k

m−k

)(m+k
k

)(k
i

)
.

In [Boros and Moll 1999c], they showed that the sequence {di (m)}0≤i≤m is uni-
modal and that the maximum element appears in the middle. In other words,

(3) d0(m) < d1(m) < · · ·< d[m/2](m) > d[m/2]−1(m) > · · ·> dm(m).

They also established the unimodality by a different approach [Boros and Moll
1999a]; see also [Alvarez et al. 2001].

Moll [2002] conjectured that the sequence {di (m)}0≤i≤m is log-concave. Kauers
and Paule [2007] proved this conjecture based on recurrence relations found by
using a computer algebra approach. Chen and Xia [2009] showed that the sequence
{di (m)}0≤i≤m satisfies the ratio monotone property which implies log-concavity
and the spiral property. A combinatorial proof of the log-concavity of Pm(x) was
found by Chen, Pang and Qu [≥ 2011].

In addition to the Boros–Moll polynomials, we study polynomials whose coef-
ficients satisfy triangular recurrence relations. It is easy to show that the binomial
coefficients, the Narayana numbers and the Bessel numbers are interlacingly log-
concave. We also give a sufficient condition for the interlacing log-concavity of a
sequence of polynomials and prove that the rising factorials, the Bell polynomials
and the Whitney polynomials are interlacingly log-concave.

2. The interlacing log-concavity of di (m)

In this section, we show that for m ≥ 2, the Boros–Moll polynomials Pm(x) are
interlacingly log-concave.

Theorem 2.1. For m ≥ 2 and 0≤ i ≤ m, we have

di (m)di+1(m+1) > di+1(m)di (m+1),(4)

di (m)di (m+1) > di−1(m)di+1(m+1).(5)
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The proof relies on recurrence relations derived in [Kauers and Paule 2007]:

di (m+1)=
m+ i
m+1

di−1(m)+
(4m+2i+3)

2(m+1)
di (m), 0≤ i ≤ m+1,(6)

di (m+1)=
(4m−2i+3)(m+ i+1)

2(m+1)(m+1− i)
di (m)(7)

−
i(i+1)

(m+1)(m+1− i)
di+1(m), 0≤ i ≤ m,

di (m+2)=
−4i2
+8m2

+24m+19
2(m+2− i)(m+2)

di (m+1)(8)

−
(m+ i+1)(4m+3)(4m+5)

4(m+2− i)(m+1)(m+2)
di (m), 0≤ i ≤ m+1,

and for 0≤ i ≤ m+1,

(9) (m+2− i)(m+ i−1)di−2(m)−(i−1)(2m+1)di−1(m)+ i(i−1)di (m)= 0.

Moll [2007] independently derived the recurrence relations (6) and (9) from which
the other two relations can be easily deduced.

To prove Theorem 2.1(4), we need the following lemma.

Lemma 2.2. Assume that m ≥ 2. For 0≤ i ≤ m−2, we have

(10)
di (m)

di+1(m)
<

(4m+2i+3)di+1(m)

(4m+2i+7)di+2(m)
.

Proof. We proceed by induction on m. When m = 2, it is easy to check that the
result holds. Assume that the lemma is valid for n, namely,

(11)
di (n)

di+1(n)
<

(4n+2i+3)di+1(n)

(4n+2i+7)di+2(n)
, 0≤ i ≤ n−2.

We aim to show that (10) holds for n+1, that is,

(12)
di (n+1)

di+1(n+1)
<

(4n+2i+7)di+1(n+1)

(4n+2i+11)di+2(n+1)
, 0≤ i ≤ n−1.

From the recurrence relation (6), we deduce that, for 0≤ i ≤ n−1,

(2i+4n+7)d2
i+1(n+1)−(2i+4n+11)di (n+1)di+2(n+1)

= (2i+4n+7)

(
i+n+1

n+1
di (n)+

2i+4n+5
2(n+1)

di+1(n)

)2

−(2i+4n+11)

(
i+n+2

n+1
di+1(n)+

2i+4n+7
2(n+1)

di+2(n)

)
×

(
n+i
n+1

di−1(n)+
2i+4n+3

2(n+1)
di (n)

)
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=
A1(n, i)+ A2(n, i)+ A3(n, i)

4(n+1)2 ,

where A1(n, i), A2(n, i) and A3(n, i) are given by

A1(n, i)= 4(2i+4n+7)(i+n+1)2d2
i (n)

−4(n+ i)(2i+4n+11)(i+n+2)di+1(n)di−1(n),

A2(n, i)= (2i+4n+7)(2i+4n+5)2d2
i+1(n)

−(2i+4n+3)(2i+4n+11)(2i+4n+7)di (m)di+2(n),

A3(n, i)= (8i3
+40i2

+58i+32n3
+42n+80n2

+120ni+40i2n+64n2i+8)

·di+1(n)di (n)−2(n+ i)(2i+4n+11)(2i+4n+7)di+2(n)di−1(n).

We will show that A1(n, i), A2(n, i) and A3(n, i) are all positive for 0≤ i ≤ n−2.
By the induction hypothesis (11), we find that for 0≤ i ≤ n−2,

A1(n, i) > 4(2i+4n+7)(i+n+1)2d2
i (n)

−4(n+ i)(2i+4n+11)(i+n+2)
(4n+2i+1)

(4n+2i+5)
d2

i (n)

= 4
35+96n+72i+64ni+40n2

+28i2

2i+4n+5
d2

i (n),

A2(n, i) > (2i+4n+7)(2i+4n+5)2d2
i+1(n)

−(2i+4n+3)(2i+4n+11)(2i+4n+7)
(4n+2i+3)

(4n+2i+7)
d2

i+1(n)

= (40i+80n+76)d2
i+1(n),

which are both positive. Also by the induction hypothesis (11), we see that

(13) di (n)di+1(n) >
(2i+4n+5)(2i+4n+7)

(2i+4n+3)(2i+4n+1)
di−1(n)di+2(n),

for 0≤ i ≤ n−2. This implies that

A3(n, i)

> (8i3
+40i2

+58i+32n3
+42n+80n2

+120ni+40i2n+64n2i+8)di+1(n)di (n)

−2(n+ i)(2i+4n+11)(2i+4n+7)
(4n+2i+3)(4n+2i+1)

(4n+2i+5)(4n+2i+7)
di+1(n)di (n)

= 8 5+22n+30i+44ni+24n2
+16i2

2i+4n+5
di+1(n)di (n),
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which is positive for 0≤ i ≤n−2. Hence the inequality (12) holds for 0≤ i ≤n−2.
It remains to show that (12) is true for i = n−1, that is,

(14)
dn−1(n+1)

dn(n+1)
<

(6n+5)dn(n+1)

(6n+9)dn+1(n+1)
.

From (2) it follows that

dn(n+1)= 2−n−2(2n+3)
(2n+2

n+1

)
,(15)

dn+1(n+1)=
1

2n+1

(2n+2
n+1

)
,(16)

dn(n+2)=
(n+1)(4n2

+18n+21)

2n+4(2n+3)

(2n+4
n+2

)
.(17)

Consequently,

dn−1(n+1)

dn(n+1)
=

n(4n2
+10n+7)

2(2n+1)(2n+3)
<

(2n+3)(6n+5)

2(6n+9)
=

(6n+5)dn(n+1)

(6n+9)dn+1(n+1)
.

This completes the proof. �

We can now prove Theorem 2.1(4). In fact, we shall prove a stronger inequality.

Lemma 2.3. Assume that m ≥ 2. For 0≤ i ≤ m−1, we have

(18)
di (m)

di+1(m)
>

(2i+4m+5)di (m+1)

(2i+4m+3)di+1(m+1)
.

Proof. By Lemma 2.2, we have for 0≤ i ≤ m−1,

(19) d2
i (m) >

2i+4m+5
2i+4m+1

di−1(m)di+1(m).

From (19) and the recurrence relation (6), for 0≤ i ≤ m−1,

di+1(m+1)di (m)−
2i+4m+5
2i+4m+3

di+1(m)di (m+1)

=
2i+4m+5

2(m+1)
di+1(m)di (m)+

i+m+1
m+1

di (m)2

−
2i+4m+5
2i+4m+3

(2i+4m+3
2(m+1)

di (m)di+1(m)+
i+m
m+1

di−1(m)di+1(m)
)

=
i+m+1

m+1
d2

i (m)−
(4m+2i+5)(m+ i)
(4m+2i+3)(m+1)

di−1(m)di+1(m)

>

(
m+1+i

m+1
−

(4m+2i+1)(m+ i)
(4m+2i+3)(m+1)

)
d2

i (m)

=
6m+4i+3

(4m+2i+3)(m+1)
d2

i (m) > 0,

which yields (18). �
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We now turn to the proof of Theorem 2.1(5).

Lemma 2.4. Assume that m ≥ 2. For 0≤ i ≤ m−1, we have

(20)
di (m)

di+1(m)
<

di+1(m+1)

di+2(m+1)
.

Proof. We proceed by induction on m. It is easy to check the lemma holds for
m = 2. Assume that the lemma is true for n ≥ 2, that is,

(21)
di (n)

di+1(n)
<

di+1(n+1)

di+2(n+1)
, 0≤ i ≤ n−1.

It will be shown that the theorem holds for n+1, that is,

(22)
di (n+1)

di+1(n+1)
<

di+1(n+2)

di+2(n+2)
, 0≤ i ≤ n.

Recall that the sequence {di (n+1)}0≤i≤n+1 is unimodal. Furthermore, from (3) or
the ratio monotone property [Chen and Xia 2009], the maximum element appears
in the middle, namely, di (n+1) < di+1(n+1) when 0 ≤ i ≤ [(n+1)/2]−1 and
di (n+1) > di+1(n+1) when [(n+1)/2] ≤ i ≤ n.

Showing (22) for 0≤ i ≤ n−1 breaks into two cases.
The first case is di (n+1) < di+1(n+1), namely, 0≤ i ≤ [(n+1)/2]−1. From

the recurrence relation (6), we find that for 0≤ i ≤ [(n+1)/2]−1,

di+1(n+1)di+1(n+2)−di+2(n+2)di (n+1)

=
2i+4n+9

2(n+2)
d2

i+1(n+1)+
i+n+2

n+2
di (n+1)di+1(n+1)

−
2i+4n+11

2(n+2)
di (n+1)di+2(n+1)−

i+n+3
n+2

di (n+1)di+1(n+1)

=
2i+4n+9

2(n+2)
d2

i+1(n+1)−
2i+4n+11

2(n+2)
di (n+1)di+2(n+1)

−
1

n+2
di (n+1)di+1(n+1)

>
2i+4n+7

2(n+2)
d2

i+1(n+1)−
2i+4n+11

2(n+2)
di (n+1)di+2(n+1),

which is positive by Lemma 2.2. It follows that for 0≤ i ≤ [(n+1)/2]−1,

(23) di+1(n+1)di+1(n+2)−di+2(n+2)di (n+1) > 0.

This completes the proof of the first case.
The second case is when [(n+1)/2]≤ i≤n−1. From the recurrence relations (6)

and (7), it follows that for [(n+1)/2] ≤ i ≤ n−1,



INTERLACING LOG-CONCAVITY OF THE BOROS–MOLL POLYNOMIALS 95

di+1(n+2)di+1(n+1)−di+2(n+2)di (n+1)

=

(
(4n−2i+5)(n+ i+3)

2(n+2)(n+1− i)
di+1(n+1)−

(i+1)(i+2)

(n+2)(n+1− i)
di+2(n+1)

)
×

(n+1+i
n+1

di (n)+
4n+2i+5

2(n+1)
di+1(n)

)
−

(n+3+i
n+2

di+1(n+1)+
4n+2i+11

2(n+2)
di+2(n+1)

)
×

(
(4n−2i+3)(n+ i+1)

2(n+1)(n+1− i)
di (n)−

i(i+1)

(n+1)(n+1− i)
di+1(n)

)
= B1(n, i)di+1(n+1)di (n)+ B2(n, i)di+1(n+1)di+1(n)

+ B3(n, i)di+2(n+1)di (n)+ B4(n, i)di+2(n+1)di+1(n),

where B1(n, i), B2(n, i), B3(n, i) and B4(n, i) are given by

B1(n, i)=
(n+ i+3)(n+1+ i)

(n+2)(n+1− i)(n+1)
,(24)

B2(n, i)=
(n+ i+3)(16n2

+40n+25+4i)
4(n+2)(n+1− i)(n+1)

,(25)

B3(n, i)=−
(n+1+ i)(41+16n2

+56n−4i)
4(n+2)(n+1− i)(n+1)

,(26)

B4(n, i)=−
(i+1)(4n+5− i)

(n+2)(n+1− i)(n+1)
.(27)

Since [(n+1)/2] ≤ i ≤ n−1, it follows from (3) that di+1(n+1) > di+2(n+1)

and di (n) > di+1(n). Thus we get

di+1(n+1)di (n) > di+1(n+1)di+1(n),(28)

di+1(n+1)di+1(n) > di+2(n+1)di+1(n).(29)

Observe that B1(n, i) and B2(n, i) are positive, and B3(n, i) and B4(n, i) are neg-
ative. By the induction hypothesis (21) and inequalities (28) and (29), we find that,
for [(n+1)/2] ≤ i ≤ n−1,

(30) di+1(n+2)di+1(n+1)−di+2(n+2)di (n+1)

> (B1(n, i)+ B2(n, i)+ B3(n, i)+ B4(n, i)) di+1(n+1)di+1(n)

=
24n+10n2

−8ni+8i2
+13

2(n+2)(n+1−i)(n+1)
di+1(n+1)di+1(n) > 0.

From the inequalities (23) and (30), it follows that (22) holds for 0≤ i ≤ n−1.
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It is still necessary to show that (22) is true for i = n, that is,

(31)
dn(n+1)

dn+1(n+1)
<

dn+1(n+2)

dn+2(n+2)
.

For the recurrence relation (9), setting i = n+2, we find that

dn(n+1)

dn+1(n+1)
=

2n+3
2

<
2n+5

2
=

dn+1(n+2)

dn+2(n+2)
,

as desired. Hence the proof is complete by induction. �

Lemmas 2.3 and 2.4 immediately imply the interlacing log-concavity of the
Boros–Moll polynomials.

3. Polynomials with triangular relations on coefficients

Many combinatorial polynomials admit triangular relations on the coefficients. The
log-concavity of polynomials of this kind has been extensively studied. We show
that many classical polynomials of this kind are also interlacingly log-concave. For
example, it is easy to check that the binomial coefficients, the Narayana numbers

N (n, k)=
1
n

(n
k

)( n
k+1

)
,

and the Bessel numbers

B(n, k)=
(2n−k−1)!

2k(n−k)!(k−1)!

are interlacingly log-concave. Moreover, we give a criterion that applies to many
combinatorial sequences such as the signless Stirling numbers of the first kind, the
Stirling numbers of the second kind and the Whitney numbers.

Theorem 3.1. Suppose that for any n ≥ 0,

Gn(x)=

n∑
k=0

T (n, k)xk

is a polynomial of degree n which has only real zeros, and suppose that the coeffi-
cients T (n, k) satisfy a recurrence relation of the form

T (n, k)= f (n, k)T (n−1, k)+g(n, k)T (n−1, k−1).

If

(n−k)k
(n−k+1)(k+1)

f (n+1, k+1)≤ f (n+1, k)≤ f (n+1, k+1),(32)

g(n+1, k+1)≤ g(n+1, k)≤
(n−k+1)(k+1)

(n−k)k
g(n+1, k+1),(33)

then the polynomials Gn(x) are interlacingly log-concave.



INTERLACING LOG-CONCAVITY OF THE BOROS–MOLL POLYNOMIALS 97

Proof. Since the polynomial Gn(x) has only real zeros, by Newton’s inequality,

k(n−k)T (n, k)2
≥ (k+1)(n−k+1)T (n, k−1)T (n, k+1).

Hence

T (n, k)T (n+1, k+1)−T (n+1, k)T (n, k+1)

= f (n+1, k+1)T (n, k)T (n, k+1)+g(n+1, k+1)T (n, k)2

− f (n+1, k)T (n, k)T (n, k+1)−g(n+1, k)T (n, k−1)T (n, k+1)

≥ ( f (n+1, k+1)− f (n+1, k)) T (n, k)T (n, k+1)

+

(
(n−k+1)(k+1)

(n−k)k
g(n+1, k+1)−g(n+1, k)

)
T (n, k−1)T (n, k+1),

which is positive by (32) and (33). It follows that

(34)
T (n, k)

T (n, k+1)
≥

T (n+1, k)

T (n+1, k+1)
.

On the other hand, we have

T (n, k+1)T (n+1, k+1)−T (n, k)T (n+1, k+2)

= f (n+1, k+1)T (n, k+1)2
+g(n+1, k+1)T (n, k)T (n, k+1)

− f (n+1, k+2)T (n, k)T (n, k+2)−g(n+1, k+2)T (n, k+1)T (n, k)

≥

(
f (n+1, k+1)−

(n−k−1)(k+1)

(n−k)(k+2)
f (n+1, k+2)

)
T (n, k+1)2

+(g(n+1, k+1)−g(n+1, k+2))T (n, k+1)T (n, k).

It follows from (32) that

(35)
T (n, k)

T (n, k+1)
≤

T (n+1, k+1)

T (n+1, k+2)
.

This completes the proof. �

Employing Theorem 3.1, we can show that many combinatorial polynomials
which have only real zeros are interlacingly log-concave, for example,

(1) the polynomials

x(x+1)(x+2) · · · (x+n−1),

whose coefficients are the signless Stirling numbers of the first kind, which
satisfy the recurrence relation

c(n, k)= (n−1)c(n−1, k)+c(n−1, k−1);
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(2) the Bell polynomials whose coefficients are the Stirling numbers of the second
kind S(n, k), which satisfy the recurrence relation

S(n, k)= S(n−1, k−1)+kS(n−1, k);

(3) the Whitney polynomials

Wn(x)=

n∑
k=0

Wm(n, k)xk,

which have only real zeros; see [Benoumhani 1997; 1999]. The coefficients
Wm(n, k) satisfy the recurrence relation

Wm(n, k)= (1+mk)Wm(n−1, k)+Wm(n−1, k−1).
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SCHWARZIAN NORMS AND TWO-POINT DISTORTION

MARTIN CHUAQUI, PETER DUREN, WILLIAM MA,
DIEGO MEJÍA, DAVID MINDA AND BRAD OSGOOD

An analytic function f with Schwarzian norm ‖S f ‖≤ 2(1+δ2) is shown to
satisfy a pair of two-point distortion conditions, one giving a lower bound
and the other an upper bound for the deviation. Conversely, each of these
conditions is found to imply that ‖S f ‖ ≤ 2(1+ δ2). Analogues of the lower
bound are also developed for curves in Rn and for canonical lifts of har-
monic mappings to minimal surfaces.

1. Introduction

A well known theorem of Nehari [16] states that if the Schwarzian derivative
S f = ( f ′′/ f ′)′ − 1

2( f ′′/ f ′)2 of an analytic locally univalent function f satisfies
the inequality

(1) |S f (z)| ≤ 2
(1−|z|2)2

for all points z in the unit disk D, then f is univalent in D. The result is the best
possible, since for any δ > 0 the weaker condition

(2) |S f (z)| ≤
2(1+ δ2)

(1− |z|2)2
, z ∈ D,

admits functions f with infinite valence. However, such functions are uniformly
locally univalent in the sense that any two distinct points where f assumes equal
values are uniformly separated in the hyperbolic metric

d(α, β)= 1
2

log
1+ ρ(α, β)
1− ρ(α, β)

, where ρ(α, β)=
∣∣∣∣ α−β1−αβ

∣∣∣∣ .
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two-point distortion, harmonic mapping, minimal surface.
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More precisely, if f satisfies the inequality (2) for some constant δ > 0, then
d(α, β)≥ π/δ for any pair of points α and β in D where f (α)= f (β) but α 6= β.
Moreover, the separation constant π/δ is best possible. This result is essentially
due to B. Schwarz [17]. A proof and further discussion can be found in [6]. Gen-
eralizations to Nehari functions other than p(x)= (1− x2)−2 are given in [6] and
[8].

The Schwarzian norm of an analytic locally univalent function f is defined by

‖S f ‖ = sup
z∈D

(1− |z|2)2|S f (z)|.

Thus Nehari’s theorem says that f is univalent if ‖S f ‖ ≤ 2, whereas the theorem
of Schwarz says it is uniformly locally univalent if ‖S f ‖ ≤ 2(1+ δ2) for some
constant δ > 0.

Chuaqui and Pommerenke [4] gave a quantitative version of Nehari’s theorem
by showing that the condition ‖S f ‖≤ 2 implies that f has the two-point distortion
property

(3) 1 f (α, β)=
| f (α)− f (β)|

{(1− |α|2)| f ′(α)|}1/2 {(1− |β|2)| f ′(β)|}1/2
≥ d(α, β)

for all points α, β ∈D. Conversely, they found that if f satisfies (3), then ‖S f ‖≤2.
Thus the distortion property (3) actually characterizes functions in the Nehari class.

In the present paper we show more generally that for any δ > 0 the analytic
functions with Schwarzian norm ‖S f ‖ ≤ 2(1+ δ2) are characterized by the local
distortion property

(4) 1 f (α, β)≥
1
δ

sin(δ d(α, β)), α, β ∈ D, d(α, β)≤ π
δ
.

The lower bound equals zero, as it must, when d(α, β)= 0 or π/δ. Also, as δ→ 0,
the inequality (4) reduces to (3).

We also show that for any constant δ > 0 an analytic function f has Schwarzian
norm ‖S f ‖ ≤ 2(1+ δ2) if and only if

(5) 1 f (α, β)≤
1

√
2+δ2

sinh
(√

2+ δ2 d(α, β)
)
, α, β ∈ D.

As a corollary, we can draw the rather surprising conclusion that for any constant
δ > 0 and any analytic function f , the upper bound (5) holds for all points α, β ∈D

if and only if the lower bound (4) holds for all α, β∈D with d(α, β)≤π/δ. Also, an
analytic function f satisfies1 f (α, β)≤ (1/

√
2) sinh

(√
2 d(α, β)

)
for all α, β ∈D

if and only if f is univalent and ‖S f ‖ ≤ 2.
The final section of the paper develops a generalization of the lower bound (4)

for canonical lifts of harmonic mappings to minimal surfaces.
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2. A basic lemma

The proofs make essential use of a comparison lemma for solutions of differential
equations.

Comparison Lemma. Let Q(x) be continuous and Q(x) > 0 for x ∈ [0, 1). Let
v(x) and w(x) be defined as the solutions of

v′′(x)+ Q(x)v(x)= 0, v(0)= 0, v′(0)= 1,

w′′(x)− Q(x)w(x)= 0, w(0)= 0, w′(0)= 1,

respectively. Suppose that v(x) > 0 in an interval (0, ξ), where 0<ξ ≤ 1. Let p(z)
be analytic and satisfy |p(z)| ≤ Q(|z|) for all z ∈ D. Then the solution of

u′′(z)+ p(z)u(z)= 0, u(0)= 0, u′(0)= 1

satisfies the inequalities

v(|z|)≤ |u(z)| for |z|< ξ, |u(z)| ≤ w(|z|) for all z ∈ D.

It is clear that w(x) > 0 for all x ∈ (0, 1), since the differential equation implies
that w′′(x) ≥ 0. On the other hand, v′′(x) ≤ 0 and so it is possible that v(x) = 0
for some x ∈ (0, 1).

The upper inequality |u(z)|≤w(|z|)was proved and applied by Essén and Keogh
[12]. Herold [13] had previously obtained a more general result for differential
equations of higher order. The lower inequality is essentially contained in [3], and
a proof is sketched in [4]. For completeness we include detailed proofs of both
inequalities here.

Proof of the Comparison Lemma. After rotation, the problem reduces to proving
the inequalities for points z in the real interval 0≤ z < 1. (Let U (r)= u(reiθ ) for
fixed θ .) To prove the upper inequality |u(x)| ≤ w(x) for 0 ≤ x < 1, we convert
the differential equation and initial conditions to an integral equation. Integration
gives

u′(x)= 1−
∫ x

0
p(t)u(t) dt,

u(x)= x −
∫ x

0

∫ y

0
p(t)u(t) dt dy.

Reversing the order of integration, we have

u(x)= x −
∫ x

0
(x − t)p(t)u(t) dt,

so that

|u(x)| ≤ x +
∫ x

0
(x − t)Q(t)|u(t)| dt, 0≤ x < 1.
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A similar analysis gives

w(x)= x +
∫ x

0
(x − t)Q(t)w(t) dt, 0≤ x < 1.

Subtraction now shows that h(x)= |u(x)| −w(x) satisfies

h(x)≤
∫ x

0
(x − t)Q(t)h(t) dt, 0≤ x < 1.

To infer that h(x)≤ 0, fix an arbitrary point x0 ∈ (0, 1) and let

s0 = sup{s ∈ [0, 1) : h(x)≤ 0 for all x ∈ [0, s]}.

If s0 < x0, let M be the maximum value of Q(x) for 0 ≤ x ≤ x0 and choose
x1 ∈ (s0, x0) such that M(x1− s0) < 1. Let µ be the maximum value of h(x) for
s0 ≤ x ≤ x1, so that µ= h(x2) > 0 for some x2 ∈ (s0, x1]. Then

µ= h(x2)≤

∫ x2

0
(x2−t)Q(t)h(t) dt ≤

∫ x2

s0

(x2−t)Q(t)h(t) dt

≤

∫ x2

s0

(x2−t)Q(t)µ dt ≤ M(x1−s0)µ < µ,

a contradiction. This shows that s0 ≥ x0, which proves h(x)≤ 0 or |u(x)| ≤ w(x)
in [0, x0), hence in [0, 1), since the point x0 was chosen arbitrarily in (0, 1). Thus
|u(z)| ≤ w(|z|) for all z ∈ D.

Now consider the lower bound v(|z|) ≤ |u(z)| for |z| < ξ . Again it suffices to
carry out the proof for z ∈ [0, 1). Let ϕ(x)= |u(x)|, so that ϕ2

= uu, and calculate

ϕ(x)ϕ′(x)= 1
2(u
′(x)u(x)+ u(x)u′(x))= Re

{
u′(x)u(x)

}
.

Hence |ϕ′(x)| ≤ |u′(x)| wherever u(x) 6= 0. Another differentiation gives

ϕ(x)ϕ′′(x)+ϕ′(x)2 = Re
{
u′′(x)u(x)

}
+ |u′(x)|2,

from which we infer that

ϕ(x)ϕ′′(x)≥ Re
{
u′′(x)u(x)

}
=−Re{p(x)}ϕ(x)2,

in view of the differential equation for u. Consequently, since ϕ(x) = |u(x)| ≥ 0
and |p(x)| ≤ Q(x), we arrive at the differential inequality

ϕ′′(x)+ Q(x)ϕ(x)≥ 0, 0≤ x < 1.

On the other hand, the function v satisfies the differential equation

v′′(x)+ Q(x)v(x)= 0, 0≤ x < 1.



SCHWARZIAN NORMS AND TWO-POINT DISTORTION 105

Since v(0) = ϕ(0) = 0 and v′(0) = ϕ′(0) > 0, it now follows from the Sturm
comparison theorem that ϕ(x)≥ v(x) up to the first zero of v. Thus |u(x)| ≥ v(x)
for 0≤ x < ξ , and so |u(z)| ≥ v(|z|) for |z|< ξ . �

3. Distortion of analytic functions

We turn now to the main result of this paper. It will be convenient to employ
the notation 1 f (α, β) defined by (3), where f is analytic and locally univalent in
the disk and α, β ∈ D. It is important that this quantity is invariant under both
precomposition and postcomposition with Möbius transformations. Specifically, if
σ is any Möbius automorphism of the disk, then

1 f ◦σ (α, β)=1 f (σ (α), σ (β)), α, β ∈ D,

as can be seen by direct calculation using the identity

(6)
|σ ′(z)|

1− |σ(z)|2
=

1
1−|z|2

, z ∈ D.

To show that
1T ◦ f (α, β)=1 f (α, β)

for every Möbius transformation T , it suffices to verify by simple calculation that
11/ f (α, β)=1 f (α, β), since the relation clearly holds for every affine mapping T .

Theorem 1. Let f be analytic and locally univalent in D and suppose that the
bound ‖S f ‖ ≤ 2(1+ δ2) holds for some δ > 0. Then

(7) 1 f (α, β)≥
1
δ

sin(δ d(α, β))

for all α, β ∈ D with hyperbolic separation d(α, β)≤ π/δ, and

(8) 1 f (α, β)≤
1

√
2+δ2

sinh
(√

2+ δ2 d(α, β)
)

for all α, β ∈ D. Each of the inequalities (7) and (8) is sharp; for each pair of
points α and β in the specified range, equality occurs for some function f with
‖S f ‖ ≤ 2(1+ δ2). Equality holds in (7) precisely for f = T ◦ F ◦ σ and in (8) for
f = T ◦G ◦ σ , where F and G are defined by

(9) F(z)=
(1+z

1−z

)iδ
and G(z)=

(1+z
1−z

)√2+δ2

,

σ is the Möbius automorphism of D with σ(α) = 0 and σ(β) > 0, and T is an
arbitrary Möbius transformation. For each such function f , equality holds along
the entire (admissible portion of the) hyperbolic geodesic through α and β. Con-
versely, if either inequality holds for all points α and β in the specified range, then
‖S f ‖ ≤ 2(1+ δ2).
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Proof. The strategy is to establish the inequalities first in the special case where
α = 0, then to derive them in the general case by Möbius invariance. Suppose that

|S f (z)| ≤
2(1+ δ2)

(1− |z|2)2
, z ∈ D,

for some δ > 0, and assume without loss of generality that f (0)= 0 and f ′(0)= 1.
Define

g(z)=− 1
f (z)

, so that g′(z)=
f ′(z)
f (z)2

.

Then the function
u(z)= (g′(z))−1/2

= z+ c2z2
+ · · ·

is analytic in D, with u(0)=0 and u′(0)=1, and it satisfies the differential equation

u′′+ ( 1
2 S f ) u = 0,

since Sg = S f . Define the functions v(x) and w(x) by

v′′(x)+ 1+δ2

(1−x2)2
v(x)= 0, v(0)= 0, v′(0)= 1,

w′′(x)− 1+δ2

(1−x2)2
w(x)= 0, w(0)= 0, w′(0)= 1.

Suppose v(x) > 0 in the interval (0, ξ), where 0 < ξ ≤ 1. Then in view of the
hypothesis that

∣∣ 1
2 S f (z)

∣∣≤ (1+ δ2)(1− |z|2)−2 in D, by the Comparison Lemma
|u(z)| ≤ w(|z|) for all z ∈ D, and v(|z|)≤ |u(z)| for all z ∈ D with |z|< ξ .

The solutions v(x) and w(x) are

v(x)= 1
δ

√
1− x2 sin

(
δ

2
log 1+x

1−x

)
,(10)

w(x)=
√

1−x2
√

2+δ2
sinh

(√2+δ2

2
log 1+x

1−x

)
.(11)

These explicit formulas can be found with reference to Kamke [14], or by means
of the substitution

y(t)=
v(x)
√

1− x2
, where t = 1

2
log 1+x

1−x
,

which reduces the first differential equation to y′′(t)+ δ2 y(t) = 0. Similarly, the
second equation reduces to y′′(t)− (2+ δ2)y(t)= 0 through the same substitution
with w in place of v.

The first positive zero of v(x) occurs at the point ξ = tanh(π/δ). Since

u(z)= (g′(z))−1/2
= f (z)( f ′(z))−1/2,
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the inequality |u(z)| ≥ v(|z|) obtained from the Comparison Lemma reduces to

(12)
| f (z)|2

| f ′(z)|
≥

1
δ2 (1− |z|

2) sin2
(
δ

2
log 1+|z|

1−|z|

)
,

or
1 f (0, z)≥ 1

δ
sin (δ d(0, z)) for d(0, z)≤ π

δ
.

Now let α and β be arbitrary points in the unit disk and define

(13) f1(z)=
f (σ (z))− f (α)
(1− |α|2) f ′(α)

, where σ(z)= z+α
1+αz

.

This function has the form f1= T ◦ f ◦ σ , where T is a Möbius transformation, so

1 f1(0, z)=1 f ◦σ (0, z)=1 f (σ (0), σ (z))=1 f (α, σ (z)).

On the other hand, S f1 = S( f ◦ σ)=
(
(S f ) ◦ σ

)
σ ′

2, so that

|S f1(z)| = |S f (σ (z))||σ ′(z)|2 ≤
2(1+ δ2)|σ ′(z)|2

(1− |σ(z)|2)2
=

2(1+ δ2)

(1− |z|2)2
.

Since ‖S f1‖≤ 2(1+δ2) and f1(0)= 0, f ′1(0)= 1, it follows from what has already
been proved that

1 f1(0, z)≥ 1
δ

sin (δ d(0, z)) , d(0, z)≤ π
δ
.

Therefore, if z is chosen so that σ(z)= β, we have

1 f (α, β)=1 f1(0, z)≥ 1
δ

sin (δ d(σ (0), σ (z))) )= 1
δ

sin (δ d(α, β))

for d(α, β)≤ π/δ, by the invariance of the hyperbolic metric under Möbius auto-
morphisms of D. The proof of the lower bound (7) is now complete.

The upper bound is derived in similar fashion. The Comparison Lemma gives
|u(z)| ≤ w(|z|) for all z ∈ D, which reduces to

1 f (0, z)≤ 1
√

2+δ2
sinh

(√
2+ δ2 d(0, z)

)
.

It then follows as before that

1 f (α, β)≤
1

√
2+δ2

sinh
(√

2+ δ2 d(α, β)
)
, α, β ∈ D,

by choosing z = σ−1(β). This proves (8).
In order to prove the sharpness of (7), we now show that for each pair of points

α, β ∈ D with 0 < d(α, β) < π/δ, there is a function f with ‖S f ‖ ≤ 2(1+ δ2)

such that 1 f (α, β)= (1/δ) sin(δ d(α, β)). By Möbius invariance, it is equivalent
to show that 1F (0, b) = (1/δ) sin(δ d(0, b)), where F = f ◦ σ−1 and σ is the
Möbius automorphism of the disk for which σ(α)= 0 and σ(β)= b> 0. This will
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be the case if and only if SF(z)= 2(1+δ2)(1−z2)−2, which is the requirement for
equality in the Comparison Lemma (see [3]). Thus the general form of the extremal
function is f = T ◦ F ◦ σ , where F is a particular function (as given by (9), for
instance) with Schwarzian SF(z)= 2(1+δ2)(1−z2)−2, σ is the Möbius automor-
phism defined above, and T is an arbitrary Möbius transformation. Similarly, for
each pair of distinct points α, β ∈D, equality occurs in (8) precisely for functions
of the form f = T ◦G ◦ σ , where G is a particular function (as defined by (9), for
instance) with SG(z)=−2(1+δ2)(1−z2)−2, σ is the Möbius automorphism with
σ(α)= 0 and σ(β) > 0, and T is an arbitrary Möbius transformation (see [12]).

Conversely, we want to show that either of the two-point distortion conditions (7)
or (8) implies the bound ‖S f ‖ ≤ 2(1+ δ2) on the Schwarzian norm. The proofs
follow an argument given by Chuaqui and Pommerenke [4] to show that the con-
dition (3) implies ‖S f ‖ ≤ 2. It will suffice to carry out the details only for the
condition (8), because the proof for (7) is quite similar. In view of the Möbius
invariance, no information is lost if we take α = 0. Without loss of generality, we
may assume that f (0)= 0 and f ′(0)= 1, so that

f (z)= z+ a2z2
+ a3z3

+ · · · .

The condition (8) then reduces to

(14)
| f (z)|2

| f ′(z)|
≤

1− |z|2

2+ δ2 sinh2(√2+ δ2 d(0, z)
)
, z ∈ D.

In order to conclude from (14) that ‖S f ‖ ≤ 2(1+ δ2), it will suffice to show that
|S f (0)| ≤ 2(1+δ2), because of the Möbius invariance. Indeed, for the function f1

defined by (13) we have

(1− |z|2)2|S f1(z)| = (1− |σ(z)|2)2|S f (σ (z))|,

and so |S f1(0)| = (1− |α|2)2|S f (α)|. But S f (0) = 6(a3 − a2
2), so the problem

reduces to showing that |a3− a2
2 | ≤

1
3(1+ δ

2). Straightforward calculations give

f (z)2

f ′(z)
= z2(1+ (a2

2 − a3)z2
+ · · ·

)
,

1− |z|2

2+ δ2 sinh2(√2+ δ2 d(0, z)
)
= r2(1+ 1

3(1+ δ
2)r2
+ · · ·

)
, r = |z|.

Therefore, the inequality (14) implies∣∣1+ (a2
2 − a3)z2

+ O(r3)
∣∣2 ≤ ∣∣1+ 1

3(1+ δ
2)r2
+ O(r3)

∣∣2 ,
which reduces to

1+ 2 Re
{
(a2

2 − a3)z2
+ O(r3)

}
≤ 1+ 2

3(1+ δ
2)r2
+ O(r3).
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From this we infer that

Re
{
(a2

2 − a3)e2iθ}
≤

1
3(1+ δ

2)

by setting z = reiθ for fixed θ and letting r→ 0. Since the angle θ can be chosen
arbitrarily, we conclude that |a3− a2

2 | ≤
1
3(1+ δ

2), as desired.
Essentially the same calculations show that if the inequality (12) holds for all

z ∈ D with d(0, z) ≤ π/δ (or equivalently for |z| ≤ tanh(π/δ)), then |S f (0)| ≤
2(1+ δ2) and so ‖S f ‖ ≤ 2(1+ δ2). �

Similar results are obtained under the hypothesis ‖S f ‖≤2(1−δ2) for 0<δ<1.
Then the relevant functions v and w of the Comparison Lemma are obtained by
replacing δ by iδ in the formulas (10) and (11). Specifically,

v(x)= 1
δ

√
1− x2 sinh

(
δ

2
log 1+x

1−x

)
,

w(x)=
√

1−x2
√

2−δ2
sinh

(√2−δ2

2
log 1+x

1−x

)
.

The inequalities v(|z|)≤ |u(z)| ≤ w(|z|) now reduce to

1
δ

sinh(δ d(0, z))≤1 f (0, z)≤ 1
√

2−δ2
sinh

(√
2− δ2 d(0, z)

)
, z ∈ D,

whereupon the same argument based on Möbius invariance gives

(15) 1
δ

sinh(δ d(α, β))≤1 f (α, β)≤
1

√
2−δ2

sinh
(√

2− δ2 d(α, β)
)

for all α, β ∈ D. Conversely, if either of the inequalities in (15) holds for some
δ ∈ (0, 1) and for all α and β in D, calculations similar to the above lead to the
conclusion that ‖S f ‖ ≤ 2(1− δ2).

Theorem 1 was essentially proved by Mejía [15] and was discovered indepen-
dently in joint work by Chuaqui, Duren, and Osgood.

4. Distortion of harmonic mappings

By a similar method, the lower bound (7) can be extended to harmonic mappings,
or rather to their canonical lifts to minimal surfaces. The result will generalize a
theorem in [9] in the case of the extremal Nehari function p(x)= (1− x2)−2. As
in [9], we begin with a distortion theorem for curves in Rn .

Let ϕ : (−1, 1)→ Rn be a mapping of class C3 with ϕ′(x) 6= 0. The Ahlfors
Schwarzian of ϕ is defined by

S1ϕ =
〈ϕ′, ϕ′′′〉

|ϕ′|2
− 3
〈ϕ′, ϕ′′〉2

|ϕ′|4
+

3
2
|ϕ′′|2

|ϕ′|2
,



110 M. CHUAQUI, P. DUREN, W. MA, D. MEJÍA, D. MINDA AND B. OSGOOD

where 〈 · , · 〉 denotes the Euclidean inner product and |x|2 = 〈x, x〉 for x ∈ Rn . As
Ahlfors [1] observed, S1 is invariant under postcomposition with Möbius transfor-
mations of Rn . Chuaqui and Gevirtz [2] used it to give an injectivity criterion for
curves. Here is a special case of their theorem.

Theorem A. Let ϕ : (−1, 1) 7→ Rn be a curve of class C3 with tangent vector
ϕ′(x) 6= 0. If S1ϕ(x)≤ 2(1− x2)−2, then ϕ is injective.

Chuaqui and Gevirtz also showed that the arclength s = s(x) of the curve ϕ has
Schwarzian

(16) Ss(x)= S1ϕ(x)− 1
2 |ϕ
′(x)|2κ(x)2 ≤ S1ϕ(x),

where κ = κ(x) is the curvature of ϕ.
Our next theorem extends Theorem A to a criterion for uniform local injectiv-

ity, in the manner of B. Schwarz’s extension of Nehari’s theorem. Moreover, it
expresses the local injectivity in quantitative form as a two-point distortion result
analogous to the lower bound (7) in Theorem 1. In terms of the curve ϕ(x), we
define

1ϕ(a, b)=
|ϕ(a)−ϕ(b)|

{(1− a2)|ϕ′(a)|}1/2 {(1− b2)|ϕ′(b)|}1/2
, a, b ∈ (−1, 1).

Theorem 2. Let ϕ : (−1, 1) 7→ Rn be a curve of class C3 with ϕ′(x) 6= 0. If

S1ϕ(x)≤
2(1+ δ2)

(1− x2)2
for some δ > 0,

then the inequality

(17) 1ϕ(a, b)≥ 1
δ

sin(δ d(a, b))

holds for all a, b ∈ (−1, 1) with d(a, b)≤ π/δ.

Proof. First, the quantity 1ϕ(a, b) is Möbius invariant. If σ is any Möbius auto-
morphism of the disk that preserves the real segment (−1, 1), or equivalently if σ
is a Möbius automorphism with real coefficients, then

1ϕ◦σ (a, b)=1ϕ(σ (a), σ (b)), a, b ∈ (−1, 1).

If T is any Möbius transformation of Rn , then 1T ◦ϕ(a, b)=1ϕ(a, b). The proofs
for curves are essentially the same as for analytic functions.

As in the proof of Theorem 1, we will derive the inequality (17) first for a = 0,
then deduce the general result by Möbius invariance. Because of Möbius invari-
ance, we may assume without loss of generality that ϕ(0) = 0 and |ϕ′(0)| = 1.
Consider the inverted curve

8(x)=
ϕ(x)
|ϕ(x)|2

, with |8′(x)| =
|ϕ′(x)|
|ϕ(x)|2

,
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as a straightforward calculation of |8′(x)|2 shows. By Möbius invariance, S18=

S1ϕ. Recall that if g(x) is a real-valued function with g′(x) > 0, the function
u(x) = g′(x)−1/2 satisfies the differential equation u′′ + 1

2(Sg)u = 0. Thus if
g(x)= s(x), the arclength function along the curve 8(x), then the function

u(x)= |8′(x)|−1/2
=
|ϕ(x)|
|ϕ′(x)|1/2

satisfies u′′+ 1
2(Ss)u= 0 and has initial data u(0)= 0 and u′(0)= 1, since ϕ(0)= 0

and |ϕ′(0)| = 1. But

Ss(x)≤ S18(x)= S1ϕ(x)≤
2(1+ δ2)

(1− x2)2
,

so by the Sturm comparison theorem u(x) ≥ v(x) for 0 ≤ x ≤ tanh(π/δ), where
v(x) is the function given in (10). In terms of the hyperbolic metric, this last
inequality takes the form

1ϕ(0, x)≥ 1
δ

sin(δ d(0, x)), d(0, x)≤ π/δ,

which is the desired result (17) for a = 0. The general inequality (17) is deduced
from this special case by Möbius invariance. �

With the help of Theorem 2, we can now derive a two-point distortion inequality
for the canonical lift of a harmonic mapping to a minimal surface. A harmonic
mapping is a complex-valued harmonic function f (z)= u(z)+iv(z) for z= x+iy
in the unit disk D of the complex plane. Such a mapping has a canonical decom-
position f = h + g, where h and g are analytic in D and g(0) = 0. The basic
properties of harmonic mappings are described in [11].

According to the Weierstrass–Enneper formulas, a harmonic mapping f = h+g
with |h′(z)|+ |g′(z)| 6= 0 lifts locally to a minimal surface described by conformal
parameters if and only if its dilatation ω = g′/h′ has the form ω = q2 for some
meromorphic function q. The Cartesian coordinates (U, V,W ) of the surface are
then given by

U (z)= Re
{

f (z)
}
, V (z)= Im

{
f (z)

}
, W (z)= 2 Im

{∫ z

0
h′(ζ )q(ζ ) dζ

}
.

We use the notation f̃ (z)=
(
U (z), V (z),W (z)

)
for the lifted mapping from D to

the minimal surface. The first fundamental form of the surface is ds2
= λ2
|dz|2,

where the conformal metric is λ= |h′| + |g′|.
For a harmonic mapping f = h + g with λ(z) = |h′(z)| + |g′(z)| > 0, whose

dilatation is the square of a meromorphic function, the Schwarzian derivative is
defined by the formula

S f = 2(σzz − σ
2
z ), σ = log λ.
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If f is analytic, it is easily verified that S f reduces to the classical Schwarzian.
In [7], the following criterion was given for the lift of a harmonic mapping to

be univalent.

