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JIANGXUE FANG

We show that the formal germ at the infinity of the Fourier transform of a
holonomic D-module depends only on the formal germ of the D-module at
its singular points and at the infinity.

1. Introduction

The stationary phase approximation is a basic principle of asymptotic analysis,
exemplified by the oscillatory integral

I (t ′)=
∫

g(t)ei t ′ f (t)dt.

If the derivative of f (t) does not vanish at any point in Supp( f ), then I (t ′) is
rapidly decreasing at∞. If f (t) has only finitely many critical points in Supp( f ),
the major contribution to the value of the integral I (t ′) for large t ′ comes from
neighborhoods of those critical points. More generally, consider the integral

I (t ′)=
∫ b(t ′)

a(t ′)
g(t, t ′)ei f (t,t ′)dt,

where all the functions are real-valued. Under certain conditions, for t ′→∞,

I (t ′)=
∑

ft (t,t ′)=0

(
g(t, t ′)

√
2π

| ft t(t, t ′)|
ei f (t,t ′)+ iπ

4 sgn ft t (t,t ′)
+ o

(
g(t, t ′)
√
| ft t(t, t ′)|

))
.

The classical principle of stationary phase outlined above relates to the real
Fourier transform. To study Deligne’s `-adic Fourier transform, Gérard Laumon
[1987] introduced a corresponding principle of stationary phase and the local `-
adic Fourier transform. (See [Katz 1988] for a good exposition.) We are interested
in the D-module case.
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We fix a field k of characteristic 0 and use the following notations:

(1) Let p1, p2 be the projections Spec k[t, t ′]=A1
k×k A1

k→A1
k , and let p̄1, p̄2 be

the projections P1
k×k P1

k→P1
k . Let α :A1

k ↪→P1
k and µ :A1

k×k A1
k ↪→P1

k×k P1
k

be the inclusions.

(2) For any x ∈ k, let tx = t−x and t ′x = t ′−x . Let t∞=1/t= z, t ′
∞
=1/t ′= z′ and

η′ = Spec k(t ′). For any x ∈ k ∪{∞}, let ηx = Spec k((tx)), η′x = Spec k((t ′x)).

(3) For any x, y ∈ k∪{∞}, let k((tx , t ′y)) be the field of the formal Laurent series∑
i, j�−∞

ai j t i
x t ′ jy , ai j ∈ k. For any k((tx))-vector space M , let

M((t ′y))= M ⊗k((tx )) k((tx , t ′y)).

(4) Denote by L the rank-one connection (OA1
k
, d+dt) on A1

k . Then L corresponds
to the D-module OA1

k
·et on A1

k . So L is a substitute of ei t in classical Fourier
analysis. Let X be a scheme. Any section f ∈ O(X) defines a morphism
φ : X→ A1

k and let L f = φ
∗L.

Let M be a vector bundle with a connection ∇ on a nonempty open subscheme
U of A1

k and let i :U ↪→ A1 and j :U → P1
k be the inclusions. The connection ∇

on M can be extended to a connection i∗∇ on i∗M and a connection j∗∇ on j∗M.
The global (geometric) Fourier transform of the D-module i∗M on A1

k is defined
to be

F(i∗M)= p2+(p∗1 i∗M⊗O
A1

k×A1
k

Lt t ′)[1],

where ⊗ and p2+ are derived functors of D-modules. This definition is analogous
to

f̂ (t ′)=
∫

f (t)ei t t ′dt.

More precisely, we have

F(i∗M)∼= R1 p2∗
(

p∗1 i∗M
p∗1 i∗∇+t ′dt
−−−−−−→ p∗1(�

1
A1

k
⊗O

A1
k

i∗M)
)

∼= α
∗α∗R1 p2∗

(
p∗1 i∗M

p∗1 i∗∇+t ′dt
−−−−−−→ p∗1(�

1
A1

k
⊗O

A1
k

i∗M)
)

∼= α
∗R1 p̄2∗µ∗

(
p∗1 i∗M

p∗1 i∗∇+t ′dt
−−−−−−→ p∗1(�

1
A1

k
⊗O

A1
k

i∗M)
)

∼= α
∗R1 p̄2∗

(
p̄∗1 j∗M⊗µ∗OA1

k×A1
k

p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1(�

1
P1

k
⊗ j∗M)⊗µ∗OA1

k×A1
k

)
.