Theorem B. Let f = h + g be a harmonic mapping of the unit disk, with λ(z) =
|h′(z)| + |g′(z)| > 0 and dilatation g′/h′ = q2 for some meromorphic function q.
Let f̃ denote the Weierstrass–Enneper lift of f to a minimal surface with Gauss
curvature K = K ( f̃ (z)) at the point f̃ (z). Suppose that the inequality

|S f (z)| + λ(z)2|K ( f̃ (z))| ≤ 2
(1−|z|2)2

holds for all z ∈ D. Then f̃ is univalent in D.

If f is analytic, its associated minimal surface is the complex plane itself, with
Gauss curvature K = 0, and the result reduces to Nehari’s theorem.

In [9], Theorem B was sharpened to express the univalence in the form of a
two-point distortion condition. It was shown in [6] that if the bound 2(1− |z|2)−2

is weakened to 2(1+ δ2)(1− |z|2)−2, then f̃ is uniformly locally univalent, the
analogue of B. Schwarz’s extension of Nehari’s theorem. We now express the
uniform local univalence in quantitative form, thus obtaining a harmonic analogue
of the lower bound (7) in Theorem 1. Let

1 f̃ (α, β)=
| f̃ (α)− f̃ (β)|

{(1− |α|2)λ(α)}1/2 {(1− |β|2)λ(β)}1/2
, α, β ∈ D,

where λ is the conformal metric of the minimal surface.

Theorem 3. Let f = h + g be a harmonic mapping of the unit disk, with λ(z) =
|h′(z)| + |g′(z)| > 0 and dilatation g′/h′ = q2 for some meromorphic function q.
Let f̃ denote the canonical lift of f to a minimal surface. Suppose that

(18) |S f (z)| + λ(z)2|K ( f̃ (z))| ≤
2(1+ δ2)

(1− |z|2)2
, z ∈ D.

Then

(19) 1 f̃ (α, β)≥
1
δ

sin(δ d(α, β))

for all α, β ∈D with hyperbolic separation d(α, β)≤ π/δ. For each pair of points
α, β with 0 < d(α, β) < π/δ, equality occurs in (19) only for harmonic mappings
of the form f = h + c h, with c a constant of modulus |c| < 1 and h = T ◦ F ◦ σ ,
where F is defined by (9), σ is the Möbius automorphism of D for which σ(α)= 0
and σ(β) > 0, and T is an arbitrary Möbius transformation. The corresponding
minimal surface is then a plane.
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Proof. The proof will apply Theorem 2. The canonical lift f̃ onto a minimal
surface 6 defines a curve f̃ : (−1, 1)→ 6 ⊂ R3. As shown in [7], the Ahlfors
Schwarzian of this curve satisfies

S1 f̃ (x)= Re
{
S f (x)

}
+

1
2λ(x)

2κe( f̃ (x))2+ 1
2λ(x)

2
|K ( f̃ (x))|(20)

≤ Re
{
S f (x)

}
+ λ(x)2|K ( f̃ (x))|

≤ |S f (x)| + λ(x)2|K ( f̃ (x))|, −1< x < 1,

where κe( f̃ (x)) denotes the normal curvature of the curve at the point f̃ (x). Thus
the hypothesis (18) tells us that S1 f̃ (x)≤2(1+δ2)(1−x2)−2, and so by Theorem 2
we have the inequality

(21) 1 f̃ (a, b)≥ 1
δ

sin(δ d(a, b))

for all a, b ∈ (−1, 1) with d(a, b)≤ π/δ, since | f̃ ′(x)| = λ(x).
To extend the inequality (21) to arbitrary points α, β ∈ D, we appeal again to

Möbius invariance. First, the quantity 1 f̃ (α, β) is invariant under precomposition
with Möbius automorphisms of the disk. Indeed, if σ is any such automorphism,
the composition F = f ◦σ is a harmonic mapping with canonical lift F̃ = f̃ ◦σ and
conformal metric 3(z)= λ(σ(z))|σ ′(z)|. Combining this with the identity (6), we
see that1F̃ (α, β)=1 f̃ (σ (α), σ (β)). Given any pair of points α, β ∈D, choose σ
so that σ(a) = α and σ(b) = β for some a, b ∈ (−1, 1). In view of (6), the
hypothesis (18) is also Möbius invariant, and so 1F̃ (a, b) ≥ (1/δ) sin(δ d(a, b)),
by what we have already proved. But d(a, b) = d(α, β) by Möbius invariance of
the hyperbolic metric, whereas

1F̃ (a, b)=1 f̃ (σ (a), σ (b))=1 f̃ (α, β).

Therefore, the inequality (19) holds for all points α, β ∈ D with d(α, β)≤ π/δ.
We now turn to the case of equality in (19) for two distinct points α, β ∈ D

with d(α, β) < π/δ. After precomposing with an automorphism of the disk, we
may assume that α = 0 and β = r with 0 < r < π/δ. More precisely, if σ is the
automorphism with σ(α) = 0 and σ(β) = r > 0, we need only consider equality
for functions f1= f ◦ σ−1 at the points 0 and r . Let ϕ(x)= f̃1(x) denote the lifted
curve on the corresponding minimal surface 6. With the notation in the proof of
Theorem 2, we see that equality in (19), namely1 f̃1

(0, r)= (1/δ) sin(δ d(0, r)), is
equivalent to u(r)= (1/δ) sin(δ d(0, r)), which by the Sturm comparison theorem
can occur only if

(22) Ss(x)= S1ϕ(x)=
2(1+ δ2)

(1− x2)2
for all x ∈ [0, r ].
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But in view of (16), the equality Ss(x) = S1ϕ(x) implies that the curvature κ(x)
of the curve ϕ vanishes for all x ∈ [0, r ], and so that portion of the curve is a
straight line in space. On the other hand, because of (20) and the hypothesis (18),
the equality S1ϕ(x)= 2(1+δ2)(1−x2)−2 implies that the normal curvature has the
property κe(ϕ(x))2 ≡ |K (ϕ(x))| on [0, r ], so that the corresponding portion of the
curve is a line of curvature of6. (Here we use the fact that6 is a minimal surface,
with zero mean curvature.) But by uniqueness in the Björling problem (see [10]),
a minimal surface containing a straight line segment as a line of curvature must
reduce to a plane. Therefore, as shown in [5], the harmonic mapping f1 has the
form h1+c h1 for some locally univalent analytic function h1 and some constant c
with |c|< 1. It is then easily seen that S f1 = Sh1. Furthermore, since the surface
6 is a plane, it has Gauss curvature K = 0, and so (22) combines with (20) and
(18) to show that

Sh1(x)= S f1(x)= S1 f̃1(x)=
2(1+ δ2)

(1− x2)2
for all x ∈ [0, r ].

But Sh1 is an analytic function, so this implies that Sh1(z)= 2(1+ δ2)(1− z2)−2

for all z ∈ D. Therefore, h1 = T ◦ F , where T is a Möbius transformation and F
is a particular function (as given by (9), for instance) with Schwarzian SF(z) =
2(1+δ2)(1− z2)−2. Hence f = f1 ◦ σ = h+c h, where h = T ◦F ◦ σ , as claimed.
The argument also shows, as in Theorem 1, that the same functions f give equality
along the entire hyperbolic geodesic through α and β. �
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THE PRINCIPLE OF STATIONARY PHASE
FOR THE FOURIER TRANSFORM OF D-MODULES

JIANGXUE FANG

We show that the formal germ at the infinity of the Fourier transform of a
holonomic D-module depends only on the formal germ of the D-module at
its singular points and at the infinity.

1. Introduction

The stationary phase approximation is a basic principle of asymptotic analysis,
exemplified by the oscillatory integral

I (t ′)=
∫

g(t)ei t ′ f (t)dt.

If the derivative of f (t) does not vanish at any point in Supp( f ), then I (t ′) is
rapidly decreasing at∞. If f (t) has only finitely many critical points in Supp( f ),
the major contribution to the value of the integral I (t ′) for large t ′ comes from
neighborhoods of those critical points. More generally, consider the integral

I (t ′)=
∫ b(t ′)

a(t ′)
g(t, t ′)ei f (t,t ′)dt,

where all the functions are real-valued. Under certain conditions, for t ′→∞,

I (t ′)=
∑

ft (t,t ′)=0

(
g(t, t ′)

√
2π

| ft t(t, t ′)|
ei f (t,t ′)+ iπ

4 sgn ft t (t,t ′)
+ o

(
g(t, t ′)
√
| ft t(t, t ′)|

))
.

The classical principle of stationary phase outlined above relates to the real
Fourier transform. To study Deligne’s `-adic Fourier transform, Gérard Laumon
[1987] introduced a corresponding principle of stationary phase and the local `-
adic Fourier transform. (See [Katz 1988] for a good exposition.) We are interested
in the D-module case.

MSC2010: 14F40.
Keywords: stationary phase principle.
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We fix a field k of characteristic 0 and use the following notations:

(1) Let p1, p2 be the projections Spec k[t, t ′]=A1
k×k A1

k→A1
k , and let p̄1, p̄2 be

the projections P1
k×k P1

k→P1
k . Let α :A1

k ↪→P1
k and µ :A1

k×k A1
k ↪→P1

k×k P1
k

be the inclusions.

(2) For any x ∈ k, let tx = t−x and t ′x = t ′−x . Let t∞=1/t= z, t ′
∞
=1/t ′= z′ and

η′ = Spec k(t ′). For any x ∈ k ∪{∞}, let ηx = Spec k((tx)), η′x = Spec k((t ′x)).

(3) For any x, y ∈ k∪{∞}, let k((tx , t ′y)) be the field of the formal Laurent series∑
i, j�−∞

ai j t i
x t ′ jy , ai j ∈ k. For any k((tx))-vector space M , let

M((t ′y))= M ⊗k((tx )) k((tx , t ′y)).

(4) Denote by L the rank-one connection (OA1
k
, d+dt) on A1

k . Then L corresponds
to the D-module OA1

k
·et on A1

k . So L is a substitute of ei t in classical Fourier
analysis. Let X be a scheme. Any section f ∈ O(X) defines a morphism
φ : X→ A1

k and let L f = φ
∗L.

Let M be a vector bundle with a connection ∇ on a nonempty open subscheme
U of A1

k and let i :U ↪→ A1 and j :U → P1
k be the inclusions. The connection ∇

on M can be extended to a connection i∗∇ on i∗M and a connection j∗∇ on j∗M.
The global (geometric) Fourier transform of the D-module i∗M on A1

k is defined
to be

F(i∗M)= p2+(p∗1 i∗M⊗O
A1

k×A1
k

Lt t ′)[1],

where ⊗ and p2+ are derived functors of D-modules. This definition is analogous
to

f̂ (t ′)=
∫

f (t)ei t t ′dt.

More precisely, we have

F(i∗M)∼= R1 p2∗
(

p∗1 i∗M
p∗1 i∗∇+t ′dt
−−−−−−→ p∗1(�

1
A1

k
⊗O

A1
k

i∗M)
)

∼= α
∗α∗R1 p2∗

(
p∗1 i∗M

p∗1 i∗∇+t ′dt
−−−−−−→ p∗1(�

1
A1

k
⊗O

A1
k

i∗M)
)

∼= α
∗R1 p̄2∗µ∗

(
p∗1 i∗M

p∗1 i∗∇+t ′dt
−−−−−−→ p∗1(�

1
A1

k
⊗O

A1
k

i∗M)
)

∼= α
∗R1 p̄2∗

(
p̄∗1 j∗M⊗µ∗OA1

k×A1
k

p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1(�

1
P1

k
⊗ j∗M)⊗µ∗OA1

k×A1
k

)
.

Consider the complex

(∗)
(

p̄∗1 j∗M⊗µ∗OA1
k×A1

k

p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1(�

1
P1

k
⊗ j∗M)⊗µ∗OA1

k×A1
k

)
.

We have
F(i∗M)|η∞′ = R1 p̄2∗(∗)|η∞′ .
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To study F(i∗M)|η∞′ , one needs to study R1 p̄2∗(∗)|Spf k[[z′]]. The complex (∗)
involves quasicoherent sheaves that may not be coherent sheaves. To study the
localization of (∗) on Spf k[[z′]], we need to transform them into coherent sheaves.
For this reason, Bloch and Esnault [2004] rewrote (∗) in terms of the cohomology
of a complex of coherent modules. They found a good lattice pair V, W of the con-
nection j∗M such that ( p̄∗1 j∗∇+ t ′dt)( p̄∗1V)⊂ p̄∗1(�

1
P1

k
(T )⊗W) and the inclusion

of complexes (
p̄∗1V

p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1(�

1
P1

k
(T )⊗W)

)
⊂ (∗)

is a quasi-isomorphism. Here T =P1
k−U . However, for any good lattice pair V, W

of the connection j∗M, the conditions above do not hold, because the differential
form t ′dt is singular on P1

k ×{∞}∪ {∞}×P1
k . We only have

( p̄∗1 j∗∇ + t ′dt)( p̄∗1V)⊂ p̄∗1
(
�1

P1
k
(T )⊗ (W+V({∞}))

)
(P1

k ×{∞})

and a subcomplex

(1-1)
(

p̄∗1V
p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1

(
�1

P1
k
(T )⊗ (W+V({∞}))

)
(P1

k ×{∞})
)

of (∗). This inclusion of complexes (1-1) ⊂ (∗) is still not a quasi-isomorphism.
Using Deligne’s construction of good lattice pairs, we find a good lattice pair
V, W of j∗M in Lemma 2.3 such that (1-1)|P1

k⊗kk(t ′) ⊂ (∗)|P1
k⊗kk(t ′) is a quasi-

isomorphism. From this, we get the following stationary phase formula.

Theorem 1.1. Let M be a vector bundle with a connection ∇ on a nonempty open
subscheme U of A1

k , and let i : U ↪→ A1 be the inclusion. Suppose all points in
A1

k −U are k-rational. Then the natural map

(1-2) F(i∗M)|η′∞→
⊕

x∈A1
k−U

coker
(
(M|ηx )((z

′))
z′∂tx+1
−−−−→ (M|ηx )((z

′))
)

⊕ coker
(
(M|η∞)((z

′))
z′∂z−

1
z2

−−−−→ (M|η∞)((z
′))
)

is an isomorphism of formal connections on k((z′)).

The direct summands on the right side of (1-2) induce the definition of local
Fourier transforms for formal connections.

The paper is organized as follows. In Section 2, we discuss the good lattice
pairs of connections on a smooth curve. Passing to the stalks, we discuss the good
lattice pairs of connections on a discrete valuation field. In Section 3, we prove
the stationary phase formula using proper base change theorem between formal
schemes.
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2. Good lattice pairs

Let X be a smooth algebraic curve over k and j : X ↪→ X the smooth compactifi-
cation. Let F be a vector bundle on X with a connection ∇. Set 6 = X − X . A
pair of good lattices V,W of j∗F is a pair of vector bundles on X which extends
F and satisfies the following conditions:

(1) V⊂W⊂ j∗F.

(2) ∇(V)⊂�1
X
(6)⊗W.

(3) For any effective divisor D supported on 6, the inclusion of complexes(
V
∇
−→�1

X (6)⊗W
)
→
(
V(D)

∇
−→�1

X (6)⊗W(D)
)

is a quasi-isomorphism. Taking the direct limit with respect to D, we get a
quasi-isomorphism:(

V
∇
−→�1

X (6)⊗W)
)
→
(

j∗F
∇
−→�1

X ⊗ j∗F
)
.

The existence of good lattice pairs can be passed to the stalks. So we only need
to consider the local case: good lattice pairs of connections on a discrete valuation
field.

Let K be a discrete valuation field with the valuation v. Let A be the valuation
ring, t a uniformizer, and ∂ a continuous derivation on K such that ∂(t) = 1 and
∂(A)⊆ A.

Definition 2.1. A connection on K (of rank k, where k is finite) is a k-dimensional
vector space M over K with an additive map ∂ : M → M satisfying ∂( f m) =
f ∂(m)+ ∂( f )m for any f ∈ K and m ∈ M .

Let r be the rank of the connection M . Set τ = t∂ . There exists a cyclic element
v ∈ M , in the sense that the elements τ iv, for 0 ≤ i ≤ r − 1, form a basis of M
over K . We have

τ rv =
∑

0≤i≤r−1

aiτ
iv

for some ai ∈ K . The Newton polygon N (M) of M is the convex hull of

{(u, v) | u ≤ i, v ≥ v(ai )}

in the plane R2. The slopes of M are the slopes of nonvertical edges of N (M), and
we eliminate the slope 0 if the horizontal edge is situated in u ≤ 0. The slopes are
independent of the choice of the cyclic elements. The sum of all the slopes of M
is called the irregularity of M , and is denoted by i(M). Then

i(M)= max
0≤i≤r

(0,−v(ai )).
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A lattice of M is a finitely generated A-submodule V of M that spans M . For any
artinian A-module V , the length of V is denoted by `(V ).

Definition 2.2. A pair of lattices V,W of (M, ∂) is called good if the following
conditions are satisfied

(1) V ⊂W ⊂ M .

(2) ∂V ⊂ (1/t)W .

(3) For any i ∈ N, the natural inclusion of complexes(
V

∂
−→

1
t

W
)
→

( 1
t i V

∂
−→

1
t i+1 W

)
is a quasi-isomorphism.

Note that if V,W is a good lattice pair, so is (1/t i )W, (1/t i )W for any i ∈ N.
Condition (3) above is equivalent to the following:

(3′) For any i ∈ N, the map

1
t i V

/ 1
t i−1 V

gri∂
−−→

1
t i+1 W

/ 1
t i W

induced by ∂ is an isomorphism.

One can show that i(M)= `(W/V ).

Lemma 2.3. Let k ↪→ k ′ be an extension of fields of characteristic 0. Let ∂t be the
natural derivation on k(t) and on k ′(t). The variable t defines a discrete valuation
v on k(t) and k ′(t). Let A and A′ be their discrete valuation rings, respectively.
Suppose c is an element in k ′ which is not algebraic over k. Let M be a connection
on k(t), and let Mc be the connection on k ′(t) whose underlying space is the k ′(t)-
vector space M ⊗k(t) k ′(t), and with the operation ∂t defined by

∂t(m⊗ f )= ∂t(m)⊗ f +m⊗ ∂t( f )−m⊗ c
t2

for any m ∈ M and any f ∈ k ′(t). Then there exists a good lattice pair V, W of M ,
such that V⊗A A′, (W+(1/t)V)⊗A A′ is also a good lattice pair of the connection
Mc on k ′(t).

Proof. Set r = rkM . Choose a cyclic element v of M . Let ε be the basis
{τ iv | 0 ≤ i ≤ r − 1} of M over k(t ′). We have τ rv =

∑
0≤i<r aiτ

iv for some
ai ∈ K . The irregularity i(M) of M is max0≤i<r (0,−v(ai )). Consider the Newton
polygon of the differential operator τ r

−
∑

0≤i≤r−1 aiτ
i . Let j be the integer such

that ( j, v(a j )) is a vertex of this Newton polygon, and such that the slopes of
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this Newton polygon on the right side (respectively left side) of ( j, v(a j )) is > 1
(respectively ≤ 1). Set ar = 1. Then we have

v(a j+i )− v(a j ) > i for any 1≤ i ≤ r − j,

v(a j−i )− v(a j )≥−i for any 0≤ i ≤ j.

Then

(2-1) v(a j )− j =min0≤i≤r (v(ai )− i).

The matrix of the differential operator τ with respect to the basis ε is

0 =


0 a0

1 a1
. . .

...

1 ar−1

 .
The characteristic polynomial of 0 is λr

−
∑

0≤i≤r−1 aiλ
i . Let

3= diag{1, . . . , 1, t, . . . , tr− j+i(M)+v(a j )},

and let e = ε3= {ei | 0 ≤ i < r}. Set l = j − v(a j )− i(M) ≥ 0. Then the matrix
of the differential operator τ with respect to the basis e is

0′ =



0 tr−la0

1 tr−la1
. . .

...

1 tr−lal−1
1
t tr−l−1al
. . .

...
1
t ar−1


+ diag{0, · · · , 0, 1, · · · , r − l}.

Let P(λ)= λr
−
∑

0≤i≤r−1 a′iλ
i be the characteristic polynomial of 0′. Since

0′ =3−103+ diag{0, . . . , 0, 1, . . . , r − l},

we have
a′i − ai ∈

∑
i< j<r

Za j +Z⊂ K .

So
max{0,−v(a′i ) | 0≤ i < r} =max{0,−v(ai ) | 0≤ i < r} = i(M).

Write P(λ)= t−i(M)∑
i biλ

i , bi ∈ K . Then bi ∈ A and v(bi )= 0 for at least one
i . The residue polynomial

∑
i b̄iλ

i of
∑

i biλ
i is nonzero. For almost all n ∈ Z,
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i b̄i (−n)i 6= 0. In this case, we have

−v(det(n+0′))=−v((−1)r P(−n))=−v
(

t−i(M)
(∑

i

bi (−n)i
))
= i(M).

Then, for almost all n ∈ Z,

(2-2) i(M)=−v(det(n+0′)).

Let V be the lattice of M generated by e. Define

(2-3) [(n+0′)V : V ] = `((n+0′)V + V/V )− `((n+0′)V + V/(n+0′)V ).

By [Deligne 1970, p. 48, Proposition 2], we have

(2-4) [(n+0′)V : V ] = −v(det(n+0′)).

Let W be the lattice of M generated by

e0, . . . , el−1,
1
t

el, . . . ,
1
t

er−1.

Then `(W/V )=r−l. Since ((n+0′)V+V )/W is an artinian A-module generated
by the single element

x =
∑

0≤i≤l−1

ai tr−lei +
∑

l≤i≤r−1

ai tr−1−i ei =
∑

0≤i≤l−1

ai tr−lei +
∑

l≤i≤r−1

ai tr−i 1
t

ei .

For any i , we have i(M)≥−v(ai ) and v(a j )− j ≤ v(ai )− i . Then

v(t i(M)+l−r ai tr−l)≥ 0 and v(t i(M)+l−r ai tr−i )≥ v(t i(M)+l−r a j tr− j )= 0.

Then the annihilator of x in ((n+0′)V + V )/W is t i(M)+l−r . So

`((n+0′)V + V/W )= i(M)+ l − r.

Then

(2-5) `((n+0′)V + V/V )= `(W/V )+ `((n+0′)V + V/W )= i(M).

Comparing this equality with (2-2), (2-3), and (2-4), we get

`((n+0′)V + V/(n+0′)V )= 0

for almost n ∈ Z, that is, (n+0′)V ⊃ V for almost all n ∈ Z.
The A-module

(n+0′)V + 1
t

V
/ 1

t
V

is artinian and is generated by one element x whose annihilator is

t i(M)+l−r
= t j−v(a j )−r .



124 JIANGXUE FANG

Then

(2-6) `
(
(n+0′)V + 1

t
V
/

V
)
= `

(
(n+0′)V + 1

t
V
/ 1

t
V
)
+ `

1
t

V
/

V

= j − v(a j )=
∑

λ:slope of M

max(λ, 1).

The matrix of the differential operator τ with respect to the basis ε of Mc is
0− c/t . The characteristic polynomial P ′(λ) of 0− c/t is

P ′(λ)=
(
λ+

c
t

)r
−

∑
0≤i<r

ai

(
λ+

c
t

)i
.

Write P ′(λ)= λr
+
∑

0≤i<r biλ
i for some bi ∈ k ′(t). Then

b0 =

(c
t

)r
−

∑
0≤i<r

ai

(c
t

)i
=

a j

t j

(
1

a j tr− j cr
−

∑
0≤i<r

ai

a j t i− j ci
)
.

By (2-1), we have
1

a j tr− j cr
−

∑
0≤i<r

ai

a j t i− j ci
∈ A[c],

and its residue in k ′ is a nonzero polynomial over k of c. Since c is not algebraic
over k, this residue is nonzero. Then we have

v(b0)= v
(a j

t j

)
= v(a j )− j.

Also by (2-1), we have v(bi )≥ v(b0) for any 0≤ i < r . So

max0≤i<r (0,−v(bi ))= j − v(a j )= i(Mc).

The matrix of the differential operator τ with respect to the basis e of Mc is
0′′ = 0′− c/t . Write the characteristic polynomial of 0′′ as λr

+
∑

0≤i<r b′iλ
i for

some b′i ∈ k ′(t). By a similar proof as above, we have

max0≤i<r (0,−v(b′i ))=max0≤i<r (0,−v(bi ))= i(Mc).

For almost n ∈ Z, we have

−v(det(n+0′′))= i(Mc).

Let V ′ = V ⊗A A′. We have (n+0′′)V ′+ V ′ ⊆ 1
t

V ′+0′V ′; therefore So

(2-7) `((n+0′′)V ′+ V ′/V ′)≤ `
(1

t
V ′+0′V ′

/
V ′
)
.

Since A→ A′ is flat and k⊗A A′= k ′, for any artinian A-module M , one can prove
`(M) = `(M ⊗A A′). Since (1/t)V + 0′V/V is an artinian A-module, by (2-6),
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we have

(2-8) `
(1

t
V ′+0′V ′

/
V ′
)
= `

(1
t

V +0′V
/

V
)
= j − v(a j ).

By (2-4), we have, for almost n ∈ Z,

`((n+0′′)V ′+V ′/V ′)≥ `((n+0′′)V ′+V ′/V ′)−`((n+0′′)V ′+V ′/(n+0′′)V ′)

=−v(det(n+0′′))= j−v(a j ).

Comparing this inequality with (2-7) and (2-8), we have for almost n ∈ Z,

`((n+0′′)V ′+ V ′/V ′)= j − v(a j );

`((n+0′′)V ′+ V ′/(n+0′′)V ′)= 0;

(n+0′′)V ′+ V ′ = 1
t

V ′+0′V ′ =
(1

t
V +0′V

)
⊗A A′.(2-9)

So for almost n∈Z, (n+0′′)V ′⊇V ′. Let e′= (1/t N )e. The matrix of τ with respect
to the basis e′ of M (respectively M ′c) is 01 :=0

′
−N (respectively 02 :=0

′′
−N ).

Let V= (1/t N )V and let V′ = (1/t N )V ′. Choose N large enough so that for any
n ≤ 0, we have

(n+01)V⊃ V and (n+02)V
′
⊇ V′.

Let W= 01V. By (2-9), we have 02V′ = (W+ (1/t)V)⊗A A′. Let’s prove V, W

is a good lattice of M now. We only need to verify condition (3′) for any i ∈ N.
Conjugating by 1/t i , the A-linear map

griτ :
1
t i V

/ 1
t i−1 V→

1
t i W

/ 1
t i−1 W

can be identified with the A-linear map

gr0τ − i = 01− i : V/tV→W/tW.

Since (01− i)V⊃ V, we have

(01− i)V= (01− i)V+V⊃ 01V=W.

So 01 − i : V/tV→W/tW is surjective. But the domain and the range of griτ

are artinian A-modules of the same length r , so gr0τ − i is an isomorphism and
so is griτ . This proves V, W is a good lattice pair of M . Repeating the proof, we
conclude that V⊗A A′, (W+ (1/t)V)⊗A A′ is a good lattice pair of Mc. �

Remark 2.4. Lemma 2.3 is the main technical lemma for the proof of the station-
ary phase principle in the next section. Lemma 2.3 also allows us to choose a good
lattice pair V, W of M such that

(2-10) dimk

(
W+

1
t

V
/

V
)
=

∑
λ:slope of M

max(λ, 1).
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Formula (2-10) is easily seen to give a new proof of the following result:

Lemma 2.5 [Bloch and Esnault 2004, Lemma 3.3]. Let M be a connection on K .
The slopes of M are all ≤ 1 (respectively ≥ 1) if and only if there exists a good
lattice pair V,W such that W⊆ (1/t)V (respectively W⊇ (1/t)V).

(Note that the original proof by Bloch and Esnault needs the assumption that K
is complete.)

3. Stationary phase principle

Let K = k(t ′). For any scheme X over k and any OX -modules F, let X K = X⊗k K
and FK = F|X K . For any k-morphism f : X→ Y , let fK : X K → YK be the base
change of f .

We keep the notation used in Section 1. In this section we prove Theorem 1.1.
For any x ∈ TK = T , (VK )x , (WK )x is a good lattice pair of the connection

( jK∗MK )x on K (tx). Since t ′ is not algebraic over k, by Lemma 2.3, we may
assume that

V∞⊗O
P1

k ,∞
OP1

K ,∞
,
(

W∞+
1
z

V∞

)
⊗O

P1
k ,∞

OP1
K ,∞

is a good lattice pair of the connection

∂z −
t ′

z2 : ( jK ∗MK )∞→ ( jK ∗MK )∞.

Lemma 3.1. The inclusion of complexes (1-1)⊂ (∗) induces a quasi-isomorphism

(1-1)|P1
K
' (∗)|P1

K
.

Proof. We have

(1-1)|P1
K
=
(
VK

jK∗∇K+t ′dt
−−−−−−→�1

P1
K
(TK )⊗ (WK +VK ({∞}))

)
,

(∗)|P1
K
=
(

jK∗MK
jK∗∇K+t ′dt
−−−−−−→�1

P1
K
⊗ jK∗MK

)
.

First we have (1-1)|UK = (∗)|UK . For any x ∈ SK , let’s prove (1-1)|P1
K
⊂ (∗)|P1

K
induces a quasi-isomorphism on the stalks at x . It suffices to show that(

1
t i
x
(VK )x

/ 1
t i−1
x

(VK )x

)
gri (∂tx+t ′)
−−−−−→

(
1

t i+1
x

(WK )x

/ 1
t i
x
(WK )x

)
is an isomorphism for any i ≥ 1. As (VK )x ⊂ (WK )x , the map gri (∂tx + t ′) is
equal to gri (∂tx ), which is an isomorphism by the definition of good lattices. The
inclusion (

(1-1)|P1
K

)
∞
→
(
(∗)|P1

K

)
∞
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can be written as(
V∞⊗O

P1
k ,∞

OP1
K ,∞

∂z−
t ′

z2
−−−→

1
z

(
W∞+

1
z

V∞

)
⊗O

P1
k ,∞

OP1
K ,∞

)
⊂
(
( jK ∗MK )∞

∂z−
t ′

z2
−−−→ ( jK ∗MK )∞

)
.

It is a quasi-isomorphism by the assumption on V∞ and W∞. �

Lemma 3.2. R1 p̄2∗(1-1)|η′ ∼= R1 p̄2∗(∗)|η′ .

Proof. Consider the Cartesian diagram

(3-1)

P1
K � η′= Spec K

P1
k ×P1

k

g
p̄2
� P1

k .

g

By Lemma 3.1, we have

R1 p̄2∗(1-1)|η′ ∼= H 1(P1
K , (1-1)|P1

K
)∼= H 1(P1

K , (∗)|P1
K
)∼= R1 p̄2∗(∗)|η′ . �

Corollary 3.3. F(i∗M)|η′∞ = R1 p̄2∗(1-1)|η′∞ .

Denote by P1
k[[z
′
]] the formal completion of P1

k×P1
k along its closed subscheme

P1
k ×{∞}. For any coherent sheaf K on P1

k , let K[[z′]] = K|P1
k [[z
′]]

.

Lemma 3.4 [Bloch and Esnault 2004, Corollary 2.2].

R1 p̄2∗(1-1)⊗O
P1

k
k[[z′]] ∼= H 1

(
P1
[[z′]],V[[z′]]

z′∇+dt
−−−−→�1

P1(T )⊗W[[z′]]
)
.

Lemma 3.5 [Bloch and Esnault 2004, Lemma 2.4 and Corollary 2.5]. Let H be
the complex

V[[z′]]
z′∇+dt
−−−−→

(
�1

P1
k
(T )⊗ (W+V({∞}))

)
[[z′]].

Then H0 equals (0) and H1 is supported on T ⊂ P1
k = P1

k[[z
′
]]. For any x ∈ T , let

V̂x = Vx ⊗O
P1

k, x
k[[tx ]] and Ŵx =Wx ⊗O

P1
k, x

k[[tx ]]. We have

H1
x = coker

(
V̂x [[z′]]

z′∇+dt
−−−−→�1

P1
k
(T )⊗ (Ŵx + ̂V({∞})x)[[z′]]

)
. �

Corollary 3.6.

H 1(P1
k[[z
′
]],H)=

⊕
x∈S

coker
(

V̂x [[z′]]
z′∂tx+1
−−−−→

1
tx

Ŵx [[z′]]
)

⊕ coker
(

V̂∞[[z′]]
z′∂z−

1
z2

−−−−→
1
z

(
Ŵ∞+

1
z

V̂∞

)
[[z′]]

)
.
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Combining Corollary 3.3, Lemma 3.4 and Corollary 3.6, we have

F(i∗M)|η′∞ = R1 p̄2∗(1-1)⊗O
P1

k
k[[z′]]⊗k[[z′]] k((z′))

=

⊕
x∈S

coker
(
V̂x((z′))

z′∂tx+1
−−−−→

1
tx

Ŵx((z′))
)

⊕ coker
(

V̂∞lpz′))
z′∂z−

1
z2

−−−−→
1
z
(Ŵ∞+

1
z

V̂∞)((z′))
)
.

The left side of this equality is independent of the choice V and W. For any
i ∈N, V(iT ) and W(iT ) still satisfy the condition of Lemma 3.1. Then the above
equality holds if we replace V and W by V(iT ) and W(iT ), respectively. Taking
the direct limit on i , we have

F(i∗M)|η′∞ =
⊕
x∈S

coker
(
(M|ηx )((z

′))
z′∂tx+1
−−−−→ (M|ηx )((z

′))
)

⊕ coker
(
(M|η∞)((z

′))
z′∂z−

1
z2

−−−−→ (M|η∞)((z
′))
)
.
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MONOTONICITY AND UNIQUENESS
OF A 3D TRANSONIC SHOCK SOLUTION

IN A CONIC NOZZLE WITH VARIABLE END PRESSURE

JUN LI, ZHOUPING XIN AND HUICHENG YIN

We focus on the uniqueness problem of a 3D transonic shock solution in
a conic nozzle when the variable end pressure in the diverging part of the
nozzle lies in an appropriate scope. By establishing the monotonicity of
the position of shock surface relative to the end pressure, we remove the
nonphysical assumptions on the transonic shock past a fixed point made in
previous studies and further obtain uniqueness.

1. Introduction and the main results

We study the uniqueness of a 3D transonic shock in a conic nozzle when the vari-
able end pressure of the diverging part lies in an appropriate scope. The transonic
shock problem in a nozzle is a fundamental one in fluid dynamics and has been
extensively studied by many authors under various assumptions, for example, that
either the transonic flow is quasi-one-dimensional or that the transonic shock goes
through some fixed point in advance; see [Liu 1982; Embid et al. 1984; Chen
et al. 2007; Chen 2008; Chen and Yuan 2008; Xin and Yin 2008a; 2008b; Xin
et al. 2009] and so on. However, Courant and Friedrichs [1948, p. 386] indicated
that transonic shock in a nozzle can be formulated as follows: Given appropriately
large end pressure pe(x), if the upstream flow is still supersonic behind the throat
of the three-dimensional de Laval nozzle, then at a certain place in the diverging
part of the nozzle, a shock front intervenes and the gas is compressed and slowed
down to subsonic speed. The position and the strength of the shock front are
automatically adjusted so that the end pressure at the exit becomes pe(x). This
statement indicates that the position of the transonic shock should be completely

This research is supported part by NSFC grant numbers 10931007, 11025105, 11001122 and Doc-
toral Program Foundation of the Ministry of Education of China grant number 20090091110005,
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Keywords: steady Euler system, transonic shock, first-order elliptic system, index of Hilbert

problem, maximum principle of weak solutions.
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free. More importantly, the assumption of shock going through some fixed point in
advance will lead in general to the transonic shock problem not being well-posed
[Xin and Yin 2008a; Xin et al. 2009]. On the other hand, Courant and Friedrichs
[1948, pp. 372, 375] pointed out that it is a question of great importance to know
under what circumstances a steady flow involving shocks is uniquely determined
and stable by the boundary conditions and by the conditions at the entrance, and
when further conditions at the exit are appropriate. Motivated by these two basic
problems, in this paper, we will establish the uniqueness result on a 3D transonic
shock solution for the 3D Euler system when the variable end pressure pe(x) of the
conic part of the nozzle lies in an appropriate scope without the assumption that
the shock goes through a fixed point in advance. The existence of a 3D transonic
shock solution under suitable restrictions on the end pressures was given in [Li
et al. 2010].

We will consider only the isentropic gas for simplicity. By a slight modification,
our discussions also apply to the nonisentropic case. The steady isentropic Euler
system in three-dimensional spaces is

(1-1)
{

div(ρu)= 0,
div(ρu⊗ u)+∇ p = 0,

where u= (u1, u2, u3), ρ and P are the velocity, density and pressure, respectively.
Moreover, the pressure function P = P(ρ) is smooth with P ′(ρ) > 0 for ρ > 0,
and c(ρ)=

√
P ′(ρ) is called the local sound speed.

For ideal polytropic gases, the equation of state is given by

P = Aργ ,

where A and γ are positive constants and 1< γ < 3.
It will be assumed that the nozzle wall 0 is C4,α-regular for X0 − 1 ≤ r =
√

x2
1 + x2

2 + x2
3 ≤ X0 + 1, where X0 > 1 is a fixed constant and α ∈ (0, 1), and

the wall 0 consists of two curved surfaces 51 and 52, where 51 includes the
converging part of the nozzle and 52 is the conic diverging part of the nozzle (see
figure). More precisely, the equation of 52 is represented by x2

2 + x2
3 = x2

1 tan2 θ0

with x1 > 0 and X0 < r < X0+ 1, where 0 < θ0 < π/2 is sufficiently small. For

O
supersonic

6
shock

subsonic

0

xi
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simplicity, we suppose that the C4,α-smooth supersonic incoming flow

(ρ−0 (x), u−1,0(x), u−2,0(x), u−3,0(x))

is symmetric near r = X0, where

ρ−0 (x)= ρ
−

0 (r) and u−i,0(x)=
U−0 (r)xi

r
for i = 1, 2, 3

(this assumption can be easily realized by the hyperbolicity of the supersonic in-
coming flow and the symmetry of the nozzle wall for X0 < r < X0+ 1).

Denote the equation of the possible multidimensional shock 6 in the nozzle by
x1 = η(x2, x3) and the flow field behind the shock by

(ρ+(x), u+1 (x), u+2 (x), u+3 (x)).

Then the Rankine–Hugoniot conditions on 6 are

(1-2)


[ρu1] − ∂2η(x2, x3)[ρu2] − ∂3η(x2, x3)[ρu3] = 0,

[P + ρu2
1] − ∂2η(x2, x3)[ρu1u2] − ∂3η(x2, x3)[ρu1u3] = 0,

[ρu1u2] − ∂2η(x2, x3)[P + ρu2
2] − ∂3η(x2, x3)[ρu2u3] = 0,

[ρu1u3] − ∂2η(x2, x3)[ρu2u3] − ∂3η(x2, x3)[P + ρu2
3] = 0.

In addition, P+(x) should satisfy the physical entropy condition (see [Courant and
Friedrichs 1948])

(1-3) P+(x) > P−(x) on x1 = η(x2, x3).

On the exit of the nozzle, we place the end pressure condition

(1-4) P+(x)= Pe+ εP0(x2, x3) on r = X0+ 1,

where ε > 0 is sufficiently small and

P0(x2, x3) ∈ C3,α
{(x2, x3) : x2

2 + x2
3 ≤ (X0+ 1)2 sin2 θ0}.

The positive constant Pe stands for the end pressure when a symmetric shock lies
at the position r = r0 with r0 ∈ (X0, X0 + 1) and the supersonic incoming flow
admits the state (ρ−0 (r),U

−

0 (r)). For detailed information on Pe, see Theorem A.1
in Appendix A.

The flow is assumed to be tangent to the nozzle wall 0, thus,

(1-5) x1u+1 τ
2
− x2u+2 − x3u+3 = 0 on x2

2 + x2
3 = x2

1 tan2 θ0.

Finally, X0 and θ0 are assumed to satisfy

(1-6) X0θ0 = 1 and η0
2
< θ0 < η0,
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where η0 > 0 is a suitably small constant. This assumption means that the nozzle
wall 0 is close to the cylindrical surface x2

2 + x2
3 = 1 for X0 ≤ r ≤ X0+ 1.

Theorem 1.1 (uniqueness). Under the assumptions above and

M−0 (X0)≡
U−0 (X0)

c(ρ−0 (X0))
>

√
2γ+1
−2
γ

,

then for large X0 and 0< ε < 1/X2
0 , Equation (1-1) with the boundary conditions

(1-2)–(1-5) has no more than one solution

(P+(x), u+1 (x), u+2 (x), u+3 (x); η(x2, x3))

with the following estimates:

(i) η(x2, x3) ∈ C4,α(S), where S = {(x2, x3) : (η(x2, x3), x2, x3) ∈ 6} is the pro-
jection of the shock surface 6 on the x2x3-plane. Moreover, there exists a
constant C0 > 0 (depending only on α and the supersonic incoming flow)
such that

‖η(x2, x3)−
√

r2
0 − x2

2 − x2
3‖L∞(S) ≤ C0 X0ε,

‖∇x2,x3(η(x2, x3)−
√

r2
0 − x2

2 − x2
3)‖C3,α(S) ≤ C0ε.

(ii) Let

�+ = {(x1, x2, x3) : η(x2, x3) < x1 <
√
(X0+ 1)2− x2

2 − x2
3 , x2

2+ x2
3 ≤ x2

1 tan2 θ0}.

The solution (P+(x), u+1 (x), u+2 (x), u+3 (x)) ∈ C3,α(�+) satisfies

‖(P+(x), u+1 (x), u+2 (x), u+3 (x))− (P̂
+

0 (r), û+1,0(x), û+2,0(x), û+3,0(x))‖C3,α(�+) ≤ C0ε,

where
û+i,0(x)= Û+0 (r)

xi
r

for i = 1, 2, 3

and (P̂+0 (r), Û
+

0 (r)) is the extension of the subsonic part of the background
solution (P+0 (r),U

+

0 (r)) in �+ (given in more detail in Theorem A.1 and
Remark A.2).

Remark 1.1. The solution is required to have C3,α regularity in Theorem 1.1.
This is plausible, as in to [Li et al. 2009], since such a C3,α smooth solution can
be obtained as in [Li et al. 2010] under suitable assumptions on the compatibility
conditions of the variable end pressure. It will be also shown that the position of
the shock depends on the given end pressure monotonically. This will be given
more precisely in Proposition 2.2. In addition, the order X0ε in the bound on

‖η(x2, x3)−
√

r2
0 − x2

2 − x2
3‖L∞(S)
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comes essentially from the relation between the shock position and the end pressure
(see (4-8)). As pointed out in [Li et al. 2009], this actually means that the shock
position will move with order X0O(ε) when the end pressure changes in order
O(ε) in (1-4).

Remark 1.2. The uniqueness result in [Xin and Yin 2008b] needs the key assump-
tion that the transonic shock goes through a fixed point which is determined by
the resulting ordinary differential equation in the case of the symmetric solutions.
Using a completely different method, we remove this assumption.

Remark 1.3. If the transonic shock lies in a converging part of the symmetric
nozzle, then a similar result to Theorem 1.1 still holds true. However, as shown
in [Xin and Yin 2008b], an unsteady symmetric transonic shock is structurally
unstable in a global-in-time sense when it lies in the symmetric converging part of
the nozzle.

Remark 1.4. In Theorem 1.1, we assume that the regularity of the transonic shock
surface is higher than that of the transonic shock solution (ρ+, u+1 , u+2 , u+3 ). The
necessity of this assumption is plausible, in view of the existence result in [Li et al.
2010] under the condition of axisymmetric exit pressure. The assumption is also
natural, as it comes up in the existence and stability theory of multidimensional
shocks in [Majda 1983a; 1983b].

The steady transonic problem has been studied in great detail; see [Courant
and Friedrichs 1948; Liu 1982; Gilbarg and Trudinger 1983; Embid et al. 1984;
Morawetz 1994; Čanić et al. 2000; Kuz’min 2002; Zheng 2003; 2006; Chen et al.
2007; Chen 2008; Chen and Yuan 2008; Xin and Yin 2008a; 2008b; Xin et al. 2009;
Li et al. 2010] and the references therein. However, most known results deal with
2D problems or 3D problems with special symmetries, or make additional a priori
assumptions on shock positions. In this paper, we consider the uniqueness problem
for general exit pressure and without stringent conditions on shock locations.

Next we comment on the proofs of the main results. Compared with previous
studies, one of the main difficulties is the uncertainty of the shock position. As
in the 2-dimensional case [Li et al. 2009], we overcome this difficulty by deriving
the monotonic dependence of the shock position on the end pressure along the
nozzle wall. Although the strategy here is somewhat similar to [Li et al. 2009],
much more delicate and technical a priori estimates are needed to overcome some
essential difficulties occurring in the 3-dimensional case. In particular, more com-
plicated and careful analysis is needed for the estimates on the difference of two
possible pressures P+, P̃+ and the suitable regularity arguments of the difference
of two possible velocities (u+1 , u+2 , u+3 ), (ũ

+

1 , ũ+2 , ũ+3 ) in the x2 and x3 directions.
The pressure difference solves a second-order elliptic equation, while the velocity
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differences satisfy hyperbolic equations. Thus it would be plausible that the regu-
larities of the velocity difference are lower than that of the pressure difference. This
leads to the difficulty in deriving the C3,α-regularity of the difference of the shock
surfaces. Our key observation to overcome this difficulty is that the difference
(u+i − ũ+i ) for i = 2, 3 satisfies a first-order elliptic system with respect to the
variables x2 and x3 in the interior of subsonic domain�+. Combining this with the
transport equations for the velocity differences, we can obtain the C2,α-estimate
of the velocity difference in the full variable x in �+. This will yield the same
regularities of the differences of the pressure and velocity simultaneously.

The rest of the paper is organized as follows. In Section 2, we reformulate the
problem (1-1) with the boundary conditions (1-2)–(1-5) by suitable decomposi-
tions. To this end, first we transform the nozzle wall 52 into a cylindrical surface
y2

2 + y2
3 = 1 and give a suitable decomposition on the velocity u+ = (u+1 , u+2 , u+3 ).

Then we decompose the resulting 4×4 three-dimensional Euler system (1-1) into a
second-order elliptic equation on the density ρ+ with mixed boundary conditions
and three first-order equations on the velocity components U+1 ,U

+

2 and U+3 by
making use of Bernoulli’s law. Furthermore, by an analysis of the R-H condi-
tions (1-2) and the first equation in (1-1), we can show that (U+2 ,U

+

3 ) is gov-
erned by the Cauchy–Riemann system on the shock surface (see (2-9)–(2-10)). In
Section 3, by use of the decomposition techniques in Section 2, we can establish
some a priori estimates on the derivatives of the difference (Y1, Y2, Y3, Y4, Y5) of
two possible solutions (U+1 ,U

+

2 ,U
+

3 , ρ
+, ξ1) and (V+1 , V+2 , V+3 , q+, ξ2). In this

process, we especially observe that Y2 and Y3 also satisfy a first-order elliptic
system with a parameter y1 in the interior of the nozzle so that one can obtain
the same regularity of (Y2, Y3) as the pressure difference Y4 and the suitable C2,α-
estimates (see Lemma 3.5). With Bernoulli’s law, this gives the analogous estimate
on the gradients of Y1 in Lemma 3.6. In Section 4, based on the estimates given
in Section 3, we can determine the position of the shock surface and complete the
proof of the uniqueness result in Theorem 1.1. Finally, for the reader’s convenience,
descriptions of the background solution illustrated in [Xin and Yin 2008b] are given
in Appendix A. Some useful computations and estimates are given in Appendix B.

In the remainder of the paper, we will use the following conventions: O(ε) and
O(1) mean that there exists a constant C1 > 0, independent of X0 and ε, such that

‖O(ε)‖C1,α ≤ C1ε and ‖O(1)‖C1,α ≤ C1,

respectively. O(1/Xm
0 ) for m> 0 means that there exists a generic constant C2> 0

independent of X0 and ε such that

‖O(1/Xm
0 )‖C1,α ≤ C2/Xm

0 .

Also we set τ = tan θ0.
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2. Reformulation in terms of radial and angular velocities

In this section, we first decompose the velocity u= (u+1 , u+2 , u+3 ) as (U+1 ,U
+

2 ,U
+

3 ),
where U+1 is the radial velocity and U+2 and U+3 are the angular velocities. Then
we reformulate the nonlinear problem (1-1) with (1-2)–(1-5) to obtain a second-
order elliptic equation on ρ+ and a coupled system on U+2 ,U

+

3 and the first-order
equation on U+1 . The relations between (ρ+,U+1 ) and (U+2 ,U

+

3 ) on the shock 6
will also be derived.

Due to the symmetry of the nozzle in the diverging part, it is convenient to
introduce a coordinate transformation where τ = tan θ0.

(2-1)

y1 =
√

x2
1 + x2

2 + x2
3 ,

yi =
xi

x1τ
, i = 2, 3,

and a decomposition of (u+1 , u+2 , u+3 )

(2-2)



u+1 =
U+1 − y2τU+2 − y3τU+3

1+ (y2
2 + y2

3)τ
2

,

u+2 =
y2τU+1 + (1+ y2

3τ
2)U+2 − y2 y3τ

2U+3
1+ (y2

2 + y2
3)τ

2
,

u+3 =
y3τU+1 − y2 y3τ

2U+2 + (1+ y2
2τ

2)U+3
1+ (y2

2 + y2
3)τ

2
.

The transformation (2-1) changes the domain

�={(x1, x2, x3) : X0 ≤

√
x2

1 + x2
2 + x2

3 ≤ X0+ 1, x2
2 + x2

3 ≤ x2
1τ

2
}

and

�+={(x1, x2, x3) : η(x2, x3) < x1 <
√
(X0+1)2− x2

2 − x2
3 , x2

2 + x2
3 ≤ x2

1τ
2

into the domains

ω = {(y1, y2, y3) : X0 ≤ y1 ≤ X0+ 1, y2
2 + y2

3 ≤ 1}

and

ω+ = {(y1, y2, y3) : ξ(y2, y3)≤ y1 ≤ X0+ 1, y2
2 + y2

3 ≤ 1},

respectively. Here y1 = ξ(y2, y3) stands for the equation of the shock surface 6 in
the new coordinates y = (y1, y2, y3).
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To simplify notation, set

(2-3)



D0 =
1

y1
√

1+(y2
2+y2

3)τ
2
,

D1 =
1

√

1+(y2
2+y2

3)τ
2
∂y1,

Di =

√

1+ (y2
2 + y2

3)τ
2

y1τ
∂yi , i = 2, 3.

Then for any C1 solution, a direct but tedious computation yields that (1-1) takes
the form

(2-4)



U+1 D1ρ
+
+U+2 D2ρ

+
+U+3 D3ρ

+

+ ρ+(D1U+1 + D2U+2 + D3U+3 )= f1,

ρ+U+1 D1U+1 + ρ
+U+2 D2U+1 + ρ

+U+3 D3U+1
+
(
1+ (y2

2 + y2
3)τ

2)c2(ρ+)D1ρ
+
= f2,

ρ+U+1 D1U+2 + ρ
+U+2 D2U+2 + ρ

+U+3 D3U+2
+ (1+ y2

2τ
2)c2(ρ+)D2ρ

+
+ y2 y3τ

2c2(ρ+)D3ρ
+
= f3,

ρ+U+1 D1U+3 + ρ
+U+2 D2U+3 + ρ

+U+3 D3U+3
+ y2 y3τ

2c2(ρ+)D2ρ
+
+ (1+ y2

3τ
2)c2(ρ+)D3ρ

+
= f4,

and on the shock position y1 = ξ(y2, y3), Equation (1-2) becomes

(2-5)



y1τ

1 + (y2
2 + y2

3)τ
2
[ρU1] − ∂y2ξ [ρU2] − ∂y3ξ [ρU3] = 0,

y1τ

1+ (y2
2 + y2

3)τ
2
[ρU 2

1 + (1+ (y
2
2 + y2

3)τ
2)P]

− ∂y2ξ [ρU1U2] − ∂y3ξ [ρU1U3] = 0,

y1τ

1+ (y2
2 + y2

3)τ
2
[ρU1U2] − ∂y2ξ [ρU 2

2 + (1+ y2
2τ

2)P]

− ∂y3ξ [ρU2U3+ y2 y3τ
2 P] = 0,

y1τ

1+ (y2
2 + y2

3)τ
2
[ρU1U3] − ∂y2ξ [ρU2U3+ y2 y3τ

2 P]

− ∂y3ξ [ρU 2
3 + (1+ y2

3τ
2)P] = 0,
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where

(2-6)



f1 =−2ρ+D0
(
U+1 − y2τU+2 − y3τU+3

)
,

f2 = ρ
+D0

(
U+1 (y2τU+2 + y3τU+3 )+ (U

+

2 )
2
+ (U+3 )

2

+ (y3τU+2 − y2τU+3 )
2),

f3 =−ρ
+D0

(
U+1 U+2 − y2τ(U+2 )

2
− y3τU+2 U+3

)
,

f4 =−ρ
+D0

(
U+1 U+3 − y2τU+2 U+3 − y3τ

2(U+3 )
2).

Meanwhile, (1-5) is changed into

(2-7) y2U+2 + y3U+3 = 0 on y2
2 + y2

3 = 1.

Since the transformation (2-1) between the coordinate systems (x1, x2, x3) and
(y1, y2, y3) preserves the C4,α norm, from now on, we will use (y1, y2, y3) to
discuss our problem instead of (x1, x2, x3). In addition, we will neglect the “+”
superscripts for notational simplification.

The third and the fourth equalities in (2-5) give

(2-8) ∂y2ξ(y2, y3)=
12
11
, ∂y3ξ(y2, y3)=

13
11
,

where

11 = ρ
(
(1+ y2

3τ
2)U 2

2 − 2y2 y3τ
2U2U3+ (1+ y2

2τ
2)U 2

3
)
+ [P](1+ (y2

2 + y2
3)τ

2),

12 =
ξ(y2, y3)τρU1

1+ (y2
2 + y2

3)τ
2 (U2+ y2

3τ
2U2− y2 y3τ

2U3),

13 =
ξ(y2, y3)τρU1

1+ (y2
2 + y2

3)τ
2 (−y2 y3τ

2U2+U3+ y2
2τ

2U3).

It follows from the compatibility condition

∂y3(∂y2ξ)= ∂y2(∂y3ξ)

that

(2-9) (∂y3ξ∂y1 + ∂y3)U2− (∂y2ξ∂y1 + ∂y2)U3

= H0(y2, y3, ρ,U2,U3, ξ,∇y2,y3ρ,∇y2,y3U2,∇y2,y3U3,∇y2,y3ξ)

on y1 = ξ(y2, y3),
where for large X0,

H0 = O(|U2|
2
+ |U3|

2)+ O(|∇y2,y3ρ|
2)

+ O(|∇y2,y3U2|
2)+ O(|∇y2,y3U3|

2)+ O(|∇y2,y3ξ |
2)

+ O(1/X0)(|U2| + |U3| + |∇y2,y3ρ| + |∇y2,y3U2| + |∇y2,y3U3| + |∇y2,y3ξ |).
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The concrete expression of H0 is given in Lemma B.1 in Appendix B.
In addition, the first equation in (2-4) can be rewritten as

(2-10) D2U2+ D3U3 =
1
ρ
( f1− ρD1U1−U1 D1ρ−U2 D2ρ−U3 D3ρ).

It is clear that for small |∇y2,y3ξ |, Equations (2-9) and (2-10) consist of a first-order
elliptic system for (U2,U3) on the shock surface y1 = ξ(y2, y3).

Next we determine the equations of U2,U3 in ω+ and their boundary conditions.
By the third and fourth equations of (2-4) and (2-9), (U2,U3) satisfies

(2-11)



ρU1 D1U2+ ρU2 D2U2+ ρU3 D3U2

+ (1+ y2
2τ

2)c2(ρ)D2ρ+ y2 y3τ
2c2(ρ)D3ρ = f3,

ρU1 D1U3+ ρU2 D2U3+ ρU3 D3U3

+ y2 y3τ
2c2(ρ)D2ρ+ (1+ y2

3τ
2)c2(ρ)D3ρ = f4,

(∂y3ξ∂y1 + ∂y3)U2− (∂y2ξ∂y1 + ∂y2)U3 = H0 on y1 = ξ(y2, y3),

y2U2+ y3U3 = 0 on y2
2 + y2

3 = 1.

Next, U1 can be obtained from the equation

(2-12) (ρU1 D1+ ρU2 D2+ ρU3 D3)

×

(
U 2

1 +U 2
2 +U 2

3 + (y3τU2− y2τU3)
2

2
(
1+ (y2

2 + y2
3)τ

2
) + h(ρ)

)
= 0

with

h′(ρ)= c2(ρ)

ρ
.

Finally, we determine the equation and the boundary conditions for the den-
sity ρ. By (2-7) and the third and the fourth equations in (2-4), the corresponding
boundary condition of ρ on y2

2 + y2
3 = 1 is

(2-13) y2∂y2ρ+ y3∂y3ρ =
ρ(U 2

2 +U 2
3 )

(1+ τ 2)c2(ρ)
on y2

2 + y2
3 = 1.

We now derive a Dirichlet boundary condition for ρ on the shock 6. Substituting
the expression (2-8) into the first two equations of (2-5) yields on 6

(2-14)

{
G1(ρ,U )≡ [ρU1]1̃1− [ρU2]1̃2− [ρU3]1̃3 = 0,

G2(ρ,U )≡ [P + ρU 2
1 ]1̃1− [ρU1U2]1̃2− [ρU1U3]1̃3 = 0,



MONOTONICITY AND UNIQUENESS OF A 3D TRANSONIC SHOCK SOLUTION 139

with 
1̃1 =11,

1̃2 = ρU1(U2+ y2
3τ

2U2− y2 y3τ
2U3),

1̃3 = ρU1(−y2 y3τ
2U2+U3+ y2

2τ
2U3).

In terms of (2-1), the background solution

(P±0 (x), u±1,0(x), u±2,0(x), u±3,0(x))

in Appendix A is changed into

(2-15) (P±0 (y1),U±1,0(y),U
±

2,0(y),U
±

3,0(y))

= (P±0 (y1),
√

1+ (y2
2 + y2

3)τ
2U±0 (y1), 0, 0).

Then by Remarks A.1 and A.2 of Appendix A and a direct computation, there
exists a constant C > 0 such that∣∣∣∣dk P±0 (y1)

dy1

∣∣∣∣+ ∣∣∂k
y1

U±1,0(y)
∣∣≤ C

X k
0
, k = 1, 2, 3, 4,(2-16)

∣∣∂k
y2

U±1,0(y)
∣∣+ ∣∣∂k

y3
U±1,0(y)

∣∣≤ C
X2

0
.(2-17)

Therefore, due to (2-16), (2-14) and the implicit function theorem, a direct com-
putation yields on 6

(2-18) (U1−U+1,0(r0), ρ− ρ
+

0 (r0))

= (g̃1, g̃2)(U 2
2 ,U

2
3 , P−0 − P−0 (r0),U−1,0−U−1,0(r0)),

where g̃i satisfies

(2-19) g̃i =
(
O(ε)+ O(1/X0)

)(
O(U2)+ O(U3)+ O(ξ − r0)

)
.

Equation (2-19) implies that on the shock surface, the influence of U2 and U3 on
U1−U+1,0(r0) and ρ+− ρ+0 (r0) can be almost “neglected”.

Additionally, as in [Xin and Yin 2008b, Section 5], one can combined equations
(2-4) in the form

D1(the second equation)+ D2(the third equation)+ D3(the fourth equation)

− D1(U1× the first equation)− D2(U2× the first equation)

− D3(U3× the first equation)+ (D1U1+ D2U2+ D3U3) f1,

obtaining a second-order equation on ρ with mixed boundary value conditions (by
(2-18), (2-13) and (1-4)) as follows:
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(2-20)



D1

((
c2(ρ)−U 2

1 + (y
2
2 + y2

3)τ
2c2(ρ)

)
D1ρ

−U1U2 D2ρ−U1U3 D3ρ
)

+ D2

(
−U1U2 D1ρ+

(
c2(ρ)−U 2

2 + y2τ
2c2(ρ)

)
D2ρ

+ (y2 y3τ
2c2(ρ)−U2U3)D3ρ

)
+ D3

(
−U1U3 D1ρ+

(
y2 y3τ

2c2(ρ)−U2U3
)
D2ρ

+
(
c2(ρ)−U 2

3 + y2
3τ

2c2(ρ)
)
D3ρ

)
= H1(y2, y3, ρ,U,∇ρ,∇U ) in ω+,

ρ− ρ+0 (r0)= g̃2 on y1 = ξ(y2, y3),

y2∂y2ρ+ y3∂y3ρ =
ρ(U 2

2 +U 2
3 )

(1+ τ 2)c2(ρ)
on y2

2 + y2
3 = 1,

P(ρ)= Pe+ ε P̃0(y2, y3) on y1 = X0+ 1,

where P̃0(y2, y3) is the function P0(x2, x3) under the transformation (2-1) and

H1(y2, y3, ρ,U,∇ρ,∇U )

= D1(ρU1)D2U2+ D1(ρU1)D3U3− D1(ρU2)D2U1− D1(ρU3)D3U1

+ D2(ρU2)D1U1+ D2(ρU2)D3U3− D2(ρU1)D1U2− D2(ρU3)D3U2

+ D3(ρU3)D1U1+ D3(ρU3)D2U2− D3(ρU1)D1U3− D3(ρU2)D2U3

+ ρU1([D1, D2]U2+ [D1, D3]U3)+ ρU2([D2, D1]U1+ [D2, D3]U3)

+ρU3([D3, D1]U1+ [D3, D2]U2)

+ D1

(
ρD0

(
U1(y2τU2+ y3τU3)+ (1+ y2

3τ
2)U 2

2 − 2y2 y3τ
2U2U3+ (1+ y2

2τ
2)U 2

3

+ 2U1(U1− y2τU2− y3τU3)
))

+ D2
(
ρD0(U1U2− y2τU 2

2 − y3τU2U3)
)
+ D3

(
ρD0(U1U3− y2τU2U3− y3τU 2

3 )
)
,

where [Di , D j ] = Di D j − D j Di .
Therefore, we only need to prove the next result to show Theorem 1.1.

Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then the problem (2-9)–
(2-12), (2-18) and (2-20) has no more than one solution

(P(y),U1(y),U2(y),U3(y); ξ(y2, y3))

with the following estimates.
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(1) ξ(y2, y3) ∈ C4,α(B1(0)) with B1(0) a unit circle centered at (0, 0), and there
exists a constant C > 0 (depending on α and the supersonic incoming flow)
such that

‖ξ(y2, y3)− r0‖L∞(B1(0)) ≤ C X0ε, ‖∇y2,y3(ξ(y2, y3)− r0)‖C3,α(B1(0)) ≤ Cε.

(2) If ω+ = {(y1, y2, y3) : ξ(y2, y3) < y1 < X0+ 1, y2
2 + y2

3 < 1}, then

(P(y),U1(y),U2(y),U3(y)) ∈ C3,α(ω+)

satisfies

‖(P(y),U1(y),U2(y),U3(y))− (P+0 (y1),U+1,0(y), 0, 0)‖C3,α(ω+) ≤ Cε.

To prove Theorem 2.1, as in [Xin and Yin 2008b], we first reduce the free
boundary problem (2-9)–(2-12), (2-18) and (2-20) into a fixed boundary problem
by the transformation

(2-21)

z1 =
y1− ξ(y2, y3)

X0+ 1− ξ(y2, y3)
,

zi = yi i = 2, 3.

Under (2-21), the region ω+ is changed into

(2-22) E+ = {(z1, z2, z3) : 0< z1 < 1, z2
2+ z2

3 < 1}.

Correspondingly,

(2-23)



D0 =
1(

ξ(z2, z3)+ z1(X0+ 1− ξ(z2, z3))
)√

1+ (z2
2+ z2

3)τ
2
,

D1 =
1

√

1+ (z2
2+ z2

3)τ
2

1
X0+ 1− ξ(z2, z3)

∂z1,

Di =

√

1+ (z2
2+ z2

3)τ
2(

ξ(z2, z3)+ z1(X0+ 1− ξ(z2, z3))
)
τ

×

(
(z1− 1)∂ziξ

X0+ 1− ξ(z2, z3)
∂z1 + ∂z2

)
, i = 2, 3.

In next section, we will establish some basic estimates on the problem (2-9)–(2-12),
(2-18) and (2-20) in the coordinate z = (z1, z2, z3), which are crucial in the proof
of Theorem 2.1.

A further by-product of the analysis for Theorems 1.1 and 2.1 is estimates on
the location of the shock and its monotonic dependence on the end pressure.
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Proposition 2.2. Let the assumptions of Theorem 1.1 hold. Suppose the problem
(2-4) with (2-5), (2-7) has two C3,α solutions

(ρ,U1,U2,U3; ξ1(y2, y3)) and (q, V1, V2, V3; ξ2(y2, y3))

which satisfy the exit pressure conditions

Pe+ ε(P0(x2, x3)+C0,1) and Pe+ ε(P0(x2, x3)+C0,2)

at r = X0+1, respectively, and which admit the estimates in Theorem 2.1, with the
two constants satisfying C0,1 < C0,2. Then

(2-24) ξ1(y2, y3) > ξ2(y2, y3).

3. A priori estimates

In this section, we will derive some elementary estimates on the difference of two
possible solutions to the problem (2-9)–(2-12), (2-18) and (2-20). Based on these
estimates, we can show the monotonicity of the end pressure on the position of the
shock along the nozzle wall. Assume that the problem (2-9)–(2-12), (2-18) and
(2-20) has two solutions (ρ,U1,U2,U3; ξ1(z2, z3)) and (q, V1, V2, V3; ξ2(z2, z3)),
which satisfy the assumptions in Theorem 2.1. Denote by Q = P(q) the pres-
sure for the density q. In addition, (D0, D1, D2, D3) and (D̃0, D̃1, D̃2, D̃3) satisfy
(2-23) with (q, V1, V2, V3; ξ2(z2, z3)) instead of (ρ,U1,U2,U3; ξ(z2, z3)) in the
(D̃0, D̃1, D̃2, D̃3) case.

Set
(Yi , Y4)(z1, z2, z3)

= (Ui , ρ)(ξ1(z2, z3)+ z1(X0+ 1− ξ1(z2, z3)), z2, z3)

− (Vi , q)(ξ2(z2, z3)+ z1(X0+ 1− ξ2(z2, z3)), z2, z3), i = 1, 2, 3,

Y5(z2, z3)= ξ1(z2, z3)− ξ2(z2, z3).

We estimate the derivatives of Yi for i = 1, 2, 3, 4, 5 in a series of lemmas.

Lemma 3.1. Under the assumptions of Theorem 2.1, the following estimates hold:

(3-1)


D0− D̃0 = O(1/X2

0)Y5,

D1− D̃1 = O(1)Y5∂z1,

Di − D̃i = O(ε)Y5∂z1 + O(1)∂z2Y5∂z1 + O(1/X0)Y5∂z2, i = 2, 3.

Proof. We estimate D1− D̃1 only since the other terms can be treated analogously.
By (2-23), one has

D1− D̃1 =
Y5

(X0+1−ξ1(z2, z3))(X0+1−ξ2(z2, z3))
√

1+(z2
2+z2

3)τ
2
∂z1,
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where ∥∥∥∥ 1

(X0+1−ξ1(z2, z3))(X0+1−ξ2(z2, z3))
√

1+(z2
2+z2

3)τ
2

∥∥∥∥
C1,α
≤ C.

This immediately implies D1− D̃1 = O(1)Y5∂z1 . �

Lemma 3.2 (estimates of ∇z2,z3Y5). Under the assumptions of Theorem 2.1, we
have

(3-2) ‖(∂z2Y5, ∂z3Y5)‖C2,α ≤ Cε‖(Y1, (εX2
0)
−1Y2, (εX2

0)
−1Y3, Y4, Y5)‖C1,α

+
C
X2

0
‖∇z2,z3(εY1, εX2

0Y4)‖C1,α

+C‖(∂z2Y2, ∂z2Y3)‖C1,α +
C
X2

0
‖(∂z3Y2, ∂z2Y3)‖C1,α .

Remark 3.1. It follows from (3-2) that the term ‖(∂z2Y5, ∂z3Y5)‖C2,α is controlled
mainly by ‖∂z2Y2‖C1,α +‖∂z3Y3‖C1,α .

Proof of Lemma 3.2. Equation (2-8) yields
∂z2ξ1(z2, z3)=

12
11
, ∂z3ξ1(z2, z3)=

13
11
,

∂z2ξ2(z2, z3)=
1̃2

1̃1
, ∂z3ξ2(z2, z3)=

1̃3

1̃1
,

z2∂z2Y5+ z3∂z3Y5 = 0 on l,

where 1̃i for i=1, 2, 3 has a similar expression to1i with (q,V1,V2,V3;ξ2(z2, z3))

instead of (ρ,U1,U2,U3; ξ(z2, z3)), and l denotes the circle {z : z1=0, z2
2+z2

3=1}.
This shows that on z1 = 0,

(3-3)


∂z2Y5 = O(ε) · (Y1, Y4, X−1

0 Y5)+ O(1)Y2+ O(1/X2
0)Y3,

∂z3Y5 = O(ε) · (Y1, Y4, X−1
0 Y5)+ O(1/X2

0)Y2+ O(1)Y3,

z2∂z2Y5+ z3∂z3Y5 = 0 on l,

From this, one can obtain a first-order elliptic system on (∂z2Y5, ∂z3Y5) as

(3-4)


∂z2(∂z2Y5)+ ∂z3(∂z3Y5)= F1 on z1 = 0,

∂z3(∂z2Y5)− ∂z2(∂z3Y5)= 0 on z1 = 0,

z2∂z2Y5+ z3∂z3Y5 = 0 on l,

with

F1 = O(ε) · (Y1, Y4, X−1
0 Y5)

+ O(1/X2
0) · (Y2, Y3, ∂z3Y2, ∂z2Y3)+ O(1)∂z2Y2+ O(1)∂z3Y3

+ O(ε) · (∂z2Y1, ∂z2Y4, X−1
0 ∂z2Y5, ∂z3Y1, ∂z3Y4, X−1

0 ∂z3Y5).
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It follows from the Hilbert problem for first-order elliptic systems with index −2
that (see [Bers 1950; 1951; Vekua 1952])

(3-5) ‖(∂z2Y5, ∂z3Y5)‖C2,α ≤ C‖F1‖C1,α .

This yields (3-2). �

Lemma 3.3 (estimates of ∂z1Yi for i = 1, 2, 3, 4). Under the assumptions of The-
orem 2.1, we have the following estimates:

‖(∂z1 Y1, ∂z1 Y4)‖C1,α

≤
C
X0
‖(Y1, X−1

0 Y2, X−1
0 Y3, Y4, Y5)‖C1,α

+Cε‖(∂z2 Y1, ∂z2 Y3, ∂z2 Y4, ∂z2 Y5, ∂z3 Y1, ∂z3 Y2, ∂z3 Y4, ∂z3 Y5)‖C1,α

+C‖(∂z2 Y2, ∂z3 Y3)‖C1,α ,

(3-6)

‖(∂z1 Y2, ∂z1 Y3)‖C1,α

≤ Cε‖(Y1, (εX0)
−1Y2, (εX0)

−1Y3, Y4, Y5)‖C1,α

+Cε‖(∂z2 Y1, ∂z2 Y2, ∂z2 Y3, ∂z3 Y1, ∂z3 Y2, ∂z3 Y3)‖C1,α

+
C
X0
‖(∂z2 Y5, ∂z3 Y5)‖C1,α +C‖(∂z2 Y4, ∂z3 Y4)‖C1,α ,

(3-7)

‖(∂2
z1

Y1, ∂
2
z1

Y4)‖Cα

≤
C
X2

0
‖(Y1, X0Y2, X0Y3, Y4, Y5)‖C1,α

+Cε‖(∂z2 Y1, ∂z2 Y3, ∂z3 Y1, ∂z3 Y2)‖C1,α

+
C
X0
‖(∂z2 Y5, ∂z3 Y5, ∂z2 Y2, ∂z3 Y3)‖C1,α +C‖(∂z2 Y4, ∂z3 Y4)‖C1,α .

(3-8)

Remark 3.2. Equations (3-6) and (3-7) imply the terms ‖(∂z1Y1, ∂z1Y4)‖C1,α and
‖(∂z1Y2, ∂z1Y3)‖C1,α are controlled mainly by

C
X0
‖Y5‖C1,α +C(‖∂z2Y2‖C1,α +‖∂z3Y3‖C1,α ) and C(‖∂z2Y4‖C1,α +‖∂z3Y4‖C1,α ),

respectively. In fact, (C/X0)‖Y5‖C1,α is not a “good” term (see Remark 4.1). To
overcome this difficulty and for more applications (see Remark 3.4), we must treat
the term ‖(∂2

z1
Y1, ∂

2
z1

Y4)‖Cα instead of ‖(∂z1Y1, ∂z1Y4)‖C1,α . Fortunately, the term
‖(∂2

z1
Y1, ∂

2
z1

Y4)‖Cα can be controlled mainly by

C
X2

0
‖Y5‖C1,α ,

C
X0
‖(∂z1Y2, ∂z1Y3)‖C1,α and C‖(∂z2Y4, ∂z3Y4)‖C1,α ,

which are all “good” (roughly speaking, a “good” term can be directly absorbed
by the left hand side in the related a priori estimates).
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Proof of Lemma 3.3. It follows from (2-4), Lemma 3.1 and the assumptions in
Theorem 2.1 that ∂z1Yi for i = 1, 2, 3, 4 satisfy

(3-9)



ρ∂z1 Y1+U1∂z1 Y4

= O(1/X0) · (Y1, X−1
0 Y2, X−1

0 Y3, Y4, Y5)+ O(1) · (∂z2 Y2, ∂z3 Y3)

+ O(ε) · (∂z1 Y2, ∂z1 Y3, ∂z2 Y4, ∂z2 Y5, ∂z3 Y4, Y5, ε∂z1 Y4),

ρU1∂z1 Y1+ (1+ (z2
2+ z2

3)τ
2)c2(ρ)∂z1 Y4

= O(1/X0) · (Y1, X−1
0 Y2, X−1

0 Y3, Y4, Y5)

+ O(ε) · (ε∂z1 Y1, ∂z2 Y1, ∂z3 Y1, X−1
0 ∂z2 Y5, X−1

0 ∂z3 Y5),

∂z1 Y2 = O(ε) · (Y1, (εX0)
−1Y2, Y3, Y4, Y5)

+ O(ε) · (ε∂z1 Y2, ∂z1 Y4, ∂z2 Y2, ∂z3 Y2, (εX2
0)
−1∂z3 Y4)

+ O(1/X0)(∂z2 Y5, X−2
0 ∂z3 Y5)+ O(1)∂z2 Y4,

∂z1 Y3 = O(ε) · (Y1, Y2, (εX0)
−1Y3, Y4, Y5)

+ O(ε) · (ε∂z1 Y3, ∂z1 Y4, ∂z2 Y3, (εX2
0)
−1∂z2 Y4, ∂z3 Y3)

+ O(1/X0) · (X−2
0 ∂z2 Y5, ∂z3 Y5)+ O(1)∂z3 Y4.

So a direct computation yields (3-6) and (3-7).
From the expressions of ∂z1Y1 and ∂z1Y4 obtained by solving the first and second

equations in (3-9), one has again for i = 1, 4,

(3-10) ∂2
z1

Yi = O(1/X2
0) · (Y1, Y2, Y3, Y4)

+ O(1/X0) · (∂z1 Y1, X−1
0 ∂z1 Y2, X−1

0 ∂z1 Y3, ∂z1 Y4, Y5)

+ ∂z1

(
O(ε) · (∂z1 Y2, ∂z1 Y3, ∂z2 Y1, ∂z2 Y4, ∂z2 Y5, ∂z3 Y1, ∂z3 Y4, ∂z3 Y5)

)
+ O(1/X2

0) · (∂z2 Y2, ∂z3 Y3)+ O(1) · (∂2
z1z2

Y2, ∂
2
z1z3

Y3).

Equation (3-8) follows from (3-10) and a direct computation. �

Next, we estimate ∇z2,z3Y2 and ∇z2,z3Y3.

Lemma 3.4 (estimates of Y2(0, z2, z3) and Y3(0, z2, z3)). Under the assumptions
of Theorem 2.1, we have

(3-11) ‖(Y2(0, z2, z3), Y3(0, z2, z3))‖C2,α(B B1(0))

≤
C
X0
‖(Y1, X−1

0 Y2, X−1
0 Y3, Y4, X−1

0 Y5)‖C1,α

+Cε‖(∂z1 Y1, ∂z1 Y2, ∂z1 Y3, ∂z1 Y4)‖C1,α

+C‖(∂z2 Y1, ∂z2 Y4, ∂z3 Y1, ∂z3 Y4)‖C1,α +
C
X0
‖(∂z2 Y5, ∂z3 Y5)‖C1,α .

Remark 3.3. It follows from (3-11) that ‖(Y2(0, z2, z3), Y3(0, z2, z3))‖C2,α(B B1(0))
is controlled mainly by (C/X2

0)‖Y5‖C1,α and C‖(∂z2Y1, ∂z2Y4, ∂z3Y1, ∂z3Y4)‖C1,α .
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Proof of Lemma 3.4. From (2-9)–(2-10), the assumptions in Theorem 2.1, and a
direct computation, it follows that on z1 = 0,

(3-12)


∂z3Y2− ∂z2Y3 = F2,

∂z2Y2+ ∂z3Y3 = F3,

z2Y2+ z3Y3 = 0 on z2
2+ z2

3 = 1,
with

F2 = O(ε) · (Y1, Y4, X−1
0 Y5)+ O(1/X2

0) · (Y2, Y3)

+ O(ε)(∂z2Y1, (εX2
0)
−1∂z2Y2, ε∂z2Y3, ∂z2Y4, X−1

0 ∂z2Y5)

+ O(ε) · (∂z3Y1, (εX2
0)
−1∂z3Y2, (εX2

0)
−1∂z3Y3, ∂z3Y4, ∂z3Y5)

+ O(ε)(ε∂z1Y1, ∂z1Y2, X−2
0 ∂z1Y3, ε∂z1Y4),

F3 = O(1/X0) · (Y1, X−1
0 Y2, X−1

0 Y3, Y4, Y5)

+ O(ε) · (∂z1Y2, ∂z1Y3, ∂z2Y4, ∂z2Y5, ∂z3Y4, ∂z3Y5)

+ O(1) · (∂z1Y1, ∂z1Y4),

where F3 is given in Lemma B.2 of Appendix B.
As in (3-5), one can obtain from (3-12) that

(3-13) ‖(Y2(0, z2, z3), Y3(0, z2, z3))‖C2,α(B B1(0)) ≤ C‖(F2, F3)‖C1,α(B B1(0)).

On the other hand, due to the second equation and the boundary condition in (3-12),∫
B1(0)

F3 ds =
∫

B1(0)
(∂z2Y2+ ∂z3Y3) ds =

∫
∂B1(0)

(z2Y2+ z3Y3) dl = 0 on z1 = 0.

Since F3 ∈ C1,α(�), it follows from the integral mean value theorem that there
exists a point (z2∗, z3∗) such that

F3(0, z2∗, z3∗)= 0.
This implies

‖F3(0, z2, z3)‖C1,α ≤ C‖∇z2,z3 F3(0, z2, z3)‖Cα .

Combining this with (3-13) and a direct computation yields

‖(Y2(0, z2, z3), Y3(0, z2, z3))‖C2,α(B B1(0))

≤
C
X0

∥∥∥(Y1, X−1
0 Y2, X−1

0 Y3, Y4,
1

X0
Y5

)∥∥∥
C1,α

+Cε‖(∂z1Y1, ∂z1Y2, ∂z1Y3, ∂z1Y4)‖C1,α +C‖(∂z2Y1, ∂z2Y4, ∂z3Y1, ∂z3Y4)‖C1,α

+
C
X0
‖(∂z2Y5, ∂z3Y5)‖C1,α ,

which completes the proof of Lemma 3.4. �
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Using Lemmas 3.3–3.4 and Lemma B.3 in Appendix B, we can estimate∇z2,z3Y2

and ∇z2,z3Y3 as follows:

Lemma 3.5 (estimates of ∂z2Y2, ∂z3Y2 and ∂z2Y3, ∂z3Y3). Under the assumptions of
Theorem 2.1, ∂z2Y2, ∂z3Y2 and ∂z2Y3, ∂z3Y3 satisfy

(3-14) ‖(∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3)‖C1,α

≤
C
X0

(
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α +‖(∂z2Y5, ∂z3Y5)‖C2,α
)

+C‖(∂z2Y1, ∂z2Y4, ∂z3Y1, ∂z3Y4)‖C1,α .

Remark 3.4. Thanks to (3-8), the right hand side of (3-14) can be controlled by
the “good” term (C/X2

0)‖Y5‖C1,α . This can be seen in (3-16) and (3-17) below.

Proof of Lemma 3.5. This lemma is proved by the characteristic method.
Under the coordinate z = (z1, z2, z3), the characteristics curves

(z1
2(s; z), z1

3(s; z)) and (z2
2(s; z), z2

3(s; z))

of the first-order differential operators

U1 D1+U2 D2+U3 D3 and V1 D̃1+ V2 D̃2+ V3 D̃3,

respectively, through the point z = (z1, z2, z3), can be defined as
dz1

i (s; z)
ds

=
Ui
(
ξ1(z1

2, z1
3)+ s(X0+ 1− ξ1(z1

2, z1
3)), z1

2, z1
3
)(

ξ1(z1
2, z1

3)+ s(X0+ 1− ξ1(z1
2, z1

3))
)

A1τ
,

z1
i (z1; z)= zi , i = 2, 3,

dz2
i (s; z)
ds

=
Vi
(
ξ2(z2

2, z2
3)+ s(X0+ 1− ξ2(z2

2, z2
3)), z2

2, z2
3

)(
ξ2(z2

2, z2
3)+ s(X0+ 1− ξ2(z2

2, z2
3))
)

A2τ
,

z2
i (z1; z)= zi , i = 2, 3,

where

A1 =
1

X0+1−ξ1(z1
2, z1

3)

(
U1

1+ (z1
2)

2τ 2+ (z1
3)

2τ 2

+
(s− 1)∂z2ξ1(z1

2, z1
3)U2+ (s− 1)∂z3ξ1(z1

2, z1
3)U3(

ξ1(z1
2, z1

3)+ s(X0+ 1− ξ1(z1
2, z1

3))
)
τ

)
,

and A2 can be defined similarly by replacing (ξ1,U1,U2,U3)with (ξ2, V1, V2, V3).
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Denote by z1
2(0; z) = β1, z1

3(0; z) = β2 and z2
2(0; z) = β̃1, z2

3(0; z) = β̃2. Then
for i = 2, 3,

z1
i (s; z)=

∫ s

0

Ui
(
ξ1(z1

2, z1
3)+ t (X0+ 1− ξ1(z1

2, z1
3)), z1

2, z1
3

)(
ξ1(z1

2, z1
3)+ t (X0+ 1− ξ1(z1

2, z1
3))
)

A1τ
dt +βi−1,

zi =

∫ z1

0

Ui
(
ξ1(z1

2, z1
3)+ t (X0+ 1− ξ1(z1

2, z1
3)), z1

2, z1
3

)(
ξ1(z1

2, z1
3)+ t (X0+ 1− ξ1(z1

2, z1
3))
)

A1τ
dt +βi−1.

Similarly, z2
i (s, z) and zi have the same expressions with (βi−1, ξ1, Vi ) replaced by

(β̃i−1, ξ2, Vi ).
From this, we can obtain immediately that for i = 2, 3,

‖βi−1− zi‖C2,α ≤ C‖Ui‖C2,α , ‖β̃i−1− zi‖C2,α ≤ C‖Vi‖C2,α .

Next define l1(s; z)= (z1
2− z2

2)(s; z) and l2(s; z)= (z1
3− z2

3)(s; z). Then by direct
computation,

dl1(s; z)
ds

= O(ε) · (l1, l2)(s; z)

+ O(ε) · (Y1, Y3, Y5, ε∂z2Y5, ε∂z3Y5)(s, z1
2, z1

3)

+ O(1)Y2(s, z1
2, z1

3),

l1(0; z)= β1− β̃1, l1(z1; z)= 0,

and similarly for l2(s; z).
Therefore

(3-15)


‖l1
‖C2,α +‖β1− β̃1‖C2,α

≤ C‖Y2‖C2,α +Cε‖(Y1, Y3, Y5, ε∂z2Y5, ε∂z3Y5)‖C2,α ,

‖l2
‖C2,α +‖β2− β̃2‖C2,α

≤ C‖Y3‖C2,α +Cε‖(Y1, Y2, Y5, ε∂z2Y5, ε∂z3Y5)‖C2,α .

By Lemma B.2 in Appendix B, (Y2, Y3) satisfies

(3-16)


∂z2Y2+ ∂z3Y3 = F3 in E+,

∂z3Y2− ∂z2Y3 = F4 in E+,

z2Y2+ z3Y3 = 0 on z2
2+ z2

3 = 1,

where F3 and F4 are given in Lemma B.2.
A direct computation yields

(3-17)

{
∂z1 F3 = O(1)(∂2

z1
Y1, ∂

2
z1

Y4)+ some “good” terms,

∇z2,z3 F3 consists of “good” terms.



MONOTONICITY AND UNIQUENESS OF A 3D TRANSONIC SHOCK SOLUTION 149

Therefore, it follows from Lemma B.3 of Appendix B and Lemmas 3.3–3.4 that

‖(∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3)‖C1,α

≤ C
( 3∑

i=2

‖∂z1Yi‖C1,α +‖∇F3‖C1,α +‖F4‖C1,α

)
≤

C
X0

(
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α +‖(∂z2Y5, ∂z3Y5)‖C2,α
)

+C‖(∂z2Y1, ∂z2Y4, ∂z3Y1, ∂z3Y4)‖C1,α ,

which completes the proof of Lemma 3.5. �

Lemma 3.6 (estimates of ∂z2Y1, ∂z3Y1). Under the assumptions of Theorem 2.1,
Y1 satisfies

(3-18) ‖(∂z2Y1, ∂z3Y1)‖C1,α

≤
C
X2

0
‖(εY1, Y2, Y3, Y4, Y5, ∂z1Y4, X0∂z2Y5, X0∂z3Y5)‖C2,α

+C‖(∂z2Y4, ∂z3Y4)‖C1,α .

Proof. Applying the characteristic method to (2-12) as in the proof of Lemma 3.5,
we arrive at

Y1 = O(1/X2
0) · (l

1, l2)+ O(ε) · (Y2, Y3)

+ O(1)Y4+ O(1) · (Y1, εY2, εY3, Y4)(0, β1(z), β2(z)).

It follows from (2-18) that on z1 = 0,

(3-19) Yi = O(ε) · (Y2, Y3)+ O(1/X0)Y5, i = 1, 4.

By the assumptions of Theorem 2.1 and Equations (2-16)–(2-17), a direct compu-
tation yields

(3-20) ∂zi Y1

= ∂zi

(
O(1/X2

0)·(l
1, l2)+O(ε)·(Y2, Y3)+O(ε)·(Y2, Y3)(0, β1(z), β2(z))

)
+ O(1/X2

0)Y4+ O(1/X2
0) · (Y1, Y4)(0, β1(z), β2(z))+ O(1)∂zi Y4

+ O(1) · (∂zi Y1, ∂zi Y4)(0, β1(z), β2(z)), i = 2, 3,

and on z1 = 0,

(3-21) ∂zi Y j

= ∂zi (O(ε) ·(Y2, Y3))+o(1/X2
0)Y5+O(1/X0)∂zi Y5, i = 2, 3, j = 1, 4.

So, combining (3-20) and (3-21) with (3-14) and (3-15) yields (3-18). �
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Lemmas 3.2–3.6 essentially convert the estimates on ‖∇z2,z3Y5‖C2,α , ‖∇zY1‖C1,α ,
‖∇z(Y2, Y3)‖C1,α and ‖∂z1Y4‖C1,α into an estimate on ‖∇z2,z3Y4‖C1,α , so we now
focus on of ‖∇z2,z3Y4‖C1,α . First, we derive from (2-20) some second-order ellip-
tic equations with corresponding boundary conditions for z2∂z2Y4 + z3∂z3Y4 and
z3∂z2Y4 − z2∂z3Y4. This will enable one to obtain their C1,α boundary estimates
on the nozzle wall by the theory of second-order elliptic equations with mixed
boundary conditions (in this process, one cannot obtain the global C1,α estimates
directly in the whole domain due to the appearance of a singularity in the equation
for z2∂z2Y4 + z3∂z3Y4; see (3-24)). This and a simple computation yield the C1,α

estimates of ∂z2Y4 and ∂z3Y4 on the boundary z2
2 + z3

3 = 1. Subsequently, we can
use the second-order elliptic equations and the corresponding boundary conditions
for ∂z2Y4 and ∂z3Y4 to obtain ‖(∂z2Y4, ∂z3Y4)‖L∞ and further C1,α estimates.