Consider the complex

(∗)
(

p̄∗1 j∗M⊗µ∗OA1
k×A1

k

p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1(�

1
P1

k
⊗ j∗M)⊗µ∗OA1

k×A1
k

)
.

We have
F(i∗M)|η∞′ = R1 p̄2∗(∗)|η∞′ .
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To study F(i∗M)|η∞′ , one needs to study R1 p̄2∗(∗)|Spf k[[z′]]. The complex (∗)
involves quasicoherent sheaves that may not be coherent sheaves. To study the
localization of (∗) on Spf k[[z′]], we need to transform them into coherent sheaves.
For this reason, Bloch and Esnault [2004] rewrote (∗) in terms of the cohomology
of a complex of coherent modules. They found a good lattice pair V, W of the con-
nection j∗M such that ( p̄∗1 j∗∇+ t ′dt)( p̄∗1V)⊂ p̄∗1(�

1
P1

k
(T )⊗W) and the inclusion

of complexes (
p̄∗1V

p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1(�

1
P1

k
(T )⊗W)

)
⊂ (∗)

is a quasi-isomorphism. Here T =P1
k−U . However, for any good lattice pair V, W

of the connection j∗M, the conditions above do not hold, because the differential
form t ′dt is singular on P1

k ×{∞}∪ {∞}×P1
k . We only have

( p̄∗1 j∗∇ + t ′dt)( p̄∗1V)⊂ p̄∗1
(
�1

P1
k
(T )⊗ (W+V({∞}))

)
(P1

k ×{∞})

and a subcomplex

(1-1)
(

p̄∗1V
p̄∗1 j∗∇+t ′dt
−−−−−−→ p̄∗1

(
�1

P1
k
(T )⊗ (W+V({∞}))

)
(P1

k ×{∞})
)

of (∗). This inclusion of complexes (1-1) ⊂ (∗) is still not a quasi-isomorphism.
Using Deligne’s construction of good lattice pairs, we find a good lattice pair
V, W of j∗M in Lemma 2.3 such that (1-1)|P1

k⊗kk(t ′) ⊂ (∗)|P1
k⊗kk(t ′) is a quasi-

isomorphism. From this, we get the following stationary phase formula.

Theorem 1.1. Let M be a vector bundle with a connection ∇ on a nonempty open
subscheme U of A1

k , and let i : U ↪→ A1 be the inclusion. Suppose all points in
A1

k −U are k-rational. Then the natural map

(1-2) F(i∗M)|η′∞→
⊕

x∈A1
k−U

coker
(
(M|ηx )((z

′))
z′∂tx+1
−−−−→ (M|ηx )((z

′))
)

⊕ coker
(
(M|η∞)((z

′))
z′∂z−

1
z2

−−−−→ (M|η∞)((z
′))
)

is an isomorphism of formal connections on k((z′)).

The direct summands on the right side of (1-2) induce the definition of local
Fourier transforms for formal connections.

The paper is organized as follows. In Section 2, we discuss the good lattice
pairs of connections on a smooth curve. Passing to the stalks, we discuss the good
lattice pairs of connections on a discrete valuation field. In Section 3, we prove
the stationary phase formula using proper base change theorem between formal
schemes.
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2. Good lattice pairs

Let X be a smooth algebraic curve over k and j : X ↪→ X the smooth compactifi-
cation. Let F be a vector bundle on X with a connection ∇. Set 6 = X − X . A
pair of good lattices V,W of j∗F is a pair of vector bundles on X which extends
F and satisfies the following conditions:

(1) V⊂W⊂ j∗F.