Lemma 3.7 (estimates of ∂z2Y4, ∂z3Y4). Under the assumptions of Theorem 2.1,
∂z2Y4, and ∂z3Y4 satisfy

(3-22) ‖(∂z2Y4, ∂z3Y4)‖C1,α≤
C
X0
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α

+
C
X0
‖(∂z1Y1, ∂z2Y2, ∂z3Y3, ∂z1Y4, ∂z2Y5, ∂z3Y5)‖C2,α

+Cε‖(∂z1Y2, ∂z1Y3, ∂z3Y2, ∂z2Y3)‖C1,α .

Remark 3.5. By (3-22), the norm ‖(∂z2Y4, ∂z3Y4)‖C1,α has been controlled by
“good” terms, in particular, (C/X2

0)‖Y5‖C1,α .

Proof of Lemma 3.7. It follows from (2-20), (3-19), Lemma 3.1 and a direct com-
putation that

(3-23)



D̃1
(
(c2(ρ)−U 2

1 )D̃1Y4+ c2(ρ)(z2
2τ

2
+ z2

3τ
2)D̃1Y4

−U1U2 D̃2Y4−U1U3 D̃3Y4
)

+ D̃2
(
−U1U2 D̃1Y4+ (c2(ρ)−U 2

2 )D̃2Y4+ z2
2τ

2c2(ρ)D̃2Y4

−U2U3 D̃3Y4+ z2z3τ
2c2(ρ)D̃3Y4

)
+ D̃3

(
−U1U3 D̃1Y4−U2U3 D̃2Y4+ z2z3τ

2c2(ρ)D̃2Y4

+ (c2(ρ)−U 2
3 )D̃3Y4+ z2

3τ
2c2(ρ)D̃3Y4

)
= H2(Y,∇Y ) in E+,

Y4 = O(ε)Y2+ O(ε)Y3+ O(1/X0)Y5 on z1 = 0,

Y4 = 0 on z1 = 1,

z2∂z2Y4+ z3∂z3Y4 = O(ε)Y2+ O(ε)Y3+ O(ε2)Y4 on z2
2+ z2

3 = 1,
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with

H2(Y,∇Y )

= D̃1
(
O(1/X0) · (Y1, X−1

0 Y2, X−1
0 Y3, Y4)

)
+ D̃2

(
O(ε/X0) · (Y1, ε

−1Y2, X−1
0 Y3, X0Y4, Y5, ε

−1∂z2Y5, (εX2
0)
−1∂z3Y5)

)
+ D̃3

(
O(ε/X0) · (Y1, X−1

0 Y2, ε
−1Y3, X0Y4, Y5, (εX2

0)
−1∂z2Y5, ε

−1∂z3Y5)
)

+ O(1/X0) ·
(
εY1, X−2

0 Y2, X−2
0 Y3, εY4, X−1

0 Y5
)

+ O(1/X2
0) ·

(
εX2

0∂z1Y1, ∂z1Y2, ∂z1Y3, εX2
0∂z1Y4

)
+ O(ε) ·

(
∂z2Y1, (εX0)

−1∂z2Y2, ∂z2Y3, ∂z2Y4, ∂z2Y5
)

+ O(ε) ·
(
∂z3Y1, ∂z3Y2, (εX−1

0 )∂z3Y3, ∂z3Y4, ∂z3Y5
)
,

where we use the formula of H1 on page 140 and the assumptions in Theorem 2.1.
Next, define

M1 = z2∂z2Y4+ z3∂z3Y4 and M2 = z3∂z2Y4− z2∂z3Y4

Applying z2∂z2 + z3∂z3 to the first three equalities of (3-23) yields

(3-24)



D̃1
(
(c2(ρ)−U 2

1 )D̃1 M1+ c2(ρ)(z2
2τ

2
+ z2

3τ
2)D̃1 M1

−U1U2 D̃2 M1−U1U3 D̃3 M1
)

+ D̃2

(
−U1U2 D̃1 M1+ (c2(ρ)−U 2

2 )D̃2 M1

+ z2
2τ

2c2(ρ)D̃2 M1−U2U3 D̃3 M1+ z2z3τ
2c2(ρ)D̃3 M1

+ O(1)
z2 M1+ z3 M2

z2
2+ z2

3
+ O(1)

z3 M1− z2 M2

z2
2+ z2

3

)

+ D̃3

(
−U1U3 D̃1 M1−U2U3 D̃2 M1

+ z2z3τ
2c2(ρ)D̃2 M1+ (c2(ρ)−U 2

3 )D̃3 M1+ z2
3τ

2c2(ρ)D̃3 M1

+ O(1)
z2 M1+ z3 M2

z2
2+ z2

3
+ O(1)

z3 M1− z2 M2

z2
2+ z2

3

)
= (z2∂z2 + z3∂z3)H2(Y,∇Y )+ H3(Y,∇Y ) in E+,

M1 = O(ε) · (Y2, Y3, ∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3)

+ O(1/X0)(X−1
0 Y5, ∂z2Y5, ∂z3Y5) on z1 = 0,

M1 = 0 on z1 = 1,

M1 = O(ε) · (Y2, Y3, εY4) on z2
2+ z2

3 = 1,



152 JUN LI, ZHOUPING XIN AND HUICHENG YIN

where

H3(Y,∇Y )

=O(1/X2
0)·(Y5, ∂z2Y5, ∂z3Y5)+O(1/X2

0)∂z1

(
O(1)∂z1Y4+O(ε)∂z2Y4+O(ε)∂z3Y4

)
+
(
O(ε)∂z1 + O(1/X2

0)∂z2

)(
O(ε)∂z1Y4+ O(1)∂z2Y4+ O(1/X2

0)∂z3Y4
)

+
(
O(ε)∂z1 + O(1/X2

0)∂z3

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z2Y4+ O(1)∂z3Y4
)

+ O(1)∂z1

(
O(1/X2

0)∂z1Y4+ O(ε)∂z2Y4+ O(ε)∂z3Y4
)

+
(
O(ε)∂z1 + O(1)∂z2

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z2Y4+ O(1/X2
0)∂z3Y4

)
+
(
O(ε)∂z1 + O(1)∂z3

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z2Y4+ O(1/X2
0)∂z3Y4

)
,

and the singular terms

O(1)
z2 M1+ z3 M2

z2
2+ z2

3
and O(1)

z3 M1− z2 M2

z2
2+ z2

3

in (3-24) arise essentially from the computation

(z2∂z2 + z3∂z3)
(
D̃2(c2(ρ)D̃2Y4)+ D̃3(c2(ρ)D̃3Y4)

)
=
(
O(ε)∂z1 + O(1/X2

0)∂z2

)(
O(ε)∂z1Y4+ O(1)∂z2Y4

)
+
(
O(ε)∂z1 + O(1/X2

0)∂z3

)(
O(ε)∂z1Y4+ O(1)∂z3Y4

)
+
(
O(ε)∂z1 + O(1)∂z2

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z2Y4)
)

+
(
O(ε)∂z1 + O(1)∂z3

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z3Y4)
)

+ D̃2
(
c2(ρ)D̃2 M1− 2c2(ρ)∂z2Y4

)
+ D̃3

(
c2(ρ)D̃3 M1− 2c2(ρ)∂z3Y4

)
=
(
O(ε)∂z1 + O(1/X2

0)∂z2

)(
O(ε)∂z1Y4+ O(1)∂z2Y4

)
+
(
O(ε)∂z1 + O(1/X2

0)∂z3

)(
O(ε)∂z1Y4+ O(1)∂z3Y4

)
+
(
O(ε)∂z1 + O(1)∂z2

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z2Y4)
)

+
(
O(ε)∂z1 + O(1)∂z3

)(
O(ε)∂z1Y4+ O(1/X2

0)∂z3Y4)
)

+ D̃2

(
c2(ρ)D̃2 M1+ O(1)

z2 M1+ z3 M2

z2
2+ z2

3

)

+ D̃3

(
c2(ρ)D̃3 M1+ O(1)

z3 M1− z2 M2

z2
2+ z2

3

)
.
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The factors
z2

z2
2+ z2

3
and

z3

z2
2+ z2

3

in the second-order elliptic Equation (3-24) have a strong singularity on z2
2+z2

3=0.
Thus it is difficult to use the standard theory on second-order elliptic equations to
derive directly the global C1,α estimate on M1 in E+. To overcome this difficulty,
we first establish the boundary C1,α estimate of M1. In fact, the compatibility
conditions on the intersection curve between the shock surface 6 and the nozzle
wall52 (see [Xin and Yin 2008b, Appendix B]) as well as the natural compatibility
conditions on the intersection curve between the end r = X0 + 1 and 52 due
to the C3,α regularity assumption of the solution have the following implication:
From the estimates on the boundary of the second-order elliptic equations with the
divergence form and the Dirichlet boundary values on the cornered domain (see
[Azzam 1980; 1981; Lieberman 1986; 1988]), we have

(3-25) ‖M1‖C1,α(B E0
+)

≤ C
(
‖M1‖L∞ +‖M2‖Cα +‖H2‖Cα +‖H3‖Cα

+‖M1|z1=0‖C1,α +‖M1|z2
2+z2

3=1‖C1,α
)

≤ C(‖(∂z2Y4,∂z3Y4)‖L∞ +‖M2‖C1,α )+Cε‖(∂z3Y2,∂z2Y3)‖C1,α

+
C
X0
‖(Y1,Y2,Y3,X−1

0 Y5,∂z1Y1,X−1
0 ∂z1Y2,X−1

0 ∂z1Y3,∂z2Y2,∂z3Y3)‖C1,α

+
C
X0
‖(Y4,∂z1Y4,∂z2Y4,∂z3Y4)‖C1,α +

C
X0
‖(∂z2Y5,∂z3Y5)‖C1,α ,

where the subdomain E0
+

of E+ contains the nozzle wall {z :0< z1<1, z2
2+z2

3=1}.
Similar analysis gives a second-order elliptic equation for M2 with suitable

boundary conditions. In fact, by the fourth equality in (3-23), one has

(z2∂z2 + z3∂z3)M2

= O(ε) · (Y2, Y3, εY4, ∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3, εM2) on z2
2+ z2

3 = 1.

Note that

(z3∂z2 − z2∂z3)
(
D̃2(c2(ρ)D̃2Y4)+ D̃3(c2(ρ)D̃3Y4)

)
=
(
O(ε)∂z1 + O(1/X2

0
)
∂z2)

(
O(ε)∂z1Y4+ O(1)∂z2Y4

)
+
(
O(ε)∂z1 + O(1/X2

0
)
∂z3)

(
O(ε)∂z1Y4+ O(1)∂z3Y4

)
+
(
O(1)∂z2 + O(1)∂z3

)(
O(ε) · (∂z1Y4, ∂z2Y4)

)
+ D̃2(c2(ρ)D̃2 M2)+ D̃3(c2(ρ)D̃3 M2).
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Then we can show that M2 solves

(3-26)



D̃1
(
(c2(ρ)−U 2

1 )D̃1 M2+ c2(ρ)(z2
2τ

2
+ z2

3τ
2)D̃1 M2

−U1U2 D̃2 M2−U1U3 D̃3 M2
)

+ D̃2
(
−U1U2 D̃1 M2+ (c2(ρ)−U 2

2 )D̃2 M2

+ z2
2τ

2c2(ρ)D̃2 M2−U2U3 D̃3 M2

+ z2z3τ
2c2(ρ)D̃3 M2

)
+ D̃3

(
−U1U3 D̃1 M2−U2U3 D̃2 M2

+ z2z3τ
2c2(ρ)D̃2 M2+ (c2(ρ)−U 2

3 )D̃3 M2

+ z2
3τ

2c2(ρ)D̃3 M2
)

= (z3∂z2 − z2∂z3)H2(Y,∇Y )+ H̃3(Y,∇Y ) in E+,

M2 = O(ε) ·
(
Y2, Y3, ∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3

)
+ O(1/X0) ·

(
X−1

0 Y5, ∂z2Y5, ∂z3Y5
)

on z1 = 0,

M2 = 0 on z1 = 1,

(z2∂z2 + z3∂z3)M2

= O(ε)

·
(
Y2, Y3, εY4, ∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3, εM2

)
on z2

2+ z2
3 = 1,

where H̃3(Y,∇Y ) has the same property as H3(Y,∇Y ) in (3-24).
Since the equation in (3-26) has no singular terms, a global C1,α estimate of M2

in E+ can easily be given as

(3-27) ‖M2‖C1,α

≤ C
(
‖H2‖Cα +‖H̃3‖Cα +‖M2|z1=0‖C1,α

+‖(z2∂z2 + z3∂z3)M2|z2
2+z2

3=1‖Cα

)
≤

C
X0
‖(Y1,Y2,Y3,Y4,X−1

0 Y5)‖C1,α

+
C
X0
‖(∂z1Y1,X−1

0 ∂z1Y2,X−1
0 ∂z1Y3,∂z2Y2,∂z3Y3,∂z1Y4,∂z2Y4,∂z3Y4)‖C1,α

+Cε‖(∂z3Y2,∂z2Y3)‖C1,α +
C
X0
‖(∂z2Y5,∂z3Y5)‖C2,α .

Next, we treat the bounds of ‖∂z2Y4‖L∞ and ‖∂z3Y4‖L∞ in (3-25).
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As with (3-24), the first three equations of (3-23) imply that ∂z2Y4 satisfies

(3-28)



D̃1
(
(c2(ρ)−U 2

1 )D̃1(∂z2 Y4)+ c2(ρ)(z2
2τ

2
+ z2

3τ
2)D̃1(∂z2 Y4)

−U1U2 D̃2(∂z2 Y4)−U1U3 D̃3(∂z2 Y4)
)

+ D̃2
(
−U1U2 D̃1(∂z2 Y4)+ (c2(ρ)−U 2

2 )D̃2(∂z2 Y4)+ z2
2τ

2c2(ρ)D̃2(∂z2 Y4)

−U2U3 D̃3(∂z2 Y4)+ z2z3τ
2c2(ρ)D̃3(∂z2 Y4)

)
+ D̃3

(
−U1U3 D̃1(∂z2 Y4)−U2U3 D̃2(∂z2 Y4)+ z2z3τ

2c2(ρ)D̃2(∂z2 Y4)

+ (c2(ρ)−U 2
3 )D̃3(∂z2 Y4)+ z2

3τ
2c2(ρ)D̃3(∂z2 Y4)

)
= ∂z2 H2(Y,∇Y )+ Ĥ3(Y,∇Y ) in E+,

∂z2 Y4 = O(ε) · (Y2, Y3, ∂z2 Y2, ∂z2 Y3)+ O(1/X0) · (X−1
0 Y5, ∂z2 Y5) on z1 = 0,

∂z2 Y4 = 0 on z1 = 1,

where Ĥ3(Y,∇Y ) has the same property as H3(Y,∇Y ) in (3-24).
By the maximum principle for second-order elliptic equations of divergence

form with the Dirichlet boundary condition [Gilbarg and Trudinger 1983, Theorem
8.16], we have

(3-29) ‖∂z2Y4‖L∞

≤ C
(
‖∂z2Y4|z1=0‖L∞ +‖∂z2Y4|z1=1‖L∞ +‖∂z2Y4|z2

2+z2
3=1‖L∞

+‖H2‖Cα +‖Ĥ3‖Cα

)
.

Since M1 = O(ε) · (Y2, Y3, εY4) on z2
2+ z2

3 = 1, a simple computation yields

(3-30)
‖∂z2Y4‖L∞ ≤ ‖M1|z2

2+z2
3=1‖L∞ +‖M2|z2

2+z2
3=1‖L∞

≤ Cε‖(Y2, Y3, εY4)‖L∞ +C‖M2‖C1,α .

Substituting (3-30), (3-25), (3-27) and the boundary value conditions of (3-28) into
(3-29) gives

(3-31) ‖∂z2Y4‖L∞ ≤
C
X0
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α

+
C
X0

(
‖(∂z1Y1, ∂z2Y2, ∂z3Y3, ∂z1Y4, ∂z2Y4, ∂z3Y4)‖C1,α

+‖(∂z2Y5, ∂z3Y5)‖C2,α
)

+Cε‖(∂z1Y2, ∂z1Y3, ∂z3Y2, ∂z2Y3)‖C1,α .
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Similarly,

(3-32) ‖∂z3Y4‖L∞ ≤
C
X0
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α

+
C
X0

(
‖(∂z1Y1, ∂z2Y2, ∂z3Y3, ∂z1Y4, ∂z2Y4, ∂z3Y4)‖C1,α

+‖(∂z2Y5, ∂z3Y5)‖C2,α
)

+Cε‖(∂z1Y2, ∂z1Y3, ∂z3Y2, ∂z2Y3)‖C1,α .

So far, we have shown that the “large” term ‖(∂z2Y4, ∂z3Y4)‖L∞ + ‖M2‖C1,α in
the right hand side of (3-25) can be controlled by the “good” terms in (3-27) and
(3-31)–(3-32). This means that ‖M1‖C1,α(B E0

+)
has the same estimate as in (3-31)–

(3-32). Namely,

(3-33) ‖(∂z2Y4, ∂z3Y4)‖C1,α(B E0
+)

≤
C
X0
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α

+
C
X0

(
‖(∂z1Y1, ∂z2Y2, ∂z3Y3, ∂z1Y4, ∂z2Y4, ∂z3Y4)‖C1,α

+‖(∂z2Y5, ∂z3Y5)‖C2,α
)

+Cε‖(∂z1Y2, ∂z1Y3, ∂z3Y2, ∂z2Y3)‖C1,α .

From this and the equations on ∂z2Y4 and ∂z3Y4 (see (3-28)), one has

‖(∂z2Y4, ∂z3Y4)‖C1,α

≤ C
(
‖(∂z2Y4, ∂z3Y4)‖L∞ +‖(∂z2Y4, ∂z3Y4)|∂E+‖C1,α +‖H2‖Cα +‖Ĥ3‖Cα

)
≤

C
X0
‖(Y1, Y2, Y3, Y4, X−1

0 Y5)‖C1,α

+
C
X0

(
‖(∂z1Y1, ∂z2Y2, ∂z3Y3, ∂z1Y4, ∂z2Y4, ∂z3Y4)‖C1,α +‖(∂z2Y5, ∂z3Y5)‖C2,α

)
+Cε‖(∂z1Y2, ∂z1Y3, ∂z3Y2, ∂z2Y3)‖C1,α .

This completes the proof of Lemma 3.7. �

Remark 3.6. We now explain the importance of deriving the C2,α-regularity es-
timates on Y4 and (Y1, Y2, Y3) simultaneously. The crucial estimate in (3-14)
which bounds ‖(∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3)‖C1,α in terms of ‖(∇Y1,∇Y4)‖C1,α and
‖(∂z2Y5, ∂z3Y5)‖C2,α follows from the key observation that though the system (2-11)
is hyperbolic, the lower-dimensional first-order system (3-16) is elliptic. Indeed,
without (3-16), the standard characteristic method for (2-11) gives only that (Y2, Y3)

has the same C1,α regularity as (∂z2Y4, ∂z3Y4) ∈ C1,α. In this case, one can es-
timate ‖(∂z2Y2, ∂z3Y2, ∂z2Y3, ∂z3Y3)‖Cα in terms of the right hand side of (3-14)
by the proof of Lemma 3.5. Then, from the proof of (3-6), one can estimate
‖(∂z1Y1, ∂z1Y4)‖Cα which gives an estimate of ‖(Y2, Y3)‖C1,α on z1 = 0 using the
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proof of (3-11). Together with boundary condition on z1 = 0 in (3-28), this yields
the desired estimate on ‖(∂z2Y4, ∂z3Y4)‖Cα . However, neither C1,α estimates on
(∇Y1,∇Y2,∇Y3,∇Y4) nor C2,α estimates on ∇z2,z3Y5 can be obtained in this way.

Remark 3.7. We have established a priori estimates for the gradients of solutions
instead of solutions themselves. Trying to derive a priori estimates on a solution
directly would give from (3-9) that

‖∂z1Y4‖C1,α ≤ C1‖(∂z2Y2, ∂z3Y3)‖C1,α + positive terms with “good” coefficients,

while (3-12) yields

‖(∂z2Y2, ∂z2Y3)‖C1,α ≤ C2‖∂z1Y4‖C1,α + positive terms with “good” coefficients.

However, it seems extremely difficult to get precise estimates on C1 and C2 so that
C1·C2<1. Thus the direct estimate cannot yield useful information on ∂z1Y4, ∂z2Y2

and ∂z3Y3.

4. Proofs of Theorem 1.1 and Proposition 2.2

Due to the equivalence between Theorem 1.1 and Theorem 2.1, it suffices to prove
Theorem 2.1 only.

To this end, we first show that ξ1(0, 1)= ξ2(0, 1) by contradiction. Without loss
of generality, assume that

(4-1) ξ1(0, 1) < ξ2(0, 1).

We will show the corresponding end pressures are different, contradicting (1-4).

Lemma 4.1. For ε0 < 1/X2
0 in Theorem 2.1, one has

(4-2)



‖(∂z1Y1, ∂z1Y4)‖C1,α ≤ C |Y4(0, 0, 1)|,

‖(∂z1Y2, ∂z1Y3)‖C1,α ≤
C
X0
|Y4(0, 0, 1)|,

5∑
i=1

3∑
j=2

‖∂z j Yi‖C1,α ≤
C
X0
|Y4(0, 0, 1)|.

Remark 4.1. Thanks to the appearance of the term (1/X2
0)‖Y5‖C1,α in the right

hand sides of (3-11), (3-14), (3-18) and (3-22), we can obtain the desired esti-
mates (4-2), which will be the key in deriving the monotonicity of shock posi-
tion on the end pressure and further obtaining the uniqueness result. Indeed, if
the dominant term on the right hand sides of (3-11), (3-14), (3-18) and (3-22) is
(1/X0)‖Y5‖C1,α , then Lemma B.4 implies that Y5(0, 1) ∼ X0Y4(0, 0, 1) and the
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third estimate in (4-7) becomes

‖(∂z1Y2, ∂z1Y3)‖C1,α +

3∑
i=2

5∑
j=1

‖∂zi Y j‖C1,α ≤
C
X0
|Y5(0, 1)|.

In this case, by Equation (4-11) below, one can only show that ∂z1Y4=O(1/X0)Y5.
Thus, Equation (4-13) becomes ∂z1Y4 = O(1)Y4, which yields no useful informa-
tion on Y4. It is then unclear how to proceed to obtain the monotonic dependence
of the shock position on the end pressure.

Proof of Lemma 4.1. By the estimates in Lemmas 3.2–3.7 and a direct computation,

(4-3)



‖(∂z1Y1, ∂z1Y4)‖C1,α ≤
C
X0

5∑
i=1

‖Yi‖C1,α ,

‖(∂z1Y2, ∂z1Y3)‖C1,α

+

3∑
i=2

4∑
j=1

‖∂zi Y j‖C1,α ≤
C
X0

( 4∑
i=1

‖Yi‖C1,α + X−1
0 ‖Y5‖C1,α

)
,

‖(∂z2Y5, ∂z3Y5)‖C2,α ≤
C
X0

( 4∑
i=1

‖Yi‖C1,α + X−1
0 ‖Y5‖C1,α

)
.

Note that

(4-4)

{
‖(Y1, Y4)‖C1,α ≤ C(|(Y1, Y4)(0, 0, 1)| + ‖∇(Y1, Y4)‖C1,α ),

‖Y5‖C1,α ≤ C(|Y5(0, 1)| + ‖∇Y5‖C2,α ).

The nonslip condition (2-7) implies that z2Y2+ z3Y3= 0 on z2
2+ z2

3= 1 and further
Y2(z1, 1, 0)= Y3(z1, 0, 1)= 0, so

(4-5) ‖(Y2, Y3)‖C1,α ≤ C‖∇(Y2, Y3)‖C1,α .

In addition, at the point (0, 0, 1), Equation (3-19) implies

(4-6) |Y1(0, 0, 1)| + |Y4(0, 0, 1)| ≤ C
X0
|Y5(0, 1)| +Cε(‖Y2‖L∞ +‖Y3‖L∞).

Substituting (4-4)–(4-6) into (4-3) yields

(4-7)



|Y1(0, 0, 1)| + |Y4(0, 0, 1)| + X0|Y2(0, 0, 1)| ≤ C
X0
|Y5(0, 1)|,

‖∂z1Y1‖C1,α +‖∂z1Y4‖C1,α ≤
C
X0
|Y5(0, 1)|,

‖(∂z1Y2, ∂z1Y3)‖C1,α +

3∑
i=2

5∑
j=1

‖∂zi Y j‖C1,α ≤
C
X2

0
|Y5(0, 1)|.
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In addition, by Lemma B.4,

(4-8) |Y5(0, 1)| ≤ C X0|Y4(0, 0, 1)|.

Combining (4-8) with (4-7) yields Lemma 4.1. �

Lemma 4.2. Suppose that (4-1) and the assumptions in Theorem 2.1 hold. If
ρ+0 (r0) > 2ρ−0 (r0), then

(4-9) Y4(0, 0, 1) > 0.

Proof. Lemma B.4 implies that Y4(0, 0, 1) and Y5(0, 1) satisfy

Y4 = a0Y5+ O(1/X2
0)Y5,

where a0 < 0 and a0 = O(1/X0).
Thus by (4-1), we have Y4(0, 0, 1) > 0. �

Remark 4.2. If M−0 (X0) >
√
(2γ+1− 1)/γ , then by [Li et al. 2009, Lemma 5.1],

we can show that ρ+0 (r0) > 2ρ−0 (r0) in Lemma 4.2.

Based on Lemmas 4.1 and 4.2, we can now prove Theorem 2.1.

Proof of Theorem 2.1. It follows from (2-4) and a direct computation that

(4-10)



U1 D̃1Y4+ ρ D̃1Y1

= O(1/X0) · (Y1, X−1
0 Y2, X−1

0 Y3, Y4)+ a1Y5

+ O(ε) · (∂z1 Y2, ∂z1 Y3, ε∂z1 Y4, ∂z2 Y4, ∂z2 Y5, ∂z3 Y4, ∂z3 Y5)

+ O(1) · (∂z2 Y2, ∂z3 Y3),

ρU1 D̃1Y1+ c2(ρ)D̃1Y4

= O(1/X0) · (Y1, X−1
0 Y2, εX0Y3, Y4)+ a2Y5

+ O(ε) · (ε∂z1 Y1, (εX2
0)
−1∂z1 Y4, ∂z2 Y1, X−1

0 ∂z2 Y5, ∂z3 Y1, X−1
0 ∂z3 Y5),

where, abbreviating ξ1(z2, z3) by ξ1 and ξ2(z2, z3) by ξ2,

a1 =−
∂z1(ρU1)

√

1+ (z2
2+ z2

3τ
2)(X0+ 1− ξ1)(X0+ 1− ξ2)

+
2(1− z1)ρU1

√

1+ (z2
2+ z2

3τ
2)(ξ1+ z1(X0+ 1− ξ1))(ξ2+ z1(X0+ 1− ξ2))

+ O(ε/X0),

a2 =−
c2(ρ)∂z1ρ+ ρU1∂z1U1

√

1+ (z2
2+ z2

3τ
2)(X0+ 1− ξ1)(X0+ 1− ξ2)

+ O(1/X3
0),
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It follows from (4-10) that

(4-11) ∂z1Y4= a(z)Y5+O(1/X0) ·(Y1, X−1
0 Y2, X−1

0 Y3, Y4)+O(1)(∂z2Y2, ∂z3Y3)

+ O(ε) · (ε∂z1Y1, ∂z1Y2, ∂z1Y3, (εX2
0)
−1

× ∂z1Y4, ∂z2Y1, ∂z2Y4, ∂z2Y5, ∂z3Y1, ∂z3Y4, ∂z3Y5),

where, again abbreviating ξ1(z2, z3) by ξ1 and ξ2(z2, z3) by ξ2,

(4-12)
a(z)=

(X0+ 1− ξ2)
√

1+ (z2
2+ z2

3)τ
2

c2(ρ)−U 2
1

(a2− a1U1)

=−
∂z1ρ

X0+ 1− ξ1

−
2(X0+ 1− ξ2)(1− z1)ρU 2

1

(c2(ρ)−U 2
1 )(ξ1+ z1(X0+ 1− ξ1))(ξ2+ z1(X0+ 1− ξ2))

+ O(1/X3
0),

It should be pointed out here that the “good” coefficient O(1/X2
0) in the term of

∂z1Y4 on the right hand side of (4-11) can be derived from (2-17), the assumptions
on the solutions, and ε < 1/X2

0 in Theorem 2.1.
In addition, under the assumptions of Theorem 2.1, one has{

∂z1ρ = ∂rρ
+

0 (r0)+ O(ε),

c2(ρ)−U 2
1 = c2(ρ+0 (r0))− (U+0 (r0))

2
+ O(1/X2

0),

which yields
∂z1ρ > 0, c2(ρ)−U 2

1 > 0.

Hence, it follows from (4-12) that a(z) is a negative function in subsonic domain.
In addition, (4-1) implies Y5(0, 1) < 0. So a(z)Y5(0, 1) is always nonnegative
along the line (z1, 0, 1). Thus along the line (z1, 0, 1), by Lemma 4.1, (4-11) can
be reduced into

(4-13)

{
∂z1Y4 ≥ b(z)Y4(0, 0, 1),

Y4(0, 0, 1) > 0,

where ‖b(z)‖L∞ ≤ O(1/X0). This yields

(4-14) Y4(z1, 0, 1) > C1Y4(0, 0, 1) > 0

for some constant C1 > 0, which contradicts the end pressure condition (1-4), so
contradicts (4-1). Thus Y5(0, 0, 1)= 0.

So by Lemma 4.1,
Y1 = Y2 = Y3 = Y4 = Y5 = 0.

This completes the proof of Theorem 2.1 and thus of Theorem 1.1. �
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Proof of Proposition 2.2. It follows from the assumptions in Proposition 2.2 that
C0,1 < C0,2 and Y4(1, z2, z3) < 0.

We claim that

(4-15) Y5(0, 1) > 0.

Otherwise, if Y5(0, 1) < 0, then (4-13)–(4-14) imply C0,1 > C0,2. If Y5(0, 1)= 0,
then Y4(0, 0, 1) = 0 by Lemma B.4 and further Y4 ≡ 0 by Lemma 4.1, hence
C0,1 = C0,2. Both cases contradict that C0,1 < C0,2.

Since Y5 = Y5(0, 1)+O(1)∂z2Y5+O(1)∂z3Y5, the third equality in (4-7) gives

(4-16) Y5(z2, z3)= Y5(0, 1)+ O(1/X2
0)Y5(0, 1).

Combining (4-16) and (4-15) yields Y5(z2, z3) > 0 which implies ξ1(y2, y3) >

ξ2(y2, y3). �

Appendix A: Analysis of the background solution

Under the assumptions given in Section 1, we describe the transonic solution of
the problem (1-1) with (1-2)–(1-5) when the end pressure is a given suitable con-
stant Pe. Such a solution is called the background solution and can be obtained
by solving the related ordinary differential equations. In fact, the analysis of this
background solution was given in [Courant and Friedrichs 1948, Section 147];
see also [Xin and Yin 2008b, Section 2]. For the reader’s convenience and the
requirements of our computations in this paper, we state the main facts here.

Theorem A.1 (existence of a transonic shock for the constant end pressure). For
the 3D nozzle and the supersonic incoming flow given in Section 1, there exist two
constant pressures P1 and P2 with P1 < P2, determined by the incoming flow and
the nozzle, such that if the end pressure Pe ∈ (P1, P2), then the system (1-1) has a
symmetric transonic shock solution,

(P, u1, u2, u3)=

{
(P−0 (r), u−1,0(x), u−2,0(x), u−3,0(x)) for r < r0,

(P+0 (r), u+1,0(x), u+2,0(x), u+3,0(x)) for r > r0,

where u±i,0=U±0 xi/r for i=1, 2, 3 and (P±0 (r),U
±

0 (r)) is C4,α-smooth. Moreover,
the position r = r0 with X0 < r0 < X0 + 1 and the strength of the shock are
determined by Pe.

Proof. See [Xin and Yin 2008b, Section 2]. �

Remark A.1. By (1-6) and the analysis of [Xin and Yin 2008b, Theorem A, Sec-
tion 2], there exists a constant C>0 independent of X0 such that for r0≤r≤ X0+1,∣∣∣∣dkU+0 (r)

dr k

∣∣∣∣+ ∣∣∣∣dk P+0 (r)
dr k

∣∣∣∣≤ C
X k

0
, k = 1, 2, 3.
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Remark A.2. It follows from (2-1) that we can obtain an extension (ρ̂+0 (r), Û
+

0 (r))
of (ρ+0 (r),U

+

0 (r)) for r ∈ (X0, X0+ 1) and large X0.

Appendix B

We first give a detailed computation for H0 in (2-9), and then derive a first-order
elliptic system on (U2,U3) in the interior of the nozzle. Next, we discuss the reg-
ularity problem of solutions to a class of first-order elliptic system which includes
a parameter. Finally, we derive a relation between Y4(0, 0, 1) and Y5(0, 1) used in
Lemmas 4.1 and 4.2.

Lemma B.1. In (2-9), the function H0 admits the estimate

H0 = O(|U2|
2
+ |U3|

2)+ O(|∇y2,y3ρ|
2)

+ O(|∇y2,y3U2|
2)+ O(|∇y2,y3U3|

2)+ O(|∇y2,y3ξ |
2)

+ O(1/X0)(|U2| + |U3| + |∇y2,y3ρ| + |∇y2,y3U2| + |∇y2,y3U3| + |∇y2,y3ξ |).

Proof. It follows from

∂y3

(
12
11
(ξ(y2, y3), y2, y3)

)
= ∂y2

(
13
11
(ξ(y2, y3), y2, y3)

)
that

(B-1) ∂y312− ∂y213 =
12∂y311−13∂y211

11
.

Since

∂y312 =
y1τρU1

1+ (y2
2 + y2

3)τ
2

(
(∂y3ξ∂y1 + ∂y3)U2+ y2

3τ
2(∂y3ξ∂y1 + ∂y3)U2

− y2 y3τ
2(∂y3ξ∂y1 + ∂y3)U3+ 2y3τ

2U2− y2τ
2U3

)
+
∂y3ξτρU1+ ξτ(∂y3ξ∂y1 + ∂y3)(ρU1)

1+ (y2
2 + y2

3)τ
2

(U2+ y2
3τ

2U2− y2 y3τ
2U3)

−
2y1 y3τ

3ρU1

(1+ (y2
2 + y2

3)τ
2)2
(U2+ y2

3τ
2U2− y2 y3τ

2U3),

∂y213 =
y1τρU1

1+ (y2
2 + y2

3)τ
2

(
(∂y2ξ∂y1 + ∂y2)U3+ y2

2τ
2(∂y2ξ∂y1 + ∂y2)U3

− y2 y3τ
2(∂y2ξ∂y1 + ∂y2)U2+ 2y2τ

2U3− y3τ
2U2

)
+
∂y2ξτρU1+ ξτ(∂y2ξ∂y1 + ∂y2)(ρU1)

1+ (y2
2 + y2

3)τ
2

(U3+ y2
2τ

2U3− y2 y3τ
2U2)

−
2y1 y2τ

3ρU1

(1+ (y2
2 + y2

3)τ
2)2
(U3+ y2

2τ
2U3− y2 y3τ

2U2),
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∂y211 = ρ
(

2(1+ y2
3τ

2)U2(∂y2ξ∂y1 + ∂y2)U2− 2y2 y3τ
2U3(∂y2ξ∂y1 + ∂y2)U2

− 2y2 y3τ
2U2(∂y2ξ∂y1 + ∂y2)U3+ 2(1+ y2

2τ
2)U3(∂y2ξ∂y1 + ∂y2)U3

)
+ (1+ (y2

2 + y2
3)τ

2)[(∂y2ξ∂y1 + ∂y2)P] + 2y2τ
2
[P]

+ (∂y2ξ∂y1 + ∂y2)ρ((1+ y2
3τ

2)U 2
2 − 2y2 y3τ

2U2U3+ (1+ y2
2τ

2)U 2
3 )

+ ρ(2y2τ
2U 2

3 − 2y3τ
2U2U3),

∂y311 = ρ
(

2(1+ y2
3τ

2)U2(∂y3ξ∂y1 + ∂y3)U2− 2y2 y3τ
2U3(∂y3ξ∂y1 + ∂y3)U2

− 2y2 y3τ
2U2(∂y3ξ∂y1 + ∂y3)U3+ 2(1+ y2

2τ
2)U3(∂y3ξ∂y1 + ∂y3)U3

)
+ (1+ (y2

2 + y2
3)τ

2)[(∂y3ξ∂y1 + ∂y3)P] + 2y3τ
2
[P]

+ (∂y3ξ∂y1 + ∂y3)ρ((1+ y2
3τ

2)U 2
2 − 2y2 y3τ

2U2U3+ (1+ y2
2τ

2)U 2
3 )

+ ρ(2y3τ
2U 2

2 − 2y2τ
2U2U3),

substituting these expressions into (B-1) yields

(∂y3ξ∂y1 + ∂y3)U2− (∂y2ξ∂y1 + ∂y2)U3

= H0(y2, y3, ρ,U2,U3, ξ,∇y2,y3ρ,∇y2,y3U2,∇y2,y3U3,∇y2,y3ξ),

where

H0= O(|U2|
2
+|U3|

2)+O(|∇y2,y3ρ|
2)+O(|∇y2,y3U2|

2)+O(|∇y2,y3U3|
2)+O(|∇y2,y3ξ |

2)

+ O(1/X0)
(
|U2| + |U3| + |∇y2,y3ρ| + |∇y2,y3U2| + |∇y2,y3U3| + |∇y2,y3ξ |

)
.

This completes the proof of Lemma B.1. �

Lemma B.2. Under the assumptions of Theorem 2.1, we have
∂z2Y2+ ∂z3Y3 = F3 in E+,

∂z3Y2− ∂z2Y3 = F4 in E+,

z2Y2+ z3Y3 = 0 on z2
2+ z2

3 = 1,
with

F3 = O(1/X0) · (Y1, X−1
0 Y2, X−1

0 Y3, Y4, Y5)

+ O(ε) · (∂z1 Y2, ∂z1 Y3, ∂z2 Y4, ∂z2 Y5, ∂z3 Y4, ∂z3 Y5)

+ O(1) · (∂z1 Y1, ∂z1 Y4),

F4 = O(ε) · (l1, l2)+ O(1) · (∂z3 Y2, ∂z2 Y3)(0, β1(z), β2(z))

+ O(1/X0) · (εY1, X−2
0 Y2, X−2

0 Y3, εY4, X−2
0 Y5)

+ O(ε) · (∂z1 Y1, ∂z1 Y4, ∂z2 Y1, ∂z3 Y1)

+ O(1/X2
0) · (∂z1 Y2, ∂z1 Y3, ∂z2 Y2, X0∂z2 Y3, ∂z2 Y4, X−1

0 ∂z2 Y5,

X0∂z3 Y2, ∂z3 Y3, ∂z3 Y4, ∂z3 Y5),

where l i and βi for i = 1, 2 are defined as in Lemma 3.5.
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Proof. By the first and the second equations in (2-11) we obtain

c2(ρ)
(
(1+ z2

2τ
2)(1+ z2

3τ
2)− z2

2z2
3τ

4)D2ρ

= (1+ z2
3τ

2)(ρU1 D1U2+ ρU2 D2U2+ ρU3 D3U2)

− z2z3τ
2(ρU1 D1U3+ ρU2 D2U3+ ρU3 D3U3)

+ ρD0((1+ z2
3τ

2)U2− z2z3τ
2U3)(U1− z2τU2− z2τU3)

(B-2)

c2(ρ)
(
(1+ z2

2τ
2)(1+ z2

3τ
2)− z2

2z2
3τ

4)D3ρ

= (1+ z2
2τ

2)(ρU1 D1U3+ ρU2 D2U3+ ρU3 D3U3)

− z2z3τ
2(ρU1 D1U2+ ρU2 D2U2+ ρU3 D3U2)

+ ρD0((1+ z2
2τ

2)U3− z2z3τ
2U2)(U1− z2τU2− z2τU3).

(B-3)

Applying ∂y3 to (B-2) and ∂y2 to (B-3), and then subtracting them results in

(B-4) (ρU1 D1+ ρU2 D2+ ρU3 D3)
(
∂z3U2− ∂z2U3+ O(ε)∂z1U2+ O(ε)∂z1U3

)
+ (ρU1 D1+ ρU2 D2+ ρU3 D3)

(
z2z3τ

2∂z2U2− z2
2τ

2∂z2U3

+ z2
3τ

2∂z3U2− z2z3τ
2∂z3U3

)
= H4(z,U, ρ,∇U,∇ρ),

where

H4(z, ρ,U,∇ρ,∇U )= O(|U2|
2
+ |U3|

2)+ O(|∇U |2)+ O(|∇ρ|2)

+ O(1/X0+ ε)(|U2| + |U3| + |∇ρ| + |∇U |).

Finally, due to the first equation in (2-4) and (B-4), a direct computation implies
∂z2Y2+ ∂z3Y3 = F3 in E+,

∂z3Y2− ∂z2Y3 = F4 in E+,

z2Y2+ z3Y3 = 0 on z2
2+ z2

3 = 1,

and Fi for i = 3, 4 has the same properties as stated in Lemma B.2. �

Lemma B.3. Assume that the problem

(B-5)



∂2u1+ ∂3u2 = f1(x1, x2, x3) in �= {(x1, x2, x3) : [0, 1]× B1(0)},

∂3u1− ∂2u2 = f2(x1, x2, x3) in �= {(x1, x2, x3) : [0, 1]× B1(0)},

∂1u1 = f3(x1, x2, x3) in �= {(x1, x2, x3) : [0, 1]× B1(0)},

∂1u2 = f4(x1, x2, x3) in �= {(x1, x2, x3) : [0, 1]× B1(0)},

x2u1+ x3u2 = 0 on 0 = {(x1, x2, x3) : [0, 1]× ∂B1(0)}
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has a C2,α(�) solution (u1, u2), where fi ∈ C1,α(�) for i = 1, 2, 3, 4. Then

(B-6)
3∑

i=2

2∑
j=1

‖∂xi u j‖C1,α(�) ≤ C
(
‖∇ f1‖Cα(�)+

4∑
i=2

‖ fi‖C1,α(�)

)
.

Proof. Set 61 = {(0, x2, x3) : x2
2 + x2

3 ≤ 1} and 62 = {(1, x2, x3) : x2
2 + x2

3 ≤ 1}.
First, we assert

(B-7)
2∑

i=1

‖u j‖C2,α(6i )+‖u j‖C2,α(0) ≤ C
4∑

k=1

‖ fk‖C1,α(�), j = 1, 2.

Indeed, it follows from (B-5) that on 6i for i = 1, 2,
∂2u1+ ∂3u2 = f1(i − 1, x2, x3) in B1(0),

∂3u1− ∂2u2 = f2(i − 1, x2, x3) in B1(0),

x2u1+ x2u2 = 0 on 6i .

Thus, by the solution of the index −2 Hilbert problem in [Bers 1950; 1951; Vekua
1952],

(B-8) ‖u1‖C2,α(6i )+‖u2‖C2,α(6i ) ≤ C(‖ f1‖C1,α(6i )+‖ f2‖C1,α(6i )), i = 1, 2.

For notational convenience, set w1 = x2u1+ x3u2 and w2 = x3u2− x2u1.
Equation (B-5) implies that w1 and w2 satisfy the following the second-order

elliptic equations, respectively:
(∂2

1 + ∂
2
2 + ∂

2
3 )w1 = ∂1(x2 f2+ x3 f4)

+ ∂2(x2 f1− x3 f2)+ ∂3(x2 f2+ x3 f3) in �,

w1 = 0 on 0,

(B-9)


(∂2

1 + ∂
2
2 + ∂

2
3 )w2 = ∂1(x3 f3− x2 f4)

+ ∂2(x2 f2+ x3 f1)− ∂3(x2 f1− x3 f2) in �,

(x2∂2+ x3∂3)w2 = f2 on 0.

(B-10)

For the problem (B-9), it follows from [Gilbarg and Trudinger 1983, Theorem 3.7,
Theorem 6.6] that

(B-11) ‖w1‖C2,α(�) ≤ C
( 2∑

i=1

‖w1‖C2,α(6i )+

4∑
j=1

‖ f j‖C1,α(�)

)
.

For (B-10), the compatibility conditions at corners and C2,α estimates of solutions
to second-order elliptic equations with mixed boundary conditions in [Xin et al.
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2009, Lemma A] imply that

(B-12) ‖w2‖C2,α(�) ≤ C
( 2∑

i=1

‖w2‖C2,α(6i )+

4∑
j=1

‖ f j‖C1,α(�)

)
.

Transforming w1 and w2 back to u1 and u2 via

u1 =
x2w1+ x3w2

x2
2 + x2

3
and u2 =

x3w1− x2w2

x2
2 + x2

3

gives

(B-13) ‖u1‖C2,α(0)+‖u2‖C2,α(0)

≤ C(‖w1‖C2,α(�)+‖w2‖C2,α(�))

≤ C
( 2∑

i=1

(‖w1‖C2,α(6i )+‖w2‖C2,α(6i ))+

4∑
j=1

‖ f j‖C1,α(�)

)
.

This, together with (B-5), yields (B-7).
Next, we derive the second-order elliptic equations on u1 and u2. By (B-5),{

(∂2
1 + ∂

2
2 + ∂

2
3 )u1 = ∂1 f3+ ∂2 f1+ ∂3 f2 in �,

(∂2
1 + ∂

2
2 + ∂

2
3 )u2 = ∂1 f4− ∂2 f2+ ∂3 f1 in �.

Thus,

(B-14) ‖u1‖C2,α(�)+‖u2‖C2,α(�)

≤ C
( 2∑

i=1

‖u j‖C2,α(6i )+‖u j‖C2,α(0)+

4∑
i=1

‖ fi‖C1,α(�)

)
.

Substituting (B-7) into (B-14) yields

(B-15) ‖u1‖C2,α(�)+‖u2‖C2,α(�) ≤ C
4∑

i=1

‖ fi‖C1,α(�).

For each x1 ∈ [0, 1], from the first and the fifth equations in (B-5) it follows that∫
B1(0)

f1(x1, x2, x3) dx2 dx3 =

∫
∂B1(0)

(x2u1+ x3u2) dl = 0,

so by f1 ∈ C1,α(�) and the integral mean value theorem, there exists some point
(x∗2 (x1), x∗3 (x1)) ∈ B1(0) such that

f1(x1, x∗2 (x1), x∗3 (x1))= 0.
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This implies

(B-16) ‖ f1‖C1,α(�) ≤ C‖∇ f1‖Cα(�).

Substituting (B-16) into (B-15) yields (B-6). �

Lemma B.4. Under the assumptions of Lemma 4.2, at the point (0, 0, 1),

Y4 = a0Y5+ O(1/X2
0)Y5, Y5 = O(X0)Y4,

where a0 < 0 and a0 = O(1/X0).

Proof. In the coordinate (y1, y2, y3), the background solution (ρ±0 (y1),U±0 (y1))

satisfies (see Appendix A),

(B-17)



dρ±0 (y1)

dy1
=

2(M±0 (y1))
2ρ±0 (y1)

y1(1− (M±0 (y1))2)
,

dU±0 (y1)

dy1
=−

2U±0 (y1)

y1(1− (M±0 (y1))2)
,

d M±0 (y1)

dy1
=−

M±0 (y1)(2+ (γ − 1)M±0 (y1))

y1(1− (M±0 (y1))2)
,

where

M±0 (y1)=
U±0 (y1)

c(ρ±0 (y1))

denote the Mach numbers of supersonic coming flow and subsonic flow, respec-
tively.

By (B-17) and (2-16)–(2-17),

(B-18)


M−0 (y1)= M−0 (X0)+ O(1/X0),

ρ−0 (y1)= ρ
−

0 (X0)+ O(1/X0),

U−1,0(y1)=U−0 (X0)+ O(1/X0).

In addition, it follows from (2-5) that at the point z = (0, 0, 1),

ρY1+ V1Y4

=
(
ρ−0 (ξ1(0, 1))U−0 (ξ1(0, 1), 0, 1)− ρ−0 (ξ2(0, 1))U−0 (ξ2(0, 1), 0, 1)

)
+ O(ε2)Y1+ O(ε)Y2+ O(ε)Y3+ O(ε2)Y4+ O(ε2)Y5,

ρ(U1+ V1)Y1+ V 2
1 Y4+ (1+ τ 2)c2(ρ̃)Y4

=
(
(ρ−0 (U

−

0 )
2)(ξ1(0, 1), 0, 1)− (ρ−0 (U

−

0 )
2)(ξ2(0, 1), 0, 1)

)
+ (1+ τ 2)

(
P−0 (ξ1(0, 1))− P−0 (ξ2(0, 1))

)
+O(ε2)Y1+ O(ε)Y2+ O(ε)Y3

+ O(ε2)Y4+ O(ε2)Y5.
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Using this and a direct computation gives

(B-19)
(
(1+ τ 2)c2(ρ̃)−U1(ξ1(0, 1), 0, 1)V1(ξ2(0, 1), 0, 1)

)
Y4

= (1+ τ 2)
(
P−0 (ξ1(0, 1))− P−0 (ξ2(0, 1))

)
+ (ρ−0 (U

−

0 )
2)(ξ1(0, 1), 0, 1)− (ρ−0 (U

−

0 )
2)(ξ2(0, 1), 0, 1)

−

((
(ρ−0 U−0 )(ξ1(0, 1), 0, 1)− (ρ−0 U−0 )(ξ2(0, 1), 0, 1)

)
×
(
U1(ξ1(0, 1), 0, 1)+ V1(ξ2(0, 1), 0, 1)

))
+ O(ε2)Y1+ O(ε)Y2+ O(ε)Y3+ O(ε2)Y4+ O(ε2)Y5.

Since 
d(ρ−0 (r)U

−

0 (r))
dr

=−
2ρ−0 (r)U

−

0 (r)
r

,

d
(
ρ−0 (r)(U

−

0 (r))
2
+ P−0 (r)

)
dr

=−
2ρ−0 (r)(U

−

0 (r))
2

r
,

we have

(1+ τ 2)
(
P−0 (ξ1(0, 1))− P−0 (ξ2(0, 1))

)
+ (ρ−0 (U

−

0 )
2)(ξ1(0, 1), 0, 1)− (ρ−0 (U

−

0 )
2)(ξ2(0, 1), 0, 1)

−

((
(ρ−0 U−0 )(ξ1(0, 1), 0, 1)− (ρ−0 U−0 )(ξ2(0, 1), 0, 1)

)
×
(
U1(ξ1(0, 1), 0, 1)+ V1(ξ2(0, 1), 0, 1)

))
=−

2ρ−0 (ξ̃ )(U
−

0 (ξ̃ ))
2

ξ̃
Y5(0, 1)

+
2ρ−0 (ξ̃ )U

−

0 (ξ̃ )

ξ̃

(
U1(ξ1(0, 1), 0, 1)+ V1(ξ2(0, 1), 0, 1)

)
Y5(0, 1)

(B-20)

(
(1+ τ 2)c2(ρ̃)−U1V1

)
Y4

=−
2(ρ−0 U−0 )(ξ̃ )

ξ̃

(
U−0 (ξ̃ )−

(
U1(ξ1(0, 1))+ V1(ξ2(0, 1))

))
Y5

+ O(ε2)Y1+ O(ε)Y2+ O(ε)Y3+ O(ε2)Y4+ O(ε2)Y5,

(B-21)

where ρ̃ and ξ̃ are the values derived by the mean value theorem on the functions
P(ρ)− P(q) and G(ξ1(0, 1))−G(ξ2(0, 1)) with

G(y1)= (1+ τ 2)P−0 (y1)+ (ρ
−

0 (U
−

0 )
2)(y1, 0, 1)

− (ρ−0 U−0 )(y1, 0, 1)
(
U1(ξ1(0, 1), 0, 1)+ V1(ξ2(0, 1), 0, 1)

)
,

respectively.
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Substituting (B-19)–(B-20) into (B-18) yields

(B-22)
(
(1+ τ 2)c2(ρ̃)−U1V1

)
Y4

=−
2(ρ−0 U−0 )(ξ̃ )

ξ̃

(
U−0 (ξ̃ )−

(
(ρ−0 U−0 )(ξ1(0, 1))
ρ(ξ1(0, 1))

+
(ρ−0 U−0 )(ξ2(0, 1))

q(ξ2(0, 1))

))
Y5

+ O(ε2)Y1+ O(ε)Y2+ O(ε)Y3+ O(ε)Y4+ O(ε2)Y5.

Due to the assumptions in Theorem 2.1, we have

ρ(ξ1(0, 1))= ρ̂0
+(r0)+ O(ε),

q(ξ2(0, 1))= ρ̂0
+(r0)+ O(ε),

ρ−0 (ξi (0, 1))= ρ−0 (r0)+ O(ε), i = 1, 2.

Then for ρ+0 (r0) > 2ρ−0 (r0) and small ε,

(B-23)

{
ρ(ξ1(0, 1)) > 2ρ−0 (ξ1(0, 1)),

q(ξ2(0, 1)) > 2ρ−0 (ξ2(0, 1)).

Moreover,

U−0 (ξ̃ )=U−0 (ξ1(0, 1))+ O(1/X0)(ξ1(0, 1)− ξ̃ ),

U−0 (ξ̃ )=U−0 (ξ2(0, 1))+ O(1/X0)(ξ2(0, 1)− ξ̃ ),

ρ̃ = ρ(ξ1(0, 1))+ O(1)Y4,

V1 =U1+ O(1)Y1.

So (B-22) becomes

(B-24)
(
(1+ τ 2)c2(ρ(ξ1(0, 1))−U 2

1
)
Y4

=−
(ρ−0 U−0 )(ξ̃ )

ξ̃

(
U−0 (ξ1(0, 1))+U−0 (ξ2(0, 1))

−

(
2(ρ−0 U−0 )(ξ1(0, 1))

ρ(ξ1(0, 1))
+

2(ρ−0 U−0 )(ξ2(0, 1))
q(ξ2(0, 1))

))
Y5

+ O(ε2)Y1+ O(ε)Y2+ O(ε)Y3+ O(ε)Y4+ O(1/X2
0)Y5.

By (4-4), (4-6) and (B-23)–(B-24), we obtain that at the point (0, 0, 1)

Y4 = a0Y5+ O(1/X2
0)Y5 and Y5 = O(X0)Y4,

where a0 < 0 and a0 = O(1/X0), which completes the proof of Lemma B.4. �
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REFINED OPEN NONCOMMUTATIVE DONALDSON–THOMAS
INVARIANTS FOR SMALL CREPANT RESOLUTIONS

KENTARO NAGAO

We study analogs of noncommutative Donaldson–Thomas invariants corre-
sponding to the refined topological vertex for small crepant resolutions of
toric Calabi–Yau 3-folds. We give three definitions of the invariants which
are equivalent to each others and provide “wall-crossing” formulas for the
invariants. In particular, we get normalized generating functions which are
unchanged under wall-crossing.

Introduction

Donaldson–Thomas theory [Thomas 2000] is intersection theory on the moduli
spaces of ideal sheaves on a smooth variety, which is conjecturally equivalent to
Gromov–Witten theory [Maulik et al. 2006]. For a Calabi–Yau 3-fold, the virtual
dimension of the moduli space is zero and hence Donaldson–Thomas invariants are
said to be counting invariants of ideal sheaves. It is known that they coincide with
the weighted Euler characteristics of the moduli spaces weighted by the Behrend
functions [2009]. Recently, the Donaldson–Thomas invariants of Calabi–Yau 3-
folds have been studied using categorical methods; see, for example, [Joyce 2008;
2007; Toda 2009; 2010; Kontsevich and Soibelman 2008; Joyce and Song 2010].

On the other hand, a smooth variety Y sometimes has a noncommutative associa-
tive algebra A such that the derived category of coherent sheaves on Y is equivalent
to the derived category of A-modules. Derived McKay correspondence [Kapranov
and Vasserot 2000; Bridgeland et al. 2001] and Van den Bergh’s noncommuta-
tive crepant resolutions [2004] are typical examples. In such cases, B. Szendrői
proposed to study counting invariants of A-modules (noncommutative Donaldson–
Thomas invariants) and relations with the original Donaldson–Thomas invariants
on Y [Szendrői 2008]. In [Nagao and Nakajima 2011; Nagao 2011a], we pro-
vided wall-crossing formulas which relate generating functions of the Donaldson–
Thomas and noncommutative Donaldson–Thomas invariants for small crepant res-
olutions of toric Calabi–Yau 3-folds. (We say a resolution of a 3-fold is small if
the dimension of each fiber is less than or equal to 1.)

MSC2000: 14N10, 14N35.
Keywords: Donaldson–Thomas theory, dimer model, topological vertex.
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The aim of this paper is to propose new invariants generalizing noncommu-
tative Donaldson–Thomas invariants and to provide “wall-crossing formulas” for
small crepant resolutions of toric Calabi–Yau 3-folds. We have two directions of
generalizations:

• “open” version:1 corresponding to counting invariants of sheaves on Y with
noncompact supports,2

• refined version: corresponding to refined topological vertex [Iqbal et al. 2009].3

Let Y→ X be a projective small crepant resolution of an affine toric Calabi–Yau
3-fold. Recall that giving an affine toric Calabi–Yau 3-fold is equivalent to giving
a convex lattice polygon. Existence of a small crepant resolution is equivalent to
absence of interior lattice points in the polygon. It is easy to classify such polygons
and X is one of the following:

• X = X L+,L− := {xy= zL+wL−} ⊂ C4 for L+ > 0 and L− ≥ 0, or

• X = X(Z/2Z)2 := C3/(Z/2Z)2 where (Z/2Z)2 acts on C3 with weights (1, 0),
(0, 1) and (1, 1).

2

2
1

L−

L+

Figure 1. Polygons for X L+,L− and X(Z/2Z)2 .

In this paper, we study the first case. We put L := L++ L−. Note that X1,1 is
called the conifold and X L ,0 is isomorphic to C×C2/(Z/LZ).

Given a pair of Young diagrams ν= (ν+, ν−) and an L-tuple of Young diagrams

λ= (λ(1/2), . . . , λ(L−1/2)),
the generating function of refined open noncommutative Donaldson–Thomas in-
variants (roncDT, in short)

ZY
λ,ν(Eq)= ZY

λ,ν(q+, q−, q1 . . . , qL−1),

which is denoted by ZRTV
σ,λ,ν in the body of this paper, is defined by counting the

number of the following data:

• an (L − 1)-tuple of Young diagrams Eν = (ν(1), . . . , ν(L−1)), and

1The word “open” stems from such terminologies as “open topological string theory”. According
to [Aganagic et al. 2005], open topological string partition function is given by summing up the
generating functions of these invariants over Young diagrams.

2As far as we know, there is no definition of “open” invariants for general Calabi–Yau 3-folds.
3See [Behrend et al. 2009] for a geometric definition of refined invariants.
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• an L-tuple of 3-dimensional Young diagrams E3= (3(1/2), . . . , 3(L−1/2)) such
that 3( j) is of type (λ( j), ν( j+1/2), tν( j−1/2)) or (λ( j), tν( j−1/2), ν( j+1/2)) (see
Section 5.3 for details).

Such data parametrize torus fixed ideal sheaves on the small crepant resolution Y .
In particular,

ZY
∅,∅(Eq)

∣∣
q+=q−

coincides with the generating function of Euler characteristic versions of the Don-
aldson–Thomas invariants of Y .4

Let A be a noncommutative crepant resolution of X . Let Zh denote the set of
half integers and let θ : Zh→ Zh be a bijection such that θ(h+ L)= θ(h)+ L and
such that

θ(1/2)+ · · ·+ θ(L − 1/2)= 1/2+ · · ·+ (L − 1/2).

We will define generating functions ZA
λ,ν,θ (Eq), which are denoted by Zσ,λ,ν,θ (Eq) in

the body of this paper (see Section 3.4), satisfying these properties:

• ZA
∅,∅,id(Eq)

∣∣
q+=q−=q1/2

0
coincides with the generating function ZA

NCDT,eu of Eu-

ler characteristic versions5 of noncommutative Donaldson–Thomas invariants
for the noncommutative crepant resolution A; see [Mozgovoy and Reineke
2010] and the remark on page 184.

• “ lim
θ→∞

” ZA
λ,ν,θ (Eq)= ZY

λ,ν(Eq); see Theorem 5.4.8. (The limit in this equation is,

in fact, equivalent to a limit in the space of stability conditions for the category
of finite-dimensional A-modules.)6

Moreover, for i ∈ I :=Z/LZ we can define the new bijection µi (θ) : Zh→Zh (see
§1.2.1) and

• ZA
λ,ν,µi (θ)

(Eq)/ZA
λ,ν,θ (Eq) is given explicitly (Theorem 4.2.2 and 4.4.2).

In [Nagao and Nakajima 2011; Nagao 2011a], we realized the ZA
∅,∅,θ (Eq)

∣∣
q+=q−

as
generating functions of virtual counting of certain moduli spaces and these moduli
spaces are constructed using geometric invariant theory. In this story, θ determines
a chamber in the space of stability parameters and the chamber corresponding to
θ is adjacent to the chamber corresponding to µi (θ) by a single wall. This is the
reason we call Theorem 4.2.2 and 4.4.2 as wall-crossing formulas, even though our

4The Euler characteristic version of the Donaldson–Thomas invariant coincides with the Donald-
son–Thomas invariant up to sign [Maulik et al. 2006].

5The Euler characteristic version of the noncommutative Donaldson–Thomas invariant coincides
with the noncommutative Donaldson–Thomas invariant up to sign [Nagao 2011a; Mozgovoy and
Reineke 2010].

6A moduli space of stable A-modules with the specific numerical data gives a crepant resolution
of X [Ishii and Ueda 2008]. The direction in which we take limit in the space of stability conditions
determines a stability parameter in the construction of a crepant resolution.
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definition of the invariants and the proof of the formula are given in combinatorial
ways. In fact, in the subsequent paper [Nagao 2011b] we provide an alternative
geometric definition, in which θ determines a chamber in the space of Bridgeland’s
stability conditions for the category of finite-dimensional A-modules.

As consequences of the wall-crossing formula, we get

• Corollaries 4.5.2 and 5.5.2: ZA
λ,ν,θ /ZA

λ,∅,θ = ZY
λ,ν /ZY

λ,∅ for any θ , λ and ν.

• Corollaries 4.5.4 and 5.5.4:
(
ZA
λ,ν,θ /ZA

∅,∅,θ
)∣∣

q+=q−
= (ZY

λ,ν /ZY
∅,∅

)∣∣
q+=q−

for any θ , λ and ν such that cλ[ j] = 0 for any j (see §1.3.1 for notation).

By the results in [Nagao and Nakajima 2011; Nagao 2011a], these formulas
should be interpreted as stability of the normalized generating functions under wall
crossing. We can find such stability of normalized generating functions in other
contexts such as flop invariance and DT-PT correspondence. Categorical interpre-
tations of such normalized generating functions and their stability are expected.

Now, we summarize the prior study on noncommutative Donaldson–Thomas
invariants:

• Szendrői’s formula on the generating function of noncommutative Donaldson–
Thomas invariants of the conifold was shown by B. Young [2009] in a purely
combinatorial way. The main tool is an operation called dimer shuffling.

• J. Brian and Young [2010] generalized the Szendrői–Young formula for X L ,0

and X(Z/2Z)2 . The method is different from the one used in [Young 2009]:
they use vertex operator method.

• In [Nagao and Nakajima 2011], we gave an interpretation of Szendrői–Young
formula as a consequence of the wall-crossing formula. From our point of
view, the argument there can be translated into combinatorial language by
localization, yielding the argument in [Young 2009]. In particular, dimer
shuffling is nothing but “mutation” in the categorical language.

• In [Nagao 2011a], we generalized the results in [Nagao and Nakajima 2011]
for arbitrary small crepant resolutions of toric Calabi–Yau 3-folds.

• In [Joyce and Song 2010], the authors study noncommutative Donaldson–
Thomas invariants of small crepant resolutions of toric Calabi–Yau 3-folds as
examples of their theory of generalized Donaldson–Thomas invariants.

• T. Dimofte and S. Gukov [2010] provided a refined version of Szendrői–
Young formula for the conifold.

• See [Jafferis and Moore 2008; Chuang and Jafferis 2009; Aganagic et al.
2011; Chuang and Pan 2010; Aganagic and Yamazaki 2010; Dimofte et al.
2011] for developments in physics.
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In this paper, we define the roncDT invariants using a dimer model (Section 2),
which is purely combinatorial.

In Section 3, we give an interpretation of the dimer model as a crystal melting
model.7 We construct an A-module Mmax

σ,λ,ν,θ such that giving a dimer configura-
tion is equivalent to giving a finite-dimensional torus invariant quotient module of
Mmax
σ,λ,ν,θ . Hence the roncDT invariant coincides with the Euler characteristic of

the moduli space of finite-dimensional quotient modules of Mmax
σ,λ,ν,θ ; see [Nagao

2011b].8

In Section 4, we introduce the notion of dimer shuffling to prove the first main
result of this paper: the wall-crossing formula (Theorems 4.2.2 and 4.4.2).

Finally we study the limit behavior of the dimer model in Section 5. The second
main result is that the generating function given by the refined topological vertex
for Y appears as the limit (Theorem 5.4.8).

While preparing the papers, the author was informed from J. Bryan that he
and his collaborators C. Cadman and B. Young provided an explicit formula of
ZA
λ,ν,id|q+=q− for X L ,0 and X(Z/2Z)2 using vertex operator methods [Bryan et al.

2012; ≥ 2011]. In a subsequent paper [Nagao 2011b], we provide an explicit
formula of ZA

λ,ν,θ for X L+,L− using vertex operator methods.
A physicist may refer to [Nagao and Yamazaki 2010], in which we explain the

result of this paper in a physical context.

We conclude this introduction by definition some notation.

Indices. Let Zh denote the set of half integers and L be a positive integer. We set
I := Z/LZ and Ih := Zh/LZ. The two natural projections Z→ I and Zh→ Ih are
denoted by the same symbol π . We sometimes identify I and Ih with {0, . . . , L−1}
and {1/2, . . . , L − 1/2} respectively.

The symbols n, h, i and j are used for elements in Z, Zh, I and Ih respectively.
For n ∈ Z and h ∈ Zh, we define c(n), c(h) ∈ Z by

n = c(n) · L +π(n), h = c(h) · L +π(h).

Young diagrams. A Young diagram ν is a map ν : Z→ Z such that ν(n) = |n| if
|n| � 0 and ν(n)− ν(n− 1) = ±1 for any n ∈ Z. The map Zh→ {±1} given by
j 7→ ν( j + 1/2)− ν( j − 1/2) is also denoted by ν.

By an abuse of notation, we sometimes identify + and − with 1 and −1.

7From the geometric point of view, the crystal melting model is more natural. But in this paper we
adapt the definition using the dimer model since it is more convenient when we prove some technical
lemmas, which we also use in [Nagao 2011b].

8In the case when ν+ = ν− = ∅, the moduli spaces have symmetric obstruction theory and the
invariant in this paper coincides with the weighted Euler characteristic up to sign.
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A Young diagram can be represented by a nonincreasing sequence of positive
integers. We fix the notation as in Figure 2.

− − − + − − + + + +
Figure 2. ν = (1, 1), tν = (2).

Formal variables. Let q+, q− and q0, . . . , qL−1 be formal variables. We use q+, q−
and q1, . . . , qL−1 for generating functions of refined invariants. Substituting q+ =
q− = (q0)

1/2, we get generating functions of nonrefined invariants.
Let P := Z · I be the lattice with the basis {αi | i ∈ I }. For an element α =∑
αi ·αi ∈ P (αi ∈ Z), we put qα :=∏(qi )

αi
.

For α, α′ ∈ P , we say α < α′ or qα < qα
′

if α′−α ∈ P+ := Z≥0 · I .

1. Preliminaries

1.1. Affine root system.

1.1.1. For h, h′ ∈ Zh, we define α[h,h′] ∈ P by

α[h,h′] :=
h′−1/2∑

n=h+1/2

απ(n)

if h < h′, α[h,h′] = 1 if h = h′ and α[h,h′] =−α[h′,h] if h > h′. We set

3 := {α[h,h′] ∈ P | h 6= h′},
3re,+ := {α[h,h′] ∈3 | h < h′, h 6≡ h′ (mod L)}.

An element in3 (resp. 3re,+) is called a root (resp. positive real root) of the affine
root system of type AL−1.

1.1.2. The element δ := α0 + · · ·αL−1 ∈ P is called the minimal imaginary root.
We set

3fin,+ := {α[ j, j ′] ∈3 | 1/2≤ j < j ′ ≤ L − 1/2
}

and

(1-1) 3
re,+
+ := {α[ j, j ′]+ Nδ | α[ j, j ′] ∈3fin,+, N ≥ 0

}
.
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Example 1.1.3. In the case of L = 4, we have

3fin,+ := {α1, α2, α3, α2+α3, α1+α2, α1+α2+α3
}
.

1.1.4. For a root α ∈3, we take h and h′ such that α = α[h,h′] and set

j−(α) := π(h), and j+(α) := π(h′).
We also put

Bα := {(h, h′) ∈ (Zh
)2 ∣∣α[h,h′] = α}.

1.1.5. Let 2 denote the set of bijections θ : Zh→ Zh such that

• θ(h+ L)= θ(h)+ L for any h ∈ Zh, and

•
L−1/2∑
h=1/2

θ(h)=
L−1/2∑
h=1/2

h.

Example 1.1.6. In the case of L = 4, the correspondence

1
2 7→ − 1

2 ,
3
2 7→ 3

2 ,
5
2 7→ 5

2 ,
7
2 7→ 9

2

gives an elements in 2. Let µ0(id) denote this map (see §1.2.1 for notation).

1.1.7. For θ ∈2 and i ∈ I , we define α(θ, i) := α[θ(n−1/2),θ(n+1/2)] (n ∈ π−1(i)).

Example 1.1.8.

α(id, 0)= α0, α(µ0(id), 0)=−α0,

α(id, 1)= α1, α(µ0(id), 1)= α0+α1,

α(id, 2)= α2, α(µ0(id), 2)= α2,

α(id, 3)= α3, α(µ0(id), 3)= α0+α3.

1.1.9. If α = α[h,h′] is a positive real root, we write θ(α) > 0 if θ−1(h) > θ−1(h′),
and we write θ(α) < 0 if θ−1(h) < θ−1(h′). We set

(1-2) 3
re,+
θ := {α ∈3re,+ ∣∣ θ(α) > 0

}
.

Example 1.1.10. We have 3re,+
id =∅ and 3re,+

µ0(id) = {α0}.
Remark. As we mentioned in the introduction, we studied moduli spaces of rep-
resentations of a noncommutative crepant resolution of X L+,L− in [Nagao 2011a].
In this theory, the space of stability conditions can be canonically identified with
P∗⊗R and the walls are classified as follows:

• the walls Wα := (R ·α)⊥ ⊂ P∗⊗R (α ∈3re,+), and

• the wall Wδ := (R·δ)⊥, which separates the Donaldson–Thomas and Pandhari-
pande–Thomas chambers.

The maps θ : Zh→ Zh as above parametrize the chambers on one side of the wall
Wδ. The notation θ(α)≷ 0 respects this parametrization.
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1.2. Wall-crossing.

1.2.1. For i ∈ I , let µi : Zh→ Zh be the map given by

µi (h)=


h− 1 if π(h− 1/2)= i,
h+ 1 if π(h+ 1/2)= i,
h otherwise.

For θ ∈2, we put µi (θ) := θ ◦µi .

Remark. The chambers corresponding to θ and µi (θ) are separated by the wall
Wα(θ,i), which is the reason for the title of this subsection. From the viewpoint
of the affine root system, wall crossing corresponds to simple reflection; from the
viewpoint of noncommutative crepant resolutions, it corresponds to mutation; and
from the viewpoint of dimer models, to dimer shuffling.

1.2.2. Let i = (i1, i2, . . . ) ∈ I Z>0 be a sequence of elements in I . For b > 0, we
define

θi,b := µib−1(· · · (µi1(id)) · · · ) ∈2, αi,b := α(θi,b, ib).

We say i ∈ I Z>0 is a minimal expression if θi,b(αi,b) < 0 for any b> 0. For a
minimal expression i , we have

3
re,+
θi,b
= {αi,1, . . . , αi,b−1}.

1.3. Core and quotient of a Young diagram.

1.3.1. Let σ : Ih→ {±} and λ : Zh→ {±} be maps such that λ(h)=±σ(π(h)) if
±h� 0. We define integers cλ[ j] and Young diagrams λ[ j] for j ∈ Ih by

λ(h)= λ[π(h)](σ( j (h)) · (c(h)− cλ[π(h)] + 1/2)
)
.

Remark. In the case σ ≡+ and
∑

cλ[ j]= 0, the sequence
(
cλ[ j]

)
of integers and

the sequence
(
λ[ j]

)
of Young diagrams are called the L-core and the L-quotient of

the Young diagram λ.

1.3.2. We put

(1-3) Bα,±σ,λ := {(h, h′) ∈ Bα | −λ(h)σ (h)= λ(h′)σ (h′)=±}.
Lemma 1.3.3. ∣∣Bα,+σ,λ ∣∣− ∣∣Bα,−σ,λ ∣∣= α0+ cλ[ j−(α)] − cλ[ j+(α)].
Proof. We write simply j± for j±(α). Note that we have

Bα = {(cL + j−, (c+α0)L + j+
) ∣∣ c ∈ Z

}
.

For an integer N , we set

BαN :=
{(

cL + j−, (c+α0)L + j+
) ∣∣ c ∈ [−N , N − 1]}.
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Take a sufficiently large integer N . Then

Bα,+σ,λ , Bα,−σ,λ ⊂ BαN

and so∣∣Bα,+σ,λ ∣∣− ∣∣Bα,−σ,λ ∣∣
=−]{(h, h′) ∈ BαN

∣∣ λ(h)σ (h)=+}+ ]{(h, h′) ∈ BαN
∣∣ λ(h′)σ (h′)=+}

=−]{c ∈ [−N , N − 1] ∣∣ λ[ j−](σ( j−) · (c− cλ[ j−] + 1/2)
)= σ( j−)

}
+ ]{c ∈ [−N , N − 1] ∣∣ λ[ j+](σ( j+) · (c+α0− cλ[ j+] + 1/2)

)= σ( j+)
}

=−(N − cλ[ j−] − 1/2)+ (N +α0− cλ[ j+] − 1/2)

= α0+ cλ[ j−] − cλ[ j+]. �

For σ, λ, θ and i , we put

(1-4) Bi,±
σ,λ,θ :=

{
n ∈ π−1(i) | (θ(n− 1/2), θ(n+ 1/2)) ∈ Bα(θ,i),±σ,λ

}
.

2. Dimer model

2.1. Dimer configurations.

2.1.1. We fix the following data:

• a map σ : Ih→ {±},
• a map λ : Zh→ {±} such that λ(h)=±σ(π(h)) for ±h� 0,

• a pair of Young diagrams ν = (ν+, ν−),
• a bijection θ : Zh→ Zh in 2.

We put σ̃ := σ ◦π ◦ θ , λ̃ := λ ◦ θ and L± := |σ−1(±)|.
2.1.2. We consider the following graph in the (x, y)-plane. First, we set

H(σ, θ) :={n ∈ Z | σ̃ (n− 1/2)= σ̃ (n+ 1/2)
}
, IH (σ, θ) := π(H(σ, θ)),(2-1)

S(σ, θ) :={n ∈ Z | σ̃ (n− 1/2) 6= σ̃ (n+ 1/2)
}
, IS(σ, θ) := π(S(σ, θ))(2-2)

and for n ∈ H(σ, θ) we put σ̃ (n) := σ̃ (n± 1/2).
The set of the vertices is given by

V := {(n,m) | n ∈ S(σ, θ), n−m: odd}
t {(n− 1/2,m) | n ∈ H(σ, θ), n−m: odd}
t {(n+ 1/2,m) | n ∈ H(σ, θ), n−m: odd},

which are denoted by v(n,m), vl(n− 1/2,m) and vr(n+ 1/2,m) respectively.
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The set of the edges is given by

E := {eh(n,m) | n ∈ H(σ, θ), n−m : odd} t {es(h, k) | h, k ∈ Zh},
where

• eh(n,m) connects vl(n− 1/2,m) and vr(n+ 1/2,m),

• es(h, k) connects v(h−1/2, k+1/2) or vr(h, k+1/2) and v(h+1/2, k−1/2)
or vl(h, k− 1/2) if h− k is even, and

• es(h, k) connects v(h−1/2, k−1/2) or vr(h, k−1/2) and v(h+1/2, k+1/2)
or vl(h, k+ 1/2) if h− k is odd.

We put

(2-3) F := {(n,m) ∈ Z2 | n+m : even}, Fi := {(n,m) ∈ F | n ∈ π−1(i)}
for i ∈ I . Note that E divides the plain into disjoint hexagons and quadrilaterals.
The hexagons are parametrized by the set

FH := {(n,m) ∈ F | n ∈ H(σ, θ)}
and the quadrilaterals are parametrized by the set

FS := {(n,m) ∈ F | n ∈ S(σ, θ)}.
For (n,m) ∈ F, let f (n,m) denote the corresponding hexagon or quadrilateral.

Example 2.1.3. In Figure 3, we show the graph associated with L = 3, σ given by

σ(1/2)=+ , σ (3/2)=− , σ (5/2)=− ,
and θ = id (L+ = 1, L− = 2).

Figure 3. Graph and V+ for Example 2.1.3.
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2.1.4. We set

V± := {v(n,m) | σ̃ (n+ 1/2)=±}
t {vl(n− 1/2,m) | σ̃ (n)=∓} t {vr(n+ 1/2,m) | σ̃ (n)=±}.

Note that V=V+ tV− and each element in E connects an element in V+ and an
element in V− (see Figure 3 for example).

A perfect matching is a subset of E giving a bijection between V+ and V−.

2.1.5. We define the map Fσ,λ,θ : Z→ Z by Fσ,λ,θ (0)= 0 and

(2-4) Fσ,λ,θ (n)= Fσ,λ,θ (n− 1)− λ̃(n− 1/2).

For k ∈ Zh, we set

Pk,±
σ,λ,θ :=

{
eh
(
n, Fσ,λ,θ (n)+ 2k

) ∣∣ n ∈ Z, σ̃ (n)=∓}
t {es

(
h, 1

2(Fσ,λ,θ (h−1/2)+ Fσ,λ,θ (h+1/2))+2k
) ∣∣ h ∈Zh, σ̃ (h)=±

}
.

For a Young diagram η, define the perfect matching

P
η
σ,λ,θ :=

⊔
k∈Zh

P
k,η(k)
σ,λ,θ .

Example 2.1.6. In Figure 4, we show the perfect matching associated with σ as
in Example 2.1.3, θ = id, η =∅, and λ given by

λ(h)=

+ if h =−5/2,
− if h = 1/2,
sgn(h)σ (h) otherwise.

Figure 4. Example 2.1.6: { f (n, Fσ,λ,id(n)) | n ∈ Z} and P∅
σ,λ,id.
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2.1.7. Define the perfect matching

P±σ,λ,θ :=
{
eh(n,m) | σ̃ (n)=∓}t {es(h, k) | σ̃ (h)=±, h · λ̃(h)− k : even

}
.

Definition 2.1.8. A perfect matching D is said to be a dimer configuration of type
(σ, λ, ν, θ) if D coincides with P

ν±
σ,λ,θ in the area {±x >m} and P±σ,λ,θ in the area

{±y > m} for m� 0.

Remark. A dimer configuration of type (σ, E∅, E∅, id) is “a perfect matching con-
gruent to the canonical perfect matching” in the terminology of [Mozgovoy and
Reineke 2010].

2.1.9. For f ∈ F, let ∂ f ⊂ E denote the set of edges surrounding the face f . By
moving f around clockwise, we can determine an orientation for each element in
∂ f . Let ∂± f ⊂ ∂ f denote the subset of edges starting from elements in V±.

For an edge e ∈ E, let f ±(e) denote the unique face such that e ∈ ∂± f ±(e).

2.2. Weights.

2.2.1. For h ∈ Zh, we define the monomials wσ,λ(h) by the conditions

wσ,λ(h)=
{(

Qσ(h)
)c(h)−cλ[ j (h)]q( j (h))

σ (h) if h� 0,(
Q−σ(h)

)c(h)−cλ[ j (h)]q( j (h))
−σ(h) if h� 0,

and
wσ,λ(h)/wσ,λ(h− L)= qλ(h) · qλ(h−L) · q1 · · · · · qL−1,

where
Q± := (q±)2 · q1 · · · · · qL−1, q( j)

± := q± · q1 · · · · · q j−1/2.

Note that for h 6= h′ we have

(2-5) wλ(h′)/wλ(h)
∣∣
q+=q−=(q0)1/2

= qα[h,h′] .

Example 2.2.2. Figure 5 shows the weight wσ,λ for σ and λ as in Example 2.1.6.

q−2+ q−

q−2+ q−

q−2+ q1

q−2+ q1

q−2+ q1q2

q−2+ q1q2

q+Q+

q+Q+

q−

q−

q−q2

q−q2

q−1+ q2−Q−1−

q−1+ q2−Q−1−

q−Q−

q−Q−

Figure 5. The weight wσ,λ.
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2.2.3. To an edge e ∈ E we associate the weight wσ,λ,θ (e) by

wσ,λ,θ (es(h, k)) :=
{
wσ,λ(θ(h))σ̃ (h)·λ̃(h) if h · λ̃(h)− k is odd,

1 if h · λ̃(h)− k is even,
(2-6)

wλ,σ,θ (eh(n,m)) := 1.(2-7)

2.2.4. Fix σ and λ. Then the set
⊔

α∈3re,+
Bα,−σ,λ is finite. We define

(2-8) Fασ,λ :=
∏

(h,h′)∈Bα,−σ,λ

wσ,λ(h′)
wσ,λ(h)

, Fθσ,λ :=
∏

α∈3re,+; θ(α)<0,
σ ( j−(α))6=σ( j+(α)).

Fασ,λ.

2.2.5. Note that for a dimer configuration D of type (σ, λ, ν, θ) we have only a
finite number of e ∈ D such that wσ,λ,θ (e) 6= 1.

Definition 2.2.6. For a dimer configuration D of type (σ, λ, ν, θ), we define the
weight wσ,λ,θ (D) by

(2-9) wσ,λ,θ (D) := Fθσ,λ ·
∏
e∈D

wσ,λ,θ (e).

(See (2-6)–(2-8) for notation.)

Remark. We will define the generating function Zσ,λ,ν,θ by the sum of weighs of
all dimer configurations of type (σ, λ, ν, θ).9

2.2.7. For a finite subset E′ ⊂ E, we put

wσ,λ,θ (E
′) :=

∏
e∈E′

wσ,λ,θ (e)

and for a face f ∈ F we put

(2-10) wσ,λ,θ ( f ) := wσ,λ,θ (∂
− f )

wσ,λ,θ (∂+ f )
.

For an integer n we set

wσ,λ,θ (n) := wσ,λ(θ(n+ 1/2))
wσ,λ(θ(n− 1/2))

;

then
wσ,λ,θ ( f (n,m))= wσ,λ,θ (n)

for any (n,m) ∈ F. By (2-5), we have

wσ,λ,θ (n)
∣∣
q+=q−=(q0)1/2

= qα(θ,i).

9We will leave the definition of the generating function until Section 3.4 since we will use
Proposition 3.3.9 to prove that the number of dimer configurations of type (σ, λ, ν, θ) is finite.
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3. The viewpoint of noncommutative crepant resolutions

3.1. Noncommutative crepant resolutions. Let 0 be a lattice in the (x, y)-plane
generated by (L , 0) and (0, 2). The graph given in §2.1.2 is invariant under the
action of 0 and so gives a graph on the torus R2/0. This gives a quiver with a po-
tential A= (Qσ,θ , wσ,θ ) as in [Nagao 2011a]. The vertices of Qσ,θ are parametrized
by I and the arrows are given by( ⊔

j∈Ih

h+j

)
t
( ⊔

j∈Ih

h−j

)
t
( ⊔

i∈IH (σ,θ)

ri

)
(see (2-1) for notation). Here h+j (resp. h−j ) is an edge from j − 1/2 to j + 1/2
(resp. from j + 1/2 to j − 1/2) and ri is an edge from i to itself. See [Nagao
2011a, §1.2] for the definition of the potential wσ,θ .

Example 3.1.1. Here is the quiver Qσ,id for σ as in Example 2.1.6:

1

0 2

Remarks. • The center of A is isomorphic to R :=C[x, y, z,w]/(xy= zL+wL−).
In [Nagao 2011a, Theorem 1.14 and 1.19], we showed that A is a noncommu-
tative crepant resolution of X = Spec R.

• The affine 3-fold X is toric. In fact,

T = Spec R̃ := Spec C[x±, y±, z±,w±]/(xy= zL+wL−)⊂ X

is a 3-dimensional torus.

3.2. Dimer model and noncommutative crepant resolution.

3.2.1. We will construct an A-module M(D) for a dimer configuration D. Let
Vi = Vi (D) (i ∈ I ) be vector space with the basis{

b[D; x, y, z] | (x, y) ∈ Fi , z ∈ Z≥0
}

(see (2-3) for notation). We define the map h±j : V j∓1/2→ V j±1/2 by setting

h±j (b[D; x, y, z])=
{

b[D; x ± 1, y− σ̃ ( j), z] if es
(
x ± 1

2 , y− 1
2 σ̃ ( j)

)
/∈ D,

b[D; x ± 1, y− σ̃ ( j), z+ 1] if es
(
x ± 1

2 , y− 1
2 σ̃ ( j)

) ∈ D,
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z=1

z=0

Figure 6. An example of M(D).

and ri : Vi → Vi by

ri (b[D; x, y, z])=
{

b[D; x, y+ σ̃ ( j), z] if eh(x, y+ σ̃ ( j)/2) /∈ D,

b[D; x, y+ σ̃ ( j), z+ 1] if eh(x, y+ σ̃ ( j)/2) ∈ D.

3.2.2. Let C ⊂ E be a subset which gives a closed zigzag curve without self-
intersection. By moving along the zigzag curve clockwisely, we can determine an
orientation for each element in C. Let C± ⊂ C denote the subset of edges starting
from elements in V±.

Let D be a dimer configuration of type (σ, λ, ν, θ). A subset C as above is said
to be a positive cycle with respect to D if C∩D=C+, and it is said to be a negative
cycle with respect to D if C−.
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3.2.3. Given a dimer configuration D and a positive cycle C with respect to D, let
DC be the dimer configuration given by

DC = (D\C+)∪C−.

Then we can check the following lemma:

Lemma 3.2.4. The surjection M(D)→ M(DC) given by

b[D; x, y, z] 7→


0 if (x, y) ∈ C◦ and z = 0,
b[DC; x, y, z−1] if (x, y) ∈ C◦ and z ≥ 1,
b[DC; x, y, z] if (x, y) /∈ C◦,

is a homomorphism of A-modules, where C◦ is the interior of the closed zigzag
curve. Moreover,

wσ,λ,θ (DC)= wσ,λ,θ (D) ·
∏
f ∈C◦

wσ,λ,θ ( f ).

3.3. Crystal melting interpretation. In this subsection, we show that a dimer con-
figuration of type (σ, λ, ν, θ) corresponds to a (torus invariant) quotient A-module
of the A-module Mmax = Mmax

σ,λ,ν,θ . In the physicists’ terminology, studying such
quotient modules is called the crystal melting model (see [Ooguri and Yamazaki
2009]) and Mmax is called the grand state of the model.

3.3.1. We define a Young diagram Gσ,λ,θ : Z→ Z by the following conditions:

• Gσ,λ,θ (n)= |n| if |n| � 0, and

• Gσ,λ,θ (n)= Gσ,λ,θ (n− 1)+ σ̃ (n− 1/2)λ̃(n− 1/2) for any n.

We define a map Gσ,λ,θ : F→ Z by

(3-1) Gσ,λ,θ (n,m) := G(n)σ,λ,θ + 2 · |m− Fσ,λ,θ (n)|,
where Fσ,λ,θ (n) is given in (2-4).

Example 3.3.2. In the case of Example 2.1.6, we have

(Gσ,λ,id(n))n∈Z = (. . . , 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, . . . )

and Gσ,λ,id(n,m) is given in Figure 7.

3.3.3. We define two maps F±σ,λ,θ : Z→ Z by the following conditions:

• F±σ,λ,θ (n)= Fσ,λ,θ (n) if ±n� 0.

• F±σ,λ,θ (n)= F±σ,λ,θ (n− 1)∓ σ̃ (n− 1/2) for any n.

Then we define two maps Gν±,±
σ,λ,θ : F→ Z by

(3-2) Gν±,±
σ,λ,θ (n,m) := ν±(m− F±σ,λ,θ (n))± n.
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Figure 7. Gσ,λ,id(n,m).

Example 3.3.4. Figure 8 shows G∅,+
σ,λ,id and G�,−

σ,λ,id for σ and λ as in Example 2.1.6.
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Figure 8. G∅,+
σ,λ,θ (top) and G�,−

σ,λ,θ (bottom).
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3.3.5. We define a map Gν
σ,λ,θ : F→ Z by

Gν
σ,λ,θ (n,m) :=max

(
Gσ,λ,θ (n,m),Gν+,+

σ,λ,θ (n,m),Gµ−,−
σ,λ,θ (n,m)

)
.

We can verify that

Gν
σ,λ,θ ( f +(e))= Gν

σ,λ,θ ( f −(e))+ 1 or Gν
σ,λ,θ ( f −(e))− 3.

for an edge e ∈ E (see §2.1.9 for notation). We define a perfect matching Dmax =
Dmax
σ,λ,ν,θ by

e ∈ Dmax⇐⇒ Gν
σ,λ,θ ( f +(e))= Gν

σ,λ,θ ( f −(e))− 3.