(2) ∇(V)⊂�1
X
(6)⊗W.

(3) For any effective divisor D supported on 6, the inclusion of complexes(
V
∇
−→�1

X (6)⊗W
)
→
(
V(D)

∇
−→�1

X (6)⊗W(D)
)

is a quasi-isomorphism. Taking the direct limit with respect to D, we get a
quasi-isomorphism:(

V
∇
−→�1

X (6)⊗W)
)
→
(

j∗F
∇
−→�1

X ⊗ j∗F
)
.

The existence of good lattice pairs can be passed to the stalks. So we only need
to consider the local case: good lattice pairs of connections on a discrete valuation
field.

Let K be a discrete valuation field with the valuation v. Let A be the valuation
ring, t a uniformizer, and ∂ a continuous derivation on K such that ∂(t) = 1 and
∂(A)⊆ A.

Definition 2.1. A connection on K (of rank k, where k is finite) is a k-dimensional
vector space M over K with an additive map ∂ : M → M satisfying ∂( f m) =
f ∂(m)+ ∂( f )m for any f ∈ K and m ∈ M .

Let r be the rank of the connection M . Set τ = t∂ . There exists a cyclic element
v ∈ M , in the sense that the elements τ iv, for 0 ≤ i ≤ r − 1, form a basis of M
over K . We have

τ rv =
∑

0≤i≤r−1

aiτ
iv

for some ai ∈ K . The Newton polygon N (M) of M is the convex hull of

{(u, v) | u ≤ i, v ≥ v(ai )}

in the plane R2. The slopes of M are the slopes of nonvertical edges of N (M), and
we eliminate the slope 0 if the horizontal edge is situated in u ≤ 0. The slopes are
independent of the choice of the cyclic elements. The sum of all the slopes of M
is called the irregularity of M , and is denoted by i(M). Then

i(M)= max
0≤i≤r

(0,−v(ai )).
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A lattice of M is a finitely generated A-submodule V of M that spans M . For any
artinian A-module V , the length of V is denoted by `(V ).

Definition 2.2. A pair of lattices V,W of (M, ∂) is called good if the following
conditions are satisfied

(1) V ⊂W ⊂ M .

(2) ∂V ⊂ (1/t)W .

(3) For any i ∈ N, the natural inclusion of complexes(
V

∂
−→

1
t

W
)
→

( 1
t i V

∂
−→

1
t i+1 W

)
is a quasi-isomorphism.

Note that if V,W is a good lattice pair, so is (1/t i )W, (1/t i )W for any i ∈ N.
Condition (3) above is equivalent to the following:

(3′) For any i ∈ N, the map

1
t i V

/ 1
t i−1 V

gri∂
−−→

1
t i+1 W

/ 1
t i W

induced by ∂ is an isomorphism.

One can show that i(M)= `(W/V ).

Lemma 2.3. Let k ↪→ k ′ be an extension of fields of characteristic 0. Let ∂t be the
natural derivation on k(t) and on k ′(t). The variable t defines a discrete valuation
v on k(t) and k ′(t). Let A and A′ be their discrete valuation rings, respectively.
Suppose c is an element in k ′ which is not algebraic over k. Let M be a connection
on k(t), and let Mc be the connection on k ′(t) whose underlying space is the k ′(t)-
vector space M ⊗k(t) k ′(t), and with the operation ∂t defined by

∂t(m⊗ f )= ∂t(m)⊗ f +m⊗ ∂t( f )−m⊗ c
t2

for any m ∈ M and any f ∈ k ′(t). Then there exists a good lattice pair V, W of M ,
such that V⊗A A′, (W+(1/t)V)⊗A A′ is also a good lattice pair of the connection
Mc on k ′(t).