Let Mmax = Mmax
σ,λ,ν,θ := M(Dmax

σ,λ,ν,θ ) denote the corresponding A-module.

Example 3.3.6. In Figure 9, we show G E∅σ,λ,id and Dmax
σ,λ, E∅,id for σ and λ as in

Example 2.1.6.
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Figure 9. G E∅σ,λ,id and Dmax
σ,λ, E∅,id.
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Remark. The graph of the map m 7→ Gν
σ,λ,θ (n,m) determines a Young diagram.

This is what we denote by Vmin(n) in [Nagao 2011b, §3.1].

Lemma 3.3.7. There is no positive cycle with respect to Dmax.

Proof. Assume that we have a positive cycle C. For an edge e∈ ∂C, let fin(e) (resp.
fout(e)) be the unique face such that e ∈ ∂ fin(e) and fin(e) ∈C◦ (resp. e ∈ ∂ fout(e)
and fout(e) /∈ C◦). Then we have

(3-3) Gν
σ,λ,θ ( fin(e)) > Gν

σ,λ,θ ( fout(e)).

Take a face (n,m) ∈ C◦. If Gν
σ,λ,θ (n,m)= Gν,±

σ,λ,θ (n,m), then

(n± n′, F±σ,λ,θ (n± n′)− F±σ,λ,θ (n)+m) ∈ C◦

for any n′ ≥ 0 by (3-2) and (3-3), and this is a contradiction. On the other hands,
if Gµ

σ,λ,θ (n,m)= Gσ,λ,θ (n,m) and ±m∓ Fσ,λ,θ (n)≥ 0, then (n,m±m′) ∈C◦ for
any m′ ≥ 0 by (3-1) and (3-3), and this is also a contradiction. Hence the claim
follows. �

3.3.8. For a map H : F→Z≥0, let V H
i ⊂Vi (Dmax) (i ∈ I ) be the subspace spanned

by the elements {
b[Dmax; x, y, z] | (x, y) ∈ Fi , z ≥ H(x, y)

}
.

The following proposition gives a one-to-one correspondence between dimer con-
figurations of type (σ, λ, ν, θ) and finite-dimensional quotient modules of Mmax

σ,λ,ν,θ .

Proposition 3.3.9. Given a monomial q, we have a natural bijection between

• the set of dimer configurations of type (σ, λ, ν, θ) with weight q, and

• the set of maps H : F→ Z≥0 satisfying the following conditions:

– H( f )= 0 except for only a finite number of f ∈ F,
– (V H

i )i∈I is stable under the action of A, and
– wσ,λ,θ (Dmax) ·∏

f
wσ,λ,θ ( f )H( f ) = q.

Proof. Let D be a dimer configuration of type (σ, λ, ν, θ). By Lemma 3.3.7,
(D ∪ Dmax)\(D ∩ Dmax) is a disjoint union tCγ of a finite number of positive
cycles. We define a map HD : F→ Z≥0 by

HD( f ) := ]{Cγ | f ∈ C◦γ }.
Then we can verify the claim using Lemma 3.2.4. �

Remark. The graph of the map m 7→Gν
σ,λ,θ (n,m)+2H(n,m) determines a Young

diagram. This is what we denote by V(n) in [Nagao 2011b, §3.1].
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3.4. Generating function. From the description given by Proposition 3.3.9, we
can verify that, fixing a monomial q, we have only a finite number of dimer con-
figurations of type (σ, λ, ν, θ) with weight q.

Definition 3.4.1. We define the generating function by

Zσ,λ,ν,θ = Zσ,λ,ν,θ (Eq) :=
∑

D

wσ,λ,θ (D),

where the sum is taken over all dimer configurations of type (σ, λ, ν, θ). In partic-
ular, we put

ZNCDT
σ,λ,ν := Zσ,λ,ν,idZh

.

Remark. Note that ZNCDT
σ,λ,ν ·wσ,λ,θ

(
Dmax
σ,λ,ν.id

)−1 is a formal power series in q+, q−
and q1, . . . , qL−1.

4. Dimer shuffling and wall-crossing formula

4.1. Dimer shuffling at a hexagon. In this and next subsections, we study the re-
lation between dimer configurations of type (σ, λ, ν, θ) and of type (σ, λ, ν, µi (θ))

for i ∈ IH (σ, θ).

4.1.1. For (n,m) ∈ F and M ∈ Z>0 t {∞}. we put

f (n,m;±,M) :=
M−1⋃
m′=0

f (n,m±m′)

We define ∂ f (n,m;±,M) and ∂± f (n,m;±,M) in the same way as in §2.1.9 and
§3.2.2.

4.1.2. For a dimer configuration D and n ∈ Bi,±
σ,λ,θ , let m(D, n) denote the unique

integer such that

∂ f (n,m(D, n); σ(i),∞)∩ D = ∂± f (n,m(D, n); σ(i),∞).
4.1.3. For a dimer configuration D and i ∈ I , we consider the following conditions:

∂ f ∩ D 6= ∂− f for any f ∈ Fi ,(4-1)

∂ f ∩ D 6= ∂+ f if f ∈ Fi\{ f (n,m(D, n)) | n ∈ Bi,±
σ,λ,θ },(4-2)

∂ f (n,m(D, n)− 2σ(i))∩ D 6= ∂− f (n,m(D, n)− 2σ(i)) for n ∈ Bi,±
σ,λ,θ .(4-3)

4.1.4. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the condition
(4-1), we set

Ei (D◦) :=
{
(n,m) ∈ Fi | ∂ f (n,m)∩ D◦ = ∂+ f (n,m)

}
,
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and define the map M i
D◦ : Ei (D◦)→ Z>0 t {∞} by

M i
D◦(n,m) :=max{M | ∂ f (n,m; σ(i),M)∩ D◦ = ∂+ f (n,m; σ(i),M)}.

Note that (
M i

D◦
)−1
(∞)= {(n,mn) | n ∈ Bi,+

σ,λ,θ

}
.

We put Efin
i (D

◦) := Ei (D◦)\
(
M i

D◦
)−1
(∞).

Definition 4.1.5. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the
condition (4-1), let µi (D◦) be the a dimer configuration of type (σ, λ, ν, µi (θ))

given by(
D◦
∖( ⋃

(n,m)∈Ei (D◦)
∂+ f

(
n,m; σ(i),M i

D◦(n,m)
)∪ ⋃

n∈Bi,−
σ,λ,θ

∂− f (n,m; σ(i),∞)
))

t
( ⋃
(n,m)∈Ei (D◦)

∂− f
(
n,m; σ(i),M i

D◦(n,m)
)∪ ⋃

n∈Bi,−
σ,λ,θ

∂+ f (n,m; σ(i),∞)
)
.

Note that µi (D◦) satisfies the condition (4-2) and (4-3).

Example 4.1.6. Here are some examples of dimer shuffling at hexagons.
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Lemma 4.1.7. wσ,λ,µi (θ)(µi (D◦))= wσ,λ,θ (D◦).
Proof. For n ∈ π−1(i) and m ∈ Z such that n+m is odd, we put

D◦(n,m) := {es(n+ ε1,m+ ε2) (ε1, ε2 =±1/2)} ∩ D◦.

Assume that

(4-4) (n,m− 1), (n,m+ 1) /∈
⋃

(n,m)∈Ei (D◦)
f
(
n,m; σ(i),M i

D◦(n,m)
)
.

Then D◦(n,m) is one of the following:

∅, {es(n± 1/2,m± 1/2)}, {es(n± 1/2,m∓ 1/2)}.
In particular, we have

wσ,λ,θ (D◦(n,m))= wσ,λ,µi (θ)(D
◦(n,m)).

Hence
wσ,λ,θ

(
D◦ ∩µi (D◦)

)= wσ,λ,µi (θ)

(
D◦ ∩µi (D◦)

)
.

The claim follows from this and the fact that

wσ,λ,θ
(
∂± f (n,m,M)

)= wσ,λ,µi (θ)

(
∂∓ f (n,m,M)

)
for n ∈ π−1(i). �

4.2. Wall-crossing formula at a hexagon.

Lemma 4.2.1.

Zσ,λ,ν,θ =
∑
D◦
wσ,λ,θ (D◦)

∏
n∈Bi,+

σ,λ,θ

1
1+wσ,λ,θ (n)

∏
(n,m)∈Efin

i (D
◦)

1+wσ,λ,θ (n)M i
D◦ (n,m)+1

1+wσ,λ,θ (n) ,

where the sum is taken over all dimer configurations D◦ of type (σ, λ, ν, θ) satis-
fying the condition (4-1).

Proof. For a map s : Ei (D◦)→ Z≥0 such that s(n,m)≤ M i
D◦(n,m), we define the

dimer configuration

D◦s :=
(

D◦
∖ ⋃

(n,m)∈Ei (D◦)
∂+ f (n,m; σ(i), s(n,m))

)
t

⋃
(n,m)∈Ei (D◦)

∂− f (n,m; σ(i), s(n,m)).

Then
wσ,λ,θ (D◦s )= wσ,λ,θ (D◦)

∏
(n,m)∈Ei (D◦)

wσ,λ,θ (n)s(n,m).
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Note that any dimer configuration D is uniquely realized as D◦(s) by some D◦
and s. Hence we have

Zσ,λ,ν,θ =
∑
D◦
wσ,λ,θ (D◦) ·

(∑
s

∏
(n,m)∈Ei (D◦)

wσ,λ,θ (n)s(n,m)
)

=
∑
D◦
wσ,λ,ν,θ (D◦)

∏
n∈Bi,+

σ,λ,θ

1
1−wσ,λ,θ (n)

×
∏

(n,m)∈Efin
i (D

◦)

1+wσ,λ,θ (n)M i
D◦ (n,m)+1

1+wσ,λ,θ (n) . �

Theorem 4.2.2.

Zσ,λ,ν,µi (θ) = Zσ,λ,ν,θ
∏

n∈Bi,+
σ,λ,θ

(
1−wσ,λ,θ (n)

) ∏
n∈Bi,−

σ,λ,θ

1
1−wσ,λ,θ (n) .

Proof. As Lemma 4.2.1, we get

Zσ,λ,ν,µi (θ) =
∑
D•
wσ,λ,µi (θ)(D

•)
∏

n∈Bi,+
σ,λ,µi (θ)

1
1−wσ,λ,µi (θ)(n)−1

×
∏

(n,m)∈Ěi (D•)

1+wσ,λ,µi (θ)(n)
−M̌ i

D• (n,m)−1

1+wσ,λ,µi (θ)(n)−1 ,

where the sum is taken over all dimer configurations D• of type (σ, λ, ν, µi (θ))

satisfying (4-2), (4-3), and

Ěi (D•) :=
{
(n,m) ∈ Fi

∣∣ ∂ f (n,m)∩ D• = ∂− f (n,m)
}
,

M̌ i
D•(n,m) :=max

{
M
∣∣ ∂ f (n,m; σ(i),M)∩ D• = ∂− f (n,m;−σ(i),M)

}
.

Note that µi gives a one-to-one correspondence between dimer configurations of
type (σ, λ, ν, θ) satisfying (4-1) and those of type (σ, λ, ν, µi (θ)) satisfying (4-2)
and (4-3). Hence the claim follows from

• Bi,±
σ,λ,µi (θ)

= Bi,∓
σ,λ,θ ,

• wσ,λ,µi (θ)(n)= wσ,λ,θ (n)−1 for n ∈ π−1(i),

• (n,m) 7→ (n,m+σ(i) · (M i
D◦(n,m)−1)) gives a bijection between Efin

i (D
◦)

and Ěi (µi (D◦)) which respects M i
D◦ and M̌ i

µi (D◦),

and Lemma 4.2.1. �

4.3. Dimer shuffling at a quadrilateral. In this subsection, we study the relation
between dimer configurations of type (σ, λ, ν, θ) and of type (σ, λ, ν, µi (θ)) for
i ∈ IS(σ, θ).
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4.3.1. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the condition
(4-1) and n ∈ π−1(i), we define

E1
n(D

◦) := {(n,m) ∈ F | ∂ f (n,m)∩ D◦ = ∂+ f (n,m)},
E2

n(D
◦) := {(n,m) ∈ F | ∂ f (n,m)∩ D◦ =∅ }.

Lemma 4.3.2. |E1
n(D

◦)| − |E2
n(D

◦)| =
{∓1 if n ∈ Bi,±

σ,λ,θ ,

0 otherwise.
(See (1-4) for notation.)

Proof. For n,m ∈ Z such that n+m is odd, we define εD◦(n,m) by

εD◦(n,m) :=
{+ if es(n+ 1/2,m+ 1/2), es(n− 1/2,m+ 1/2) /∈ D,
− if es(n+ 1/2,m− 1/2), es(n− 1/2,m− 1/2) /∈ D.

Then for (n,m) ∈ F, we have

(n,m) ∈ E1
n(D

◦)⇐⇒ εD◦(n,m± 1)=±,
(n,m) ∈ E2

n(D
◦)⇐⇒ εD◦(n,m± 1)=∓,

and εD◦(n,m)=∓λ̃(n± 1/2) if σ̃ (n± 1/2) ·m� 0. The claim follows. �

4.3.3. For a dimer configuration D◦ of type (σ, λ, ν, θ) satisfying the condition
(4-1), we define a dimer configuration µi (D◦) of type (σ, λ, ν, µi (θ)) as follows:

• If π(h) 6= i ± 1/2, we have

es(h, k) ∈ D◦⇐⇒ es(h, k) ∈ µi (D◦),

• If n ∈ IH (σ, θ) and π(n) 6= i ± 1, we have

eh(n,m) ∈ D◦⇐⇒ eh(n,m) ∈ µi (D◦),

• For (n,m) ∈ Fi we have

D◦( f (n,m))=∅⇐⇒ µi (D◦)( f (n,m))= ∂−σ,µi (θ)
( f (n,m)),

D◦( f (n,m))= ∂+σ,θ ( f (n,m))⇐⇒ µi (D◦)( f (n,m))=∅,

(Here we use notation such as ∂±σ,θ ( f (n,m)) in order to emphasize that the no-
tions like ∂±( f (n,m)) given in §2.1.9 depend on σ and θ .)

• If D◦( f (n,m)) 6=∅, ∂+σ,θ ( f (n,m)) for (n,m) ∈ Fi , we have

es(n+ ε1,m+ ε2) ∈ D◦⇐⇒ es(n− ε1,m− ε2) ∈ µi (D◦) (ε1, ε2 =±1/2),

• If σ(i ± 3/2) 6= σ(i ± 1/2), we have

es(n± 1/2,m− 1), es(n± 1/2,m+ 1) /∈ D◦⇐⇒ eh(n± 1,m) ∈ µi (D◦).
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Note that µi (D◦) satisfies the condition

(4-5) D( f ) 6= ∂+ f for any f ∈ Fi .

Example 4.3.4. Here are some examples of dimer shuffling at squares.

Lemma 4.3.5. wσ,λ,µi (θ)(µi (D◦))= wσ,λ,θ (D◦).
Proof. We have wσ,λ,θ (∂+σ,θ f )= wσ,λ,µi (θ)(∂

−
σ,µi (θ)

f ) for f ∈ Fi , and

wσ,λ,θ (∂
+
σ,θ f )=

{
1 if n ∈ Bi,+

σ,λ,θ ,

wσ,λ,θ (n)−1 if n ∈ Bi,−
σ,λ,θ .

Thus, the claim follows from Lemma 4.3.2 and (2-9). �

4.4. Wall-crossing formula at a quadrilateral.

Lemma 4.4.1. Zσ,λ,ν,θ =∑D◦ wσ,λ,θ (D
◦) ·∏n∈π−1(i)

(
1+wσ,λ,θ (n)

)|E1
n (D

◦)|
.

Proof. We set

E1
i (D

◦) :=
⋃

n∈π−1(i)

E1
n(D

◦), E2
i (D

◦) :=
⋃

n∈π−1(i)

E2
n(D

◦).
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Given a subset S ⊂ E1
i (D

◦), we get a dimer configuration D◦S of type (σ, λ, ν, θ)
such that

D◦S :=
(
D\⋃ ∂+ f

)∪⋃ ∂+ f,

and we have
wσ,λ,θ (D◦S)= wσ,λ,θ (D◦)

∏
(n,m)∈S

wσ,λ,θ (n).

Note that any dimer configuration D is uniquely realized as D◦S by some D◦ and
S. Hence we have

Zσ,λ,ν,θ =
∑
D◦
wσ,λ,θ (D◦)

(∑
S

∏
(n,m)∈S

wσ,λ,θ (n)
)

=
∑
D◦
wσ,λ,θ (D◦)

∏
(n,m)∈E1

i (D
◦)

(
1+wσ,λ,θ (n)

)
=
∑
D◦
wσ,λ,θ (D◦)

∏
n∈π−1(i)

(
1+wσ,λ,θ (n)

)|E1
n (D

◦)|
. �

Theorem 4.4.2.

Zσ,λ,ν,µi (θ) = Zσ,λ,ν,θ
∏

n∈Bi,+
σ,λ,θ

(
1+wσ,λ,θ (n)

)−1 ∏
n∈Bi,−

σ,λ,θ

(
1+wσ,λ,θ (n)

)
.

Proof. Let D• be a dimer configuration of type (σ, λ, ν, µi (θ)) satisfying (4-5).
We put

Ẽ1
n(D

•) :={(n,m) ∈ F
∣∣ ∂σ,µi (θ) f (n,m)∩ D• = ∂−σ,µi (θ)

f (n,m)
}
.

Then, as Lemma 4.4.1, we get

Zσ,λ,ν,µi (θ) =
∑
D•
wσ,λ,µi (θ)(D

•)
∏

n∈π−1(i)

(
1+wσ,λ,µi (θ)(n)

−1)|Ẽ1
n (D

•)|
,

where the sum is taken over all dimer configurations D• of type (σ, λ, ν, µi (θ))

satisfying the condition (4-5). Note that µi gives a one-to-one correspondence of
dimer configurations of type (σ, λ, ν, θ) satisfying the condition (4-1) and ones of
type (σ, λ, ν, µi (θ)) satisfying the condition (4-5). Hence the claim follows from
the equalities Ẽ1

n(µi (D◦)) = E2
n(D

◦) and wσ,λ,µi (θ)(n) = wσ,λ,θ (n)−1, both valid
for n ∈ π−1(i), together with Lemma 4.4.1. �

4.5. Conclusion. For σ and α ∈3re,+, we put

(4-6) σ(α) := σ( j−(α)) · σ( j+(α)).

Combining Theorem 4.2.2 and 4.4.2, we get:
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Theorem 4.5.1. Zσ,λ,ν,θ has the value

ZNCDT
σ,λ,ν

∏
α∈3re,+

θ

( ∏
(h,h′)∈Bα,+σ,λ

(
1−σ(α)wλ(h

′)
wλ(h)

)σ(α) ∏
(h,h′)∈Bα,−σ,λ

(
1−σ(α)wλ(h

′)
wλ(h)

)−σ(α))
.

(See (1-2) and (1-3) for notation.)

Since the second term in this expression does not depend on ν, we have:

Corollary 4.5.2.
Zσ,λ,ν,θ

Zσ,λ, E∅,θ
= ZNCDT

σ,λ,ν

ZNCDT
σ,λ, E∅

.

Lemma 1.3.3 and Theorem 4.5.1 yield:

Theorem 4.5.3. (See (1-2) for notation.)

Zσ,λ,ν,θ
∣∣
q+=q−=(q0)1/2

= ZNCDT
σ,λ,ν

∣∣
q+=q−=(q0)1/2

∏
α∈3re,+

θ

(
1− σ(α) · qα)σ(α)[α0+cλ( j−(α))−cλ( j+(α))]

.

Since the second term on the right depends only on the cλ[ j] and not on λ and
ν, we have:

Corollary 4.5.4. If cλ[ j] = 0 for any j , we have

Zσ,λ,ν,θ

Zσ, E∅, E∅,θ
∣∣
q+=q−

= ZNCDT
σ,λ,ν

ZNCDT
σ, E∅, E∅

∣∣
q+=q−

.

5. Refined topological vertex via dimer model

5.1. Refined topological vertex for C3.

5.1.1. A Young diagram can be regarded as a subset of (Z≥0)
2. For a Young

diagram λ, let

3x(λ)= {(x, y, z) ∈ (Z≥0)
3 | (y, z) ∈ λ},

3y(λ)= {(x, y, z) ∈ (Z≥0)
3 | (z, x) ∈ λ},

3z(λ)= {(x, y, z) ∈ (Z≥0)
3 | (x, y) ∈ λ}.

5.1.2. Given a triple (λx , λy, λz) of Young diagrams, define

3min :=3x(λx)∪3y(λy)∪3z(λz)⊂ (Z≥0)
3.
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5.1.3. A subset 3 of (Z≥0)
3 is said to be a 3-dimensional Young diagram of type

(λx , λy, λz) if the following conditions are satisfied:

• If (x, y, z) /∈3, then (x+1, y, z), (x, y+1, z), (x, y, z+1) /∈3.

• 3⊃3min.

• |3\3min|<∞.

5.1.4. For a Young diagram λ, we define a monomial wλ(m) for each m ∈ Z by

(5-1) wλ(m)= qλ(m−1/2) · qλ(m+1/2) · q1 · · · · · qL−1.

For a finite subset S of (Z≥0)
3 we define the weight w(S) by

w(S) :=
∏

(x,y,z)∈S

wλx (y− z).

For a positive integer N , we set CN := [0, N ]3. Given a 3-dimensional Young
diagram 3 of type (λx , λy, λz), we take a sufficiently large N such that 3\3min⊂
CN and define the weight w(3) of 3 by

w(3) := w(3∩CN )

w(3x(λx)∩CN )w(3y(λy)∩CN ) w(3z(λz)∩CN )
.

Note that this is well-defined.

Remarks. • In the definition of w(3), the three axes do not play the same role.
The x-axis is called the preferred axis for the refined topological vertex.

• If we replace the definition (5-1) with

(qλ(m−1/2))
2 · q1 · · · · · qL−1,

then the weight coincides with the one in [Iqbal et al. 2009]. Our weight coin-
cides with the one in [Dimofte and Gukov 2010].

We define the generating function

Gλx ,λy ,λz (Eq ) :=
∑

w(3),

where the sum is taken over all 3-dimensional Young diagrams of type (λx , λy, λz).

5.2. Dimer model for L =1. In the case L=1, the graph in §2.1.2 gives a hexagon
lattice. As we have only two choices of σ , we put σ(1/2) = +. We take id as θ .
We omit σ and id from the notation in this subsection. Note that λ is a single
2-dimensional Young diagram.

It is well-known that giving a dimer configuration of type (λ, ν) is equivalent
to giving a 3-dimensional Young diagram of type (λ, ν+, tν−). Let D(3) be the
dimer configuration corresponding to a 3-dimensional Young diagram 3.
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For a Young diagram η = (η(1), η(2), . . . ) and a monomial p, we put

w(η; p, Q) :=
∏(

pQi−1)η(i) .
Then we can verify the following:

(5-2) wλ(D(3))= w(ν−; q+, Q+) w(ν+; q−, Q−) w(3).

Example 5.2.1. As we show in Figure 10, we have

w∅(3
min
∅,(1),∅) = w((1); q−, Q−) = q−,

w∅(3
min
∅,(2),∅) = w((2); q−, Q−) = q2

−,

w∅(3
min
∅,(1,2),∅)= w((2, 1); q−, Q−)= q3

−Q−.

q+

q+

q+q−

q−

q−

q−Q−

q−Q−

q−Q−

q+Q+

q+Q+

q+Q+

q−

q−

q−

q−

q−
q−Q−

Figure 10. D(3min
∅,(1),∅), D(3min

∅,(2),∅) and D(3min
∅,(1,2),∅).

In particular, we have

Zλ,ν = w(ν−; q+, Q+) ·w(ν+; q−, Q−) ·Gλ,ν+,tν−,

where Zλ,ν is the generating function given in Definition 3.4.1.

5.3. Refined topological vertex for a small resolution. We will define generating
functions ZRTV

σ,λ,ν(Eq ). First, we consider the following data: let Eν=(ν(1), . . . , ν(L−1))

be an (L − 1)-tuple of Young diagrams and E3 = (3(1/2), . . . , 3(L−1/2)) be an L-
tuple of 3-dimensional Young diagrams such that 3( j) is
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• of type (λ( j), ν( j+1/2), tν( j−1/2)) if σ( j)=+ ,

• of type (λ( j), tν( j−1/2), ν( j+1/2)) if σ( j)=− ,

where we put ν(0) := ν− and ν(L) := ν+. We say that the data ( E3, Eν) is of type
(σ, λ, ν). We define the weight w( E3, Eν) of the data ( E3, Eν) by

wσ ( E3, Eν) := w(ν+; q−, Q−) ·w(ν−; q+, Q+)
( L−1/2∏

j=1/2

w(3( j))

)( L−1∏
i=1

wi
σ (µ

(i))

)
,

where wi
σ (µ

(i)) is given by

(5-3) wi
σ (µ

(i)) :=
∏

(α,β)∈µi


qi · Q2α+1 if σ(i − 1

2)= σ(i + 1
2)=+ ,

qi · Q2β+1 if σ(i − 1
2)= σ(i + 1

2)=− ,
qi · Q · Qα+ · Qβ

− if σ(i − 1
2)=+, σ (i + 1

2)=− ,
qi · Q · Qα− · Qβ

+ if σ(i − 1
2)=−, σ (i + 1

2)=+ .
We consider the generating function

ZRTV
σ,λ,µ(Eq ) :=

∑
wσ ( E3, Eν)

where the sum is taken over all the data as above.

Remark. This is the generating function of the refined topological vertex associ-
ated to Yσ , where Yσ→ X is the crepant resolution constructed from σ (see [Nagao
2011a, §1.1] for the construction of Yσ ). Here is the polygon corresponding to Yσ ,
for σ given by

(σ (1/2), . . . , σ (11/2))= (+,−,+,+,−,+) :

5.4. Limit behavior of the dimer model.

5.4.1. Let i ∈ I Z>0 be a minimal expression such that for any N ∈ Z≥0 we have
b(N ) ∈ Z>0 such that αi,b > Nδ for any b > b(N ).

Lemma 5.4.2. Given σ , λ and a monomial q, there exists an integer B1 such that
the following condition holds: for any b ≥ B1,

• any dimer configuration of type (σ, λ, ν, θi,b) with weight q satisfies (4-1),

• any dimer configuration of type (σ, λ, ν, θi,b+1) with weight q satisfies (4-2),
and

• µib gives a one-to-one correspondence between dimer configurations of type
(σ, λ, ν, θi,b) with weight (σ, λ, ν, θi,b+1) with weight q.
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Proof. Take N2 such that

q N2δ > q ·wσ,λ,θ
(
Dmax
σ,λ,ν.id

)−1
.

By Theorem 4.5.3 and the remark just before Section 4,

Zσ,λ,ν,θ ·wσ,λ,θ
(
Dmax
σ,λ,ν.id

)−1∣∣
q+=q−=(q0)1/2

is a polynomial in q0, . . . , qL−1. Thus, there does not exist any dimer configuration
with weight q−α(i, b) for any b> b(N2)=: B1, where b(N2) is taken as in §5.4.1.

Assume that we have a dimer configuration type (σ, λ, ν, θi,b) with weight q
and f ∈ F such that D( f ) = ∂−( f ). Then we get a dimer configuration D ∪
∂+( f )\∂−( f ) with weight q−α(θ, i), which is a contradiction. We can check the
second claim similarly and the third claim immediately follows from the first and
second ones. �

5.4.3. Given σ , λ, we can take an integer N2 such that

• σ̃ (h)=±λ̃(h) for any h ∈ Zh such that ±h > N2L ,

• es(h, k) /∈ Dmax
σ,λ,θi,B1

for any h and k such that h < N2L and h · σ̃ (h)− k is
even, and

• es(h, k) /∈ Dmax
σ,λ,θi,B1

for any h and k such that h> N2L and h · σ̃ (h)−k is odd.

Take a monomial q. Since we have only a finite number of dimer configuration
of type (σ, λ, ν, θi,B1) with weight q and each dimer configuration has only finite
difference with Dmax

σ,λ,ν,θi,B1
, we can take an integer N4 such that

• σ̃ (h)=±λ̃(h) for any h ∈ Zh such that ±h > L N4,

• es(h, k) /∈ D for any h and k such that h < L N4 and h · σ̃ (h)− k is even, and

• es(h, k) /∈ D for any h and k such that h > L N4 and h · σ̃ (h)− k is odd.

Lemma 5.4.4. Let D be a dimer configuration of type (σ, λ, ν, θ) satisfying the
condition (4-1). Take h ∈ π−1(i + 1/2) such that σ̃ (h) = λ̃(h) and assume that
es(h, k) /∈ D for any k ∈ Zh such that hσ̃ (h)− k is odd. Then es(h− 1, k − σ̃ (h))
is not in µi (D).

Similarly, take h ∈ π−1(i + 1/2) such that σ̃ (h) = −λ̃(h) and assume that
es(h, k) /∈ D for any k ∈ Zh such that hσ̃ (h)− k is even. Then es(h+ 1, k+ σ̃ (h))
is not in µi (D).

Proof. In the case i ∈ IS , for any h, k ∈ Zh such that σ̃ (h) = λ̃(h) and hσ̃ (h)− k
is odd, we can verify

es(h, k) /∈ D H⇒ es(h− 1, k− σ̃ (h)) /∈ µi (D)

from the definition of µi (D) in §4.3.3.
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In the case i ∈ IS , assume we have k ∈ Zh such that hσ̃ (h) − k is odd and
es(h−1, k−σ̃ (h))∈µi (D). From Definition 4.1.5, we have es(h−1, k−σ̃ (h))∈D.
Since es(h, k−2σ̃ (h)) /∈ D, we have es(h, k−σ̃ (h))∈ D. Then, since σ̃ (h)= λ̃(h),
there exists m such that σ(i)(m−k)>0 and ∂ f (h−1/2,m)∩D=∂− f (h−1/2,m),
which is a contradiction. �

5.4.5. Given σ , λ and a monomial q, take B1 and N4 as in Lemma 5.4.2 and
§5.4.3. By the definition of N4 and Lemma 5.4.4, we have the following lemma:

Lemma 5.4.6. For any b ≥ B1 and any dimer configuration of type (σ, λ, ν, θi,b)

with weight q, we have

• es(h, k) /∈ D for any h and k such that h<θ−1
i,b (π(h))−2L N4 and h · σ̃ (h)−k

is even, and

• es(h, k) /∈ D for any h and k such that h<θ−1
i,b (π(h))+2L N4 and h · σ̃ (h)−k

is odd.

5.4.7. We assume that

θ−1
i,b (1/2) < θ

−1
i,b (3/2) < · · ·< θ−1

i,b (L − 1/2)

for any b > 0.
Given σ , λ and a monomial q, take B5 such that B5> b(2N4) and B5> B1. The

following theorem is the main result of this section:

Theorem 5.4.8. For any b > B5, we have a bijection between

• the set of dimer configurations of type (σ, λ, ν, θi,b) with weights q, and

• the set of data ( E3, Eν) as in Section 5.3 of type (σ, λ, ν) with weights q.

Proof. First, we divide the (x, y)-plane into the following 2L + 1 areas:

C j := {θ−1( j)− 2L N4 < x < θ−1( j)+ 2L N4} ( j ∈ Ih),

C0 := {x < θ−1(1/2)− 2L N4},
Ci := {θ−1(i − 1/2)+ 2L N4 < x < θ−1(i + 1/2)− 2L N4} (1≤ i ≤ L − 1),

CL := {θ−1(L − 1/2)+ 2L N4 < x}.
By Lemma 5.4.6, in the area C j we have

• es[h, k] /∈ D for any h and k such that π(h) > j and h · σ̃ (h)− k is even;

• es[h, k] /∈ D for any h and k such that π(h) < j and h · σ̃ (h)− k is odd.

Removing these edges, we get a new graph. A face of the new graph is a union
of L-tuple of elements in F. If we regard such a union as a hexagon, the dimer con-
figuration D gives a dimer configuration for the hexagon lattice — in other words, a
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three-dimensional diagram. Let 3( j) denote this three-dimensional diagram. (See
Example 5.4.9.)

Similarly, in the area C j we have

• es[h, k] /∈ D for any h and k such that π(h) > i and h · σ̃ (h)− k is even;

• es[h, k] /∈ D for any h and k such that π(h) < i and h · σ̃ (h)− k is odd.

Removing these edges, we get a new graph, which is an infinite disjoint union
of zigzag paths. For each zigzag path, we have two choices of perfect matching
and so the dimer configuration D gives a Young diagram ν(i). We can verify that
the datum ( E3, Eν) satisfies the conditions in Section 5.3. Note that the reverse
construction also works.

We have to check the correspondence above respects the weights. Note that all
edges of in the area Ci have weights = 1. By (5-2), the contribution of the part in
the area C j is given by

w
(
ν( j−1/2); q(si ( j))

+ , Q+
)
w
(
ν( j+1/2); (q(si ( j))

+ )
−1

Q, Q−
)
w(3( j))if σ( j)=+ ,

w
(tν( j−1/2); q(si ( j))

+ , Q+
)
w
(tν( j+1/2); (q(si ( j))

+ )
−1

Q, Q−
)
w(3( j))if σ( j)=− .

Combining these contributions, we get the claim. �

Example 5.4.9. We take σ as in Example 2.1.3 and λ=∅. Assume that θ(1/2)=
N + 1/2 and θ(5/2) = −N + 5/2 for N � 0. In Figure 11, we show the weight
(after putting q+= q−= q1/2

0 ) of edges in the area C1/2. We can idenfity the graph
in the area C1/2 with a hexagon lattice as shown in Figure 12.
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Figure 11. The graph in the area C1/2.
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Figure 12. Identification with a hexagon lattice.

Remark. In general, we have the permutation si ∈SIh of the set Ih satisfying the
following condition: for sufficiently large b we have

θ−1
i,b (si (1/2)) < θ−1

i,b (si (3/2)) < · · ·< θ−1
i,b (si (L − 1/2)).

The permutation si determines the direnction in which we take limit in the space
of stability conditions. It is the refine topological vertex associated to Yσ◦si what
we get in the limit.

5.5. Conclusion. Note that
∞⋃

b=1

3
re,+
θi,b
=3re,+

+ .

Combining Theorem 4.5.1 and Theorem 5.4.8, we have:

Theorem 5.5.1. ZRTV
σ,λ,ν has the value

ZNCDT
σ,λ,ν

∏
α∈3re,+

+

( ∏
(h,h′)∈Bα,+σ,λ

(
1− σ(α)wλ(h

′)
wλ(h)

)σ(α) ∏
(h,h′)∈Bα,−σ,λ

(
1− σ(α)wλ(h

′)
wλ(h)

)−σ(α))
.

(See (1-1), (1-3) and (4-6) for notation.)

Since the second term in this expression does not depend on ν, we have:

Corollary 5.5.2.
ZRTV
σ,λ,ν

ZRTV
σ,λ, E∅

= ZNCDT
σ,λ,ν

ZNCDT
σ,λ, E∅

.
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Combining Theorem 4.5.3 and Theorem 5.4.8, we have:

Theorem 5.5.3.

ZRTV
σ,λ,ν

∣∣
q+=q−=(q0)1/2

= ZNCDT
σ,λ,ν

∣∣
q+=q−=(q0)1/2

∏
α∈3re,+

+

(
1− σ(α) · qα)σ(α)·[α0+cλ( j−(α))−cλ( j+(α))]

.

(See (1-1), (1-3) and (4-6) for notation.)

Since the second term in the right-hand side depend only on cλ[ j]’s but not on
λ and ν, we have the following:

Corollary 5.5.4. If cλ[ j] = 0 for any j , we have

ZRTV
σ,λ,ν

ZRTV
σ, E∅, E∅

∣∣
q+=q−

= ZNCDT
σ,λ,ν

ZNCDT
σ, E∅, E∅

∣∣
q+=q−

.
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[Szendrői 2008] B. Szendrői, “Non-commutative Donaldson–Thomas invariants and the conifold”,
Geom. Topol. 12:2 (2008), 1171–1202. MR 2009e:14100 Zbl 1143.14034

[Thomas 2000] R. P. Thomas, “A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles
on K 3 fibrations”, J. Differential Geom. 54:2 (2000), 367–438. MR 2002b:14049 Zbl 1034.14015

[Toda 2009] Y. Toda, “Limit stable objects on Calabi–Yau 3-folds”, Duke Math. J. 149:1 (2009),
157–208. MR 2011b:14043 Zbl 1172.14007

[Toda 2010] Y. Toda, “Generating functions of stable pair invariants via wall-crossings in derived
categories”, pp. 389–434 in New developments in algebraic geometry, integrable systems and mirror
symmetry (Kyoto, 2008), edited by M.-H. Saito et al., Adv. Stud. Pure Math. 59, Math. Soc. Japan,
Tokyo, 2010. MR 2683216 Zbl 1216.14009 arXiv 0806.0062

[Young 2009] B. Young, “Computing a pyramid partition generating function with dimer shuffling”,
J. Combin. Theory Ser. A 116:2 (2009), 334–350. MR 2009k:05016 Zbl 1191.05007

Received November 13, 2009. Revised February 2, 2010.

KENTARO NAGAO

GRADUATE SCHOOL OF MATHEMATICS

NAGOYA UNIVERSITY

FUROCHO, CHIKUSAKU

NAGOYA, 464-8602
JAPAN

kentaron@math.nagoya-u.ac.jp





PACIFIC JOURNAL OF MATHEMATICS
Vol. 254, No. 1, 2011

THE DIRICHLET PROBLEM
FOR HARMONIC FUNCTIONS ON COMPACT SETS

TONY L. PERKINS

The main goal of this paper is to study the Dirichlet problem on a compact
set K ⊂Rn. Initially we consider the space H(K ) of functions on K that can
be uniformly approximated by functions harmonic in a neighborhood of K
as possible solutions. As in the classical theory, we show C(∂ f K ) ∼= H(K )

for compact sets with ∂ f K closed, where ∂ f K is the fine boundary of K .
However, in general, a continuous solution cannot be expected, even for
continuous data on ∂ f K . Consequently, we show that for any bounded
continuous boundary data on ∂ f K , the solution can be found in a class of
finely harmonic functions. Also, in complete analogy with the classical situ-
ation, this class is isometrically isomorphic to the set of bounded continuous
functions on ∂ f K for all compact sets K .

1. Introduction

The Dirichlet problem for harmonic functions on domains in Rn is important not
only for its own sake but also because of its influence on potential theory. Many
now-standard notions — regular points, fine topology, etc. — first appeared in the
study of this problem. The main goal of this paper is to extend the classic theory
to compact sets K ⊂ Rn .

One possible extension can be found in the abstract theory of balayage spaces
[Bliedtner and Hansen 1986; Hansen 1985]. However, we feel that the gain in
transparency resulting from a direct geometric approach more than justifies the use
of new techniques.

The Dirichlet problem can be thought of as having two components: the data set
and the data itself. One uses an initial function defined on the data set to construct
a solution (a harmonic function) on the rest of the domain, which must have a
prescribed regularity as it approaches the data set. Classically, the data set is taken
to be the topological boundary of the domain. One of the main goals of this paper
is to establish that the natural choice for the data set on compact sets is the fine

MSC2010: primary 31B05; secondary 31B10, 31B25, 31C40.
Keywords: Harmonic measure, Jensen measures, subharmonic functions, potential theory, fine

topology.
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boundary ∂ f K of K , which is shown in Lemma 5.1 to be the Choquet boundary
of K with respect to subharmonic functions on K . We limit ourselves to initial
functions that are continuous and bounded on ∂ f K , as in the classical case.

In Section 3, we introduce Jensen measures as our main tool and extend potential
theory to compact sets K ⊂ Rn by defining harmonic functions and subharmonic
functions on K . We devote Section 4 to the construction and study of harmonic
measures on compact sets. The harmonic measure on K is shown to be a maximal
Jensen measure. This is used to see that harmonic measures are concentrated on
the fine boundary (Corollary 5.3). In Section 6 we study the Dirichlet problem for
compact sets. As in the classical theory, our Theorem 6.1 shows C(∂ f K )∼= H(K )
for a class of compact sets. However, in general, a continuous solution cannot
be expected, even for continuous data on ∂ f K , as we illustrate in Example 6.2.
Therefore we show that the solution can be found in the class of finely harmonic
functions introduced in that section. By Theorem 6.5, in complete analogy with
the classical situation, this class is isometrically isomorphic to the set of bounded
continuous functions on ∂ f K , denoted Cb(∂ f K ), for all compact sets K .

2. Basic facts

Let M(�) denote the space of finite signed Radon measures on�⊂Rn , and C0(R
n)

the space of continuous functions on Rn that vanish at infinity. We often use µ( f )
to denote

∫
f dµ.

Classical potential theory. Let D be an open set in Rn , with n ≥ 2. For any
f ∈ C(∂D), the Dirichlet problem on D is to find a unique function h that is
harmonic on D and continuous on D such that h|∂D = f . The function f is
commonly referred to as the boundary data, and the corresponding h is said to be
the solution of the Dirichlet problem on D with boundary data f . The punctured
disk in R2 is a fundamental example that shows that the Dirichlet problem cannot
be solved for any continuous boundary data. However, for a bounded open set U ,
the method of Perron allows one to assign a function that is harmonic on U to any
continuous (or simply measurable) boundary data. The concept of a regular domain
was developed to establish the continuity of the Perron solution to the boundary. A
bounded connected open set D⊂Rn is a regular domain if the Dirichlet problem is
solvable on D for any continuous boundary data. Therefore, on a regular domain,
C(∂D) is isometrically isomorphic to H(D), the space of continuous functions
on D that are harmonic on D. For any f ∈ C(∂D), let h f ∈ H(D) denote the
solution of the Dirichlet problem on D with boundary data f . Put z ∈ D. The
point evaluation

Hz : f 7→ h f (z)



THE DIRICHLET PROBLEM FOR HARMONIC FUNCTIONS ON COMPACT SETS 213

is a positive bounded linear functional on C(∂D). By the Riesz representation
theorem, there is a Radon measure ωD(z, · ) on ∂D that represents Hz; that is,

h f (z)=
∫
∂D

f (ζ ) dωD(z, ζ )

for all f ∈C(∂D). The measure ωD(z, · ) is called the harmonic measure of D with
barycenter at z. See [Armitage and Gardiner 2001] for more details on potential
theory.

Jensen measures. If D is an open set in Rn , we call µ a Jensen measure on D with
barycenter z ∈ D if µ is a probability measure (a positive Radon measure of unit
mass) whose support is compactly contained in D and if for every subharmonic
function f on D the subaveraging inequality f (z)≤µ( f ) holds. The set of Jensen
measures on D with barycenter z ∈ D we denote by Jz(D).

One could define the set of Jensen measures Jc
z(D) with respect to the continu-

ous subharmonic functions on D. However, the following theorem shows that the
set of Jensen measures would not be changed.

Theorem 2.1. Let D be a bounded open subset of Rn . For every z ∈ D, the sets
Jz(D) and Jc

z(D) are equal.

Proof. Since clearly Jz(D)⊆ Jc
z(D) for all z ∈ D, we show the reverse inclusion.

Pick some z0 ∈ D and let µ ∈ Jc
z0
(D). Then we must show f (z0) ≤ µ( f )

for every function f that is subharmonic on D. The support of µ is compactly
contained in D.

Because f is subharmonic on D, we can find a decreasing sequence { fn} of
continuous subharmonic functions that converge to f . Since µ ∈ Jc

z0
(D), we have

f (z0) ≤ µ( fn) for every fn . By the Lebesgue monotone convergence theorem, it
follows that f (z0)≤ µ( f ). Thus µ ∈ Jz0(D). �

Since Jz(D)=Jc
z(D) for all z ∈ D, to check that µ∈Jz(D) it suffices to check

that µ has the subaveraging property for every continuous subharmonic function.
Examples of Jensen measures with barycenter at z∈D include the Dirac measure

at z, that is, δz , the harmonic measure with barycenter at z for any regular domain
that is compactly contained in D, and the average over any ball (or sphere) centered
at z that is contained in D. The following proposition demonstrates some basic
properties of sets of Jensen measures.

Proposition 2.2 [Cole and Ransford 2001, Proposition 2.1]. Let D1 and D2 be
open subsets of Rn with D1 ⊂ D2. Let z ∈ D1.

(i) If µ ∈ Jz(D1), then also µ ∈ Jz(D2).

(ii) If µ ∈ Jz(D2) and supp(µ)⊂ D1, and if each bounded component of Rn
\ D1

meets Rn
\ D2, then µ ∈ Jz(D2).
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Jensen measures and subharmonic functions are, in a sense, dual to each other.
This duality is illustrated by the following theorem.

Theorem 2.3 [Cole and Ransford 1997, Corollary 1.7]. Let D be an open subset
of Rn that possesses a Green’s function. Let

φ : D→ [−∞,∞)

be a Borel measurable function that is locally bounded above. Then

sup{v(z) : v ∈ S(D), v ≤ φ} = inf{µ(φ) : µ ∈ Jz(D)}

for each z ∈ D, where S(D) denotes the set of subharmonic functions on D.

Fine topology. The two books [Brelot 1971; Fuglede 1972] are classical references
on the fine topology, and many books on potential theory contain chapters on the
topic, for example [Armitage and Gardiner 2001, Chapter 7].

The fine topology on Rn is the coarsest topology on Rn such that all subharmonic
functions are continuous in the extended sense of taking values in [−∞,∞].

When referring to a topological concept in the fine topology, we follow the
standard policy of either using the words “fine” or “finely” prior to the topological
concept, or attaching the letter f to the associated symbol. For example, the fine
boundary of K , ∂ f K , is the boundary of K in the fine topology. The fine topology
is strictly finer than the Euclidean topology.

Many of the key concepts of classical potential theory have analogous definitions
in relation to the fine topology. We recall a few of them. Relative to a finely open
set V in Rn , the harmonic measure δV c

x is defined as the swept-out of the Dirac
measure δx on the complement of V . A function u is said to be finely hypoharmonic
on a finely open set U if it is upper finite, finely upper semicontinuous, and if

u(x)≤ δV c

x (u) <∞

for all x ∈ V and all relatively compact finely open sets V with fine closure con-
tained in U . A function h is said to be finely harmonic if h and−h are finely hypo-
harmonic. Also, the fine Dirichlet problem on U for a finely continuous function
f defined on the fine boundary of a bounded finely open set U consists of finding
a finely harmonic extension of f to U . The development of the fine Dirichlet
problem is quite similar to that of the classical. Fuglede [1972, Theorem 14.6]
establishes a Perron solution for the fine Dirichlet problem, showing that there
exists a Perron solution HU

f that is finely harmonic on U for any numerical function
f on ∂ f U that is δ∂ f U

x integrable for every x ∈U . The same theorem also provides
us with the desired continuity at the boundary, showing that the fine limit of HU

f (x)
tends to f (y) as x ∈U goes to y for every finely “regular” boundary point y ∈ ∂ f U
at which f is finely continuous.
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3. Harmonic and subharmonic functions on compact sets

We now begin our study of potential theory on compact sets. For compact sets
that are not connected, the Hausdorff property allows us to reduce Dirichlet-type
problems on the compact set to solving separate problems on each connected com-
ponent. Therefore, in what follows, we work on compact sets K in Rn that need
not be connected, with the understanding that we can always separate the problem
by working on the connected components of K individually.

There are currently three equivalent ways to define harmonic and subharmonic
functions on compact sets.

Definition 3.1 (exterior). Let H(K ) (resp. S(K )) be the uniform closures of all
functions in C(K ) that are restrictions of harmonic (resp. subharmonic) functions
on a neighborhood of K .

Definition 3.2 (interior). One can define H(K ) and S(K ) as the subspaces of
C(K ) consisting of functions that are finely harmonic and finely subharmonic,
respectively, on the fine interior of K .

The equivalence of these definitions of H(K )was shown in [Debiard and Gaveau
1974], and of S(K ) in [Bliedtner and Hansen 1975; 1978].

For the third definition of H(K ), we extend the notion of Jensen measures to
compact sets.

Definition 3.3. We define the set of Jensen measures on K with barycenter at z∈K
as the intersection of all sets Jz(U ), that is,

Jz(K )=
⋂

K⊂U

Jz(U ),

where U is any open set containing K .

Another definition of H(K ) was introduced in [Poletsky 1997] using the notion
of Jensen measures.

Definition 3.4 (via Jensen measures). The set H(K ) is the subspace of C(K ) con-
sisting of functions h such that h(x)= µ(h) for all µ ∈ Jx(K ) and x ∈ K .

It was shown in [Poletsky 1997] that this definition is equivalent to the exterior
definition above.

The next lemma shows that this last construction extends to subharmonic func-
tions in the ideal way.

Lemma 3.5. A function is in S(K ) if and only if it is continuous and satisfies the
subaveraging property with respect to every Jensen measure on K ; that is,

S(K )= { f ∈ C(K ) : f (z)≤ µ( f ), for all µ ∈ Jz(K ) and every z ∈ K }.
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Proof. We use the exterior definition of S(K ) to show “⊆”. Take f ∈C(K ) and let
{ f j } be a sequence of subharmonic functions defined in a neighborhood of K such
that { f j } is converging uniformly to f . Then f j (z) ≤ µ( f j ) for any µ ∈ Jz(K ).
Because the convergence is uniform, we have f (z)≤ µ( f ).

Now suppose that f is in the set on the right. The subaveraging condition
implies that f is finely subharmonic on the fine interior of K , and by assumption,
f is continuous. Therefore f satisfies the interior definition of S(K ). �

Recall the exterior definition of S(K ) as the uniform limits of continuous func-
tions subharmonic in neighborhoods of K . Proposition 3.6 shows that the defining
sequence for any function in S(K ) may be taken to be increasing. This is a simple
consequence of a duality theorem of Edwards [Gamelin 1978, Theorem 1.2; Cole
and Ransford 1997].

Proposition 3.6. Every function in S(K ) is the limit of an increasing sequence of
continuous subharmonic functions defined on neighborhoods of K .

Proof. Edwards’s theorem states that if p is a continuous function on K , then for
all z ∈ K we have

Ep(z) := sup{ f (z) : f ∈ S(K ), f ≤ p} = inf{µ(p) : µ ∈ Jz(K )}.

From the proof of this theorem, it follows that Ep is lower semicontinuous and
is the limit of an increasing sequence of continuous subharmonic functions on
neighborhoods of K . The result follows by observing that p = Ep whenever
p ∈ S(K ). �

4. Harmonic measure on a compact set

To use the exterior definition of H(K ), we typically want to approximate K by
a decreasing sequence of regular domains. A decreasing sequence of regular do-
mains {U j } is said to be converging to K if for every ε > 0, there is a j0 such that
U j contains K and lies in the ε-neighborhood Kε of K when j ≥ j0. Furthermore,
we require that U j+1 be compactly contained in U j ; that is, U j+1 ⊂ U j for all j .
The existence of such a sequence is provided by [Hervé 1962, Proposition 7.1].

Theorem 4.1 allows us to define a harmonic measure on K . For a decreasing
sequence of regular domains {U j }, we let ωU j (z, · ) denote the harmonic measure
on U j with barycenter at z ∈U j .

Theorem 4.1. If {U j } is a sequence of regular domains converging to a compact
set K ⊂Rn , then for every z∈K , the harmonic measures ωU j (z, · ) converge weak∗.
Also, this limit does not depend on the choice of the sequence of domains {U j }.

Proof. Since ωU j are measures of unit mass supported on a compact set in Rn , by
Alaoglu’s theorem they must have a limit point. To show that this point is unique,
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it suffices to show that for every z ∈ K , the limit

(1) lim
j→∞

∫
∂U j

u(ζ ) dωU j (z, ζ )

exists for every u ∈ C(U 1).
First, we show that the limit in (1) exists when u is continuous and subharmonic

in a neighborhood of K . The solution u j of the Dirichlet problem on U j with
boundary value u is equal to

u j (z)=
∫
∂U j

u(ζ ) dωU j (z, ζ ).

Since u is subharmonic, we have u j ≥u on U j . Then, since u j+1=u on ∂U j+1 and
u j ≥ u = u j+1 on ∂U j+1, the maximum principle for harmonic functions implies
that u j ≥ u j+1 on U j+1. Thus {u j } is a decreasing sequence on K , and we see that
for every z ∈ K , the limit in (1) exists.

If u ∈C2(U 1), then we may represent u as a difference of two C2(U 1) functions
that are subharmonic on U1. By the argument above, the limit in (1) exists.

Because C2(U 1) is dense in C(U 1), we see that the limit in (1) always exists. �

Definition 4.2. We define the harmonic measure ωK (z, · ) on a compact set K with
barycenter z ∈ K as the weak∗ limit of ωU j (z, · ), chosen as above.

To use this definition for the Dirichlet problem, we must check that the support
of ωK (z, · ) lies on the boundary of K . Actually, in Section 5, we are able to give
more specific information about ωK (z, · ); see Corollary 5.3.

Lemma 4.3. The support of ωK (z, · ) is contained in ∂K .

Proof. Let W be a neighborhood of ∂K . Let {U j } be a sequence of domains
converging to K , and take a sequence z j ∈ ∂U j . Then there exists a subsequence
{z jk } that must be converging to some z0 ∈ K . Because z j ∈ ∂U j , we know z j is
not in K . Therefore, the limit of z jk cannot be in the interior of K . Thus z0 is in
∂K ⊂W . Consequently, there is j0 such that ∂U j ⊂W for each j ≥ j0.

Let x ∈ Rn
\ ∂K , and take W to be a neighborhood of ∂K such that x 6∈ W .

There is an r > 0 such that B(x, r)∩W =∅. Since ωU j (z, · ) has support on ∂U j ,
which is contained in W for large j , we have ωU j (z, B(x, r))= 0. since b(x, r) is
open, the portmanteau theorem shows that

lim inf
j→∞

ωU j (z, B(x, r))≥ ωK (z, B(x, r)).

Hence, ωK (z, B(x, r))= 0, and x is not in the support of ωK (z, · ). �

The following theorem brings our study back to the topic of Jensen measures.

Theorem 4.4. The harmonic measure on K is a Jensen measure on K .
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Proof. Because ωK (z, · ) is defined as the weak∗ limit of probability measures,
ωK (z, · ) is a probability measure.

Recall that for z ∈ K , we defined Jz(K ) = ∩Jz(U ), where K ⊂ U . However,
it suffices to see that Jz(K ) = ∩Jz(U j ), where {U j } is any sequence of domains
converging to K . We show ωK (z, · ) ∈ Jz(U j ) for all j .

Pick some j . Then let f be a continuous subharmonic function on U j . Then

f (z)≤
∫
∂Ul

f (ζ ) dωUl (z, ζ )

for all l > j . Then, taking the weak∗ limit, we have

f (z)≤
∫
∂K

f (ζ ) dωK (z, ζ ).

Therefore, ωK (z, · ) satisfies the subaveraging inequality for every continuous sub-
harmonic function on U j , and ωK (z, · ) is a probability measure with support con-
tained in U j . Thus ωK (z, · ) must be in Jc

z(U j ), which is equal to Jz(U j ) by
Theorem 2.1. Thus ωK (z, · ) ∈ Jz(K ). �

Following [Gamelin 1978, p. 16], a partial ordering on the set of Jensen mea-
sures is defined below. The notation J(K ) is used to stand for the union of all
Jensen measures on K ; that is,

J(K )=
⋃
z∈K

Jz(K ).

Definition 4.5. For µ, ν ∈J(K ), we say that µ� ν if for every φ ∈ S(K ) we have
µ(φ) ≥ ν(φ). Furthermore, a Jensen measure µ is maximal if there is no ν � µ
with ν 6= µ where ν ∈ J(K ).

Lemma 4.6. If µ ∈ Jz1(K ) and ν ∈ Jz2(K ) with z1 6= z2, then µ and ν are not
comparable.

Proof. Recall that the coordinate functions πi are harmonic. Because z1 6= z2,
they must differ in at least one coordinate, say, the i-th. Assume without loss
of generality that πi (z1) > πi (z2). Then µ(πi ) > ν(πi ). However, −πi is also
harmonic, and so ν(−πi ) > µ(−πi ). Therefore, µ and ν are not comparable, and
if µ� ν, then they have a common barycenter. �

We now demonstrate that the harmonic measure is maximal with respect to this
ordering. The maximality of the harmonic measure proved below is the Littlewood
subordination principle [Duren 1970, Theorem 1.7] when K is the closed unit ball
in the plane.

Theorem 4.7. For all z ∈ K , the measure ωK (z, · ) is maximal in J(K ).
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Proof. By Lemma 4.6, it suffices to show that ωK (z, · ) is maximal in Jz(K ) for
any z ∈ K .

Pick any z0 ∈ K . We show that ωK (z0, · ) majorizes every measure µ∈Jz0(K ).
Consider a decreasing sequence of regular domains {U j } converging to K . Take
any φ∈ Sc(K ). By Proposition 3.6, we may find a sequence φ j ∈ Sc(U j ) increasing
to φ. Furthermore, we extend φ as φ̃ ∈ C0(R

n), while keeping φ̃ ≥ φ j for all j .
Define harmonic functions 8 j on U j by

8 j (x)=
∫
∂U j+1

φ j (ζ ) dωU j+1(x, ζ ).

Therefore, since φ j is subharmonic, 8 j ≥ φ j on U j+1, so∫
∂U j+1

φ j (ζ ) dωU j+1(z0, ζ )=8 j (z0)= µ(8 j )≥ µ(φ j ).

Because φ̃ ≥ φ j , we have

(2)
∫
∂U j+1

φ̃(ζ ) dωU j+1(z0, ζ )≥ µ(φ j )

for all j . By taking weak∗ limits, we have that

lim
j→∞

∫
∂U j+1

φ̃(ζ ) dωU j+1(z0, ζ )=

∫
∂K
φ(ζ ) dωK (z0, ζ ).

The Lebesgue monotone convergence theorem gives

lim
j→∞

µ(φ j )= µ(φ).

Therefore, by taking the limit by j of (2), we see∫
∂K
φ(ζ ) dωK (z0, ζ )≥ µ(φ).

We now have ωK (z0, · )�µ. If any ν ∈Jz0(K ) has the property ν �ωK (z0, · ), by
the antisymmetry property of partial orderings, we have ν = ωK (z0, · ). Thus the
measure ωK (z0, · ) is maximal in Jz0(K ). �

The maximality of harmonic measures implies that they are trivial at the points
z∈K such that Jz(K )={δz}, which, by Lemma 5.1, are precisely the fine boundary
points.

Corollary 4.8. The harmonic measure ωK (z0, · ) is equal to δz0 if and only if
Jz0(K )= {δz0}.
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Proof. Suppose ωK (z0, · )= δz0 . Consider the function ρ(z)= ‖z− z0‖
2
∈ Sc(K ).

Then for any µ ∈ Jz0 , by the maximality of ωK (z0, · ), we have

0= ρ(z0)≤ µ(ρ)≤

∫
∂K
ρ(ζ ) dωK (z0, ζ )= ρ(z0)= 0.

Because ρ(z)> 0 for all z 6= 0, and µ is a probability measure, we see that µ= δz0 .
Thus Jz0(K )= {δz0}.

For the reverse implication, we have ωK (z0, · ) ∈ Jz0(K ) from Theorem 4.4. �

5. The boundary

Gamelin [1978] introduces a version of Choquet theory for cones of functions on
compact sets. (Actually, it applies to sets of functions that are slightly more general
than the cones we define.)

Following his guidance, we consider a set R of functions mapping a compact
set K ⊂ Rn to [−∞,∞), with the following properties:

(i) R includes the constant functions;

(ii) if c ∈ R+ and f ∈R, then c f ∈R;

(iii) if f, g ∈R, then f + g ∈R; and

(iv) R separates the points of K .

One then considers a set of R-measures for z∈K defined as the set of probability
measures µ on K such that

f (z)≤ µ( f )

for all f ∈R.
Naturally, our model for R will be S(K ). It then follows that when R= S(K ),

the R-measures for z ∈ K are precisely Jz(K ). We now state some classic results
from [Gamelin 1978] that we need in the following sections.

One can define the Choquet boundary of K with respect to S(K ) as

ChS(K ) K = {z ∈ K : Jz(K )= {δz}}.

Many nice properties of the Choquet boundary are known. In particular, we need
the following characterization; see also, for example, [Bliedtner and Hansen 1986,
VI.4.1; Hansen 1985].

Lemma 5.1. The Choquet boundary of K with respect to S(K ) is the fine boundary
of K ; that is,

ChS(K ) K = ∂ f K .
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Proof. Since the fine topology is strictly finer than the Euclidean topology, any
point in the interior of K will also be in the fine interior of K , and any point of
Rn
\K can be separated from K by a Euclidean (and therefore fine) open set. Thus

the fine boundary of K is contained in ∂K . The result follows immediately from
[Poletsky 1997, Theorem 3.3] or [Bliedtner and Hansen 1986, Proposition 3.1],
which states that Jz(K )= {δz} if and only if the complement of K is non-thin at z,
that is, z is a fine boundary point of K . �

The set ∂ f K is also called the stable boundary of K . In fact, Lemma 5.1 shows
that ChS(K ) K is the finely regular boundary of the fine interior of K . For details
on finely regular boundary points and related concepts, see [Bliedtner and Hansen
1986, VII.5–7; Hansen 1985].

With this association, the result of Brelot [1971, p. 89] about the stable boundary
points of K shows that ChS(K ) K is dense in ∂K .

Theorem 5.2. The fine boundary of K (and therefore the Choquet boundary of K
with respect to S(K )) is dense in the topological boundary of K .

In general, the fine boundary is not closed, as Example 6.2 of Section 6 shows.
So we cannot claim that it is the support of measures. Also, as Theorem 5.2 shows,
the closure of Ok is the boundary of K . In particular, it may coincide with K for
porous Swiss cheeses [Gamelin 1969, pp. 25–26].

Recall that a measure µ ∈ M(K ) is concentrated on a set E if for every set
F ⊂ K \ E , we have µ(F)= 0. A probability measure µ is concentrated on a set
E if and only if µ(E)= 1. From [Gamelin 1978, p. 19], we know that all maximal
measures are concentrated on ChS(K ) K = ∂ f K . With this observation, the next
corollary immediately follows from Theorem 4.7 (which states that the harmonic
measure is maximal).

Corollary 5.3. For every z in K , the harmonic measure with barycenter at z is
concentrated on ∂ f K .

6. The Dirichlet problem on compact sets

In the classical setting, we know that any continuous function in the boundary of
a domain D ⊂ Rn extends harmonically to D and continuously to D if and only if
every point of the boundary is regular. For general compact sets in Rn , we have:

Theorem 6.1. If K is a compact set in Rn , then any function φ ∈ C(∂ f K ) extends
to a function in H(K ) if and only if the set ∂ f K is closed. Also, the solution is
given by

8(z)=
∫
∂ f K

φ(ζ ) dωK (z, ζ ), z ∈ K ,

and H(K ) is isometrically isomorphic to C(∂ f K ).
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From this it also follows that the swept-out point mass at z onto the complement
of K is just ωK (z, · ).

Proof. Suppose the set ∂ f K is closed. Consider a continuous function φ on ∂ f K .
Assume that

8(z)=
∫
∂ f K

φ(ζ ) dωK (z, ζ ), z ∈ K .

Because ∂ f K is closed, by Theorem 5.2, we have ∂ f K = ∂K . Also, because
ωK (z, · )= δz for every z ∈ ∂ f K , we see that 8= φ on ∂ f K .

Let z j be a sequence in K converging to z0 ∈ ∂ f K . Because z0 is in ∂ f K =
ChS(K ) K , we have Jz0(K ) = {δz0}. Because J(K ) is weak∗ compact [Gamelin
1978, p. 3], any sequence of measures µ j ∈ Jz j (K ) must converge weak∗ to δz0 .
In particular, ωU j (z j , · ) is weak∗ converging to δz0 . Hence, 8(z j ) is converging
to 8(z0)= φ(z0), and 8 is continuous at the boundary of K .

Because ∂ f K is closed, φ ∈ C(∂ f K ) = C(∂K ). We extend φ continuously as
φ̃ ∈ C0(R

n), and then define the harmonic functions

h j (z)=
∫
∂U j

φ̃(ζ ) dωU j (z, ζ ).

Because φ̃ is continuous and ωU j (z, · ) converges weak∗ to ωK (z, · ),

lim
j→∞

h j (z)= lim
j→∞

∫
∂U j

φ̃(ζ ) dωU j (z, ζ )=
∫
∂K
φ(ζ ) dωK (z, ζ )=8(z).

Therefore, 8 is the pointwise limit of a sequence {h j } of functions harmonic in
a neighborhood of K . Also, we can take the extension φ̃ of φ in such a way that
the sequence {h j } is uniformly bounded. It now easily follows that8 is continuous
on the interior of K . Indeed, consider a point z in the interior of K . Then there
exists a ball B centered at z contained in the interior of K . The h j are harmonic
functions on B converging pointwise to 8. Therefore, 8 is continuous on B by
the Harnack principle, and so 8 is continuous on K . Thus we have a continuous
function 8 with representation

8(z)=
∫
∂K
φ(ζ ) dωK (z, ζ ), z ∈ K .

Since 8 is continuous on K by [Poletsky 1997], to check that 8 ∈ H(K ), all
that remains is to show that 8 is averaging with respect to Jensen measures, that
is, the equivalence of the external definition of H(K ) and the definition by Jensen
measures. So we need to see that 8(z) = µz(8) for every µz ∈ Jz(K ) and for
every z ∈ K . Because h j is harmonic on U j , we have h j (z) = µz(h j ). However,
by the Lebesgue dominated convergence theorem,

µz(8)= lim
j→∞

µz(h j )= lim
j→∞

h j (z)=8(z).
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Thus 8 ∈ H(K ).
For the converse, suppose ∂ f K is not closed. Then there is a point z0∈∂K \∂ f K .

Since z0 is not in ∂ f K , by Corollary 4.8, ωK (z0, · ) is not trivial. Therefore, we can
find a set E ⊂ ∂K such that ωK (z0, E) > 0, with E in the complement of B(z0, r)
for some r > 0. Consider a continuous function f on ∂K such that f = 1 on ∂K
outside B(z0, r) and f = 0 on B(z0, r/2)∩ ∂K . Then∫

∂K
f (ζ ) dωK (z0, ζ ) > ωK (z0, E), z ∈ K .

However, f (z0) = 0. Thus there can be no function in H(K ) that agrees with f
on the boundary of K . �

Example 6.2. The following is a simple example of a compact set K ⊂Rn , n ≥ 3,
in which the fine boundary is not closed. The set K is obtained from the closed
unit ball B⊂Rn by deleting a sequence {B(zn, rn)}

∞

n=1 of open balls whose centers
and radii tend to zero. We take the centers to be zn = (2−n, 0, . . . , 0) ∈Rn and the
radii 0< rn < 2−n−2. This is analogous to the “road runner” example of Gamelin
[1969, Figure 2] and the Lebesgue spine [2001, p. 187].

By Theorem 6.1, one cannot expect a continuous solution for the Dirichlet prob-
lem on an arbitrary compact set, even with continuous boundary data. Therefore,
at this point we consider the following broader class of solutions with weaker
continuity requirement.

Definition 6.3. Let f H c(K ) be the class of finely continuous functions on K that
are finely harmonic on the fine interior of K and continuous and bounded on ∂ f K .

We saw in Definition 3.4 (via Jensen measures) that H(K ) consists of the
functions in C(K ) satisfying the averaging property with respect to J(K ), and
by Definition 3.2 (interior) that it can also be seen as the C(K ) that are finely
harmonic on the fine interior of K . Therefore, in the definition of f H c(K ), we
have maintained the finely harmonic requirement while requiring continuity only
on the boundary ∂ f K (to match the boundary data). In fact, Theorem 6.5 below
shows that the functions in f H c(K ) also satisfy the averaging property with respect
to J(K ).

Theorem 6.5 shows that the Dirichlet problem on compact sets K ⊂Rn is solv-
able in the class of functions f H c(K ) for boundary data that is continuous and
bounded on ∂ f K . The functions that are continuous and bounded on ∂ f K are
denoted Cb(∂ f K ). For this we need the following theorem.

Theorem 6.4 [Fuglede 1972, Theorem 11.9]. The pointwise limit of a pointwise
convergent sequence of finely harmonic functions um in U , a finely open subset of
Rn , is finely harmonic, provided that supm |um | is finely locally bounded in U.
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Theorem 6.5. For every φ lying in Cb(∂ f K ), that is, continuous and bounded on
∂ f K , there is a unique hφ ∈ f H c(K ) equal to φ on ∂ f K . Moreover, hφ satisfies
the averaging property for J(K ), and in particular,

hφ(x)=
∫
∂ f K

φ(ζ ) dωK (x, ζ ), x ∈ K .

Proof. Let φ ∈ Cb(∂ f K ), and for x ∈ ∂ f K define

φ̃(x)= lim sup
y→x, y∈∂ f K

φ(y).

Since φ is continuous on ∂ f K , if x ∈∂ f K , then φ̃(x)=φ(x). Also, φ̃ is upper semi-
continuous, and thus we may find a decreasing sequence of functions {φk} that are
continuous on ∂ f K and converge pointwise to φ̃. Then we extend the φk to C0(R

n)

as φ̂k . By taking φ̃k=min{φ̂1, φ̂2, . . . , φ̂k}, we can make the extensions be decreas-
ing. Consider a decreasing sequence of regular domains U j converging to K . Let
u j, k be the solution of the Dirichlet problem on U j for φ̃k . Since the measures
ωU j (x, · ) weak∗ converge to ωK (x, · ), we have that lim j u j, k =

∫
φ̃k dωK := uk .

Since the φ̃k are decreasing, uk must also be decreasing. Indeed, we let hφ= lim uk .
Take any µ ∈ J(K ). Then µ ∈ Jz0(U j ) for all j and some z0 ∈ K . Since u j, k

is harmonic, we have µ(u j, k) = u j, k(z0). However, by the Lebesgue dominated
convergence theorem, we have lim j µ(u j, k)=µ(uk), and soµ(uk)=uk(z0). Since
the sequence {uk} is decreasing pointwise to hφ , we have µ(hφ) = hφ(z0), by the
same theorem. Thus hφ satisfies the averaging property on J(K ). Since ωK (z, · )
lies in J(K ) for all z ∈ K , we see that

hφ(z)=
∫
∂ f K

hφ(ζ ) dωK (z, ζ ).

We now show that hφ = φ on ∂ f K . For any x ∈ Ok , we know ωK (x, · )= δx , and

uk(x)= lim
j→∞

u j, k(x)=
∫
φ̃k(ζ ) dωK (x, ζ )= φ̃k(x).

Thus uk(x)= φ̃k(x) for all x ∈ ∂ f K , and so

hφ(x)= lim
k→∞

uk(x)= lim
k→∞

φ̃k(x)= φ(x)

for all x ∈ ∂ f K .
To see that hφ is finely harmonic, we use Theorem 6.4. Observe that uk is the

pointwise limit of the harmonic (and therefore finely harmonic) functions u j, k ,
and the solution hφ is the pointwise limit of uk . From the construction of these
functions, it is clear that they are bounded. �

Corollary 6.6. The set Cb(∂ f K ) is isometrically isomorphic to f H c(K ).
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Proof. The previous theorem establishes the homomorphism taking Cb(∂ f K ) to
f H c(K ). Observe that h|∂ f K ∈ Cb(∂ f K ) for every h ∈ f H c(K ). The uniqueness
of the solution shows that h|∂ f K extends as h. Furthermore, the isometry follows
directly from the integral representation in the previous theorem. �
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EXTENSION OF AN ANALYTIC DISC AND DOMAINS IN C2

WITH NONCOMPACT AUTOMORPHISM GROUP

MINJU SONG

Let � be a smoothly bounded domain in C2 such that the Bergman repre-
sentative map near the boundary continues to be diffeomorphic up to the
boundary. If such a domain admits a holomorphic automorphism group
orbit accumulating at a boundary point of finite D’Angelo type 2m, we show
that the domain � is biholomorphic to the Thullen domain

{(z, w) ∈ C2
: |z|2m

+ |w|
2 < 1}.

This result refines the well-known theorem of E. Bedford and S. Pinchuk.

1. Introduction

Denote by Aut(�) the set of biholomorphic self-maps of a domain (that is, an open
connected set) � in the n-dimensional complex Euclidean space Cn . By [Cartan
1932], Aut(�) is a (real) Lie group with respect to the law of composition and
the topology of uniform convergence on compact subsets. One of the traditional
important questions is:

Which bounded domains admit a noncompact automorphism group?

There are several well-known results concerning this question; see, for example,
[Wong 1977; Bedford and Pinchuk 1988; Kim 1992]. This paper also pertains to
this line of research. Recall the following theorem:

Theorem 1.1 [Bedford and Pinchuk 1988]. Let � be a bounded pseudoconvex
domain in C2 with a real analytic boundary. If� has a noncompact automorphism
group, then � is biholomorphic to the Thullen domain

E2m := {(z, w) ∈ C2
: |z|2m

+ |w|2 < 1}

for some positive integer m.

MSC2000: primary 32M05; secondary 32D15.
Keywords: automorphism group action, Bergman representative map.
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The main thrust of this article is to try to localize this theorem. Theorem 1.1 and
its generalizations and refinements (in [Bedford and Pinchuk 1991], for example)
rely upon global assumptions (partly local but not local) that the boundary is glob-
ally real analytic (or, at least, of finite D’Angelo type). Such assumptions were
needed in order use the orbit accumulation point not of the original noncompact
automorphism orbit, but of a 1-parameter subgroup produced by the initial scaling
method; the finite D’Angelo type of that orbit accumulation boundary point is that
exponent 2m in Bedford and Pinchuk’s theorem. Keeping this in mind, we state
our main result here:

Theorem 1.2. Let � be a bounded pseudoconvex domain in C2 with smooth (C∞)
boundary satisfying Condition BR (see Definition 3.3). Suppose there is a point
p0 ∈ ∂� of finite D’Angelo type 2m, a point q ∈�, and a sequence {ϕ j } ⊂Aut(�)
such that

lim
j→∞

ϕ j (q)= p0 ∈ ∂�.

Then

�∼= E2m := {(z, w) ∈ C2
: |z|2m

+ |w|2 < 1}.

The key step of the proof is showing the smooth extension of a certain holomor-
phic disc in the given domain. Since Fefferman’s celebrated work [1974], analysis
on the Bergman kernel function has been regarded as one of the most powerful
tools in understanding the smooth extension of holomorphic mappings. In the
equidimensional case, Bell and Ligocka [1980] introduced the so-called Conditions
A and B on the Bergman kernel function, which guarantee the smooth extension of
biholomorphic mappings. In contrast with the equidimensional case, Conditions
A and B seem insufficient to prove the smooth extension of holomorphic discs in
a bounded domain in C2. This is the reason why we define a new criterion for the
smooth extension, which we call Condition BR.

According to [Ligocka 1980], Condition B holds if the Bergman representative
maps, introduced by S. Bergman, form holomorphic coordinates near the boundary.
Inspired by Ligocka’s observation, we say that a domain with smooth boundary
satisfies Condition BR if for every boundary point p, there is an interior point q at
which the Bergman representative map gives rise to a smooth coordinate system
in a relative open neighborhood of q that includes the boundary point p (see also
Definition 3.3).

Outline of paper. In Section 2 we briefly explain Berteloot’s argument on the
Pinchuk scaling method without proof. The smooth extension of holomorphic
disc under Condition BR is proved in Section 3 (see Proposition 3.7). The main
theorem is proved in the last section.
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2. Berteloot’s two-dimensional analysis on Pinchuk’s scaling

Scaling. Let � be a domain in C2 and let p0 belong to ∂�. Assume that ∂� is of
class C∞, pseudoconvex and of finite type in a neighborhood of p0. Let 2m be the
type of ∂� at p0 in the sense of [D’Angelo 1982]. We may assume that p0= (0, 0)
and that Re(∂/∂w) is the outward normal vector to ∂� at p0.

Let {q j } be a sequence of points in � which converges to (0, 0). For every j
large enough, there exists a unique boundary point p j ∈ ∂� which satisfies

q j + (0, ε j )= p j , for some ε j > 0.

According to [Catlin 1989], if we let 2m be the D’Angelo type of ∂� at the
origin, there exists a homogeneous subharmonic polynomial H(z, z̄) of degree 2m
with no harmonic terms such that, for a certain open neighborhood U of (0, 0),

(z, w) ∈�∩U ⇐⇒ Rew+ H(z, z̄)+ R(z, Imw) < 0,

with R(z, Imw) := o(|z|2m
+ Imw).

Consider the sequence of maps A j : C
2
→ C2 defined by

A j (z, w)= (z− a j , w− b j + c j (z− a j )),

where p j = (a j , b j ) and c j ∈ C is chosen so that the complex tangent line of
∂A j (�) at (0, 0) is {(z, w) ∈ C2

: w = (0, 0)}. Then we have A j (p j ) = (0, 0),
A j (q j )= (0,−ε j ), and

(z, w) ∈ A j (�∩U) ⇐⇒ Rew+
2m∑

k=2

Pk, j (z, z̄)+ R j (z, z̄, Imw) < 0,

where the Pk, j (z, z̄) are homogeneous polynomials of degree k with no harmonic
terms, and

R j (z, z̄, Imw)= o(|z|2m+1
+ | Imw|), lim

j→∞
R j (z, Imw)= R(z, Imw).

Since the set of polynomials of degree not exceeding k is a finite dimensional
vector space, we simply give an inner product. Then choose δ j > 0 so that∥∥∥∥ε−1

j

2m∑
k=2

Pk, j (δ j z)
∥∥∥∥= 1.
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Since lim j→∞ Pk, j = 0 for k < 2m and P2m, j converges to some homogeneous
subharmonic polynomial of degree 2m with no harmonic terms, it follows that
δ2m

j ≤ Cε j for some constant C .
Then consider the dilation map 3 j : C

2
→ C2 defined by

3 j (z, w)=
( z
δ j
,
w

ε j

)
.

Denote by T j : �∩U→ C2 the transformation defined by T j :=3 j ◦ A j ◦ ϕ j ,
for each j . This T j is called the sequence of scaling maps. Note that

(z, w) ∈ T j (�∩U) ⇐⇒

Rew+ 1
ε j

2m∑
k=2

Pk, j (δ j z, δ j z̄)+
1
ε j

R j (δ j z, δ j z̄, ε j Imw) < 0.

Note that the sequence of polynomials
{
ε−1

j
∑2m

k=2 Pk, j (δ j z)
}

is bounded in
norm. Thus it contains a convergent subsequence, converging to some polynomial
H(z, z̄) of degree at most 2m. Since the remainder term of the defining function
tends to zero as j→∞, we see that the sequence of domains T j (�∩U) converges
to a domain MH := {(z, w) ∈ C2

: Rew+ H(z, z̄) < 0} with ‖H‖ = 1. According
to [Berteloot 1994], the scaling sequence forms a normal family of holomorphic
mappings and the polynomial H(z, z̄) turns out to be a homogeneous polynomial.
Moreover:

Theorem 2.1 [Berteloot 1994]. Let� be a domain in C2, and let p0 belong to ∂�.
Assume that there exists a sequence {ϕ j } in Aut(�) and a point q ∈ � such that
lim j→∞ ϕ j (q) = p0. If ∂� is a pseudoconvex and finite D’Angelo type near p0,
then � is biholomorphically equivalent to the model domain

MH := {(z, w) ∈ C2
: Rew+ H(z, z̄) < 0},

where H(z, z̄) is a homogeneous subharmonic polynomial that does not contain
any harmonic terms.

From this point on, we denote the biholomorphism by 9 : �→ MH . We have
9(q)= (0,−1) ∈ C2, since T j (q)= (0,−1) for every j .

Embedded totally geodesic disc. Consider the set {(0, w)∈C2
}∩MH ⊂MH which

is just the left half plane in the complex plane {0}×C. Let D̃ be the left half plane
and D the open unit disc in C. Hence we consider the biholomorphism µ : D→ D̃
defined by

µ(ζ )=
ζ + 1
ζ − 1

,

and denote the injection map by ι : D̃ ↪→ MH , that is, ι(ζ )= (0, ζ ).
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There are two families of automorphisms of MH that preserve D̃:

τs : (z, w) 7→ (z, w+ is) with s ∈ R,

ηt : (z, w) 7→ (t1/(2m)z, tw) with t > 0.

Since D and � are bounded domains, they admit Bergman metrics. We denote
them by βD and β�, respectively, and for unbounded domains MH and D̃, their
Bergman metrics can be defined through pull-backs. Since the mappings 9 and µ
are biholomorphisms, we define the Bergman metric on MH by βMH := (9

−1)∗β�

and the Bergman metric on D̃ by βD̃ := (µ
−1)∗βD . We also have:

Proposition 2.2. The inclusion ι is an isometric embedding up to a positive con-
stant multiple, that is, ι∗βMH = λβD̃ for some constant λ > 0.

Proof. Denote by 0D̃ the set of automorphisms of MH that preserve D̃. Then
by the observation above, the action (γ, x) 7→ γ (x) : 0D̃ × D̃→ D̃ is transitive.
Furthermore, this action is isometric with respect to the restricted Bergman metric
βMH |D̃ , so βMH |D̃ has constant (negative) curvature. Also, βD̃ is a positive constant
multiple of the Poincaré metric. Thus the assertion follows. �

3. Extension of totally geodesic disc

In this section, we discuss the extension problem up to the boundary of the isomet-
ric embedding g :=9−1

◦ ι ◦µ : D→� of the unit disc D into �.
This g is an injective proper holomorphic mapping. Since ι is an isometric

embedding, g is also an isometric embedding (up to a constant multiple). Namely,
g∗β� = λ ·βD , for the same constant λ> 0 as above. Set D̂ := g(D), the image of
D by g.

The Bergman representative map. For a bounded domain � in Cn , let K� denote
the Bergman kernel function. Following S. Bergman’s original exposition, we re-
cite the definition of his “representative domain”. Since this is actually a mapping,
we call it the Bergman representative map. The definition we use in this article is
as follows:

Definition 3.1. The Bergman representative map b�,p is defined by

b�,p(z)=
(
b1
�,p(z), . . . , bn

�,p(z)
)
,

where

bk
�,p(z)=

∂

∂wk

∣∣∣∣
w=p

log
K�(z, w)
K�(w,w)

.

This “mapping”, if well-defined, maps � into Cn . This map, for each p ∈�, is
known to be a local biholomorphism of a neighborhood of p onto its image that is
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an open neighborhood of the origin in Cn . In this regard, we shall frequently call
this map the Bergman coordinate system throughout the rest of this article.

We should remark that our definition above is not the canonical Bergman rep-
resentative “domain”. However, the canonical Bergman representative “domain”
differs from ours by a composition of an invertible complex-linear map.

The following proposition demonstrates the role of Bergman’s representative
map in our context.

Proposition 3.2. Let �1 and �2 be bounded domains in Cm and Cn , respectively,
and let b�1,p and b�2,q be the Bergman coordinate systems at p in �1 and at q in
�2, respectively. If f :�1→�2 is a Bergman isometry (not necessarily onto) with
f (p)= q , there exists a linear map A : Cn

→ Cm such that b�1,p = A ◦ b�2,q ◦ f .

Proof. Let (z1, . . . , zm) and (w1, . . . , wm) represent the standard complex Eu-
clidean coordinate expressions for points in Cm and

(Z1, . . . , Zn) and (W1, . . . ,Wn)

for points in Cn . We write K1 for the Bergman kernel K�1 and K2 for K�2 .
Since f ∗β�2 = β�1 ,

∂2 log K1(z, z)
∂za∂ z̄b

∣∣∣∣
z=x
=

n∑
j,k=1

(
∂2 log K2(Z , Z)

∂Z j∂Z k

∣∣∣∣
Z= f (x)

)
·
∂ f j

∂za

∣∣∣∣
x

∂ fk

∂zb

∣∣∣∣
x
.

For each x, y ∈�1, set K (x, y) := K2( f (x), f (y)). Then,

∂2 log K (z, z)
∂za∂ z̄b

∣∣∣∣
z=x
=
∂2 log K2( f (z), f (z))

∂za∂ z̄b

∣∣∣∣
z=x

=

n∑
j,k=1

(
∂2 log K2(Z , Z)

∂Z j∂Z k

∣∣∣∣
Z= f (x)

)
·
∂ f j

∂za

∣∣∣∣
x

∂ fk

∂zb

∣∣∣∣
x
.

Hence, for each a, b = 1, . . . ,m,

∂2

∂za∂ z̄b

∣∣∣∣
z=x
{log K1(z, z)− log K (z, z)} = 0, for every x ∈�1,

or equivalently,

log K1(z, w)− log K (z, w)= ϕ(z)+ϕ(w)

for some holomorphic function ϕ :�1→ C.
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Consequently we obtain

∂

∂wa

∣∣∣∣
w=p

{
log

K1(z, w)
K1(w,w)

− log
K (z, w)
K (w,w)

}
=

∂

∂wa

∣∣∣∣
w=p

(
(log K1(z, w)− log K (z, w))− (log K1(w,w)− log K (w,w))

)
=

∂

∂wa

∣∣∣∣
w=p

(
ϕ(z)+ϕ(w)− (ϕ(w)+ϕ(w))

)
=

∂

∂wa

∣∣∣∣
w=p

(ϕ(z)−ϕ(w))= 0

for every z, p ∈�1. In short,

∂

∂wa

∣∣∣∣
w=p

log
K1(z, w)
K1(w,w)

=
∂

∂wa

∣∣∣∣
w=p

log
K (z, w)
K (w,w)

.

Altogether,

ba
�1,p(z)=

∂

∂wa

∣∣∣∣
w=p

log
K1(z, w)
K1(w,w)

=
∂

∂wa

∣∣∣∣
w=p

log
K (z, w)
K (w,w)

=
∂

∂wa

∣∣∣∣
w=p

log
K2( f (z), f (w))
K2( f (w), f (w))

=

n∑
k=1

(
∂

∂W k

∣∣∣∣
W= f (p)

log
K2( f (z),W )

K2(W,W )

)
·
∂ fk

∂za

∣∣∣∣
p

=

n∑
k=1

(
∂ fk

∂za

∣∣∣∣
p

)
· bk
�2, f (p)( f (z)).

So it suffices to set

A :=


∂ f1
∂z1

(p) · · · ∂ fn
∂z1

(p)
...

. . .
...

∂ f1
∂zm

(p) · · · ∂ fn
∂zm

(p)

 ,
so that b�1,p = A ◦ b�2,q ◦ f . �

Now we present Condition BR precisely.

Definition 3.3. A domain�∈Cn is said to satisfy Condition BR if, for any q ∈∂�,
there exists an open neighborhood U of q such that the Bergman representative map
b�,p centered at p is a C∞- coordinate system on U∩� for some p ∈U∩�.

Remark 3.4. Greene and Krantz [1982, Lemma 5.7] proved that every bounded
domain with smooth strongly pseudoconvex boundary satisfies Condition BR by
estimating the derivatives of the Bergman kernel function near the boundary. How-
ever, for a general bounded domain, it seems nontrivial to characterize Condition
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BR in terms of other boundary (geometric) invariants. For instance, it is unknown
whether bounded domains with real analytic boundary satisfy Condition BR.

Despite nontriviality for the characterization of the condition, the statement of
the main theorem still makes sense, since the domain E2m admits global Bergman
representative coordinates: Let �α := {z = (z1, z2) ∈C2

: |z1|
2/α
+|z2|

2 < 1} for a
positive real number α. The explicit formula of the Bergman kernel of �α is given
by

K�α (z, w)=
1
π2 (1− z2w2)

α−2 (α+ 1)(1− z2w2)
α
+ (α− 1)z1w1(

(1− z2w2)α − z1w1
)3 .

By a straightforward computation,

b�α,0(z)=
(

4α+2
α+1

z1, (α+ 2)z2

)
,

and so

det
(
∂

∂z j
b�α,0(z)

)
=

2(2α+ 1)(α+ 2)
α+ 1

6= 0.

In particular, the Bergman representative map of E2m = �
1/m at the origin gives

rise to a global coordinate system of the domain.

Remark 3.5. E. Ligocka [1980] showed that any bounded domain with smooth
boundary satisfying Condition BR should satisfy Condition B, which says that
Bell–Ligocka coordinates continue to be diffeomorphic up to the boundary. It may
be reasonable to expect the converse to be true, but that has yet to be clarified as
far as the author is aware.

We continue our proof of the extension of g to the boundary in the next section.

Proof of extension of g. Since g∗β� = λ ·βD , Proposition 3.2 implies:

Corollary 3.6. For ζ ∈ D and g(ζ )= ζ̂ ∈�,

(†) λ · bD,ζ (z)= g′1(ζ ) · b
1
�,ζ̂
(g(z))+ g′2(ζ ) · b

2
�,ζ̂
(g(z)).

Now consider the reflection map r : C2
→ C2 defined by r(z, w) = (−z, w),

which is an automorphism of MH . The fixed point set in MH of r is exactly equal
to D̃, that is, {p ∈ MH : r(p) = p} = D̃. If we set r̂ := 9−1

◦ r ◦9 : �→ �,
then r̂ is an automorphism of � and the fixed point set of r̂ is equal to D̂(= g(D)).
If we choose a particular point ζ̂ = g(ζ ), then r̂ is a linear reflection with respect
to the b�,ζ̂ -coordinates. The definition of r̂ implies that it has two eigenvalues,
+1 and −1. Moreover, D̂ is a subset of a 1-dimensional linear subspace of C2.
Thus there exists a linear isomorphism L :C2

→C2 with the matrix representation
L = (L jk) j,k=1,2 such that

(‡) L21 · b1
�,ζ̂
(g(z))+ L22 · b2

�,ζ̂
(g(z))= 0.
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Note that λ · bD,ζ (z) is never zero near the boundary of D. Thus (g′1(ζ ), g′2(ζ ))
and (L21, L22) are linearly independent. Thus we may apply Cramer’s rule to (†)
and (‡) to deduce

b1
�,ζ̂
(g(z))=

λ · L22

L22 · g′1(ζ )− L21 · g′2(ζ )
bD,ζ (z),

b2
�,ζ̂
(g(z))=−

λ · L21

L22 · g′1(ζ )− L21 · g′2(ζ )
bD,ζ (z).