Proof. Set r = rkM . Choose a cyclic element v of M . Let ε be the basis
{τ iv | 0 ≤ i ≤ r − 1} of M over k(t ′). We have τ rv =

∑
0≤i<r aiτ

iv for some
ai ∈ K . The irregularity i(M) of M is max0≤i<r (0,−v(ai )). Consider the Newton
polygon of the differential operator τ r

−
∑

0≤i≤r−1 aiτ
i . Let j be the integer such

that ( j, v(a j )) is a vertex of this Newton polygon, and such that the slopes of
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this Newton polygon on the right side (respectively left side) of ( j, v(a j )) is > 1
(respectively ≤ 1). Set ar = 1. Then we have

v(a j+i )− v(a j ) > i for any 1≤ i ≤ r − j,

v(a j−i )− v(a j )≥−i for any 0≤ i ≤ j.

Then

(2-1) v(a j )− j =min0≤i≤r (v(ai )− i).

The matrix of the differential operator τ with respect to the basis ε is

0 =


0 a0

1 a1
. . .

...

1 ar−1

 .
The characteristic polynomial of 0 is λr

−
∑

0≤i≤r−1 aiλ
i . Let

3= diag{1, . . . , 1, t, . . . , tr− j+i(M)+v(a j )},

and let e = ε3= {ei | 0 ≤ i < r}. Set l = j − v(a j )− i(M) ≥ 0. Then the matrix
of the differential operator τ with respect to the basis e is

0′ =



0 tr−la0

1 tr−la1
. . .

...

1 tr−lal−1
1
t tr−l−1al
. . .

...
1
t ar−1


+ diag{0, · · · , 0, 1, · · · , r − l}.

Let P(λ)= λr
−
∑

0≤i≤r−1 a′iλ
i be the characteristic polynomial of 0′. Since

0′ =3−103+ diag{0, . . . , 0, 1, . . . , r − l},

we have
a′i − ai ∈

∑
i< j<r

Za j +Z⊂ K .

So
max{0,−v(a′i ) | 0≤ i < r} =max{0,−v(ai ) | 0≤ i < r} = i(M).

Write P(λ)= t−i(M)∑
i biλ

i , bi ∈ K . Then bi ∈ A and v(bi )= 0 for at least one
i . The residue polynomial

∑
i b̄iλ

i of
∑

i biλ
i is nonzero. For almost all n ∈ Z,
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i b̄i (−n)i 6= 0. In this case, we have

−v(det(n+0′))=−v((−1)r P(−n))=−v
(

t−i(M)
(∑

i

bi (−n)i
))
= i(M).

Then, for almost all n ∈ Z,

(2-2) i(M)=−v(det(n+0′)).

Let V be the lattice of M generated by e. Define

(2-3) [(n+0′)V : V ] = `((n+0′)V + V/V )− `((n+0′)V + V/(n+0′)V ).

By [Deligne 1970, p. 48, Proposition 2], we have

(2-4) [(n+0′)V : V ] = −v(det(n+0′)).

Let W be the lattice of M generated by

e0, . . . , el−1,
1
t

el, . . . ,
1
t

er−1.

Then `(W/V )=r−l. Since ((n+0′)V+V )/W is an artinian A-module generated
by the single element

x =
∑

0≤i≤l−1

ai tr−lei +
∑

l≤i≤r−1

ai tr−1−i ei =
∑

0≤i≤l−1

ai tr−lei +
∑

l≤i≤r−1

ai tr−i 1
t

ei .

For any i , we have i(M)≥−v(ai ) and v(a j )− j ≤ v(ai )− i . Then

v(t i(M)+l−r ai tr−l)≥ 0 and v(t i(M)+l−r ai tr−i )≥ v(t i(M)+l−r a j tr− j )= 0.

Then the annihilator of x in ((n+0′)V + V )/W is t i(M)+l−r . So

`((n+0′)V + V/W )= i(M)+ l − r.

Then

(2-5) `((n+0′)V + V/V )= `(W/V )+ `((n+0′)V + V/W )= i(M).

Comparing this equality with (2-2), (2-3), and (2-4), we get

`((n+0′)V + V/(n+0′)V )= 0

for almost n ∈ Z, that is, (n+0′)V ⊃ V for almost all n ∈ Z.
The A-module

(n+0′)V + 1
t

V
/ 1

t
V

is artinian and is generated by one element x whose annihilator is

t i(M)+l−r
= t j−v(a j )−r .
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Then

(2-6) `
(
(n+0′)V + 1

t
V
/

V
)
= `

(
(n+0′)V + 1

t
V
/ 1

t
V
)
+ `

1
t

V
/

V

= j − v(a j )=
∑

λ:slope of M

max(λ, 1).

The matrix of the differential operator τ with respect to the basis ε of Mc is
0− c/t . The characteristic polynomial P ′(λ) of 0− c/t is

P ′(λ)=
(
λ+

c
t

)r
−

∑
0≤i<r

ai

(
λ+

c
t

)i
.

Write P ′(λ)= λr
+
∑

0≤i<r biλ
i for some bi ∈ k ′(t). Then

b0 =

(c
t

)r
−

∑
0≤i<r

ai

(c
t

)i
=

a j

t j

(
1

a j tr− j cr
−

∑
0≤i<r

ai

a j t i− j ci
)
.

By (2-1), we have
1

a j tr− j cr
−

∑
0≤i<r

ai

a j t i− j ci
∈ A[c],

and its residue in k ′ is a nonzero polynomial over k of c. Since c is not algebraic
over k, this residue is nonzero. Then we have

v(b0)= v
(a j

t j

)
= v(a j )− j.

Also by (2-1), we have v(bi )≥ v(b0) for any 0≤ i < r . So

max0≤i<r (0,−v(bi ))= j − v(a j )= i(Mc).

The matrix of the differential operator τ with respect to the basis e of Mc is
0′′ = 0′− c/t . Write the characteristic polynomial of 0′′ as λr

+
∑

0≤i<r b′iλ
i for

some b′i ∈ k ′(t). By a similar proof as above, we have

max0≤i<r (0,−v(b′i ))=max0≤i<r (0,−v(bi ))= i(Mc).

For almost n ∈ Z, we have

−v(det(n+0′′))= i(Mc).

Let V ′ = V ⊗A A′. We have (n+0′′)V ′+ V ′ ⊆ 1
t

V ′+0′V ′; therefore So

(2-7) `((n+0′′)V ′+ V ′/V ′)≤ `
(1

t
V ′+0′V ′

/
V ′
)
.

Since A→ A′ is flat and k⊗A A′= k ′, for any artinian A-module M , one can prove
`(M) = `(M ⊗A A′). Since (1/t)V + 0′V/V is an artinian A-module, by (2-6),
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we have

(2-8) `
(1

t
V ′+0′V ′

/
V ′
)
= `

(1
t

V +0′V
/

V
)
= j − v(a j ).

By (2-4), we have, for almost n ∈ Z,

`((n+0′′)V ′+V ′/V ′)≥ `((n+0′′)V ′+V ′/V ′)−`((n+0′′)V ′+V ′/(n+0′′)V ′)

=−v(det(n+0′′))= j−v(a j ).

Comparing this inequality with (2-7) and (2-8), we have for almost n ∈ Z,

`((n+0′′)V ′+ V ′/V ′)= j − v(a j );

`((n+0′′)V ′+ V ′/(n+0′′)V ′)= 0;

(n+0′′)V ′+ V ′ = 1
t

V ′+0′V ′ =
(1

t
V +0′V

)
⊗A A′.(2-9)

So for almost n∈Z, (n+0′′)V ′⊇V ′. Let e′= (1/t N )e. The matrix of τ with respect
to the basis e′ of M (respectively M ′c) is 01 :=0

′
−N (respectively 02 :=0

′′
−N ).

Let V= (1/t N )V and let V′ = (1/t N )V ′. Choose N large enough so that for any
n ≤ 0, we have

(n+01)V⊃ V and (n+02)V
′
⊇ V′.