We may emphasize that b�,ζ̂
(
g(z)

)
is equal to bD,ζ (z) multiplied by the constant

vector
λ

L22 · g′1(ζ )− L21 · g′2(ζ )
(L22,−L21)

in C2. This now yields what we wanted: the map G := b�,ζ̂ ◦ g ◦ b−1
D,ζ is linear

and hence smooth everywhere. Consequently the map g = b−1
�,ζ̂
◦G ◦bD,ζ extends

smoothly up to the boundary of D. In summary, we have

Proposition 3.7. Let D be a unit disc in C, and define g : D→� by

g(ζ ) :=9−1
(

0, ζ−1
ζ+1

)
.

Then the map g can extends smoothly (C∞) up to the boundary.

Remark 3.8. This proposition does not follow directly from the general extension
theorems in several complex variables; notice that the dimensions of the domains
involved are not equal. It may be worth noting the existence of an example by
Globevnik and Stout [1986, Example III.5]. For the unit ball B2 in C2, there exists
a proper holomorphic embedding f : D→ B2 such that the Hausdorff dimension
of the boundary of f (D) (precisely speaking the set of radial boundary limit values
of f ) is strictly larger than 1. In particular, f cannot even extend continuously to
the boundary.

4. Application to the Bedford–Pinchuk theorem

We now present the proof of the main result of this article, restating it here for
convenience:

Theorem 1.2. Let � be a bounded pseudoconvex domain in C2 with smooth (C∞)
boundary satisfying Condition BR (see Definition 3.3). Suppose there is a point
p0 ∈ ∂� of finite D’Angelo type 2m, a point q ∈�, and a sequence {ϕ j } ⊂Aut(�)
such that

lim
j→∞

ϕ j (q)= p0 ∈ ∂�.
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Then
�∼= E2m := {(z, w) ∈ C2

: |z|2m
+ |w|2 < 1}.

Start with the biholomorphism 9 : � → MH in Theorem 2.1, with 9(q) =
(0,−1), and recall the automorphisms τs and ηt of MH defined as follows:

τs(z, w) := (z, w+ is) for s ∈ R

ηt(z, w) := (t1/2mz, tw) for t > 0.

Define the automorphism ht of � by ht :=9
−1
◦ηt ◦9. Since ηt preserves D̃,

there exists `t ∈Aut(D) such that g◦`t=ht◦g. (Note here that every automorphism
of the unit disc D extends holomorphically across the boundary of D.)

Lemma 4.2. There exists a unique boundary point p̃ of � such that

lim
t→0

ht(q)= p̃.

Proof. Since q = g(0), ht(q)= ht(g(0)). So

lim
t→0

ht(q)= lim
t→0

ht ◦ g(0)= lim
t→0

g ◦ `t(0)= g
(
lim
t→0

`t(0)
)
= g(1),

since g : D→� extends to the boundary. Thus it suffices to let g(1)= p̃. Notice
that p̃ ∈ ∂� since g is proper. �

Note that ht , for any 0< t < 1, fixes the boundary point p̃, and also that

ht ∈ Aut(�)∩Diff(�)

due to Condition BR. Notice that dht | p̃ has two eigenvalues, t and t1/2m . Hence
Lemma 4.2 implies that ht is a contracting automorphism at p̃. At this step, note
that whether ∂� is of D’Angelo finite type at p̃ is unclear. So we apply the fol-
lowing result:

Theorem 4.3 [Kim and Yoccoz 2011]. Suppose that� is a bounded domain in Cn

with a smooth boundary. If there exists h ∈ Aut(�)∩Diff(�) that is contracting
at a boundary point p̃, then ∂� at p̃ is of finite type in the sense of D’Angelo.
Moreover, the boundary ∂� is defined by a weighted homogeneous polynomial
determined completely by the resonance set of the contraction h.

Therefore our p̃ is of finite type in the sense of D’Angelo and� is biholomorphic
to the domain MP defined by MP := {(z, w) ∈ C2

: Rew + P(z, z̄) < 0}, where
P(z, z̄) is a weighted homogeneous polynomial. But since z is a single variable, our
P is in fact homogeneous. According to Oeljeklaus [1993], deg P = deg H = 2m.
Therefore the domain � is biholomorphic to the domain which is defined by the
homogeneous polynomial of degree 2m.
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It remains to show that the homogeneous polynomial P actually is equal to |z|2m .
For this purpose we shall follow the original method of Bedford and Pinchuk by
constructing a parabolic automorphisms fixing p̃.

Define the automorphism ks of � by ks :=9
−1
◦ τs ◦9. As before, there exists

an automorphism ms of D such that g ◦ms = ks ◦ g.

Lemma 4.4. lims→±∞ ks(q) is a single boundary point of �. Moreover, this limit
point is the same as p̃.

Proof. Since q = g(0), ks(q)= ks(g(0)). So,

lim
s→±∞

ks(q)= lim
s→±∞

ks ◦ g(0)= lim
s→±∞

g ◦ms(0)= g
(

lim
s→±∞

ms(0)
)
= g(1).

Hence the assertion follows. �

Notice again that ks ∈ Aut(�) ∩Diff(�) by Condition BR. Moreover, ks pre-
serves ∂� and fixes p̃. Hence Lemma 4.4 implies that ks is parabolic with the limit
point at p̃. Altogether, p̃ is the point fixed by the contraction ht and the parabolic
automorphisms ks .

This allows to use the analysis of [Bedford and Pinchuk 1988] so that we may
conclude that H(z, z̄) = c |z|2m . Therefore � is biholomorphic to the Thullen
domain E2m := {(z, w) ∈ C2

: Rew+ |z|2m < 0}.

Remark 4.5. In Bedford and Pinchuk’s result (Theorem 1.1), the exponent 2m for
the Thullen domain in its conclusion is not clearly specified, since it comes from
the type of the boundary point that arises as the limit point of the parabolic orbit
produced in the proof. With the assumption of noncompactness of the automor-
phism group, Pinchuk’s scaling produces a parabolic orbit. But the location of the
limit point of this parabolic orbit is arbitrary. That is why the global finiteness of the
D’Angelo type of the boundary (which follows in particular by the real analyticity)
was assumed in the first place. In our case, on the other hand, we prove that the limit
point of the parabolic orbit is also the limit point of a contraction — which follows
by the extension theorem of the special totally geodesic disc (Proposition 3.7) —
and hence the limit point has to be of D’Angelo finite type by the Kim–Yoccoz
result (Theorem 4.3). Then we could further show, combining these results with
that of a theorem of Oeljeklaus, that the exponent must actually be the D’Angelo
type of the original boundary orbit accumulation point, as stated.
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REGULARITY OF THE FIRST EIGENVALUE OF THE
p-LAPLACIAN AND YAMABE INVARIANT

ALONG GEOMETRIC FLOWS

ER-MIN WANG AND YU ZHENG

We first prove that the first eigenvalue of the p-Laplace operator and the
Yamabe invariant are both locally Lipschitz along geometric flows under
weak assumptions without assumptions on curvature. Secondly, the Yam-
abe invariant is found to be directionally differentiable along geometric
flows. As an application, an open question about the Yamabe metric and
Einstein metric is partially answered.

1. Introduction

Motivated by the Hamilton’s Ricci flow, the method of geometric flow has been
widely used to deal with geometric and topological properties of manifolds. We
often encounter the derivative of geometric quantities when applying the method
of geometric flow. Cao [2007; 2008] and Li [2007] consider the monotonicity of
the first eigenvalue of −1 + cR (c ≥ 1

4) based on their derivatives along Ricci
flow. Ling [2007] proved a comparison theorem for the eigenvalue of the Laplace
operator based on its derivative along Ricci flow. Unfortunately, there are many
geometric quantities about which we don’t know whether they are differentiable
along the flow. Chang and Lu [2007] derive a formula for the derivative of the
Yamabe constant along Ricci flow under a crucial technical assumption. Recently
Wu, Wang and Zheng [Wu et al. 2010] considered the first eigenvalue of the p-
Laplace operator, whose differentiability along Ricci flow is unknown.

For the first eigenvalue of a linear operator, we may assume that there is a C1-
family of smooth eigenvalues and eigenfunctions along geometric flow by eigen-
value perturbation theory. We have no uniform method to deal with the smoothness
of the first eigenvalue of a nonlinear operator — even the continuity is unknown.

As the first eigenvalue can be seen as a minimum of a functional, we consider
the regularity of geometric quantities of this type along geometric flow. Inspired

This work is partially supported by the NSFC10871069.
MSC2010: primary 58C40; secondary 53C44.
Keywords: Dini derivative, locally Lipschitz, first eigenvalue, p-Laplace operator, Yamabe

invariant, geometric flow.
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by the method used in [Hamilton 1986; Chow and Lu 2002] to prove the maximum
principle for systems, we first study the relationship between the local Lipschitz
property of continuous functions and their Dini derivatives.

Theorem 1.1. Let m(t) be a continuous function on an interval I ⊂ R. Suppose
that for any t ∈I there exists a C1 function M(t, s) of s defined on a neighborhood
of t such that M(t, t)= m(t) and M(t, s)≥ m(s).

(1) If (∂M/∂s)(t, t) is locally bounded, then m(t) is locally Lipschitz.

(2) For any t in the interior of I, if m(t) is differentiable at t , then m′(t) =
(∂M/∂s)(t, t).

Remark. By (2), if m(t) is differentiable at an interior point t , then the derivative
of m(t) at this point is exactly (∂M/∂s)(t, t), regardless of the choice of function
M(t, s).

Corollary 1.1.1. In the same setting of Theorem 1.1, if (∂M/∂s)(t, t) is locally
bounded, then m(t) is differentiable almost everywhere and m ′(t)= (∂M/∂s)(t, t)
almost everywhere.

Applying Theorem 1.1, we get the following results on the regularities of the
first eigenvalues λ1,p of the p-Laplace operator and the Yamabe invariant along
the general C1 family of smooth geometric flows in this paper. We find that the
first eigenvalue λ1,p of the p-Laplace operator is in general locally Lipschitz con-
tinuous. We also get local Lipschitz continuity of the Yamabe invariant and find
its derivative with respect to t almost everywhere.

Theorem 1.2. Let g(x, t) be a C1 family of smooth metrics on a n-dimensional
compact Riemannian manifold M. Then the first eigenvalue λ1,p(g(t)) of the p-
Laplace operator is locally Lipschitz if p ≥ 2 and M is closed or if p > 1 and M
has nonempty boundary.

Remark. In [Wu et al. 2010], a similar result on local Lipschitz continuity was
obtained, but under some assumptions on curvature. Theorem 1.2 implies that local
Lipschitz continuity should be available for more general smooth geometric flows
without any curvature conditions.

Theorem 1.3. Suppose M is an n-dimensional (n≥ 3) closed connected Riemann-
ian manifold, and g(t), t ∈ [0, T ), is a C1 family of smooth metrics on M. If g(t) is
the Yamabe metric in the conformal class [g(t)] for any t ∈ [0, T ), then the Yamabe
invariant Y(g(t)) is locally Lipschitz with respect to t , and

(1-1)
dY(g(t))

dt
a.e.
= −

∫
g(t)
g(t)

〈∂g
∂t
(t),Rc0(g(t))

〉
g(t)

dµg(t) vol(g(t))−2/p,

where a.e. stands for “almost everywhere”, p = 2n
n−2

, and Rc0(g(t)) is the trace-
free part of Ricci curvature of g(t).
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Let g0 be a smooth metric on manifold M , [g0] be the conformal class of g0,
3[g0] be the collection of Yamabe metrics in [g0] and h be a smooth (0, 2)-type
symmetric tensor on M . Denote by Gh(g0, t) the collection of C1 family of smooth
metrics g(t), t ∈[0, ε)with g(0)= g0 and (∂g/∂t)(0)=h for some ε>0, we define
3h[g0] by

3h[g0] :=
⋃

g(t)∈Gh(g0,t)

{ g0∈3[g0] :g0 is an accumulation point of3[g(t)] as t→0 },

where g0 generally exists by the compactness of 3[g0] when [g0] 6= [gcan], where
gcan denotes the canonical metric on Sn [Anderson 2005]. (They prove that if
[gi ]→ [g0] 6= [gcan] smoothly, then every sequence of Yamabe metrics (g j )i ∈ [gi ]

has a subsequence converging smoothly to a Yamabe metric [g j
] ∈ [g0].) It is easy

to see that if g0 ∈3h[g0] then cg0 ∈3h[g0] and g0 ∈3ch[g0] for any c > 0.
Recently, Brendle [2008] with Marques [2009] gave counterexamples to the

compactness for a full set of solutions to the Yamabe equation if the dimension
of the manifold greater than 24. Later, Khuri, Marques and Schoen [Khuri et al.
2009] proved compactness if the dimension equal or less than 24.

In addition to Theorem 1.3, we have the following derivative calculation at t=0.

Theorem 1.4. Let g(t), t ∈ [0, T ), be a C1 family of smooth metrics on a mani-
fold M and gcan be the canonical metric on Sn . If g(0) = g0 and [g0] 6= [gcan],
then

(1-2)
dY(g(t))

dt

∣∣∣∣
t=0
= min

g̃0∈3[g0]

{
−

∫
g̃0

g0

〈
∂g
∂t
(0),Rc0(g̃0)

〉
g̃0

dµg̃0 vol(g̃0)
−2/p

}
=−

∫
g0

g0

〈
∂g
∂t
(0),Rc0(g0)

〉
g0

dµg0 vol(g0)
−2/p,

where p = 2n/(n− 2), g0 ∈3(∂g/∂t)(0)[g0], Rc0(g̃0) is the trace-free part of Ricci
curvature with respect to g̃0 and vol(g̃0) is the volume of M respect to g̃0. In
particular, Y is directionally differentiable at g0.

Remark. This formula generalizes similar calculations in [Anderson 2005] where
tr(∂g/∂t)(0)= 0, vol(g(t))= 1, and g0 has constant scalar curvature. Meanwhile,
when g0 ∈ 3(∂g/∂t)(0)[g0], Equation (1-2) becomes more convenient to calculate,
compared to the derivative calculation in [Anderson 2005] (in another form):

(1-3) min
g̃0

{
−

∫
g̃0

g0

〈
Rc0(g̃0),

∂g
∂t
(0)
〉

g̃0

dµg̃0

}
,

where g̃0 ∈31[g0] is taken over all accumulation points of 31[g(t)] as t→ 0 for
31[g0] the set of unit volume Yamabe metrics in [g0]. The derivative is difficult to
calculate using this formula, but by Theorem 1.4 we can calculate this derivative
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if we know a Yamabe metric g0 in 3(∂g/∂t)(0)[g0]. Moreover, the set to minimize
in (1-3) has only one element by the last equality in (1-2).

In addition to the local Lipschitz property of the Yamabe invariant, we have:

Corollary 1.4.1. With the same assumptions as in Theorem 1.3, the Yamabe in-
variant Y(g(t)) is directionally differentiable at all t where [g(t)] 6= [gcan].

In particular, in formula (1-2), if (∂g/∂t)(0) = −2 Rc(g0) and g0 is a Yamabe
metric in 3−Rc(g0)[g0], then g0 ∈3−2 Rc(g0)[g0] and R(g0) is constant, hence

dY(g(t))
dt

∣∣∣∣
t=0
=

∫
〈Rc(g0),Rc0(g0)〉g0 dµg0 vol(g0)

−2/p

=

∫ ∣∣Rc0(g0)
∣∣2 dµg0 vol(g0)

−2/p
≥ 0.

Ricci flow evolves sphere to sphere, so we have the following conclusion along the
Ricci flow.

Corollary 1.4.2. Let Mn be a closed and connected manifold with n ≥ 3 and
g(t), t ∈ [0, T ), be a solution of Ricci flow ∂g/∂t = −2 Rc on M with g(0) = g0.
If g0 ∈3−Rc[g0], then dY(g(t))/dt |t=0 ≥ 0 and dY(g(t))/dt |t=0 = 0 if only if g0

is a Einstein metric.

Remark. There is a similar result in [Chang and Lu 2007] under the assumption
that there exists a C1 family of φ(t) > 0 such that φ(t)4/(n−2)g(t) is a Yamabe
metric and φ(0) is constant. From the definition of 3−Rc[g0] we can see that our
assumption is weaker.

Let C denote the set of unit volume constant scalar curvature metrics on a con-
nect closed manifold M ; it is well-known (see [Besse 1987]) that generically C

is an infinite-dimensional manifold. Let s : C 7→ R be the scalar curvature func-
tion. It has long been an open problem whether a Yamabe metric which is a local
maximizer of s is necessarily an Einstein metric [Besse 1987]. Some progress on
this question was made in [Bessieres et al. 2003] in dimension 3 and in [Anderson
2005] in any dimension. Let M be the collection of all smooth metrics on M
and Y :M 7→R be the Yamabe invariant function. By the definition of the Yamabe
invariant, s(g)≥Y(g) for any g∈C, hence if a Yamabe metric is a local maximizer
of s, it must be a local maximizer of Y. Now, we consider whether a Yamabe metric
that is a local maximizer of the Yamabe invariant is necessarily an Einstein metric.
Following from Corollary 1.4.2, the next result gives a partial answer.

Corollary 1.4.3. Let Mn be a closed and connected manifold with n ≥ 3 and
suppose a Yamabe metric g is a local maximum of the Yamabe invariant func-
tional Y( · ). If g ∈3−Rc[g], then g is Einstein.
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In Section 2, we give a basic introduction to Dini derivatives and the proof of
Theorem 1.1. In Section 3, we prove the Lipschitz property of the first eigenvalue
of the p-Laplace operator along geometric flows. In Section 4, we show that the
Yamabe invariant is locally Lipschitz and directionally differentiable along geo-
metric flows.

2. Dini derivatives and the proof of Theorem 1.1

In this section, we first recall the definitions of Dini derivatives and semiconti-
nuity. Then we give some propositions about Dini derivatives. Lastly, we prove
Theorem 1.1.

Hamilton [1986] studied properties of Lipschitz functions by means of their Dini
derivatives, and from this derived the maximum principle for systems on closed
manifolds. Chow [2002] proved similar results in weaker settings. Dini derivatives
provide a powerful way to deal with nonregular functions.

These definitions of Dini derivatives and semicontinuity also appear in [Chow
et al. 2008].

Definition 2.1 (Dini derivatives). Let f (t) be a function on (a, b). The upper Dini
derivative is the lim sup of forward difference quotients:

d+ f
dt

(t) := lim sup
h→0+

f (t + h)− f (t)
h

.

The lower Dini derivative is the lim inf of forward difference quotients:

d− f
dt

(t) := lim inf
h→0+

f (t + h)− f (t)
h

.

The upper converse Dini derivative is the lim sup of backward difference quotients:

d+ f
dt

(t) := lim sup
h→0+

f (t)− f (t − h)
h

.

The lower converse Dini derivative is the lim inf of backward difference quotients:

d− f
dt

(t) := lim inf
h→0+

f (t)− f (t − h)
h

.

If the function f is also defined at a, we can define its upper Dini derivative and
lower Dini derivative at a; and if the function f is also defined at b, we can define
its upper converse Dini derivative and lower converse Dini derivative at b.

Since we don’t make any assumption on the function f (t), it is possible that
any one of the Dini derivatives of f (t) above may take the value +∞ or −∞.

Definition 2.2 (semicontinuity). Let f (t) be a function on an interval. We say f
is right upper semicontinuous if lim suph→0+ f (t + h) ≤ f (t); we say f is right
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lower semicontinuous if lim infh→0+ f (t+h)≥ f (t); we say f is left upper semi-
continuous if lim suph→0+ f (t−h)≤ f (t); we say f is left lower semicontinuous
if lim infh→0+ f (t − h)≥ f (t).

Lemma 2.3. If f (t) :(a, b)→R is left lower semicontinuous with (d+ f/dt)(t)≤0,
then f (t) is decreasing.

Proof. Given ε > 0, define fε(t) := f (t)− εt . We shall show that fε(t) ≤ fε(s)
for any a < s ≤ t < b. The lemma then follows from taking ε→ 0.

Since (d+ f/dt)(s)≤ 0, we have (d+ fε/dt)(s)≤−ε, then there exists a number
δ(s, ε) > 0 such that ( fε(s + h)− fε(s))/h ≤ −ε/2 < 0 for all h ∈ (0, δ(s, ε)),
hence fε(t)≤ fε(s) on h ∈ [s, s+ δ(s, ε)). Define τ(ε, s) ∈ [s, b] by

τ := sup
{
τ ′ ∈ [s, b] : fε(t)≤ fε(s) for all t ∈ [s, τ ′)

}
.

then τ ≥ s+δ(s, ε) > s. One can check that, in fact, fε(t)≤ fε(s) for all t ∈ [s, τ ).
We now prove τ = b to complete the proof. If for some s and ε > 0, we have τ < b,
then there exists a sequence of times {τi }↗ τ , such that fε(s)≥ fε(τi−1/2i ) when
i is large enough. Hence

fε(s)≥ lim inf
i→∞

fε(τi − 1/2i )≥ lim inf
h→0+

fε(τ − h)≥ fε(τ )

follows from the left lower semicontinuity of fε(t). Applying the above procedure
again by replacing s with τ gives fε(t)≤ fε(τ )≤ fε(s) when t ∈ [τ, τ + δ(τ, ε)),
hence fε(t) ≤ fε(s) when t ∈ [s, τ + δ(τ, ε)). This is a contradiction since the
definition of τ implies δ(τ, ε)≤ 0. �

Note. A similar conclusion can be found in [Chow et al. 2008]. There, the domain
of f is [0, T ), hence f must be both left lower semicontinuous and right upper
semicontinuous. Here we choose the domain of f to be (a, b), so we can weaken
the assumptions on f .

Proposition 2.4. (a) If f (t) : (a, b) → R is left lower semicontinuous, then
d+ f/dt ≤ 0 if and only if f (t) is decreasing.

(b) If f (t) : (a, b)→ R is right upper semicontinuous, then d+ f/dt ≤ 0 if and
only if f (t) is decreasing.

(c) If f (t) : (a, b) 7→R is left upper semicontinuous, then d− f/dt ≥ 0 if and only
if f (t) is increasing.

(d) If f (t) : (a, b) 7→ R is right lower semicontinuous, then d− f/dt ≥ 0 if and
only if f (t) is increasing.

Proof. (a) If f (t) is decreasing then d+ f/dt ≤ 0. The other direction follows from
Lemma 2.3.
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(b)–(d) follows from applying part (a) to the functions− f (−t),− f (t), and f (−t),
respectively. �

From this propositions, we see that a semicontinuous function is monotonic if
certain types of its Dini derivatives have a definite sign. A further analysis shows
that monotonicity can be a nice bridge between Dini derivatives of different type.

Claim 2.5. Let I⊂ R be an interval and I̊ be its interior.

(a) If f (t) : I 7→ R is right upper semicontinuous and left lower semicontinuous,

d+ f
dt
≤ 0 in I̊ ⇐⇒ f (t) is decreasing on I ⇐⇒

d+ f
dt
≤ 0 in I̊.

(b) If f (t) : I 7→ R is right lower semicontinuous and left upper semicontinuous,

d− f
dt
≥ 0 in I̊ ⇐⇒ f (t) is increasing on I ⇐⇒

d− f
dt
≥ 0 in I̊.

Proof. We prove the first part; the second is similar. If f (t) : I 7→R is right upper
semicontinuous and left lower semicontinuous, then f (t) is decreasing on I if and
only if f (t) is decreasing on I̊. The conclusion then follows from parts (a) and (b)
of Proposition 2.4. �

Theorem 2.6. If f : (a, b) 7→ R is a continuous function with d+ f/dt or d+ f/dt
locally bounded from above and d− f/dt or d− f/dt locally bounded from below,
then f is locally Lipschitz.

Proof. Given any s∈ (a, b), let U (s) be a compact and connected neighborhood of s
in (a, b). Then on U (s), without loss of generality, we can assume d+ f/dt ≤ A or
d+ f/dt ≤ A and d− f/dt ≥−A or d− f/dt ≥−A, where A>0 is a constant. Hence
d+( f − At)/dt ≤ 0 (or d+( f − At)/dt ≤ 0) by parts (a) and (b) of Proposition 2.4,
and d−( f +At)/dt ≥0 (or d−( f +At)/dt ≥ 0) by parts (c) and (d). Then f −At is
decreasing and f + At is increasing on U (s) by Claim 2.5. Thus | f (t2)− f (t1)| ≤
A |t2− t1| for any t1, t2 ∈U (s), so f is locally Lipschitz. �

Proof of Theorem 1.1. Since M(t, t)=m(t) and M(t, s)≥m(s) in a neighborhood
of t , we have

d+m
dt

(t)= lim sup
h→0+

m(t+h)−m(t)
h

≤ lim sup
h→0+

M(t, t+h)−M(t, t)
h

(2-1)

=
∂M
∂s
(t, t),

d−m
dt

(t)= lim inf
h→0+

m(t)−m(t−h)
h

≥ lim inf
h→0+

M(t, t)−M(t, t−h)
h

(2-2)

=
∂M
∂s
(t, t).
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Since (∂M/∂s)(t, t) is locally bounded, (d+m/dt)(t) is bounded from above and
(d−m/dt)(t) is bounded from below. Then by Theorem 2.6, the function m(t) is
locally Lipschitz in the interior of I.

Let a be the left endpoint of I, b be the right endpoint of I. If a ∈ I, let c =
min{a+1, (a+b)/2}. Since (∂M/∂s)(t, t) is locally bounded on I, we can assume
that |(∂M/∂s)(t, t)| ≤ A (A is a constant) on [a, c]. Then d+(m(t)− At)/dt ≤ 0
on [a, c) and d−(m(t)+ At)/dt ≥ 0 on (a, c] by (2-1) and (2-2). Hence by part
(a) of Claim 2.5, the function m(t)− At , is decreasing on [a, c], and by part (b),
the function m(t)+ At is increasing on [a, c]. Then |m(t1)−m(t2)| ≤ A |t1− t2|
for any t1, t2 ∈ [a, c], so m(t) is locally Lipschitz at t = a. Similarly, if b ∈ I, then
m(t) is locally Lipschitz at t = b. In conclusion, m(t) is locally Lipschitz on I.

For any t in the interior of I, if m(t) is differentiable at this point, then by (2-1)
we have m′(t) = (d+m/dt)(t) ≤ (∂M/∂s)(t, t), and by (2-2) we have m′(t) =
(d−m/dt)(t)≥ (∂M/∂s)(t, t). Hence m′(t)= (∂M/∂s)(t, t). �

3. First eigenvalue of the p-Laplacian

In this section we consider the local Lipschitz property of the p-Laplace operator
along general geometric flows. Let (M, g) be a compact connected Riemannian
manifold. Define

G( f, g) :=

∫
M |∇ f |pg dµg∫
M | f |

p dµg
,

where∇ f =d f is a covariant vector. Recalling the definition of the first eigenvalue
λ1,p(g) of the p-Laplace operator, it is known that if ∂M 6=∅ then

λ1,p(g) := inf
{
G( f, g) : f ∈W 1,p

0 (M), f 6= 0
}

and if M is closed then

λ1,p(g) := inf
{
G( f, g) : f ∈W 1,p(M),

∫
M | f |

p−2 f dµg = 0, f 6= 0
}
.

The minimum (a positive number) is achieved by a C1,α (0 < α < 1) eigenfunc-
tion f (see [Serrin 1964; Tolksdorf 1984]). This eigenfunction f satisfies the
Euler–Lagrange equation

1p f =−λ1,p(g)| f |p−2 f,

where 1p (p > 1) is the p-Laplace operator with respect to g given by

1p f = divg(|∇ f |p−2
g ∇ f ).

The following theorem implies that λ(g(t)) is continuous with respect to t along
general geometric flows.
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Theorem 3.1 [Wu et al. 2010]. If g1 and g2 are two metrics on M which satisfy
(1+ ε)−1g1 ≤ g2 ≤ (1+ ε)g1, then for any p > 1, we have

(1+ ε)−(n+p/2)
≤
λ1,p(g1)

λ1,p(g2)
≤ (1+ ε)(n+p/2).

Let f ∈ C1,α(M) be nonconstant and g(x, t), t ∈ [0, T ), be a C1 family of
smooth metrics on M . Define a function of c ∈ (−∞,∞) and t ∈ [0, T ):

P(c, t) :=
∫

M
| f + c|p−2 ( f + c) dµg(t), p ≥ 2.

The function P(c, t) is C1 with respect to c and t , since

∂P
∂c
= (p− 1)

∫
M
| f + c|p−2 dµg(t) > 0.

Then by the implicit function theorem, given any c0 and t0 there exists a C1 func-
tion c(t) defined on a neighborhood of t0 such that P(c(t), t)= P(c0, t0).

In this and the next sections, if f is a real function on M , we simply write sup f
instead of supx∈M f (x). Let g(t) be a family of Riemannian metrics on manifold.
If α(t) is a family of (0, 2)-type tensors, we denote by trα(t) = gi j (t)αi j (t) its
trace with respect to g(t) and by

|α(t)|g(s) =
√

gi j (s)gkl(s)αik(t)αjl(t)

its norm with respect to g(s); if β(t) is also a family of (0, 2)-type tensors, we
denote by

〈α(t), β(t)〉g(s) =
√

gi j (s)gkl(s)αik(t)βjl(t)

the inner product derived from the metric g(s). Moreover, we use |α(t)| instead of
|α(t)|g(t) and 〈α(t), β(t)〉 instead of 〈α(t), β(t)〉g(t) for simplicity.

Proof of Theorem 1.2. For any t0, let f (t0) be a minimizer of G( · , g(t0)). If M is
closed and p ≥ 2, then f (t0) is a nonconstant C1 function on M with∫

M
| f (t0)|p−2 f (t0) dµg(t0) = 0.

Hence there is a continuous differentiable function c(t0, s) of s defined in a neigh-
borhood of t0 such that c(t0, t0)= 0 and∫

M
| f (t0)+ c(t0, s)|p−2 ( f (t0)+ c(t0, s)) dµg(s) = 0.

Otherwise if ∂M 6=∅ and p > 1, we can just take c(t0, s)≡ 0.
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Let N (t, s)= G( f (t)+ c(t, s), g(s)). Then N (t, t)= λ1,p(g(t)) and N (t, s)≥
λ1,p(g(s)). A simple calculation gives

∂N
∂s
(t, t)

=
∂

∂s

∣∣∣
s=t

∫
M |∇( f (t)+ c(t, s))|pg(s) dµg(s)∫

M | f (t)+ c(t, s)|p dµg(s)

=

(∫
M

(
|∇ f (t)|pg(t)

tr(∂g/∂s)(t)
2

−
p
2
|∇ f (t)|p−2

g(t)
∂g
∂s
(t)(∇ f (t),∇ f (t))

)
dµg(t)

− λ1,p(g(t))
∫

M

(
| f (t)|p

tr(∂g/∂s)(t)
2

+ p | f (t)|p−2 f (t)∂c
∂s
(t, t)

)
dµg(t)

)

×

(∫
M
| f (t)|p dµg(t)

)−1

.

To simplify this formula, we use that∫
M

p | f (t)|p−2 f (t)∂c
∂s
(t, t) dµg(t) = 0.

When M is closed, this follows from
∫

M p | f (t)|p−2 f (t) dµg(t) = 0, and when
∂M 6=∅, from c(t, s)≡ 0. Hence we get

(3-1) ∂N
∂s
(t, t)=

(∫
M

(
|∇ f (t)|pg(t)

tr(∂g/∂s)(t)
2

−
p
2
|∇ f (t)|p−2

g(t)
∂g
∂s
(t)(∇ f (t),∇ f (t))

)
dµg(t)

− λ1,p(g(t))
∫

M
| f (t)|p

tr(∂g/∂s)(t)
2

dµg(t)

)

×

(∫
M
| f (t)|p dµg(t)

)−1

.

Now apply the Cauchy–Schwarz formula∣∣∣∣∂g
∂s
(t)(∇ f (t),∇ f (t))

∣∣∣∣≤ ∣∣∣∣∂g
∂s
(t)
∣∣∣∣
g(t)
|∇ f (t)|2

and the fact that∣∣∣∣tr ∂g
∂s
(t)
∣∣∣∣= ∣∣∣∣〈g(t), ∂g

∂s
(t)
〉∣∣∣∣≤ |g(t)| ∣∣∣∣∂g

∂s
(t)
∣∣∣∣
g(t)
=
√

n
∣∣∣∣∂g
∂s
(t)
∣∣∣∣
g(t)

to obtain ∣∣∣∂N
∂s
(t, t)

∣∣∣≤ (√n+
p
2

)
λ1,p(g(t)) sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣
g(t)

.
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By the compactness of M , λ1,p(g(t)) and sup |(∂g/∂s)(t)|g(t) are both continuous.
Then |(∂N/∂s)(t, t)| is locally bounded, so Theorem 1.1 implies Theorem 1.2. �

4. The Yamabe invariant

In this section, we consider the local Lipschitz property of the Yamabe invariant
along general geometric flows and use the constants

p = 2n
n−2

, a = 4(n−1)
n−2

, b = 4
n−2

.

With no specification, M is a n-dimensional (n ≥ 3) connected closed smooth
Riemannian manifold, g is a smooth metric on it. Denote by R its scalar curvature,
by Rc its Ricci curvature, and by Rc0

= Rc− 1
n Rg its trace-free Ricci curvature.

The conformal class [g] of metric g is defined by

[g] := {φbg : φ ∈ C∞(M), φ > 0},

and the homogeneous total scalar curvature S(g) is defined by

S(g) :=
∫

M
R dµg

/∫
M

dµg,

where dµg is the volume form with respect to metric g. Then the Yamabe invariant
is defined by

(4-1) Y(g) := inf
g∈[g]

S(g).

The minimizer metric is called a Yamabe metric. For the conformal transformation
of the scalar curvature R(g) and the trace-free Ricci curvature Rc0(g), we have (see
[Besse 1987])

φ p−1 R(φbg)= R(g)φ− a1φ,(4-2)

Rc0(φ2g)= Rc0(g)+ (n− 2)φ(∇∇φ−1)0,(4-3)

where 1 is the Laplace–Beltrami operator with respect to the metric g, α0
=

α− 1
n tr (α) α is the trace-free part of (0, 2)-type tensor α. If we define

E(φ, g) :=
∫
(a |∇φ|2g + R(g)φ2) dµg,

Q(φ, g) :=
E(φ, g)(∫
φ p dµg

)2/p = E(φ, g) ‖φ‖−2
p,g ,

where ∇φ = dφ is a covariant vector and ‖φ‖p,g =
(∫
φ p dµg

)1/p is the L p norm
with respect to metric g. Then the Yamabe invariant Y(g) can also be defined by

(4-4) Y(g) := inf{Q(φ, g) : φ ∈ C∞(M), φ > 0}.
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The existence of a minimizer u follows from the solution of the Yamabe prob-
lem (see [Lee and Parker 1987] for the history). Hence ubg is a Yamabe metric,
moreover the minimizer u satisfies the Euler–Lagrange function

(4-5) R(g)u− a1u = α u p−1,

where
α = E(u, g) ‖u‖−p

p,g = Y(g) ‖u‖2−p
p,g .

Denote by gcan the canonical metric on Sn , and consider the set3[g] of all smooth
Yamabe metrics in a given conformal class [g]. By the solution to the Yamabe
problem, the sets 3[g] as g varies are also compact in the following sense (see
[Anderson 2005]): if gi → g smoothly and [g] 6= [gcan], then any sequence of
Yamabe metrics gi ∈ 3[gi ] has a subsequence converging smoothly to a Yamabe
metric g ∈3[g].

The Yamabe constant Y(g) is continuous with respect to g under the C2-topo-
logy of the space of metrics on M (see [Besse 1987, Proposition 4.31]).

Proof of Theorem 1.3. Since each g(t)∈ [g(t)] is a Yamabe metric, we can assume
g(t)= φb(t)g(t). Then 0<φ(t) ∈C1(M) and φ(t) minimizes Q( · , g(t)). Defin-
ing N (t, s) := Q(φ(t), g(s)), then Y(g(t)) = N (t, t) and Y(g(s)) ≤ N (t, s). We
compute

(4-6) ∂N
∂s
(t, t)

=
∂

∂s

∣∣∣
s=t

(∫
(a |∇φ(t)|2g(s)+ R(s)φ(t)2) dµg(s)(∫

φ(t)p dµg(s)
)2/p

)

=

∫ (
−a

∂g
∂s
(t)(∇φ(t),∇φ(t))+∂R

∂s
(t)φ(t)2

)
dµg(t)

(∫
φ(t)p dµg(t)

)−2/p

+

∫
1
2
(
a |∇φ(t)|2g(s)+ R(t)φ(t)2

)
tr
∂g
∂s
(t)dµg(t)

(∫
φ(t)p dµg(t)

)−2/p

−
1
p

Y(g(t))
∫
φ(t)p tr

∂g
∂s
(t)dµg(t)

(∫
φ(t)p dµg(t)

)−1

,

so that

(4-7)
∣∣∣∂N
∂s
(t, t)

∣∣∣
≤

(
1+
√

n
2

)
sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣·
∫

a |∇φ(t)|2g(t) dµg(t)(∫
φ(t)p dµg(t)

)2/p +

√
n |Y(g(t))|

p
sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣

+

(
sup

∣∣∣∂R
∂s
(t)
∣∣∣+ √n

2
sup |R(g(t))| · sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣)

∫
φ(t)2 dµg(t)(∫
φ(t)p dµg(t)

)2/p .
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Next, we process the two integral terms in the above formula. Since p>2, applying
Hölder’s inequality gives

(4-8)

∫
φ2 dµg(∫
φ p dµg

)2/p ≤ vol(g)1−2/p.

By the definition of Q(φ, g), we have

(4-9)

∫
a |∇φ|2g dµg(∫
φ p dµg

)2/p = Q(φ, g)−

∫
R φ2 dµg(∫
φ p dµg

)2/p

≤ Q(φ, g)+ sup |R(g)|

∫
φ2 dµg(∫
φ p dµg

)2/p

≤ Q(φ, g)+ sup |R(g)| vol(g)1−2/p.

Substituting (4-8) and (4-9) into (4-7), we come to∣∣∣∂N
∂s
(t, t)

∣∣∣≤ ((1+√n
)

sup
∣∣∣∣∂g
∂s
(t)
∣∣∣∣ · sup |R(g(t))| + sup

∣∣∣∂R
∂s
(t)
∣∣∣) vol(g(t))1−2/p

+

(
1+
√

n
2
+

√
n

p

)
sup

∣∣∣∣∂g
∂s
(t)
∣∣∣∣ · |Y(g(t))| .

Since sup |∂g/∂s(t)|, sup |∂R/∂s(t)|, sup |R(g(t))|, vol(g(t))1−2/p, and |Y(g(t))|
are all continuous on the closed manifold M , we conclude that (∂N/∂s)(t, t) is
locally bounded, hence Y(g(t)) is locally Lipschitz by Theorem 1.1.

Next, we simplify the formula (4-6). By (4-5) we have

Rφ(t)− a1φ(t)= Y(g(t))‖φ(t)‖2−p
p,g(t)φ(t)

p−1.

Multiplying both sides by φ(t) tr(∂g/∂s)(t) and integrating by parts gives

(4-10) Y(g(t))‖φ(t)‖2−p
p,g(t)

∫
φ(t)p tr

∂g
∂s
(t) dµg(t)

=

∫ (
Rφ(t)2+ a |∇φ(t)|2− a

2
1
(
φ(t)2

))
tr
∂g
∂s
(t) dµg(t).

Substituting (4-10) into (4-6), we get

(4-11)
∂N
∂s
(t, t)

=

(∫
a

2p
1(φ(t)2) tr

∂g
∂s
(t)+φ(t)2

(
∂R
∂s
(t)+ 1

n
R tr

∂g
∂s
(t)
)

dµg(t)

−

∫
a
〈(
∂g
∂s
(t)
)0

,∇φ(t)⊗∇φ(t)
〉

dµg(t)

)
‖φ(t)‖−2

p,g(t).
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The evolution function of scalar curvature R is

∂R
∂s
= div

(
div

∂g
∂s

)
−1 tr

∂g
∂s
−

〈
Rc,

∂g
∂s

〉
.

Substituting this into (4-11) gives

∂N
∂s
(t, t)

=

∫ 〈
∂g
∂s
(t),

(
∇∇φ(t)2−φ(t)2 Rc−a∇φ(t)⊗∇φ(t)

)0
〉

dµg(t)‖φ(t)‖−2
p,g(t)

=−

∫ 〈
∂g
∂s
(t), φ(t)2

(
Rc+(n− 2)φ(t)b/2∇∇φ(t)−b/2)0

〉
dµg(t)‖φ(t)‖−2

p,g(t).

By the conformal transformation of trace-free Ricci curvature (4-3),

∂N
∂s
(t, t)=−

∫
φ−b(t)

〈
∂g
∂s
(t),Rc0(φb(t)g(t))

〉
dµφb(t)g(t) vol(φb(t)g(t))−2/p.

Since φb(t)= g(t)/g(t), we get

(4-12) ∂N
∂s
(t, t)=−

∫
g(t)
g(t)

〈
∂g
∂s
(t),Rc0(g(t))

〉
g(t)

dµg(t) vol(g(t))−2/p.

Then the theorem follows from Corollary 1.1.1. �

Proof of Theorem 1.4. Let φ(t) be any minimizer of Q( · , g(t)). Then

g̃(t)= φb(t)g(t)

is the Yamabe metric in the conformal class [g(t)]. Define

N(g̃(s), g(t)) := Q(φ(s), g(t)).

Then

Y(g(t))= N(g̃(t), g(t)), Y(g(t))≤ N(g̃(s), g(t)).

Hence, when t > 0,

(4-13)
N(g̃(t), g(t))−N(g̃(t), g(0))

t
≤

Y(g(t))−Y(g(0))
t

≤
N(g̃(0), g(t))−N(g̃(0), g(0))

t
.

By (4-12) and the definitions of N and N , we get

(4-14) ∂N
∂t
(g̃(t), g(t))=−

∫
g̃(t)
g(t)

〈
∂g
∂t
(t),Rc0(g̃(t))

〉
g̃(t)

dµg̃(t) vol(g̃(t))−2/p.
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It is easy to see that N(g̃(s), g(t)) and (∂N/∂t)(g̃(s), g(t)) as functionals of g̃(s)
and g(t) are continuous with the C2-topology on the space of metrics. Applying
the mean value theorem to the variable t in the function N(g̃(s), g(t)), there exists
a number 0< β(s, t) < t such that

N(g̃(s), g(t))−N(g̃(s), g(0))= t ∂N
∂t
(g̃(s), g(β(s, t))).

Substituting into (4-13), we come to

(4-15) ∂N
∂t
(g̃(t), g(β(t, t)))≤

Y(g(t))−Y(g(0))
t

≤
∂N
∂t
(g̃(0), g(β(0, t))).

Letting t → 0, then β(0, t)→ 0 and β(t, t)→ 0 follows from 0 < β(s, t) < t .
Hence

(4-16) lim sup
t→0

Y(g(t))−Y(g(0))
t

≤
∂N
∂t
(g̃(0), g(0)) for all g̃(0) ∈3[g(0)].

Pick ti > 0, ti → 0 such that

(4-17) lim inf
t→0

Y(g(t))−Y(g(0))
t

= lim
i→∞

Y(g(ti ))−Y(g(0))
ti

.

Using the compactness of 3[g0], there exists a subsequence of ti (denoted again
by ti for simplicity) and a Yamabe metric g0 ∈3[g0] such that

lim
i→∞

g̃(ti )= g0.

Then by the first inequality in (4-15),

(4-18) lim
i→∞

Y(g(ti ))−Y(g(0))
ti

≥ lim
i→∞

∂N
∂t
(g̃(ti ), g(β(ti , ti )))

=
∂N
∂t
(g0, g(0)).

Hence by (4-16) and (4-17), Y(g(t)) is differentiable at t = 0 and

(4-19) lim
t→0

Y(g(t))−Y(g(0))
t

=
∂N
∂t
(g0, g(0)).

This implies the first equality in (1-2) by (4-16) and (4-14). We now know that
the ti chosen after (4-17) can be any sequence of ti > 0, ti → 0. Then the g0

in (4-19) can be any accumulation point of g(t) as t → 0 in 3[g0], hence any
accumulation point of 3[g(t)] as t → 0 in 3[g0]. The second equality in (1-2)
follows from applying this to other metrics g(t) ∈ G(∂g/∂t)(0)(g0, t). �
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