Let W= 01V. By (2-9), we have 02V′ = (W+ (1/t)V)⊗A A′. Let’s prove V, W

is a good lattice of M now. We only need to verify condition (3′) for any i ∈ N.
Conjugating by 1/t i , the A-linear map

griτ :
1
t i V

/ 1
t i−1 V→

1
t i W

/ 1
t i−1 W

can be identified with the A-linear map

gr0τ − i = 01− i : V/tV→W/tW.

Since (01− i)V⊃ V, we have

(01− i)V= (01− i)V+V⊃ 01V=W.

So 01 − i : V/tV→W/tW is surjective. But the domain and the range of griτ

are artinian A-modules of the same length r , so gr0τ − i is an isomorphism and
so is griτ . This proves V, W is a good lattice pair of M . Repeating the proof, we
conclude that V⊗A A′, (W+ (1/t)V)⊗A A′ is a good lattice pair of Mc. �

Remark 2.4. Lemma 2.3 is the main technical lemma for the proof of the station-
ary phase principle in the next section. Lemma 2.3 also allows us to choose a good
lattice pair V, W of M such that

(2-10) dimk

(
W+

1
t

V
/

V
)
=

∑
λ:slope of M

max(λ, 1).
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Formula (2-10) is easily seen to give a new proof of the following result:

Lemma 2.5 [Bloch and Esnault 2004, Lemma 3.3]. Let M be a connection on K .
The slopes of M are all ≤ 1 (respectively ≥ 1) if and only if there exists a good
lattice pair V,W such that W⊆ (1/t)V (respectively W⊇ (1/t)V).

(Note that the original proof by Bloch and Esnault needs the assumption that K
is complete.)

3. Stationary phase principle

Let K = k(t ′). For any scheme X over k and any OX -modules F, let X K = X⊗k K
and FK = F|X K . For any k-morphism f : X→ Y , let fK : X K → YK be the base
change of f .

We keep the notation used in Section 1. In this section we prove Theorem 1.1.
For any x ∈ TK = T , (VK )x , (WK )x is a good lattice pair of the connection

( jK∗MK )x on K (tx). Since t ′ is not algebraic over k, by Lemma 2.3, we may
assume that

V∞⊗O
P1

k ,∞
OP1

K ,∞
,
(

W∞+
1
z

V∞

)
⊗O

P1
k ,∞

OP1
K ,∞

is a good lattice pair of the connection

∂z −
t ′

z2 : ( jK ∗MK )∞→ ( jK ∗MK )∞.

Lemma 3.1. The inclusion of complexes (1-1)⊂ (∗) induces a quasi-isomorphism

(1-1)|P1
K
' (∗)|P1

K
.

Proof. We have

(1-1)|P1
K
=
(
VK

jK∗∇K+t ′dt
−−−−−−→�1

P1
K
(TK )⊗ (WK +VK ({∞}))

)
,

(∗)|P1
K
=
(

jK∗MK
jK∗∇K+t ′dt
−−−−−−→�1

P1
K
⊗ jK∗MK

)
.

First we have (1-1)|UK = (∗)|UK . For any x ∈ SK , let’s prove (1-1)|P1
K
⊂ (∗)|P1

K
induces a quasi-isomorphism on the stalks at x . It suffices to show that(

1
t i
x
(VK )x

/ 1
t i−1
x

(VK )x

)
gri (∂tx+t ′)
−−−−−→

(
1

t i+1
x

(WK )x

/ 1
t i
x
(WK )x

)
is an isomorphism for any i ≥ 1. As (VK )x ⊂ (WK )x , the map gri (∂tx + t ′) is
equal to gri (∂tx ), which is an isomorphism by the definition of good lattices. The
inclusion (

(1-1)|P1
K

)
∞
→
(
(∗)|P1

K

)
∞
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can be written as(
V∞⊗O

P1
k ,∞

OP1
K ,∞

∂z−
t ′

z2
−−−→

1
z

(
W∞+

1
z

V∞

)
⊗O

P1
k ,∞

OP1
K ,∞

)
⊂
(
( jK ∗MK )∞

∂z−
t ′

z2
−−−→ ( jK ∗MK )∞

)
.

It is a quasi-isomorphism by the assumption on V∞ and W∞. �

Lemma 3.2. R1 p̄2∗(1-1)|η′ ∼= R1 p̄2∗(∗)|η′ .

Proof. Consider the Cartesian diagram

(3-1)

P1
K � η′= Spec K

P1
k ×P1

k

g
p̄2
� P1

k .

g

By Lemma 3.1, we have

R1 p̄2∗(1-1)|η′ ∼= H 1(P1
K , (1-1)|P1

K
)∼= H 1(P1

K , (∗)|P1
K
)∼= R1 p̄2∗(∗)|η′ . �

Corollary 3.3. F(i∗M)|η′∞ = R1 p̄2∗(1-1)|η′∞ .

Denote by P1
k[[z
′
]] the formal completion of P1

k×P1
k along its closed subscheme

P1
k ×{∞}. For any coherent sheaf K on P1

k , let K[[z′]] = K|P1
k [[z
′]]

.

Lemma 3.4 [Bloch and Esnault 2004, Corollary 2.2].

R1 p̄2∗(1-1)⊗O
P1

k
k[[z′]] ∼= H 1

(
P1
[[z′]],V[[z′]]

z′∇+dt
−−−−→�1

P1(T )⊗W[[z′]]
)
.

Lemma 3.5 [Bloch and Esnault 2004, Lemma 2.4 and Corollary 2.5]. Let H be
the complex

V[[z′]]
z′∇+dt
−−−−→

(
�1

P1
k
(T )⊗ (W+V({∞}))

)
[[z′]].

Then H0 equals (0) and H1 is supported on T ⊂ P1
k = P1

k[[z
′
]]. For any x ∈ T , let

V̂x = Vx ⊗O
P1

k, x
k[[tx ]] and Ŵx =Wx ⊗O

P1
k, x

k[[tx ]]. We have

H1
x = coker

(
V̂x [[z′]]

z′∇+dt
−−−−→�1

P1
k
(T )⊗ (Ŵx + ̂V({∞})x)[[z′]]

)
. �

Corollary 3.6.

H 1(P1
k[[z
′
]],H)=

⊕
x∈S

coker
(

V̂x [[z′]]
z′∂tx+1
−−−−→

1
tx

Ŵx [[z′]]
)

⊕ coker
(

V̂∞[[z′]]
z′∂z−

1
z2

−−−−→
1
z

(
Ŵ∞+

1
z

V̂∞

)
[[z′]]

)
.
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Combining Corollary 3.3, Lemma 3.4 and Corollary 3.6, we have

F(i∗M)|η′∞ = R1 p̄2∗(1-1)⊗O
P1

k
k[[z′]]⊗k[[z′]] k((z′))

=

⊕
x∈S

coker
(
V̂x((z′))

z′∂tx+1
−−−−→

1
tx

Ŵx((z′))
)

⊕ coker
(

V̂∞lpz′))
z′∂z−

1
z2

−−−−→
1
z
(Ŵ∞+

1
z

V̂∞)((z′))
)
.

The left side of this equality is independent of the choice V and W. For any
i ∈N, V(iT ) and W(iT ) still satisfy the condition of Lemma 3.1. Then the above
equality holds if we replace V and W by V(iT ) and W(iT ), respectively. Taking
the direct limit on i , we have

F(i∗M)|η′∞ =
⊕
x∈S

coker
(
(M|ηx )((z

′))
z′∂tx+1
−−−−→ (M|ηx )((z

′))
)

⊕ coker
(
(M|η∞)((z

′))
z′∂z−

1
z2

−−−−→ (M|η∞)((z
′))
)
.
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